
I/O-EÆ
ient Graph AlgorithmsNorbert ZehDepartment of Computer S
ien
e, Duke University, Durham, NC 27708-0129, USAnzeh�
s.duke.edu1 Introdu
tionGraph algorithms are fundamental in the sense that many general problems orproblems in 
omputational geometry 
an be redu
ed to graph problems. For ex-ample, a number of parallel s
heduling problems 
an be redu
ed to the problemof �nding a maximum or minimum mat
hing of a bipartite graph. Shortest pathproblems in geometri
 domains are often solved by 
omputing shortest paths ingraphs that 
apture the geometri
 distan
es between well-
hosen dis
rete lo
a-tions. One may even go as far as saying that most pointer-based data stru
turesare just graphs with additional information stored at their verti
es. Extra
tinginformation from su
h a data stru
ture then be
omes a graph problem. For ex-ample, a standard sear
h query on a binary sear
h tree T is transformed intothe problem of traversing a path in this tree.Now large data stru
tures used in large s
ale appli
ations do not providea fertile ground for interesting graph problems to be studied. So one questionto ask is whether there are other real-life appli
ations where massive graphsneed to be handled. Two important areas where massive graphs arise are web-modelling and geographi
 information systems. The graphs produ
ed by re
entweb 
rawls have on the order of 200 million verti
es and 2 billion edges, whi
h
an be pro
essed in main memory only by ma
hines at the higher end of thepri
e s
ale. But 
urrent work in web-modelling studies the stru
ture of the webby performing breadth-�rst sear
h (BFS) and depth-�rst sear
h (DFS) in thesegraphs or 
omputing their 
onne
ted 
omponents. Some of the problems arisingin geographi
 information systems in
lude 
ow problems on terrains and logisti
sand road planning appli
ations that involve the 
omputation of shortest pathson weighted terrains. These terrains are often represented by large maps at a �negranularity, whi
h use gigabytes of storage. Many of these appli
ations redu
ethe given real-life problem to 
omputations in graphs that approximate the givensurfa
e suÆ
iently well. So what is left is a graph problem.The above is meant to give a motivation for the study of I/O-eÆ
ient graphalgorithms. In this le
ture series we dis
uss algorithms for fundamental prob-lems su
h as BFS, DFS, shortest paths and 
onne
tivity, with a fo
us on thete
hniques that lead to I/O-eÆ
ient algorithms for these problems. In the �rst,and larger, part of the le
ture series we 
on
entrate on general approa
hes thatlead to eÆ
ient algorithms without additional information about the stru
tureof the given graph. In the se
ond part we study algorithms for planar graphs,whi
h is one of the 
lasses of sparse graphs for whi
h improved algorithms have



been developed. In light of the above dis
ussion, this 
lass of graphs is importantbe
ause the graphs that arise in shortest path 
omputations on weighted terrainsare \almost planar", and many ideas used in algorithms for planar graphs 
anbe used to solve the problems dis
ussed here on su
h \almost planar" graphs.The following is a list of the problems we 
onsider, sorted by the se
tionswhere they are dis
ussed:Problem Se
tionList ranking 2Euler tours and algorithms for trees 3Evaluating DAGs and greedy algorithms for undire
ted graphs 4Graph 
ontra
tion and appli
ations to 
onne
tivity problems(
onne
ted 
omponents, minimum spanning tree, et
.) 5Breadth-�rst sear
h and depth-�rst sear
h 6, 10Single sour
e shortest paths 7, 8Planar graph partitions 9In Se
tion 12, we sket
h the ideas of solutions to a few more problems onsparse graphs and outline some of the most important and most 
hallengingopen problems in the area of I/O-eÆ
ient graph algorithms.We assume that the reader is familiar with elementary graph theoreti
 
on-
epts su
h as the de�nitions of dire
ted and undire
ted graphs, a
y
li
ity ofdire
ted graphs, adja
en
y of verti
es, or independent sets and maximal mat
h-ings. For good introdu
tory texts on graph theory, the reader may refer to [15,17, 31℄.2 List RankingThe �rst problem we dis
uss is list ranking, whi
h has proved to be an importanttool in parallel algorithms. Given the similarity between the problems arising inthe design of parallel and I/O-eÆ
ient algorithms, an I/O-eÆ
ient list rankingalgorithm 
an be used to obtain I/O-eÆ
ient algorithms for a wide range ofproblems on simple graphs su
h as trees. List ranking is also a ni
e introdu
toryexample to demonstrate how surprisingly diÆ
ult even extremely simple graphproblems 
an be
ome, on
e random memory a

ess is penalized.The list ranking problem is the following: Given a linked list L, 
ompute forevery element of L its distan
e from the head of L.1 To 
ast this problem in1 Originally, the rank of an element was de�ned as its distan
e from the tail of thelist. However, it is an exer
ise to verify that an algorithm that 
an 
ompute eitherof the two distan
es 
an 
ompute the other. The de�nition used here simpli�es thedis
ussion.



Pro
edure Na��veListRanking1: v  h2: � 0l f0l is the left-neutral element w.r.t. �.g3: while v 6= nil do4: � �� !(v)5: �(v) �6: v  su

(v)7: end whileAlgorithm 2.1A linear-time internal memory list ranking algorithm.graph theoreti
 terms, list L is a dire
ted a
y
li
 graph L = (V;E) with vertexset V = fv1; : : : ; vNg. There are two distinguished verti
es h and t, whi
h we
all the head and tail of L. Every vertex ex
ept h has exa
tly one in-edge. Everyvertex ex
ept t has exa
tly one out-edge. We assume in this se
tion that the edgeset of L is represented impli
itly. That is, every vertex v 2 L stores a pointersu

L(v) = w, where (v; w) 2 L. We 
all vertex w the su

essor of v in L. Forthe tail t of L, su

L(t) = nil, whi
h signi�es that t has no su

essor in L. Iflist L is 
lear from the 
ontext, we write su

(v) instead of su

L(v) to denotethe su

essor of v in L. Now let � : [1; N ℄ ! [1; N ℄ be a permutation so thatfor 1 � i < N , su

 �v�(i)� = v�(i+1). Then the rank of vertex v�(i) is de�ned as� �v�(i)� = i.As an algorithmi
 tool, it is often useful to generalize the list ranking problemby adopting the notion of weighted ranks of the elements in L: Assume that! : V ! X is an assignment of weights drawn from a domain X to the verti
esof L, and let � : X�X ! X be an asso
iative operator on X . Then the weightedrank �(vi) of vertex vi is de�ned as follows: � �v�(1)� = ! �v�(1)�. For 1 < i � N ,� �v�(i)� = � �v�(i�1)�� ! �v�(i)�.Sin
e this somewhat formal de�nition in
ludes a permutation � of the verti
esof list L, it seems that the list ranking problem 
ontains some formulation of apermutation problem as a subproblem. Hen
e, we should not be too surprisedthat list ranking requires 
(perm(N)) I/Os. We will see later in this le
tureseries how to prove this lower bound. But �rst we investigate why the na��veinternal memory algorithm (Algorithm 2.1) is not I/O-eÆ
ient. The algorithmmakes the assumption that a pointer to the head h of list L is provided.To see why pro
edure Na��veListRanking is not I/O-eÆ
ient, assume thatB = 2 andM = 4, and 
onsider the layout of list L shown in Figure 2.1. In orderto a

ess the head of list L, the �rst blo
k has to be loaded into internal memory.The se
ond vertex 
an only be a

essed after loading the se
ond blo
k. In orderto a

ess the third vertex, the third blo
k has to be loaded into internal memory.Sin
e there is room for only two blo
ks in internal memory, one of the blo
ksalready in main memory needs to be dis
arded. If the LRU2 paging strategy2 LRU stands for \least re
ently used". That is, to make room for a new blo
k to beloaded into main memory, the blo
k to be dis
arded from main memory is 
hosen



1 2 3 45 6 7 8Figure 2.1A worst-
ase layout of a list L for pro
edure Na��veListRanking with LRU pagingstrategy.is used, the �rst blo
k is dropped. Following the exe
ution of the algorithmfurther, it is not hard to see that the algorithm has to spend one I/O per vertexbe
ause just before visiting the vertex, the blo
k 
ontaining it is not in internalmemory. This example 
an easily be generalized to blo
ks of arbitrary size, sothat pro
edure Na��veListRanking spends 
(N) I/Os in the worst 
ase.Chiang et al. [12℄ propose an I/O-eÆ
ient list ranking algorithm based ongraph 
ontra
tion (Algorithm 2.2). If the list �ts into internal memory, the al-gorithm loads the whole list into memory and ranks it using pro
edure Na��ve-ListRanking. Otherwise the algorithm 
onstru
ts a list L0 of size at most 23 jLjby removing the elements of a large independent set I from L. The weights of allelements in L n I are updated so that their weighted ranks in L and L0 are thesame. Hen
e, the re
ursive appli
ation of pro
edure FastListRanking to list L0assigns the 
orre
t ranks to all elements in L n I . In order to 
ompute the ranksof all elements in I , their weights are added to the ranks of their prede
essors.If jLj � M , the algorithm spends O(s
an(jLj)) I/Os to rank list L. In par-ti
ular, list L is read into internal memory in O(s
an(jLj)) I/Os, pro
edureNa��veListRanking is applied in internal memory, and the ranks of the ele-ments of L are written to disk in O(s
an(jLj)) I/Os. If jLj > M , we show belowthat, ex
luding the re
ursive invo
ation of the algorithm in Line 20, pro
edureFastListRanking takes O(sort(jLj)) I/Os. List L0, whi
h is passed to the re-
ursive invo
ation of the algorithm, has size at most 23 jLj, so that we obtainthe following re
urren
e des
ribing the I/O-
omplexity of pro
edure FastList-Ranking: I(N) = (O(s
an(N)) if N �MI� 23N�+O(sort(N)) if N > MThe solution of this re
urren
e is I(N) = O(sort(N)), so that pro
edure Fast-ListRanking is optimal, given the 
(perm(N)) I/O lower bound for this prob-lem dis
ussed later in this 
ourse.3by the time that has elapsed sin
e the last a

ess to the blo
k. The blo
k with thelongest elapsed time sin
e the last a

ess is dis
arded.3 Te
hni
ally, there is a gap between the upper and lower bounds in the 
ase whenN < sort(N), whi
h is true only for ridi
ulously large inputs. To satisfy the theo-



Pro
edure FastListRanking1: if jLj �M then2: Load list L into main memory, and use pro
edure Na��veListRanking to 
om-pute the ranks of all elements in L.3: else4: Find an independent set I of size at least N=3 in L.5: for all v 2 L n I do6: su

L0 (v) su

L(v)7: �L0 (v) �L(v)8: end for9: for all v 2 I do10: if su

L(v) 6= nil then11: !L0(su

L(v)) !L(v)� !L(su

L(v))12: end if13: end for14: for all v 62 I do15: if su

L(v) 6= nil and su

L(v) 2 I then16: su

L0(v) su

L(su

L(v))17: end if18: end for19: Let L0 be the list de�ned by the verti
es in L n I, pointers su

L0(v) and weights!L0 (v).20: Re
ursively apply pro
edure FastListRanking to list L0. Let �L0(v) be the rankassigned to every element v in L n I.21: for all v 62 I do22: �L(v) �L0 (v)23: if su

L(v) 6= nil and su

L(v) 2 I then24: �L(su

L(v)) �L(v)� !L(su

L(v))25: end if26: end for27: end ifAlgorithm 2.2An I/O-eÆ
ient list ranking pro
edure.So let us analyze the I/O-
omplexity of Lines 4{26 of the algorithm, ex
ludingthe re
ursive 
all to the algorithm itself in Line 20. We show in Se
tion 4.2 that anindependent set of size at least 23 jLj 
an be found in O(sort(N)) I/Os. Lines 5{8
an be 
arried out in a single s
an of list L. To 
arry out Lines 9{13, assumethat every vertex has a unique numeri
al ID. Sort the elements in L n I by theirnumbers and the elements in I by the numbers of their su

essors and s
an bothlists simultaneously to add for every element of I , its weight to the weight ofreti
ian, the gap 
an be 
losed by simulating pro
edures Na��veListRanking andFastListRanking in parallel, allowing ea
h algorithm to perform one I/O beforeswit
hing to the other algorithm. By stopping the simulation as soon as one ofthe two algorithms is �nished it is guaranteed that the simulation �nishes afterO(min(N; sort(N))) = O(perm(N)) I/Os.



r
Figure 3.1An Euler tour of a tree T .its su

essor. To 
arry out Lines 14{18, sort the elements in I by their numbersand the elements in L n I by the numbers of their su

essors and s
an the twosorted lists to update the su

essors of all elements in L n I . Lines 21{26 
anbe 
arried out in a similar fashion as Lines 14{18. Ex
ept for 
omputing theindependent set I , whi
h takes O(sort(N)) I/Os, this pro
edure sorts and s
anslists of size O(N) a 
onstant number of times. Hen
e, the I/O-
omplexity of onere
ursive step of pro
edure FastListRanking is O(sort(N)) as 
laimed. Usingthe above re
urren
e, this proves the following result.Theorem 2.1. A list of size N 
an be ranked in O(sort(N)) I/Os.Remark. Note that pro
edure FastListRanking does not make use of thefa
t that there is a unique head and a unique tail in list L. This allows thealgorithm to be applied simultaneously to a 
olle
tion of linked lists. This fa
t isexploited by a number of algorithms that use list ranking as a primitive to solvemore 
ompli
ated graph problems.3 Algorithms for Trees3.1 The Euler Tour Te
hniqueBefore moving on to more 
omplex graph problems, we dis
uss a simple te
hniquethat turns the list ranking algorithm of Se
tion 2 into a powerful tool for solvingproblems on trees. The goal of this te
hnique is to represent a tree T as a list Lso that a number of labelling problems 
an be solved on T by 
omputing theweighted ranks of the elements in L.Given a tree T and a distinguished vertex r of T , an Euler tour of T isde�ned as a traversal of T that starts and ends at r and traverses every edgeexa
tly twi
e, on
e in ea
h dire
tion (see Figure 3.1). Formally, every undire
tededge fv; wg 2 T is repla
ed with two dire
ted edges (v; w) and (w; v). The tourstarts with an edge (r; v). For every vertex v 2 T with in
oming edges e1; : : : ; ekand outgoing edges e01; : : : ; e0k, numbered so that for 1 � i � k, ei and e0i havethe same endpoints, edge ei is su

eeded by edge e0(i mod k)+1 in the tour. When



Pro
edure RootTree1: Compute an Euler tour L of tree T .2: Compute the rank of every edge e in L.3: for every edge fv; wg 2 T do4: Store the ranks of edges (v; w) and (w; v) in L with edge fv; wg.5: end forAlgorithm 3.1Rooting a tree T .referring to the 
onstru
tion of an Euler tour, we mean the 
onstru
tion of a
ir
ular linked list L so that every edge has its su

essor in the tour as itssu

essor in L.Before studying the power of this te
hnique for 
omputing labellings of trees,we make the following observation.Lemma 3.1. Given a tree T in adja
en
y list representation, an Euler tour of T
an be 
omputed in O(s
an(N)) I/Os. If the edge set of T is represented as anunordered 
olle
tion of edges, the tour 
an be 
omputed in O(sort(N)) I/Os.Proof. Given the adja
en
y list A(v) of a vertex v, the su

essors in L of allin
oming edges of v 
an be 
omputed in a single s
an of list A(v). If the edgesof T are given as an unordered set of edges, an adja
en
y list representationof T 
an be obtained as follows: First repla
e every edge fv; wg of T by twodire
ted edges (v; w) and (w; v). Then sort the resulting set of dire
ted edgeslexi
ographi
ally. ut3.2 Rooting a TreeA tree as a data stru
ture is often rooted. That is, it has a distinguished rootvertex r and a well-de�ned parent-
hild relation between adja
ent verti
es. Trees,when 
onsidered as undire
ted graphs, do not have this stru
ture imposed onthem. However, most stru
tural information about a tree T , provided by labellingthe verti
es of T in a meaningful manner, 
an be obtained only after de
laringone of the verti
es to be the root and establishing parent-
hild and an
estor-des
endant relations de�ned as follows: Let r be the 
hosen root of T . Then avertex v is an an
estor of a vertex w, and w is a des
endant of v if v is on theunique path from r to w. If v 6= w, v is a proper an
estor of w. Vertex v is theparent of w, and w is the 
hild of v, if v is an an
estor of w and fv; wg 2 T .Rooting a tree T is the pro
ess of 
hoosing a vertex r and labelling theverti
es or edges of T so that the labels assigned to two adja
ent verti
es vand w, or to edge fv; wg, are suÆ
ient to de
ide whether v is the parent of wor vi
e versa. Algorithm 3.1 
omputes su
h an edge labelling. In parti
ular, foran edge fv; wg 2 T , v is the parent of w if and only if edge (v; w) has a smallerrank than edge (w; v) in the Euler tour be
ause for every vertex x 2 T , x 6= r,an Euler tour starting at the 
hosen root r has to traverse edge (p(x); x) beforeedge (x; p(x)).



Pro
edure LabelTree1: Compute an Euler tour L of T that starts at the root of T .2: Assign appropriate weights to the edges in the Euler tour.3: Compute the weighted rank of ea
h edge in L.4: Extra
t a labelling of the verti
es of T from these ranks.Algorithm 3.2Labelling rooted trees.Theorem 3.2. A tree T 
an be rooted in O(sort(N)) I/Os.Proof. We have to show that Algorithm 3.1 takes O(sort(N)) I/Os. By Theo-rem 2.1 and Lemma 3.1, Lines 1 and 2 of the algorithm take O(sort(N)) I/Os.To 
arry out Lines 3{5, sort the edges in L by their smaller endpoints as a pri-mary key and their larger endpoints as a se
ondary key. This stores edges (v; w)and (w; v) 
onse
utively, for every edge fv; wg 2 T . Now s
an this edge list,repla
e every pair of edges (v; w) and (w; v) with the 
orresponding undire
tededge fv; wg, and label edge fv; wg with the ranks of both dire
ted edges. utRemark. A vertex labelling that 
an be used to de
ide whi
h of two adja
entverti
es is the parent 
an be obtained by assigning to every vertex v the rank ofthe �rst edge in L whose sour
e is v. For two adja
ent verti
es v and w, v is theparent of w if and only if the rank of the �rst edge with sour
e v is less than therank of the �rst edge with sour
e w. This is true be
ause for any vertex x 2 T ,the �rst edge with sour
e x 
an be traversed only after visiting vertex x, whi
hin turn is possible only after traversing edge (p(x); x).3.3 Labelling Rooted TreesIn this se
tion we 
onsider a number of labellings of a rooted tree that pro-vide useful information about the stru
ture of the tree and 
an be 
omputed inO(sort(N)) I/Os using the Euler tour te
hnique and list ranking. Some of theselabellings are de�ned in terms of an Euler tour of the tree that starts at the root.Hen
e, it is only natural that these labellings 
an be 
omputed using the Eulertour te
hnique.Given an Euler tour of a rooted tree T , a preorder numbering of T is anumbering of the verti
es of T from 1 through N so that a vertex v has asmaller number than another vertex w if and only if the �rst visit of the tour tovertex v o

urs before the �rst visit to w. A postorder numbering of T assignsthe smaller number to v if the last visit to v o

urs before the last visit to w.Another important labelling assigns the number of its des
endants to every nodev 2 T . Finally, it is handy in a number of appli
ations to know for every vertexv 2 T , how far away it is from the root. That is, vertex v is to be labelled withthe number of edges on the path from r to v in T . We refer to this number asthe depth of v in T .



Algorithm 3.2 provides a generi
 method for 
omputing these labellings. Thealgorithm 
omputes di�erent labellings depending on the 
hoi
e of the weightsassigned to the edges in the Euler tour in Line 2 of the algorithm.To 
ompute the depth of every vertex v in T , 
hoose the weight !(e) of anedge e = (v; w) in L as !(e) = (1 if v = p(w)�1 if w = p(v) :It is easy to verify that the depth of a vertex v in T equals the weighted rank ofany edge (u; v) in the Euler tour. To 
ompute a preorder numbering, 
hoose!(e) = (1 if v = p(w)0 if w = p(v)and extra
t the preorder number of ea
h vertex v 6= r as the rank of edge (p(v); v)plus one. The root r of T always has preorder number 1. A postorder numbering
an be 
omputed in a similar fashion. In order to 
ompute the number jT (v)j ofdes
endants of ea
h vertex v, 
hoose the weights of the edges in the Euler touras for the 
omputation of a preorder numbering, but extra
t the vertex labelsdi�erently. In parti
ular, jT (r)j = jT j = N for the root r of T . For every non-root vertex v, let r1(v) and r2(v) be the ranks of edges (p(v); v) and (v; p(v)).Then jT (v)j = r2(v) � r1(v) + 1. From this dis
ussion we obtain the followingresult.Theorem 3.3. The following labellings 
an be 
omputed in O(sort(N)) I/Osfor a rooted tree with N verti
es: a preorder or postorder numbering, a labellingof ea
h vertex with its distan
e from the root, and a labelling of every vertex withthe number of its des
endants.4 Evaluating Dire
ted A
y
li
 GraphsIn Se
tions 2 and 3 we have dis
ussed the most important tools for dealing withlists and trees in an I/O-eÆ
ient manner. In this se
tion we turn to a slightlymore 
ompli
ated 
lass of graphs, whi
h 
an be 
onsidered a generalization oflists: dire
ted a
y
li
 graphs (DAGs). The problem we study is that of evaluatinga DAG G. More pre
isely, we are interested in solving the following problem:Given an assignment of labels !(v) to the verti
es of G, 
ompute labels �(v) ofthese verti
es where the 
omputation of �(v) depends only on !(v) and labels�(u1); : : : ; �(uk) 
omputed for the in-neighbors u1; : : : ; uk of v.Before studying the te
hnique for solving this problem, let us have a lookat the list ranking problem again. List ranking is a spe
ial 
ase of this evalu-ation problem where the stru
ture of the DAG and the fun
tion that de�neslabelling � are restri
ted. These restri
tions allow an eÆ
ient solution of the listranking problem without making any assumptions about the way the input is



Pro
edure TimeForwardPro
essing1: Q ; fQ is a priority queue.g2: for every vertex v 2 G, in topologi
ally sorted order do3: Let u1; : : : ; uk be the in-neighbors of v.4: Retrieve �(u1); : : : ; �(uk) from Q, using k DeleteMin operations.5: Compute �(v) from !(v) and �(u1); : : : ; �(uk).6: Let w1; : : : ; wl be the out-neighbors of v.7: Insert l 
opies of �(v) into priority queue Q. Give the i-th 
opy priority wi.8: end forAlgorithm 4.1The time-forward pro
essing pro
edure.represented. In order to evaluate an arbitrary DAG I/O-eÆ
iently, we do haveto make a few assumptions. Fortunately these assumptions are satis�ed in manyinteresting appli
ations.The �rst assumption we make is that the verti
es of G are stored in topo-logi
ally sorted order. That is, for every edge (v; w) 2 G, vertex v pre
edesvertex w in this order. This is 
ru
ial be
ause the pro
edure for evaluating Gvisits the verti
es of G in this order and there is no I/O-eÆ
ient algorithm fortopologi
ally sorting arbitrary DAGs. That is, if the verti
es were arranged in anarbitrary order, the algorithm 
ould end up spending one I/O per vertex whenevaluating G or 
(jV j) I/Os to topologi
ally sort G, both of whi
h imply thatevaluating G would require 
(jV j) I/Os.If there is no bound on the number of in-edges a vertex 
an have, it is furtherrequired that the 
omputation of �(v) from !(v) and �(u1); : : : ; �(uk) 
an be
arried out in O(sort(k)) I/Os be
ause the evaluation pro
edure dis
ussed belowtakes 
are of providing vertex v with labels �(u1); : : : ; �(uk), but 
annot 
arryout the a
tual 
omputation.4.1 Time-Forward Pro
essingAssuming that both assumptions are satis�ed, we 
an now turn to the dis
ussionof a te
hnique for evaluating DAGs. This te
hnique is 
alled time-forward pro-
essing and was �rst proposed in [12℄. Here we dis
uss a variant of this te
hniqueproposed by Arge [2℄, whi
h removes a few restri
tions of the algorithm of [12℄and is surprisingly simple. Algorithm 4.1 shows the pseudo-
ode. The pro
eduremakes use of a priority queue Q to provide every vertex v with the input re-quired for 
omputing �(v). In parti
ular, when a vertex v is evaluated, values�(u1); : : : ; �(uk) are retrieved from Q, and �(v) is 
omputed from !(v) and theretrieved values, either in internal memory or using the O(sort(k)) I/O algorithmthat exists by our se
ond assumption. On
e label �(v) has been 
omputed, itis inserted into priority queue Q, on
e for ea
h of the out-neighbors w1; : : : ; wkof v. The 
opy of �(v) meant for neighbor wi is inserted with priority wi.The 
orre
tness and eÆ
ien
y of this te
hnique now follows from two obser-vations: (1) Every in-neighbor ui of v is evaluated before v, so that all labels



�(u1); : : : ; �(uk) are inserted into the priority queue before v is evaluated. (2) Allverti
es pre
eding v in the topologi
al order are evaluated before v. Thus, theirinputs are retrieved from Q before v is evaluated, and the inputs for vertex v arethose with smallest priority in Q at the time when v is evaluated. Hen
e, they
an be retrieved using k DeleteMin operations.Now it remains to be observed that pro
edure TimeForwardPro
essingperforms O(jEj) priority queue operations, one Insert and one DeleteMinoperation per edge. This implies that the 
omputation of labels �(v) from la-bels !(v) takes O(sort(jEj)) I/Os using an I/O-optimal priority queue [2, 10℄.Theorem 4.1. A DAG G = (V;E) 
an be evaluated in O(sort(jEj)) I/Os, pro-vided that the verti
es of G are stored in topologi
ally sorted order.The fa
t that the verti
es of G have to be given in topologi
ally sorted orderis 
ertainly a serious restri
tion that a�e
ts the general appli
ability of thiste
hnique. However, there are many interesting problems on undire
ted graphsthat 
an be expressed as evaluation problems of appropriate DAGs. In theseappli
ations, a topologi
al ordering of the DAG is often easy to obtain by sortingthe verti
es of the DAG in a natural order indu
ed by the 
onstru
tion of theDAG from the given undire
ted graph. In the next se
tion we study one su
happli
ation of the time-forward pro
essing te
hnique to solve a 
lassi
al problemon undire
ted graphs.Remark. Zeh [32℄ observed that the I/O-
omplexity of time-forward pro
essing
an be redu
ed toO(s
an(jEj)) ifG is a tree and its verti
es are stored in preorderor postorder. The idea is to use a sta
k instead of a priority queue to simulatethe sending of information along the edges of G.4.2 Maximal Independent SetThe problem of 
omputing a maximal independent set of an undire
ted graphis one representative of a number of problems that 
an be solved by greedyalgorithms of a suÆ
iently simple stru
ture that they 
an be simulated using thetime-forward pro
essing te
hnique [32℄. Re
all that an independent set of a graphG = (V;E) is a set I � V of verti
es so that no two verti
es in I are adja
ent.Set I is maximal if there is no vertex in V n I that does not have at least oneneighbor in I . Pro
edure MaximalIndependentSet shown in Algorithm 4.2
omputes su
h a set I I/O-eÆ
iently, assuming that every vertex has a uniquenumeri
al ID: Lines 2 and 3 of the algorithm 
learly take O(sort(jV j+jEj)) I/Os.The 
omputation of Lines 4{8 
an be simulated using time-forward pro
essing:After de
iding whether or not a vertex v should be added to set I , vertex vsends a 
ag to ea
h of its out-neighbors to inform them whether or not v is in I .This way every vertex 
an de
ide whether it should be added to I based onlyon the 
ags it re
eives from its in-neighbors. Hen
e, the whole algorithm takesO(sort(jV j+ jEj)) I/Os.Theorem 4.2. A maximal independent set of a graph G = (V;E) 
an be 
om-puted in O(sort(jV j+ jEj)) I/Os.



Pro
edure MaximalIndependentSet1: I  ;2: Dire
t the edges of G from verti
es with lower numbers to verti
es with highernumbers.3: Sort the verti
es of G by their numbers and the edges by the numbers of theirsour
es.4: for every vertex v 2 G, in sorted order do5: if no in-neighbor of v is in I then6: Add v to I.7: end if8: end forAlgorithm 4.2Computing a maximal independent set of a graph.Proof. We have already argued that the I/O-
omplexity of pro
edure Maxi-malIndependentSet is O(sort(jV j + jEj)). The 
orre
tness of this pro
edurefollows from the following two observations: Set I as 
omputed by the algorithmis independent be
ause a vertex v is added to I only if none of its in-neighborsis in I . At this point none of its out-neighbors 
an be in I , and the insertion of vinto I prevents all of these out-neighbors from being added to I . Set I is maximalbe
ause otherwise there would be a vertex v 62 I none of whose in-neighbors isin I , whi
h implies that v would have been added to I . utUsing Theorem 4.2, we 
an now �ll in the last missing detail of the list rankingalgorithm of Se
tion 2. In the des
ription of the algorithm we assumed that anindependent set of size at least N=3 
an be 
omputed in O(sort(N)) I/Os for alist of size N . This is shown by the following 
orollary of Theorem 4.2.Corollary 4.3. For a list L of size N , an independent set of size at least N=3
an be 
omputed in O(sort(N)) I/Os.Proof. By Theorem 4.2, a maximal independent set of L 
an be 
omputed inO(sort(N)) I/Os. However, every maximal independent set of list L has size atleast N=3 be
ause the verti
es in L have degree at most two. utTwo more problems that 
an be solved using algorithms similar to Algo-rithm 4.2 are those of 
omputing a maximal mat
hing of a graph G and 
oloringa graph of degree � with at most �+1 
olors. The latter problem 
an be solvedusing pro
edureMaximalIndependentSet, only sending di�erent informationalong the edges of G. The former 
an be expressed as a vertex-labelling problemof an auxiliary graph, so that an algorithm similar to Algorithm 4.2 
an be ap-plied to 
ompute the desired labelling. For details the reader may refer to [32℄.It is interesting to observe that a maximal mat
hing 
orresponds to a maximalindependent set of the edge-in
iden
e graph G0 of G. The verti
es in G0 
orre-spond to the edges of G. Two verti
es in G0 are adja
ent if and only if the two
orresponding edges in G share an endpoint. Unfortunately graph G0 may have



size 
�N2� even if G is a tree. Thus, this redu
tion of the maximal mat
hingproblem to that of 
omputing a maximal independent set does not lead to anI/O-eÆ
ient maximal mat
hing algorithm.5 Conne
tivity ProblemsIn the rest of this 
lass we study fundamental problems on undire
ted graphs.We begin in this se
tion with a dis
ussion of 
onne
tivity problems su
h as 
om-puting the 
onne
ted and bi
onne
ted 
omponents or a minimum spanning treeof a graph. The algorithms for these problems demonstrate the power of an im-portant te
hnique that is applied in a number of I/O-eÆ
ient graph algorithms:graph 
ontra
tion. We dis
uss this te
hnique in Se
tion 5.1 and turn to 
on
reteappli
ations in Se
tions 5.2 through 5.4. In Se
tion 5.5 we dis
uss a spe
ial 
lassof graphs for whi
h graph 
ontra
tion often leads to I/O-optimal algorithms.5.1 The Graph Contra
tion ParadigmGraph 
ontra
tion is a useful te
hnique that was �rst applied in parallel algo-rithms. The idea of this te
hnique is simple: Given a graph G and a problem P tobe solved on G, identify (edge-)disjoint subgraphs of G and repla
e ea
h of themwith a smaller subgraph so that a solution of problem P on G 
an be derivedfrom a solution of P on the resulting graph G0. Re
ursively solve P on G0 andthen 
ompute a solution of P on G from the 
omputed solution on G0.Of 
ourse the re
ursion 
annot 
ontinue inde�nitely. That is, at some pointthe algorithm has to stop 
alling itself re
ursively and solve problem P dire
tly.Thus, a 
ontra
tion-based algorithm A 
an be divided into two parts: (1) analgorithm A1 that 
onstru
ts graph G0 from graph G, 
alls algorithm A re
ur-sively to solve problem P on graph G0, and then 
omputes a solution of P on Gfrom the 
omputed solution on G0; (2) an algorithm A2 that solves problem Pwithout 
alling algorithm A. Algorithm A itself is merely a wrapper that de
ideswhi
h of the two algorithms, A1 or A2, to apply to the 
urrent input graph. Forlarge inputs, it 
alls algorithm A1. For small inputs, it invokes algorithm A2,thereby stopping the re
ursion.The eÆ
ien
y of the algorithm depends on a number of fa
tors. Clearly theI/O-
omplexities of algorithms A1 and A2 have a strong in
uen
e on the I/O-
omplexity of algorithm A. The se
ond important question is how many levelsof re
ursion are needed before algorithm A stops the re
ursion by 
alling algo-rithm A2 instead of algorithm A1. The answer to this question is determined by(1) the ratio between the sizes of graphs G0 and G and (2) the largest possiblesize of graph G so that applying algorithm A2 to graph G is more eÆ
ient thanadding another level of re
ursion by 
alling algorithm A1 again. If graph G0 hasonly a 
onstant fra
tion of the verti
es or edges of G, a logarithmi
 number ofre
ursive 
alls are suÆ
ient to redu
e the size of the graph to a 
onstant, so thatalgorithm A2 
an solve problem P in O(1) I/Os at that point. If algorithm A2is more eÆ
ient than algorithm A1 for graphs of more than 
onstant size, there
ursion 
an stop mu
h earlier.



Pro
edure SemiExternalConne
tivity1: Load all verti
es of G into main memory and mark ea
h of them as being in itsown 
onne
ted 
omponent (i.e., 
G(v)  v, where 
G(v) is a label that identi�esthe 
onne
ted 
omponent of G that 
ontains v).2: for every edge e 2 E do3: if the two endpoints v and w of e are in di�erent 
onne
ted 
omponents then4: Let 
(v) and 
(w) be the 
omponent labels of v and w.5: for every u 2 V do6: if 
(u) = 
(v) or 
(u) = 
(w) then7: 
(u) min(
(v); 
(w))8: end if9: end for10: end if11: end forAlgorithm 5.1A semi-external algorithm for 
onne
tivity.5.2 Conne
tivityIn this se
tion we dis
uss three di�erent algorithms for 
omputing the 
onne
ted
omponents of a graph G. Re
all that a graph is 
onne
ted if for any two verti
esv; w 2 G, there is a path from v to w in G. The 
onne
ted 
omponents of agraph G are its maximal 
onne
ted subgraphs. The algorithms in this se
tion
ompute a labelling of the verti
es of G so that two verti
es have the same labelif and only if they belong to the same 
onne
ted 
omponent of G.The �rst algorithm we dis
uss 
omputes the 
onne
ted 
omponents of GI/O-eÆ
iently under the assumption that the verti
es, but not the edges, of G�t into main memory. Su
h an algorithm is often referred to as a semi-externalalgorithm as opposed to a fully external algorithm, whi
h assumes that neitherthe vertex nor the edge set of G �ts into main memory.The se
ond algorithm we dis
uss is fully external and uses graph 
ontra
tionto redu
e the size of the vertex set of the graph by a fa
tor of two from one level ofre
ursion to the next. As soon as jV j �M , it 
alls the semi-external 
onne
tivityalgorithm to 
ompute the 
onne
ted 
omponents of G without re
ursing anyfurther.Finally, the third algorithm is a variation on the se
ond algorithm wherethe semi-external 
onne
tivity algorithm is repla
ed with an I/O-eÆ
ient BFS-algorithm. This allows the re
ursion to stop mu
h earlier and therefore leads toa more eÆ
ient algorithm.A semi-external 
onne
tivity algorithm. If jV j � M , the 
onne
ted 
om-ponents of graph G 
an be 
omputed in O(s
an(jV j + jEj)) I/Os using Algo-rithm 5.1. The 
orre
tness of this algorithm is obvious. To see that the algorithmtakes a linear number of I/Os, observe that the verti
es of G 
an be loaded intomain memory in O(s
an(jV j)) I/Os. After that, the outer loop requires a s
an



Pro
edure ExternalConne
tivity1: if jV j �M then2: Apply pro
edure SemiExternalConne
tivity to 
ompute the 
onne
ted 
om-ponents of G.3: else4: Compute the smallest neighbor wv for every vertex v 2 G.5: Compute the 
onne
ted 
omponents of the subgraph H of G indu
ed byedges fv; wvg, v 2 V .6: Compress ea
h of these 
onne
ted 
omponents into a single vertex. Remove allisolated verti
es. Let G0 be the resulting graph.7: Re
ursively 
ompute the 
onne
ted 
omponents of G0 using pro
edure Exter-nalConne
tivity.8: Re-integrate the isolated verti
es into G0 and assign a unique label to ea
h su
hvertex.9: For every vertex v0 2 G0 and every vertex v in the 
onne
ted 
omponent of Hrepresented by v0, let 
G(v) = 
G0(v0).10: end ifAlgorithm 5.2A fully external algorithm for graph 
onne
tivity.of the edge set of G (i.e., O(s
an(jEj)) I/Os), and the inner loop is performed inmain memory without in
urring any I/Os. Note that the algorithm as presentedhere is ineÆ
ient in terms of the 
omputation it performs in internal memory;but it 
an easily be made eÆ
ient by representing the 
onne
ted 
omponentsof G using a union-�nd data stru
ture [13, Chapter 22℄ and labelling the verti
esonly after all 
onne
ted 
omponents have been identi�ed.A fully external 
onne
tivity algorithm. The �rst fully external 
onne
tiv-ity algorithm was proposed by Chiang et al. [12℄ and is shown in Algorithm 5.2.If jV j � M , the algorithm delegates the problem of 
omputing the 
onne
ted
omponents of G to pro
edure SemiExternalConne
tivity. Otherwise it ap-plies graph 
ontra
tion to produ
e a graph G0 with at most half as many verti
esas G, re
ursively 
omputes the 
onne
ted 
omponents of G0, and derives a la-belling of the verti
es of G that identi�es the 
onne
ted 
omponents of G fromthe 
omputed labelling of the verti
es of G0. Before analyzing the I/O-
omplexityof pro
edure ExternalConne
tivity, we show that it is 
orre
t.Lemma 5.1. Let 
G : V ! N be the 
omponent labelling 
omputed by pro
edureExternalConne
tivity. Then for any two verti
es v; w 2 G, 
G(v) = 
G(w)if and only if v and w are in the same 
onne
ted 
omponent of G.Proof. We prove the lemma by indu
tion on jV j. If jV j �M , the 
orre
tness ofpro
edure ExternalConne
tivity follows from the 
orre
tness of pro
edureSemiExternalConne
tivity. So assume that jV j = k > M and that the algo-rithm is 
orre
t for jV j < k. Let C1; : : : ; Cq be the 
onne
ted 
omponents of H ,and let G00 be the graph obtained from G by 
ontra
ting ea
h 
omponent Ci



into a single vertex vi. That is, graph G0 is obtained from G00 by removing allisolated verti
es. Sin
e jV (G0)j < jV j, the re
ursive invo
ation of pro
edure Ex-ternalConne
tivity on graph G0 produ
es a labelling of the verti
es of G0that identi�es the 
onne
ted 
omponents of G0 
orre
tly. Thus, sin
e every iso-lated vertex of G00 is assigned a unique label in Line 8 of the algorithm, thelabelling of the verti
es of G00 obtained in Line 8 identi�es the 
onne
ted 
om-ponents of G00 
orre
tly. We have to show that the labelling of G 
omputed inLine 9 is 
orre
t.So let v; w 2 G, and assume �rst that v and w belong to the same 
onne
ted
omponent of G. Then there exists a path P = (v = x0; x1; : : : ; xk = w) from vto w in G. It suÆ
es to show that for every edge fxi; xi+1g 2 P , 
G(xi) =
G(xi+1) be
ause then 
G(v) = 
G(x0) = 
G(x1) = � � � = 
G(xk) = 
G(w). Ifverti
es xi and xi+1 belong to the same 
onne
ted 
omponent of H , 
G(xi) =
G(xi+1) be
ause xi and xi+1 re
eive their labels from the same vertex in G00.Otherwise let xi 2 Ch and xi+1 2 Cj , h 6= j. Sin
e edge fxi; xi+1g 2 G, graphG00
ontains edge fvh; vjg. Thus, verti
es vh and vj belong to the same 
onne
ted
omponent of G00, so that 
G00(vh) = 
G00(vj) and hen
e 
G(xi) = 
G(xi+1).Now assume that 
G(v) = 
G(w), and let v 2 Ch and w 2 Cj . If Ch = Cj ,there exists a path from v to w in Ch � H � G. If Ch 6= Cj , 
G00(vh) = 
G(v) =
G(w) = 
G00(vj). That is, verti
es vh and vj belong to the same 
onne
ted
omponent of G00. In parti
ular, there exists a path P 00 = (vh = y0; y1; : : : ; yk =vj) from vh to vj in G00. Let j0; : : : ; jk be indi
es so that for 0 � i � k, vertex yirepresents 
omponent Cji of H . Sin
e edge fyi; yi+1g 2 G00, for 0 � i < k,graph G 
ontains edges ei = fai; big, ai 2 Cji and bi 2 Cji+1 . Sin
e verti
es biand ai+1 are in the same 
onne
ted 
omponent Cji+1 of H , for 0 � i < k � 1,there exists a path Pi+1 from bi to ai+1 in Cji+1 . Similarly, there exist paths P0and Pk from v to a0 in Cj0 and from bk�1 to w in Cjk . Hen
e, there exists apath P = P0 Æ e0 Æ P1 Æ e1 Æ � � � Æ Pk�1 Æ ek�1 Æ Pk from v to w in G, so that vand w belong to the same 
onne
ted 
omponent of G. utIf jV j � M , pro
edure ExternalConne
tivity 
omputes the 
onne
ted
omponents of G in O(s
an(jV j+ jEj)) I/Os by invoking pro
edure SemiExter-nalConne
tivity. Otherwise Lines 4{9 of the algorithm are exe
uted, whoseI/O-
omplexity we analyze next.To �nd the smallest neighbor wv of every vertex v, s
an the edge set of G,repla
e every edge fv; wg 2 E with two dire
ted edges (v; w) and (w; v), andsort the resulting set of dire
ted edges lexi
ographi
ally. The result is a 
olle
tionof sorted adja
en
y lists of the verti
es of G. S
an this 
olle
tion of adja
en
ylists and sele
t vertex wv for every vertex v 2 G as the �rst vertex in theadja
en
y list of v. Computing the smallest neighbors of all verti
es of G in thismanner takes O(sort(jEj)) I/Os. To produ
e the edge set of graph H , sort ands
an the set of edges fv; wvg, v 2 G, to remove dupli
ates. This takes anotherO(sort(jV j)) I/Os.The most interesting part of the algorithm is the 
omputation of the 
on-ne
ted 
omponents of graphH be
ause it has to be done without using pro
edure
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)Figure 5.1(a) A graph G with its verti
es numbered. (b) The graph H indu
ed by this numbering.(
) The graph H 0 whose 
onne
ted 
omponents are 
y
les and represent the 
onne
ted
omponents of H. Every vertex in H 0 is labelled with the number of its 
orrespondingvertex in H.ExternalConne
tivity. To do this, the algorithm makes use of the followingfa
t.Lemma 5.2. The 
onne
ted 
omponents of graph H are trees. That is, graph His a forest.Proof. Assume for the sake of 
ontradi
tion that graph H 
ontains a 
y
le C =(x0; x1; : : : ; xk = x0). Sin
e graph H 
ontains no parallel edges, k � 3. Sin
eevery vertex v 2 G has at most one in
ident edge fv; wvg in H , w.l.o.g. xi+1 =wxi , for 0 � i < k. Then the existen
e of edge fxi�1; xig, for 0 < i < k � 1,implies that xi�1 > xi+1. Similarly, xk�1 > x1. If k is even, this implies thatx0 > x2 > � � � > xk = x0, whi
h leads to the desired 
ontradi
tion. If k is odd,we arrive at a 
ontradi
tion by observing that x0 > x2 > � � � > xk�1 > x1 >x3 > � � � > xk = x0. Hen
e, graph H 
ontains no 
y
les, and all its 
onne
ted
omponents are trees. utUsing Lemma 5.2, the 
onne
ted 
omponents of H 
an be found as follows:Apply the Euler tour te
hnique to H , in order to transform ea
h tree T in H intoa 
y
le CT (see Figure 5.1). Let H 0 be the resulting graph. Every vertex v0 in a
y
le CT 
orresponds to a vertex v in T . During the 
onstru
tion of H 0 from H ,vertex v0 
an easily be labelled with the ID of vertex v. Cy
les CT are the
onne
ted 
omponents of H 0, so that a labelling of the 
onne
ted 
omponentsof H 
an be obtained from a labelling of the 
onne
ted 
omponents of H 0 asfollows: S
an the set of vertex-label pairs (v0; 
H0 (v0)) and repla
e ea
h su
h pairwith the pair (v; 
H(v) = 
H0(v0)), where v is the vertex in H represented by v0.Now sort and s
an the resulting list of vertex-label pairs to remove dupli
ates.To 
ompute the 
onne
ted 
omponents of H 0, a pro
edure similar to thelist ranking algorithm from Se
tion 2 
an be used: If jH 0j � M , load H 0 intomain memory and 
ompute its 
onne
ted 
omponents using an eÆ
ient internalmemory algorithm. Otherwise �nd a large independent set I of H 0 and remove



the verti
es in I from H 0, where removing a vertex v with in
ident edges fv; xgand fv; yg means to remove vertex v from the vertex set of H 0 and repla
eedges fv; xg and fv; yg with an edge fx; yg 
onne
ting the neighbors of v. Theremoval of the verti
es in I from H 0 then results in a 
olle
tion of smaller 
y
les.Re
ursively �nd the 
onne
ted 
omponents of this 
ompressed graph and re-integrate the verti
es in I , assigning to every vertex in I the 
omponent labelof one of its neighbors. The details of this pro
edure are similar to those ofAlgorithm 2.2, so that it takes O(sort(jH 0j)) = O(sort(jV j)) I/Os.Given a labelling of the 
onne
ted 
omponents of H , graph G0 is now 
on-stru
ted in two phases: First s
an the vertex set of G and 
reate a list V 0 =f
H(v) : v 2 Gg. Sort and s
an this list to remove dupli
ates. The result is thevertex set of G0. Now sort the verti
es of G by their IDs and the edges of G bytheir �rst endpoints. S
an the two sorted lists to repla
e the �rst endpoint v ofea
h edge fv; wg with its 
omponent label 
H(v). Repeat this pro
edure, sortingthe edges by their se
ond endpoints to repla
e these endpoints with their 
om-ponent labels. Finally sort and s
an the resulting list of edges f
H(v); 
H(w)gto remove dupli
ates and loops. This �rst phase of the 
onstru
tion of G0 takesO(sort(jV j+ jEj)) I/Os and produ
es graph G0 with its isolated verti
es present(i.e., graph G00 in the proof of Lemma 5.1).To remove all isolated verti
es from G0, s
an the edge set of G0 and appendverti
es v and w to a list X , for every edge fv; wg 2 E(G0). Sort the vertex setof G0 and list X and s
an the two sorted lists to remove every vertex from V (G0)that does not appear in X . This takes another O(sort(jV j+ jEj)) I/Os. In total,the 
onstru
tion of G0 from G takes O(sort(jV j+ jEj)) I/Os.After re
ursively 
omputing the 
onne
ted 
omponents of G0, the algorithmhas to assign unique labels to the isolated verti
es that were removed fromG0 andthen derive a 
omponent labelling of G from the resulting labelling of graph G00.To label the isolated verti
es of G00, sort the verti
es of G0 by their 
omponentlabels and then s
an the vertex set of G0 and the set of isolated verti
es to assignto ea
h isolated vertex a label that has not been assigned to any other vertex.Sin
e the ID of a vertex in G00 is in fa
t the label of a 
onne
ted 
omponentin H , the resulting set of vertex-label pairs 
an be interpreted as pairs (
H ; 
G)mapping a 
omponent label in H to a 
omponent label in G. Now sort theverti
es of G by their 
omponent labels in H , sort the list of pairs (
H ; 
G) bytheir �rst 
omponents, and �nally s
an both lists to repla
e the 
omponent label
H(v) of every vertex v 2 G with the 
orresponding 
omponent label in G. Thiswhole pro
edure takes O(sort(jV j+jEj)) I/Os and derives a 
omponent labellingof G from the given 
omponent labellings of H and G0.From this dis
ussion we obtain the following re
urren
e des
ribing the I/O-
omplexity of pro
edure ExternalConne
tivity:I(jV j; jEj) = (O(s
an(jV j+ jEj)) if jV j �MO(sort(jV j+ jEj)) + I(jV (G0)j; jE(G0)j) if jV j > MUsing this re
urren
e, we 
an show the following lemma.



Lemma 5.3. The I/O-
omplexity of pro
edure ExternalConne
tivity isI(jV j; jEj) = O(sort(jV j) + sort(jEj) log2(jV j=M)).Proof. If we 
an show that jV (G0)j � jV j=2, the lemma follows from the abovere
urren
e. To prove that the former is true, observe that every vertex in G0represents a 
onne
ted 
omponent of H that 
ontains at least two verti
es. Thisis true be
ause every vertex in G that is not isolated inG has at least one in
identedge in H ; an isolated vertex in G is also isolated in G0 and is hen
e removedbefore re
ursively invoking pro
edure ExternalConne
tivity on G0. Sin
ethe 
onne
ted 
omponents of H de�ne a partition of the vertex set of G, it nowfollows immediately that jV (G0)j � jV j=2. utThe following theorem is an immediate 
onsequen
e of Lemmas 5.1 and 5.3.Theorem 5.4. The 
onne
ted 
omponents of an undire
ted graph G = (V;E)
an be 
omputed in O(sort(jV j) + sort(jEj) log2(jV j=M)) I/Os.An improved 
onne
tivity algorithm. In internal memory, the 
onne
ted
omponents of a graph 
an be 
omputed in linear time using breadth-�rstsear
h (BFS). Sin
e the best known BFS-algorithm for undire
ted graphs isless eÆ
ient than pro
edure ExternalConne
tivity, ex
ept for dense graphs,this idea does not dire
tly lead to an improved 
onne
tivity algorithm. How-ever, Munagala and Ranade [28℄ observed that the I/O-
omplexity of pro
e-dure ExternalConne
tivity 
an be improved by using an I/O-eÆ
ient BFS-algorithm instead of pro
edure SemiExternalConne
tivity to stop the re-
ursion of pro
edure ExternalConne
tivity. In parti
ular, they present aBFS-algorithm for undire
ted graphs that takes O(jV j + sort(jEj)) I/Os. Wedis
uss this algorithm in Se
tion 6.2. For jV j � jEj=B, the I/O-
omplexityof the algorithm is O(sort(jEj)). In order to redu
e the size of the vertex setof G to jEj=B, log2(jV jB=jEj) re
ursive invo
ations of pro
edure External-Conne
tivity suÆ
e, so that the improved algorithm takes O(sort(jV j) +sort(jEj) log2(jV jB=jEj)) I/Os.Theorem 5.5. The 
onne
ted 
omponents of an undire
ted graph G = (V;E)
an be 
omputed in O(sort(jV j) + sort(jEj) log2(jV jB=jEj)) I/Os.Remark. Munagala and Ranade improve the I/O-
omplexity of their 
onne
-tivity algorithm even further, to O(sort(jV j) + sort(jEj) log2 log2(jV jB=jEj)).The idea is to group the 
ontra
tion steps into superphases. Ea
h superphasea
hieves a 
ontra
tion of the vertex set of G by a fa
tor greater than two andtakes O(sort(jEj)) I/Os. To a
hieve the latter, the 
ontra
tion steps in ea
hsuperphase operate on a well-
hosen subset of the edges of the graph. The inter-ested reader may refer to [28℄ for details.5.3 Bi
onne
tivityTarjan and Vishkin [30℄ propose a parallel algorithm for 
omputing the bi
on-ne
ted 
omponents of a graph G = (V;E). The algorithm 
onstru
ts an auxiliary



graph H with jEj verti
es and O(jEj) edges so that the 
onne
ted 
omponentsof H 
orrespond to the bi
onne
ted 
omponents of G and then 
omputes the
onne
ted 
omponents of H . Chiang et al. [12℄ show that the 
onstru
tion of theauxiliary graph H 
an be 
arried out in O(sort(jV j + jEj)) I/Os. This leads tothe following 
orollary of Theorem 5.5. For details see [12, 30℄.Theorem 5.6. The bi
onne
ted 
omponents of an undire
ted graph G = (V;E)
an be 
omputed in O(sort(jV j) + sort(jEj) log2B) I/Os.5.4 Minimum Spanning TreeNow let us turn to another problem that 
an be solved by re�ning the ideasfrom Se
tion 5.2: 
omputing a minimum spanning tree of a 
onne
ted undire
tedgraph G = (V;E). A spanning tree of G is a tree T = (V;E0), E0 � E. That is,tree T 
ontains all verti
es of G; its edge set is a subset of the edges of G. Givenan assignment ! : E ! R of weights to the edges of G, tree T is a minimumspanning tree (MST) of G if there is no spanning tree of G whose total edgeweight is less than that of T .The �rst step towards 
omputing an MST of G is to observe that Algorithms5.1 and 5.2 
an easily be augmented to obtain pro
edures SemiExternalSTand ExternalST that 
ompute a spanning tree of G. The 
omputed spanningtree is not ne
essarily a minimum spanning tree. The required modi�
ations arethe following:In addition to relabelling the verti
es in G, pro
edure SemiExternalSTadds edge fv; wg to the spanning tree whenever it �nds that the endpoints vand w of the 
urrent edge fv; wg are in di�erent 
onne
ted 
omponents.Pro
edure ExternalST 
onstru
ts a spanning tree T of G from graph Hand the spanning tree T 0 produ
ed by the re
ursive invo
ation of the algorithmon G0. The edge set of T 
ontains all edges of graph H as well as one edge fv; wgper edge fv;0 ; w0g 2 T 0, where v and w are in the 
onne
ted 
omponents of Hrepresented by verti
es v0 and w0.We leave the proof that pro
edure SemiExternalST 
omputes a spanningtree of T as an exer
ise and show the following lemma.Lemma 5.7. Let T be the graph 
omputed by pro
edure ExternalST. ThenT is a spanning tree of G.Proof. We prove the lemma by indu
tion on jV j. If jV j � M , graph T is 
om-puted using pro
edure SemiExternalST. Graph T is a spanning tree of G, bythe 
orre
tness of pro
edure SemiExternalST. So assume that jV j = k > Mand that pro
edure ExternalST 
omputes a spanning tree for every graphG0 = (V 0; E0) with jV 0j < k.We have to show that the graph T 
omputed for graph G is 
onne
ted anddoes not 
ontain 
y
les. So let v and w be two verti
es of G, let C1; : : : ; Cq be the
onne
ted 
omponents of graph H , and let v 2 Ch and w 2 Cj . If Ch = Cj , thereexists a path from v to w in Ch � H � T . If Ch 6= Cj , 
onsider the graph T 0




omputed by re
ursively invoking pro
edure ExternalST on the 
ompressedgraph G0. By the indu
tion hypothesis and be
ause jV (G0)j < jV j, graph T 0 isa spanning tree of G0. Hen
e, there exists a path P 0 = (vh = x0; x1; : : : ; xk =vj) from vh to vj in T 0. Let j0; : : : ; jk be indi
es so that vertex xi represents
omponent Cji of H , for 0 � i � k. Sin
e graph T 0 
ontains edges fxi; xi+1g,for 0 � i < k, graph T as 
onstru
ted by pro
edure ExternalST 
ontainsan edge ei = fai; big, where ai 2 Cji and bi 2 Cji+1 , for 0 � i < k. LetP0 be a path from v to a0 in Cj0 , Pk be a path from bk�1 to w in Cjk , andPi be a path from bi�1 to ai, for 0 < i < k. Sin
e H � T , the path P =P0 Æ e0 ÆP1 Æ e1 Æ � � � ÆPk�1 Æ ek�1 ÆPk is a path from v to w in T . As this is truefor every pair of verti
es v; w 2 G, graph T is 
onne
ted.Now assume for the sake of 
ontradi
tion that graph T 
ontains a 
y
leC = (x0; x1; : : : ; xk = x0). Cy
le C 
an be split into maximal subpaths P1; : : : ; Plso that the verti
es of ea
h subpath Pi belong to the same 
onne
ted 
ompo-nent Cji of H . By Lemma 5.2, the 
onne
ted 
omponents of H are trees, so thatthe partition of 
y
le C 
ontains at least two paths P1 and P2. An edge in C 
on-ne
ting two verti
es in di�erent subpaths Pi and Pi+1 (or Pl and P1) has its twoendpoints in Cji and Cji+1 (or Cjl and Cj1). By the 
onstru
tion of T and sin
eC � T , this implies that graph T 0 
ontains a 
y
le C 0 = (vj1 ; vj2 ; : : : ; vjl ; vj1 ).However, by the indu
tion hypothesis, graph T 0 is a tree, and hen
e does not
ontain any 
y
les. This leads to the desired 
ontradi
tion, so that T is a tree.utOnly a few modi�
ations to pro
edures SemiExternalST and Exter-nalST are required to make them 
ompute minimum spanning trees of theirinput graphs. We des
ribe these modi�
ations below and refer to the resultingalgorithms as pro
edures SemiExternalMST and ExternalMST.Instead of inspe
ting the edges ofG in an arbitrary order, pro
edure SemiEx-ternalMST inspe
ts the edges sorted by in
reasing weights. This in
reasesthe I/O-
omplexity of the algorithm to O(s
an(jV j) + sort(jEj)) be
ause theedges have to be sorted before s
anning the edge set. With this modi�
ation,pro
edure SemiExternalMST be
omes a semi-external version of Kruskal'salgorithm [13, Se
tion 24.2℄ and hen
e 
omputes an MST of G.Pro
edure ExternalMST di�ers from pro
edure ExternalST in a num-ber of pla
es; but all modi�
ations are simple:(1) During the 
onstru
tion of H from G, edge fv; wvg is 
hosen as theminimum-weight edge in
ident to v instead of the edge 
onne
ting v to its small-est neighbor. It is easy to verify that this modi�
ation maintains the invariantthat H is a forest.(2) Every edge fv0; w0g 2 G0 represents a set of edges in G between the two
onne
ted 
omponents ofH represented by v0 and w0. The weight of edge fv0; w0gis 
hosen as the minimum weight of all edges in this set.(3) When adding an edge fv; wg to T for an edge fv0; w0g 2 T , then fv; wgis 
hosen as an edge of minimum weight so that verti
es v and w belong to the
onne
ted 
omponents of H represented by v0 and w0. In parti
ular, edges fv; wgand fv0; w0g have the same weight.



We leave it as an exer
ise to verify that these modi�
ations do not in
reasethe I/O-
omplexity of pro
edure ExternalMST. By Lemma 5.2, the graph T
omputed by the algorithm is a spanning tree of G. Next we show that it is aminimum spanning tree.Lemma 5.8. The graph T 
omputed by pro
edure ExternalMST is a mini-mum spanning tree of G.Proof. We prove the lemma by indu
tion on jV j. If jV j �M , the 
orre
tness ofpro
edure ExternalMST follows from that of pro
edure SemiExternalMSTbe
ause it uses this pro
edure to 
ompute T . So assume that jV j = k > M andthat pro
edure ExternalMST 
omputes an MST for any graph with less thank verti
es.First we show that graph G has an MST T so that H � T . Assume the
ontrary, and let T be an MST of G that 
ontains a maximal number of edgesof H . Sin
e H 6� T , there exists an edge fv; wvg 2 H that is not in T . Addingedge fv; wvg to T 
reates a 
y
le C in T . Sin
e graph H is a forest, 
y
le C
ontains an edge fx; yg 62 H . Assume w.l.o.g. that y is on the path from x to vin T , and 
hoose edge fx; yg so that the path P = (y = x0; x1; : : : ; xk = v)from y to v in T 
ontains only edges of H . Sin
e fv; wvg is the edge of minimumweight in
ident to v 
hosen during the 
onstru
tion of graph H , edge fxk�1; xkghas weight at least that of edge fv; wvg. Moreover, edge fxk�1; xkg 
an only be
hosen by its two endpoints as a minimum weight edge to be added to H , andvertex xk = v 
hose edge fv; wvg. Hen
e, edge fxk�1; xkg is the minimum weightedge 
hosen for vertex xk�1. Using indu
tion, we obtain that for 0 � i < k, edgefxi; xi+1g is the minimum weight edge 
hosen for vertex xi and that the weightof this edge is no less than that of edge fv; wvg. Sin
e edge fx; yg is in
ident tovertex y = x0, its weight is no less than that of edge fx0; x1g, whi
h is no lessthan that of edge fv; wvg. Thus, repla
ing edge fx; yg with edge fv; wvg in Tprodu
es a spanning tree T0 of weight no more than that of T and 
ontainingone more edge of H than T . This 
ontradi
ts the 
hoi
e of T , so that H � T .It remains to show that the algorithm adds the 
orre
t edges to H in order to
onstru
t tree T . So assume that T is not an MST, and let T0 be an MST of G sothat H � T0. Contra
ting every 
onne
ted 
omponent of H into a single vertextransforms T into the tree T 0 
omputed for G0 by the re
ursive invo
ation ofpro
edure ExternalMST. Tree T0 is transformed into another spanning tree T 00of G0. All edges in T 00 and T 0 have the same weights as their 
orresponding edgesin T0 and T , and the edges in H are shared by T0 and T . Hen
e, the di�eren
ebetween the weights of T0 and T is the same as the di�eren
e between the weightsof T 00 and T 0. By the indu
tion hypothesis, T 0 is an MST of G0. Thus, T 00 hasa weight no less than that of T 0, so that the weight of T0 is at least that of T .Hen
e, T is an MST of G. utSin
e the I/O-
omplexity of pro
edure ExternalMST is the same as thatof pro
edure ExternalConne
tivity, the following theorem now follows fromTheorem 5.4 and Lemma 5.8.



Theorem 5.9. A minimum spanning tree of a 
onne
ted undire
ted graph G =(V;E) 
an be 
omputed in O(sort(jV j) + sort(jEj) log2(jV j=M)) I/Os.Now it would be ni
e if the same tri
k as for the 
onne
tivity algorithm
ould be applied to stop the re
ursion in pro
edure ExternalMST alreadyafter log2(jV jB=jEj) re
ursive 
alls. That is, we are looking for an algorithmthat 
omputes a minimum spanning tree of a graph G = (V;E) in O(jV j +sort(jEj)) I/Os. The BFS-algorithm of Munagala and Ranade [28℄ 
annot beused be
ause a BFS-tree of G is most likely not an MST.Arge et al. [4℄ present an I/O-eÆ
ient version of Prim's algorithm [13, Se
-tion 24.2℄ that 
omputes an MST of G in the desired number of I/Os. As Prim'salgorithm, the algorithm of [4℄ maintains the invariant that the 
urrent set ofedges de�nes a spanning tree of a subset of the verti
es of G and that thisspanning tree is a subgraph of a minimum spanning tree of G. To extend thespanning tree, the edge of lowest weight 
onne
ting a vertex in the spanningtree to a vertex not in the spanning tree is added to the tree. This operation isrepeated until a minimum spanning tree of G is obtained.More pre
isely, the algorithm starts by 
hoosing one vertex r to be in thespanning tree, while all other verti
es are not in the spanning tree. Then the ad-ja
en
y list of r is retrieved, and for every edge fr; xg in
ident to r, an edge (r; x)is inserted into a priority queue Q storing edges (v; w) so that v 2 T . The priorityof an edge (v; w) 2 Q is the same as the weight of edge fv; wg in G.To �nd the next edge to be added to the 
urrent spanning tree T , theedge (u; v) of lowest weight is retrieved from Q. If this edge 
onne
ts two verti
esin the spanning tree, it is dis
arded, and the next edge is retrieved. Otherwiseedge fu; vg is added to T . Sin
e u 2 T , vertex v was not in T before addingedge fu; vg to T . To update Q, the adja
en
y list of v is retrieved, and for everyedge fv; wg, u 6= w, in
ident to v, an edge (v; w) is inserted into priority queue Q.The 
orre
tness of the algorithm follows from that of Prim's algorithm be-
ause it maintains the invariant that priority queue Q stores all edges 
onne
tingverti
es in T to verti
es not in T . The main diÆ
ulty is to �nd an I/O-eÆ
ientmethod to test whether an inspe
ted edge 
onne
ts two verti
es in T or a vertexin T with a vertex not in T . Under the assumption that no two edges have equalweight4 this test 
an be 
arried out using priority queue Q: Observe that if thetwo endpoints u and v of an inspe
ted edge (u; v) are in T , but fu; vg 62 T ,vertex u has inserted edge (u; v) into Q, and vertex v has inserted edge (v; u)into Q. Hen
e, if u and v are both in T , and the 
urrent DeleteMin opera-tion retrieves edge (u; v), the edge retrieved by the next DeleteMin operationis (v; u). Thus, it suÆ
es to perform two DeleteMin operations. If these twooperations retrieve two edges with the same endpoints, both edges are dis
arded.Otherwise the �rst edge is added to the spanning tree, and the se
ond edge isre-inserted into Q.An important detail to be observed is the fa
t that when edge fu; vg is addedto the spanning tree, edge (v; u) is ex
luded from the set of edges in the adja
en
y4 This 
an easily be a
hieved by de�ning new edge weights !0(e) = (!(e); e) and takingthe lexi
ographi
al order as the natural order on these edge weights.



list of v that are inserted into Q. This is important be
ause edge (u; v) has justbeen retrieved from Q, so that the above test would fail when edge (v; u) isretrieved by a subsequent DeleteMin operation.To analyze the I/O-
omplexity of the algorithm, observe that it takesO(jV j+s
an(jEj)) I/Os to retrieve the adja
en
y lists of all verti
es of G. Besides retriev-ing the adja
en
y lists, the algorithm performs O(jEj) priority queue operations:O(jEj) Insert operations are performed to insert every edge of G into Q for the�rst time. All other priority queue operations 
an be grouped into sequen
es ofeither two DeleteMin operations or two DeleteMin operations followed bythe re-insertion of the edge retrieved by the last DeleteMin operation. Ea
hsu
h sequen
e of priority queue operations redu
es the number of edges storedin Q by at least one, so that at most O(jEj) su
h sequen
es are exe
uted. Sin
eea
h sequen
e has length at most three, the total number of priority queue op-erations is O(jEj), whi
h take O(sort(jEj)) I/Os to be performed. Hen
e, thetotal I/O-
omplexity of the algorithm is O(jV j+ sort(jEj)).Using the above algorithm instead of pro
edure SemiExternalMST in pro-
edure ExternalMST, the re
ursion 
an stop after log2(jV jB=jEj) re
ursive
alls, so that we obtain the following result.Theorem 5.10. A minimum spanning tree of a 
onne
ted undire
ted graph G =(V;E) 
an be 
omputed in O(sort(jV j) + sort(jEj) log2(jV jB=jEj)) I/Os.Remark. Similar to the 
onne
tivity algorithm of [28℄, the 
omplexity of theMST-algorithm 
an be redu
ed to O(sort(jV j) + sort(jEj) log2 log2(jV jB=jEj)).This improvement is a
hieved using essentially the same approa
h as in [28℄;but a number of interesting new ideas are used. The interested reader may referto [4℄ for details.5.5 Graph Contra
tion and Sparse GraphsObserve that the algorithms in Se
tions 5.2 and 5.4 are optimal in the num-ber of verti
es in the graph, but not in the number of edges. This is due tothe fa
t that graph G0 has at most half as many verti
es as graph G, whileno suÆ
iently good upper bounds on the number of edges in G0 
an be given.However, if graph G is sparse, the I/O-
omplexity of pro
edures External-Conne
tivity and ExternalMST is redu
ed to O(sort(jV j)). In parti
ular,we say that graph G is sparse if jE(H)j = O(jV (H)j) for every graph H that
an be obtained from G through a series of edge 
ontra
tions. Important 
lassesof sparse graphs in
lude planar graphs, grid graphs, and graphs of boundedtreewidth. Sin
e graph G0 is obtained from graph G through a series of edge
ontra
tions, the sparseness of G implies that jE(G0)j = O(jV (G0)j), so that theI/O-
omplexity of pro
edures ExternalConne
tivity and ExternalMSTis now O(sort(jV j) + sort(jV j=2) + sort(jV j=4) + : : : ) = O(sort(jV j)). Hen
e, weobtain the following result.Theorem 5.11. For every sparse graph G = (V;E), the 
onne
ted 
omponentsor a minimum spanning tree of G 
an be 
omputed in O(sort(jV j)) I/Os. Thelatter exists only if G is 
onne
ted.



6 Breadth-First Sear
h and Depth-First Sear
hBreadth-�rst sear
h (BFS) and depth-�rst sear
h (DFS) are probably amongthe most fundamental primitives used to study the stru
ture of a given graph.Sequential algorithms for �nding the bi
onne
ted 
omponents [29℄ and tri
on-ne
ted 
omponents [18℄ of a graph and the �rst linear-time algorithm for pla-narity testing [19℄ are based on depth-�rst sear
h. Breadth-�rst sear
h 
an beseen as an unweighted version of the single sour
e shortest path problem andbesides that has been employed for example in algorithms for 
omputing planarseparators [23, and many more℄. The popularity of BFS and DFS in sequentialgraph algorithms is not surprising, as these pro
edures 
an be 
arried out inlinear time using extremely simple algorithms; yet their output provides valu-able information about the stru
ture of the graph. If it is possible to designI/O-eÆ
ient algorithms for BFS and DFS, then there is hope to obtain I/O-eÆ
ient versions of many sequential graph algorithms based on BFS and DFS.Unfortunately no generally I/O-eÆ
ient BFS or DFS-algorithms are known. Be-fore dis
ussing what 
an be done, let us see what we 
an establish using rathersimple observations.First, we should not hope to obtain a linear-I/O algorithm for either BFS orDFS be
ause the list ranking problem 
an be solved by performing BFS or DFSfrom the head of the list. That is, BFS and DFS require 
(perm(N)) I/Os. Westate this as a 
orollary in Se
tion 11, whi
h deals with lower bounds.Se
ond, the internal memory algorithms are not I/O-eÆ
ient. In parti
ular,they perform O(jV j+ jEj) I/Os in the worst 
ase: At least one I/O is requiredto a

ess the adja
en
y list of ea
h vertex. Every edge to be explored requiresto 
he
k whether the other endpoint of the edge has been visited before. Thisrequires one I/O in the worst 
ase, so that the algorithm performs one I/O peredge.6.1 Dire
ted BFS and DFSThe �rst I/O-eÆ
ient algorithms for BFS and DFS we dis
uss work for dire
tedgraphs. While no better DFS-algorithm is known for undire
ted graphs, sim-pler and faster BFS-algorithms for undire
ted graphs exist. We dis
uss thesealgorithms in Se
tions 6.2 and 6.3.The bu�ered repository tree. The bu�ered repository tree (BRT) [11℄ is thekey data stru
ture used to obtain I/O-eÆ
ient algorithms for BFS and DFS indire
ted graphs. A BRT stores key-value pairs (k; v) and supports two operations:Insert((k; v)) and Extra
t(k). Operation Insert inserts the given key-valuepair into the BRT and takes O� 1B log2 NB � I/Os. Operation Extra
t removesall key-value pairs with key k from the BRT and returns them. This operationtakes O(log2(N=B)) I/Os. The I/O-bounds of both operations are amortized.The BRT is a (2; 4)-tree T that stores blo
ks of key-value pairs at its leaves,sorted by in
reasing keys. Every internal node of T has a bu�er of size B. Theroot of T is held in main memory. All other nodes are stored on disk.



An Insert operation inserts the new pair into the root bu�er. If there is roomfor the new pair in the root bu�er, this 
ompletes the operation and does notin
ur any I/Os. Otherwise the root bu�er is emptied after inserting the new pair.To do this, the elements in the bu�er are distributed to the appropriate 
hildrenof the root and inserted into their bu�ers. This takes O(1) I/Os. But it may also
ause the bu�ers of some of the 
hildren to over
ow. If this happens, these bu�ersare emptied re
ursively. On
e this re
ursive bu�er-emptying pro
ess rea
hes theleaf level, it may be ne
essary to rebalan
e the tree. We dis
uss rebalan
ingbelow.An Extra
t operation traverses the whole subtree of T between the twopaths to the leftmost and rightmost leaves of T storing elements with key k,in
luding these two paths. At every visited leaf, the elements with key k areextra
ted. At every visited internal node, the bu�er of the node is inspe
ted,and all elements with key k are extra
ted. Then the empty leaves and all theiran
estors having only empty leaves as des
endants are removed from T , and Tis rebalan
ed.The following two lemmas state the I/O-
omplexities of Insert and Ex-tra
t operations if the I/Os spent on rebalan
ing T are ignored. We analyzethe 
ost of rebalan
ing below.Lemma 6.1. An Insert operation on a BRT that stores N elements takesO� 1B log2 NB � I/Os amortized, ex
luding the I/Os required for rebalan
ing.Proof. Sin
e the I/Os required for rebalan
ing are ex
luded from the analysis, itsuÆ
es to observe that the height of a BRT storing N elements is O(log2(N=B))and that emptying a bu�er of size X � B takes O(X=B) I/Os. Thus, the 
ost ofthe bu�er emptying operation 
an be 
harged to the X elements in the bu�er,
harging every element for O(1=B) I/Os. Every inserted element is 
harged forO(1=B) I/Os per level, so that the I/O-bound follows. utLemma 6.2. An Extra
t operation on a BRT that stores N elements takesO�log2 NB + KB � I/Os, ex
luding the I/Os required for rebalan
ing. K denotes thenumber of reported key-value pairs.Proof. An Extra
t operation traverses O�log2 NB + KB � nodes in the BRT:O(log2(N=B)) nodes on the leftmost and rightmost paths bounding the range ofelements with key k, and O(K=B) nodes between those paths. It is easy to seethat visiting a single node 
osts O(1) I/Os, so that the I/O-bound follows. utIn order to �nish the analysis of the bu�ered repository tree, we have to 
ountthe I/Os spent on rebalan
ing T . The rebalan
ing after an Insert operation isdone in the same manner as on a bu�er tree [2℄ (see the 
hapter by Lars Arge).The rebalan
ing after an Extra
t operation has to be done more 
arefullybe
ause it seems diÆ
ult to rebalan
e T after the whole subtree of extra
tedelements has been removed. Therefore, instead of removing all leaves in thesubtree immediately, the leaves that be
ome empty after an Extra
t operationare marked for deletion. Then the marked leaves are deleted one by one, and the



tree is rebalan
ed after every deletion. Sin
e the 
reation or deletion of a leaf istriggered by the insertion or deletion of 
(B) elements, the total number of leaf
reations and deletions is O(N=B). As shown in [20℄, this implies that the totalnumber of node splits, merges and fusions is bounded by O(N=B). Sin
e ea
hsu
h operation 
an be performed in O(1) I/Os, the total number of I/Os spenton rebalan
ing T is O(N=B), and we obtain the following lemma.Lemma 6.3. The number of I/Os spent on rebalan
ing an initially empty BRTduring a sequen
e of N Insert and Extra
t operations is O(N=B).Now the following theorem is an immediate 
onsequen
e of Lemmas 6.1, 6.2,and 6.3, after observing that the O(K=B) I/Os spent by an Extra
t operationon reporting K key-value pairs 
an be 
harged to the K Insert operations thatinserted the reported key-value pairs into T . This does not in
reate the amortizedI/O-
omplexity of Insert operations by more than a 
onstant fa
tor.Theorem 6.4. An initially empty BRT supports Insert and Extra
t opera-tions in O � 1B log2 NB � and O(log2(N=B)) I/Os amortized, where N is the totalnumber of Insert operations performed on T .Dire
ted DFS. Having the BRT at our disposal, we 
an now pro
eed to thedis
ussion of an I/O-eÆ
ient DFS-algorithm for dire
ted graphs by Bu
hsbaumet al. [11℄. The algorithm pro
eeds in the same manner as the internal memoryalgorithm: It maintains a sta
k storing the verti
es on the path from the sour
e sof the sear
h to the 
urrent vertex v in the 
onstru
ted DFS-tree. When visit-ing v, it explores the previously unexplored out-edges of v and tests whetherthe other endpoint w of su
h an edge (v; w) has been visited before. If not, v isde
lared to be w's parent in the 
onstru
ted DFS-tree, w is pushed on the sta
k,and the same pro
edure is applied to w. If w has been visited before, the nextout-edge of v is explored. If no unexplored out-edges remain, vertex v is removedfrom the sta
k, and the pro
edure ba
ktra
ks to v's parent.As pointed out earlier, this algorithm spends one I/O per vertex and oneI/O per edge. In general, it is not known how to amend the former; but thefollowing solution redu
es the amortized 
ost per edge to O � 1B log2 jV j� I/Os,at the expense of paying O(log2 jV j) I/Os per vertex, whi
h results in a DFS-algorithm that takes O((jV j+ jEj=B) log2 jV j) I/Os.The algorithm makes use of the following data stru
tures:{ A BRT T storing edges of G. Ea
h edge has its sour
e vertex as its key.Tree T is initially empty.{ A priority queue P (v) per vertex v 2 G, whi
h stores the out-edges of v thathave not been explored yet and whose other endpoints have not been visitedbefore the last visit to v.An important invariant maintained by the algorithm is that at any time, for anyvertex v, the edges that are stored in P (v) and are not stored in T are the edgesfrom v to unvisited verti
es. When vertex v is visited either for the �rst time



or by ba
ktra
king from a des
endant of v, an Extra
t operation is performedon T to extra
t all edges with key v. These edges are deleted from P (v) usingDelete operations. After that, priority queue P (v) stores only edges from v tounvisited out-neighbors. If P (v) is empty, v has no unvisited out-neighbors left,and the sear
h ba
ktra
ks. Otherwise the next edge to be explored is extra
tedusing a DeleteMin operation. Let this edge be (v; w). Then vertex w is pushedon the sta
k, the set of in-edges of w are retrieved, and every edge (x;w) inthis set is inserted into T with key x. This maintains the invariant for everyin-neighbor x of w and prevents the algorithm from exploring edge (x;w) whenvertex x is visited.The 
orre
tness of the algorithm is obvious, as it explores an edge if andonly if the other endpoint of the edge has not been visited before. We split theanalysis of the I/O-
omplexity of the algorithm into I/Os spent on updates ofthe BRT, priority queue operations and a

essing adja
en
y lists.A

essing the adja
en
y lists of all verti
es of G takes O(jV j+ jEj=B) I/Osbe
ause the adja
en
y list of every vertex is a

essed exa
tly on
e. The number ofpriority queue operations performed by the algorithm is O(jEj): Initially, everyedge (v; w) of G is inserted into exa
tly one priority queue, namely P (v). Afterthis initialization, only DeleteMin and Delete operations are performed onany priority queue, so that only jEj of these operations 
an be performed beforeall priority queues are empty. Hen
e, using bu�er trees [2℄ to implement thepriority queues, the algorithm would spend O(sort(jEj)) I/Os on all priorityqueue operations it performs, if there were room to keep a bu�er of size B perpriority queue in main memory. However, there are jV j di�erent priority queues,and in general we have to assume that jV jB > M . Therefore, the algorithm
reates a bu�er of size B only for the priority queue P (v) of the 
urrent vertex v.Before making another vertex the a
tive vertex, the bu�er of priority queue P (v)is emptied, even if it 
ontains only few elements. This 
osts O(1) I/Os pervisit to vertex v. Fortunately the DFS-algorithm performs an inorder traversalof the 
onstru
ted DFS-tree, so that the number of visits to di�erent verti
esis O(jV j). Hen
e, the total number of I/Os spent on priority queue operationsis O(jV j+ sort(jEj)).Finally, the algorithm performs O(jEj) Insert operations and O(jV j) Ex-tra
t operations on the BRT. Ea
h Insert operation takes O� 1B log2 jEjB � =O� 1B log2 jV j� I/Os amortized. Ea
h Extra
t operation takes O(log2 jV j) I/Osamortized. Hen
e, the total number of I/Os spent on updating the BRT isO((jV j+ jEj=B) log2 jV j). We obtain the following result.Theorem 6.5. A DFS-tree of a dire
ted graph G = (V;E) 
an be 
omputed inO((jV j+ jEj=B) log2 jV j) I/Os.Dire
ted BFS. In order to obtain an I/O-eÆ
ient BFS-algorithm for dire
tedgraphs, it suÆ
es to modify the above algorithm so that it uses a queue insteadof a sta
k to determine the order in whi
h the verti
es of G are visited. That is,when visiting a vertex v, the out-edges of v leading to visited neighbors of v are



extra
ted from T and deleted from P (v). The remaining edges in P (v) are re-trieved using a series of DeleteMin operations. For every retrieved edge (v; w),vertex v is de
lared to be the parent of w, vertex w is appended to the end of thequeue, and all in-edges of w are inserted into the BRT. On
e priority queue P (v)has been emptied in this manner, the next vertex to be visited is retrieved fromthe head of the queue.The analysis of the algorithm is the same as for DFS after observing that thenumber of visits to di�erent verti
es is again O(N) be
ause now every vertex isvisited exa
tly on
e. (The algorithm does not ba
ktra
k.) Hen
e, we obtain thefollowing result.Theorem 6.6. A BFS-tree of a dire
ted graph G = (V;E) 
an be 
omputed inO((jV j+ jEj=B) log2 jV j) I/Os.Remark. We leave it as an exer
ise to verify that for BFS, the use of priorityqueues P (v), v 2 V , 
an be avoided altogether be
ause every vertex is visitedexa
tly on
e.6.2 Undire
ted BFSThe algorithms for BFS and DFS in dire
ted graphs follow the framework ofthe internal memory algorithms for these problems, but spend a lot of e�ort oneÆ
iently maintaining the set of verti
es they have visited so far. For BFS inundire
ted graphs, Munagala and Ranade [28℄ exploit the parti
ularly simplestru
ture of BFS-trees of these graphs in order to design a BFS-algorithm thattakes O(jV j+ sort(jEj)) I/Os.This \parti
ularly simple stru
ture" of BFS-trees of undire
ted graphs is
hara
terized as follows: Let v be a vertex at distan
e d from the root of a BFS-tree of the graph. Then all neighbors of v are at distan
e d�1, d, or d+1 from theroot. Hen
e, when the algorithm visits vertex v, only the nodes at distan
es d�1and d have to be inspe
ted to �nd out whi
h neighbors of v have been visitedbefore. All other nodes are either 
hildren of v or of another node at level d inthe BFS-tree. This eliminates the need for a 
ompli
ated data stru
ture to keeptra
k of the verti
es the algorithm has already visited.Given the root r of the BFS-tree T to be 
omputed, the algorithm 
omputes apartition of the verti
es of G into disjoint sets L(0); L(1); : : : so that the verti
esin set L(i) are at distan
e i from r. That is, set L(0) 
ontains only the root r of T ,set L(1) 
ontains all neighbors of r, and so on. We 
all sets L(0); L(1); : : : thelevels of tree T . The algorithm 
omputes these levels iteratively, starting withL(0) = frg. Given levels L(0); : : : ; L(i), the next level L(i+ 1) is 
omputed asthe di�eren
e between the set of neighbors of all verti
es in L(i) and the union ofsets L(i�1) and L(i). This pro
ess is repeated until the most re
ently 
omputedlevel L(i) is empty. The pseudo-
ode of the algorithm is shown in Algorithm 6.1.The 
orre
tness of this pro
edure follows from the above observation. Toanalyze the I/O-
omplexity of the algorithm, we bound the number of I/Osspent on a

essing the adja
en
y lists of the verti
es in G and the number of



Pro
edure Undire
tedBFS1: L(�1) ;2: L(0) frg3: i 04: while L(i) 6= ; do5: Let X(i) be the union of the adja
en
y lists of all verti
es in L(i).6: Remove dupli
ates from X(i).7: Remove all verti
es in L(i� 1) [ L(i) from X(i).8: L(i+ 1) X(i)9: i i+ 110: end whileAlgorithm 6.1An I/O-eÆ
ient BFS-algorithm for undire
ted graphs.I/Os spent on 
omputing L(i+1) from sets L(i�1), L(i) and X(i). The numberof I/Os spent on a

essing adja
en
y lists is easily bounded byO(jV j+s
an(jEj)).The 
omputation of set L(i + 1) from sets L(i� 1), L(i) and X(i) requiressorting L(i�1), L(i) and X(i). On
e these lists are sorted, a single s
an of theselists is suÆ
ient to remove dupli
ates as well as all elements in L(i� 1) [ L(i)from X(i). Sin
e sets L(0); L(1); : : : form a partition of the vertex set of G intodisjoint sets, the total size of sets L(0); L(1); : : : is jV j. Ea
h set L(i) is involvedin the 
omputation of sets L(i + 1) and L(i + 2), so that the total numberof I/Os spent on sorting and s
anning sets L(0); L(1); : : : is O(sort(jV j)) =O(sort(jEj)). The total size of all sets X(0); X(1); : : : is O(jEj). To see this,observe that a vertex v is added to a set X(i) be
ause of an edge fu; vg in
identto v and so that u 2 L(i). Every edge 
auses ea
h of its endpoints to be insertedinto exa
tly one set X(i), so that the total size of sets X(0); X(1); : : : is 2jEj.Therefore the number of I/Os spent on sorting and s
anning sets X(0); X(1); : : :is O(sort(jEj)). This proves the following result.Theorem 6.7. A BFS-tree of an undire
ted graph G = (V;E) 
an be 
omputedin O(jV j+ sort(jEj)) I/Os.Remark. The BFS-algorithm as des
ribed in Algorithm 6.1 only 
omputes thedistan
e of every vertex from the root r of the BFS-tree. In order to make thealgorithm 
ompute the parent of ea
h vertex in the BFS-tree, observe that avertex ends up in L(i + 1) be
ause it is in X(i), but not in L(i � 1) or L(i).A vertex v is inX(i) be
ause there is a vertex in L(i) that is adja
ent to v. Hen
e,instead of adding only vertex v to X(i), a pair (v; u) 
an be added to X(i), whereu is the vertex in L(i) that 
aused this 
opy of v to be inserted into X(i). Forevery pair (v; u) that remains in L(i+1) after removing dupli
ate pairs with thesame �rst 
omponent, vertex u is a vertex in L(i) adja
ent to v, so that it 
anbe made the parent of v in T .



6.3 A Faster Undire
ted BFS-AlgorithmWhile pro
edure Undire
tedBFS is eÆ
ient for dense graphs, i.e., for graphwith jEj = 
(BjV j), it is no more eÆ
ient than the internal memory algorithmfor graphs with jEj = O(jV j). In parti
ular, the algorithm spends O(jV j) I/Osin this 
ase, while the lower bound for BFS is only 
(perm(jV j)). In the lastfew years, one of the main 
hallenges has been to develop BFS-algorithms thatperform well on sparse graphs. A number of I/O-optimal algorithms for spe-
ial 
lasses of sparse graphs have been developed [4, 6, 24, 25℄; but 
(jV j) I/Osseemed to be a lower bound for BFS if no additional stru
tural informationabout the graph is available.Mehlhorn and Meyer [27℄ disproved this 
onje
ture and made a major step to-wards 
losing the gap between the lower and upper bounds for BFS by developinga BFS-algorithm that takes O�pjV jjEj=B+sort(jEj)� I/Os. For sparse graphs,for example, the algorithm takes O�jV j=pB� I/Os as opposed to O(jV j) I/Osspent by pro
edure Undire
tedBFS.We �rst dis
uss a randomized version of the algorithm be
ause it provides theright intuition. Given the randomized algorithm, a simple observation suÆ
es tomake the algorithm deterministi
.The idea of the algorithm is to group the verti
es of G into disjoint 
lustersof small diameter and then run pro
edure Undire
tedBFS with a few modi-�
ations. First the algorithm makes sure that the adja
en
y lists of all verti
esin the same 
luster are stored 
onse
utively. We refer to su
h a 
on
atenationof adja
en
y lists as the �le of the respe
tive 
luster. Whenever a vertex is �rstdis
overed, the algorithm does not only retrieve the adja
en
y list of the dis-
overed vertex, but the whole �le of the 
luster 
ontaining that vertex. Thus, ifthe number of 
lusters is mu
h smaller than the number of verti
es, the numberof random a

esses spent on loading adja
en
y lists is mu
h smaller than jV j.On the other hand, by in
orporating all edges in a �le into the 
omputationalready when the �rst vertex in the 
luster is dis
overed, many edges may beinvolved in the 
omputation of more than one level of the BFS-tree, whi
h in-
reases the number of I/Os spent on 
omputing the levels from the retrieved�les. That is, the algorithm trades o� random a

esses against spending moreI/Os to perform the a
tual 
omputation of the algorithm. As we will see, thetrade-o� balan
es at the above I/O-
omplexity. This trade-o� is also the reasonwhy it seems that this idea 
annot be pushed further to obtain a BFS-algorithmthat takes O(sort(jV j+ jEj)) I/Os.The algorithm pro
eeds in two stages. The �rst stage forms 
lusters of smalldiameter. The se
ond stage applies pro
edure Undire
tedBFS after groupingthe adja
en
y lists into �les.Forming 
lusters. First we des
ribe the randomized 
lustering algorithm, as itprovides some intuition about how the algorithm works and how a parameter �to be spe
i�ed later de
reases the I/O-
omplexity of one part of the algorithm,while in
reasing the 
omplexity of the other part of the algorithm.



So let 0 < � < 1. Then the algorithm 
hooses a subset V 0 � V of verti
es by
ipping a 
oin for every vertex in V n frg, where r is the root of the BFS tree tobe 
omputed. The 
oin 
omes up head with probability �. Vertex v is in
ludedin set V 0 if its 
oin 
omes up head. Vertex r is always in
luded in set V 0. Theverti
es in V 0 are 
alled masters, ea
h being the 
enter of a separate 
luster.That is, the number of 
lusters formed by the algorithm is jV 0j. Let the verti
esin V 0 be r = r1; : : : ; rq . Then vertex ri is the master of 
luster Ci.Observation 6.1. The expe
ted size of vertex set V 0 is E[jV 0j℄ � 1 + �jV j.The 
lusters are now formed by running pro
edure Undire
tedBFS fromall masters simultaneously. That is, level L(0) 
ontains all masters. Then thealgorithm is run as before until all verti
es of G are dis
overed. Now observethat the algorithm assigns a parent to every vertex ex
ept to those in level L(0).Hen
e, every vertex is a des
endant of exa
tly one master in L(0). Cluster Ci
onsists of all verti
es having some vertex ri 2 V 0 as an an
estor. The followinglemma is the key to the eÆ
ien
y of the algorithm.Lemma 6.8. The expe
ted diameter of any 
luster Ci is 2=�.Proof. Consider any path P = (r = xk ; xk�1; : : : ; x1; v) from r to a vertex v 2 Ci.Sin
e G is 
onne
ted, path P exists. This guarantees that every vertex will be\
aptured" by some master. Hen
e, there is no vertex in G that is not 
ontainedin any 
luster. Now let 1 � j � k be the smallest index so that xj is a master.Sin
e every vertex is 
hosen to be a master with probability �, E[j℄ = 1=�.Hen
e, the expe
ted distan
e of vertex v from the master of 
luster Ci is atmost 1=�. Sin
e this is true for any vertex in Ci, the lemma follows. utWe 
on
lude the dis
ussion of this �rst part of the algorithm with the analysisof its I/O-
omplexity.Lemma 6.9. A partition of the vertex set of a graph G = (V;E) into dis-joint 
lusters of expe
ted diameter 2=� 
an be obtained in expe
ted O(sort(jEj)+s
an(jEj)=�) I/Os. The expe
ted number of 
lusters is at most 1 + �jV j.Proof. Choosing the masters and 
onstru
ting set L(0) takes O(s
an(jV j)) =O(s
an(jEj)) I/Os. By the proof of Lemma 6.8, every remaining vertex is ex-pe
ted to be \
aptured" by some master after 1=� iterations. Hen
e, the expe
tednumber of iterations performed by the pro
edure Undire
tedDFS is 1=�. Iter-ation i takes O(sort(jEij)+s
an(jEj)) I/Os, where Ei is the set of edges adja
entto the verti
es in L(i), if pro
edure Undire
tedBFS is modi�ed as follows: In-stead of retrieving the adja
en
y list of every vertex in L(i) using a random diska

ess, s
an all adja
en
y lists and retrieve the 
ontents of the adja
en
y lists ofthe verti
es in L(i). Sin
e every edge of G appears in exa
tly two adja
en
y lists,the I/O-bound follows. The bound on the number of 
lusters is an immediate
onsequen
e of Observation 6.1. The bound on the expe
ted diameter of ea
h
luster is shown in Lemma 6.8. ut



Breadth-�rst sear
h. To 
onstru
t a BFS-tree of G rooted at vertex r, thealgorithm now applies pro
edure Undire
tedBFS again. Before doing so, how-ever, the representation of graph G is modi�ed as follows: (1) The adja
en
y listsof all verti
es in a 
luster Ci are 
on
atenated to form �le Fi. In parti
ular, theedges in ea
h �le Fi are stored 
onse
utively. (2) Every edge (v; w) 2 Fi is rep-resented as the triple (v; w; pj), where w 2 Cj and pj is the disk address of the�rst edge in Fj .In order to use this prepro
essed representation of G e�e
tively, pro
edureUndire
tedBFS is modi�ed as follows: The algorithm maintains a pool H thatis guaranteed to 
ontain all edges 
onne
ting verti
es in the 
urrent level L(i)with verti
es in the next level L(i+1) to be 
onstru
ted; but H may also 
ontainedges 
onne
ting verti
es at levels greater than i. The edges in H are sorted bytheir sour
e verti
es. Also, as we will see, every level is produ
ed in sorted orderby the algorithm, so that in parti
ular the 
urrent level L(i) has been produ
edin sorted order by the previous iteration. The algorithm s
ans lists L(i) and Hto identify all verti
es in L(i) whose adja
en
y lists are not 
ontained in H. Forea
h su
h vertex v, let Cj be the 
luster 
ontaining vertex v. Then the addressof �le Fj is appended to a list Q. On
e list Q has been produ
ed, this list issorted and dupli
ates are removed in a single s
an. For every remaining entryin Q, the 
orresponding �le Fj is appended to a list H0. Then the edges in H0are sorted by their sour
e verti
es, and H and H0 are merged. This ensures thatpool H now 
ontains the adja
en
y lists of all verti
es in L(i). Hen
e, a singles
an of lists L(i) and H suÆ
es to extra
t these adja
en
y lists from H and
reate the list X(i) of verti
es adja
ent to verti
es in L(i). Then list X(i) issorted and s
anned to remove dupli
ates. Level L(i+1) is now 
onstru
ted fromlists L(i� 1), L(i) and X(i) as before.To analyze the I/O-
omplexity of this modi�ed version of pro
edure Undi-re
tedBFS, we split the 
ost into three parts: (1) I/Os spent on retrieving andsorting all �les F1; : : : ;Fq . (2) I/Os spent on merging H and H0. (3) I/Os spenton 
onstru
ting list L(i+ 1) from lists L(i� 1), L(i) and H.The I/O-
omplexity for retrieving and sorting all �les is O(jV 0j+ sort(jEj))be
ause there are jV 0j �les of total size 2jEj. Sin
e E[jV 0j℄ = �jV j, the expe
ted
ost of retrieving and sorting all �les is hen
e O(�jV j + sort(jEj)). The 
ost ofmergingH andH0 is O(s
an(jHj+jH0j)). Sin
e every edge is 
ontained inH0 onlyon
e, the edges in H0 
ontribute O(s
an(jEj)) to the total 
ost of this operation,summed over all iterations. To bound the total 
ost 
ontributed by the edgesin H, we use Lemma 6.8. In parti
ular, sin
e the expe
ted diameter of a 
lusteris 2=�, we expe
t the algorithm to take at most 2=� iterations after dis
overingthe �rst vertex in a 
luster before all verti
es in the 
luster are dis
overed. Hen
e,on
e the 
orresponding �le Fi has been in
orporated into H, all edges in Fi areexpe
ted to be removed from H after at most 2=� iterations. That is, the totalsize of H, summed over all iterations, is expe
ted to be 4jEj=�, so that theexpe
ted 
ost of merging lists H and H0 for all iterations is O(s
an(jEj)=�).The 
ost of 
omputing list L(i + 1) from lists L(i � 1), L(i) and H isO(sort(jEij) + s
an(jL(i� 1)j+ jL(i)j+ jHj)), where Ei is the set of edges in
i-



dent to the verti
es in L(i). The total size of sets E0; E1; : : : is 2jEj; the totalsize of sets L(0); L(1); : : : is jV j; and as argued above, the total size of list H,summed over all iterations, is O(jEj=�). Hen
e, the 
ost for 
omputing all levelsis O(sort(jEj) + s
an(jEj)=�), and we obtain the following lemma.Lemma 6.10. Given the prepro
essing performed by the �rst phase of the al-gorithm, a BFS-tree of G 
an be 
omputed in expe
ted O(�jV j + sort(jEj) +s
an(jEj)=�) I/Os.By Lemmas 6.9 and 6.10, the I/O-
omplexity of the improved BFS-algorithmis O(�jV j + sort(jEj) + s
an(jEj)=�). By 
hoosing � = min�1;pjV jB=jEj�, weobtain the desired result.Theorem 6.11. A BFS-tree of an undire
ted graph G = (V;E) 
an be 
omputedin expe
ted O�pjV jjEj=B + sort(jEj)� I/Os.A deterministi
 
lustering algorithm. It is not 
lear how to make therandomized 
lustering algorithm of Se
tion 6.3 a
hieve its I/O-
omplexity withhigh probability. Instead, the algorithm 
an be made deterministi
 rather easily.All that is required is a deterministi
 method for partitioning G into O(�jV j)disjoint 
lusters of diameter O(1=�). Su
h a partition 
an be obtained usingan Euler tour of an arbitrary spanning tree T of G. More pre
isely, observethat an Euler tour of T has length 2jV j � 2 and 
an hen
e be partitioned into2�(jV j�1) = O(�jV j) segments of length 1=�. Ea
h segment de�nes a 
luster Ci.A vertex v of G may be in more than one segment. Then w.l.o.g. v is 
hosen to bein the 
luster Ci with smallest index that 
orresponds to a segment 
ontaining v.The 
ru
ial observation is that the BFS-phase of the randomized algorithmdoes not require the 
lusters to be 
onne
ted. The only property that is used isthat the expe
ted distan
e in G between any two verti
es in the same 
lusteris O(1=�). Sin
e two verti
es in the same 
luster formed by the above determin-isti
 pro
edure have distan
e at most 1=� from ea
h other, it is now guaranteedthat on
e a vertex in a 
luster is dis
overed, all verti
es in the 
luster are dis-
overed within the next 1=� iterations.By Lemma 5.7 and the remark on Page 19, a spanning tree of G 
an be
omputed in O(sort(jEj) log2 log2(jV jB=jEj)) I/Os. Given a spanning tree of G,the Euler tour 
an be 
omputed in O(sort(jV j)) = O(sort(jEj)) I/Os. The 
om-putation of 
lusters from the Euler tour requires a 
onstant number of sortsand s
ans. Hen
e, the 
lustering phase of the algorithm takes O�pjV jjEj=B +sort(jEj) log2 log2(jV jB=jEj)� I/Os, as does the BFS-phase.Theorem 6.12. A BFS-tree of an undire
ted graph G = (V;E) 
an be 
omputedin O�pjV jjEj=B + sort(jEj) log2 log2(jV jB=jEj)� I/Os.7 Single Sour
e Shortest PathsIn this se
tion we dis
uss an algorithm for the single sour
e shortest path problemon undire
ted graphs due to Kumar and S
hwabe [22℄. The algorithm is an



I/O-eÆ
ient version of Dijkstra's algorithm. In order for Dijkstra's algorithmto be I/O-eÆ
ient, an I/O-eÆ
ient priority queue and an I/O-eÆ
ient methodfor testing for previously visited verti
es are needed. Ideally it would also bedesirable to have an I/O-eÆ
ient data stru
ture for retrieving the adja
en
y listsof the verti
es in the graph. For BFS we have seen in the previous se
tion thata 
lustering approa
h 
an be applied to at least redu
e the number of randoma

esses performed while retrieving adja
en
y lists. For the single sour
e shortestpath problem this approa
h does not seem to work be
ause there is no guaranteeany more how long an adja
en
y list would remain in the pool H before it isremoved. More importantly, a shortest path tree 
annot easily be built level bylevel, as algorithm Undire
tedBFS does for a BFS-tree. Hen
e, we shall be
ontent with spending one I/O per vertex, as long as the number of I/Os spentper edge 
an be kept small.In Se
tion 7.1 we dis
uss the I/O-eÆ
ient priority queue used in the algo-rithm. In Se
tion 7.2 we dis
uss the shortest path algorithm and show how itmakes use of a se
ond priority queue to avoid having to 
he
k for visited verti
es.7.1 The Tournament TreeAs dis
ussed in the 
hapter by Lars Arge, the bu�er tree [2℄ 
an be used as a pri-ority queue that 
an pro
ess a sequen
e of N Insert, Delete, and DeleteMinoperations in O(sort(N)) I/Os. Unfortunately this priority queue does not sup-port a De
reaseKey operation, whi
h is required by Dijkstra's algorithm, un-less this operation 
an be simulated by a Delete operation followed by aninsertion. The latter is possible only if the previous priority of the element isknown, whi
h in general is hard to a
hieve in Dijkstra's algorithm.In this se
tion we dis
uss the external tournament tree proposed by Ku-mar and S
hwabe [22℄, whi
h supports Insert, Delete, DeleteMin and De-
reaseKey operations at an amortized 
ost of O� 1B log2 NB � I/Os per operationand uses O(N=B) blo
ks of external memory. In these bounds N denotes thetotal number of elements that may potentially be stored in the priority queue.In parti
ular, N may be mu
h larger than the a
tual number of elements storedin the priority queue, whi
h 
ould a�e
t the eÆ
ien
y of the data stru
ture.However, in most graph algorithms, N = O(jV j) or N = O(jEj), so that thetournament tree pays only a log2(M=B) fa
tor in performan
e 
ompared to thebu�er tree, for the added bene�t of supporting the De
reaseKey operation.The data stru
ture. So let X be the set of elements potentially stored inthe priority queue, and assume that the elements in X are numbered 1 throughN = jX j. The numbering is required to establish a total order on the elementsof X and to 
ompare two elements qui
kly w.r.t. this total order. For the sakeof simplifying the des
ription of the data stru
ture, we also assume that N is amultiple of M .The tournament tree is a stati
 binary tree T with the following properties:(i) Tree T has N=M leaves.



(ii) All leaves of T are at level d = blog2(N=M)
 or d� 1.(iii) Let the leaves of T be numbered from left to right. Then the elements of Xnumbered (i�1)M+1 through iM map to the i-th leaf of T . An element xof X is stored either at the leaf l(x) it maps to or at an an
estor thereof.(iv) A node stores betweenM=2 andM elements. The priorities of the elementsstored at any node are smaller than the priorities of the elements stored atits des
endants.(v) Ea
h internal node has an asso
iated signal bu�er of size M . This bu�erstores update signals that are used to propagate updates of T down thetree towards the leaves.(vi) The root of T is held in main memory.Sin
e T stores all elements of X at all times, we need a 
riterion to de
idewhen an element stored in T is not in the subset of X 
urrently representedby T . The adopted 
onvention is that an element is in this subset if and onlyif its priority is �nite. Hen
e, by initializing all elements in T to have in�nitepriority, tree T initially represents the empty set.Priority queue operations. Given a tournament tree T , the only operationthat requires immediate pro
essing is the DeleteMin operation. By Prop-erty (iv), the element with minimum priority in T is stored at the root. ByProperty (vi), the root of T is held in main memory. Hen
e, a DeleteMin op-eration 
an be performed without in
urring any I/Os by extra
ting the elementwith minimum priority stored at the root of T . To maintain the invariant thatan element that is \not stored" in T is stored in T with in�nite priority, theretrieved element has to be inserted into T with priority 1. This is a
hievedby sending signal Update(x;1) to the root of T (see the dis
ussion on signalsbelow).Operations Insert, Delete, and De
reaseKey are realized using signalsthat are sent to the root and then propagate down the tree towards the leaves.When a signal rea
hes a node v 2 T , it is �rst applied to v | that is, it e�e
ts
ertain 
hanges to the set of elements stored at v | and then the signal itselfor another, newly generated, signal is sent to one or both of the 
hildren of v.To perform a Delete operation, a Delete signal is sent to the root of T .Operations Insert and De
reaseKey are both realized using an Update sig-nal. Next we des
ribe the e�e
ts of sending these signals to a node v 2 T .Delete(x): If element x is stored at node v, it is deleted, and signal Up-date(x;1) is sent to the next node w on the path to leaf l(x). If x isnot stored at v, signal Delete(x) is sent to w.Update(x; p): If element x is stored at v, its priority is updated to min(p; p0),where p0 is its 
urrent priority. If x is not stored at v, and all elements storedat v have priority less than p, signal Update(x; p) is propagated to the nextnode w on the path to leaf l(x). Finally, if there is an element with priorityp0 � p stored at v, element x is added to the set of elements stored at v.After this update, any other 
opy of x with �nite priority p00 � p possibly



stored at a des
endant of v has to be removed from T . This is a
hieved bysending signal Delete(x) to w.The insertion of element x into the set of elements stored at node v may
ause this set to over
ow be
ause it already 
ontains M elements. If thishappens, the element z with maximal priority pz in this set is moved to the
hild of v on the path to leaf l(z) by sending signal Push(z; pz) to this 
hild.Finally, a signal Update(x;1) is handled in a spe
ial way when it rea
hesleaf l(x). When this happens, the signal makes sure that element x is storedwith priority 1 at this leaf by inserting element x if ne
essary.Push(x; p): This signal inserts element x into the set of elements stored atnode v. If this set already 
ontains M elements, the element z with maxi-mum priority pz in this set is moved to the 
hild of v on the path to leaf l(z)by sending signal Push(z; pz) to this 
hild.We leave it as an exer
ise to verify that the implementation of all priorityqueue operations using the above signals updates the set of elements stored in Tand their priorities 
orre
tly. Moreover, Properties (i)-(vi) are maintained, ex
eptfor the possible under
ow of a node after applying a DeleteMin or Deleteoperation to it. We show how to deal with these under
ows below.Lazy signal propagation. So far we have assumed that all signals are sent allthe way down to the leaves when generated by an update operation. However,this is not ne
essary, as long as the root of T always stores the elements withsmallest priority in the set tree T is supposed to represent. Hen
e, after applyingan update signal to the root, the sending of signals to its 
hildren 
an be delayeduntil either enough of them have been 
olle
ted to guarantee that they 
anbe applied I/O-eÆ
iently to the 
hildren of the root or an under
ow of theroot requires to move elements from the 
hildren of the root to the root. Whenapplying signals to any node v 2 T , the same strategy 
an be applied to delay thesending of signals to its 
hildren. Intuitively, whenever a subtree of T is a�e
tedby an update, it suÆ
es to update its root and delay updates of its des
endantsuntil the updates of the root 
annot be performed without fet
hing data fromits 
hildren.This delayed propagation of signals down the tree is realized using the signalbu�ers of the nodes in T . After a signal has been applied to a node v 2 T , thesignals to be sent to v's 
hildren of v are appended to v's signal bu�er instead ofsending them to v's 
hildren immediately. As soon as v's signal bu�er 
ontainsat least M elements, it is emptied. This operation is performed as follows: S
anthe set S of signals in the bu�er and partition them into two sets Su and Sw forthe two 
hildren, u and w, of v. Load the set of elements stored at node u intomain memory, s
an set Su, and apply the signals in Su to this set of elements.Append the signals generated during this update of node u to u's signal bu�er.Now repeat the whole pro
edure to apply the signals in Sw to w. As a result ofthese updates, the signal bu�ers of nodes u and w may over
ow. If this happens,these bu�ers are emptied re
ursively.



Ex
luding the re
ursive emptying of the signal bu�ers of v's 
hildren, emp-tying the bu�er of node v takes O(s
an(jSj+M)) = O(s
an(jSj)) I/Os be
ausenodes u and w store O(M) elements and jSj �M . Hen
e, every signal involvedin a bu�er-emptying pro
ess 
osts O(1=B) I/Os amortized. Sin
e every signalis involved in at most O(log2(N=B)) bu�er-emptying pro
esses, one per level,the amortized 
ost per signal is O� 1B log2 NB �. Next we argue that every priorityqueue operation generates O(1) signals, so that the 
ost for propagating signalsdown the tree is O� 1B log2 NB � amortized per priority queue operation.Every priority queue operation sends one signal to the root of T . A Deletesignal propagates down the tree until it �nds the element to be deleted, at whi
hpoint it is repla
ed by an Update signal. An Update signal travels down thetree until it either terminates following the update of the priority of the targetedelement, or it is repla
ed by a Delete and possibly a Push signal when it
auses the insertion of the targeted element into the set stored at some nodeof T . A Push signal propagates down the tree, possibly 
hanging the element it\
arries", until it �nds a node where there is room to insert the 
urrent element.Hen
e, the only signal that 
an possibly split into two signals on its way downthe tree is an Update signal. The generated Push signal does not multiply. Wehave to argue that the generated Delete signal does not multiply either. To dothis, we show that the Update signal generated by a Delete stays an Updatesignal, i.e., does not split. To see that this is true, observe that an Update signalis repla
ed by a Delete and a Push signal only if it en
ounters a node thatstores an element with higher priority than its own; but this is impossible for anUpdate signal generated by a Delete signal be
ause its priority is 1. Hen
e,every priority queue operation sends at most two signals down the tree.Filling underfull nodes. So far we have 
onveniently ignored what happenswhen a node v stores less than M=2 elements as the result of a DeleteMin orDelete operation. When this happens, elements stored at v's 
hildren have tobe moved to v. This in turn may 
ause v's 
hildren to under
ow, so that theyhave to be �lled with elements from their 
hildren, and so on. Hen
e, even aDeleteMin operation, whi
h otherwise does not in
ur any I/Os, may 
ause a
onsiderable number of I/Os to be performed. However, we show next that theamortized 
ost for �lling underfull nodes in this manner is only O� 1B log2 NB � peroperation.What pre
isely happens when a node v under
ows is that the M=2 elementswith smallest priority stored at v's 
hildren are moved to v. To guarantee thatthe sets of elements stored at v's 
hildren are up-to-date, v's signal bu�er hasto be emptied before moving elements from v's 
hildren to v. The emptying ofv's signal bu�er 
osts O(s
an(M)) I/Os, whi
h follows from the dis
ussion ofthe bu�er-emptying pro
ess above and the fa
t that v's signal bu�er 
ontainsat most M elements be
ause otherwise it would have been emptied already. Tomove the M=2 elements with smallest priority from v's 
hildren to v, it suÆ
esto s
an the two sets stored at v's 
hildren, whi
h takes O(s
an(M)) I/Os. Hen
e,the total 
ost of �lling v's signal bu�er with M=2 elements from its 
hildren is



O(s
an(M)), O(1=B) I/Os amortized per element. The moving of elements fromv's 
hildren to v may leave v's 
hildren underfull, so that they have to be �lledre
ursively. However, the I/Os required to do this 
an be 
harged to the elementsthat are moved to v's 
hildren. We observe that every level an element travelsup the tree 
osts O(1=B) I/Os amortized.Sin
e the tournament tree is initially empty, elements that move up the tree�rst have to be moved down the tree by means of signals. For every level anelement travels up the tree, we 
an hen
e 
harge the signal that moved theelement in the opposite dire
tion. This in
reases the amortized 
ost per signalby only a 
onstant fa
tor and hen
e 
hanges the amortized 
ost per priority queueoperation by only a 
onstant fa
tor. Thus, we obtain the following theorem.Theorem 7.1. Using an I/O-eÆ
ient tournament tree, a sequen
e of K In-sert, Delete, DeleteMin, and De
reaseKey operations 
an be pro
essedin O�KB log2 NB � I/Os.7.2 An I/O-EÆ
ient Version of Dijkstra's AlgorithmDijkstra's algorithm [14℄ 
an be made I/O-eÆ
ient using the tournament tree asthe priority queue that stores the verti
es of graph G = (V;E) sorted a

ordingto their tentative distan
es from the sour
e s. However, repla
ing the internalmemory priority queue of 
hoi
e with the tournament tree is not suÆ
ient toimmediately obtain an I/O-eÆ
ient shortest path algorithm. The problem is thatDijkstra's algorithm tests every neighbor w of the 
urrent vertex v whether ithas already been �nished5 before trying to update its tentative distan
e using aDe
reaseKey operation. If there is no way to avoid these tests, the algorithmspends one I/O per edge of G, O(jEj) I/Os in total.To avoid performing these tests, the shortest path algorithm of [22℄ performsan Update operation for all neighbors of v, ex
luding its parent in the shortestpath tree, irrespe
tive of whether or not they are �nished. While this avoidsthe expensive test for �nished verti
es, it 
reates the following problem: Let ube a neighbor of v that has already been �nished, and let fu; vg be the edge
onne
ting u and v in G. Then the algorithm re-inserts u into priority queue Qwith priority dist(s; v)+!(fu; vg), where !(e) denotes the weight of edge e. Thiswill ultimately 
ause u to be visited for a se
ond time, whi
h is in
orre
t. We
all su
h a re-insertion of u a spurious update. Next we dis
uss a method thatguarantees that the 
opy of u inserted by a spurious update is deleted from Qusing a Delete operation before it 
an 
ause a se
ond visit to vertex u.The method to a
hieve this is based on the observation that a neighbor uof v that is �nished before v performs an update of v before v is �nished. Byre
ording this update attempt of u on v in a se
ond priority queue Q0, thisinformation 
an later be used to prevent the spurious update of v on u fromdoing any harm. In parti
ular, when vertex u attempts to update v's tentative5 A vertex v is �nished when the algorithm has determined the �nal distan
e of vfrom s and has inserted v's neighbors into the priority queue.



distan
e, vertex u is inserted into Q0 with priority dist(s; u) + !(fu; vg). Thenext vertex to be visited by the algorithm is now determined from the out
omeof two DeleteMin operations, one on Q and one on Q0.Let (v; pv) be the entry retrieved from Q, and let (w; pw) be the entry re-trieved from Q0. If pw < pv, entry (v; pv) is re-inserted into Q, vertex w is deletedfrom Q by applying a Delete(w) operation to Q, and then the whole pro
edureis iterated. If pv � pw, entry (w; pw) is re-inserted into Q0, and vertex v is visitedas normal. Let us show that this method a
hieves the desired goal.Lemma 7.2. A spurious update is deleted before the targeted entry 
an be re-trieved using a DeleteMin operation.Proof. Consider a vertex v and a neighbor u of v that is �nished before v, sothat v performs a spurious update on u. Denote the spurious update as event A,the deletion of the re-inserted 
opy of u as event B, and the extra
tion of there-inserted 
opy of u using a DeleteMin operation as event C. We have to showthat event B happens after event A, but before event C 
an o

ur.Assume that all verti
es have di�erent distan
es from s.6 Under this assump-tion dist(s; u) < dist(s; v) be
ause u is �nished before v. Moreover, dist(s; v) �dist(s; u) +!(fu; vg). The latter implies that event B happens after event A be-
ause event A happens when vertex v is retrieved from Q with priority dist(s; v),and event B happens when the 
opy of u inserted into Q0 with priority dist(s; u)+!(fu; vg) is retrieved from Q0. The former implies that dist(s; u) + !(fu; vg) <dist(s; v) + !(fu; vg), so that event B happens before event C. This proves thelemma. utLemma 7.2 shows that the modi�ed version of Dijkstra's algorithm des
ribedabove is 
orre
t. It remains to analyze its I/O-
omplexity. The algorithm spendsO(jV j+s
an(jEj)) I/Os to a

ess all adja
en
y lists be
ause every adja
en
y listis tou
hed on
e, namely when the 
orresponding vertex is �nished. The numberof priority queue operations performed by the algorithm is O(jEj): Every edgeof G 
auses two insertions into priority queue Q0 and two updates of priorityqueue Q, one ea
h per endpoint. All other priority queue operations 
an bepartitioned into sequen
es of 
onstant length so that ea
h sequen
e de
reases thetotal number of elements stored in Q and Q0 by at least one. Hen
e, only O(jEj)su
h sequen
es are exe
uted. Using a tournament tree as priority queue Q and abu�er tree [2℄ as priority queue Q0, the total 
ost of all priority queue operationsis hen
e O � jEjB log2 jEjB �, and we obtain the following result.Theorem 7.3. The single sour
e shortest path problem on an undire
ted graphG = (V;E) 
an be solved in O �jV j+ jEjB log2 jEjB � I/Os.Remark. In the proof of Lemma 7.2 we assume that no two verti
es have thesame distan
e from s. It is not hard to see that the proof remains 
orre
t if no6 If this is not the 
ase, the algorithm needs to be modi�ed. See the remark at the endof this se
tion.



two verti
es with the same distan
e are adja
ent. In order to handle adja
entverti
es with the same distan
e, the algorithm has to be modi�ed. In parti
ular,all verti
es with the same distan
e have to be pro
essed simultaneously, similarto the simultaneous 
onstru
tion of levels in the BFS-algorithm from Se
tion 6.2.The reason for this is that there seems to be no way to guarantee that for twoadja
ent verti
es v and w at the same distan
e from s, non-spurious updates anddeletions of spurious updates are pro
essed in the 
orre
t order. By pro
essingall verti
es at the same distan
e from s at the same time, it 
an be guaranteedthat these verti
es do not update ea
h other's distan
es at all. The problem withadja
ent verti
es that have the same distan
e from s has been noti
ed in [22℄;but the proposed solution is in
orre
t.8 Shortest Paths in Planar GraphsGiven that all algorithms for graph sear
hing problems su
h as BFS, DFS andSSSP spend 
onsiderably more I/Os than the lower bound if the graph is sparse,a number of resear
hers [4, 5, 21, 24{26, 32℄ have tried to exploit the stru
ture ofspe
ial 
lasses of sparse graphs in order to solve these problems I/O-eÆ
ientlyon graphs in these 
lasses. In the remainder of this 
ourse we fo
us on planargraphs and dis
uss how to solve the above three problems in O(sort(N)) I/Os.(From now on we use N to denote the size of the vertex set of the given graphG.)For the sake of simpli
ity we assume that an embedding of the graph is providedas part of the input. This is not a serious restri
tion be
ause su
h an embedding
an be obtained in O(sort(N)) I/Os [26, 32℄.First we fo
us on shortest paths and BFS. More pre
isely, we dis
uss a short-est path algorithm by Arge et al. [4℄, whi
h of 
ourse 
an also be used to 
omputea BFS-tree of a planar graph. We assume that the given graph G has degreethree7 and that a regular B2-partition of G is given. Su
h a partition is de�nedas follows: Given a planar graph G = (V;E), a regular h-partition of G is apair P = (S; fG1; : : : ; Gkg), where S is a subset of the verti
es of G and graphsG1; : : : ; Gk are disjoint subgraphs of G� S with the following properties:(i) G1 [ � � � [Gk = G� S.(ii) For every edge in G � S, the two endpoints are in the same graph Gi.(That is, ea
h graph Gi is the union of a number of 
onne
ted 
omponentsof G� S.)(iii) jSj = O�N=ph�.(iv) k = O(N=h).(v) Every graph Gi has at most h verti
es.(vi) Every graph Gi is adja
ent to at most ph verti
es in S. This subset of Sis 
alled the boundary �Gi of Gi.(vii) Let S1; : : : ; St be a partition of S into subsets so that the verti
es in ea
hsubset are adja
ent to the same set of subgraphs Gi. Then t = O(N=h).Sets S1; : : : ; St are 
alled the boundary sets of partition P . (See Figure 8.1.)7 The degree of a graph is the maximum degree of its verti
es.



(a) (b)Figure 8.1(a) A partition of a planar graph into the shaded subgraphs using the bla
k separatorverti
es. (b) The boundary sets of this partition.The vertex set S is also referred to as the separator that indu
es partition P . Wedis
uss in Se
tion 9 how to obtain a partition satisfying Properties (i), (ii), (iii)and (v). The other properties 
an be ensured using fairly simple modi�
ationsof the algorithm dis
ussed in Se
tion 9. For details the reader may refer to [32℄.One additional assumption we make is that the amount of available mainmemory is large enough to hold a planar graph with B2 +B + 1 verti
es.Outline. The algorithm of [4℄ solves the SSSP problem in three steps (seeAlgorithm 8.1). The �rst step repla
es ea
h subgraph ~Gi of G indu
ed by theverti
es in V (Gi) [ �Gi with a 
omplete graph G0i over the verti
es in �Gi (seeFigure 8.2). Graph G0i has the property that for any two verti
es v; w 2 �Gi,their distan
es from ea
h other in ~Gi and G0i are the same. As we show below,this implies the property stated as a 
omment of Step 2 of the algorithm, namelythat the distan
es from s to all separator verti
es are preserved in the resultinggraph GR.8 Hen
e, their distan
es from s in G 
an be 
omputed by solving thesingle sour
e shortest path problem on GR, as done in the se
ond step of thealgorithm. Finally, in the third step, the algorithm exploits the fa
t that for anyvertex v in Gi, the shortest path from s to v in G 
onsists of a shortest pathfrom s to a vertex x in �Gi followed by a shortest path from x to v in ~Gi.Corre
tness. The following two lemmas formally prove the two stru
tural prop-erties used by the algorithm and establish its 
orre
tness.Lemma 8.1. For any vertex v 2 S, distG(s; v) = distGR(s; v).8 For this to be true, s has to be in GR, whi
h is true only if s 2 S. The latter 
aneasily be enfor
ed.



Pro
edure PlanarSSSP1: Constru
t a 
ompressed graph GR that 
aptures the distan
e between separatorverti
es:GR  (S; ;)for every graph Gi in partition P doLet ~Gi be the subgraph of G indu
ed by all verti
es in V (Gi) [ �Gi.Compute the distan
e in ~Gi from every vertex in �Gi to every other vertexin �Gi.Add an edge fv; wg to GR for every pair v; w of verti
es in �Gi. The weightof edge fv; wg is the distan
e from v to w in ~Gi.end for2: Compute the distan
es from s to all separator verti
es in GR.fEvery separator vertex v has the same distan
e from s in G and GR.g3: Compute the distan
es from s to all verti
es in G:for every graph Gi in partition P doLet ~Gi be the subgraph of G indu
ed by all verti
es in V (Gi) [ �Gi.Add vertex s to ~Gi and 
onne
t s to every vertex in �Gi. The weight of edgefs; vg, v 2 �Gi, is the distan
e from s to v 
omputed in Step 2. Let theresulting graph be G00i .Compute the distan
e from s to all verti
es in G00i .end forAlgorithm 8.1A shortest path algorithm for planar graphs.Proof. Consider any path P = (s = x0; x1; : : : ; xk = v) from s to v in G, andlet 0 = i1 < i2 < � � � < iq = k be the indi
es so that verti
es xi1 ; : : : ; xiqare separator verti
es on this path. Then every subpath (xij ; : : : ; xij+1 ) stays
ompletely inside some graph ~Gi. Sin
e the weight of edge fxij ; xij+1g in GRequals the length of the shortest path from xij to xij+1 in ~Gi, repla
ing path(xij ; : : : ; xij+1 ) in P with edge fxij ; xij+1g results in a path P 0 whose length is atmost that of P . By doing this for all subpaths of P 
onne
ting two 
onse
utiveseparator verti
es, we obtain a path PR in GR whose length is at most thatof P . Conversely, given a path PR from s to v in GR, every edge fv; wg in PRrepresents a path from v to w in G. Hen
e, repla
ing ea
h edge in PR by the
orresponding path in G, we obtain a path P in G whose length is the same asthat of PR. utLemma 8.2. For any graph Gi, 1 � i � k, in partition P and any vertexv 2 Gi, distG(s; v) = distG0i(s; v).Proof. Consider any path P from s to some vertex v in Gi, and let x be the lastseparator vertex on this path. Assume that s 6= x. (If s = x, the proof be
omessimpler.) Let P1 be the subpath of P from s to x, and let P2 be the subpath of Pfrom x to v. By Lemma 8.1, there exists a path from s to x in GR whose length isat most that of P1, so that edge fs; xg 2 G0i has length at most that of path P1.



(a) (b)Figure 8.2(a) The 
entral graph Gi in the partition of Figure 8.1a and its boundary verti
es.(b) The 
orresponding graph G0i.Path P2 exists also in G0i. Hen
e, by 
on
atenating edge fs; xg with path P2, weobtain a path of length at most that of P from s to v in G0i. Conversely, given apath P 0 from s to v in G0i, the �rst edge fs; xg on the path 
an be repla
ed bya path of the same length in GR, whi
h in turn 
an be repla
ed by a path P1 ofthe same length in G, by Lemma 8.1. Hen
e, the 
on
atenation of P1 with thesubpath P 02 of P 0 from x to v produ
es a path from s to v in G whose length isthe same as that of P 0. utComplexity. Given that the main memory is large enough to hold a planargraph with B2+B+1 verti
es, Steps 1 and 3 take O(sort(N)) I/Os be
ause therequired shortest path 
omputations 
an be 
arried out in main memory.To exe
ute Step 1 of the algorithm, the �rst thing that needs to be done is
ompute graphs ~G1; : : : ; ~Gk, i.e., store their vertex and edge sets 
onse
utivelyon disk. The vertex set of graph ~Gi is the set of endpoints of all edges that haveat least one endpoint in Gi. The edge set of ~Gi 
ontains all those edges of G thathave both endpoints in V ( ~Gi). Assuming that partition P is represented by anappropriate labelling of the verti
es of G, it suÆ
es to sort and s
an the vertexand edge sets of G a 
onstant number of times to extra
t graphs ~G1; : : : ; ~Gk. Wehave seen this type of 
omputation in previous se
tions and omit the details.On
e graphs ~G1; : : : ; ~Gk have been identi�ed, they 
an now be loaded intomain memory, one at a time, the shortest path 
omputation of Step 1 
an be
arried out in main memory be
ause ea
h graph ~Gi has at most B2+B verti
es,and the edges of GR 
an be written to disk in a linear number of I/Os. Hen
e,Step 1 takes O(sort(N)) I/Os.To exe
ute Step 3, the distan
es of all verti
es in S from the sour
e s haveto be 
opied from their 
opies in GR to their 
opies in graphs ~G1; : : : ; ~Gk. This
an again be done in O(sort(N)) I/Os. After that, ea
h graph ~Gi, 1 � i � k, isloaded into main memory for a se
ond time, and the shortest path 
omputationof Step 3 
an be performed without in
urring any further I/Os.



In the remainder of this se
tion we dis
uss a method to solve the SSSPproblem on graph GR in O(sort(N)) I/Os, so that the whole algorithm takesO(sort(N)) I/Os.Shortest paths in GR. One 
an 
ome 
lose to solving the SSSP problem ongraph GR in O(sort(N)) I/Os by observing that this graph has O(N=B) verti
esand O(N) edges. Indeed, its vertex set is S, and every edge in GR belongs tosome graph G0i. There are O�N=B2� su
h graphs G01; : : : ; G0k, and ea
h of themhas at most B2 edges. From this observation it follows that the SSSP problemon GR 
an be solved in O�NB log2 NB � I/Os using the shortest path algorithmfrom Se
tion 7.The main obsta
le preventing the improvement of this bound to O(sort(N))is that Dijkstra's algorithm requires a priority queue that supports a De
rease-Key operation; but no priority queue is known that supports this operation andpro
esses a sequen
e of N updates in O(sort(N)) I/Os. On the other hand, thereare priority queues that support Insert, Delete, and DeleteMin operationsand pro
ess a sequen
e of N updates in O(sort(N)) I/Os [2, 10℄. The Deleteoperation of these priority queues takes the element to be deleted and its 
urrentpriority as an argument. That is, the priority of an element has to be known inorder to delete it.Arge et al. present a modi�ed version of Dijkstra's algorithm that avoids theuse of De
reaseKey operations by exploiting the fa
t that graph GR is derivedfrom a regular B2-partition of a planar graph of bounded degree. The algorithmmaintains a list L storing the tentative distan
e of every vertex from s as wellas a priority queue Q that stores the un�nished verti
es of G. For every vertexin Q, its priority is the same as its tentative distan
e in L. Initially, all verti
esin GR, ex
ept s, have tentative distan
e (and priority) 1.In ea
h step, the next vertex v to be �nished is retrieved from Q using aDeleteMin operation. Then the adja
en
y list of v is loaded into main memory,and for ea
h vertex in the adja
en
y list, its tentative distan
e is retrieved from L.For every neighbor w of v so that the sum d0 of dist(s; v) and the weight ofedge fv; wg is less than the 
urrent distan
e d from s to w, its distan
e in L is
hanged to d0. Its priority in Q is de
reased to d0 by �rst deleting the 
urrent
opy of w with priority d from Q and then inserting a new 
opy with priority d0into Q. That is, the required De
reaseKey operation is simulated using aDelete and an Insert operation, whi
h is possible be
ause w's old priority d isknown when performing the update. The algorithm repeats this pro
edure untilall verti
es of G are �nished.The I/O-
omplexity of this pro
edure 
an be split into the 
osts of retriev-ing the adja
en
y lists of all verti
es, performing priority queue operations anda

esses to list L. Retrieving the adja
en
y lists takes O(s
an(N)) I/Os be
ausethere are only O(N=B) verti
es in G and the total size of all adja
en
y listsis O(N). The algorithm performs O(N) priority queue operations, two per edge,whi
h takes O(sort(N)) I/Os using a bu�er tree [2℄ as priority queue. Finally,observe that list L is a

essed O(N) times, O(1) times per edge. If the entries



in L are not arranged 
arefully, the algorithm may spend one I/O per a

ess, sothat the pro
edure takes O(N + sort(N)) I/Os. By arranging the verti
es in Lin a 
arefully 
hosen order, the number of I/Os spent on a

essing list L 
anbe redu
ed to O(N=B), whi
h redu
es the I/O-
omplexity of the algorithm toO(sort(N)).The order 
hosen for the verti
es in L is so that the verti
es in ea
h boundaryset of partition P are stored 
onse
utively. The verti
es in ea
h boundary set Sjare on the boundary of the same subgraphs of G in partition P and hen
e havethe same neighbors in GR. That is, if one vertex in Sj needs to be retrieved fromlist L be
ause one of its neighbors is �nished, all other verti
es in Sj also needto be retrieved from L. Instead of spending one I/O per a

ess, these verti
es
an now be loaded in a blo
kwise fashion. More pre
isely, every boundary set Sj
an be retrieved from L in O(1) I/Os be
ause it is a subset of the boundary ofsome subgraph Gi in the partition and hen
e has size at most B. Sin
e everyvertex in G has degree at most three, it is on the boundary of at most threeregions in G, so that every boundary set Sj is on the boundary of at most threeregions. This implies that every vertex v 2 Sj has degree O(B) in GR be
ausethe neighbors of v in GR are the boundary verti
es of these regions. We haveargued above that boundary set Sj is a

essed on
e for ea
h su
h neighbor andthat ea
h a

ess 
osts O(1) I/Os. Hen
e, the algorithm spends O(B) I/Os ona

esses to boundary set Sj . Sin
e there are O�N=B2� boundary sets, the totalnumber of I/Os spent on a

essing list L is hen
e O�B �N=B2� = O(N=B).Pro
edure PlanarSSSP makes the assumption that M = 
�B2�. As wewill see in the next se
tion, the best known algorithm to obtain a regular B2-partition of a planar graph requires that M = 
�B2 log2B�, so that we obtainthe following result.Theorem 8.3. Provided that M = 
(B2 log2B), the single sour
e shortestpath problem on planar graphs with non-negative edge weights 
an be solved inO(sort(N)) I/Os.Remark. Similar to the BFS-algorithms in Se
tion 6, the SSSP-algorithm dis-
ussed above only 
omputes the distan
e of every vertex from s. We leave itas an exer
ise to verify that on
e these distan
es are given, an O(sort(N)) I/Opostpro
essing step is suÆ
ient to extra
t a shortest path tree of G.9 Planar Graph PartitionsPartitions of planar graphs using small separators are utilized in algorithmsfor problems su
h as solving sparse systems of linear equations, approximatingsolutions to NP-hard problems on planar graphs and, as we have seen, shortestpaths in planar graphs. The main diÆ
ulty with 
omputing a good partition ofa planar graph I/O-eÆ
iently is that all existing internal memory algorithms forthis problem use BFS to partition the graph into levels and then judi
iously usethis partition to 
ompute a small set of verti
es whose removal partitions thegraph into small subgraphs. Sin
e the shortest path algorithm from Se
tion 8



is the only known algorithm that 
omputes a BFS-tree of a planar graph inO(sort(N)) I/Os, and it requires a separator of the graph to be given as partof the input, this leads to 
ir
ular dependen
ies between BFS and the problemof 
omputing planar separators. In this se
tion we dis
uss a separator algorithmby Maheshwari and Zeh [26℄ that applies graph 
ontra
tion in a non-trivial wayto obtain the desired partition without using BFS.At the 
ore of the algorithm is a graph hierar
hy G = G0; G1; : : : ; Gr whoseproperties guarantee that 
omputing a partition of Gr using an internal memoryalgorithm does not 
ost too many I/Os and that a suÆ
iently good partition ofea
h graph Gi 
an be derived I/O-eÆ
iently from a partition of Gi+1. The maindiÆ
ulty of the algorithm is 
omputing this graph hierar
hy.In Se
tion 9.1 we dis
uss the properties of graphs G = G0; G1; : : : ; Gr andshow how to exploit them to obtain an optimal partition ofG inO(sort(N)) I/Os.In Se
tion 9.2 we dis
uss how this graph hierar
hy 
an be 
omputed in the samenumber of I/Os.9.1 Computing the PartitionLet G be an embedded planar graph, let h > 0 be an integer so that the algorithmis asked to 
ompute a set S of verti
es whose removal partitions G into subgraphsof size at most h, and let G = G0; G1; : : : ; Gr be a hierar
hy of graphs with thefollowing properties:(i) r = logB,(ii) Graphs G0; : : : ; Gr are planar,(iii) For 1 � i � r, every vertex in Gi represents at most 56 verti
es in Gi�1,(iv) For 0 � i � r, every vertex in Gi represents at most 2i verti
es in G, and(v) For 0 � i � r, graph Gi has O�N=2i� verti
es.Also assume that M � 56h log2B. Then the desired partition of G 
an beobtained by 
omputing a separator Sr of Gr and then deriving a separator Sifor ea
h graph Gi, 0 � i < r, from separator Si+1. Ea
h separator Si has theproperty that it partitions graph Gi into subgraphs of size at most h log2B. Forgraph Gr, separator Sr = S00r is 
omputed using the linear-time internal memoryalgorithm of Aleksandrov and Djidjev [1℄. Given separator Si+1, the separator SiforGi is 
omputed as follows: Let S0i be the set of verti
es inGi represented by theverti
es in Si+1. Property (iii) of the graph hierar
hy implies that no 
onne
ted
omponent of Gi � S0i has size ex
eeding 56h log2B. Sin
e we assume that themain memory is large enough to hold a planar graph of this size, a partitionof Gi into subgraphs of size at most h log2B 
an be obtained by loading ea
h
onne
ted 
omponent of Gi � S0i into main memory and applying the algorithmof [1℄ again. Let S00i be the set of separator verti
es introdu
ed by partitioningthe 
onne
ted 
omponents of Gi � S0i in this manner. Then separator Si is theunion of sets S0i and S00i .The separator S0 obtained in this manner partitions graph G into sub-graphs of size at most h log2B. The algorithm of [1℄ used to 
ompute separators



S000 ; : : : ; S00r guarantees that jS00i j = O�jGij=�ph logB��. Hen
e, by Property (iv)of the graph hierar
hy, the size of separator S0 isjS0j � rXi=0 2ijS00i j= rXi=0 2iO �jGij=�ph logB��= rXi=0 2iO �N=�2iph logB��= O �N=ph� :In order to obtain the �nal separator S, the 
onne
ted 
omponents of G � S0are loaded into main memory and partitioned into subgraphs of size at most h,again using the algorithm of [1℄. This introdu
es at most O�N=ph� additionalseparator verti
es, so that S is a separator of size O�N=ph� that partitions Ginto subgraphs of size at most h.Now let us analyze the I/O-
omplexity of this pro
edure. Computing the ini-tial separator Sr of Gr takes O(jGr j) = O(N=B) I/Os, by Properties (i) and (v)of the graph hierar
hy. To 
ompute separator Si from separator Si+1, the al-gorithm has to identify the verti
es in S0i, 
ompute the 
onne
ted 
omponentsof Gi � S0i, and load ea
h of them into main memory, where it is partitionedinto subgraphs of size at most h log2B. The 
onstru
tion of the graph hier-ar
hy 
an easily ensure that every vertex v 2 Gi is labelled with the vertexin Gi+1 that represents v. Under this assumption vertex set S0i 
an be identi-�ed in O(sort(jGij)) I/Os by sorting and s
anning the vertex set of Gi and theseparator Si+1 a 
onstant number of times. Computing the 
onne
ted 
ompo-nents of Gi�S0i takes O(sort(jGij)) I/Os, by Theorem 5.11. On
e the 
onne
ted
omponents of Gi � S0i have been 
omputed, loading ea
h of them into mainmemory to 
ompute separator S00i takes O(s
an(jGij)) I/Os. The 
omputationof separator S from separator S0 is 
arried out in the same manner as the 
om-putation of separator Si from separator S0i. Hen
e, this takes O(sort(N)) I/Os,and the total I/O-
omplexity of 
omputing separator S from the graph hierar-
hy is O�N=B+Pr�1i=0 sort(jGij)+sort(N)� = O�Pr�1i=0 sort(N=2i)+sort(N)� =O(sort(N)). This proves the following lemma.Lemma 9.1. Given a graph hierar
hy G = G0; G1; : : : ; Gr with Properties (i){(v) above, a separator S of size O�N=ph� that partitions G into subgraphs of sizeat most h 
an be 
omputed in O(sort(N)) I/Os, provided that M � 56h log2B.9.2 Computing the Graph Hierar
hyWhat remains to be shown is how to 
ompute the graph hierar
hy. Sin
e graph Gis planar, and edge 
ontra
tions preserve planarity, Property (ii) is guaranteed if



graphs G1; : : : ; Gr are 
onstru
ted using edge 
ontra
tions. The diÆ
ult part isensuring Properties (iii){(v) simultaneously. We �rst outline the basi
 approa
htaken and then argue how to perform this 
omputation in an I/O-eÆ
ient man-ner.Sin
e graph G0 = G satis�es Properties (ii){(v), we 
an assume that graphsG0; : : : ; Gi�1 are given and graph Gi has to be 
onstru
ted from graph Gi�1through a series of edge 
ontra
tions. In order to do that, let !(v) and �(v) betwo labels, for every vertex v in graphs G0; : : : ; Gr. Label !(v) is the number ofverti
es in G represented by v and is 
alled the weight of vertex v. Note thatevery vertex in G0 has weight one. If v 2 Gi, i > 0, then �(v) is the number ofverti
es in Gi�1 represented by v; �(v) is 
alled the size of v. In order to satisfyProperties (iii) and (iv), the algorithm ensures the following invariant:(I) For every vertex in Gi, !(v) � 2i and �(v) � 56.The 
onstru
tion starts with a graph G0i = Gi�1. Every vertex in G0i has thesame weight as in Gi�1. The size of every vertex in G0i is one. A vertex v 2 G0iis said to be heavy if either !(v) > 2i�1 or �(v) > 28. Otherwise v is light.An edge (v; w) 2 G0i is 
ontra
tible if both its endpoints are light. It is obviousthat a 
ontra
tible edge 
an be 
ontra
ted while maintaining Invariant (I). Thealgorithm now 
ontra
ts 
ontra
tible edges until no su
h edge remains.Let G00i be the graph obtained when no more 
ontra
tions are possible. By thede�nition of a 
ontra
tible edge, no two light verti
es in G00i are adja
ent. Nowthe light verti
es of degree at most two are partitioned into maximal subsets sothat the verti
es in ea
h subset are adja
ent to the same set of heavy verti
es,have total weight at most 2i and total size at most 56. The light verti
es in ea
hsu
h set are repla
ed by a single vertex. Let Gi be the graph obtained from G00iin this manner.Lemma 9.2. Graph Gi as 
onstru
ted by the above pro
edure has Properties(ii){(v).Proof. (ii): By indu
tion, we 
an assume that G0i = Gi�1 is planar. Hen
e,G00i is planar, as it is obtained from G0i through a series of edge 
ontra
tions. Anembedding of Gi 
an be obtained from an embedding of G00i as follows: Let S bea set of light verti
es in G00i represented by a single vertex vS in Gi. Then 
hoosea vertex v 2 S and remove all verti
es in S n fvg from G00i . Rename v to vS .(iii) and (iv): Graph G0i has Property (iii) and, by indu
tion, Property (iv).Hen
e, graph Gi 
an violate either of these two properties only if the 
onstru
-tion merges a set of verti
es whose total weight ex
eeds 2i or whose total sizeex
eeds 56. Sin
e this is not done, graph Gi has Properties (iii) and (iv).(v): To prove that graph Gi has Property (v), we make use of the followingproposition, whose proof 
an be found in [32℄.Proposition 9.3. Let G = (V1; V2; E) be a bipartite planar graph. Let vertexset V2 be partitioned into non-empty equivalen
e 
lasses C1; : : : ; Cq, where twoverti
es in V2 are equivalent if they have degree at most two and are adja
ent tothe same set of verti
es in V1. Then q � 6jV1j.



Using this fa
t, we 
an prove that jGij � 28N=2i. In parti
ular, this 
laim istrue for G0 = G. So assume that the 
laim holds for all graphs G0; : : : ; Gi�1, and
onsider the subgraph H of Gi indu
ed by the edges in
ident to light verti
es.Graph H is bipartite, and no two light verti
es of degree at most two in H areadja
ent to the same set of heavy verti
es. Hen
e, by Proposition 9.3, the numberof light verti
es in Gi is bounded by 6hi, and the total number of verti
es in Giis at most 7hi, where hi is the number of heavy verti
es in Gi. Thus, in orderto prove that jGij � 28N=2i, it suÆ
es to show that hi � 4N=2i. To do this, wepartition the heavy verti
es in Gi into two 
lasses: A vertex v of Gi is of type Iif !(v) > 2i�1. It is of type II if !(v) � 2i�1, but �(v) > 28. There are at mostN=2i�1 type-I verti
es and at most jGi�1j=28 type-II verti
es. Hen
e,hi � N2i�1 + jGi�1j28� N2i�1 + N2i�1= 4N2i : utBy Lemma 9.2, the above strategy for 
onstru
ting graphGi from graphGi�1guarantees that Gi has Properties (ii){(v). Constru
ting G0i from Gi�1 is amatter of 
hanging the size �(v) of every vertex to one. Hen
e, this takesO(s
an(jGi�1j)) I/Os. To obtain graph Gi from graph G00i , it suÆ
es to sortthe light verti
es of degree at most two by their neighbors and then parti-tion ea
h equivalen
e 
lass of light verti
es into maximal groups of 
onse
u-tive verti
es of total weight at at most 2i and total size at most 56. This takesO(sort(jG00i j)) = O(sort(jGi�1j)) I/Os. So let us 
on
entrate on the 
onstru
tionof G00i from G0i.This 
onstru
tion has to be done with some 
are be
ause the 
ontra
tion ofan edge fv; wg may render another edge fv; w0g non-
ontra
tible; but 
ontra
t-ing the edges in G0i one at a time, in order to 
he
k whether ea
h edge to be
ontra
ted is 
ontra
tible, does not seem to lead to an I/O-eÆ
ient algorithm.The solution to this problem is a strategy that iteratively 
ontra
ts sets of edgesthat are guaranteed not to interfere with ea
h other's 
ontra
tibility. The 
on-tra
tions in ea
h iteration are suÆ
ient to guarantee that the minimum size ofthe verti
es in the graph in
reases by a fa
tor of two from one iteration to thenext, so that only dlog2 28e iterations are required before no 
ontra
tible edgesremain. The pseudo-
ode of this pro
edure is shown in Algorithm 9.1.In this pro
edure the 
ontra
tible subgraph of a graph G is the subgraphof G indu
ed by the 
ontra
tible edges in G. In ea
h iteration, the algorithm 
anrestri
t its attention to graph Hj be
ause the edges of G0i that are not in Hj arenot 
ontra
tible. The 
ontra
tions in ea
h iteration are divided into two phases.The �rst phase (Lines 4{5) 
ontra
ts the edges in a maximal mat
hing Mof Hj . The 
ontra
tion of any subset of the edges in M 
annot a�e
t the 
on-tra
tibility of the remaining edges in M be
ause no two edges in M share an



Pro
edure Compress1: H0  
ontra
tible subgraph of G0i2: j  03: while Hj 6= ; do4: Compute a maximal mat
hingM of Hj .5: Contra
t the edges inM.6: for every unmat
hed vertex v in Hj do7: if v has a light mat
hed neighbor w then8: Contra
t v into w.9: end if10: end for11: Hj+1  
ontra
tible subgraph of Hj12: j  j + 113: end whileAlgorithm 9.1Computing graph G00i from graph G0i.endpoint. Hen
e, this simultaneous 
ontra
tion of the edges in M does not 
on-tra
t an edge that would have be
ome non-
ontra
tible when performing edge
ontra
tions one at a time.After this �rst phase, the verti
es ofHj 
an be partitioned into two 
ategories:A mat
hed vertex represents the two endpoints of an edge in M. All otherverti
es are unmat
hed. The goal of the se
ond phase (Lines 6{10) is to ensurethat the vertex set of graph Hj+1 
ontains only mat
hed verti
es of Hj , i.e., thatno remaining unmat
hed vertex in Hj has an in
ident edge that is 
ontra
tible.It is easy to show that this implies that every vertex in Hj has size at least 2j , sothat the pro
edure terminates after at most dlog2 28e iterations of the while-loop,and the size of graph Hj is at most jG0ij=2j .To eliminate all unmat
hed verti
es from Hj in an I/O-eÆ
ient manner,observe that the maximality of mat
hingM implies that all neighbors of an un-mat
hed vertex are mat
hed. Hen
e, the algorithm has to solve a bipartite 
on-tra
tion problem where the set of mat
hed verti
es is �xed an every unmat
hedvertex should be 
ontra
ted into one of its mat
hed neighbors if possible. this
an be done as follows: Denote the set of mat
hed and unmat
hed verti
es of Hjby Vm and Vu, respe
tively, and assume that every vertex in Hj has a uniquenumeri
al ID. Then 
onstru
t a DAG D with vertex set Vm. For every vertexv 2 Vu, graph D 
ontains a path Pv = (w1; : : : ; wk), where w1; : : : ; wk are theneighbors of v in Hj , sorted by in
reasing numbers. Now use time-forward pro-
essing to pass every vertex v 2 Vu along its path Pv in D. Every vertex w 2 Vminspe
ts the unmat
hed verti
es v1; : : : ; vl it re
eives from its in-neighbors. Let0 � h � l be the minimum index so that !(w) +Pha=1 !(va) > 2i�1 and�(w) + Pha=1 �(va) > 28. If no su
h index exists, let h = l. Then verti
esv1; : : : ; vh are marked for 
ontra
tion into vertex w. After these 
ontra
tionsvertex w is heavy, so that edges fvh+1; wg; : : : ; fvl; wg are not 
ontra
tible.Hen
e, verti
es vh+1; : : : ; vl are forwarded to the out-neighbors of w on paths



Pvh+1 ; : : : ; Pvl , to test whether they 
an be 
ontra
ted into those verti
es. On
egraph D has been pro
essed, the verti
es in Vu that have been marked for 
on-tra
tion into a vertex in Vm 
an be 
ontra
ted into these mat
hed verti
es usingthe standard graph 
ontra
tion pro
edure.This pro
edure a
hieves the desired result be
ause every vertex v 2 Vu thatis not 
ontra
ted into one of its neighbors is passed along the whole path Pvin D, and every edge fv; wg, w 2 Pv is tested for its 
ontra
tibility. Hen
e, ifone of these edges were 
ontra
tible, it would have been 
ontra
ted.One iteration of the pro
edure Compress takes O(sort(jHj j)) I/Os: A max-imal mat
hing of Hj 
an be 
omputed in this number of I/Os [25, 32℄ (see theremark at the end of Se
tion 4.2). The 
ontra
tion of the edges in M 
an be
arried out in O(sort(jHj j)) I/Os in the standard fashion. The 
onstru
tion ofDAG D from Hj requires sorting and s
anning the vertex and edge sets of Hja 
onstant number of times. DAG D has size O(jHj j), so that the appli
a-tion of time-forward pro
essing to D takes O(sort(jHj j)) I/Os (see Se
tion 4.1).Contra
ting the marked unmat
hed verti
es into their mat
hed neighbors takesanother O(sort(jHj j)) I/Os using the standard 
ontra
tion pro
edure.We have shown that one iteration of Algorithm 9.1 takes O(sort(jHj j)) I/Os.We have also argued that jHj j � jG0ij=2j . This implies that the total I/O-
omplexity of pro
edure Compress is O(sort(jG0ij)) = O(sort(jGi�1j)). Sin
ethe 
onstru
tion of graph Gi from graph G00i also takes O(sort(jGi�1j)) I/Os, thewhole 
onstru
tion of graph Gi from graph Gi�1 takes O(sort(jGi�1j)) I/Os. ByProperty (v) of the graph hierar
hy, this shows the following lemma.Lemma 9.4. A graph hierar
hy G = G0; G1; : : : ; Gr with Properties (i){(v) 
anbe 
omputed in O(sort(N)) I/Os.The following theorem now follows immediately from Lemmas 9.1 and 9.4.Theorem 9.5. Given a planar graph G = (V;E) and an integer h > 0, aseparator S partitioning G into subgraphs of size at most h 
an be 
omputedin O(sort(N)) I/Os, provided that M � 56h log2B. The size of S is O�N=ph�.10 Planar Undire
ted DFSAs the last result dis
ussed in detail in this 
ourse, we now return to DFS inundire
ted graphs. This time, however, we restri
t our attention to undire
tedplanar graphs. As before we assume that the graph is given together with anembedding, and we do not distinguish between a graph and its embedding.The algorithmwe dis
uss is due to Arge et al. [5℄. Similar ideas have been usedin a PRAM-algorithm for DFS in planar graphs by Hagerup [16℄. The algorithm
ombines two ideas: The �rst one is that DFS in any graph 
an be redu
ed to
omputing appropriate DFS-trees of its bi
onne
ted 
omponents and \gluing"them together. The main idea for 
onstru
ting a DFS-tree of a bi
onne
tedplanar graph G is to partition G into layers of extremely simple stru
ture, usingBFS in a graph that is 
losely related to the dual of G. In parti
ular, these layers
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(a) (b)Figure 10.1(a) A partition of the fa
es of G into levels. (b) The layers de�ned by this partition.are trees of 
y
les. A DFS-tree of a tree of 
y
les 
an be obtained by 
omputingthe bi
onne
ted 
omponents of the graph (i.e., the 
y
les) and removing anappropriate edge from ea
h 
omponent. Moreover, the relationship between theselayers and the stru
ture of G is su
h that a DFS-tree of G 
an be obtained by\gluing" together appropriate DFS-trees of the layers.10.1 Partitioning the Graph into LayersFormally, the layers of G are de�ned as follows (see Figure 10.1): Let r be thesour
e of the DFS, i.e., the root of the DFS-tree to be 
omputed. Let s be a fa
eof G that has r on its boundary. Then the fa
es of G are partitioned into levelsas follows: Fa
e s is the only level-0 fa
e. A fa
e is at level i > 0 if it shares avertex with a fa
e at level i � 1, but not with a fa
e at level less than i � 1.Given the levels of the fa
es of G, the level of a vertex or edge x is de�ned asthe minimum level of the fa
es that have x on their boundaries. Let Vi be theset of verti
es at level i. Then Vi is the vertex set of layer Li. An edge e is anedge of layer Li if it is at level i and both its endpoints are at level i. Denote theset of these edges by Ei. That is, Li = (Vi; Ei). Finally, an edge at level i thathas at least one endpoint at level i� 1 is 
alled an atta
hment edge of layer Li.In parti
ular, su
h an edge 
onne
ts a vertex in Li with a vertex in Li�1 or twoverti
es in Li�1. Let Ai be the set of atta
hment edges of layer Li.Before showing that layers L0; : : : ; Lk have a very simple stru
ture, we ar-gue that these layers and their sets of atta
hment edges 
an be 
omputed inO(sort(N)) I/Os using pro
edure LayerPartition outlined in Algorithm 10.1.We do not dis
uss every single detail of the algorithm, but present the mainideas.The fa
e-on-vertex graph GF 
omputed in Line 1 of the algorithm is de�nedas follows (see Figure 10.2): Graph GF 
ontains all verti
es of G as well as onevertex f� for every fa
e f of G. There is an edge (v; f�) in GF if and only ifvertex v is on the boundary of fa
e f . We leave it as an exer
ise to verify thatwith this de�nition of GF , the levels of the verti
es and edges in G are 
omputed
orre
tly in Lines 4 and 5, and that sorting the vertex and edge sets of G as in



Pro
edure LayerPartition1: Compute the fa
e-on-vertex graph GF of G.2: Choose a vertex s� in GF adja
ent to vertex r.3: Perform BFS in GF from s�.4: Let the level of every vertex v 2 G be (d(s�; v)� 1)=2.5: Let the level of every edge e 2 G be the minimum of d(s�; f�1 )=2 and d(s�; f�2 )=2,where f1 and f2 are the two fa
es that have e on their boundaries.6: Sort the verti
es in V by their levels to partition them into vertex sets V0; : : : ; Vk.7: Sort the edges in E by their levels as primary key and by the minimum of thelevels of their endpoints as se
ondary key. This produ
es a partition of E into setsE0; A1; E1; : : : ; Ak; Ek.Algorithm 10.1An algorithm to partition G into layers.Lines 6 and 7 does indeed produ
e the desired partition of these sets into thevertex and edge sets of layers L0; : : : ; Lk and the sets A1; : : : ; Ak of atta
hmentedges.Assuming that every edge e of G \knows" the two fa
es f1 and f2 thathave e on their boundaries, the 
omputation of the levels of all verti
es andedges of G requires a 
onstant number of sort and s
an operations and hen
etakes O(sort(N)) I/Os. Lines 6 and 7 sort sets V and E and hen
e also takeO(sort(N)) I/Os. Thus, the main diÆ
ulty of the algorithm is the 
omputationof graph GF and performing BFS in GF . The 
onstru
tion of graph GF alsoprovides every vertex and edge in G with the names of its two adjoining fa
es,thereby providing the 
omputation in Line 5 with the required input.In order to perform BFS in GF , observe that GF is obviously planar and hasO(N) verti
es. Hen
e, the shortest path algorithm from Se
tion 8 
an be used to
ompute a BFS-tree ofGF in O(sort(N)) I/Os. What remains to be shown is howgraph GF 
an be 
onstru
ted: First 
ompute a set of 
y
les Cf , one per fa
e fof G, so that 
y
le Cf 
ontains one vertex per edge on the boundary of fa
e fand the verti
es appear in the same order along Cf as their 
orresponding edges
lo
kwise around f . The 
olle
tion of these 
y
les 
an be obtained from G usingan adaptation of the Euler tour te
hnique (see Se
tion 3.1). In parti
ular, repla
eevery edge fv; wg 2 G with two dire
ted edges (v; w) and (w; v) and de�ne thesu

essor of every edge (u; v) as edge (v; w) so that edges fv; ug and fv; wg ap-pear 
onse
utively in 
ounter
lo
kwise order around v. The graph G0 de�ned asthe union of 
y
les Cf is obviously planar. Hen
e it is sparse, and its 
onne
ted
omponents 
an be 
omputed in O(sort(N)) I/Os, by Theorem 5.11. The 
on-ne
ted 
omponents of G0 are the 
y
les Cf , and every vertex in Cf representsan edge (v; w). Now sort and s
an the vertex set of G0 and add a vertex f� per
y
le Cf and an edge ff�; vg per vertex (v; w) in 
y
le Cf to GF . This takesanother O(sort(N)) I/Os.Sin
e all steps of Algorithm 10.1 
an be 
arried out in O(sort(N)) I/Os, weobtain the following lemma.



Figure 10.2The fa
e-on-vertex graph of graph G shown in Figure 10.1a.Lemma 10.1. A partition of an undire
ted planar graph G with N verti
es intolayers L0; : : : ; Lk and sets A1; : : : ; Ak of atta
hment edges 
an be 
omputed inO(sort(N)) I/Os, provided that M = 
(B2 log2B).Remark. The above 
onstru
tion does not 
onstru
t a planar embedding of GFfrom the planar embedding of G; but the shortest path algorithm of Se
tion 8requires a planar embedding of GF in order to perform BFS in GF . Given that
y
les Cf have been identi�ed, graph G0 
an be transformed into a 
olle
tionof linked lists, by removing one edge from ea
h 
y
le. Now list ranking 
an beapplied to determine the order of the edges 
lo
kwise around ea
h fa
e. Thisinformation suÆ
es to 
onstru
t a planar embedding of GF .10.2 DFS in a LayerGiven a partition of G into layers as 
omputed by pro
edure LayerPartition,we now fo
us on a single layer Li and show that it has a suÆ
iently simplestru
ture to perform DFS in Li I/O-eÆ
iently. In parti
ular, we say that abi
onne
ted 
omponent of Li is trivial if it 
onsists of a single edge. Otherwisethe bi
onne
ted 
omponent is non-trivial. Let Gi be the subgraph of G indu
edby the fa
es at levels 0 through i. We 
all a 
y
le in Gi a boundary 
y
le if thein
ident fa
es on one side of the 
y
le are at level i, while the in
ident fa
es onthe other side are at level i+ 1.Lemma 10.2. The non-trivial bi
onne
ted 
omponents of Li are the boundary
y
les of Gi.Proof. Consider a 
y
le C in Li. All fa
es in
ident to C are at level i or i + 1.The fa
es of G at level at most i� 1 form a 
onne
ted region. Hen
e, either allthese fa
es are inside C, or all of them are outside C. This implies that eitherall fa
es outside C or all fa
es inside C are at level at least i + 1 be
ause they
annot share a vertex with a level-(i�1) fa
e. This proves that every 
y
le in Liis a boundary 
y
le.Every non-trivial bi
onne
ted 
omponent of Li that is not a 
y
le 
ontainstwo verti
es v and w so that there are three internally vertex-disjoint paths P1,
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(a) (b) (
)Figure 10.3(a) A tree G of 
y
les. (b) The 
orresponding blo
k-
utpoint-tree. Blo
k nodes aresquares; 
utpoints are dis
s. (
) A DFS-tree of G. Dotted edges are non-tree edges.P2, and P3 from v to w in Li. These paths de�ne two 
y
les P1[P2 and P1[P3,whi
h are both boundary 
y
les. However, this is impossible be
ause either P3is 
ompletely inside or 
ompletely outside the region bounded by P1 [ P2. utNow let H1; : : : ; Hq be the 
onne
ted 
omponents of Li, and let r1; : : : ; rqbe verti
es so that ri 2 Hi. We des
ribe a pro
edure that uses Lemma 10.2 to
ompute DFS-trees T1; : : : ; Tq of H1; : : : ; Hq rooted at verti
es r1; : : : ; rq .In order to 
ompute one su
h DFS-tree Tj , 
ompute the blo
k-
utpoint-tree T 0j of Hj (see Figure 10.3). Tree T 0j 
ontains all 
utpoints of Hj and onevertex per bi
onne
ted 
omponent of Hj . If vertex rj is not a 
utpoint of Hj , itis added as a vertex to T 0j . There is an edge fv; �g in T 0j , where � represents abi
onne
ted 
omponent B of Hi, if vertex v is 
ontained in B. Choose vertex rias the root of T 0j . The parent 
utpoint of a bi
onne
ted 
omponent is de�nedas the parent of the 
orresponding node in T 0j . A DFS-tree Tj of Hj 
an nowbe obtained by removing one of the two edges in
ident to its parent 
utpointfrom every non-trivial bi
onne
ted 
omponent of Hj . Next we show that tree Tjis indeed a DFS-tree of Hj and that the 
onstru
tion of trees T1; : : : ; Tq 
an be
arried out I/O-eÆ
iently.Lemma 10.3. Given a layer Li with 
onne
ted 
omponents H1; : : : ; Hq and aset of verti
es r1; : : : ; rq so that rj 2 Hj , a set of DFS-trees T1; : : : ; Tq for graphsH1; : : : ; Hq rooted at verti
es r1; : : : ; rq 
an be 
omputed in O(sort(jLij)) I/Os.Proof. First we show that tree Tj as 
onstru
ted by the above pro
edure isa DFS-tree of Hj . To do this, we 
onsider a bi
onne
ted 
omponent B of Hj
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Figure 10.4A DFS-tree of G.
ontaining a non-tree edge fv; wg. One of the endpoints of this edge, say v, isthe parent 
utpoint of B. Hen
e, any path from rj to w in Hj must 
ontain v. Inparti
ular, this is true for the path from rj to w in Tj , so that v is an an
estorof w in Tj . Sin
e this is true for any non-tree edge fv; wg, Tj is a DFS-tree of Hj .Next we prove that the 
omputation of tree Tj for graph Hj 
an be 
arriedout in O(sort(jHj j)) I/Os, whi
h implies that the 
omputation of trees T1; : : : ; Tqtakes O�Pqj=1 sort(jHj j)� = O(sort(jLij)) I/Os. The bi
onne
ted 
omponents ofHj 
an be 
omputed in O(sort(jHj j)) I/Os, using the algorithm from Se
tion 5.3.We leave it as an exer
ise to verify that given the bi
onne
ted 
omponents of Hj ,the blo
k-
utpoint-tree T 0j 
an be 
omputed in O(sort(jHj j)) I/Os, by sortingand s
anning the vertex and edge sets of Hj a 
onstant number of times. Thenthe Euler tour te
hnique and list ranking 
an be applied to root T 0j at rj anddetermine the parent 
utpoint of every bi
onne
ted 
omponent. Given the parent
utpoint of every bi
onne
ted 
omponent, it suÆ
es to s
an the edge set of thatbi
onne
ted 
omponent to (a) de
ide whether it is non-trivial (i.e., has morethan one edge) and if so, (b) �nd one of the two edges in
ident to the parent
utpoint and remove it. utThe 
onstru
tion outlined above 
omputes a DFS-tree Tj for graphHj . In or-der to use this tree in the 
onstru
tion of the next se
tion, every vertex has to belabelled with its distan
e from rj in Tj . This 
an be done in O(sort(jHj j)) I/Os,using the Euler tour te
hnique and list ranking again (see Se
tion 3).10.3 DFS in a Bi
onne
ted Planar GraphHaving developed a tool for 
onstru
ting DFS-trees of the layers of G, we nowshow how to obtain a DFS-tree of a bi
onne
ted planar graph from appropriateDFS-trees of its layers. In parti
ular, the DFS-algorithm starts with a DFS-tree T0 of G0 = L0 and then iteratively augments the 
urrent DFS-tree Ti of Giwith DFS-trees of the 
onne
ted 
omponents of Li+1 to obtain a DFS-tree Ti+1of Gi+1. A DFS-tree for G obtained in this manner is shown in Figure 10.4. If we
an show that the augmentation 
an be 
arried out inO(sort(jLij+jLi+1j)), it fol-lows that the whole algorithm takes O(sort(N)) I/Os be
ause layers L0; : : : ; Lkare disjoint.



Tree T0 is easy to obtain using the Euler tour te
hnique and list rankingbe
ause graph G0 is a simple 
y
le.So assume that a DFS-tree Ti of Gi is given, whi
h is to be augmented toprodu
e a DFS-tree Ti+1 of Gi+1. Let �Gi be the subgraph of G indu
ed by allfa
es at level at least i + 1. Sin
e the fa
es at levels 0 through i form a 
on-ne
ted region, the boundary between Gi and �Gi is a 
olle
tion of edge-disjointsimple 
y
les and the removal of the fa
es of �Gi introdu
es a number of \holes"R1; : : : ; Rt whose boundaries are the boundary 
y
les of Gi. By Lemma 10.2,these boundary 
y
les are the bi
onne
ted 
omponents of Li. The following ob-servation now follows immediately from the way the DFS-trees for the 
onne
ted
omponents of Li are 
onstru
ted.Observation 10.1. Let Rj be a hole of Gi, and let v1; : : : ; vk be the verti
eson its boundary, sorted 
lo
kwise around Rj and so that v1 has minimum depthin Ti. Then v1 is an an
estor of verti
es v2; : : : ; vk, and either (v1; : : : ; vk) or(v1; vk; : : : ; v2) is a path in Ti.Intuitively, if w.l.o.g. (v1; : : : ; vk) is the path in Ti, the observation statesthat for any vertex vi, verti
es v1; : : : ; vi�1 are an
estors of vi in Ti. Hen
e, thefollowing strategy produ
es a DFS-tree for Gi+1: For every 
onne
ted 
ompo-nent Hj of Li, �nd the set A0j of atta
hment edges of Hj . Every edge in A0jhas one endpoint on the boundary of the hole R 
ontaining Hj and the otherendpoint in Hj . Find the atta
hment edge fuj ; vjg whose endpoint uj on theboundary of R has maximal depth. Then 
ompute a DFS-tree of Hj rooted at vjand link it to Ti using edge fuj ; vjg. Let Ti+1 be the tree obtained by atta
hingDFS-trees for all 
onne
ted 
omponents of Li+1 to Ti in this manner.Lemma 10.4. Tree Ti+1 is a DFS-tree of Gi+1.Proof. We have to show that for every non-tree edge fv; wg of Ti+1 w.l.o.g. vis an an
estor of w. We distinguish three 
ases: (1) v; w 2 Gi, (2) v 2 Gi andw 2 Li+1, and (3) v; w 2 Li+1. For Cases (1) and (3) the 
laim holds be
auseTi+1 is the union of a DFS-tree Ti for Gi and DFS-trees for the 
onne
ted
omponents of Li+1.In Case (2) let w 2 Hj . Then v is on the boundary of the hole 
ontaining Hj .In parti
ular, by the 
hoi
e of the atta
hment edge fuj ; vjg of Hj in
ludedin Ti+1, v is an an
estor of uj in Ti. Vertex w is a des
endant of vj in the DFS-tree 
onstru
ted for Hj . This implies that v is an an
estor of w in Ti+1. utNow observe that the above 
onstru
tion requires little more than a 
onstantnumber of sort and s
an operations. In parti
ular, the 
onne
ted 
omponentsof Li+1 
an be found in O(sort(jLi+1j)) I/Os, by Theorem 5.11. Given the 
on-ne
ted 
omponents H1; : : : ; Hj , it suÆ
es to sort the set Ai+1 of atta
hmentedges of Li+1 by their endpoints in Li+1, sort the verti
es in Li+1 by their num-bers, and s
an the two sorted lists to determine for every atta
hment edge the
onne
ted 
omponent Hj of Li+1 
ontaining one of its endpoints. After sort-ing the verti
es in Li by their IDs and the atta
hment edges in Ai+1 by their



endpoints in Li, a single s
an of these two sorted lists suÆ
es to label everyatta
hment edge of Li+1 with the depth of its endpoint in Ti. Now sort the at-ta
hment edges of Li+1 by the 
onne
ted 
omponents of Li+1 
ontaining one oftheir endpoints as the primary key and by the depths of their endpoints in Ti asthe se
ondary key. This produ
es sets A0j , ea
h with its edges sorted by in
reas-ing depths of their endpoints in Ti. A single s
an of these sorted lists suÆ
es toextra
t edge fuj ; vjg as the �rst edge in A0j , for every 
onne
ted 
omponent Hj .In order to 
onstru
t the DFS-trees for H1; : : : ; Hq , the 
onstru
tion of the pre-vious se
tion is used. Clearly this pro
edure takes O(sort(jLij + jLi+1j)) I/Os.Hen
e, we obtain the following result.Lemma 10.5. A DFS-tree of a bi
onne
ted planar graph G with N verti
es 
anbe 
omputed in O(sort(N)) I/Os, provided that M = 
(B2 log2B).10.4 DFS in Conne
ted Planar GraphsFinally, we are ready to put the bits and pie
es together to obtain a DFS-algorithm for 
onne
ted planar graphs. In fa
t, the algorithm just uses ideasalready presented above: If the graph is bi
onne
ted, apply Lemma 10.5 to ob-tain a DFS-tree of G. If G is not bi
onne
ted, apply a similar pro
edure as forDFS in a layer. In parti
ular, 
ompute the bi
onne
ted 
omponents of G, buildthe 
orresponding blo
k-
utpoint-tree, and 
onstru
t for every bi
onne
ted 
om-ponent of G, a DFS-tree rooted at its parent 
utpoint. Sin
e every non-tree edgehas both its endpoints in the same bi
onne
ted 
omponent, it is obvious thatthe union of these DFS-trees is a DFS-tree of G.The 
omputation of the bi
onne
ted 
omponents takes O(sort(N)) I/Os us-ing the bi
onne
tivity algorithm from Se
tion 5.3. Computing a DFS-tree for abi
onne
ted 
omponent of size Ni takes O(sort(Ni)) I/Os, by Lemma 10.5. Sin
ethe total size of all bi
onne
ted 
omponents is O(N), 
omputing DFS-trees forall bi
onne
ted 
omponents therefore takes O(sort(N)) I/Os, and we obtain thefollowing result.Theorem 10.6. A DFS-tree of a 
onne
ted planar graph with N verti
es 
anbe 
omputed in O(sort(N)) I/Os, provided that M = 
(B2 log2B).11 Lower BoundsSo far we have fo
used on the design of I/O-eÆ
ient algorithms for fundamentalgraph problems. In this se
tion we try to answer the question whether thesealgorithms are optimal or 
lose to optimal by proving lower bounds for some ofthe problems solved by the algorithms presented in Se
tions 2{10.In order to prove these lower bounds, we 
on
entrate on two 
entral problems:list ranking and 
onne
ted 
omponents. On
e we have shown that these problemsrequire 
(perm(jV j)) and 
(perm(jEj)) I/Os, the same lower bounds 
an beobtained for numerous other problems using rather simple arguments.



Before going into the details of the proofs, a few remarks regarding the 
hoi
eof an appropriate model of 
omputation are in order be
ause 
hoosing the rightmodel for proving lower bounds for graphs problems is non-trivial. Consider forexample two 
ommon models assumed in lower bound proofs. The �rst modelassumes that re
ords are indivisible. That is, the output has to be representedas an appropriate permutation of the input be
ause the model does not allowthe 
reation of new re
ords. This model is too restri
tive be
ause most interest-ing graph problems require the 
omputation of a labelling of the verti
es of thegraph, so that any algorithm for this problem is for
ed to 
reate new re
ordsrepresenting the 
omputed labels. The se
ond model is the 
omparison model,whi
h in parti
ular does not allow any indire
t addressing (i.e., exploiting thefa
t that 
omputers represent everything as numbers, whi
h allows the use ofdata items as indi
es for a

esses into arrays). But internal memory graph al-gorithms make extensive use of indire
t addressing, so that disallowing it inI/O-eÆ
ient algorithms may overly handi
ap the latter and therefore preventa meaningful 
omparison between internal and external memory algorithms forthe same problem. Choosing mu
h more powerful models, on the other hand,makes it hard to prove non-trivial lower bounds.The lower bound proof for list ranking presented in Se
tion 11.1 assumes thatre
ords are indivisible, whi
h requires some 
are when formulating the argumentsin the proofs. In parti
ular, the 
onstru
tions presented in the proofs 
ould be
onsidered redu
tions from one problem to another. But these redu
tions would
reate new re
ords and thereby leave the model. Instead we emphasize that the
onstru
tions are not 
arried out by an algorithm, but we use them only astools to prove the equivalen
e between input instan
es for the two problems.Assuming indivisibility of re
ords also implies that the arguments apply only toa parti
ular type of algorithm, whi
h we spe
ify 
arefully.The lower bound proof for 
onne
tivity uses an augmented version of the
omparison model: the indexed I/O-tree [28℄. Essentially this model is the 
om-parison model augmented with indire
t addressing. The details of the model areof less relevan
e to our argument here be
ause we use a redu
tion that requires avery weak model; but the lower bound of the problem we redu
e to 
onne
tivityto prove a lower bound for 
onne
tivity is shown in the indexed I/O-tree model.11.1 List Ranking, BFS, DFS, and Shortest PathsA lower bound for list ranking 
an be obtained by showing its equivalen
e tothe split proximate neighbors (SPN) problem. In this problem, a sequen
e S of2N integers in the range 1 through N is given. Sequen
e S is the 
on
atenationof two sequen
es S1 and S2 of length N so that ea
h integer o

urs exa
tly on
ein S1 and exa
tly on
e in S2. Sequen
e S1 is sorted. The goal is to permute theelements in S so that for every integer 1 � i � N , both o

urren
es of i in S arestored in the same disk blo
k.The original lower bound proof for this problem [3℄ proves the lower boundby 
ounting the number of di�erent permutations an algorithm solving SPN hasto be able to produ
e. Here we present a more intuitive proof.



Lemma 11.1. The split proximate neighbor problem requires 
(perm(N)) I/Osfor an input sequen
e of size 2N .Proof. To prove the lemma, we show that if there is an algorithm that solvesSPN in I(N) I/Os, there is an algorithm that 
an permute N data items inO(I(N)) I/Os. Hen
e, I(N) = 
(perm(N)).So let x1; : : : ; xN be a set of data items, and let � : [1; N ℄ ! [1; N ℄ bea permutation so that elements x1; : : : ; xN have to be arranged in the orderx�(1); : : : ; x�(N). Let y = (1; 2; : : : ; N; �(1); �(2); : : : ; �(N)) be the instan
e ofSPN de�ned by permutation �. Now 
onsider an algorithm A that solves SPNin I(N) I/Os, let I(y) � I(N) be the number of I/Os performed by algorithm Aon instan
e y, and let S be the sequen
e of data moves performed by algorithm Aon instan
e y. That is, sequen
e S in
urs I(y) I/Os. The elements x1; : : : ; xN
an be arranged in the order x�(1); : : : ; x�(N) in at most 2I(y) � 2I(N) I/Os asfollows: First apply the same movements to elements x1; : : : ; xN as algorithm Aapplies to elements 1; 2; : : : ; N . Now reverse the data movements of algorithm A,letting element x�(i) play the role of element �(i) in y. To do this, element x�(i),1 � i � N , has to be moved into the pla
e of element �(i) before running algo-rithm A ba
kwards. However, after running algorithm A forward, element x�(i)is stored in the same blo
k into whi
h algorithm A pla
es element �(i). Hen
e,element x�(i) 
an be moved into the pla
e of element �(i) when the reversal ofalgorithm A loads the blo
k 
ontaining element x�(i) into main memory for the�rst time. This does not in
ur any extra I/Os.Now let A0 be an algorithm that behaves as just des
ribed for any input in-stan
e x1; : : : ; xN and any permutation �. Sin
e the above 
onstru
tion does notmake any assumptions about the stru
ture of permutation �, algorithm A0 ar-ranges any input instan
e in the 
orre
t order and does so in at most 2I(N) I/Os.Given the remark at the beginning of the proof, this proves the lemma. utLemma 11.1 
an be used to prove a lower bound on the number of I/Osperformed by algorithms that are able to solve list ranking in its full generalityas stated in Se
tion 2. In parti
ular, we restri
t our attention to algorithms thatsolve the weighted list ranking problem using only the asso
iativity of the sumoperator de�ned on the set of vertex labels in the list. Note that this means thatthe lower bound does not hold for the unweighted list ranking problem be
ause(Z;+) is a group, so that some 
lever algorithm for this problem may 
ombineaddition and subtra
tion to 
ompute the ranks of all nodes more eÆ
iently.Given that the algorithm uses only the asso
iativity of summation, it 
anbe enfor
ed that for every node xi, there is some point during the 
ourse of thealgorithm when nodes xi and su

(xi) reside in main memory together. If thealgorithm does not already have this property, it 
an be enfor
ed at the expenseof in
reasing the I/O-
omplexity of the algorithm by only a 
onstant fa
tor.Now every SPN instan
e gives rise to an equivalent list ranking instan
e. Inparti
ular, the su

essor of element i in sequen
e S1 is de�ned to be element iin sequen
e S2. The su

essor of element i in S2 is element i+1 in S1. Considerthe I/Os performed by the list ranking algorithm. Whenever two equal elements



from S1 and S2 end up in main memory at the same time, they 
an be moved toa bu�er of size B, whi
h is emptied to disk whenever it runs full. The resultingalgorithm performs N=B I/Os more than the list ranking algorithm and solvesSPN. Sin
e SPN requires 
(perm(N)) I/Os, we obtain the following result.Theorem 11.2. List ranking requires 
(perm(N)) I/Os.As an immediate 
onsequen
e of Theorem 11.2, we obtain lower bounds forBFS, DFS, and SSSP. In parti
ular, it suÆ
es to 
onsider the given list as anundire
ted graph whose edges have unit weights. Then list ranking 
an be solvedby performing BFS, DFS or SSSP in this graph, starting at the head of the list.Again the lower bound applies only to algorithms that 
ompute the distan
es ofthe verti
es of G from the sour
e only by adding path lengths.Corollary 11.3. Breadth-�rst sear
h, depth-�rst sear
h and single sour
e short-est paths require 
(perm(N)) I/Os on a graph with N verti
es.11.2 Conne
ted and Bi
onne
ted ComponentsIn order to prove a lower bound for the number of I/Os required to 
ompute the
onne
ted 
omponents of a graph, we use the following proposition shown in [28℄.Let the segmented dupli
ate elimination problem be de�ned as follows: Let S bea set of N integers drawn from the interval [P + 1; 2P ℄, and let P < N < P 2.Furthermore, assume that S 
an be divided into P 
ontiguous subsequen
esS1; : : : ; SP , ea
h of length N=P , so that the elements in ea
h sequen
e Si aredistin
t. Then 
onstru
t a Boolean array C[P + 1; : : : ; 2P ℄ so that C[i℄ = 1 ifand only if S 
ontains an element of value i.Proposition 11.4. The segmented dupli
ate elimination problem with parame-ters P and N as above requires 
((N=P )perm(P )) I/Os.In order to prove an 
(perm(jEj)) lower bound for 
omputing the 
onne
ted
omponents of a graph, the segmented dupli
ate elimination problem is redu
edto that of 
omputing the 
onne
ted 
omponents of an appropriate graph. Inparti
ular, 
onsider an instan
e of the segmented dupli
ate elimination problemwith N elements in the range [P + 1; 2P ℄, where N � 2P . Then graph G isde�ned as follows:1. Graph G has N=P + P verti
es.2. If P + i 2 Sj , then G 
ontains edge fj;N=P + ig.3. Graph G 
ontains edges f1; 2g; f2; 3g; : : : ; fN=P � 1; N=Pg.Graph G has N=P + P = �(P ) verti
es and N +N=P � 1 = �(N) edges. The
onstru
tion of the edge set of G 
an easily be 
arried out in O(s
an(N)) I/Os.Now it is easy to see that P+i 2 S if and only if verti
es 1 and N=P+i are in thesame 
onne
ted 
omponent. Hen
e, 
omputing the 
onne
ted 
omponents of Grequires 
((N=P )perm(P )) = 
((jEj=jV j)perm(jV j)) = 
(perm(jEj)) I/Os,and we obtain the following result.



Theorem 11.5. Computing the 
onne
ted 
omponents of a graph G = (V;E)requires 
(perm(jEj)) I/Os.Using a similar 
onstru
tion, the same lower bound 
an be shown for 
om-puting the bi
onne
ted 
omponents of a graph. In parti
ular, graph G aboveis augmented with a vertex 0 that is 
onne
ted to vertex 1 and to verti
esN=P + 1; : : : ; N=P + P . Then element P + i 2 S if and only if verti
es 0 andN=P + i are in the same bi
onne
ted 
omponent of the augmented graph G. Theaugmentation 
an be 
arried out in O(s
an(N)) I/Os. The sizes of the vertexand edge sets of G remain �(P ) and �(N), respe
tively. Hen
e, we obtain thefollowing result.Theorem 11.6. Computing the bi
onne
ted 
omponents of a graph G = (V;E)requires 
(perm(jEj)) I/Os.12 More Problems and SolutionsThis last se
tion is dedi
ated to a short survey of a few results that should notbe missing from a 
ourse on I/O-eÆ
ient graph algorithms and a dis
ussion ofopen problems related to the material presented in this 
ourse. In Se
tion 12.1we dis
uss three 
lasses of sparse graphs other than planar graphs for whi
hO(sort(N)) I/O algorithms for BFS, DFS and the single sour
e shortest pathproblem exist. In Se
tion 12.2 we dis
uss the main ideas behind an I/O-eÆ
ientalgorithm for planarity testing and planar embedding proposed in [26℄. Thealgorithm is parti
ularly interesting be
ause it uses separators to 
ompute theembedding, whi
h is possible only be
ause the separator algorithm from Se
tion 9does not use any information provided by a planar embedding of the graph. InSe
tion 12.3 we dis
uss a number of interesting open problems.12.1 More Classes of Sparse GraphsThere are a few more 
lasses of sparse graphs that resear
hers have 
onsidered,trying to develop I/O-eÆ
ient algorithms for fundamental problems on these
lasses of graphs. The interest in these 
lasses of sparse graphs stems either fromtheir pra
ti
al importan
e or from stru
tural properties that made these graphspromising 
andidates for I/O-eÆ
ient solutions to the problems of interest. Westart our dis
ussion with the most pra
ti
al 
lass whose favorable stru
turalproperties are obvious to the trained eye. Then we work our way to graph 
lasseswhose pra
ti
al relevan
e is disputable, but whose stru
ture is more interesting.Grid graphs. In [6℄ Arge et al. study problems on grid graphs. The verti
es of agrid graph are a subset of the verti
es of a regularpN�pN grid. Every vertex v
an be 
onne
ted to at most eight other verti
es, namely the verti
es whose gridpositions di�er by at most one in ea
h dimension from the position of v. Thesegraphs arise naturally in 
omputations on raster-based elevation models used ingeographi
 information systems.



An interesting fa
t to observe about grid graphs is that they are almostplanar. That is, only diagonals 
an interse
t and every diagonal interse
ts atmost one other diagonal. Thus, it is not surprising that these graphs have smallseparators and that these separators 
an be used to 
ompute shortest paths inthe same way as for planar graphs.In parti
ular, 
hoosing every B-th row and 
olumn to be in the separator,one obtains a separator of size O(N=B) that partitions the graph into O(N=B2)subgraphs of size at most B2 and boundary size O(B). Moreover, every separatorvertex is on the boundary of at most four regions and the number of boundarysets is O�N=B2�. Hen
e, the shortest path algorithm for planar graphs 
an beapplied to grid graphs, using the separator just de�ned instead of the separator
omputed for planar graphs using the algorithm from Se
tion 9.Depth-�rst sear
h on grid graphs 
an be solved in O�N=pB� I/Os using aslightly modi�ed version of the internal memory DFS-algorithm. In parti
ular,
hoosing the spa
e between separator rows and 
olumns to be pB, one obtainsa separator of size O�N=pB� that partitions the graph into O(N=B) subgraphsof size at most B and boundary size O�pB�. Now whenever the DFS-algorithmexplores an edge 
onne
ting a separator vertex with an internal vertex of a sub-graph Gi, the whole graph Gi is brought into main memory. The DFS-algorithmexplores edges in Gi until it 
omes to a separator vertex again, where the wholepro
edure is repeated. It remains to be observed that every subgraph is enteredat most O�pB� times, on
e through ea
h boundary vertex. Ea
h time the graphis entered, the algorithm spends one I/O to bring it into main memory, so thatO�pB� I/Os are spent per subgraph. Sin
e there are O(N=B) subgraphs, theI/O-bound follows.Graphs of bounded treewidth. The treewidth of a graph has been de�nedby theoreti
ians as a parameter that 
aptures the hardness of many NP-hardproblems on this graph. In parti
ular, many of these problems 
an be solvedin linear time if the treewidth of the graph is 
onstant. Re
ently a number ofresear
hers have argued that the graphs produ
ed by web 
rawls have 
onstanttreewidth, so that I/O-eÆ
ient algorithms for these graphs would be useful inweb-modelling appli
ations. Unfortunately the results we dis
uss next still are oflittle pra
ti
al relevan
e be
ause the 
onstants hidden in the big-Oh are super-exponential in the treewidth of the graph and hen
e are small only for graphs ofextremely small treewidth. Yet it is interesting that at least theoreti
ally thesegraphs allow I/O-eÆ
ient solutions to BFS and shortest paths.Intuitively, the treewidth of a graph G 
aptures how far awayG is from beinga tree. Hen
e, quite naturally, the treewidth of a tree is one. A tree-de
ompositionof a graph G is a tree T storing verti
es of G at its nodes. The union of thesevertex sets is the vertex set of G. For every edge of G, there exists a node of Tstoring both endpoints of G. The nodes of T storing a vertex v 2 G indu
e asubtree of T . The width of the tree-de
omposition is k if no node of T storesmore than k + 1 verti
es of G.



Under these 
onditions, it 
an be shown that the vertex set Xv stored at anode v 2 T is a separator that partitions G into the subgraphs de�ned by thesubtrees of T obtained by removing v from T . Moreover, if k is 
onstant, thisseparator obviously has 
onstant size.In [25℄ it is shown that if G has 
onstant treewidth, a tree-de
omposition ofminimal width for G 
an be obtained in O(sort(N)) I/Os. The algorithm is fairlyinvolved and follows the internal memory algorithm by Bodlaender and Kloks [7,8℄. Given the tree-de
omposition, dynami
 programming 
an be applied to T inorder to solve single sour
e shortest paths on G. In parti
ular, assuming thattree T is rooted at some node �, it is �rst pro
essed from the leaves towards theroot to �nd for every node v, the distan
es in G(v) between all verti
es in Xv,where G(v) is the subgraph of G indu
ed by all verti
es stored at des
endantsof v. In a se
ond phase tree T is pro
essed from the root towards the leaves, andthe information 
omputed in the �rst phase is used to 
ompute the distan
e fromthe sour
e s to all verti
es in G. Pro
essing T bottom-up or top-down 
an be doneusing time-forward pro
essing. Sin
e T is a tree, this takes O(s
an(N)) I/Os.Outerplanar graphs. A planar graph is outerplanar if it 
an be drawn in theplane so that all verti
es are on the boundary of a single fa
e. This fa
e is 
alledthe outer fa
e. These graphs have two properties we have seen to be useful forsolving shortest paths and DFS I/O-eÆ
iently: They are planar by de�nitionand have treewidth at most two. Given that they are planar graphs of smalltreewidth, it is not surprising that for outerplanar graphs there exist extremelysimple algorithms that solve shortest paths and DFS in a linear number of I/Os.The idea behind the shortest path algorithm is to exploit the simple geomet-ri
 stru
ture of outerplanar graphs to obtain tree-de
ompositions of these graphsmu
h more easily than using the general tree-de
omposition algorithm. In par-ti
ular, Maheshwari and Zeh [24, 32℄ show that an outerplanar embedding of anouterplanar graph 
an be 
omputed in O(sort(N)) I/Os. A tree-de
omposition ofthe graph is easily obtained from the dual of the 
omputed embedding. On
e thetree-de
omposition is given, the single-sour
e shortest path problem 
an again besolved by applying dynami
 programming to the 
omputed tree-de
omposition.The DFS-algorithm for outerplanar graphs is based on the following obser-vation: If the graph is bi
onne
ted, the boundary of the outer fa
e is a simple
y
le. Hen
e, the removal of an arbitrary edge from this 
y
le produ
es a sim-ple path that 
ontains all verti
es of the graph and is hen
e a DFS-tree of thegraph. If the graph is not bi
onne
ted, a DFS-tree 
an be obtained by \gluing"together appropriate spanning trees obtained in this manner for the bi
onne
ted
omponents of the graph. Intuitively, the resulting tree is the same as a treeobtained by walking along the boundary of the outer fa
e and ba
ktra
king assoon as a vertex is visited for the se
ond time.12.2 Planar EmbeddingThe planarity testing and planar embedding algorithm of [26, 32℄ �ts very wellinto the line of I/O-eÆ
ient algorithms for planar graphs dis
ussed in this 
ourse.



In parti
ular, all the algorithms for planar graphs we have dis
ussed use the as-sumption that the main memory is 
apable of holding planar graphs of sizeO�B2� and then apply graph 
ontra
tion ideas, sometimes somewhat disguised,to solve the problem at hand. The 
ontra
tion is a
hieved by loading ea
h sub-graph in a B2-partition of the graph into main memory and repla
ing it withanother graph that en
odes the relevant stru
tural information about the bound-ary verti
es of the graph more su

in
tly.For planarity testing, all graphs G1; : : : ; Gq in a B2-partition of the givengraph G are tested for planarity. If one of these graphs is non-planar, graph G
annot be planar. Otherwise ea
h graph Gi is repla
ed with another planargraph G0i of size O(B). Graphs G01; : : : ; G0q are 
onstru
ted so that G is planar ifand only if the approximate graph A obtained as the union of graphs G01; : : : ; G0qis planar. Sin
e there are O�N=B2� graphs G01; : : : ; G0q , and ea
h of them hassize O(B), graph A has size O(N=B).To see that this pro
edure takesO(sort(N)) I/Os, observe that ea
h graphGi�ts into main memory. Thus, it takes O(s
an(N)) I/Os to test graphs G1; : : : ; Gqfor planarity and repla
e them with graphs G01; : : : ; G0q. Sin
e graph A hassize O(N=B), graph A 
an be tested for planarity in O(s
an(N)) I/Os using anylinear-time planarity testing algorithm (e.g., [9℄). The whole algorithm takesO(sort(N)) instead of O(s
an(N)) I/Os be
ause it takes O(sort(N)) I/Os to
ompute a B2-partition P = (S; fG1; : : : ; Gqg) of G.If graph A is reported to be planar, the algorithm of [9℄ also produ
es a planarembedding of A. Undoing the 
onstru
tion of graph G0i from Gi, the embeddingof ea
h graph G0i indu
ed by the 
omputed embedding of A 
an now be repla
edwith a 
onsistent embedding of Gi. This 
an again be done in main memory, butrequires some 
are.The most diÆ
ult part of the planarity testing algorithm is to prove thatgraphs G01; : : : ; G0q above exist and that ea
h graph G0i 
an be 
omputed solelyfrom Gi (i.e., without using any additional information about the stru
ture ofgraph G.) Maheshwari and Zeh [26, 32℄ show that this 
an be done based on ade
omposition of Gi into its 
onne
ted, bi
onne
ted and tri
onne
ted 
ompo-nents.There is a subtle point about the strategy of this algorithm that is worthpointing out: It uses a planar separator algorithm to test whether the graph isplanar. That is, it applies the separator algorithm without knowing whether thegraph is planar. This works only be
ause the separator algorithm from Se
tion 9does not use any information provided by a planar embedding of G. It is basedsolely on stru
tural properties the graph is guaranteed to have if it is planar. Inparti
ular, sin
e it is guaranteed that the separator algorithm produ
es a smallseparator in O(sort(N)) I/Os if the graph is planar, it 
an be terminated withthe output that G is not planar if the 
omputed separator is too big or thealgorithm starts taking too long.12.3 Open ProblemsWe 
lose with a list of interesting open problems.



Optimal separators for grid graphs. The separator for grid graphs as de-�ned in Se
tion 12.1 is non-optimal if the grid is sparsely populated. In par-ti
ular, if all verti
es in the graph are either on the separator rows or on theseparator 
olumns, the separator 
ontains all verti
es in the graph. This leadsto a suboptimal performan
e of the shortest path algorithm. It is not hard tosee that the separator algorithm for planar graphs 
an be modi�ed, in order toobtain optimal separators for grid graphs; but the used ma
hinery seems tooheavy for graphs of su
h a simple stru
ture. Thus, the question is whether thegeometri
 information of grid graphs 
an be used to obtain optimal separatorsfor grid graphs more easily than using the planar separator algorithm. Whatabout weighted separators?DFS in grid graphs and graphs of bounded treewidth. The algorithmfor DFS in grid graphs dis
ussed in Se
tion 12.1 is non-optimal by a pB-fa
tor.It would seem that the ideas of the DFS-algorithm for planar graphs 
an beadapted to obtain an optimal DFS-algorithm on grid graphs; but no positiveanswer has been obtained so far.The DFS-algorithms for outerplanar and planar graphs exploit the geometryof these graphs to solve the problem in an optimal number of I/Os. The DFS-algorithm for grid graphs exploits the fa
t that these graphs 
an be partitionedinto O(N=B) subgraphs, ea
h of boundary size O�pB�. Graphs of boundedtreewidth have neither a geometri
 stru
ture, nor is it known how to obtain aseparator partition similar to that obtainable for grid graphs. Hen
e, geometry-based approa
hes as well as approa
hes based on a partition into few subgraphswith small boundary size seem to fail on graphs of bounded treewidth, and thedevelopment of an I/O-eÆ
ient DFS-algorithm for this 
lass of graphs is open.Semi-external shortest paths. Maheshwari and Zeh [26℄ argue that the mem-ory requirements of their separator algorithm 
an be redu
ed by a polylog-fa
tor(if not to �(B)) if the semi-external single sour
e shortest path problem 
an besolved in O(sort(jEj)) I/Os on arbitrary graphs. It is one of the most 
halleng-ing open problems to determine how the assumption that the vertex set 
an beheld in main memory 
an be exploited in shortest path algorithms to obtain anyI/O-
omplexity better than O(jV j+ sort(jEj)).Optimal 
onne
tivity. Finding the 
onne
ted 
omponents of a graph is a prob-lem that 
an be solved quite easily in linear time in internal memory. However,the existing I/O-eÆ
ient algorithms for this problem are by a log2 log2(jV jB=jEj)fa
tor away from optimal. While the hardness of BFS and DFS seems to stemfrom the fa
t that algorithms solving these two problems have to visit the ver-ti
es of the graph in a predetermined order (whi
h, unfortunately, is not knownto the algorithm), there is no su
h limiting fa
tor for 
onne
tivity problems. Thesuboptimality of the existing 
ontra
tion-based algorithms stems from the fa
tthat these algorithms redu
e the number of verti
es by a 
onstant fa
tor in ea
h



iteration, but fail to a
hieve the same for the number of edges. An interestingquestion is whether there exists a smarter 
ontra
tion strategy that also redu
esthe number of edges by a 
onstant fra
tion. If su
h a strategy exists, optimal
onne
tivity algorithms result. If no su
h strategy exists, the next thing oneshould look for is a sear
h-based algorithm similar to BFS or DFS that takesadvantage of the fa
t that the verti
es 
an be visited in a fairly arbitrary order.Optimal BFS, DFS, and shortest paths, or lower bounds. So far it waswidely believed that an
(jV j) lower bound holds for the number of I/Os requiredto solve BFS on general graphs, while only an 
(perm(jV j)) lower bound 
ouldbe shown. The BFS-algorithm of Se
tion 6.3 disproves this 
onje
ture. As aresult, we are at a loss as to whether 
�jV j=pB� is indeed a lower bound forBFS or whether BFS 
an be solved in o�jV j=pB� I/Os. Any result that leadsto an improvement in either dire
tion is at the top of the wish list of mostresear
hers working on I/O-eÆ
ient graph algorithms.For DFS and shortest paths, we are even further away from 
losing the gapbetween the 
(perm(jV j)) lower bound and the O(jV j log2 jV j+f(jV j; jEj)) andO(jV j+ f(jV j; jEj)) upper bounds for these problems.Algorithms for dire
ted graphs. For dire
ted graphs, no I/O-eÆ
ient short-est path algorithm is known, and the performan
e of the existing BFS and DFSalgorithms is disappointing. Beside these results, not mu
h is known for anyproblems on dire
ted graphs. Among the most 
oveted are algorithms for topo-logi
ally sorting dire
ted a
y
li
 graphs and 
omputing the strongly 
onne
ted
omponents of a dire
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