Retroactive

Lo P L) e el

update & query all versions
updates in the past propragate

Retroactive Data Structures

[E.D. Demaine, J. lacono, S. Langerman, Retroactive Data Structures, Proc. 15t Annual ACM-
SIAM Symposium on Discrete Algorithms, 274-283, 2004]

r

(DDA D

\

!

m

m Total number of updates/versions
r Distance from current time
n Maximal data structure size at any time

Partial retroactive Update all versions & query current
Full retroactive Update & query all versions

Rollback — Full Retroactivity

THEOREM 3.1. Given any data structure that performs a
collection of operations each in worst case T'(n) time, there
is a corresponding retroactive data structure that supports
the same operations in O(1'(n)) time, and supports retroac-
tive versions of those operations in O(rT'(n)) time.

current

Update u,
Change A, A 5 A 3 A .

+ Generic, can always be applied, space efficient - Slow retroactive operations

Lower bounds for Retroactivity

*

THEOREM 3.2. There exists a data structure in the straight-
line-program model, supporting O(1) time update opera-
tions, but the (partially) retroactive insertions of those op-
erations require S)(r) time, worst case or amortized.

Ao+ A X + a,X2+ - + a, X"
(requires Q(n) multiplications given x by Motzkin’s theorem)

THEOREM 3.3. In the cell-probe model, there exists a
data structure supporting partially retroactive updates in
O(1) time, but fu]{g/ retroactive queries of the past require

(U (log n / tereerm=e) time.

Xn

Xo | X9 | X5 | ** | X;

(prefix sum queries require Q(log n))

[M. Patrascu, E.D. Demaine, Logarithmic Lower Bounds in the Cell-Probe Model,
SIAM J. of Computing 35(4): 932-963, 2006]

Partial > Full Retroactivity

THEOREM 3.4. Any partially retroactive data structure in
the pointer-machine model with constant indegree, support-
ing T'(m) -time retroactive updates and ()(m)-time queries
about the present can be transformed into a fully retroactive
data structure with amortized O(\/m T (m))-time retroac-
tive updates and O(y/m T (m) + Q(m))-time fully retroac-
tive queries using O(mT'(m)) space.

O(vVm)

{ _ A - \ \current

T /53

partial retroactive structures
(remember using full persistence)

terﬁpora‘ry dufing
queries to V. (rollback)

Partial Retroactive
Commutative Data Structures

LEMMA 4.1. Any data structure supporting a commutative
set of operations allows the retroactive insertion of opera-

tions in the past (and queries in the present) at no additional
asymptotic cost.

LEMMA 4.2. Any data structure supporting a commuta-
tive and invertible set of operations can be made partially
retroactive at no additional asymptotic cost.

LEMMA 4.3. Any data structure for a searching problem

can be made partially retroactive at no additional asymptotic
COSL.

commutative = state independent of order of operations

Decomposable Search Problems

THEOREM 4.1. Any data structure for a decomposable
searching problem supporting insertions, deletions, and
queries in time T'(n) and space S(n) can be transformed
into a ftully retroactive data structure with all opera-
tions taking time @ immmmmm—{—ppjpere
gtpn@uprr ()(I'(N) log) oMrerwize The space used is
O(S(m)logm).

0O : O
insert(D) | delete(D) _
»time

Specific Retroactive Data Structures

Data Partially Fully

Structure Retroactive | Retroactive

Dictionary (exact) O(logm) O(logm)
Dictionary (successor) | O(logm) O(log® m)

Queue O(1) ?| O(logm)

Stack O(logm) O(logm)

DEQUE O(log m) O(log m)

Union/Find * O(logm) O(logm)

Priority Queue O(logm) | O(y/mlogm)

* [D.D. Sleator, R.E. Tarjan, A Data Structure for Dynamic Trees, Proc. 13th
Annual ACM Symposium on Theory of Computing, 114-122, 1981]

