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1 Introduction

Graph algorithms are fundamental in the sense that many general problems or
problems in computational geometry can be reduced to graph problems. For ex-
ample, a number of parallel scheduling problems can be reduced to the problem
of finding a maximum or minimum matching of a bipartite graph. Shortest path
problems in geometric domains are often solved by computing shortest paths in
graphs that capture the geometric distances between well-chosen discrete loca-
tions. One may even go as far as saying that most pointer-based data structures
are just graphs with additional information stored at their vertices. Extracting
information from such a data structure then becomes a graph problem. For ex-
ample, a standard search query on a binary search tree T is transformed into
the problem of traversing a path in this tree.

Now large data structures used in large scale applications do not provide
a fertile ground for interesting graph problems to be studied. So one question
to ask is whether there are other real-life applications where massive graphs
need to be handled. Two important areas where massive graphs arise are web-
modelling and geographic information systems. The graphs produced by recent
web crawls have on the order of 200 million vertices and 2 billion edges, which
can be processed in main memory only by machines at the higher end of the
price scale. But current work in web-modelling studies the structure of the web
by performing breadth-first search (BFS) and depth-first search (DFS) in these
graphs or computing their connected components. Some of the problems arising
in geographic information systems include flow problems on terrains and logistics
and road planning applications that involve the computation of shortest paths
on weighted terrains. These terrains are often represented by large maps at a fine
granularity, which use gigabytes of storage. Many of these applications reduce
the given real-life problem to computations in graphs that approximate the given
surface sufficiently well. So what is left is a graph problem.

The above is meant to give a motivation for the study of I/O-efficient graph
algorithms. In this lecture series we discuss algorithms for fundamental prob-
lems such as BFS, DFS, shortest paths and connectivity, with a focus on the
techniques that lead to I/O-efficient algorithms for these problems. In the first,
and larger, part of the lecture series we concentrate on general approaches that
lead to efficient algorithms without additional information about the structure
of the given graph. In the second part we study algorithms for planar graphs,
which is one of the classes of sparse graphs for which improved algorithms have



been developed. In light of the above discussion, this class of graphs is important
because the graphs that arise in shortest path computations on weighted terrains
are “almost planar”, and many ideas used in algorithms for planar graphs can
be used to solve the problems discussed here on such “almost planar” graphs.

The following is a list of the problems we consider, sorted by the sections
where they are discussed:

Problem Section

List ranking

Euler tours and algorithms for trees

Evaluating DAGs and greedy algorithms for undirected graphs
Graph contraction and applications to connectivity problems
(connected components, minimum spanning tree, etc.)
Breadth-first search and depth-first search

Single source shortest paths

Planar graph partitions
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In Section 12, we sketch the ideas of solutions to a few more problems on
sparse graphs and outline some of the most important and most challenging
open problems in the area of I/O-efficient graph algorithms.

We assume that the reader is familiar with elementary graph theoretic con-
cepts such as the definitions of directed and undirected graphs, acyclicity of
directed graphs, adjacency of vertices, or independent sets and maximal match-
ings. For good introductory texts on graph theory, the reader may refer to [15,
17,31].

2 List Ranking

The first problem we discuss is list ranking, which has proved to be an important
tool in parallel algorithms. Given the similarity between the problems arising in
the design of parallel and I/O-efficient algorithms, an I/O-efficient list ranking
algorithm can be used to obtain I/O-efficient algorithms for a wide range of
problems on simple graphs such as trees. List ranking is also a nice introductory
example to demonstrate how surprisingly difficult even extremely simple graph
problems can become, once random memory access is penalized.

The list ranking problem is the following: Given a linked list L, compute for
every element of L its distance from the head of L.! To cast this problem in

! Originally, the rank of an element was defined as its distance from the tail of the
list. However, it is an exercise to verify that an algorithm that can compute either
of the two distances can compute the other. The definition used here simplifies the
discussion.



Procedure NAIVELISTRANKING
v h
p< 0 {0; is the left-neutral element w.r.t. .}
while v # nil do
p— pBwv)
p(v) « p
v < succ(v)
end while

Algorithm 2.1
A linear-time internal memory list ranking algorithm.

graph theoretic terms, list L is a directed acyclic graph L = (V, E) with vertex
set V. = {v1,...,un}. There are two distinguished vertices h and ¢, which we
call the head and tail of L. Every vertex except h has exactly one in-edge. Every
vertex except ¢t has exactly one out-edge. We assume in this section that the edge
set of L is represented implicitly. That is, every vertex v € L stores a pointer
succr (v) = w, where (v,w) € L. We call vertex w the successor of v in L. For
the tail ¢ of L, succy,(t) = nil, which signifies that ¢ has no successor in L. If
list L is clear from the context, we write succ(v) instead of succy,(v) to denote
the successor of v in L. Now let ¢ : [1, N] — [1, N] be a permutation so that
for 1 <i < N, succ (vg(i)) = Vs(i41)- Then the rank of vertex v, ;) is defined as
P (vos)) = i.

As an algorithmic tool, it is often useful to generalize the list ranking problem
by adopting the notion of weighted ranks of the elements in L: Assume that
w:V — X is an assignment of weights drawn from a domain X to the vertices
of L,and let & : X x X — X be an associative operator on X. Then the weighted
rank p(v;) of vertex v; is defined as follows: p (vg(l)) —w (vg(l)). For1<i<N,
P (Vo) = P (Vo(i1)) @ w (5 (3))-

Since this somewhat formal definition includes a permutation o of the vertices
of list L, it seems that the list ranking problem contains some formulation of a
permutation problem as a subproblem. Hence, we should not be too surprised
that list ranking requires £2(perm(N)) I/Os. We will see later in this lecture
series how to prove this lower bound. But first we investigate why the naive
internal memory algorithm (Algorithm 2.1) is not I/O-efficient. The algorithm
makes the assumption that a pointer to the head h of list L is provided.

To see why procedure NATVELISTRANKING is not I/O-efficient, assume that
B =2and M = 4, and consider the layout of list L shown in Figure 2.1. In order
to access the head of list L, the first block has to be loaded into internal memory.
The second vertex can only be accessed after loading the second block. In order
to access the third vertex, the third block has to be loaded into internal memory.
Since there is room for only two blocks in internal memory, one of the blocks
already in main memory needs to be discarded. If the LRU? paging strategy

2 LRU stands for “least recently used”. That is, to make room for a new block to be
loaded into main memory, the block to be discarded from main memory is chosen



(Lol [3Te] [s1e).

Figure 2.1
A worst-case layout of a list L for procedure NATVELISTRANKING with LRU paging
strategy.

is used, the first block is dropped. Following the execution of the algorithm
further, it is not hard to see that the algorithm has to spend one I/O per vertex
because just before visiting the vertex, the block containing it is not in internal
memory. This example can easily be generalized to blocks of arbitrary size, so
that procedure NATVELISTRANKING spends 2(N) I/Os in the worst case.

Chiang et al. [12] propose an I/O-efficient list ranking algorithm based on
graph contraction (Algorithm 2.2). If the list fits into internal memory, the al-
gorithm loads the whole list into memory and ranks it using procedure NAIVE-
L1STRANKING. Otherwise the algorithm constructs a list L' of size at most 2|L|
by removing the elements of a large independent set I from L. The weights of all
elements in L \ I are updated so that their weighted ranks in L and L' are the
same. Hence, the recursive application of procedure FASTLISTRANKING to list L'
assigns the correct ranks to all elements in L\ I. In order to compute the ranks
of all elements in I, their weights are added to the ranks of their predecessors.

If |[L| < M, the algorithm spends O(scan(|L|)) I/Os to rank list L. In par-
ticular, list L is read into internal memory in O(scan(|L|)) I/Os, procedure
NATVELISTRANKING is applied in internal memory, and the ranks of the ele-
ments of L are written to disk in O(scan(|L|)) I/Os. If |L| > M, we show below
that, excluding the recursive invocation of the algorithm in Line 20, procedure
FASTLISTRANKING takes O(sort(]L|)) I/Os. List L', which is passed to the re-
cursive invocation of the algorithm, has size at most %|L|, so that we obtain
the following recurrence describing the I/O-complexity of procedure FASTLIST-
RANKING:

T(N) = O(scan(N)) itN<M
M) =\ 2(2N) + Ofsort(v)) it N > 11

The solution of this recurrence is Z(N) = O(sort(N)), so that procedure FAST-
L1STRANKING is optimal, given the 2(perm(N)) I/O lower bound for this prob-
lem discussed later in this course.?

by the time that has elapsed since the last access to the block. The block with the
longest elapsed time since the last access is discarded.

% Technically, there is a gap between the upper and lower bounds in the case when
N < sort(N), which is true only for ridiculously large inputs. To satisfy the theo-



Procedure FASTLISTRANKING
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if |L| < M then
Load list L into main memory, and use procedure NATVELISTRANKING to com-
pute the ranks of all elements in L.

else
Find an independent set I of size at least N/3 in L.
for allv € L\ I do
succr (v) « succy (v)
P () & pr (o)
end for
for all v € I do
if succr(v) # nil then
wr (sucer (v)) « wr(v) @ wr(sucer (v))
end if
end for
for all v ¢ I do
if succr(v) # nil and succr (v) € I then
succr (v) < sucer (sucer (v))
end if
end for
Let L' be the list defined by the vertices in L\ I, pointers succy/(v) and weights
wr (v).
Recursively apply procedure FASTLISTRANKING to list L'. Let py(v) be the rank
assigned to every element v in L\ I.
for all v ¢ I do
pr(v) ¢ pr(v)
if succr (v) # nil and succr (v) € I then
pr(succr(v)) < pr(v) ® wr (succr(v))
end if
end for
: end if

Algorithm 2.2
An I/O-efficient list ranking procedure.

th

So let us analyze the I/O-complexity of Lines 4-26 of the algorithm, excluding
e recursive call to the algorithm itself in Line 20. We show in Section 4.2 that an

independent set of size at least 2| L| can be found in O(sort(N)) 1/Os. Lines 5 8

ca
th

n be carried out in a single scan of list L. To carry out Lines 9 13, assume
at every vertex has a unique numerical ID. Sort the elements in L\ I by their

numbers and the elements in I by the numbers of their successors and scan both

lis

ts simultaneously to add for every element of I, its weight to the weight of

retician, the gap can be closed by simulating procedures NATVELISTRANKING and

FASTLISTRANKING in parallel, allowing each algorithm to perform one I/O before
switching to the other algorithm. By stopping the simulation as soon as one of
the two algorithms is finished it is guaranteed that the simulation finishes after
O(min(N, sort(N))) = O(perm(N)) I/Os.



Figure 3.1
An Euler tour of a tree T.

its successor. To carry out Lines 14-18, sort the elements in I by their numbers
and the elements in L\ I by the numbers of their successors and scan the two
sorted lists to update the successors of all elements in L \ I. Lines 21 26 can
be carried out in a similar fashion as Lines 14 18. Except for computing the
independent set I, which takes O(sort(NN)) I/Os, this procedure sorts and scans
lists of size O(N) a constant number of times. Hence, the I/O-complexity of one
recursive step of procedure FASTLISTRANKING is O(sort(N)) as claimed. Using
the above recurrence, this proves the following result.

Theorem 2.1. A list of size N can be ranked in O(sort(N)) I/Os.

Remark. Note that procedure FASTLISTRANKING does not make use of the
fact that there is a unique head and a unique tail in list L. This allows the
algorithm to be applied simultaneously to a collection of linked lists. This fact is
exploited by a number of algorithms that use list ranking as a primitive to solve
more complicated graph problems.

3 Algorithms for Trees

3.1 The Euler Tour Technique

Before moving on to more complex graph problems, we discuss a simple technique
that turns the list ranking algorithm of Section 2 into a powerful tool for solving
problems on trees. The goal of this technique is to represent a tree T as a list L
so that a number of labelling problems can be solved on T by computing the
weighted ranks of the elements in L.

Given a tree T and a distinguished vertex r of T', an Fuler tour of T is
defined as a traversal of 7' that starts and ends at r and traverses every edge
exactly twice, once in each direction (see Figure 3.1). Formally, every undirected
edge {v,w} € T is replaced with two directed edges (v, w) and (w,v). The tour
starts with an edge (r,v). For every vertex v € T' with incoming edges ey, ..., ey
and outgoing edges €], ..., e}, numbered so that for 1 < i < k, e; and e} have

the same endpoints, edge e; is succeeded by edge e’(i mod k)+1 in the tour. When



Procedure ROOTTREE

1: Compute an Euler tour L of tree T

2: Compute the rank of every edge e in L.

3: for every edge {v,w} € T do

4:  Store the ranks of edges (v, w) and (w,v) in L with edge {v, w}.
5: end for

Algorithm 3.1
Rooting a tree T'.

referring to the construction of an Euler tour, we mean the construction of a
circular linked list L so that every edge has its successor in the tour as its
successor in L.

Before studying the power of this technique for computing labellings of trees,
we make the following observation.

Lemma 3.1. Given a treeT in adjacency list representation, an Fuler tour of T
can be computed in O(scan(N)) I/Os. If the edge set of T is represented as an
unordered collection of edges, the tour can be computed in O(sort(N)) I/0s.

Proof. Given the adjacency list A(v) of a vertex v, the successors in L of all
incoming edges of v can be computed in a single scan of list A(v). If the edges
of T are given as an unordered set of edges, an adjacency list representation
of T can be obtained as follows: First replace every edge {v,w} of T' by two
directed edges (v,w) and (w,v). Then sort the resulting set of directed edges
lexicographically. O

3.2 Rooting a Tree

A tree as a data structure is often rooted. That is, it has a distinguished root
verter r and a well-defined parent-child relation between adjacent vertices. Trees,
when considered as undirected graphs, do not have this structure imposed on
them. However, most structural information about a tree 7', provided by labelling
the vertices of T' in a meaningful manner, can be obtained only after declaring
one of the vertices to be the root and establishing parent-child and ancestor-
descendant relations defined as follows: Let r be the chosen root of 7. Then a
vertex v is an ancestor of a vertex w, and w is a descendant of v if v is on the
unique path from r to w. If v # w, v is a proper ancestor of w. Vertex v is the
parent of w, and w is the child of v, if v is an ancestor of w and {v,w} € T.
Rooting a tree T is the process of choosing a vertex r and labelling the
vertices or edges of T so that the labels assigned to two adjacent vertices v
and w, or to edge {v,w}, are sufficient to decide whether v is the parent of w
or vice versa. Algorithm 3.1 computes such an edge labelling. In particular, for
an edge {v,w} € T, v is the parent of w if and only if edge (v, w) has a smaller
rank than edge (w,v) in the Euler tour because for every vertex x € T, x© # r,
an Euler tour starting at the chosen root r has to traverse edge (p(z), z) before

edge (x, p(r)).



Procedure LABELTREE

1: Compute an Euler tour L of T that starts at the root of T'.
2: Assign appropriate weights to the edges in the Euler tour.
3: Compute the weighted rank of each edge in L.

4: Extract a labelling of the vertices of T from these ranks.

Algorithm 3.2
Labelling rooted trees.

Theorem 3.2. A tree T can be rooted in O(sort(N)) I/0s.

Proof. We have to show that Algorithm 3.1 takes O(sort(N)) I/Os. By Theo-
rem 2.1 and Lemma 3.1, Lines 1 and 2 of the algorithm take O(sort(N)) I/Os.
To carry out Lines 3-5, sort the edges in L by their smaller endpoints as a pri-
mary key and their larger endpoints as a secondary key. This stores edges (v, w)
and (w,v) consecutively, for every edge {v,w} € T. Now scan this edge list,
replace every pair of edges (v, w) and (w,v) with the corresponding undirected
edge {v,w}, and label edge {v, w} with the ranks of both directed edges. O

Remark. A vertez labelling that can be used to decide which of two adjacent
vertices is the parent can be obtained by assigning to every vertex v the rank of
the first edge in L whose source is v. For two adjacent vertices v and w, v is the
parent of w if and only if the rank of the first edge with source v is less than the
rank of the first edge with source w. This is true because for any vertex = € T,
the first edge with source = can be traversed only after visiting vertex x, which
in turn is possible only after traversing edge (p(x), ).

3.3 Labelling Rooted Trees

In this section we consider a number of labellings of a rooted tree that pro-
vide useful information about the structure of the tree and can be computed in
O(sort(N)) I/Os using the Euler tour technique and list ranking. Some of these
labellings are defined in terms of an Euler tour of the tree that starts at the root.
Hence, it is only natural that these labellings can be computed using the Euler
tour technique.

Given an Euler tour of a rooted tree T', a preorder numbering of T is a
numbering of the vertices of T from 1 through N so that a vertex v has a
smaller number than another vertex w if and only if the first visit of the tour to
vertex v occurs before the first visit to w. A postorder numbering of T assigns
the smaller number to v if the last visit to v occurs before the last visit to w.
Another important labelling assigns the number of its descendants to every node
v € T. Finally, it is handy in a number of applications to know for every vertex
v € T, how far away it is from the root. That is, vertex v is to be labelled with
the number of edges on the path from r to v in T. We refer to this number as
the depth of v in T.



Algorithm 3.2 provides a generic method for computing these labellings. The
algorithm computes different labellings depending on the choice of the weights
assigned to the edges in the Euler tour in Line 2 of the algorithm.

To compute the depth of every vertex v in T, choose the weight w(e) of an
edge e = (v,w) in L as

w(e):{l ifv:p(w)-

-1 if w=pv)

It is easy to verify that the depth of a vertex v in T equals the weighted rank of
any edge (u,v) in the Euler tour. To compute a preorder numbering, choose

w(e) = {1 if v = p(w)

0 ifw=npv)

and extract the preorder number of each vertex v # r as the rank of edge (p(v), v)
plus one. The root r of T always has preorder number 1. A postorder numbering
can be computed in a similar fashion. In order to compute the number |T'(v)| of
descendants of each vertex v, choose the weights of the edges in the Euler tour
as for the computation of a preorder numbering, but extract the vertex labels
differently. In particular, |T'(r)| = |T| = N for the root r of T. For every non-
root vertex v, let 1 (v) and ro(v) be the ranks of edges (p(v),v) and (v, p(v)).
Then |T'(v)| = ra(v) — r1(v) + 1. From this discussion we obtain the following
result.

Theorem 3.3. The following labellings can be computed in O(sort(N)) I/Os
for a rooted tree with N vertices: a preorder or postorder numbering, a labelling
of each vertex with its distance from the root, and a labelling of every vertex with
the number of its descendants.

4 Evaluating Directed Acyclic Graphs

In Sections 2 and 3 we have discussed the most important tools for dealing with
lists and trees in an I/O-efficient manner. In this section we turn to a slightly
more complicated class of graphs, which can be considered a generalization of
lists: directed acyclic graphs (DAGs). The problem we study is that of evaluating
a DAG G. More precisely, we are interested in solving the following problem:
Given an assignment of labels w(v) to the vertices of G, compute labels p(v) of
these wvertices where the computation of p(v) depends only on w(v) and labels
p(ur), ..., p(ug) computed for the in-neighbors ui,...,ug of v.

Before studying the technique for solving this problem, let us have a look
at the list ranking problem again. List ranking is a special case of this evalu-
ation problem where the structure of the DAG and the function that defines
labelling p are restricted. These restrictions allow an efficient solution of the list
ranking problem without making any assumptions about the way the input is



Procedure TIMEFORWARDPROCESSING

1. Q« 0 {Q is a priority queue.}
2: for every vertex v € G, in topologically sorted order do

3:  Let u1,...,u; be the in-neighbors of v.

4:  Retrieve p(u1),..., p(ur) from @, using k DELETEMIN operations.

5. Compute p(v) from w(v) and p(u1), ..., p(ur).

6: Let wi,...,w; be the out-neighbors of v.

7:  Insert I copies of p(v) into priority queue Q. Give the i-th copy priority w;.
8: end for

Algorithm 4.1
The time-forward processing procedure.

represented. In order to evaluate an arbitrary DAG I/O-efficiently, we do have
to make a few assumptions. Fortunately these assumptions are satisfied in many
interesting applications.

The first assumption we make is that the vertices of G are stored in topo-
logically sorted order. That is, for every edge (v,w) € G, vertex v precedes
vertex w in this order. This is crucial because the procedure for evaluating G
visits the vertices of G in this order and there is no I/O-efficient algorithm for
topologically sorting arbitrary DAGs. That is, if the vertices were arranged in an
arbitrary order, the algorithm could end up spending one 1/O per vertex when
evaluating G or 2(]V]) I/Os to topologically sort G, both of which imply that
evaluating G would require 2(|V]) I/Os.

If there is no bound on the number of in-edges a vertex can have, it is further
required that the computation of p(v) from w(v) and p(u),...,p(ur) can be
carried out in O(sort(k)) I/Os because the evaluation procedure discussed below
takes care of providing vertex v with labels p(u1),. .., p(ux), but cannot carry
out the actual computation.

4.1 Time-Forward Processing

Assuming that both assumptions are satisfied, we can now turn to the discussion
of a technique for evaluating DAGs. This technique is called time-forward pro-
cessing and was first proposed in [12]. Here we discuss a variant of this technique
proposed by Arge [2], which removes a few restrictions of the algorithm of [12]
and is surprisingly simple. Algorithm 4.1 shows the pseudo-code. The procedure
makes use of a priority queue () to provide every vertex v with the input re-
quired for computing p(v). In particular, when a vertex v is evaluated, values
p(ur), ..., p(uy) are retrieved from @, and p(v) is computed from w(v) and the
retrieved values, either in internal memory or using the O(sort(k)) I/0O algorithm
that exists by our second assumption. Once label p(v) has been computed, it
is inserted into priority queue @, once for each of the out-neighbors wy, ..., wg
of v. The copy of p(v) meant for neighbor w; is inserted with priority w;.

The correctness and efficiency of this technique now follows from two obser-
vations: (1) Every in-neighbor wu; of v is evaluated before v, so that all labels



p(u1), ..., p(ur) are inserted into the priority queue before v is evaluated. (2) All
vertices preceding v in the topological order are evaluated before v. Thus, their
inputs are retrieved from () before v is evaluated, and the inputs for vertex v are
those with smallest priority in @ at the time when v is evaluated. Hence, they
can be retrieved using k¥ DELETEMIN operations.

Now it remains to be observed that procedure TIMEFORWARDPROCESSING
performs O(|E|) priority queue operations, one INSERT and one DELETEMIN
operation per edge. This implies that the computation of labels p(v) from la-
bels w(v) takes O(sort(|E|)) I/Os using an I/O-optimal priority queue [2,10].

Theorem 4.1. A DAG G = (V, E) can be evaluated in O(sort(|E|)) 1/0s, pro-
vided that the vertices of G are stored in topologically sorted order.

The fact that the vertices of G have to be given in topologically sorted order
is certainly a serious restriction that affects the general applicability of this
technique. However, there are many interesting problems on undirected graphs
that can be expressed as evaluation problems of appropriate DAGs. In these
applications, a topological ordering of the DAG is often easy to obtain by sorting
the vertices of the DAG in a natural order induced by the construction of the
DAG from the given undirected graph. In the next section we study one such
application of the time-forward processing technique to solve a classical problem
on undirected graphs.

Remark. Zeh [32] observed that the I/O-complexity of time-forward processing
can be reduced to O(scan(|E|)) if G is a tree and its vertices are stored in preorder
or postorder. The idea is to use a stack instead of a priority queue to simulate
the sending of information along the edges of G.

4.2 Maximal Independent Set

The problem of computing a maximal independent set of an undirected graph
is one representative of a number of problems that can be solved by greedy
algorithms of a sufficiently simple structure that they can be simulated using the
time-forward processing technique [32]. Recall that an independent set of a graph
G = (V,E) is a set I C V of vertices so that no two vertices in I are adjacent.
Set I is mazimal if there is no vertex in V' \ I that does not have at least one
neighbor in I. Procedure MAXIMALINDEPENDENTSET shown in Algorithm 4.2
computes such a set I I/O-efficiently, assuming that every vertex has a unique
numerical ID: Lines 2 and 3 of the algorithm clearly take O(sort(|V|+|E|)) I/Os.
The computation of Lines 4 8 can be simulated using time-forward processing;:
After deciding whether or not a vertex v should be added to set I, vertex v
sends a flag to each of its out-neighbors to inform them whether or not v is in I.
This way every vertex can decide whether it should be added to I based only
on the flags it receives from its in-neighbors. Hence, the whole algorithm takes
O(sort(|V |+ |E])) 1/Os.

Theorem 4.2. A mazximal independent set of a graph G = (V, E) can be com-
puted in O(sort(|V |+ |E|)) 1/Os.



Procedure MAXIMALINDEPENDENTSET

1. T+ 0

2: Direct the edges of G from vertices with lower numbers to vertices with higher
numbers.

3: Sort the vertices of G by their numbers and the edges by the numbers of their
sources.

4: for every vertex v € G, in sorted order do

5:  if no in-neighbor of v is in I then

6: Add v to I.

7:  end if

8: end for

Algorithm 4.2
Computing a maximal independent set of a graph.

Proof. We have already argued that the I/O-complexity of procedure MAXI-
MALINDEPENDENTSET is O(sort(|V| + |E|)). The correctness of this procedure
follows from the following two observations: Set I as computed by the algorithm
is independent because a vertex v is added to I only if none of its in-neighbors
is in 1. At this point none of its out-neighbors can be in I, and the insertion of v
into I prevents all of these out-neighbors from being added to I. Set I is maximal
because otherwise there would be a vertex v € I none of whose in-neighbors is
in I, which implies that v would have been added to I. O

Using Theorem 4.2, we can now fill in the last missing detail of the list ranking
algorithm of Section 2. In the description of the algorithm we assumed that an
independent set of size at least N/3 can be computed in O(sort(/N)) I/Os for a
list of size N. This is shown by the following corollary of Theorem 4.2.

Corollary 4.3. For a list L of size N, an independent set of size at least N/3
can be computed in O(sort(N)) I/Os.

Proof. By Theorem 4.2, a maximal independent set of L can be computed in
O(sort(N)) I/Os. However, every maximal independent set of list L has size at
least N/3 because the vertices in L have degree at most two. ]

Two more problems that can be solved using algorithms similar to Algo-
rithm 4.2 are those of computing a maximal matching of a graph G and coloring
a graph of degree A with at most A+ 1 colors. The latter problem can be solved
using procedure MAXIMALINDEPENDENTSET, only sending different information
along the edges of G. The former can be expressed as a vertex-labelling problem
of an auxiliary graph, so that an algorithm similar to Algorithm 4.2 can be ap-
plied to compute the desired labelling. For details the reader may refer to [32].
It is interesting to observe that a maximal matching corresponds to a maximal
independent set of the edge-incidence graph G' of G. The vertices in G’ corre-
spond to the edges of G. Two vertices in G' are adjacent if and only if the two
corresponding edges in G share an endpoint. Unfortunately graph G' may have



size Q(N2) even if G is a tree. Thus, this reduction of the maximal matching
problem to that of computing a maximal independent set does not lead to an
I/O-efficient maximal matching algorithm.

5 Connectivity Problems

In the rest of this class we study fundamental problems on undirected graphs.
We begin in this section with a discussion of connectivity problems such as com-
puting the connected and biconnected components or a minimum spanning tree
of a graph. The algorithms for these problems demonstrate the power of an im-
portant technique that is applied in a number of I/O-efficient graph algorithms:
graph contraction. We discuss this technique in Section 5.1 and turn to concrete
applications in Sections 5.2 through 5.4. In Section 5.5 we discuss a special class
of graphs for which graph contraction often leads to I/0O-optimal algorithms.

5.1 The Graph Contraction Paradigm

Graph contraction is a useful technique that was first applied in parallel algo-
rithms. The idea of this technique is simple: Given a graph G and a problem P to
be solved on G, identify (edge-)disjoint subgraphs of G and replace each of them
with a smaller subgraph so that a solution of problem P on G can be derived
from a solution of P on the resulting graph G'. Recursively solve P on G' and
then compute a solution of P on G from the computed solution on G'.

Of course the recursion cannot continue indefinitely. That is, at some point
the algorithm has to stop calling itself recursively and solve problem P directly.
Thus, a contraction-based algorithm A can be divided into two parts: (1) an
algorithm A; that constructs graph G’ from graph G, calls algorithm A recur-
sively to solve problem P on graph G', and then computes a solution of P on G
from the computed solution on G'; (2) an algorithm A, that solves problem P
without calling algorithm A. Algorithm A itself is merely a wrapper that decides
which of the two algorithms, A; or Ay, to apply to the current input graph. For
large inputs, it calls algorithm 4;. For small inputs, it invokes algorithm As,
thereby stopping the recursion.

The efficiency of the algorithm depends on a number of factors. Clearly the
I/O-complexities of algorithms A; and A, have a strong influence on the I/0-
complexity of algorithm A. The second important question is how many levels
of recursion are needed before algorithm A stops the recursion by calling algo-
rithm A, instead of algorithm A;. The answer to this question is determined by
(1) the ratio between the sizes of graphs G’ and G and (2) the largest possible
size of graph GG so that applying algorithm As to graph G is more efficient than
adding another level of recursion by calling algorithm A; again. If graph G’ has
only a constant fraction of the vertices or edges of GG, a logarithmic number of
recursive calls are sufficient to reduce the size of the graph to a constant, so that
algorithm A, can solve problem P in O(1) I/Os at that point. If algorithm A,
is more efficient than algorithm A; for graphs of more than constant size, the
recursion can stop much earlier.



Procedure SEMIEXTERNALCONNECTIVITY

1: Load all vertices of G into main memory and mark each of them as being in its
own connected component (i.e., v¢(v) < v, where y¢(v) is a label that identifies
the connected component of G that contains v).

2: for every edge e € F do

3: if the two endpoints v and w of e are in different connected components then
4: Let v(v) and vy(w) be the component labels of v and w.

5: for every u € V do

6: if v(u) = y(v) or y(u) = y(w) then

7 () < min(y(v), 7(w))

8: end if

9: end for

10:  end if

11: end for

Algorithm 5.1
A semi-external algorithm for connectivity.

5.2 Connectivity

In this section we discuss three different algorithms for computing the connected
components of a graph G. Recall that a graph is connected if for any two vertices
v,w € G, there is a path from v to w in G. The connected components of a
graph G are its maximal connected subgraphs. The algorithms in this section
compute a labelling of the vertices of G so that two vertices have the same label
if and only if they belong to the same connected component of G.

The first algorithm we discuss computes the connected components of G
I/O-efficiently under the assumption that the vertices, but not the edges, of G
fit into main memory. Such an algorithm is often referred to as a semi-external
algorithm as opposed to a fully external algorithm, which assumes that neither
the vertex nor the edge set of G fits into main memory.

The second algorithm we discuss is fully external and uses graph contraction
to reduce the size of the vertex set of the graph by a factor of two from one level of
recursion to the next. As soon as |[V| < M, it calls the semi-external connectivity
algorithm to compute the connected components of G without recursing any
further.

Finally, the third algorithm is a variation on the second algorithm where
the semi-external connectivity algorithm is replaced with an I/O-efficient BFS-
algorithm. This allows the recursion to stop much earlier and therefore leads to
a more efficient algorithm.

A semi-external connectivity algorithm. If |V| < M, the connected com-
ponents of graph G can be computed in O(scan(|V| + |E|)) 1/Os using Algo-
rithm 5.1. The correctness of this algorithm is obvious. To see that the algorithm
takes a linear number of I/Os, observe that the vertices of G can be loaded into
main memory in O(scan(|V])) I/Os. After that, the outer loop requires a scan



Procedure EXTERNALCONNECTIVITY
1: if |[V| < M then
2:  Apply procedure SEMIEXTERNALCONNECTIVITY to compute the connected com-
ponents of G.
else
Compute the smallest neighbor w, for every vertex v € G.
5:  Compute the connected components of the subgraph H of G induced by
edges {v,w,}, v e V.
6:  Compress each of these connected components into a single vertex. Remove all
isolated vertices. Let G' be the resulting graph.
7. Recursively compute the connected components of G' using procedure EXTER-

NALCONNECTIVITY.

8:  Re-integrate the isolated vertices into G' and assign a unique label to each such
vertex.

9:  For every vertex v' € G' and every vertex v in the connected component of H
represented by v, let va(v) = vgr (v').

10: end if

Algorithm 5.2
A fully external algorithm for graph connectivity.

of the edge set of G (i.e., O(scan(|E|)) I/Os), and the inner loop is performed in
main memory without incurring any I/Os. Note that the algorithm as presented
here is inefficient in terms of the computation it performs in internal memory;
but it can easily be made efficient by representing the connected components
of G using a union-find data structure [13, Chapter 22] and labelling the vertices
only after all connected components have been identified.

A fully external connectivity algorithm. The first fully external connectiv-
ity algorithm was proposed by Chiang et al. [12] and is shown in Algorithm 5.2.
If |V| < M, the algorithm delegates the problem of computing the connected
components of G to procedure SEMIEXTERNALCONNECTIVITY. Otherwise it ap-
plies graph contraction to produce a graph G’ with at most half as many vertices
as G, recursively computes the connected components of G', and derives a la-
belling of the vertices of G that identifies the connected components of G from
the computed labelling of the vertices of G'. Before analyzing the I/ O-complexity
of procedure EXTERNALCONNECTIVITY, we show that it is correct.

Lemma 5.1. Let v : V — N be the component labelling computed by procedure
EXTERNALCONNECTIVITY. Then for any two vertices v,w € G, ya(v) = va(w)
if and only if v and w are in the same connected component of G.

Proof. We prove the lemma by induction on |V|. If |V| < M, the correctness of
procedure EXTERNALCONNECTIVITY follows from the correctness of procedure
SEMIEXTERNALCONNECTIVITY. So assume that |V| = k > M and that the algo-
rithm is correct for |V| < k. Let C4, ..., C, be the connected components of H,
and let G"” be the graph obtained from G by contracting each component C;



into a single vertex v;. That is, graph G’ is obtained from G" by removing all
isolated vertices. Since |V (G')| < |V, the recursive invocation of procedure EX-
TERNALCONNECTIVITY on graph G' produces a labelling of the vertices of G’
that identifies the connected components of G’ correctly. Thus, since every iso-
lated vertex of G" is assigned a unique label in Line 8 of the algorithm, the
labelling of the vertices of G" obtained in Line 8 identifies the connected com-
ponents of G" correctly. We have to show that the labelling of G computed in
Line 9 is correct.

So let v, w € G, and assume first that v and w belong to the same connected

component of G. Then there exists a path P = (v = xg,x1,...,2; = w) from v
to w in G. It suffices to show that for every edge {z;,zit1} € P, va(z;) =
YG(@iv1) because then 76 (v) = ya(zo) = ya(rr) = -+ = yalzr) = ya(w). I

vertices x; and x;11 belong to the same connected component of H, yg(x;) =
Ya(xit1) because z; and x;yq receive their labels from the same vertex in G".
Otherwise let z; € C, and z;41 € Cj, h # j. Since edge {z;, zit1} € G, graph G
contains edge {vp,v;}. Thus, vertices vy and v; belong to the same connected
component of G", so that ya» (v,) = v (v;) and hence yg(z;) = Yo (Tit1)-
Now assume that vg(v) = y¢(w), and let v € Cp, and w € C;. If Cy, = C},
there exists a path from v to w in Cp, C H C G. If Cp, # Cj, yar (vn) = ya(v) =
Ya(w) = ygr(v;). That is, vertices vy and v; belong to the same connected
component of G"'. In particular, there exists a path P" = (v, = yo,y1,---,yr =
v;) from vy, to vj in G". Let jo, ..., jr be indices so that for 0 < i < k, vertex y;
represents component C;, of H. Since edge {y;,yit1} € G", for 0 < i < k,
graph G contains edges e; = {a;,b;}, a; € Cj; and b; € Cj,_,. Since vertices b;
and a;41 are in the same connected component Cj, ., of H, for 0 <i < k —1,
there exists a path P, from b; to a;41 in Cj,, . Similarly, there exist paths
and Py from v to ag in Cj; and from bz_; to w in Cj,. Hence, there exists a
path P = Phjoego Pioejo---0 P, yoep_ 10 P, from v to w in G, so that v
and w belong to the same connected component of G. O

If |V| < M, procedure EXTERNALCONNECTIVITY computes the connected
components of G in O(scan(|V|+|E|)) I/Os by invoking procedure SEMIEXTER-
NALCONNECTIVITY. Otherwise Lines 4-9 of the algorithm are executed, whose
I/O-complexity we analyze next.

To find the smallest neighbor w, of every vertex v, scan the edge set of G,
replace every edge {v,w} € E with two directed edges (v,w) and (w,v), and
sort the resulting set of directed edges lexicographically. The result is a collection
of sorted adjacency lists of the vertices of G. Scan this collection of adjacency
lists and select vertex w, for every vertex v € G as the first vertex in the
adjacency list of v. Computing the smallest neighbors of all vertices of G in this
manner takes O(sort(|E|)) I/Os. To produce the edge set of graph H, sort and
scan the set of edges {v,w,}, v € G, to remove duplicates. This takes another
O(sort(|V])) I/Os.

The most interesting part of the algorithm is the computation of the con-
nected components of graph H because it has to be done without using procedure
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Figure 5.1
(a) A graph G with its vertices numbered. (b) The graph H induced by this numbering.
(¢) The graph H' whose connected components are cycles and represent the connected
components of H. Every vertex in H' is labelled with the number of its corresponding
vertex in H.

EXTERNALCONNECTIVITY. To do this, the algorithm makes use of the following
fact.

Lemma 5.2. The connected components of graph H are trees. That is, graph H
is a forest.

Proof. Assume for the sake of contradiction that graph H contains a cycle C' =
(zo,z1,...,2, = xo). Since graph H contains no parallel edges, k¥ > 3. Since
every vertex v € G has at most one incident edge {v,w,} in H, w.l.o.g. zj41 =
Wy, , for 0 < i < k. Then the existence of edge {z;_1,2;}, for 0 < i < k — 1,
implies that ;1 > x;41. Similarly, zx_1 > ;. If k is even, this implies that
Tg > Tg > --+ > xp = T, which leads to the desired contradiction. If k is odd,

we arrive at a contradiction by observing that xg > 29 > --- > 21 > 1 >
r3 > --- > xp = x9. Hence, graph H contains no cycles, and all its connected
components are trees. O

Using Lemma 5.2, the connected components of H can be found as follows:
Apply the Euler tour technique to H, in order to transform each tree T in H into
a cycle Cp (see Figure 5.1). Let H' be the resulting graph. Every vertex v’ in a
cycle Cr corresponds to a vertex v in T'. During the construction of H' from H,
vertex v’ can easily be labelled with the ID of vertex v. Cycles Cr are the
connected components of H', so that a labelling of the connected components
of H can be obtained from a labelling of the connected components of H' as
follows: Scan the set of vertex-label pairs (v', g (v')) and replace each such pair
with the pair (v, vy (v) = vg (v")), where v is the vertex in H represented by v'.
Now sort and scan the resulting list of vertex-label pairs to remove duplicates.

To compute the connected components of H’', a procedure similar to the
list ranking algorithm from Section 2 can be used: If |[H'| < M, load H' into
main memory and compute its connected components using an efficient internal
memory algorithm. Otherwise find a large independent set I of H' and remove



the vertices in I from H', where removing a vertex v with incident edges {v, 2}
and {v,y} means to remove vertex v from the vertex set of H' and replace
edges {v,z} and {v,y} with an edge {z,y} connecting the neighbors of v. The
removal of the vertices in I from H' then results in a collection of smaller cycles.
Recursively find the connected components of this compressed graph and re-
integrate the vertices in I, assigning to every vertex in I the component label
of one of its neighbors. The details of this procedure are similar to those of
Algorithm 2.2, so that it takes O(sort(|H'|)) = O(sort(|V])) I/Os.

Given a labelling of the connected components of H, graph G' is now con-
structed in two phases: First scan the vertex set of G and create a list V' =
{vn (v) : v € G}. Sort and scan this list to remove duplicates. The result is the
vertex set of G'. Now sort the vertices of G by their IDs and the edges of G by
their first endpoints. Scan the two sorted lists to replace the first endpoint v of
each edge {v, w} with its component label v (v). Repeat this procedure, sorting
the edges by their second endpoints to replace these endpoints with their com-
ponent labels. Finally sort and scan the resulting list of edges {yu (v), v (w)}
to remove duplicates and loops. This first phase of the construction of G' takes
O(sort(|V|+]E])) I/Os and produces graph G' with its isolated vertices present
(i.e., graph G" in the proof of Lemma 5.1).

To remove all isolated vertices from G’, scan the edge set of G' and append
vertices v and w to a list X, for every edge {v,w} € E(G"). Sort the vertex set
of G’ and list X and scan the two sorted lists to remove every vertex from V(G')
that does not appear in X . This takes another O(sort(|V|+ |E|)) I/O0s. In total,
the construction of G' from G takes O(sort(|V | + |E|)) I/Os.

After recursively computing the connected components of G', the algorithm
has to assign unique labels to the isolated vertices that were removed from G’ and
then derive a component labelling of G from the resulting labelling of graph G"'.
To label the isolated vertices of G", sort the vertices of G' by their component
labels and then scan the vertex set of G’ and the set of isolated vertices to assign
to each isolated vertex a label that has not been assigned to any other vertex.
Since the ID of a vertex in G" is in fact the label of a connected component
in H, the resulting set of vertex-label pairs can be interpreted as pairs (yu,va)
mapping a component label in H to a component label in G. Now sort the
vertices of G by their component labels in H, sort the list of pairs (ym,va) by
their first components, and finally scan both lists to replace the component label
v (v) of every vertex v € G with the corresponding component label in G. This
whole procedure takes O(sort(|V|+|E|)) I/Os and derives a component labelling
of G from the given component labellings of H and G'.

From this discussion we obtain the following recurrence describing the 1/0-
complexity of procedure EXTERNALCONNECTIVITY:

O(scan(|V| + |E])) if |VI<M

Z(VI, 1) = {(’)(sort(V +IED) + Z(V(G)LIE@G)) i V] > M

Using this recurrence, we can show the following lemma.



Lemma 5.3. The I/O-complexity of procedure EXTERNALCONNECTIVITY is
(V1. 1E[) = O(sort(|V]) + sort(| E]) log,y (|V'[/M)).

Proof. If we can show that |V(G')| < |V]/2, the lemma follows from the above
recurrence. To prove that the former is true, observe that every vertex in G’
represents a connected component of H that contains at least two vertices. This
is true because every vertex in G that is not isolated in G has at least one incident
edge in H; an isolated vertex in G is also isolated in G' and is hence removed
before recursively invoking procedure EXTERNALCONNECTIVITY on G’. Since
the connected components of H define a partition of the vertex set of G, it now
follows immediately that |V (G')| < |V|/2. O

The following theorem is an immediate consequence of Lemmas 5.1 and 5.3.

Theorem 5.4. The connected components of an undirected graph G = (V, E)
can be computed in O(sort(|V|) + sort(|E|) log,(|V|/M)) I/Os.

An improved connectivity algorithm. In internal memory, the connected
components of a graph can be computed in linear time using breadth-first
search (BFS). Since the best known BFS-algorithm for undirected graphs is
less efficient than procedure EXTERNALCONNECTIVITY, except for dense graphs,
this idea does not directly lead to an improved connectivity algorithm. How-
ever, Munagala and Ranade [28] observed that the I/O-complexity of proce-
dure EXTERNALCONNECTIVITY can be improved by using an I/O-efficient BFS-
algorithm instead of procedure SEMIEXTERNALCONNECTIVITY to stop the re-
cursion of procedure EXTERNALCONNECTIVITY. In particular, they present a
BFS-algorithm for undirected graphs that takes O(|V| + sort(|E|)) 1/O0s. We
discuss this algorithm in Section 6.2. For |V| < |E|/B, the I/O-complexity
of the algorithm is O(sort(|E|)). In order to reduce the size of the vertex set
of G to |E|/B, log,(|V|B/|E|) recursive invocations of procedure EXTERNAL-
ConNECTIVITY suffice, so that the improved algorithm takes O(sort(]V]) +
sort(| B logy (V| B/|E|)) 1/Os.

Theorem 5.5. The connected components of an undirected graph G = (V, E)
can be computed in O(sort(|V|) + sort(|E|) log,(|V|B/|E|)) 1/0s.

Remark. Munagala and Ranade improve the I/O-complexity of their connec-
tivity algorithm even further, to O(sort(|V]) + sort(|E|) log, log,(|]V|B/|E|)).
The idea is to group the contraction steps into superphases. Each superphase
achieves a contraction of the vertex set of G by a factor greater than two and
takes O(sort(|E])) I/Os. To achieve the latter, the contraction steps in each
superphase operate on a well-chosen subset of the edges of the graph. The inter-
ested reader may refer to [28] for details.

5.3 Biconnectivity

Tarjan and Vishkin [30] propose a parallel algorithm for computing the bicon-
nected components of a graph G = (V, E). The algorithm constructs an auxiliary



graph H with |E| vertices and O(]E|) edges so that the connected components
of H correspond to the biconnected components of G and then computes the
connected components of H. Chiang et al. [12] show that the construction of the
auxiliary graph H can be carried out in O(sort(]V| + |E|)) I/Os. This leads to
the following corollary of Theorem 5.5. For details see [12, 30].

Theorem 5.6. The biconnected components of an undirected graph G = (V, E)
can be computed in O(sort(|V|) + sort(|E|) log, B) 1/0s.

5.4 Minimum Spanning Tree

Now let us turn to another problem that can be solved by refining the ideas
from Section 5.2: computing a minimum spanning tree of a connected undirected
graph G = (V, E). A spanning tree of G is a tree T = (V, E'), E' C E. That is,
tree T contains all vertices of G; its edge set is a subset of the edges of G. Given
an assignment w : E — R of weights to the edges of G, tree T is a minimum
spanning tree (MST) of G if there is no spanning tree of G whose total edge
weight is less than that of T'.

The first step towards computing an MST of G is to observe that Algorithms
5.1 and 5.2 can easily be augmented to obtain procedures SEMIEXTERNALST
and EXTERNALST that compute a spanning tree of G. The computed spanning
tree is not necessarily a minimum spanning tree. The required modifications are
the following:

In addition to relabelling the vertices in G, procedure SEMIEXTERNALST
adds edge {v,w} to the spanning tree whenever it finds that the endpoints v
and w of the current edge {v,w} are in different connected components.

Procedure EXTERNALST constructs a spanning tree 7' of G from graph H
and the spanning tree 7" produced by the recursive invocation of the algorithm
on G'. The edge set of T' contains all edges of graph H as well as one edge {v, w}
per edge {v,,w'} € T', where v and w are in the connected components of H
represented by vertices v’ and w'.

We leave the proof that procedure SEMIEXTERNALST computes a spanning
tree of T as an exercise and show the following lemma.

Lemma 5.7. Let T be the graph computed by procedure EXTERNALST. Then
T is a spanning tree of G.

Proof. We prove the lemma by induction on |V|. If |V| < M, graph T' is com-
puted using procedure SEMIEXTERNALST. Graph T is a spanning tree of GG, by
the correctness of procedure SEMIEXTERNALST. So assume that |V| =k > M
and that procedure EXTERNALST computes a spanning tree for every graph
G' = (V',E') with |V'| < k.

We have to show that the graph 7' computed for graph G is connected and
does not contain cycles. So let v and w be two vertices of G, let C', ..., C, be the
connected components of graph H, and let v € Cj, and w € C};. If C}, = C}, there
exists a path from v to w in C, C H C T. If Cy # Cj, consider the graph T"



computed by recursively invoking procedure EXTERNALST on the compressed
graph G’. By the induction hypothesis and because |V (G')| < |V, graph T" is
a spanning tree of G'. Hence, there exists a path P' = (v, = zo,21,...,2 =
vj) from vy, to v; in T'. Let jo,...,jr be indices so that vertex z; represents
component C;;, of H, for 0 < ¢ < k. Since graph T' contains edges {z;, i1},
for 0 < i < k, graph T as constructed by procedure EXTERNALST contains
an edge e; = {a;,b;}, where a; € Cj, and b; € Cj,,,, for 0 < i < k. Let
Fy be a path from v to ag in Cj,, P be a path from b;_; to w in Cj,, and
P; be a path from b;_; to a;, for 0 < i < k. Since H C T, the path P =
PyoegoPioejo---0P,_10e,_10 P, is apath from v to w in T. As this is true
for every pair of vertices v, w € G, graph T is connected.
Now assume for the sake of contradiction that graph 7T contains a cycle
C = (zg,%1,...,2% = zg). Cycle C can be split into maximal subpaths Py, ..., P
so that the vertices of each subpath P; belong to the same connected compo-
nent C;; of H. By Lemma 5.2, the connected components of H are trees, so that
the partition of cycle C contains at least two paths P; and P». An edge in C con-
necting two vertices in different subpaths P; and P;y; (or P, and P;) has its two
endpoints in Cj, and Cj,,, (or Cj, and Cj,). By the construction of 7' and since
C C T, this implies that graph T’ contains a cycle C' = (vj,,vj,,..., 0,05 ).
However, by the induction hypothesis, graph T” is a tree, and hence does not
contain any cycles. This leads to the desired contradiction, so that T is a tree.
O

Only a few modifications to procedures SEMIEXTERNALST and EXTER-
NALST are required to make them compute minimum spanning trees of their
input graphs. We describe these modifications below and refer to the resulting
algorithms as procedures SEMIEXTERNALMST and EXTERNALMST.

Instead of inspecting the edges of GG in an arbitrary order, procedure SEMIEX-
TERNALMST inspects the edges sorted by increasing weights. This increases
the I/O-complexity of the algorithm to O(scan(|V]) + sort(|E|)) because the
edges have to be sorted before scanning the edge set. With this modification,
procedure SEMIEXTERNALMST becomes a semi-external version of Kruskal’s
algorithm [13, Section 24.2] and hence computes an MST of G.

Procedure EXTERNALMST differs from procedure EXTERNALST in a num-
ber of places; but all modifications are simple:

(1) During the construction of H from G, edge {v,w,} is chosen as the
minimum-weight edge incident to v instead of the edge connecting v to its small-
est neighbor. It is easy to verify that this modification maintains the invariant
that H is a forest.

(2) Every edge {v',w'} € G’ represents a set of edges in G between the two
connected components of H represented by v’ and w'. The weight of edge {v', w'}
is chosen as the minimum weight of all edges in this set.

(3) When adding an edge {v,w} to T for an edge {v',w'} € T, then {v,w}
is chosen as an edge of minimum weight so that vertices v and w belong to the
connected components of H represented by v' and w'. In particular, edges {v, w}
and {v',w'} have the same weight.



We leave it as an exercise to verify that these modifications do not increase
the I/O-complexity of procedure EXTERNALMST. By Lemma 5.2, the graph T
computed by the algorithm is a spanning tree of G. Next we show that it is a
minimum spanning tree.

Lemma 5.8. The graph T computed by procedure EXTERNALMST is a mini-
mum spanning tree of G.

Proof. We prove the lemma by induction on |V|. If |V| < M, the correctness of
procedure EXTERNALMST follows from that of procedure SEMIEXTERNALMST
because it uses this procedure to compute T'. So assume that |V| =k > M and
that procedure EXTERNALMST computes an MST for any graph with less than
k vertices.

First we show that graph G has an MST T so that H C T. Assume the
contrary, and let T" be an MST of G that contains a maximal number of edges
of H. Since H ¢ T, there exists an edge {v,w,} € H that is not in 7. Adding
edge {v,w,} to T creates a cycle C' in T. Since graph H is a forest, cycle C
contains an edge {z,y} ¢ H. Assume w.l.o.g. that y is on the path from z to v
in T, and choose edge {z,y} so that the path P = (y = z¢,z1,...,21 = v)
from y to v in T contains only edges of H. Since {v, w,} is the edge of minimum
weight incident to v chosen during the construction of graph H, edge {xx_1, x }
has weight at least that of edge {v, w,}. Moreover, edge {zy_1,zx} can only be
chosen by its two endpoints as a minimum weight edge to be added to H, and
vertex xp = v chose edge {v,w, }. Hence, edge {z;_1, )} is the minimum weight
edge chosen for vertex 1. Using induction, we obtain that for 0 < i < k, edge
{z;,z;+1} is the minimum weight edge chosen for vertex z; and that the weight
of this edge is no less than that of edge {v, w,}. Since edge {z,y} is incident to
vertex y = xg, its weight is no less than that of edge {zo,z;}, which is no less
than that of edge {v,w,}. Thus, replacing edge {z,y} with edge {v,w,} in T
produces a spanning tree Ty of weight no more than that of T and containing
one more edge of H than T'. This contradicts the choice of T', so that H C T'.

It remains to show that the algorithm adds the correct edges to H in order to
construct tree T'. So assume that 7" is not an MST, and let T, be an MST of G so
that H C Ty. Contracting every connected component of H into a single vertex
transforms T' into the tree T’ computed for G' by the recursive invocation of
procedure EXTERNALMST. Tree Tj is transformed into another spanning tree T
of G'. All edges in Tj and T" have the same weights as their corresponding edges
in Ty and T', and the edges in H are shared by Ty and T'. Hence, the difference
between the weights of Ty and T is the same as the difference between the weights
of Tj and T'. By the induction hypothesis, 7" is an MST of G'. Thus, T has
a weight no less than that of T', so that the weight of Ty is at least that of T.
Hence, T is an MST of G. O

Since the I/O-complexity of procedure EXTERNALMST is the same as that
of procedure EXTERNALCONNECTIVITY, the following theorem now follows from
Theorem 5.4 and Lemma 5.8.



Theorem 5.9. A minimum spanning tree of a connected undirected graph G =

(V,E) can be computed in O(sort(|V|) + sort(|E|) log,(|V|/M)) 1/O0s.

Now it would be nice if the same trick as for the connectivity algorithm
could be applied to stop the recursion in procedure EXTERNALMST already
after log,(|V|B/|E|) recursive calls. That is, we are looking for an algorithm
that computes a minimum spanning tree of a graph G = (V,E) in O(|V] +
sort(|E])) I/0s. The BFS-algorithm of Munagala and Ranade [28] cannot be
used because a BFS-tree of GG is most likely not an MST.

Arge et al. [4] present an I/O-efficient version of Prim’s algorithm [13, Sec-
tion 24.2] that computes an MST of G in the desired number of I/Os. As Prim’s
algorithm, the algorithm of [4] maintains the invariant that the current set of
edges defines a spanning tree of a subset of the vertices of G and that this
spanning tree is a subgraph of a minimum spanning tree of G. To extend the
spanning tree, the edge of lowest weight connecting a vertex in the spanning
tree to a vertex not in the spanning tree is added to the tree. This operation is
repeated until a minimum spanning tree of G is obtained.

More precisely, the algorithm starts by choosing one vertex r to be in the
spanning tree, while all other vertices are not in the spanning tree. Then the ad-
jacency list of r is retrieved, and for every edge {r, z} incident to r, an edge (r, x)
is inserted into a priority queue @) storing edges (v, w) so that v € T'. The priority
of an edge (v,w) € @ is the same as the weight of edge {v,w} in G.

To find the next edge to be added to the current spanning tree T, the
edge (u,v) of lowest weight is retrieved from @. If this edge connects two vertices
in the spanning tree, it is discarded, and the next edge is retrieved. Otherwise
edge {u,v} is added to T. Since u € T, vertex v was not in T before adding
edge {u,v} to T. To update @, the adjacency list of v is retrieved, and for every
edge {v,w}, u # w, incident to v, an edge (v, w) is inserted into priority queue Q.

The correctness of the algorithm follows from that of Prim’s algorithm be-
cause it maintains the invariant that priority queue @ stores all edges connecting
vertices in T to vertices not in 7. The main difficulty is to find an I/O-efficient
method to test whether an inspected edge connects two vertices in 7" or a vertex
in T with a vertex not in T'. Under the assumption that no two edges have equal
weight® this test can be carried out using priority queue Q: Observe that if the
two endpoints u and v of an inspected edge (u,v) are in T, but {u,v} ¢ T,
vertex u has inserted edge (u,v) into @), and vertex v has inserted edge (v, u)
into (). Hence, if u and v are both in T, and the current DELETEMIN opera-
tion retrieves edge (u,v), the edge retrieved by the next DELETEMIN operation
is (v,u). Thus, it suffices to perform two DELETEMIN operations. If these two
operations retrieve two edges with the same endpoints, both edges are discarded.
Otherwise the first edge is added to the spanning tree, and the second edge is
re-inserted into ().

An important detail to be observed is the fact that when edge {u, v} is added
to the spanning tree, edge (v, u) is excluded from the set of edges in the adjacency

* This can easily be achieved by defining new edge weights w’(e) = (w(e), e) and taking
the lexicographical order as the natural order on these edge weights.



list of v that are inserted into ). This is important because edge (u,v) has just
been retrieved from @), so that the above test would fail when edge (v,u) is
retrieved by a subsequent DELETEMIN operation.

To analyze the I/O-complexity of the algorithm, observe that it takes O(|V |+
scan(|E|)) I/Os to retrieve the adjacency lists of all vertices of G. Besides retriev-
ing the adjacency lists, the algorithm performs O(|E|) priority queue operations:
O(|E|) INSERT operations are performed to insert every edge of G into @) for the
first time. All other priority queue operations can be grouped into sequences of
either two DELETEMIN operations or two DELETEMIN operations followed by
the re-insertion of the edge retrieved by the last DELETEMIN operation. Each
such sequence of priority queue operations reduces the number of edges stored
in @ by at least one, so that at most O(]E|) such sequences are executed. Since
each sequence has length at most three, the total number of priority queue op-
erations is O(|E|), which take O(sort(|E])) I/Os to be performed. Hence, the
total I/O-complexity of the algorithm is O(|V'| + sort(|E|)).

Using the above algorithm instead of procedure SEMIEXTERNALMST in pro-
cedure EXTERNALMST, the recursion can stop after log,(|V|B/|E|) recursive
calls, so that we obtain the following result.

Theorem 5.10. A minimum spanning tree of a connected undirected graph G =
(V,E) can be computed in O(sort(|V|) + sort(|E|) log,(|V|B/|E|)) 1/0s.

Remark. Similar to the connectivity algorithm of [28], the complexity of the
MST-algorithm can be reduced to O(sort(|V|) + sort(|E|) log, log, (|[V|B/|El)).
This improvement is achieved using essentially the same approach as in [28];
but a number of interesting new ideas are used. The interested reader may refer

to [4] for details.

5.5 Graph Contraction and Sparse Graphs

Observe that the algorithms in Sections 5.2 and 5.4 are optimal in the num-
ber of vertices in the graph, but not in the number of edges. This is due to
the fact that graph G' has at most half as many vertices as graph G, while
no sufficiently good upper bounds on the number of edges in G’ can be given.
However, if graph G is sparse, the I/O-complexity of procedures EXTERNAL-
CoNNECTIVITY and EXTERNALMST is reduced to O(sort(|V])). In particular,
we say that graph G is sparse if |E(H)| = O(|V(H)|) for every graph H that
can be obtained from G through a series of edge contractions. Important classes
of sparse graphs include planar graphs, grid graphs, and graphs of bounded
treewidth. Since graph G’ is obtained from graph G through a series of edge
contractions, the sparseness of G implies that |[E(G")| = O(|[V(G")|), so that the
I/O-complexity of procedures EXTERNALCONNECTIVITY and EXTERNALMST
is now O(sort(|V]) + sort(|V|/2) + sort(|V|/4) + ...) = O(sort(]V])). Hence, we
obtain the following result.

Theorem 5.11. For every sparse graph G = (V, E), the connected components
or a minimum spanning tree of G can be computed in O(sort(|V])) I/Os. The
latter exists only if G is connected.



6 Breadth-First Search and Depth-First Search

Breadth-first search (BFS) and depth-first search (DFS) are probably among
the most fundamental primitives used to study the structure of a given graph.
Sequential algorithms for finding the biconnected components [29] and tricon-
nected components [18] of a graph and the first linear-time algorithm for pla-
narity testing [19] are based on depth-first search. Breadth-first search can be
seen as an unweighted version of the single source shortest path problem and
besides that has been employed for example in algorithms for computing planar
separators [23, and many more]. The popularity of BFS and DFS in sequential
graph algorithms is not surprising, as these procedures can be carried out in
linear time using extremely simple algorithms; yet their output provides valu-
able information about the structure of the graph. If it is possible to design
I/O-efficient algorithms for BFS and DFS, then there is hope to obtain I/O-
efficient versions of many sequential graph algorithms based on BFS and DFS.
Unfortunately no generally I/O-efficient BFS or DFS-algorithms are known. Be-
fore discussing what can be done, let us see what we can establish using rather
simple observations.

First, we should not hope to obtain a linear-I/O algorithm for either BFS or
DFS because the list ranking problem can be solved by performing BFS or DFS
from the head of the list. That is, BFS and DFS require 2(perm(N)) I/Os. We
state this as a corollary in Section 11, which deals with lower bounds.

Second, the internal memory algorithms are not 1/O-efficient. In particular,
they perform O(|V| + |E|) I/Os in the worst case: At least one I/O is required
to access the adjacency list of each vertex. Every edge to be explored requires
to check whether the other endpoint of the edge has been visited before. This
requires one I/0 in the worst case, so that the algorithm performs one 1/O per
edge.

6.1 Directed BFS and DFS

The first I/ O-efficient algorithms for BFS and DFS we discuss work for directed
graphs. While no better DFS-algorithm is known for undirected graphs, sim-
pler and faster BFS-algorithms for undirected graphs exist. We discuss these
algorithms in Sections 6.2 and 6.3.

The buffered repository tree. The buffered repository tree (BRT) [11] is the
key data structure used to obtain I/O-efficient algorithms for BFS and DFS in
directed graphs. A BRT stores key-value pairs (k, v) and supports two operations:
INSERT((k,v)) and EXTRACT(k). Operation INSERT inserts the given key-value
pair into the BRT and takes (’)(% log, %) I/0Os. Operation EXTRACT removes
all key-value pairs with key k from the BRT and returns them. This operation
takes O(log,(N/B)) 1/Os. The I/O-bounds of both operations are amortized.

The BRT is a (2,4)-tree T that stores blocks of key-value pairs at its leaves,
sorted by increasing keys. Every internal node of T has a buffer of size B. The
root of T is held in main memory. All other nodes are stored on disk.



An INSERT operation inserts the new pair into the root buffer. If there is room
for the new pair in the root buffer, this completes the operation and does not
incur any I/Os. Otherwise the root buffer is emptied after inserting the new pair.
To do this, the elements in the buffer are distributed to the appropriate children
of the root and inserted into their buffers. This takes O(1) I/Os. But it may also
cause the buffers of some of the children to overflow. If this happens, these buffers
are emptied recursively. Once this recursive buffer-emptying process reaches the
leaf level, it may be necessary to rebalance the tree. We discuss rebalancing
below.

An EXTRACT operation traverses the whole subtree of T' between the two
paths to the leftmost and rightmost leaves of T' storing elements with key £k,
including these two paths. At every visited leaf, the elements with key k are
extracted. At every visited internal node, the buffer of the node is inspected,
and all elements with key k are extracted. Then the empty leaves and all their
ancestors having only empty leaves as descendants are removed from 7', and T
is rebalanced.

The following two lemmas state the I/O-complexities of INSERT and EXx-
TRACT operations if the I/Os spent on rebalancing T are ignored. We analyze
the cost of rebalancing below.

Lemma 6.1. An INSERT operation on a BRT that stores N elements takes
O(% log, %) I/0s amortized, excluding the 1/0s required for rebalancing.

Proof. Since the I/Os required for rebalancing are excluded from the analysis, it
suffices to observe that the height of a BRT storing N elements is O(log,(N/B))
and that emptying a buffer of size X > B takes O(X/B) I/Os. Thus, the cost of
the buffer emptying operation can be charged to the X elements in the buffer,
charging every element for O(1/B) I/Os. Every inserted element is charged for
O(1/B) 1/0s per level, so that the I/O-bound follows. O

Lemma 6.2. An EXTRACT operation on a BRT that stores N elements takes
O(log2 % + %) I/Os, excluding the I/Os required for rebalancing. K denotes the
number of reported key-value pairs.

Proof. An EXTRACT operation traverses (’)(log2 % + %) nodes in the BRT:
O(log,(N/B)) nodes on the leftmost and rightmost paths bounding the range of
elements with key k, and O(K/B) nodes between those paths. It is easy to see
that visiting a single node costs O(1) I/Os, so that the I/O-bound follows. O

In order to finish the analysis of the buffered repository tree, we have to count
the I/Os spent on rebalancing T'. The rebalancing after an INSERT operation is
done in the same manner as on a buffer tree [2] (see the chapter by Lars Arge).
The rebalancing after an EXTRACT operation has to be done more carefully
because it seems difficult to rebalance T after the whole subtree of extracted
elements has been removed. Therefore, instead of removing all leaves in the
subtree immediately, the leaves that become empty after an EXTRACT operation
are marked for deletion. Then the marked leaves are deleted one by one, and the



tree is rebalanced after every deletion. Since the creation or deletion of a leaf is
triggered by the insertion or deletion of 2(B) elements, the total number of leaf
creations and deletions is O(N/B). As shown in [20], this implies that the total
number of node splits, merges and fusions is bounded by O(N/B). Since each
such operation can be performed in O(1) I/Os, the total number of I/Os spent

on rebalancing T is O(N/B), and we obtain the following lemma.

Lemma 6.3. The number of 1/Os spent on rebalancing an initially empty BRT
during a sequence of N INSERT and EXTRACT operations is O(N/B).

Now the following theorem is an immediate consequence of Lemmas 6.1, 6.2,
and 6.3, after observing that the O(K/B) I/Os spent by an EXTRACT operation
on reporting K key-value pairs can be charged to the K INSERT operations that
inserted the reported key-value pairs into T'. This does not increate the amortized
I/O-complexity of INSERT operations by more than a constant factor.

Theorem 6.4. An initially empty BRT supports INSERT and EXTRACT opera-
tions in O (5 log, &) and O(log,(N/B)) 1/Os amortized, where N is the total
number of INSERT operations performed on T.

Directed DFS. Having the BRT at our disposal, we can now proceed to the
discussion of an I/O-efficient DFS-algorithm for directed graphs by Buchsbaum
et al. [11]. The algorithm proceeds in the same manner as the internal memory
algorithm: It maintains a stack storing the vertices on the path from the source s
of the search to the current vertex v in the constructed DFS-tree. When visit-
ing v, it explores the previously unexplored out-edges of v and tests whether
the other endpoint w of such an edge (v, w) has been visited before. If not, v is
declared to be w’s parent in the constructed DFS-tree, w is pushed on the stack,
and the same procedure is applied to w. If w has been visited before, the next
out-edge of v is explored. If no unexplored out-edges remain, vertex v is removed
from the stack, and the procedure backtracks to v’s parent.

As pointed out earlier, this algorithm spends one I/O per vertex and one
I/O per edge. In general, it is not known how to amend the former; but the
following solution reduces the amortized cost per edge to O (4 log, [V|) 1/0s,
at the expense of paying O(log, |V|) I/Os per vertex, which results in a DFS-
algorithm that takes O((|V| + |E|/B)log, |V|) I/Os.

The algorithm makes use of the following data structures:

— A BRT T storing edges of G. Each edge has its source vertex as its key.
Tree T is initially empty.

— A priority queue P(v) per vertex v € G, which stores the out-edges of v that
have not been explored yet and whose other endpoints have not been visited
before the last visit to v.

An important invariant maintained by the algorithm is that at any time, for any
vertex v, the edges that are stored in P(v) and are not stored in T are the edges
from v to unvisited vertices. When vertex v is visited either for the first time



or by backtracking from a descendant of v, an EXTRACT operation is performed
on T to extract all edges with key v. These edges are deleted from P(v) using
DELETE operations. After that, priority queue P(v) stores only edges from v to
unvisited out-neighbors. If P(v) is empty, v has no unvisited out-neighbors left,
and the search backtracks. Otherwise the next edge to be explored is extracted
using a DELETEMIN operation. Let this edge be (v, w). Then vertex w is pushed
on the stack, the set of in-edges of w are retrieved, and every edge (z,w) in
this set is inserted into 7" with key z. This maintains the invariant for every
in-neighbor x of w and prevents the algorithm from exploring edge (x,w) when
vertex x is visited.

The correctness of the algorithm is obvious, as it explores an edge if and
only if the other endpoint of the edge has not been visited before. We split the
analysis of the I/O-complexity of the algorithm into I/Os spent on updates of
the BRT, priority queue operations and accessing adjacency lists.

Accessing the adjacency lists of all vertices of G takes O(|V| + |E|/B) 1/0s
because the adjacency list of every vertex is accessed exactly once. The number of
priority queue operations performed by the algorithm is O(|E|): Initially, every
edge (v, w) of G is inserted into exactly one priority queue, namely P(v). After
this initialization, only DELETEMIN and DELETE operations are performed on
any priority queue, so that only |E| of these operations can be performed before
all priority queues are empty. Hence, using buffer trees [2] to implement the
priority queues, the algorithm would spend O(sort(|E|)) I/Os on all priority
queue operations it performs, if there were room to keep a buffer of size B per
priority queue in main memory. However, there are |V| different priority queues,
and in general we have to assume that |V|B > M. Therefore, the algorithm
creates a buffer of size B only for the priority queue P(v) of the current vertex v.
Before making another vertex the active vertex, the buffer of priority queue P(v)
is emptied, even if it contains only few elements. This costs O(1) 1/Os per
visit to vertex v. Fortunately the DFS-algorithm performs an inorder traversal
of the constructed DFS-tree, so that the number of visits to different vertices
is O(]V]). Hence, the total number of I/Os spent on priority queue operations
is O(|V| + sort(|EJ)).

Finally, the algorithm performs O(|E|) INSERT operations and O(|V]) Ex-

TRACT operations on the BRT. Each INSERT operation takes O(% log, ‘%‘) =
O(4 log, |V]) I/Os amortized. Each EXTRACT operation takes O(log, [V]) I/Os
amortized. Hence, the total number of I/Os spent on updating the BRT is

O((JV| + |E|/B) log, |V]). We obtain the following result.

Theorem 6.5. A DFS-tree of a directed graph G = (V, E) can be computed in
O((IV] + |E|/B)log, |V|) 1/0s.

Directed BFS. In order to obtain an I/O-efficient BFS-algorithm for directed
graphs, it suffices to modify the above algorithm so that it uses a queue instead
of a stack to determine the order in which the vertices of G are visited. That is,
when visiting a vertex v, the out-edges of v leading to visited neighbors of v are



extracted from 7' and deleted from P(v). The remaining edges in P(v) are re-
trieved using a series of DELETEMIN operations. For every retrieved edge (v, w),
vertex v is declared to be the parent of w, vertex w is appended to the end of the
queue, and all in-edges of w are inserted into the BRT. Once priority queue P(v)
has been emptied in this manner, the next vertex to be visited is retrieved from
the head of the queue.

The analysis of the algorithm is the same as for DFS after observing that the
number of visits to different vertices is again O(NN) because now every vertex is
visited exactly once. (The algorithm does not backtrack.) Hence, we obtain the
following result.

Theorem 6.6. A BFS-tree of a directed graph G = (V, E) can be computed in
O((IV|+ |E|/B)log, [V]) 1/0s.

Remark. We leave it as an exercise to verify that for BFS, the use of priority
queues P(v), v € V, can be avoided altogether because every vertex is visited
exactly once.

6.2 Undirected BFS

The algorithms for BFS and DFS in directed graphs follow the framework of
the internal memory algorithms for these problems, but spend a lot of effort on
efficiently maintaining the set of vertices they have visited so far. For BFS in
undirected graphs, Munagala and Ranade [28] exploit the particularly simple
structure of BFS-trees of these graphs in order to design a BFS-algorithm that
takes O(|V] + sort(|E])) I/Os.

This “particularly simple structure” of BFS-trees of undirected graphs is
characterized as follows: Let v be a vertex at distance d from the root of a BFS-
tree of the graph. Then all neighbors of v are at distance d—1, d, or d+1 from the
root. Hence, when the algorithm visits vertex v, only the nodes at distances d—1
and d have to be inspected to find out which neighbors of v have been visited
before. All other nodes are either children of v or of another node at level d in
the BFS-tree. This eliminates the need for a complicated data structure to keep
track of the vertices the algorithm has already visited.

Given the root r of the BFS-tree T' to be computed, the algorithm computes a
partition of the vertices of G into disjoint sets L(0), L(1),... so that the vertices
in set L(i) are at distance i from r. That is, set L(0) contains only the root r of T,
set, L(1) contains all neighbors of r, and so on. We call sets L(0), L(1),... the
levels of tree T. The algorithm computes these levels iteratively, starting with
L(0) = {r}. Given levels L(0),..., L(i), the next level L(i + 1) is computed as
the difference between the set of neighbors of all vertices in L(i) and the union of
sets L(i—1) and L(i). This process is repeated until the most recently computed
level L(7) is empty. The pseudo-code of the algorithm is shown in Algorithm 6.1.

The correctness of this procedure follows from the above observation. To
analyze the I/O-complexity of the algorithm, we bound the number of I/Os
spent on accessing the adjacency lists of the vertices in G and the number of



Procedure UNDIRECTEDBFS

1: L(=1) <0

2: L(0) « {r}

31140

4: while L(i) # ( do

5. Let X (i) be the union of the adjacency lists of all vertices in L(z).
6: Remove duplicates from X (7).

7:  Remove all vertices in L(¢ — 1) U L(7) from X (7).

8  L(i+1) « X(i)
90 i+i+1
10: end while

Algorithm 6.1
An I/O-efficient BFS-algorithm for undirected graphs.

I/0Os spent on computing L(i+ 1) from sets L(i — 1), L(i) and X (7). The number
of I/Os spent on accessing adjacency lists is easily bounded by O(|V |+scan(|E|)).

The computation of set L(i + 1) from sets L(i — 1), L(i) and X (i) requires
sorting L(i — 1), L(i) and X (7). Once these lists are sorted, a single scan of these
lists is sufficient to remove duplicates as well as all elements in L(i — 1) U L(7)
from X (4). Since sets L(0), L(1),... form a partition of the vertex set of G into
disjoint sets, the total size of sets L(0), L(1),... is |[V|. Each set L(i) is involved
in the computation of sets L(i + 1) and L(i + 2), so that the total number
of I/Os spent on sorting and scanning sets L(0),L(1),... is O(sort(|]V])) =
O(sort(|E|)). The total size of all sets X (0), X(1),... is O(|E|). To see this,
observe that a vertex v is added to a set X (i) because of an edge {u, v} incident
to v and so that u € L(i). Every edge causes each of its endpoints to be inserted
into exactly one set X (i), so that the total size of sets X (0), X(1),... is 2|E].
Therefore the number of I/Os spent on sorting and scanning sets X (0), X (1),...
is O(sort(|E|)). This proves the following result.

Theorem 6.7. A BFS-tree of an undirected graph G = (V, E) can be computed
in O(|V| + sort(|E|)) 1/Os.

Remark. The BFS-algorithm as described in Algorithm 6.1 only computes the
distance of every vertex from the root r of the BFS-tree. In order to make the
algorithm compute the parent of each vertex in the BFS-tree, observe that a
vertex ends up in L(i + 1) because it is in X (), but not in L(i — 1) or L(3).
A vertex v is in X (i) because there is a vertex in L(7) that is adjacent to v. Hence,
instead of adding only vertex v to X (i), a pair (v, u) can be added to X (i), where
u is the vertex in L(i) that caused this copy of v to be inserted into X (¢). For
every pair (v,u) that remains in L(i + 1) after removing duplicate pairs with the
same first component, vertex u is a vertex in L(i) adjacent to v, so that it can
be made the parent of v in T'.



6.3 A Faster Undirected BFS-Algorithm

While procedure UNDIRECTEDBEFS is efficient for dense graphs, i.e., for graph
with |E| = 2(B|V]), it is no more efficient than the internal memory algorithm
for graphs with |E| = O(|V]). In particular, the algorithm spends O(]V]) I/Os
in this case, while the lower bound for BFS is only 2(perm(|V])). In the last
few years, one of the main challenges has been to develop BFS-algorithms that
perform well on sparse graphs. A number of I/O-optimal algorithms for spe-
cial classes of sparse graphs have been developed [4, 6,24, 25]; but 2(|V|) I/O0s
seemed to be a lower bound for BFS if no additional structural information
about the graph is available.

Mehlhorn and Meyer [27] disproved this conjecture and made a major step to-
wards closing the gap between the lower and upper bounds for BFS by developing
a BFS-algorithm that takes O(+/|V||E|/B +sort(|E|)) 1/Os. For sparse graphs,
for example, the algorithm takes O(|V|/v/B) 1/Os as opposed to O(|V]) I/Os
spent by procedure UNDIRECTEDBF'S.

We first discuss a randomized version of the algorithm because it provides the
right intuition. Given the randomized algorithm, a simple observation suffices to
make the algorithm deterministic.

The idea of the algorithm is to group the vertices of GG into disjoint clusters
of small diameter and then run procedure UNDIRECTEDBFS with a few modi-
fications. First the algorithm makes sure that the adjacency lists of all vertices
in the same cluster are stored consecutively. We refer to such a concatenation
of adjacency lists as the file of the respective cluster. Whenever a vertex is first
discovered, the algorithm does not only retrieve the adjacency list of the dis-
covered vertex, but the whole file of the cluster containing that vertex. Thus, if
the number of clusters is much smaller than the number of vertices, the number
of random accesses spent on loading adjacency lists is much smaller than |V|.
On the other hand, by incorporating all edges in a file into the computation
already when the first vertex in the cluster is discovered, many edges may be
involved in the computation of more than one level of the BFS-tree, which in-
creases the number of I/Os spent on computing the levels from the retrieved
files. That is, the algorithm trades off random accesses against spending more
I/Os to perform the actual computation of the algorithm. As we will see, the
trade-off balances at the above I/O-complexity. This trade-off is also the reason
why it seems that this idea cannot be pushed further to obtain a BFS-algorithm
that takes O(sort(|V| + |E|)) I/Os.

The algorithm proceeds in two stages. The first stage forms clusters of small
diameter. The second stage applies procedure UNDIRECTEDBFS after grouping
the adjacency lists into files.

Forming clusters. First we describe the randomized clustering algorithm, as it
provides some intuition about how the algorithm works and how a parameter u
to be specified later decreases the I/O-complexity of one part of the algorithm,
while increasing the complexity of the other part of the algorithm.



So let 0 < u < 1. Then the algorithm chooses a subset V! C V of vertices by
flipping a coin for every vertex in V' \ {r}, where r is the root of the BFS tree to
be computed. The coin comes up head with probability u. Vertex v is included
in set V' if its coin comes up head. Vertex r is always included in set V'. The
vertices in V' are called masters, each being the center of a separate cluster.
That is, the number of clusters formed by the algorithm is |[V'|. Let the vertices
in V! ber =ry,...,ry. Then vertex r; is the master of cluster C;.

Observation 6.1. The expected size of vertex set V' is E[|[V'|] <1+ u|V]|.

The clusters are now formed by running procedure UNDIRECTEDBFS from
all masters simultaneously. That is, level L(0) contains all masters. Then the
algorithm is run as before until all vertices of G are discovered. Now observe
that the algorithm assigns a parent to every vertex except to those in level L(0).
Hence, every vertex is a descendant of exactly one master in L(0). Cluster C;
consists of all vertices having some vertex r; € V' as an ancestor. The following
lemma is the key to the efficiency of the algorithm.

Lemma 6.8. The expected diameter of any cluster C; is 2/ .

Proof. Consider any path P = (r =z, xg_1,...,x1,v) from r to a vertex v € C;.
Since G is connected, path P exists. This guarantees that every vertex will be
“captured” by some master. Hence, there is no vertex in G that is not contained
in any cluster. Now let 1 < j < k be the smallest index so that z; is a master.

Since every vertex is chosen to be a master with probability u, E[j] = 1/p.
Hence, the expected distance of vertex v from the master of cluster C; is at
most 1/u. Since this is true for any vertex in C;, the lemma follows. O

We conclude the discussion of this first part of the algorithm with the analysis
of its I/O-complexity.

Lemma 6.9. A partition of the vertex set of a graph G = (V,E) into dis-
joint clusters of expected diameter 2/u can be obtained in expected O(sort(|E|) +
scan(|E|)/u) I/Os. The expected number of clusters is at most 1+ u|V|.

Proof. Choosing the masters and constructing set L(0) takes O(scan(|V])) =
O(scan(]E|)) I/0s. By the proof of Lemma 6.8, every remaining vertex is ex-
pected to be “captured” by some master after 1/ iterations. Hence, the expected
number of iterations performed by the procedure UNDIRECTEDDF'S is 1/u. Tter-
ation i takes O(sort(|E;|) +scan(|E|)) I/Os, where E; is the set of edges adjacent
to the vertices in L(4), if procedure UNDIRECTEDBF'S is modified as follows: In-
stead of retrieving the adjacency list of every vertex in L(7) using a random disk
access, scan all adjacency lists and retrieve the contents of the adjacency lists of
the vertices in L(7). Since every edge of G appears in exactly two adjacency lists,
the I/O-bound follows. The bound on the number of clusters is an immediate
consequence of Observation 6.1. The bound on the expected diameter of each
cluster is shown in Lemma 6.8. O



Breadth-first search. To construct a BFS-tree of G rooted at vertex r, the
algorithm now applies procedure UNDIRECTEDBF'S again. Before doing so, how-
ever, the representation of graph G is modified as follows: (1) The adjacency lists
of all vertices in a cluster C; are concatenated to form file F;. In particular, the
edges in each file F; are stored consecutively. (2) Every edge (v, w) € F; is rep-
resented as the triple (v, w,p;), where w € C; and p; is the disk address of the
first edge in F;.

In order to use this preprocessed representation of G effectively, procedure
UNDIRECTEDBEFS is modified as follows: The algorithm maintains a pool # that
is guaranteed to contain all edges connecting vertices in the current level L(i)
with vertices in the next level L(i+ 1) to be constructed; but # may also contain
edges connecting vertices at levels greater than ¢. The edges in H are sorted by
their source vertices. Also, as we will see, every level is produced in sorted order
by the algorithm, so that in particular the current level L(i) has been produced
in sorted order by the previous iteration. The algorithm scans lists L(i) and H
to identify all vertices in L(i) whose adjacency lists are not contained in #. For
each such vertex v, let C; be the cluster containing vertex v. Then the address
of file F; is appended to a list (). Once list () has been produced, this list is
sorted and duplicates are removed in a single scan. For every remaining entry
in @, the corresponding file F; is appended to a list H'. Then the edges in H'
are sorted by their source vertices, and H and H' are merged. This ensures that
pool H now contains the adjacency lists of all vertices in L(i). Hence, a single
scan of lists L(i) and H suffices to extract these adjacency lists from H and
create the list X (i) of vertices adjacent to vertices in L(i). Then list X (i) is
sorted and scanned to remove duplicates. Level L(i+ 1) is now constructed from
lists L(i — 1), L(i) and X (i) as before.

To analyze the I/O-complexity of this modified version of procedure UNDI-
RECTEDBFS, we split the cost into three parts: (1) I/Os spent on retrieving and
sorting all files Fy, ..., F,. (2) I/Os spent on merging H and H'. (3) I/Os spent
on constructing list L(i 4+ 1) from lists L(i — 1), L(i) and H.

The I/O-complexity for retrieving and sorting all files is O(|V'| + sort(|E|))
because there are |V'| files of total size 2| E|. Since E[|V'|] = u|V], the expected
cost of retrieving and sorting all files is hence O(u|V| + sort(|E|)). The cost of
merging H and H' is O(scan(|H|+|H'|)). Since every edge is contained in H' only
once, the edges in H' contribute O(scan(|E|)) to the total cost of this operation,
summed over all iterations. To bound the total cost contributed by the edges
in H, we use Lemma 6.8. In particular, since the expected diameter of a cluster
is 2/u, we expect the algorithm to take at most 2/u iterations after discovering
the first vertex in a cluster before all vertices in the cluster are discovered. Hence,
once the corresponding file F; has been incorporated into H, all edges in F; are
expected to be removed from H after at most 2/ iterations. That is, the total
size of H, summed over all iterations, is expected to be 4|E|/u, so that the
expected cost of merging lists H and #H' for all iterations is O(scan(|E|)/p).

The cost of computing list L(i + 1) from lists L(i — 1), L(i) and H is

O(sort(|E;|) + scan(|L(i — 1)| + |L(i)| + |H])), where E; is the set of edges inci-



dent to the vertices in L(i). The total size of sets Ey, E1,... is 2|E]; the total
size of sets L(0),L(1),... is |V]; and as argued above, the total size of list #,
summed over all iterations, is O(| E|/u). Hence, the cost for computing all levels
is O(sort(|E|) + scan(|E|)/u), and we obtain the following lemma.

Lemma 6.10. Given the preprocessing performed by the first phase of the al-
gorithm, a BFS-tree of G can be computed in expected O(u|V| + sort(|E|) +
scan(|E|)/u) 1/0s.

By Lemmas 6.9 and 6.10, the I/ O-complexity of the improved BFS-algorithm

is O(u|V| + sort(|E|) + scan(|E|)/p). By choosing p = min(1, \/|V|B/|E|), we
obtain the desired result.

Theorem 6.11. A BFS-tree of an undirected graph G = (V, E) can be computed
in expected O(\/|V||E|/B + sort(|E|)) 1/0s.

A deterministic clustering algorithm. It is not clear how to make the
randomized clustering algorithm of Section 6.3 achieve its I/O-complexity with
high probability. Instead, the algorithm can be made deterministic rather easily.
All that is required is a deterministic method for partitioning G into O(u|V|)
disjoint clusters of diameter O(1/u). Such a partition can be obtained using
an Euler tour of an arbitrary spanning tree T of GG. More precisely, observe
that an Euler tour of T has length 2|V| — 2 and can hence be partitioned into
2u(|V]-1) = O(p|V]) segments of length 1/u. Each segment defines a cluster C;.
A vertex v of G may be in more than one segment. Then w.l.0.g. v is chosen to be
in the cluster C; with smallest index that corresponds to a segment containing v.

The crucial observation is that the BFS-phase of the randomized algorithm
does not require the clusters to be connected. The only property that is used is
that the expected distance in G between any two vertices in the same cluster
is O(1/p). Since two vertices in the same cluster formed by the above determin-
istic procedure have distance at most 1/u from each other, it is now guaranteed
that once a vertex in a cluster is discovered, all vertices in the cluster are dis-
covered within the next 1/ iterations.

By Lemma 5.7 and the remark on Page 19, a spanning tree of G can be
computed in O(sort(|E|) log, log,(|V|B/|E|)) I/Os. Given a spanning tree of G,
the Euler tour can be computed in O(sort(]V])) = O(sort(|E|)) I/Os. The com-
putation of clusters from the Euler tour requires a constant number of sorts
and scans. Hence, the clustering phase of the algorithm takes O(/|V||E|/B +
sort(|E) log, log, (|V|B/|E|)) 1/0s, as does the BFS-phase.

Theorem 6.12. A BFS-tree of an undirected graph G = (V, E) can be computed
in O(/[VI[EI/B + sort(|E|) log, log, (V| B/|E])) 1/0s.

7 Single Source Shortest Paths

In this section we discuss an algorithm for the single source shortest path problem
on undirected graphs due to Kumar and Schwabe [22]. The algorithm is an



I/O-efficient version of Dijkstra’s algorithm. In order for Dijkstra’s algorithm
to be I/O-efficient, an I/O-efficient priority queue and an 1/O-efficient method
for testing for previously visited vertices are needed. Ideally it would also be
desirable to have an I/O-efficient data structure for retrieving the adjacency lists
of the vertices in the graph. For BFS we have seen in the previous section that
a clustering approach can be applied to at least reduce the number of random
accesses performed while retrieving adjacency lists. For the single source shortest
path problem this approach does not seem to work because there is no guarantee
any more how long an adjacency list would remain in the pool H before it is
removed. More importantly, a shortest path tree cannot easily be built level by
level, as algorithm UNDIRECTEDBFS does for a BFS-tree. Hence, we shall be
content with spending one 1/0 per vertex, as long as the number of I/Os spent
per edge can be kept small.

In Section 7.1 we discuss the I/O-efficient priority queue used in the algo-
rithm. In Section 7.2 we discuss the shortest path algorithm and show how it
makes use of a second priority queue to avoid having to check for visited vertices.

7.1 The Tournament Tree

As discussed in the chapter by Lars Arge, the buffer tree [2] can be used as a pri-
ority queue that can process a sequence of N INSERT, DELETE, and DELETEMIN
operations in O(sort(NN)) I/Os. Unfortunately this priority queue does not sup-
port a DECREASEKEY operation, which is required by Dijkstra’s algorithm, un-
less this operation can be simulated by a DELETE operation followed by an
insertion. The latter is possible only if the previous priority of the element is
known, which in general is hard to achieve in Dijkstra’s algorithm.

In this section we discuss the external tournament tree proposed by Ku-
mar and Schwabe [22], which supports INSERT, DELETE, DELETEMIN and DE-
CREASEKEY operations at an amortized cost of O(% log, %) I/Os per operation
and uses O(N/B) blocks of external memory. In these bounds N denotes the
total number of elements that may potentially be stored in the priority queue.
In particular, N may be much larger than the actual number of elements stored
in the priority queue, which could affect the efficiency of the data structure.
However, in most graph algorithms, N = O(]V|) or N = O(|E|), so that the
tournament tree pays only a log,(M/B) factor in performance compared to the
buffer tree, for the added benefit of supporting the DECREASEKEY operation.

The data structure. So let X be the set of elements potentially stored in
the priority queue, and assume that the elements in X are numbered 1 through
N = | X|. The numbering is required to establish a total order on the elements
of X and to compare two elements quickly w.r.t. this total order. For the sake
of simplifying the description of the data structure, we also assume that N is a
multiple of M.

The tournament tree is a static binary tree T' with the following properties:

(i) Tree T has N/M leaves.



(ii) All leaves of T are at level d = |log,(N/M)] or d — 1.

(iii) Let the leaves of T' be numbered from left to right. Then the elements of X
numbered (i —1)M + 1 through i M map to the i-th leaf of T'. An element x
of X is stored either at the leaf [(x) it maps to or at an ancestor thereof.

(iv) A node stores between M /2 and M elements. The priorities of the elements
stored at any node are smaller than the priorities of the elements stored at
its descendants.

(v) Each internal node has an associated signal buffer of size M. This buffer
stores update signals that are used to propagate updates of T' down the
tree towards the leaves.

(vi) The root of T is held in main memory.

Since T stores all elements of X at all times, we need a criterion to decide
when an element stored in 7T is not in the subset of X currently represented
by T. The adopted convention is that an element is in this subset if and only
if its priority is finite. Hence, by initializing all elements in T to have infinite
priority, tree T initially represents the empty set.

Priority queue operations. Given a tournament tree 7', the only operation
that requires immediate processing is the DELETEMIN operation. By Prop-
erty (iv), the element with minimum priority in T is stored at the root. By
Property (vi), the root of T is held in main memory. Hence, a DELETEMIN op-
eration can be performed without incurring any I/Os by extracting the element
with minimum priority stored at the root of T'. To maintain the invariant that
an element that is “not stored” in T is stored in T with infinite priority, the
retrieved element has to be inserted into 7" with priority oc. This is achieved
by sending signal UPDATE(z, 00) to the root of T' (see the discussion on signals
below).

Operations INSERT, DELETE, and DECREASEKEY are realized using signals
that are sent to the root and then propagate down the tree towards the leaves.
When a signal reaches a node v € T, it is first applied to v — that is, it effects
certain changes to the set of elements stored at v and then the signal itself
or another, newly generated, signal is sent to one or both of the children of v.

To perform a DELETE operation, a DELETE signal is sent to the root of T
Operations INSERT and DECREASEKEY are both realized using an UPDATE sig-
nal. Next we describe the effects of sending these signals to a node v € T'.

DELETE(z): If element z is stored at node v, it is deleted, and signal Up-
DATE(zx,00) is sent to the next node w on the path to leaf I(z). If = is
not stored at v, signal DELETE(x) is sent to w.

UpDATE(z, p): If element x is stored at v, its priority is updated to min(p, p'),
where p’ is its current priority. If z is not stored at v, and all elements stored
at v have priority less than p, signal UPDATE(z, p) is propagated to the next
node w on the path to leaf [(z). Finally, if there is an element with priority
p' > p stored at v, element z is added to the set of elements stored at v.
After this update, any other copy of z with finite priority p" > p possibly



stored at a descendant of v has to be removed from 7. This is achieved by
sending signal DELETE(z) to w.

The insertion of element x into the set of elements stored at node v may
cause this set to overflow because it already contains M elements. If this
happens, the element z with maximal priority p, in this set is moved to the
child of v on the path to leaf I(z) by sending signal PusH(z, p.) to this child.
Finally, a signal UPDATE(z, oo) is handled in a special way when it reaches
leaf [(x). When this happens, the signal makes sure that element z is stored
with priority oo at this leaf by inserting element z if necessary.

PusH(z,p): This signal inserts element z into the set of elements stored at
node v. If this set already contains M elements, the element z with maxi-
mum priority p, in this set is moved to the child of v on the path to leaf I(z)
by sending signal PUsH(z,p,) to this child.

We leave it as an exercise to verify that the implementation of all priority
queue operations using the above signals updates the set of elements stored in T’
and their priorities correctly. Moreover, Properties (i)-(vi) are maintained, except
for the possible underflow of a node after applying a DELETEMIN or DELETE
operation to it. We show how to deal with these underflows below.

Lazy signal propagation. So far we have assumed that all signals are sent all
the way down to the leaves when generated by an update operation. However,
this is not necessary, as long as the root of T always stores the elements with
smallest priority in the set tree 7" is supposed to represent. Hence, after applying
an update signal to the root, the sending of signals to its children can be delayed
until either enough of them have been collected to guarantee that they can
be applied I/O-efficiently to the children of the root or an underflow of the
root requires to move elements from the children of the root to the root. When
applying signals to any node v € T', the same strategy can be applied to delay the
sending of signals to its children. Intuitively, whenever a subtree of T is affected
by an update, it suffices to update its root and delay updates of its descendants
until the updates of the root cannot be performed without fetching data from
its children.

This delayed propagation of signals down the tree is realized using the signal
buffers of the nodes in T'. After a signal has been applied to a node v € T, the
signals to be sent to v’s children of v are appended to v’s signal buffer instead of
sending them to v’s children immediately. As soon as v’s signal buffer contains
at least M elements, it is emptied. This operation is performed as follows: Scan
the set S of signals in the buffer and partition them into two sets S,, and Sy, for
the two children, u and w, of v. Load the set of elements stored at node w into
main memory, scan set S,, and apply the signals in S, to this set of elements.
Append the signals generated during this update of node u to u’s signal buffer.
Now repeat the whole procedure to apply the signals in S, to w. As a result of
these updates, the signal buffers of nodes u and w may overflow. If this happens,
these buffers are emptied recursively.



Excluding the recursive emptying of the signal buffers of v’s children, emp-
tying the buffer of node v takes O(scan(|S|+ M)) = O(scan(]S|)) I/Os because
nodes u and w store O(M) elements and |S| > M. Hence, every signal involved
in a buffer-emptying process costs O(1/B) I/Os amortized. Since every signal
is involved in at most O(log,(N/B)) buffer-emptying processes, one per level,
the amortized cost per signal is (’)(% log, %) Next we argue that every priority
queue operation generates O(1) signals, so that the cost for propagating signals
down the tree is O(% log, %) amortized per priority queue operation.

Every priority queue operation sends one signal to the root of T. A DELETE
signal propagates down the tree until it finds the element to be deleted, at which
point it is replaced by an UPDATE signal. An UPDATE signal travels down the
tree until it either terminates following the update of the priority of the targeted
element, or it is replaced by a DELETE and possibly a PUsH signal when it
causes the insertion of the targeted element into the set stored at some node
of T. A PuUsH signal propagates down the tree, possibly changing the element it
“carries”, until it finds a node where there is room to insert the current element.
Hence, the only signal that can possibly split into two signals on its way down
the tree is an UPDATE signal. The generated PUSH signal does not multiply. We
have to argue that the generated DELETE signal does not multiply either. To do
this, we show that the UPDATE signal generated by a DELETE stays an UPDATE
signal, i.e., does not split. To see that this is true, observe that an UPDATE signal
is replaced by a DELETE and a PUSH signal only if it encounters a node that
stores an element with higher priority than its own; but this is impossible for an
UPDATE signal generated by a DELETE signal because its priority is co. Hence,
every priority queue operation sends at most two signals down the tree.

Filling underfull nodes. So far we have conveniently ignored what happens
when a node v stores less than M /2 elements as the result of a DELETEMIN or
DELETE operation. When this happens, elements stored at v’s children have to
be moved to v. This in turn may cause v’s children to underflow, so that they
have to be filled with elements from their children, and so on. Hence, even a
DELETEMIN operation, which otherwise does not incur any I/Os, may cause a
considerable number of I/Os to be performed. However, we show next that the
amortized cost for filling underfull nodes in this manner is only (’)(% log, %) per
operation.

What precisely happens when a node v underflows is that the M/2 elements
with smallest priority stored at ©’s children are moved to v. To guarantee that
the sets of elements stored at v’s children are up-to-date, v’s signal buffer has
to be emptied before moving elements from v’s children to v. The emptying of
v’s signal buffer costs O(scan(M)) I/Os, which follows from the discussion of
the buffer-emptying process above and the fact that v’s signal buffer contains
at most M elements because otherwise it would have been emptied already. To
move the M /2 elements with smallest priority from v’s children to v, it suffices
to scan the two sets stored at v’s children, which takes O(scan(M)) I/Os. Hence,
the total cost of filling v’s signal buffer with M /2 elements from its children is



O(scan(M)), O(1/B) 1/0Os amortized per element. The moving of elements from
v’s children to v may leave v’s children underfull, so that they have to be filled
recursively. However, the I/Os required to do this can be charged to the elements
that are moved to v’s children. We observe that every level an element travels
up the tree costs O(1/B) I/Os amortized.

Since the tournament tree is initially empty, elements that move up the tree
first have to be moved down the tree by means of signals. For every level an
element travels up the tree, we can hence charge the signal that moved the
element in the opposite direction. This increases the amortized cost per signal
by only a constant factor and hence changes the amortized cost per priority queue
operation by only a constant factor. Thus, we obtain the following theorem.

Theorem 7.1. Using an 1/O-efficient tournament tree, a sequence of K IN-
SERT, DELETE, DELETEMIN, and DECREASEKEY operations can be processed
in O(Elog, &) 1/0s.

7.2 An I/O-Efficient Version of Dijkstra’s Algorithm

Dijkstra’s algorithm [14] can be made I/O-efficient using the tournament tree as
the priority queue that stores the vertices of graph G = (V, E) sorted according
to their tentative distances from the source s. However, replacing the internal
memory priority queue of choice with the tournament tree is not sufficient to
immediately obtain an I/O-efficient shortest path algorithm. The problem is that
Dijkstra’s algorithm tests every neighbor w of the current vertex v whether it
has already been finished® before trying to update its tentative distance using a
DECREASEKEY operation. If there is no way to avoid these tests, the algorithm
spends one I/0 per edge of G, O(|E|) I/Os in total.

To avoid performing these tests, the shortest path algorithm of [22] performs
an UPDATE operation for all neighbors of v, excluding its parent in the shortest
path tree, irrespective of whether or not they are finished. While this avoids
the expensive test for finished vertices, it creates the following problem: Let u
be a neighbor of v that has already been finished, and let {u,v} be the edge
connecting u and v in G. Then the algorithm re-inserts u into priority queue @
with priority dist(s,v) +w({u,v}), where w(e) denotes the weight of edge e. This
will ultimately cause u to be visited for a second time, which is incorrect. We
call such a re-insertion of u a spurious update. Next we discuss a method that
guarantees that the copy of u inserted by a spurious update is deleted from @
using a DELETE operation before it can cause a second visit to vertex u.

The method to achieve this is based on the observation that a neighbor u
of v that is finished before v performs an update of v before v is finished. By
recording this update attempt of u on v in a second priority queue @', this
information can later be used to prevent the spurious update of v on u from
doing any harm. In particular, when vertex u attempts to update v’s tentative

5 A vertex v is finished when the algorithm has determined the final distance of v
from s and has inserted v’s neighbors into the priority queue.



distance, vertex wu is inserted into @' with priority dist(s,u) + w({u,v}). The
next vertex to be visited by the algorithm is now determined from the outcome
of two DELETEMIN operations, one on () and one on Q'.

Let (v,p,) be the entry retrieved from @, and let (w,p,) be the entry re-
trieved from Q'. If p,, < py, entry (v, p,) is re-inserted into @), vertex w is deleted
from @ by applying a DELETE(w) operation to (), and then the whole procedure
is iterated. If p, < py,, entry (w, py,) is re-inserted into @', and vertex v is visited
as normal. Let us show that this method achieves the desired goal.

Lemma 7.2. A spurious update is deleted before the targeted entry can be re-
trieved using a DELETEMIN operation.

Proof. Consider a vertex v and a neighbor u of v that is finished before v, so
that v performs a spurious update on u. Denote the spurious update as event A,
the deletion of the re-inserted copy of u as event B, and the extraction of the
re-inserted copy of u using a DELETEMIN operation as event C. We have to show
that event B happens after event A, but before event C can occur.

Assume that all vertices have different distances from 5.6 Under this assump-
tion dist(s,u) < dist(s,v) because u is finished before v. Moreover, dist(s,v) <
dist(s, u) + w({u,v}). The latter implies that event B happens after event A be-
cause event A happens when vertex v is retrieved from @ with priority dist(s,v),
and event B happens when the copy of u inserted into Q' with priority dist(s,u)+
w({u,v}) is retrieved from @'. The former implies that dist(s,u) + w({u,v}) <
dist(s,v) + w({u,v}), so that event B happens before event C. This proves the
lemma. O

Lemma 7.2 shows that the modified version of Dijkstra’s algorithm described
above is correct. It remains to analyze its I/O-complexity. The algorithm spends
O(|V |+ scan(]E|)) I/Os to access all adjacency lists because every adjacency list
is touched once, namely when the corresponding vertex is finished. The number
of priority queue operations performed by the algorithm is O(|E|): Every edge
of G causes two insertions into priority queue @' and two updates of priority
queue (@, one each per endpoint. All other priority queue operations can be
partitioned into sequences of constant length so that each sequence decreases the
total number of elements stored in () and @' by at least one. Hence, only O(|E|)
such sequences are executed. Using a tournament tree as priority queue ) and a
buffer tree [2] as priority queue ', the total cost of all priority queue operations
is hence O (% log, %), and we obtain the following result.

Theorem 7.3. The single source shortest path problem on an undirected graph
G = (V,E) can be solved in O (|V| + ‘%‘ log, %) 1/0s.

Remark. In the proof of Lemma 7.2 we assume that no two vertices have the
same distance from s. It is not hard to see that the proof remains correct if no

6 If this is not the case, the algorithm needs to be modified. See the remark at the end
of this section.



two vertices with the same distance are adjacent. In order to handle adjacent
vertices with the same distance, the algorithm has to be modified. In particular,
all vertices with the same distance have to be processed simultaneously, similar
to the simultaneous construction of levels in the BFS-algorithm from Section 6.2.
The reason for this is that there seems to be no way to guarantee that for two
adjacent vertices v and w at the same distance from s, non-spurious updates and
deletions of spurious updates are processed in the correct order. By processing
all vertices at the same distance from s at the same time, it can be guaranteed
that these vertices do not update each other’s distances at all. The problem with
adjacent vertices that have the same distance from s has been noticed in [22];
but the proposed solution is incorrect.

8 Shortest Paths in Planar Graphs

Given that all algorithms for graph searching problems such as BFS, DFS and
SSSP spend considerably more I/Os than the lower bound if the graph is sparse,
a number of researchers [4, 5, 21, 24-26, 32] have tried to exploit the structure of
special classes of sparse graphs in order to solve these problems I/O-efficiently
on graphs in these classes. In the remainder of this course we focus on planar
graphs and discuss how to solve the above three problems in O(sort(N)) I/0Os.
(From now on we use N to denote the size of the vertex set of the given graph G.)
For the sake of simplicity we assume that an embedding of the graph is provided
as part of the input. This is not a serious restriction because such an embedding
can be obtained in O(sort(IN)) I/0s [26, 32].

First we focus on shortest paths and BFS. More precisely, we discuss a short-
est path algorithm by Arge et al. [4], which of course can also be used to compute
a BFS-tree of a planar graph. We assume that the given graph G has degree
three” and that a regular B2-partition of G is given. Such a partition is defined
as follows: Given a planar graph G = (V, E), a reqular h-partition of G is a
pair P = (S, {G1,...,G}), where S is a subset of the vertices of G and graphs
Gy, ...,Gy are disjoint subgraphs of G — S with the following properties:

(i) GiU---UGL =G - 8S.
(ii)) For every edge in G — S, the two endpoints are in the same graph Gj.
(That is, each graph G; is the union of a number of connected components
of G- S.)
) IS| = O(N/VR).
iv) k= O(N/h).
) Every graph G; has at most h vertices.
) Every graph G; is adjacent to at most v/h vertices in S. This subset of S
is called the boundary OG; of G;.
(vii) Let Si,...,S; be a partition of S into subsets so that the vertices in each
subset are adjacent to the same set of subgraphs G;. Then ¢t = O(N/h).
Sets S, ..., St are called the boundary sets of partition P. (See Figure 8.1.)

" The degree of a graph is the maximum degree of its vertices.



Figure 8.1
(a) A partition of a planar graph into the shaded subgraphs using the black separator
vertices. (b) The boundary sets of this partition.

The vertex set S is also referred to as the separator that induces partition P. We
discuss in Section 9 how to obtain a partition satisfying Properties (i), (ii), (iii)
and (v). The other properties can be ensured using fairly simple modifications
of the algorithm discussed in Section 9. For details the reader may refer to [32].
One additional assumption we make is that the amount of available main
memory is large enough to hold a planar graph with B2 + B + 1 vertices.

Outline. The algorithm of [4] solves the SSSP problem in three steps (see
Algorithm 8.1). The first step replaces each subgraph G; of G induced by the
vertices in V(G;) U 0G; with a complete graph G over the vertices in 0G; (see
Figure 8.2). Graph G} has the property that for any two vertices v,w € 0G;,
their distances from each other in G; and G are the same. As we show below,
this implies the property stated as a comment of Step 2 of the algorithm, namely
that the distances from s to all separator vertices are preserved in the resulting
graph G.% Hence, their distances from s in G' can be computed by solving the
single source shortest path problem on Gg, as done in the second step of the
algorithm. Finally, in the third step, the algorithm exploits the fact that for any
vertex v in G, the shortest path from s to v in G consists of a shortest path
from s to a vertex z in dG; followed by a shortest path from z to v in G;.

Correctness. The following two lemmas formally prove the two structural prop-
erties used by the algorithm and establish its correctness.

Lemma 8.1. For any vertex v € S, distg(s,v) = distg, (s, v).

& For this to be true, s has to be in Gg, which is true only if s € S. The latter can
easily be enforced.



Procedure PLANARSSSP

1: Construct a compressed graph Gr that captures the distance between separator
vertices:

Gr + (S, @)

for every graph G; in partition P do
Let G; be the subgraph of G induced by all vertices in V(G;) U 9G;.
Compute the distance in Gl from every vertex in 0G; to every other vertex
in 0G;.
Add an edge {v,w} to Gr for every pair v, w of vertices in dG;. The weight
of edge {v,w} is the distance from v to w in G;.

end for

2: Compute the distances from s to all separator vertices in Gg.
{Every separator vertex v has the same distance from s in G and Gr.}
3: Compute the distances from s to all vertices in G:
for every graph G; in partition P do
Let G; be the sullgraph of G induced by all vertices in V(G;) U 9G;.
Add vertex s to G; and connect s to every vertex in 0G;. The weight of edge
{s,v}, v € 0G;, is the distance from s to v computed in Step 2. Let the
resulting graph be G7'.
Compute the distance from s to all vertices in G .
end for

Algorithm 8.1
A shortest path algorithm for planar graphs.

Proof. Consider any path P = (s = zg,%1,...,2x = v) from s to v in G, and
let 0 =41 < iy < --- < iy = k be the indices so that vertices z;,,...,z;,
are separator vertices on this path. Then every subpath (z;;,...,2;,,,) stays

completely inside some graph G;. Since the weight of edge {zi;,zi, ., } in Gr
equals the length of the shortest path from z;, to =;, in G;, replacing path
(wi;,...,xi,,)in P with edge {z;,,;,,, } results in a path P’ whose length is at
most that of P. By doing this for all subpaths of P connecting two consecutive
separator vertices, we obtain a path Pr in Gg whose length is at most that
of P. Conversely, given a path Pg from s to v in Gp, every edge {v,w} in Pp
represents a path from v to w in G. Hence, replacing each edge in Pr by the
corresponding path in GG, we obtain a path P in G whose length is the same as
that of Pg. O

Lemma 8.2. For any graph G;, 1 < i < k, in partition P and any vertex
v € Gy, dist(s,v) = distg: (s, v).

Proof. Consider any path P from s to some vertex v in G;, and let z be the last
separator vertex on this path. Assume that s # z. (If s = x, the proof becomes
simpler.) Let P, be the subpath of P from s to x, and let P, be the subpath of P
from z to v. By Lemma 8.1, there exists a path from s to z in G whose length is
at most that of P, so that edge {s,z} € G} has length at most that of path P;.



(a)

Figure 8.2
(a) The central graph G; in the partition of Figure 8.1a and its boundary vertices.
(b) The corresponding graph Gj.

Path P, exists also in G. Hence, by concatenating edge {s,z} with path P,, we
obtain a path of length at most that of P from s to v in G}. Conversely, given a
path P' from s to v in G}, the first edge {s,z} on the path can be replaced by
a path of the same length in G g, which in turn can be replaced by a path P, of
the same length in G, by Lemma 8.1. Hence, the concatenation of P, with the
subpath Py of P’ from z to v produces a path from s to v in G whose length is
the same as that of P'. 0

Complexity. Given that the main memory is large enough to hold a planar
graph with B2+ B + 1 vertices, Steps 1 and 3 take O(sort(N)) I/Os because the
required shortest path computations can be carried out in main memory.

To execute Step 1 of the algorithm, the first thing that needs to be done is
compute graphs G1,...,Gy, i.e., store their vertex and edge sets consecutively
on disk. The vertex set of graph G; is the set of endpoints of all edges that have
at least one endpoint in G;. The edge set of G, contains all those edges of G that
have both endpoints in V(G;). Assuming that partition P is represented by an
appropriate labelling of the vertices of G, it suffices to sort and scan the vertex
and edge sets of G a constant number of times to extract graphs G1,...,Gr. We

have seen this type of computation in previous sections and omit the details.

Once graphs G4, ..., Gy have been identified, they can now be loaded into
main memory, one at a time, the shortest path computation of Step 1 can be
carried out in main memory because each graph G, has at most B2+ B vertices,
and the edges of Gg can be written to disk in a linear number of I/Os. Hence,

Step 1 takes O(sort(N)) I/0s.

To execute Step 3, the distances of all vertices in S from the source s have
to be copied from their copies in G to their copies in graphs G, ..., G. This
can again be done in O(sort(N)) I/Os. After that, each graph G;, 1 < i < k, is
loaded into main memory for a second time, and the shortest path computation
of Step 3 can be performed without incurring any further I/0Os.



In the remainder of this section we discuss a method to solve the SSSP
problem on graph Gr in O(sort(N)) I/Os, so that the whole algorithm takes
O(sort(N)) I/0s.

Shortest paths in Ggr. One can come close to solving the SSSP problem on
graph Gg in O(sort(NN)) I/Os by observing that this graph has O(N/B) vertices
and O(N) edges. Indeed, its vertex set is S, and every edge in G belongs to
some graph G}. There are O(N/BZ) such graphs G, ..., G}, and each of them
has at most B? edges. From this observation it follows that the SSSP problem
on Gg can be solved in (’)(% log, %) I/Os using the shortest path algorithm
from Section 7.

The main obstacle preventing the improvement of this bound to O(sort(N))
is that Dijkstra’s algorithm requires a priority queue that supports a DECREASE-
KEY operation; but no priority queue is known that supports this operation and
processes a sequence of N updates in O(sort(/N)) I/Os. On the other hand, there
are priority queues that support INSERT, DELETE, and DELETEMIN operations
and process a sequence of N updates in O(sort(N)) I/Os [2,10]. The DELETE
operation of these priority queues takes the element to be deleted and its current
priority as an argument. That is, the priority of an element has to be known in
order to delete it.

Arge et al. present a modified version of Dijkstra’s algorithm that avoids the
use of DECREASEKEY operations by exploiting the fact that graph Gg is derived
from a regular B2-partition of a planar graph of bounded degree. The algorithm
maintains a list L storing the tentative distance of every vertex from s as well
as a priority queue ) that stores the unfinished vertices of G. For every vertex
in (), its priority is the same as its tentative distance in L. Initially, all vertices
in Gg, except s, have tentative distance (and priority) oc.

In each step, the next vertex v to be finished is retrieved from @) using a
DELETEMIN operation. Then the adjacency list of v is loaded into main memory,
and for each vertex in the adjacency list, its tentative distance is retrieved from L.
For every neighbor w of v so that the sum d’' of dist(s,v) and the weight of
edge {v,w} is less than the current distance d from s to w, its distance in L is
changed to d'. Its priority in ) is decreased to d' by first deleting the current
copy of w with priority d from () and then inserting a new copy with priority d’
into . That is, the required DECREASEKEY operation is simulated using a
DELETE and an INSERT operation, which is possible because w’s old priority d is
known when performing the update. The algorithm repeats this procedure until
all vertices of G are finished.

The I/O-complexity of this procedure can be split into the costs of retriev-
ing the adjacency lists of all vertices, performing priority queue operations and
accesses to list L. Retrieving the adjacency lists takes O(scan(N)) I/Os because
there are only O(N/B) vertices in G and the total size of all adjacency lists
is O(N). The algorithm performs O(N) priority queue operations, two per edge,
which takes O(sort(/N)) I/Os using a buffer tree [2] as priority queue. Finally,
observe that list L is accessed O(N) times, O(1) times per edge. If the entries



in L are not arranged carefully, the algorithm may spend one I/O per access, so
that the procedure takes O(N + sort(N)) I/Os. By arranging the vertices in L
in a carefully chosen order, the number of I/Os spent on accessing list L can
be reduced to O(N/B), which reduces the I/O-complexity of the algorithm to
O(sort(N)).

The order chosen for the vertices in L is so that the vertices in each boundary
set of partition P are stored consecutively. The vertices in each boundary set S;
are on the boundary of the same subgraphs of GG in partition P and hence have
the same neighbors in Gg. That is, if one vertex in S; needs to be retrieved from
list L because one of its neighbors is finished, all other vertices in S; also need
to be retrieved from L. Instead of spending one I/O per access, these vertices
can now be loaded in a blockwise fashion. More precisely, every boundary set S;
can be retrieved from L in O(1) I/Os because it is a subset of the boundary of
some subgraph G; in the partition and hence has size at most B. Since every
vertex in G has degree at most three, it is on the boundary of at most three
regions in G, so that every boundary set S; is on the boundary of at most three
regions. This implies that every vertex v € S; has degree O(B) in Gg because
the neighbors of v in G are the boundary vertices of these regions. We have
argued above that boundary set S; is accessed once for each such neighbor and
that each access costs O(1) I/Os. Hence, the algorithm spends O(B) I/Os on
accesses to boundary set S;. Since there are O(N/BZ) boundary sets, the total
number of 1/Os spent on accessing list L is hence O(B - N/B?) = O(N/B).

Procedure PLANARSSSP makes the assumption that M = Q(BQ). As we
will see in the next section, the best known algorithm to obtain a regular B2-
partition of a planar graph requires that M = .Q(B2 log” B), so that we obtain
the following result.

Theorem 8.3. Provided that M = (B?log® B), the single source shortest
path problem on planar graphs with non-negative edge weights can be solved in

O(sort(N)) I/0s.

Remark. Similar to the BFS-algorithms in Section 6, the SSSP-algorithm dis-
cussed above only computes the distance of every vertex from s. We leave it
as an exercise to verify that once these distances are given, an O(sort(N)) I/0
postprocessing step is sufficient to extract a shortest path tree of G.

9 Planar Graph Partitions

Partitions of planar graphs using small separators are utilized in algorithms
for problems such as solving sparse systems of linear equations, approximating
solutions to NP-hard problems on planar graphs and, as we have seen, shortest
paths in planar graphs. The main difficulty with computing a good partition of
a planar graph I/O-efficiently is that all existing internal memory algorithms for
this problem use BFS to partition the graph into levels and then judiciously use
this partition to compute a small set of vertices whose removal partitions the
graph into small subgraphs. Since the shortest path algorithm from Section 8



is the only known algorithm that computes a BFS-tree of a planar graph in
O(sort(N)) I/Os, and it requires a separator of the graph to be given as part
of the input, this leads to circular dependencies between BFS and the problem
of computing planar separators. In this section we discuss a separator algorithm
by Maheshwari and Zeh [26] that applies graph contraction in a non-trivial way
to obtain the desired partition without using BFS.

At the core of the algorithm is a graph hierarchy G = G, G, ..., G, whose
properties guarantee that computing a partition of GG,. using an internal memory
algorithm does not cost too many I/Os and that a sufficiently good partition of
each graph G; can be derived I/O-efficiently from a partition of G;;. The main
difficulty of the algorithm is computing this graph hierarchy.

In Section 9.1 we discuss the properties of graphs G = Gy, G, ...,G, and
show how to exploit them to obtain an optimal partition of G in O(sort(N)) I/Os.
In Section 9.2 we discuss how this graph hierarchy can be computed in the same
number of I/0s.

9.1 Computing the Partition

Let G be an embedded planar graph, let h > 0 be an integer so that the algorithm
is asked to compute a set S of vertices whose removal partitions G into subgraphs
of size at most h, and let G = Gy, G, ..., G, be a hierarchy of graphs with the
following properties:

(i) r =log B,
(ii) Graphs Gy, ...,G, are planar,
(iii) For 1 <14 < r, every vertex in G; represents at most 56 vertices in G;_1,
(iv) For 0 <i < r, every vertex in G; represents at most 2¢ vertices in G, and
(v)
Also assume that M > 56hlog? B. Then the desired partition of G can be
obtained by computing a separator S, of GG, and then deriving a separator S;
for each graph G;, 0 < i < r, from separator S;;1. Each separator S; has the
property that it partitions graph G; into subgraphs of size at most hlog” B. For
graph G, separator S, = S, is computed using the linear-time internal memory
algorithm of Aleksandrov and Djidjev [1]. Given separator S;;1, the separator S;
for G; is computed as follows: Let S} be the set of vertices in GG; represented by the
vertices in S;y1. Property (iii) of the graph hierarchy implies that no connected
component of G; — S} has size exceeding 56hlog” B. Since we assume that the
main memory is large enough to hold a planar graph of this size, a partition
of G; into subgraphs of size at most hlog® B can be obtained by loading each
connected component of G; — S} into main memory and applying the algorithm
of [1] again. Let S}’ be the set of separator vertices introduced by partitioning
the connected components of G; — S} in this manner. Then separator S; is the
union of sets S} and S

The separator Sy obtained in this manner partitions graph G into sub-
graphs of size at most hlog® B. The algorithm of [1] used to compute separators

v) For 0 <i <r, graph G; has O(N/Qi) vertices.



St,...,S!" guarantees that |S}'| = O(|G;|/(vV/hlog B)). Hence, by Property (iv)
of the graph hierarchy, the size of separator Sy is

5ol < 3" 28]
=0
= iZiO (|Gz|/ (\/ElogB))
i=0

- Z 20 (N/ (2'vhiog B))
=0 (N/Vh).

In order to obtain the final separator S, the connected components of G — Sy
are loaded into main memory and partitioned into subgraphs of size at most h,
again using the algorithm of [1]. This introduces at most O(N/v/h) additional
separator vertices, so that S is a separator of size O(N/\/E) that partitions G
into subgraphs of size at most h.

Now let us analyze the I/O-complexity of this procedure. Computing the ini-
tial separator S, of G, takes O(|G,.|) = O(N/B) 1/0s, by Properties (i) and (v)
of the graph hierarchy. To compute separator S; from separator S;;i, the al-
gorithm has to identify the vertices in S}, compute the connected components
of G; — S}, and load each of them into main memory, where it is partitioned
into subgraphs of size at most hlog® B. The construction of the graph hier-
archy can easily ensure that every vertex v € G, is labelled with the vertex
in G411 that represents v. Under this assumption vertex set S} can be identi-
fied in O(sort(|G;])) I/Os by sorting and scanning the vertex set of G; and the
separator S;+1 a constant number of times. Computing the connected compo-
nents of G; — S} takes O(sort(|G;|)) I/Os, by Theorem 5.11. Once the connected
components of G; — S} have been computed, loading each of them into main
memory to compute separator S!' takes O(scan(|G;|)) I/Os. The computation
of separator S from separator Sy is carried out in the same manner as the com-
putation of separator S; from separator S!. Hence, this takes O(sort(N)) I/Os,
and the total I/O-complexity of computing separator S from the graph hierar-
chy is O(N/B + 31—, sort(|G;]) +sort(N)) = O (31— sort(N/27) +sort(N)) =
O(sort(N)). This proves the following lemma.

Lemma 9.1. Given a graph hierarchy G = Go, G4, .. ., G, with Properties (i)
(v) above, a separator S of size O(N/\/E) that partitions G into subgraphs of size
at most h can be computed in O(sort(N)) I/Os, provided that M > 56hlog” B.

9.2 Computing the Graph Hierarchy

What remains to be shown is how to compute the graph hierarchy. Since graph G
is planar, and edge contractions preserve planarity, Property (ii) is guaranteed if



graphs GGy, ..., G, are constructed using edge contractions. The difficult part is
ensuring Properties (iii) (v) simultaneously. We first outline the basic approach
taken and then argue how to perform this computation in an I/O-efficient man-
ner.

Since graph Gy = G satisfies Properties (ii)—(v), we can assume that graphs
Go,...,G;_1 are given and graph G; has to be constructed from graph G;_;
through a series of edge contractions. In order to do that, let w(v) and o(v) be
two labels, for every vertex v in graphs Go, ..., G,. Label w(v) is the number of
vertices in G represented by v and is called the weight of vertex v. Note that
every vertex in Gy has weight one. If v € G;, i > 0, then o(v) is the number of
vertices in (G;_1 represented by v; o(v) is called the size of v. In order to satisfy
Properties (iii) and (iv), the algorithm ensures the following invariant:

(I) For every vertex in Gy, w(v) < 2¢ and o(v) < 56.

The construction starts with a graph G; = G;_1. Every vertex in G} has the
same weight as in G;_1. The size of every vertex in G} is one. A vertex v € G|
is said to be heavy if either w(v) > 27! or o(v) > 28. Otherwise v is light.
An edge (v,w) € G} is contractible if both its endpoints are light. It is obvious
that a contractible edge can be contracted while maintaining Invariant (I). The
algorithm now contracts contractible edges until no such edge remains.

Let G be the graph obtained when no more contractions are possible. By the
definition of a contractible edge, no two light vertices in GY are adjacent. Now
the light vertices of degree at most two are partitioned into maximal subsets so
that the vertices in each subset are adjacent to the same set of heavy vertices,
have total weight at most 2 and total size at most 56. The light vertices in each
such set are replaced by a single vertex. Let G; be the graph obtained from G
in this manner.

Lemma 9.2. Graph G; as constructed by the above procedure has Properties
fii) (1),

Proof. (ii): By induction, we can assume that G, = G,_; is planar. Hence,
G is planar, as it is obtained from G through a series of edge contractions. An
embedding of G; can be obtained from an embedding of GY as follows: Let S be
a set, of light vertices in G represented by a single vertex vg in G;. Then choose
a vertex v € S and remove all vertices in S\ {v} from G}. Rename v to vg.

(iii) and (iv): Graph G} has Property (iii) and, by induction, Property (iv).
Hence, graph G; can violate either of these two properties only if the construc-
tion merges a set of vertices whose total weight exceeds 2’ or whose total size
exceeds 56. Since this is not done, graph G; has Properties (iii) and (iv).

(v): To prove that graph GG; has Property (v), we make use of the following
proposition, whose proof can be found in [32].

Proposition 9.3. Let G = (Vi, V4, E) be a bipartite planar graph. Let vertex
set Vy be partitioned into non-empty equivalence classes Ci,...,C,, where two
vertices in Va are equivalent if they have degree at most two and are adjacent to
the same set of vertices in Vi. Then q < 6|V4].



Using this fact, we can prove that |G;| < 28 N/2%. In particular, this claim is
true for Gy = G. So assume that the claim holds for all graphs Gy, ...,G;_1, and
consider the subgraph H of G; induced by the edges incident to light vertices.
Graph H is bipartite, and no two light vertices of degree at most two in H are
adjacent to the same set of heavy vertices. Hence, by Proposition 9.3, the number
of light vertices in G; is bounded by 6h;, and the total number of vertices in G;
is at most 7h;, where h; is the number of heavy vertices in GG;. Thus, in order
to prove that |G;| < 28N /27, it suffices to show that h; < 4N/2'. To do this, we
partition the heavy vertices in GG; into two classes: A vertex v of G; is of type |
if w(v) > 271, Tt is of type IT if w(v) < 2¢~!, but o(v) > 28. There are at most
N/201 type-I vertices and at most |G;_;|/28 type-II vertices. Hence,

N |Gi_1]
h; < —
- 2i-1 + 28
N N
< 2i—1 + 2i—1
4N
=5
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By Lemma 9.2, the above strategy for constructing graph G; from graph G;_
guarantees that G; has Properties (ii)—(v). Constructing G} from G;_q is a
matter of changing the size o(v) of every vertex to one. Hence, this takes
O(scan(|G;-1])) I/Os. To obtain graph G; from graph GY, it suffices to sort
the light vertices of degree at most two by their neighbors and then parti-
tion each equivalence class of light vertices into maximal groups of consecu-
tive vertices of total weight at at most 2/ and total size at most 56. This takes
O(sort(|GY|)) = O(sort(]G;—1])) I/Os. So let us concentrate on the construction
of GY from Gj.

This construction has to be done with some care because the contraction of
an edge {v, w} may render another edge {v,w’} non-contractible; but contract-
ing the edges in G one at a time, in order to check whether each edge to be
contracted is contractible, does not seem to lead to an I/O-efficient algorithm.
The solution to this problem is a strategy that iteratively contracts sets of edges
that are guaranteed not to interfere with each other’s contractibility. The con-
tractions in each iteration are sufficient to guarantee that the minimum size of
the vertices in the graph increases by a factor of two from one iteration to the
next, so that only [log, 28] iterations are required before no contractible edges
remain. The pseudo-code of this procedure is shown in Algorithm 9.1.

In this procedure the contractible subgraph of a graph G is the subgraph
of G induced by the contractible edges in G. In each iteration, the algorithm can
restrict its attention to graph H; because the edges of G} that are not in H; are
not contractible. The contractions in each iteration are divided into two phases.

The first phase (Lines 4-5) contracts the edges in a maximal matching M
of H;. The contraction of any subset of the edges in M cannot affect the con-
tractibility of the remaining edges in M because no two edges in M share an



Procedure COMPRESS

Hj <+ contractible subgraph of G
R
while H; # () do
Compute a maximal matching M of H;.
Contract the edges in M.
for every unmatched vertex v in H; do
if v has a light matched neighbor w then
Contract v into w.
end if
10:  end for
11:  Hj41 < contractible subgraph of H;
122 j«j+1
13: end while

©

Algorithm 9.1
Computing graph G from graph Gi.

endpoint. Hence, this simultaneous contraction of the edges in M does not con-
tract an edge that would have become non-contractible when performing edge
contractions one at a time.

After this first phase, the vertices of H; can be partitioned into two categories:
A matched vertex represents the two endpoints of an edge in M. All other
vertices are unmatched. The goal of the second phase (Lines 6-10) is to ensure
that the vertex set of graph H;,; contains only matched vertices of Hj, i.e., that
no remaining unmatched vertex in H; has an incident edge that is contractible.
It is easy to show that this implies that every vertex in H; has size at least 27, so
that the procedure terminates after at most [log, 28] iterations of the while-loop,
and the size of graph H; is at most |G}|/27.

To eliminate all unmatched vertices from H; in an I/O-efficient manner,
observe that the maximality of matching M implies that all neighbors of an un-
matched vertex are matched. Hence, the algorithm has to solve a bipartite con-
traction problem where the set of matched vertices is fixed an every unmatched
vertex should be contracted into one of its matched neighbors if possible. this
can be done as follows: Denote the set of matched and unmatched vertices of H;
by Vi, and V,, respectively, and assume that every vertex in H; has a unique
numerical ID. Then construct a DAG D with vertex set V,,,. For every vertex
v € V,,, graph D contains a path P, = (wy,...,wg), where wy, ..., wy are the
neighbors of v in Hj, sorted by increasing numbers. Now use time-forward pro-
cessing to pass every vertex v € V,, along its path P, in D. Every vertex w € V,,
inspects the unmatched vertices v, ..., v; it receives from its in-neighbors. Let
0 < h < [ be the minimum index so that w(w) + Y'_ w(v,) > 21 and
o(w) + 22:1 o(ve) > 28. If no such index exists, let h = [. Then vertices
v1,...,v, are marked for contraction into vertex w. After these contractions
vertex w is heavy, so that edges {vp41,w},...,{v, w} are not contractible.
Hence, vertices vpy1,. .., v are forwarded to the out-neighbors of w on paths

3 3



Py, .15 .., Py, to test whether they can be contracted into those vertices. Once
graph D has been processed, the vertices in V,, that have been marked for con-
traction into a vertex in V,,, can be contracted into these matched vertices using
the standard graph contraction procedure.

This procedure achieves the desired result because every vertex v € V,, that
is not contracted into one of its neighbors is passed along the whole path P,
in D, and every edge {v,w}, w € P, is tested for its contractibility. Hence, if
one of these edges were contractible, it would have been contracted.

One iteration of the procedure COMPRESS takes O(sort(|H;|)) I/Os: A max-
imal matching of H; can be computed in this number of I/Os [25,32] (see the
remark at the end of Section 4.2). The contraction of the edges in M can be
carried out in O(sort(|H,|)) I/Os in the standard fashion. The construction of
DAG D from Hj requires sorting and scanning the vertex and edge sets of H;
a constant number of times. DAG D has size O(|H,|), so that the applica-
tion of time-forward processing to D takes O(sort(|H;|)) I/Os (see Section 4.1).
Contracting the marked unmatched vertices into their matched neighbors takes
another O(sort(|H;|)) I/Os using the standard contraction procedure.

We have shown that one iteration of Algorithm 9.1 takes O(sort(|H;|)) I/Os.
We have also argued that |H;| < |G}/27. This implies that the total 1/O-
complexity of procedure COMPRESS is O(sort(|G}|)) = O(sort(|G;_1])). Since
the construction of graph G; from graph G also takes O(sort(|G;_1])) I/Os, the
whole construction of graph G; from graph G;_; takes O(sort(|G;_1|)) I/Os. By
Property (v) of the graph hierarchy, this shows the following lemma.

Lemma 9.4. A graph hierarchy G = Gy, G1, ..., G, with Properties (i)—(v) can
be computed in O(sort(N)) I/0s.

The following theorem now follows immediately from Lemmas 9.1 and 9.4.

Theorem 9.5. Given a planar graph G = (V,E) and an integer h > 0, a
separator S partitioning G into subgraphs of size at most h can be computed
in O(sort(N)) I/Os, provided that M > 56hlog® B. The size of S is O(N/\/E)

10 Planar Undirected DFS

As the last result discussed in detail in this course, we now return to DFS in
undirected graphs. This time, however, we restrict our attention to undirected
planar graphs. As before we assume that the graph is given together with an
embedding, and we do not distinguish between a graph and its embedding.
The algorithm we discuss is due to Arge et al. [5]. Similar ideas have been used
in a PRAM-algorithm for DFS in planar graphs by Hagerup [16]. The algorithm
combines two ideas: The first one is that DFS in any graph can be reduced to
computing appropriate DFS-trees of its biconnected components and “gluing”
them together. The main idea for constructing a DFS-tree of a biconnected
planar graph G is to partition G into layers of extremely simple structure, using
BFS in a graph that is closely related to the dual of G. In particular, these layers
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Figure 10.1
(a) A partition of the faces of G into levels. (b) The layers defined by this partition.

are trees of cycles. A DFS-tree of a tree of cycles can be obtained by computing
the biconnected components of the graph (i.e., the cycles) and removing an
appropriate edge from each component. Moreover, the relationship between these
layers and the structure of G is such that a DFS-tree of G can be obtained by
“gluing” together appropriate DFS-trees of the layers.

10.1 Partitioning the Graph into Layers

Formally, the layers of G are defined as follows (see Figure 10.1): Let r be the
source of the DFS, i.e., the root of the DFS-tree to be computed. Let s be a face
of G that has r on its boundary. Then the faces of G are partitioned into levels
as follows: Face s is the only level-0 face. A face is at level i > 0 if it shares a
vertex with a face at level i — 1, but not with a face at level less than i — 1.
Given the levels of the faces of G, the level of a vertex or edge = is defined as
the minimum level of the faces that have 2 on their boundaries. Let V; be the
set of vertices at level i. Then V; is the vertex set of layer L;. An edge e is an
edge of layer L; if it is at level ¢ and both its endpoints are at level i. Denote the
set of these edges by E;. That is, L; = (V;, E;). Finally, an edge at level i that
has at least one endpoint at level i — 1 is called an attachment edge of layer L;.
In particular, such an edge connects a vertex in L; with a vertex in L; ; or two
vertices in L; 1. Let A; be the set of attachment edges of layer L;.

Before showing that layers Lg, ..., L; have a very simple structure, we ar-
gue that these layers and their sets of attachment edges can be computed in
O(sort(N)) I/0s using procedure LAYERPARTITION outlined in Algorithm 10.1.
We do not discuss every single detail of the algorithm, but present the main
ideas.

The face-on-vertex graph Gy computed in Line 1 of the algorithm is defined
as follows (see Figure 10.2): Graph Gp contains all vertices of G as well as one
vertex f* for every face f of GG. There is an edge (v, f*) in G if and only if
vertex v is on the boundary of face f. We leave it as an exercise to verify that
with this definition of G, the levels of the vertices and edges in GG are computed
correctly in Lines 4 and 5, and that sorting the vertex and edge sets of G as in



Procedure LAYERPARTITION

Compute the face-on-vertex graph Gr of G.

Choose a vertex s™ in G adjacent to vertex r.

Perform BFS in G from s*.

Let the level of every vertex v € G be (d(s™,v) — 1)/2.

Let the level of every edge e € G be the minimum of d(s*, fi)/2 and d(s”, f3)/2,
where f1 and f» are the two faces that have e on their boundaries.

Sort the vertices in V' by their levels to partition them into vertex sets Vg, ..., V.
7: Sort the edges in E by their levels as primary key and by the minimum of the
levels of their endpoints as secondary key. This produces a partition of E into sets
E(),Al,El, . ,Ak,Ek.

=2

Algorithm 10.1
An algorithm to partition G into layers.

Lines 6 and 7 does indeed produce the desired partition of these sets into the
vertex and edge sets of layers Lq, ..., Ly and the sets Ay,..., Ay of attachment
edges.

Assuming that every edge e of G “knows” the two faces f; and f, that
have e on their boundaries, the computation of the levels of all vertices and
edges of G requires a constant number of sort and scan operations and hence
takes O(sort(N)) I/Os. Lines 6 and 7 sort sets V' and E and hence also take
O(sort(N)) I/0s. Thus, the main difficulty of the algorithm is the computation
of graph Gy and performing BFS in G. The construction of graph G also
provides every vertex and edge in G with the names of its two adjoining faces,
thereby providing the computation in Line 5 with the required input.

In order to perform BFS in G, observe that G is obviously planar and has
O(N) vertices. Hence, the shortest path algorithm from Section 8 can be used to
compute a BFS-tree of Gy in O(sort(N)) I/Os. What remains to be shown is how
graph G can be constructed: First compute a set of cycles C, one per face f
of G, so that cycle Cy contains one vertex per edge on the boundary of face f
and the vertices appear in the same order along C'y as their corresponding edges
clockwise around f. The collection of these cycles can be obtained from G using
an adaptation of the Euler tour technique (see Section 3.1). In particular, replace
every edge {v,w} € G with two directed edges (v, w) and (w,v) and define the
successor of every edge (u,v) as edge (v, w) so that edges {v,u} and {v,w} ap-
pear consecutively in counterclockwise order around v. The graph G’ defined as
the union of cycles Cy is obviously planar. Hence it is sparse, and its connected
components can be computed in O(sort(N)) I/Os, by Theorem 5.11. The con-
nected components of G are the cycles C¢, and every vertex in C} represents
an edge (v, w). Now sort and scan the vertex set of G' and add a vertex f* per
cycle Cy and an edge {f*,v} per vertex (v, w) in cycle Cy to Gr. This takes
another O(sort(N)) I/0s.

Since all steps of Algorithm 10.1 can be carried out in O(sort(N)) I/0s, we
obtain the following lemma.



Figure 10.2
The face-on-vertex graph of graph G shown in Figure 10.1a.

Lemma 10.1. A partition of an undirected planar graph G with N vertices into
layers Lg, ..., L and sets Aq,..., Ay of attachment edges can be computed in

3 3

O(sort(N)) I/Os, provided that M = 2(B?log® B).

Remark. The above construction does not construct a planar embedding of G
from the planar embedding of G; but the shortest path algorithm of Section 8
requires a planar embedding of G in order to perform BFS in Gp. Given that
cycles Cy have been identified, graph G’ can be transformed into a collection
of linked lists, by removing one edge from each cycle. Now list ranking can be
applied to determine the order of the edges clockwise around each face. This
information suffices to construct a planar embedding of G .

10.2 DFS in a Layer

Given a partition of G into layers as computed by procedure LAYERPARTITION,
we now focus on a single layer L; and show that it has a sufficiently simple
structure to perform DFS in L; I/O-efficiently. In particular, we say that a
biconnected component of L; is trivial if it consists of a single edge. Otherwise
the biconnected component is non-trivial. Let G; be the subgraph of G induced
by the faces at levels 0 through i. We call a cycle in G; a boundary cycle if the
incident faces on one side of the cycle are at level i, while the incident faces on
the other side are at level ¢ + 1.

Lemma 10.2. The non-trivial biconnected components of L; are the boundary
cycles of G;.

Proof. Consider a cycle C' in L;. All faces incident to C are at level i or i + 1.
The faces of G at level at most i — 1 form a connected region. Hence, either all
these faces are inside C, or all of them are outside C. This implies that either
all faces outside C or all faces inside C are at level at least ¢ + 1 because they
cannot share a vertex with a level-(i — 1) face. This proves that every cycle in L;
is a boundary cycle.

Every non-trivial biconnected component of L; that is not a cycle contains
two vertices v and w so that there are three internally vertex-disjoint paths Py,
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Figure 10.3
(a) A tree G of cycles. (b) The corresponding block-cutpoint-tree. Block nodes are
squares; cutpoints are discs. (¢) A DFS-tree of G. Dotted edges are non-tree edges.

P,, and P; from v to w in L;. These paths define two cycles P, U P, and P; U Ps,
which are both boundary cycles. However, this is impossible because either P;
is completely inside or completely outside the region bounded by P; U Ps. O

Now let Hy,...,H, be the connected components of L;, and let r{,...,r,
be vertices so that r; € H;. We describe a procedure that uses Lemma 10.2 to
compute DFS-trees T4, ..., T, of Hy,..., H, rooted at vertices r1,...,r,.

In order to compute one such DFS-tree 7}, compute the block-cutpoint-
tree T} of H; (see Figure 10.3). Tree T; contains all cutpoints of H; and one
vertex per biconnected component of H;. If vertex r; is not a cutpoint of H;, it
is added as a vertex to T;. There is an edge {v, 8} in T}, where /3 represents a
biconnected component B of H;, if vertex v is contained in B. Choose vertex r;
as the root of T]f. The parent cutpoint of a biconnected component is defined
as the parent of the corresponding node in ij. A DFS-tree T of H; can now
be obtained by removing one of the two edges incident to its parent cutpoint
from every non-trivial biconnected component of H;. Next we show that tree T}
is indeed a DFS-tree of H; and that the construction of trees 77,...,7, can be

carried out I/O-efficiently.

Lemma 10.3. Given a layer L; with connected components Hy,...,H, and a
set of vertices r1,...,rq so that r; € Hj, a set of DFS-trees Ty, ..., Ty for graphs
Hy,...,H, rooted at vertices r1,...,r4 can be computed in O(sort(|L;|)) 1/Os.

Proof. First we show that tree 7} as constructed by the above procedure is
a DFS-tree of H;. To do this, we consider a biconnected component B of H;



Figure 10.4
A DFS-tree of G.

containing a non-tree edge {v,w}. One of the endpoints of this edge, say v, is
the parent cutpoint of B. Hence, any path from r; to w in H; must contain v. In
particular, this is true for the path from r; to w in 7}, so that v is an ancestor
of w in Tj. Since this is true for any non-tree edge {v, w}, T; is a DFS-tree of H;.

Next we prove that the computation of tree T} for graph H; can be carried
out in O(sort(|H;|)) I/Os, which implies that the computation of trees T4, ..., T,
takes O 221 sort(|H;|)) = O(sort(|L;|)) I/Os. The biconnected components of
H; can be computed in O(sort(|H;|)) I/Os, using the algorithm from Section 5.3.
We leave it as an exercise to verify that given the biconnected components of H;,
the block-cutpoint-tree 77 can be computed in O(sort(|H;[)) 1/Os, by sorting
and scanning the vertex and edge sets of H; a constant number of times. Then
the Euler tour technique and list ranking can be applied to root T]f at r; and
determine the parent cutpoint of every biconnected component. Given the parent
cutpoint of every biconnected component, it suffices to scan the edge set of that
biconnected component to (a) decide whether it is non-trivial (i.e., has more
than one edge) and if so, (b) find one of the two edges incident to the parent
cutpoint and remove it. O

The construction outlined above computes a DFS-tree T} for graph H;. In or-
der to use this tree in the construction of the next section, every vertex has to be
labelled with its distance from r; in T}. This can be done in O(sort(|H;|)) 1/Os,
using the Euler tour technique and list ranking again (see Section 3).

10.3 DFS in a Biconnected Planar Graph

Having developed a tool for constructing DFS-trees of the layers of G, we now
show how to obtain a DFS-tree of a biconnected planar graph from appropriate
DFS-trees of its layers. In particular, the DFS-algorithm starts with a DFS-
tree Ty of Gg = Ly and then iteratively augments the current DFS-tree T; of G;
with DFS-trees of the connected components of L;; to obtain a DFS-tree T4
of Gi11. A DFS-tree for G obtained in this manner is shown in Figure 10.4. If we
can show that the augmentation can be carried out in O(sort(|L;|+|L;1+1])), it fol-
lows that the whole algorithm takes O(sort(N)) I/Os because layers Lo, ..., Lg
are disjoint.



Tree Ty is easy to obtain using the Euler tour technique and list ranking
because graph Gy is a simple cycle.

So assume that a DFS-tree T; of G; is given, which is to be augmented to
produce a DFS-tree T;41 of G;41. Let G; be the subgraph of GG induced by all
faces at level at least i + 1. Since the faces at levels 0 through 7 form a con-
nected region, the boundary between G; and Gj is a collection of edge-disjoint
simple cycles and the removal of the faces of G; introduces a number of “holes”
Ry, ..., R; whose boundaries are the boundary cycles of G;. By Lemma 10.2,
these boundary cycles are the biconnected components of L;. The following ob-
servation now follows immediately from the way the DFS-trees for the connected
components of L; are constructed.

on its boundary, sorted clockwise around R; and so that vi has minimum depth
in T;. Then vy is an ancestor of vertices va,...,v, and either (vi,...,vy) or
(v1, Uk, ...,02) is a path in T;.

Observation 10.1. Let R; be a hole of G;, and let vy, ..., v be the vertices

Intuitively, if w.l.o.g. (v1,...,v;) is the path in T}, the observation states
that for any vertex v;, vertices vy,...,v;_1 are ancestors of v; in T;. Hence, the
following strategy produces a DFS-tree for G;;1: For every connected compo-
nent Hj of L;, find the set A’ of attachment edges of H;. Every edge in A
has one endpoint on the boundary of the hole R containing H; and the other
endpoint in H;. Find the attachment edge {u;,v;} whose endpoint u; on the
boundary of R has maximal depth. Then compute a DFS-tree of H; rooted at v;
and link it to T; using edge {u;,v;}. Let T;41 be the tree obtained by attaching
DFS-trees for all connected components of L;11 to T; in this manner.

Lemma 10.4. Tree T;11 is a DFS-tree of Giy1.

Proof. We have to show that for every non-tree edge {v,w} of T;11 w.lo.g. v
is an ancestor of w. We distinguish three cases: (1) v,w € G4, (2) v € G; and
w € Lijpq, and (3) v,w € L;;1. For Cases (1) and (3) the claim holds because
T;+1 is the union of a DFS-tree T; for G; and DFS-trees for the connected
components of L;yq.

In Case (2) let w € H;. Then v is on the boundary of the hole containing H;.
In particular, by the choice of the attachment edge {u;,v;} of H; included
in Tj41, v is an ancestor of u; in T;. Vertex w is a descendant of v; in the DFS-
tree constructed for H;. This implies that v is an ancestor of w in Tj4,. O

Now observe that the above construction requires little more than a constant
number of sort and scan operations. In particular, the connected components
of L1 can be found in O(sort(|L;+1])) I/Os, by Theorem 5.11. Given the con-
nected components Hy, ..., H;, it suffices to sort the set A,;; of attachment
edges of L;;1 by their endpoints in L;41, sort the vertices in L;y; by their num-
bers, and scan the two sorted lists to determine for every attachment edge the
connected component H; of L;;, containing one of its endpoints. After sort-

ing the vertices in L; by their IDs and the attachment edges in A;y; by their



endpoints in L;, a single scan of these two sorted lists suffices to label every
attachment edge of L;;; with the depth of its endpoint in 7;. Now sort the at-
tachment edges of L;;; by the connected components of L;;; containing one of
their endpoints as the primary key and by the depths of their endpoints in 7} as
the secondary key. This produces sets A’;, each with its edges sorted by increas-
ing depths of their endpoints in T;. A single scan of these sorted lists suffices to
extract edge {u;,v;} as the first edge in A}, for every connected component Hj.
In order to construct the DFS-trees for Hy, ..., H,, the construction of the pre-
vious section is used. Clearly this procedure takes O(sort(|L;| + |Lit1])) I/Os.
Hence, we obtain the following result.

Lemma 10.5. A DFS-tree of a biconnected planar graph G with N vertices can
be computed in O(sort(N)) 1/Os, provided that M = (2(B*log” B).

10.4 DFS in Connected Planar Graphs

Finally, we are ready to put the bits and pieces together to obtain a DFS-
algorithm for connected planar graphs. In fact, the algorithm just uses ideas
already presented above: If the graph is biconnected, apply Lemma 10.5 to ob-
tain a DFS-tree of G. If GG is not biconnected, apply a similar procedure as for
DFS in a layer. In particular, compute the biconnected components of GG, build
the corresponding block-cutpoint-tree, and construct for every biconnected com-
ponent of G, a DFS-tree rooted at its parent cutpoint. Since every non-tree edge
has both its endpoints in the same biconnected component, it is obvious that
the union of these DFS-trees is a DFS-tree of G.

The computation of the biconnected components takes O(sort(N)) I/Os us-
ing the biconnectivity algorithm from Section 5.3. Computing a DFS-tree for a
biconnected component of size N; takes O(sort(NN;)) I/Os, by Lemma 10.5. Since
the total size of all biconnected components is O(N), computing DFS-trees for
all biconnected components therefore takes O(sort(N)) I/0s, and we obtain the
following result.

Theorem 10.6. A DFS-tree of a connected planar graph with N vertices can
be computed in O(sort(N)) 1/Os, provided that M = 2(B?log” B).

11 Lower Bounds

So far we have focused on the design of I/O-efficient algorithms for fundamental
graph problems. In this section we try to answer the question whether these
algorithms are optimal or close to optimal by proving lower bounds for some of
the problems solved by the algorithms presented in Sections 2 10.

In order to prove these lower bounds, we concentrate on two central problems:
list ranking and connected components. Once we have shown that these problems
require 2(perm(|V|)) and 2(perm(|E|)) I/Os, the same lower bounds can be
obtained for numerous other problems using rather simple arguments.



Before going into the details of the proofs, a few remarks regarding the choice
of an appropriate model of computation are in order because choosing the right
model for proving lower bounds for graphs problems is non-trivial. Consider for
example two common models assumed in lower bound proofs. The first model
assumes that records are indivisible. That is, the output has to be represented
as an appropriate permutation of the input because the model does not allow
the creation of new records. This model is too restrictive because most interest-
ing graph problems require the computation of a labelling of the vertices of the
graph, so that any algorithm for this problem is forced to create new records
representing the computed labels. The second model is the comparison model,
which in particular does not allow any indirect addressing (i.e., exploiting the
fact that computers represent everything as numbers, which allows the use of
data items as indices for accesses into arrays). But internal memory graph al-
gorithms make extensive use of indirect addressing, so that disallowing it in
I/O-efficient algorithms may overly handicap the latter and therefore prevent
a meaningful comparison between internal and external memory algorithms for
the same problem. Choosing much more powerful models, on the other hand,
makes it hard to prove non-trivial lower bounds.

The lower bound proof for list ranking presented in Section 11.1 assumes that
records are indivisible, which requires some care when formulating the arguments
in the proofs. In particular, the constructions presented in the proofs could be
considered reductions from one problem to another. But these reductions would
create new records and thereby leave the model. Instead we emphasize that the
constructions are not carried out by an algorithm, but we use them only as
tools to prove the equivalence between input instances for the two problems.
Assuming indivisibility of records also implies that the arguments apply only to
a particular type of algorithm, which we specify carefully.

The lower bound proof for connectivity uses an augmented version of the
comparison model: the indexed I/O-tree [28]. Essentially this model is the com-
parison model augmented with indirect addressing. The details of the model are
of less relevance to our argument here because we use a reduction that requires a
very weak model; but the lower bound of the problem we reduce to connectivity
to prove a lower bound for connectivity is shown in the indexed I/O-tree model.

11.1 List Ranking, BFS, DFS, and Shortest Paths

A lower bound for list ranking can be obtained by showing its equivalence to
the split prozimate neighbors (SPN) problem. In this problem, a sequence S of
2N integers in the range 1 through N is given. Sequence S is the concatenation
of two sequences S7 and Sy of length NV so that each integer occurs exactly once
in S; and exactly once in Sy. Sequence S; is sorted. The goal is to permute the
elements in S so that for every integer 1 < i < N, both occurrences of 7 in S are
stored in the same disk block.

The original lower bound proof for this problem [3] proves the lower bound
by counting the number of different permutations an algorithm solving SPN has
to be able to produce. Here we present a more intuitive proof.



Lemma 11.1. The split prozimate neighbor problem requires £2(perm(N)) I1/Os
for an input sequence of size 2N .

Proof. To prove the lemma, we show that if there is an algorithm that solves
SPN in Z(N) I/Os, there is an algorithm that can permute N data items in
O(Z(N)) I/Os. Hence, Z(N) = 2(perm(N)).

So let @1,...,zny be a set of data items, and let o : [1I,N] — [1,N] be

a permutation so that elements z1,...,zxy have to be arranged in the order
To(1),- - To(ny)- Let y = (1,2,...,N,0(1),0(2),...,0(N)) be the instance of
SPN defined by permutation o. Now consider an algorithm A that solves SPN
in Z(N) I/0s, let Z(y) < Z(N) be the number of I/Os performed by algorithm A
on instance y, and let S be the sequence of data moves performed by algorithm A
on instance y. That is, sequence S incurs Z(y) I/Os. The elements z1,...,zyN
can be arranged in the order x,(1),..., Z,(n) in at most 2Z(y) < 2Z(N) 1/Os as
follows: First apply the same movements to elements z1, ..., zy as algorithm A
applies to elements 1,2, ..., N. Now reverse the data movements of algorithm A,
letting element z,(;) play the role of element o (i) in y. To do this, element z,;),
1 <i < N, has to be moved into the place of element o (i) before running algo-
rithm A backwards. However, after running algorithm A forward, element z,;
is stored in the same block into which algorithm A places element o(i). Hence,
element x,(; can be moved into the place of element o(i) when the reversal of
algorithm A loads the block containing element z,(;) into main memory for the
first time. This does not incur any extra I/Os.

Now let A’ be an algorithm that behaves as just described for any input in-
stance 1, ...,z N and any permutation ¢. Since the above construction does not
make any assumptions about the structure of permutation o, algorithm A’ ar-
ranges any input instance in the correct order and does so in at most 2Z(N) I/Os.
Given the remark at the beginning of the proof, this proves the lemma. O

Lemma 11.1 can be used to prove a lower bound on the number of I/Os
performed by algorithms that are able to solve list ranking in its full generality
as stated in Section 2. In particular, we restrict our attention to algorithms that
solve the weighted list ranking problem using only the associativity of the sum
operator defined on the set of vertex labels in the list. Note that this means that
the lower bound does not hold for the unweighted list ranking problem because
(Z,+) is a group, so that some clever algorithm for this problem may combine
addition and subtraction to compute the ranks of all nodes more efficiently.

Given that the algorithm uses only the associativity of summation, it can
be enforced that for every node z;, there is some point during the course of the
algorithm when nodes z; and succ(z;) reside in main memory together. If the
algorithm does not already have this property, it can be enforced at the expense
of increasing the I/O-complexity of the algorithm by only a constant factor.

Now every SPN instance gives rise to an equivalent list ranking instance. In
particular, the successor of element i in sequence S; is defined to be element i
in sequence Sy. The successor of element i in S, is element i + 1 in S;. Consider
the I/Os performed by the list ranking algorithm. Whenever two equal elements



from S; and S, end up in main memory at the same time, they can be moved to
a buffer of size B, which is emptied to disk whenever it runs full. The resulting
algorithm performs N/B 1/Os more than the list ranking algorithm and solves
SPN. Since SPN requires 2(perm(N)) I/Os, we obtain the following result.

Theorem 11.2. List ranking requires {2(perm(N)) I/Os.

As an immediate consequence of Theorem 11.2; we obtain lower bounds for
BFS, DFS, and SSSP. In particular, it suffices to consider the given list as an
undirected graph whose edges have unit weights. Then list ranking can be solved
by performing BFS, DFS or SSSP in this graph, starting at the head of the list.
Again the lower bound applies only to algorithms that compute the distances of
the vertices of G from the source only by adding path lengths.

Corollary 11.3. Breadth-first search, depth-first search and single source short-
est paths require 2(perm(N)) I1/Os on a graph with N vertices.

11.2 Connected and Biconnected Components

In order to prove a lower bound for the number of I/Os required to compute the
connected components of a graph, we use the following proposition shown in [28].
Let the segmented duplicate elimination problem be defined as follows: Let S be
a set of N integers drawn from the interval [P + 1,2P], and let P < N < P2
Furthermore, assume that S can be divided into P contiguous subsequences
Si,...,Sp, each of length N/P, so that the elements in each sequence S; are
distinct. Then construct a Boolean array C[P + 1,...,2P] so that C[i] = 1 if
and only if S contains an element of value i.

Proposition 11.4. The segmented duplicate elimination problem with parame-
ters P and N as above requires 2((N/P)perm(P)) 1/0Os.

In order to prove an 2(perm(|E|)) lower bound for computing the connected
components of a graph, the segmented duplicate elimination problem is reduced
to that of computing the connected components of an appropriate graph. In
particular, consider an instance of the segmented duplicate elimination problem
with N elements in the range [P + 1,2P], where N > 2P. Then graph G is
defined as follows:

1. Graph G has N/P + P vertices.
2. If P+1i € Sj, then G contains edge {j, N/P +i}.
3. Graph G contains edges {1,2},{2,3},...,{N/P —1,N/P}.

Graph G has N/P + P = O(P) vertices and N + N/P —1 = O(N) edges. The
construction of the edge set of G can easily be carried out in O(scan(N)) I/Os.
Now it is easy to see that P+i € S if and only if vertices 1 and N/P+i are in the
same connected component. Hence, computing the connected components of G
requires Q((N/P)perm(P)) = ((E|/|V])perm(|V])) = @(perm(|E])) T/Os,
and we obtain the following result.



Theorem 11.5. Computing the connected components of a graph G = (V, E)
requires §2(perm(|E|)) I/0Os.

Using a similar construction, the same lower bound can be shown for com-
puting the biconnected components of a graph. In particular, graph G above
is augmented with a vertex 0 that is connected to vertex 1 and to vertices
N/P+1,...,N/P + P. Then element P +i € S if and only if vertices 0 and
N/P +i are in the same biconnected component of the augmented graph G. The
augmentation can be carried out in O(scan(N)) I/Os. The sizes of the vertex
and edge sets of G remain @(P) and O(N), respectively. Hence, we obtain the
following result.

Theorem 11.6. Computing the biconnected components of a graph G = (V, E)
requires §2(perm(|E|)) I/0Os.

12 More Problems and Solutions

This last section is dedicated to a short survey of a few results that should not
be missing from a course on I/O-efficient graph algorithms and a discussion of
open problems related to the material presented in this course. In Section 12.1
we discuss three classes of sparse graphs other than planar graphs for which
O(sort(N)) I/0 algorithms for BFS, DFS and the single source shortest path
problem exist. In Section 12.2 we discuss the main ideas behind an I/O-efficient
algorithm for planarity testing and planar embedding proposed in [26]. The
algorithm is particularly interesting because it uses separators to compute the
embedding, which is possible only because the separator algorithm from Section 9
does not use any information provided by a planar embedding of the graph. In
Section 12.3 we discuss a number of interesting open problems.

12.1 More Classes of Sparse Graphs

There are a few more classes of sparse graphs that researchers have considered,
trying to develop I/O-efficient algorithms for fundamental problems on these
classes of graphs. The interest in these classes of sparse graphs stems either from
their practical importance or from structural properties that made these graphs
promising candidates for I/O-efficient solutions to the problems of interest. We
start our discussion with the most practical class whose favorable structural
properties are obvious to the trained eye. Then we work our way to graph classes
whose practical relevance is disputable, but whose structure is more interesting.

Grid graphs. In [6] Arge et al. study problems on grid graphs. The vertices of a
grid graph are a subset of the vertices of a regular v/N x /N grid. Every vertex v
can be connected to at most eight other vertices, namely the vertices whose grid
positions differ by at most one in each dimension from the position of v. These
graphs arise naturally in computations on raster-based elevation models used in
geographic information systems.



An interesting fact to observe about grid graphs is that they are almost
planar. That is, only diagonals can intersect and every diagonal intersects at
most one other diagonal. Thus, it is not surprising that these graphs have small
separators and that these separators can be used to compute shortest paths in
the same way as for planar graphs.

In particular, choosing every B-th row and column to be in the separator,
one obtains a separator of size O(N/B) that partitions the graph into O(N/B?)
subgraphs of size at most B2 and boundary size O(B). Moreover, every separator
vertex is on the boundary of at most four regions and the number of boundary
sets is O(N/BQ). Hence, the shortest path algorithm for planar graphs can be
applied to grid graphs, using the separator just defined instead of the separator
computed for planar graphs using the algorithm from Section 9.

Depth-first search on grid graphs can be solved in O(N/vB) 1I/Os using a
slightly modified version of the internal memory DFS-algorithm. In particular,
choosing the space between separator rows and columns to be v/B, one obtains
a separator of size O(N/v/B) that partitions the graph into O(N/B) subgraphs
of size at most B and boundary size O(\/E) Now whenever the DFS-algorithm
explores an edge connecting a separator vertex with an internal vertex of a sub-
graph G;, the whole graph G, is brought into main memory. The DFS-algorithm
explores edges in GG; until it comes to a separator vertex again, where the whole
procedure is repeated. It remains to be observed that every subgraph is entered
at most, O(\/E) times, once through each boundary vertex. Each time the graph
is entered, the algorithm spends one I/O to bring it into main memory, so that
O(\/E) I/Os are spent per subgraph. Since there are O(N/B) subgraphs, the
I/O-bound follows.

Graphs of bounded treewidth. The treewidth of a graph has been defined
by theoreticians as a parameter that captures the hardness of many NP-hard
problems on this graph. In particular, many of these problems can be solved
in linear time if the treewidth of the graph is constant. Recently a number of
researchers have argued that the graphs produced by web crawls have constant
treewidth, so that I/O-efficient algorithms for these graphs would be useful in
web-modelling applications. Unfortunately the results we discuss next still are of
little practical relevance because the constants hidden in the big-Oh are super-
exponential in the treewidth of the graph and hence are small only for graphs of
extremely small treewidth. Yet it is interesting that at least theoretically these
graphs allow I/O-efficient solutions to BFS and shortest paths.

Intuitively, the treewidth of a graph G captures how far away G is from being
a tree. Hence, quite naturally, the treewidth of a tree is one. A tree-decomposition
of a graph G is a tree T storing vertices of G at its nodes. The union of these
vertex sets is the vertex set of G. For every edge of G, there exists a node of T
storing both endpoints of G. The nodes of T storing a vertex v € G induce a
subtree of T. The width of the tree-decomposition is k if no node of T stores
more than k 4 1 vertices of G.



Under these conditions, it can be shown that the vertex set X, stored at a
node v € T is a separator that partitions G into the subgraphs defined by the
subtrees of T' obtained by removing v from 7. Moreover, if k£ is constant, this
separator obviously has constant size.

In [25] it is shown that if G has constant treewidth, a tree-decomposition of
minimal width for G can be obtained in O(sort(N)) I/Os. The algorithm is fairly
involved and follows the internal memory algorithm by Bodlaender and Kloks [7,
8]. Given the tree-decomposition, dynamic programming can be applied to T in
order to solve single source shortest paths on G. In particular, assuming that
tree T is rooted at some node p, it is first processed from the leaves towards the
root to find for every node v, the distances in G(v) between all vertices in X,
where G(v) is the subgraph of G induced by all vertices stored at descendants
of ». In a second phase tree T' is processed from the root towards the leaves, and
the information computed in the first phase is used to compute the distance from
the source s to all vertices in G. Processing T bottom-up or top-down can be done
using time-forward processing. Since T' is a tree, this takes O(scan(NV)) I/Os.

Outerplanar graphs. A planar graph is outerplanar if it can be drawn in the
plane so that all vertices are on the boundary of a single face. This face is called
the outer face. These graphs have two properties we have seen to be useful for
solving shortest paths and DFS I/O-efficiently: They are planar by definition
and have treewidth at most two. Given that they are planar graphs of small
treewidth, it is not surprising that for outerplanar graphs there exist extremely
simple algorithms that solve shortest paths and DFS in a linear number of I/Os.

The idea behind the shortest path algorithm is to exploit the simple geomet-
ric structure of outerplanar graphs to obtain tree-decompositions of these graphs
much more easily than using the general tree-decomposition algorithm. In par-
ticular, Maheshwari and Zeh [24, 32] show that an outerplanar embedding of an
outerplanar graph can be computed in O(sort(/N)) I/Os. A tree-decomposition of
the graph is easily obtained from the dual of the computed embedding. Once the
tree-decomposition is given, the single-source shortest path problem can again be
solved by applying dynamic programming to the computed tree-decomposition.

The DFS-algorithm for outerplanar graphs is based on the following obser-
vation: If the graph is biconnected, the boundary of the outer face is a simple
cycle. Hence, the removal of an arbitrary edge from this cycle produces a sim-
ple path that contains all vertices of the graph and is hence a DFS-tree of the
graph. If the graph is not biconnected, a DFS-tree can be obtained by “gluing”
together appropriate spanning trees obtained in this manner for the biconnected
components of the graph. Intuitively, the resulting tree is the same as a tree
obtained by walking along the boundary of the outer face and backtracking as
soon as a vertex is visited for the second time.

12.2 Planar Embedding

The planarity testing and planar embedding algorithm of [26,32] fits very well
into the line of I/O-efficient algorithms for planar graphs discussed in this course.



In particular, all the algorithms for planar graphs we have discussed use the as-
sumption that the main memory is capable of holding planar graphs of size
O(BQ) and then apply graph contraction ideas, sometimes somewhat disguised,
to solve the problem at hand. The contraction is achieved by loading each sub-
graph in a B2-partition of the graph into main memory and replacing it with
another graph that encodes the relevant structural information about the bound-
ary vertices of the graph more succinctly.

For planarity testing, all graphs Gi,...,G, in a B?-partition of the given
graph G are tested for planarity. If one of these graphs is non-planar, graph G
cannot be planar. Otherwise each graph G; is replaced with another planar
graph G} of size O(B). Graphs G/, . .., G, are constructed so that G' is planar if

and only if the approximate graph A obtained as the union of graphs G, ..., G}
is planar. Since there are O(N/B2) graphs G1,...,G, and each of them has
size O(B), graph A has size O(N/B).

To see that this procedure takes O(sort(N)) I/Os, observe that each graph G;
fits into main memory. Thus, it takes O(scan(NV)) I/Os to test graphs G1,. .., G,

3

for planarity and replace them with graphs Gp,...,G. Since graph A has
size O(N/B), graph A can be tested for planarity in O(scan(N)) I/Os using any
linear-time planarity testing algorithm (e.g., [9]). The whole algorithm takes
O(sort(N)) instead of O(scan(N)) I/Os because it takes O(sort(N)) I/Os to
compute a B?-partition P = (S, {G1,...,G,}) of G.

If graph A is reported to be planar, the algorithm of [9] also produces a planar
embedding of A. Undoing the construction of graph G} from G;, the embedding
of each graph G} induced by the computed embedding of A can now be replaced
with a consistent embedding of G;. This can again be done in main memory, but
requires some care.

The most difficult part of the planarity testing algorithm is to prove that
graphs G, ..., G} above exist and that each graph G} can be computed solely
from G; (i.e., without using any additional information about the structure of
graph G.) Maheshwari and Zeh [26,32] show that this can be done based on a
decomposition of G; into its connected, biconnected and triconnected compo-
nents.

There is a subtle point about the strategy of this algorithm that is worth
pointing out: It uses a planar separator algorithm to test whether the graph is
planar. That is, it applies the separator algorithm without knowing whether the
graph is planar. This works only because the separator algorithm from Section 9
does not use any information provided by a planar embedding of G. It is based
solely on structural properties the graph is guaranteed to have if it is planar. In
particular, since it is guaranteed that the separator algorithm produces a small
separator in O(sort(N)) I/Os if the graph is planar, it can be terminated with
the output that G is not planar if the computed separator is too big or the
algorithm starts taking too long.

12.3 Open Problems

We close with a list of interesting open problems.



Optimal separators for grid graphs. The separator for grid graphs as de-
fined in Section 12.1 is non-optimal if the grid is sparsely populated. In par-
ticular, if all vertices in the graph are either on the separator rows or on the
separator columns, the separator contains all vertices in the graph. This leads
to a suboptimal performance of the shortest path algorithm. It is not hard to
see that the separator algorithm for planar graphs can be modified, in order to
obtain optimal separators for grid graphs; but the used machinery seems too
heavy for graphs of such a simple structure. Thus, the question is whether the
geometric information of grid graphs can be used to obtain optimal separators
for grid graphs more easily than using the planar separator algorithm. What
about weighted separators?

DFS in grid graphs and graphs of bounded treewidth. The algorithm
for DFS in grid graphs discussed in Section 12.1 is non-optimal by a v/B-factor.
It would seem that the ideas of the DFS-algorithm for planar graphs can be
adapted to obtain an optimal DFS-algorithm on grid graphs; but no positive
answer has been obtained so far.

The DFS-algorithms for outerplanar and planar graphs exploit the geometry
of these graphs to solve the problem in an optimal number of I/Os. The DFS-
algorithm for grid graphs exploits the fact that these graphs can be partitioned
into O(N/B) subgraphs, each of boundary size O(\/E) Graphs of bounded
treewidth have neither a geometric structure, nor is it known how to obtain a
separator partition similar to that obtainable for grid graphs. Hence, geometry-
based approaches as well as approaches based on a partition into few subgraphs
with small boundary size seem to fail on graphs of bounded treewidth, and the
development of an I/O-efficient DFS-algorithm for this class of graphs is open.

Semi-external shortest paths. Maheshwari and Zeh [26] argue that the mem-
ory requirements of their separator algorithm can be reduced by a polylog-factor
(if not to O(B)) if the semi-external single source shortest path problem can be
solved in O(sort(]E|)) I/Os on arbitrary graphs. It is one of the most challeng-
ing open problems to determine how the assumption that the vertex set can be
held in main memory can be exploited in shortest path algorithms to obtain any
I/O-complexity better than O(|V| + sort(|E|)).

Optimal connectivity. Finding the connected components of a graph is a prob-
lem that can be solved quite easily in linear time in internal memory. However,
the existing I/ O-efficient algorithms for this problem are by a log, log, (|[V|B/|E|)
factor away from optimal. While the hardness of BFS and DFS seems to stem
from the fact that algorithms solving these two problems have to visit the ver-
tices of the graph in a predetermined order (which, unfortunately, is not known
to the algorithm), there is no such limiting factor for connectivity problems. The
suboptimality of the existing contraction-based algorithms stems from the fact
that these algorithms reduce the number of vertices by a constant factor in each



iteration, but fail to achieve the same for the number of edges. An interesting
question is whether there exists a smarter contraction strategy that also reduces
the number of edges by a constant fraction. If such a strategy exists, optimal
connectivity algorithms result. If no such strategy exists, the next thing one
should look for is a search-based algorithm similar to BFS or DFS that takes
advantage of the fact that the vertices can be visited in a fairly arbitrary order.

Optimal BFS, DFS, and shortest paths, or lower bounds. So far it was
widely believed that an £2(|V]) lower bound holds for the number of I/Os required
to solve BFS on general graphs, while only an £2(perm(|V])) lower bound could
be shown. The BFS-algorithm of Section 6.3 disproves this conjecture. As a
result, we are at a loss as to whether 2(|V|/v/B) is indeed a lower bound for

BFS or whether BFS can be solved in o(|V|/v/B) 1/Os. Any result that leads
to an improvement in either direction is at the top of the wish list of most
researchers working on I/O-efficient graph algorithms.

For DFS and shortest paths, we are even further away from closing the gap
between the 2(perm(|V])) lower bound and the O(|V|log, |V |+ f(|V],|E])) and
O(|V|+ f(|V],|E|)) upper bounds for these problems.

Algorithms for directed graphs. For directed graphs, no I/O-efficient short-
est path algorithm is known, and the performance of the existing BF'S and DFS
algorithms is disappointing. Beside these results, not much is known for any
problems on directed graphs. Among the most coveted are algorithms for topo-
logically sorting directed acyclic graphs and computing the strongly connected
components of a directed graph.
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