
Priority Queues 

 MakeQueue create new empty queue 

 Insert(Q,k,p) insert key k with priority p  

 Delete(Q,k) delete key k (given a pointer) 

 DeleteMin(Q) delete key with min priority 

 Meld(Q1,Q2) merge two sets 

 Empty(Q) returns if empty 

 Size(Q) returns #keys 

 FindMin(Q) returns key with min priority 

1 



Priority Queues – Ideal Times 

MakeQueue, Meld, Insert, Empty,  Size, FindMin: O(1) 

Delete, DeleteMin: O(log n) 

Thm 
1) Meld O(n1-ε)      DeleteMin Ω(log n) 

2) Insert, Delete O(t)      FindMin Ω(n/2O(t)) 
 1) Follows from Ω(n∙log n) sorting lower bound 

2)  [G.S. Brodal, S. Chaudhuri, J. Radhakrishnan,The Randomized Complexity of Maintaining the Minimum. In Proc. 5th Scandinavian 
Workshop on Algorithm Theory, volume 1097 of Lecture Notes in Computer Science, pages 4-15. Springer Verlag, Berlin, 1996] 

2 



Binomial Queues 

 Binomial tree  

– each node stores a (k,p) and satisfies heap order 
with respect to priorities 

– all nodes have a rank r (leaf = rank 0, a rank r node 
has exactly one child of each of the ranks 0..r-1) 

 Binomial queue 

– forest of binomial trees with roots stored in a list 
with strictly increasing root ranks 

[Jean Vuillemin, A data structure for manipulating priority queues,  

Communications of the ACM archive, Volume 21(4), 309-315, 1978]  

8 

2 9 

7 

3 

8 

5 

5 

4 

7 

6 

0 1 

2 

3 

1 

1 0 0 

0 0 

0 

3 



Problem 

Implement binomial queue operations to achieve 
the ideal times in the amortized sense  

Hints  
1) Two rank i trees can be linked to create a rank 

i+1 tree in O(1) time 
 
 
 

2) Potential Φ = max rank + #roots 

x y 
x 

y r r r 
r+1 link 

x ≥ y 

4 



Dijkstra’s Algorithm 
(Single source shortest path problem) 

n x Insert  +  n x DeleteMin  +  m x DecreaseKey 
Binary heaps / Binomial queues :  O((n + m)∙log n) 

 
 

Algorithm Dijkstra(V, E, w, s) 
    Q := MakeQueue 
    dist[s] := 0 
    Insert(Q, s, 0) 
    for v V \ { s } do  
         dist[v] := +∞ 
         Insert(Q, v, +∞) 
    while Q ≠ do 
        v := DeleteMin(Q) 
        foreach u : (v, u)  E do 
              if u  Q and dist[v]+w(v, u) < dist[u] then 
                   dist[u] := dist[v]+w(v, u) 
                   DecreaseKey(u, dist[u]) 

5 



Priority Bounds 

Empty, FindMin, Size, MakeQueue – O(1) worst-case time 

Amortized Worst-case 

 

Dijkstra’s Algorithm O(m + n∙log n) 

Binomial 
Queues 

[Vuillemin 78] 

Fibonacci 
Heaps 

[Fredman, Tarjan 84] 

Run-Relaxed 
Heaps 

[Driscoll, Gabow, 
 Shrairman, Tarjan 88] 

[Brodal 96] 
[Brodal, 

Lagogiannis, 
Tarjan 12] 

Insert 1 1 1 1 

Meld 1 1 - 1 

Delete log n log n log n log n 

DeleteMin log n log n log n log n 

DecreaseKey log n 1 1 1 

(and Minimum Spanning Tree O(m∙log* n)) 

6 



Fibonacci Heaps 

 F-tree 

– heap order with respect to priorities 

– all nodes have a rank r  {degree, degree + 1} 

 (r = degree + 1  node is marked as having lost a child) 

– The i’th child of a node from the right has rank ≥ i - 1 

 Fibonacci Heap 

– forest (list) of F-trees (trees can have equal rank)  

[Fredman, Tarjan, Fibonacci Heaps and Their Use in Improved Network Algorithms,  

Journal of the ACM, Volume 34(3), 596-615, 1987]  
7 

3 

5 

4 

7 

6 

2 

3 

1 

0 

0 

0 

7 



Proof    A rank r node has at least 2 children of rank 
≥ r – 3. By induction subtree size is at least 2└r/3┘  □ 
 
(  in fact the size is at least r , where =(1+5)/2  ) 

Fibonnaci Heap Property 

Thm   Max rank of a node in an F-tree is O(log n) 

8 



Hints  
1) Two rank i trees can be linked to create a rank 

 i+1 tree in O(1) time 
 

2) Eliminating nodes violating  order or nodes having 
lost two children 
 
 
 

3) Potential Φ = 2∙marks + #roots 

Problem 

Implement Fibonacci Heap operations with amortized O(1) 
time for all operations, except O(log n) for deletions 

x y 
x 

y r r r 
r+1 link 

x ≥ y 

x 
r cut degree(x) = d ≤ r-2  

y 

x 
d y 

9 



Implementation of  
Fibonacci Heap Operations 

FindMin  Maintain pointer to min root 
Insert Create new tree = new rank 0 node +1 

Join Concatenate two forests unchanged 
Delete  DecreaseKey -∞ + DeleteMin 
DeleteMin  Remove min root -1  

 + add children to forest +O(log n )  
 + bucketsort roots by rank only O(log n ) not linked below 
 + link while two roots equal rank -1 each 

DecreaseKey Update priority + cut edge to parent +3  
 + if parent now has r – 2 children,   
 recursively cut parent edges -1 each, +1 final cut 

 
* = potential change 

10 



Worst-Case Operations  
(without Join) 

Basic ideas 

 Require  ≤ max-rank + 1 trees in forest 
(otherwise rank r where two trees can be linked) 

 Replace cutting in F-trees by having O(log n) nodes 
violating heap order 

 Transformation replacing two rank r violations by 
one rank r+1 violation 

[Driscoll, Gabow, Shrairman, Tarjan, Relaxed Heaps: An Alternative to Fibonacci Heaps  with Applications to Parallel Computation,  

Communications of the ACM, Volume 34(3), 596-615, 1987]  

11 


