
String algorithms and data stru
tures?Paolo FerraginaDipartimento di Informati
a, Universit�a di Pisa, ItalyAbstra
t. The string-mat
hing �eld has grown at a su
h
ompli
atedstage that various issues
ome into play when studying it: data stru
tureand algorithmi
 design, database prin
iples,
ompression te
hniques, ar-
hite
tural features,
a
he and prefet
hing poli
ies. The expertise nowa-days required to design good string data stru
tures and algorithms istherefore transversal to many
omputer s
ien
e �elds and mu
h morestudy on the or
hestration of known, or novel, te
hniques is needed tomake progress in this fas
inating topi
. This survey is aimed at illustrat-ing the key ideas whi
h should
onstitute, in our opinion, the
urrentba
kground of every index designer. We also dis
uss the positive fea-tures and drawba
ks of known indexing s
hemes and algorithms, anddevote mu
h attention to detail resear
h issues and open problems bothon the theoreti
al and the experimental side.1 Introdu
tionString data is ubiquitous,
ommon-pla
e appli
ations are digital libraries andprodu
t
atalogs (for books, musi
, software, et
.), ele
troni
 white and yel-low page dire
tories, spe
ialized information sour
es (e.g. patent or genomi
databases),
ustomer relationship management of data, et
.. The amount of tex-tual information managed by these appli
ations is in
reasing at a staggering rate.The best two illustrative examples of this growth are the World-Wide Web, whi
his estimated to provide a

ess to at least three terabytes of textual data, andthe genomi
 databases, whi
h are estimated to store more than �fteen billion ofbase pairs. Even in private hands are
ommon now
olle
tion sizes whi
h wereunimaginable a few years ago.This s
enario is destined to be
ome more pervasive due to the migration of
urrent databases toward XML storage [2℄. XML is emerging as the de fa
tostandard for the publi
ation and inter
hange of heterogeneous, in
omplete andirregular data over the Internet and amongst appli
ations. It provides groundrules to mark up data so it is self-des
ribing and easily readable by humans and
omputers. Large portions of XML data are textual and in
lude des
riptive �eldsand tags. Evaluating an XML query involves navigating paths through a tree(or, in general, a graph) stru
ture. In order to speed up query pro
essing,
urrent? Address: Dipartimento di Informati
a, Corso Italia 40, 56125 Pisa, Italy,ferragina�di.unipi.it, http://www.di.unipi.it/�ferragin. Partially sup-ported by Italian MIUR proje
ts: \Te
hnologies and servi
es for enhan
ed
ontentdelivery" and \A high-performan
e distributed platform".

2approa
hes
onsist of en
oding do
ument paths into strings of arbitrary length(e.g. book/author/firstname/) and repla
ing tree navigational operations withstring pre�x queries (see e.g. [52, 129, 4℄).In all these situations brute-for
e s
anning of su
h large
olle
tions is nota viable approa
h to perform string sear
hes. Some kind of index has to bene
essarily built over these massive textual data to e�e
tively pro
ess stringqueries (of arbitrarily lengths), possibly keeping into a

ount the presen
e in our
omputers of various memory levels, ea
h with its te
hnologi
al and performan
e
hara
teristi
s [8℄. The index design problem therefore turns out to be more
hallenging than ever before.The Ameri
an Heritage Di
tionary (2000, fourth edition) de�nes index asfollows: pl. (in � dex � es) or (in � di �
es) \ 1. Something that serves toguide, point out, or otherwise fa
ilitate referen
e, espe
ially: a. An alphabetizedlist of names, pla
es, and subje
ts treated in a printed work, giving the page orpages on whi
h ea
h item is mentioned. b. A thumb index.
. Any table, �le, or
atalog. [...℄"Some de�nitions proposed by experts are \The most important of the tools forinformation retrieval is the index|a
olle
tion of terms with pointers to pla
eswhere information about do
uments
an be found" [119℄; \indexing is buildinga data stru
ture that will allow qui
k sear
hing of the text" [22℄; or \the a
t ofassigning index terms to do
uments whi
h are the obje
ts to be retrieved" [111℄.From our point of view an index is a persistent data stru
ture that allows atquery time to fo
us the sear
h for a user-provided string (or a set of them) on avery small portion of the indexed data
olle
tion, namely the lo
ations at whi
hthe queried string(s) o

ur. Of
ourse the index is just one of the tools neededto fully solve a user query, so as the retrieval of the queried string lo
ations isjust the �rst step of what is
alled the \query answering pro
ess". Informationretrieval (IR) models, ranking algorithms, query languages and operations, user-feedba
k models and interfa
es, and so on, all of them
onstitute the rest ofthis
ompli
ated pro
ess and are beyond the s
ope of this survey. Hereafter wewill
on
entrate our attention onto the
hallenging problems
on
erned with thedesign of eÆ
ient and e�e
tive indexing data stru
tures, the basi
 blo
k uponwhi
h every IR system is built. We then refer the reader interested into thoseother interesting topi
s to the vast literature, browsing from e.g. [79, 114, 163,22, 188℄.The right step into the text-indexing �eld. The publi
ations regardingindexing te
hniques and methodologies are a
ommon out
ome of database andalgorithmi
 resear
h. Their number is ever growing so that
iting all of them isa task doomed to fail. This fa
t is
ontributing to make the evaluation of thenovelty, impa
t and usefulness of the plethora of re
ent index proposals moreand more diÆ
ult. Hen
e to approa
h from the
orre
t angle the huge �eld oftext indexing, we �rst need a
lear framework for development, presentation and
omparison of indexing s
hemes [193℄. The la
k of this framework has lead someresear
hers to underestimate the features of known indexes, disregard important

3
riteria or make simplifying assumptions whi
h have lead them to unrealisti
and/or distort results.The design of a new index passes through the evaluation of many
riteria,not just its des
ription and some toy experiments. We need at a minimum to
onsider overall speed, disk and memory spa
e requirements, CPU time and mea-sures of disk traÆ
 (su
h as number of seeks and volume of data transferred),and ease of index
onstru
tion. In a dynami
 setting we should also
onsiderindex maintenan
e in the presen
e of addition, modi�
ation and deletion of do
-uments/re
ords; and impli
ations for
on
urren
y, transa
tions and re
overabil-ity. Also of interest for both stati
 and dynami
 data
olle
tions are appli
ability,extensibility and s
alability. Indeed no indexing s
heme is all-powerful, di�erentindexes support di�erent
lasses of queries and manage di�erent kinds of data,so that they may turn out to be useful in di�erent appli
ation
ontexts. As a
onsequen
e there is no one single winner among the indexing data stru
turesnowadays available, ea
h one has its own positive features and drawba
ks, andwe must know all of their �ne details in order to make the right
hoi
e whenimplementing an e�e
tive and eÆ
ient sear
h engine or IR system.In what follows we therefore go into the main aspe
ts whi
h in
uen
e thedesign of an indexing data stru
ture thus providing an overall view of the textindexing �eld; we introdu
e the arguments whi
h will be detailed in the nextse
tions, and we brie
y
omment on some re
ent topi
s of resear
h that will befully addressed at the end of ea
h of these subsequent se
tions.The �rst key issue: The I/O subsystem. The large amount of textualinformation
urrently available in ele
troni
 form requires to store it into externalstorage devi
es, like (multiple) disks and
droms. Although these me
hani
aldevi
es provide a large amount of spa
e at low
ost, their a

ess time is more than105 times slower than the time to a

ess the internal memory of
omputers [158℄.This gap is
urrently widening with the impressive te
hnologi
al progresses on
ir
uit design te
hnology. Ongoing resear
h on the engineering side is thereforetrying to improve the input/output subsystem by introdu
ing some hardwareme
hanisms su
h as disk arrays, disk
a
hes, et
.. Nevertheless the improvementa
hievable by means of a proper arrangement of data and a properly stru
turedalgorithmi

omputation on disk devi
es abundantly surpasses the best expe
tedte
hnology advan
ements [186℄.Larger datasets
an stress the need for lo
ality of referen
e in that theymay redu
e the
han
e of sequential (
heap) disk a

esses to the same blo
k or
ylinder; they may in
rease the data fet
h
osts (whi
h are typi
ally linear in thedataset size); and they may even a�e
t the proportion of do
uments/re
ords thatanswer to a user query. In this situation a na��ve index might in
ur the so
alledI/O-bottlene
k, that is, its update and query operations might spend most of thetime in transferring data to/from the disk with a
onsequent sensible slowdown oftheir performan
e. As a result, the index s
alability and the asymptoti
 analysisof index performan
e, or
hestrated with the disk
ons
iousness of index design,are nowadays hot and
hallenging resear
h topi
s whi
h have shown to indu
e

4a positive e�e
t not limited just to me
hani
al storage devi
es, but also to allother memory levels (L1 and L2
a
hes, internal memory, et
.).To design and
arefully analyze the s
alability and query performan
e ofan index we need a
omputational model that abstra
ts in a reasonable waythe I/O-subsystem. A

urate disk models are
omplex [164℄, and it is virtuallyimpossible to exploit all the �ne points of disk
hara
teristi
s systemati
ally,either in pra
ti
e or for algorithmi
 design. In order to
apture in an easy, yetsigni�
ant, way the di�eren
es between the internal (ele
troni
) memory andthe external (me
hani
al) disk, we adopt the external memory model proposedin [186℄. Here a
omputer is abstra
ted to
onsist of a two-level memory: a fastand small internal memory, of size M , and a slow and arbitrarily large externalmemory,
alled disk. Data between the internal memory and the disk are trans-fered in blo
ks of sizeB (
alled disk pages). Sin
e disk a

esses are the dominatingfa
tor in the running time of many algorithms, the asymptoti
 performan
e ofthe algorithms is evaluated by
ounting the total number of disk a

esses per-formed during the
omputation. This is a workable approximation for algorithmdesign, and we will use it to evaluate the performan
e of query and update al-gorithms. However there are situations, like in the
onstru
tion of indexing datastru
tures (Se
tions 2.1 and 3.5), in whi
h this a

ounting s
heme does not a
-
urately predi
t the running time of algorithms on real ma
hines be
ause it doesnot take into a

ount some important spe
ialties of disk systems [162℄. Namely,disk a

ess
osts have mainly two
omponents: the time to fet
h the �rst bitof requested data (seek time) and the time required to transmit the requesteddata (transfer rate). Transfer rates are more or less stable but seek times arehighly variable. It is thus well known that a

essing one page from the disk inmost
ases de
reases the
ost of a

essing the page su

eeding it, so that \bulk"I/Os are less expensive per page than \random" I/Os. This di�eren
e be
omesmu
h more prominent if we also
onsider the reading-ahead/bu�ering/
a
hingoptimizations whi
h are
ommon in
urrent disks and operating systems. To dealwith these spe
ialties and avoid the introdu
tion of many new parameters, wewill sometime refer to the simple a

ounting s
heme introdu
ed in [64℄: a bulkI/O is the reading/writing of a
ontiguous sequen
e of
M=B disk pages, where
 is a proper
onstant; a random I/O is any single disk-page a

ess whi
h is notpart of a bulk I/O.In summary the performan
e of the algorithms designed to build, pro
ess orquery an indexing data stru
ture is therefore evaluated by measuring: (a) thenumber of random I/Os, and possibly the bulk I/Os, (b) the internal runningtime (CPU time), (
) the number of disk pages o

upied by the indexing datastru
ture and the working spa
e of the query, update and
onstru
tion algo-rithms.The se
ond key issue: types of queries and indexed data. Up to nowwe have talked about indexing data stru
tures without spe
ifying the type ofqueries that an index should be able to support as well no attention has beendevoted to the type of data an index is
alled to manage. These issues have a

5surprising impa
t on the design
omplexity and spa
e o

upan
y of the index,and will be stri
tly interrelated in the dis
ussion below.There are two main approa
hes to index design: word-based indexes and full-text indexes. Word-based indexes are designed to work on linguisti
 texts, or ondo
uments where a tokenization into words may be devised. Their main idea is tostore the o

urren
es of ea
h word (token) in a table that is indexed via a hashingfun
tion or a tree stru
ture (they are usually
alled inverted �les or indexes).To redu
e the size of the table,
ommon words are either not indexed (e.g. the,at, a) or the index is later
ompressed. The advantage of this approa
h is tosupport very fast word (or pre�x-word) queries and to allow at reasonable speedsome
omplex sear
hes like regular expression or approximate mat
hes; whiletwo weaknesses are the impossibility in dealing with non-tokenizable texts, likegenomi
 sequen
es, and the slowness in supporting arbitrary substring queries.Se
tion 2 will be devoted to the dis
ussion of word-based indexes and some re
entadvan
ements on their implementation,
ompression and supported operations.Parti
ular attention will be devoted to the te
hniques used to
ompress theinverted index or the input data
olle
tion, and to the algorithms adopted forimplementing more
omplex queries.Full-text indexes have been designed to over
ome the limitations above bydealing with arbitrary texts and general queries, at the
ost of an in
rease inthe additional spa
e o

upied by the underlying data stru
ture. Examples ofsu
h indexes are: suÆx trees [128℄, suÆx arrays [121℄ and String B-trees [71℄.They have been su

essfully applied to fundamental string-mat
hing problemsas well to text
ompression [42℄, analysis of geneti
 sequen
es [88℄, optimizationof Xpath queries on XML do
uments [52, 129, 4℄ and to the indexing of spe
iallinguisti
 texts [67℄. General full-text indexes are therefore the natural
hoi
e toperform fast
omplex sear
hes without any restri
tions on the query sequen
esand on the format of the indexed data; however, a reader should always keepin mind that these indexes are usually more spa
e demanding than their word-based
ounterparts [112, 49℄ (
fr. opportunisti
 indexes [75℄ below). Se
tion 3 willbe devoted to a deep dis
ussion on full-text indexes, posing parti
ular attentionto the String B-tree data stru
ture and its engineering. In parti
ular we willintrodu
e some novel algorithmi
 and data stru
tural solutions whi
h are not
on�ned to this spe
i�
 data stru
ture. Attention will be devoted to the
hal-lenging, yet diÆ
ult, problem of the
onstru
tion of a full-text index both froma theoreti
al and a pra
ti
al perspe
tive. We will show that this problem is re-lated to the more general problem of string sorting, and then dis
uss the knownresults and a novel randomized algorithm whi
h may have pra
ti
al utility andwhose te
hni
al details may have an independent interest.The third key issue: the spa
e vs. time trade-o�. The dis
ussion onthe two indexing approa
hes above has pointed out an interesting trade-o�:spa
e o

upan
y vs.
exibility and eÆ
ien
y of the supported queries. It indeedseems that in order to support substring queries, and deal with arbitrary data
olle
tions, we do need to in
ur in an additional spa
e overhead required by themore
ompli
ated stru
ture of the full-text indexes. Some authors argue that

6this extra-spa
e o

upan
y is a false problem be
ause of the
ontinued de
linein the
ost of external storage devi
es. However the impa
t of spa
e redu
tiongoes far beyond the intuitive memory saving, be
ause it may indu
e a betterutilization of (the fast)
a
he and (the ele
troni
) internal memory levels, mayvirtually expand the disk bandwidth and signi�
antly redu
e the (me
hani
al)seek time of disk systems. Hen
e data
ompression is an attra
tive
hoi
e, ifnot mandatory, not only for storage saving but also for its favorable impa
ton algorithmi
 performan
e. This is very well known in algorithmi
s [109℄ andengineering [94℄: IBM has re
ently delivered the MXT Te
hnology (MemoryeXpansion Te
hnology) for its x330 eServers whi
h
onsists in a memory
hipthat
ompresses/de
ompresses data on
a
he writeba
ks/misses thus yielding afa
tor of expansion two on memory size with just a slightly larger
ost. It is notsurprising, therefore, that we are witnessing in the algorithmi
 �eld an upsurginginterest for designing su

in
t (or impli
it) data stru
tures (see e.g. [38, 143, 144,142, 87, 168, 169℄) that try to redu
e as mu
h as possible the auxiliary informationkept for indexing purposes without introdu
ing any signi�
ant slowdown in theoperations supported.Su
h a resear
h trend has lead to some surprising results on the design of
om-pressed full-text indexes [75℄ whose impa
t goes beyond the text-indexing �eld.These results lie at the
rossing of three distin
t resear
h �elds|
ompression,algorithmi
s, databases| and or
hestrate together their latest a
hievements,thus showing on
e more that the design of an indexing data stru
ture is nowa-days an interdis
iplinary task. In Se
tion 4 we will brie
y overview this issueby introdu
ing the
on
ept of opportunisti
 index: a data stru
ture that tries totake advantage of the
ompressibility of the input data to redu
e its overall spa
eo

upan
y. This index en
apsulates both the
ompressed data and the indexinginformation in a spa
e whi
h is proportional to the entropy of the indexed
ol-le
tion, thus resulting optimal in an information-
ontent sense. Yet these resultsare mainly theoreti
al in their
avor and open to signi�
ant improvements withrespe
t to their I/O performan
e. Some of them have been implemented andtested in [76, 77℄ showing that these data stru
tures use roughly the same spa
erequired by traditional
ompressors|su
h as gzip and bzip2 [176℄| but withadded fun
tionalities: they allow to retrieve the o

urren
es of an arbitrary sub-string within texts of several megabytes in a few millise
onds. These experimentsshow a promising line of resear
h and suggest the design of a new family of textretrieval tools whi
h will be dis
ussed at the end of Se
tion 4.The fourth key issue: String transa
tions and index
a
hing. Notonly is string data proliferating, but datastores in
reasingly handle large numberof string transa
tions that add, delete, modify or sear
h strings. As a result, theproblem of managing massive string data under large number of transa
tionsis emerging as a fundamental
hallenge. Traditionally, string algorithms fo
uson supporting ea
h of these operations individually in the most eÆ
ient mannerin the worst
ase. There is however an ever in
reasing need for indexes thatare eÆ
ient on an entire sequen
e of string transa
tions, by possibly adaptingthemselves to time-varying distribution of the queries and to the repetitiveness

7present in the query sequen
e both at string or pre�x level. Indeed it is wellknown that some user queries are frequently issued in some time intervals [173℄or some sear
h engines improve their pre
ision by expanding the query termswith some of their morphologi
al variations (e.g. synonyms, plurals, et
.) [22℄.Consequently, in the spirit of amortized analysis [180℄, we would like to designindexing data stru
tures that are
ompetitive (optimal) over the entire sequen
eof string operations. This
hallenging issue has been addressed at the heuris-ti
 level in the
ontext of word-based indexes [173, 39, 125, 131, 101℄; but it hasbeen unfortunately disregarded when designing and analyzing full-text indexes.Here the problem is parti
ularly diÆ
ult be
ause: (1) a string may be so longto do not �t in one single disk page or even be
ontained into internal mem-ory, (2) ea
h string
omparison may need many disk a

esses if exe
uted in abrute-for
e manner, and (3) the distribution of the string queries may be un-known or vary over the time. A �rst, preliminary,
ontribution in this setting hasbeen a
hieved in [48℄ where a self-adjusting and external-memory variant of theskip-list data stru
ture [161℄ has been presented. By properly or
hestrating the
a
hing of this data stru
ture, the
a
hing of some query-string pre�xes and thee�e
tive management of string items, the authors prove an external-memory ver-sion for strings of the famous Stati
 Optimality Theorem [180℄. This introdu
esa new framework for designing and analyzing full-text indexing data stru
turesand string-mat
hing algorithms, where a stream of user queries is issued by anunknown sour
e and
a
hing e�e
ts must then be exploited and a

ounted forwhen analyzing the query operations. In the next se
tions we will address the
a
hing issue both for word-based and full-text indexing s
hemes, pointing outsome interesting resear
h topi
s whi
h deserve a deeper investigation.The moral that we would like to
onvey to the reader is that the text in-dexing �eld has grown at a su
h
ompli
ated stage that various issues
omeinto play when studying it: data stru
ture design, database prin
iples,
ompres-sion te
hniques, ar
hite
tural
onsiderations,
a
he and prefet
hing poli
ies. Theexpertise nowadays required to design a good index is therefore transversal tomany algorithmi
 �elds and mu
h more study on the or
hestration of known,or novel, te
hniques is needed to make progress in this fas
inating topi
. Therest of the survey is therefore devoted to illustrate the key ideas whi
h should
onstitute, in our opinion, the
urrent ba
kground of every index-designer. Theguiding prin
iples of our dis
ussion will be the four key issues above; they willguide the des
ription of the positive features and drawba
ks of known indexings
hemes as well the investigation of resear
h issues and open problems. A vast,but obviously not
omplete, literature will a

ompany our dis
ussion and shouldbe the referen
e where an eager reader may �nd further te
hni
al details andresear
h hints.2 On the word-based indexesThere are three main approa
hes to design a word-based index: inverted indexes,signature �les and bitmaps [188, 22, 19, 63℄. The inverted index| also known as

8inverted �le, posting �le, or in normal English usage as
on
ordan
e| is doubtlessthe simplest and most popular te
hnique for indexing large text databases storingnatural-language do
uments. The other two me
hanisms are usually adoptedin
ertain appli
ations even if, re
ently, they have been mostly abandoned infavor of inverted indexes be
ause some extensive experimental results [194℄ haveshown that: Inverted indexes o�er better performan
e than signature �les andbitmaps, in terms of both size of index and speed of query handling [188℄. Asa
onsequen
e, the emphasis of this se
tion is on inverted indexing; a readerinterested into signature �les and/or bitmaps may start browsing from [188, 22℄and have a look to some more re
ent,
orrelated and stimulating results in [33,134℄.An inverted index is typi
ally
omposed of two parts: the lexi
on, also
alledthe vo
abulary,
ontaining all the distin
t words of the text
olle
tion; and theinverted list, also
alled the posting list, storing for ea
h vo
abulary term a list ofall text positions in whi
h that term o

urs. The vo
abulary therefore supportsa mapping from words to their
orresponding inverted lists and in its simplestform is a list of strings and disk addresses. The sear
h for a single word inan inverted index
onsists of two main phases: it �rst lo
ates the word in thevo
abulary and then retrieves its list of text positions. The sear
h for a phraseor a proximity pattern (where the words must appear
onse
utively or
lose toea
h other, respe
tively)
onsists of three main phases: ea
h word is sear
hedseparately, their posting lists are then retrieved and �nally interse
ted, taking
are of
onse
utiveness or
loseness of word positions in the text.It is apparent that the inverted index is a simple and natural indexing s
heme,and this has obviously
ontributed to its spread among the IR systems. Startingfrom this simple theme, resear
hers indulged theirs whims by proposing numer-ous variations and improvements. The main aspe
t whi
h has been investigatedis the
ompression of the vo
abulary and of the inverted lists. In both
ases weare fa
ed with some
hallenging problems.Sin
e the vo
abulary is a textual �le any
lassi
al
ompression te
hniquemight be used, provided that subsequent pattern sear
hes
an be exe
uted eÆ-
iently. Sin
e the inverted lists are
onstituted by numbers any variable lengthen
oding of integers might be used, provided that subsequent sequential de
od-ings
an be exe
uted eÆ
iently. Of
ourse, any
hoi
e in vo
abulary or invertedlists implementation in
uen
es both the pro
essing speed of queries and theoverall spa
e o

upied by the inverted index. We pro
eed then to
omment ea
hof these points below, referring the reader interested into their �ne details to the
ited literature.The vo
abulary is the basi
 blo
k of the inverted index and its \
ontent"
onstraints the type of queries that a user
an issue. A
tually the index de-signer is free to de
ide what a word is, and whi
h are the representative wordsto be in
luded into the vo
abulary. One simple possibility is to take ea
h of thewords that appear in the do
ument and de
lare them verbatim to be vo
abularyterms. This tends both to enlarge the vo
abulary, i.e. the number of distin
tterms that appear into it, and in
rease the number of do
ument/position iden-

9ti�ers that must be stored in the posting lists. Having a large vo
abulary notonly a�e
ts the storage spa
e requirements of the index but
an also make itharder to use sin
e there are more potential query terms that must be
on-sidered when formulating a query. For this reason it is
ommon to transformea
h word in some normal form before being in
luded in the vo
abulary. Thetwo
lassi
al approa
hes are
ase folding, the
onversion of all upper
ase lettersto their lower
ase equivalents (or vi
e versa), and stemming, the redu
tion ofea
h word to its morphologi
al root by removing suÆxes or other modi�ers. Itis evident that both approa
hes present advantages (vo
abulary
ompression)and disadvantages (extraneous material
an be retrieved at query time) whi
hshould be taken into a

ount when designing an IR system. Another
ommontransformation
onsists of omitting the so
alled stop words from the indexingpro
ess (e.g., a, the, in): They are words whi
h o

ur too often or
arry su
hsmall information
ontent that their use in a query would be unlikely to eliminateany do
uments. In the literature there has been a big debate on the usefulnessof removing or keeping the stop words. Re
ent progresses on the
ompa
tion ofthe inverted lists have shown that the spa
e overhead indu
ed by those words isnot signi�
ant, and is abundantly payed for by the simpli�
ation in the indexingpro
ess and by the in
reased
exibility of the resulting index.The size of the vo
abulary deserves a parti
ular attention. It is intuitive thatit should be small, but more insight on its
ardinality and stru
ture must be a
-quired in order to go into more
omplex
onsiderations regarding its
ompressionand querying. An empiri
al law widely a

epted in IR is the Heaps' Law [91℄,whi
h states that the vo
abulary of a text of n words is of size V = O(n�),where � is a small positive
onstant depending on the text. As shown in [16℄, �is pra
ti
ally between 0:4 and 0:6 so the vo
abulary needs spa
e proportional tothe square root of the indexed data. Hen
e for large data
olle
tions the overheadof storing the vo
abulary, even in its extended form, is minimal. Classi
al imple-mentations of a set of words via hash tables and trie stru
tures seem appropriatefor exa
t word or pre�x word queries. As soon as the user aims for more
ompli-
ated queries, like approximate or regular-expression sear
hes, it is preferable tokeep the vo
abulary in its plain form as a ve
tor of words and then answer a userquery via one of the powerful s
an-based string-mat
hing algorithms
urrentlyknown [148℄. The in
rease in query time is payed for by the more
ompli
atedqueries the index is able to support.As we observed in the Introdu
tion, spa
e saving is intimately related to timeoptimization in a hierar
hi
al memory system, so that it turns out to be naturalto ask ourselves if, and how,
ompression
an help in vo
abulary storage andsear
hing. From one hand, vo
abulary
ompression might seem useless be
auseof its small size; but from the other hand, any improvement in the vo
abularysear
h-phase it is appealing be
ause the vo
abulary is examined at ea
h queryon all of its
onstituting terms. Numerous s
ienti�
 results [9, 118, 82, 81, 184, 65,139, 108, 154, 178, 57, 140, 149, 106℄ have re
ently shown how to
ompress a tex-tual �le and perform exa
t or approximate sear
hes dire
tly on the
ompressedtext without passing through its whole de
ompression. This approa
h may be

10obviously applied to vo
abularies thus introdu
ing two immediate improvements:it squeezes them to an extension that
an be easily kept into internal memoryeven for large data
olle
tions; it redu
es the amount of data examined duringthe query phase, and it fully exploits the pro
essing speed of
urrent pro
essorswith respe
t to the bandwidth and a

ess time of internal memories, thus im-pa
ting fruitfully onto the overall query performan
e. Experiments have shown aspeed up of a fa
tor about two in query pro
essing and a redu
tion of more thana fa
tor three in spa
e o

upan
y. Nonetheless the whole s
anning of the
om-pressed di
tionary is a�orded, so that some room for query time improvementis still possible. We will be ba
k on this issue in Se
tion 4.Most of the spa
e usage of inverted indexes is devoted to the storage of theinverted lists; a proper implementation for them thus be
omes urgent in orderto make su
h an approa
h
ompetitive against the other word-based indexingmethods: signature �les and bitmaps [188, 194℄. A large resear
h e�ort has beentherefore devoted to e�e
tively
ompress the inverted lists still guaranteeinga fast sequential a

ess to their
ontents. Three di�erent types of
ompa
tionapproa
hes have been proposed in the literature, distinguished a

ording to thea

ura
y to whi
h the inverted lists identify the lo
ation of a vo
abulary term,usually
alled granularity of the index. A
oarse-grained index identi�es only thedo
uments where a term o

urs; an index of moderate-grain partitions the textsinto blo
ks and stores the blo
k numbers where a term o

urs; a �ne-grainedindex returns instead a senten
e, a term number, or even the
hara
ter positionof every term in the text. Coarse indexes require less storage (less than 25%of the
olle
tion size), but during the query phase parts of the text must bes
anned in order to �nd the exa
t lo
ations of the query terms; also, with a
oarse index multi-term queries are likely to give rise to insigni�
ant mat
hes,be
ause the query terms might appear in the same do
ument but far from ea
hother. At the other extreme, a word-level indexing enables queries involvingadja
en
y and proximity to be answered qui
kly be
ause the desired relationship
an be
he
ked without a

essing the text. However, adding pre
ise lo
ationalinformation expands the index of at least a fa
tor of two or three,
ompared witha do
ument-level indexing sin
e there are more pointers in the index and ea
hone requires more bits of storage. In this
ase the inverted lists take nearly 60% ofthe
olle
tion size. Unless a signi�
ant fra
tion of the queries are expe
ted to beproximity-based, or \snippets"
ontaining text portions where the query termso

ur must be eÆ
iently visualized, then it is preferable to
hoose a do
ument-level granularity; proximity and phrase-based queries as well snippet extra
tion
an then be handled by a post-retrieval s
an.In all those
ases the size of the resulting index
an be further squeezed downby adopting a
ompression approa
h whi
h is orthogonal to the previous ones.The key idea is that ea
h inverted list
an be sorted in in
reasing order, andtherefore the gaps between
onse
utive positions
an be stored instead of theirabsolute values. Here
an be used
ompression te
hniques for small integers.As the gaps for longer lists are smaller, longer lists
an be
ompressed betterand thus stop words
an be kept without introdu
ing a signi�
ant overhead

11in the overall index spa
e. A number of suitable
odes are des
ribed in detailin [188℄, more experiments are reported in [187℄. Golomb
odes are suggestedas the best ones in many situations, e.g. TREC
olle
tion, espe
ially when theintegers are distributed a

ording to a geometri
 law. Our experien
e howeversuggests to use a simpler, yet e�e
tive,
oding s
heme whi
h is
alled
ontinuationbit and is
urrently adopted in Altavista and Google sear
h engines for storing
ompa
tly their inverted lists. This
oding s
heme yields a byte-aligned and
ompa
t representation of an integer x as follows. First, the binary representationof x is partitioned into groups of 7 bits ea
h, possibly appending zeros to itsbeginning; then, one bit is appended to the front of ea
h group setting it toone for the �rst group and to zero for the other groups; �nally, the resultingsequen
e of 8-bit groups is allo
ated to a
ontiguous sequen
e of bytes. Thebyte-aligning ensures fast de
oding/en
oding operations, whereas the tagging ofthe �rst bit of every byte ensures the fast dete
tion of
odeword beginnings. Foran integer x, this representation needs blog2 x + 1
=7 bytes; experiments showthat its overhead wrt Golomb
odes is small, but the Continuation bit s
hemeis by far mu
h faster in de
oding thus resulting the natural
hoi
e whenever thespa
e issue is not a main
on
ern. If a further spa
e overhead is allowed andqueries have to be speeded up, other integer
oding approa
hes do exist. Amongthe others we
ite the frequen
y sorted index organization of [159℄, whi
h sortsthe posting lists in de
reasing order of frequen
y to fa
ilitate the immediateretrieval of relevant o

urren
es, and the blo
ked index of [7℄ whi
h
omputesthe gaps with respe
t to some equally-sampled pivots to avoid the de
oding ofsome parts of the inverted lists during their interse
tion at query time.There is another approa
h to index
ompression whi
h en
ompasses all theothers be
ause it
an be seen as their generalization. It is
alled blo
k-addressingindex and was introdu
ed in a system
alled Glimpse some years ago [122℄. Therenewed interest toward it is due to some re
ent results [153, 75℄ whi
h haveshed new light on its stru
ture and opened the door to further improvements.In this indexing s
heme, the whole text
olle
tion is divided into blo
ks of �xedsize; these blo
ks may span many do
uments, be part of a do
ument, or overlapdo
ument boundaries. The index stores only the blo
k numbers where ea
h vo-
abulary term appears. This introdu
es two spa
e savings: multiple o

urren
esof a vo
abulary term in a blo
k are represented only on
e, and few bits are neededto en
ode a blo
k number. Sin
e there are normally mu
h less blo
ks than do
u-ments, the spa
e o

upied by the index is very small and
an be tuned a

ordingto the user needs. On the other hand, the index may by used just as a devi
eto identify some
andidate blo
ks whi
h may
ontain a query-sting o

urren
e.As a result a post-pro
essing phase is needed to �lter out the
andidate blo
kswhi
h a
tually do not
ontain a mat
h (e.g. the blo
k spans two do
uments andthe query terms are spread in both of them). As in the do
ument-level indexings
heme, blo
k-addressing requires very little spa
e,
lose to 5% of the
olle
tionsize [122℄, but its query performan
e is modest be
ause of the postpro
essingstep and
riti
ally depends on the blo
k size. A
tually by varying the blo
k sizewe
an make the blo
k-addressing s
heme to range from
oarse-grained to �ne-

12grained indexing. The smaller the blo
k size, the
loser to a word-level index weare, the larger is the index but the faster is the query pro
essing. On the otherextreme, the larger is the blo
k size, the smaller is the spa
e o

upan
y but thelarger is the query time. Finding a good trade-o� between these two quantitiesis then a matter of user needs; the analysis we
ondu
t below is based on somereasonable assumptions on the distribution of the vo
abulary terms and the lin-guisti
 stru
ture of the do
uments [20, 21℄. This allows us to argue about somepositive features of the blo
k-addressing s
heme.The Heaps' law, introdu
ed above, gives a bound on the vo
abulary size. An-other useful law related to the vo
abulary is the Zipf's Law [190℄ whi
h statesthat, in a text of n terms, the ith most frequent term appears n=(i�z) times,where � is a
onstant that depends on the data
olle
tion (typi
al [90℄ experi-mental values are in [1:7; 2:0℄) and z is a normalization fa
tor. Given this model,it has been shown in [21℄ that the blo
k-addressing s
heme may a
hieve O(n0:85)spa
e and query time
omplexity; noti
e that both
omplexities are sublinear inthe data size.Apart from this analyti
al
al
ulations, it is apparent that speeding up thepostpro
essing step (i.e. the s
anning of
andidate blo
ks) would impa
t on thequery performan
e of the index. This was the starting point of the fas
inat-ing paper [153℄ whi
h investigated how to
ombine in a single s
heme: index
ompression, blo
k addressing and sequential sear
h on
ompressed text. In thispaper the spe
ialized
ompression te
hnique of [140℄ is adopted to squeeze ea
htext blo
k in less than 25% of its original size, and perform dire
t sear
hing onthe
ompressed
andidate blo
ks without passing through their whole de
om-pression. The spe
ialty of this
ompression te
hnique is that it is a variant ofthe Hu�man's algorithm with byte-aligned and tagged
odewords. Its basi
 ideais to build a Hu�man tree with fan-out 128, so that the binary
odewords havelength a multiple of 7 bits. Then these
odewords are partitioned into groups of7 bits; to ea
h group is appended a bit that is set to 1 for the �rst group andto 0 for the others; �nally, ea
h 8-bit group is allo
ated to a byte. The result-ing
odewords have many ni
e properties: (1) they are byte-aligned, hen
e theirde
oding is fast and requires very few shift/masking operations; (2) they aretagged, hen
e the beginning of ea
h
odeword
an be easily identi�ed; (3) theyallow exa
t pattern-mat
hing dire
tly over the
ompressed blo
k, be
ause notagged
odeword
an overlap more then two tagged
odewords; (4) they allowthe sear
h for more
omplex patterns dire
tly on the
ompressed blo
ks [140,153℄. The overall result is an improvement of a fa
tor about 3 over well knowntools like Agrep [189℄ and Cgrep [140℄, whi
h operate on un
ompressed blo
ks.If we add to these interesting features the fa
t that the symbol table of thisHu�man's variant is a
tually the vo
abulary of the indexed
olle
tion, then wemay
on
lude that this approa
h
ouples perfe
tly well with the inverted-indexs
heme.Figure 1 provides a pi
torial summary of the blo
k-addressing stru
ture. Wewill be ba
k on this approa
h in Se
tion 4 where we dis
uss and analyze a novel

13

(fan−out 128)
Huffman Tree Vocabulary Inverted Lists

(compressed and paged)
Block Structure Compressed Docs

block span

decoded block number

Fig. 1. The highlevel stru
ture of the blo
k-addressing s
heme.
ompressed index for the
andidate blo
ks whi
h has opened the door to furtherimprovements.2.1 Constru
ting an inverted indexThis journey among the inverted index variations and results has highlightedsome of their positive features as well their drawba
ks. It is
lear that the stru
-ture of the inverted index is suitable to be mapped in a two-level memory system,like the disk/memory
ase. The vo
abulary
an be kept in internal memory, itis usually small and random a

esses must be performed on its terms in orderto answer the user queries; the inverted lists
an be allo
ated on disk ea
h in a
ontiguous sequen
e of disk pages, thus fully exploiting the prefet
hing/
a
hing
apabilities of
urrent disks during the subsequent gap-de
oding operations. Inthis
ase the performan
e of
urrent pro
essors is suÆ
ient to make transparentthe de
oding
ost with respe
t to the one in
urred for fet
hing the
ompressedlists from the disk.There is however another issue whi
h has been not addressed in the previ-ous se
tions and o�ers some
hallenging problems to be deal with. It
on
ernswith the
onstru
tion of the inverted lists. Here, the I/O-bottlene
k
an playa
ru
ial role, and a na��ve algorithm might be unable to build the index evenfor
olle
tions of moderate size. The use of in-memory data stru
tures of sizelarger than the a
tual internal memory and the non sequential a

ess to them,might experien
e a so high paging a
tivity of the system to require one I/Oper operation ! EÆ
ient methods have been presented in the literature [136,188℄ to allow a more e
onomi
al index
onstru
tion. From an high-level point ofview, they follow an algorithmi
 s
heme whi
h re
alls to our mind the multiwaymergesort algorithm; however, the spe
ialties of the problem make
ompressiona key tool to redu
e the volume of pro
essed data and
onstraint to reorganize

14the operations in order to make use of sequential disk-based pro
essing. For thesake of
ompleteness we sket
h here an algorithm that has been used to buildan inverted index over a multi-gigabyte
olle
tion of texts within few tens ofmegabytes of internal memory and only a small amount of extra disk spa
e.The algorithm will be detailed for the
ase of a do
ument-level indexing s
heme,other extensions are possible and left to the reader as an exer
ise. The basis ofthe method is a pro
ess that
reates a �le of pairs hd; ti, where d is a do
umentnumber and t is a term number. Initially the �le is ordered by in
reasing d,then the �le is reordered by in
reasing t using an in-pla
e multi-way externalmergesort. This sorting phase is then followed by an in-pla
e permutation of thedisk pages that
olle
tively
onstitute the inverted lists in order to store ea
h ofthem into a
onse
utive sequen
e of disk pages.In detail, the
olle
tion is read in do
ument order and parsed into terms,whi
h will form the vo
abulary of the inverted index. A bounded amount ofinternal memory is set aside as a working bu�er. Pairs hd; ti are
olle
ted intothe bu�er until it is full; after that, it is sorted a

ording to the term numbersand a run of disk pages is written to disk in a
ompressed format (padding isused to get disk-page alignment). On
e all the
olle
tion has been pro
essed,the resultant runs are
ombined via a multiway merge: Just one blo
k of ea
hrun is resident in memory at any given time, and so the memory requirement ismodest. As the merge pro
eeds, output blo
ks are produ
ed and written ba
k todisk (properly
ompressed) to any available slot. Noti
e that there will be alwaysone slot available be
ause the reading (merging) pro
ess frees the blo
k slots ata faster rate than the blo
ks
onsumed by the writing pro
ess. On
e all the runshave been exhausted, the index is
omplete, but the inverted lists are spreadover the disk so that lo
ality of referen
e is absent and this would slowdown thesubsequent query operations. An in-pla
e permutation is then used to reorderthe blo
ks in order to allo
ate ea
h inverted list into a
ontiguous sequen
e ofdisk pages. This step is disk-intensive, but usually exe
uted for a short amountof time. At the end a further pass on the lists
an be exe
uted to \re�ne"their
ompression; any now-unused spa
e at the end of the �le
an be released.Experimental results [188, 153℄ have shown that the amount of internal memorydedi
ated to the sorting pro
ess impa
ts a lot, as expe
ted, on the �nal time
omplexity. Just to have an idea, a 5 Gb
olle
tion
an be inverted using aninternal memory spa
e whi
h is just the one required for the vo
abulary, and adisk spa
e whi
h is about 10% more than the �nal inverted lists, at an overallrate of about 300 Mb of text per hour [188℄. If more internal memory is reservedfor the sorting pro
ess, then we
an a
hieve an overall rate of about 1 Gb of textper hour [153℄.2.2 Some open problems and future resear
h dire
tionsWe
on
lude this se
tion by addressing some other interesting questions whi
h,we think, deserve some attention and further investigation. First, we point outone
hallenging feature of the blo
k-addressing s
heme whi
h has been not yetfully exploited: the vo
abulary allows to turn approximate or
omplex pattern

15queries on the text
olle
tion into an exa
t sear
h for, possibly many, vo
abularyterms on the
andidate blo
ks (i.e. the vo
abulary terms mat
hing the
omplexuser query). This feature has been deployed in the solutions presented in [140,153℄ to speed up the whole s
anning of the
ompressed
andidate blo
ks. Wepoint out here a di�erent perspe
tive whi
h may help in further improving thepostpro
essing phase. Indeed we might build a su

in
t index that supports justexa
t pattern sear
hes on ea
h
ompressed blo
ks, and then use it in
ombina-tion with the blo
k-addressing s
heme to support arbitrarily
omplex patternsear
hes. This index would gain powerful queries, redu
ed spa
e o

upan
y and,more importantly, a faster sear
h operation be
ause the
ost of a
andidate-blo
ksear
hing
ould be o(b). This would impa
t onto the overall index design andperforman
e. A proposal in this dire
tion has been pursued in [75℄, where it hasbeen shown that this novel approa
h a
hieves both spa
e overhead and query timesublinear in the data
olle
tion size independently of the blo
k size b. Conversely,inverted indi
es a
hieve only the se
ond goal [188℄, and
lassi
al blo
k-addressings
hemes a
hieve both goals but under some restri
tive
onditions on the valueof b [21℄.Another interesting topi
 of resear
h
on
erns with the design of indi
es andmethods for supporting faster vo
abulary sear
hes on
omplex pattern queries.Hashing or trie stru
tures are well suited to implement (pre�x)word queries butthey a
tually fail in supporting suÆx, substring or approximate word sear
hes.In these
ases the
ommon approa
h
onsists of s
anning the whole vo
abulary,thus in
urring in a performan
e slowdown that prevents its use in sear
h en-gines aiming for a high throughput. Filtering methods [148℄ as well novel metri
indexes [45℄ might possibly help in this respe
t but simple, yet e�e
tive, datastru
tures with provable query bounds are still to be designed.We have observed that the blo
k-addressing s
heme and gap-
oding methodsare the most e�e
tive tools to squeeze the posting lists in a redu
ed spa
e. Agap-
oding algorithm a
hieves the best
ompression ratio if most of the di�er-en
es are very small. Several authors [34, 35, 135℄ have noti
ed that this o

urswhen the do
ument numbers in ea
h posting list have high lo
ality, and hen
ethey designed methods to passively exploit this lo
ality whenever present in theposting lists. A di�erent approa
h to this problem has been undertaken re
entlyin [32℄ where the authors suggest to permute the do
ument numbers in order toa
tively
reate the lo
ality in the individual posting lists. The authors proposetherefore a hierar
hi
al
lustering te
hnique whi
h is applied on the do
ument
olle
tion as a whole, using the
osine measure as a basis of do
ument similar-ity. The hierar
hi
al
lustering tree is then traversed in preorder and numbersare assigned to the do
uments as they are en
ountered. The authors argue thatdo
uments that share many term lists should be
lose together in the tree, andtherefore be labeled with near numbers. This idea was tested on the TREC-8data (disks 4 and 5, ex
luding the Congressional Re
ord), and showed a spa
eimprovement of 14%. Di�erent similarity measures to build the hierar
hi
al tree,as well di�erent
lustering approa
hes whi
h possibly do not pass through the

16exploration of the
omplete graph of all do
uments,
onstitute good avenues forresear
h.Another interesting issue is the exploitation of the large internal memory
ur-rently available in our PCs to improve the query performan
e. A small fra
tionof the internal memory is already used at run time to maintain the vo
abularyof the do
ument terms and thus to support fast word sear
hes in response to auser query. It is therefore natural to aim at using the rest of the internal memoryto
a
he parts of the inverted index or the last query answers, in order to exploitthe referen
e and temporal lo
ality
ommonly present in the query streams [99,179℄ for a
hieving improved query performan
e. Due to the ubiquitous use of in-verted lists in
urrent web sear
h engines, and the ever in
reasing amount of userqueries issued per day, the design of
a
hing methodologies suitable for inverted-indexing s
hemes is be
oming a hot topi
 of resear
h. Numerous papers havebeen re
ently published on this subje
t, see e.g. [173, 39, 125, 131, 101℄, whi
h of-fer some
hallenging problems for further study: how the interplay between theretrieval and ranking phase impa
ts on the
a
hing strategy, how the
ompres-sion of inverted lists a�e
ts the behavior of
a
hing s
hemes, how to extend the
a
hing ideas developed for stand-alone ma
hines to a distributed informationretrieval ar
hite
ture [131, 183℄. We refer the reader to the latest WWW, VLDBand SIGMOD/PODS
onferen
es for keeping tra
k of this a
tive resear
h �eld.On the software development side, there is mu
h room for data stru
turaland algorithmi
 engineering as well
ode tuning and library design. Here wewould like to point out just one of the numerous resear
h dire
tions whi
h en-
ompasses the interesting XML language [2℄. XML is an extremely versatilemarkup language,
apable of labeling the information
ontent of diverse datasour
es in
luding stru
tured or semi-stru
tured do
uments, relational databasesand obje
t repositories. A query issued on XML do
uments might exploit intel-ligently their stru
ture to manage uniformly all these kinds of data and to enri
hthe pre
ision of the query answers. Sin
e XML was
ompleted in early 1998 bythe World Wide Web Consortium [2℄, it has spread through s
ien
e and indus-try, thus be
oming a de fa
to standard for the publi
ation and inter
hange ofstru
tured data over the Internet and amongst appli
ations. The turning pointis that XML allows to represent the semanti
s of data in a stru
tured, do
u-mented, ma
hine-readable form. This has lead some resear
hers to talk about\semanti
 Web" in order to
apture the idea of having data on the Web de�nedand linked in a way that
an be used by ma
hines not just for display (
fr.HTML), but for automation, integration, reuse a
ross various appli
ations and,last but not least, for performing \semanti
 sear
hes". This is nowadays a visionbut a huge number of people all around the world are working to its
on
retiza-tion. One of the most tangible results of this e�ort is the plethora of IR systemsspe
ialized today to work on XML data [116, 98, 27, 175, 6, 61, 129, 3, 52, 104, 18℄.Various approa
hes have been undertaken for their implementation but the mostpromising for
exibility, spa
e/time eÆ
ien
y and
omplexity of the supportedqueries is doubtless the one based on a \native" management of the XML do
u-ments via inverted indexes [24, 151℄. Here the idea is to support stru
tured text

17queries by indexing (real or virtual) tags as distin
t terms and then answeringthe queries via
omplex
ombinations of sear
hes for words and tags. In thisrealm of solutions there is a la
k of a publi
, easily usable and
ustomizablerepository of algorithms and data stru
tures for indexing and querying XMLdo
uments. We are
urrently working in this dire
tion [78℄: at the present timewe have a C library,
alled XCDE Library (XCDE stands for Xml CompressedDo
ument Engine) that provides a set of algorithms and data stru
tures forindexing and sear
hing an XML do
ument
olle
tion in its \native" form. Thelibrary o�ers various features: state-of-the-art algorithms and data stru
tures fortext indexing,
ompressed spa
e o

upan
y, and novel su

in
t data stru
turesfor the management of the hierar
hi
al stru
ture present into the XML do
u-ments. Currently we are using the XCDE Library to implement a sear
h enginefor a
olle
tion of Italian literary texts marked with XML-TEI. The XCDE Li-brary o�ers to a resear
her the possibility to investigate and experiment novelalgorithmi
 solutions for indexing and retrieval without being obliged to re-writefrom s
rat
h all the basi
 pro
edures whi
h
onstitute the kernel of any
lassi
IR system.3 On the full-text indexesThe inverted-indexing s
heme, as well any other word-based indexing method,is well suited to manage text retrieval queries on linguisti
 texts, namely texts
omposed in a natural language or properly stru
tured to allow the identi�
ationof \terms" that are the units upon whi
h the user queries will be formulated.Other assumptions are usually made to ensure an e�e
tive use of this indexingmethod: the text has to follow some statisti
al properties that ensure, for ex-ample, small vo
abulary size, short words, queries mostly
on
erning with rareterms and aiming at the retrieval of parts of words or entire phrases. Under theserestri
tions, whi
h are nonetheless satis�ed in many pra
ti
al user settings, theinverted indexes are the
hoi
e sin
e they provide eÆ
ient query performan
e,small spa
e usage,
heap
onstru
tion time, and allow the easy implementationof e�e
tive ranking te
hniques.Full-text indexes, on the other hand, over
ome the limitations of the word-based indexes. They allow to manage any kind of data and support
omplexqueries that span arbitrary long parts of them; they allow to draw statisti
sfrom the indexed data, as well make many kind of
omplex text
omparisonsand investigations: dete
t pattern motifs, auto-repetitions with and without er-rors, longest-repeated strings, et
.. The full-text indexes may be
learly appliedto
lassi
al information retrieval, but they are less adeguate than inverted in-dexes sin
e their additional power
omes at some
ost: they are more expensiveto build and o

upy signi�
ant more spa
e. The real interest in those indexingdata stru
tures is motivated by some appli
ation settings where inverted in-dexes result unappropriate, or even unusable: Building an inverted index on allthe substrings of the indexed data would need quadrati
 spa
e ! The appli
ationswe have in mind are: genomi
 databases (where the data
olle
tion
onsists of

18DNA or protein sequen
es), intrusion dete
tion (where the data are sequen
esof events, log of a

esses, along the time), oriental languages (where word delim-iters are not so
lear), linguisti
 analysis of the text statisti
s (where the textsare
omposed by words but the queries require
omplex statisti
al elaborationsto dete
t plagiarism, for instan
e), Xpath queries in XML sear
h engines (wherethe indexed strings are paths into the hierar
hi
al tree stru
ture of an XML do
-ument), and vo
abulary implementations to support exa
t or
omplex patternsear
hes (even the inverted indexes might bene�t of full-text indexes !).These fas
inating properties and the powerful nature of full-text indexes arethe starting points of our dis
ussion. To begin with we need some notations andde�nitions.For the inverted indexes we de�ned as index points the blo
k numbers, wordnumbers or word starts in the indexed text. In the
ontext of full-text indexes anindex point is, instead, any
hara
ter position or,
lassi
ally, any position wherea text suÆx may start. In the
ase of a text
olle
tion, an index point is aninteger pair (j; i), where i is the starting position of the suÆx in the jth text ofthe
olle
tion. In most
urrent appli
ations, an index point is represented usingfrom 3 to 6 bytes, thus resulting independent on the a
tual length of the pointedsuÆx, and
hara
ters are en
oded as bit sequen
es, thus allowing the uniformmanagement of arbitrary large alphabets.Let � be an arbitrarily large alphabet of
hara
ters, and let # be a new
hara
ter larger than any other alphabet
hara
ter. We denote by l
p(P;Q) thelongest
ommon pre�x length of two strings P and Q, by max l
p(P;S) thevalue max fl
p(P;Q) : Q 2 Sg, and by �L the lexi
ographi
 order between pairof strings drawn from �. Finally, given a text T [1; n℄, we denote by SUF (T) thelexi
ographi
ally ordered set of all suÆxes of text T .Given a pattern P [1; p℄, we say that there is an o

urren
e of P at the positioni of the text T , if P is a pre�x of the suÆx T [i; n℄, i.e., P = T [i; i+ p� 1℄. A keyobservation is that: Sear
hing for the o

urren
es of a pattern P in T amountsto retrieve all text suÆxes that have the pattern P as a pre�x. In this respe
t,the ordered set SUF (T) exploits an interesting property found by Manber andMyers [121℄: the suÆxes having pre�x P o

upy a
ontiguous part of SUF (T).In addition, the leftmost (resp. rightmost) suÆx of this
ontiguous part follows(resp. pre
edes) the lexi
ographi
 position of P (resp. P#) in the ordered setSUF (T). To perform fast string sear
hes is then paramount to use a data stru
-ture that eÆ
iently retrieves the lexi
ographi
 position of a string in the orderedset SUF (T).As an example, let us set T = abababb
 and
onsider the lexi
ographi
allyordered set of all text suÆxes SUF (T) = f1; 3; 5; 2; 4; 6; 7; 8g (indi
ated by meansof their starting positions in T). If we have P = ab, its lexi
ographi
 positionin SUF (T) pre
edes the �rst text suÆx T [1; 8℄ = abababb
, whereas the lexi
o-graphi
 position of P# in SUF (T) follows the �fth text suÆx T [5; 8℄ = abb
.From Manber-Myers' observation (above), the three text suÆxes between T [1; 8℄and T [5; 8℄ in SUF (T) are the only ones pre�xed by P and thus P o

urs in Tthree times at positions 1; 3 and 5. If we instead have P = baa, then both P

19and P# have their lexi
ographi
 position in SUF (T) between T [5; 8℄ = abb
 andT [2; 8℄ = bababb
, so that P does not o

ur in T .The above de�nitions
an be immediately extended to a text
olle
tion � byrepla
ing SUF (T) with the set SUF (�) obtained by merging lexi
ographi
allythe suÆxes in SUF (S) for all texts S 2 �.3.1 SuÆx arrays and suÆx treesThe suÆx array [121℄, or the PAT-array [84℄, is an indexing data stru
ture thatsupports fast substring sear
hes whose
ost does not depend on the alphabet'ssize. A suÆx array
onsists of an array-based implementation of the set SUF (T).In the example above, the suÆx array SA equals to [1; 3; 5; 2; 4; 6; 7; 8℄. The sear
hin T for an arbitrary pattern P [1; p℄ exploits the lexi
ographi
 order present inSA and the two stru
tural observations made above. Indeed it �rst determinesthe lexi
ographi
 position of P in SUF (T) via a binary sear
h with one level ofindire
tion: P is
ompared against the text suÆx pointed to by the examinedSA's entry. Ea
h pattern-suÆx
omparison needs O(p) time in the worst
ase,and thus O(p logn) time suÆ
es for the overall binary sear
h. In our example,at the �rst step P = ab is
ompared against the entry SA[4℄ = 2, i.e. the2nd suÆx of T , and the binary sear
h pro
eeds within the �rst half of SA sin
eP �L T [2; 8℄ = bababb
. After that the lexi
ographi
 position of P in SA has beenfound, the sear
h algorithm s
ans rightward the suÆx array until it en
ounterssuÆxes pre�xed by P . This takes O(p o

) time in the worst
ase, where o

 isthe number of o

urren
es of P in T . In our example, the lexi
ographi
 positionof P is immediately before the �rst entry of SA, and there are three suÆxespre�xed by P sin
e P is not a pre�x of T [SA[4℄; 8℄ = T [2; 8℄ = bababb
.Of
ourse the true behavior of the sear
h algorithm depends on how manylong pre�xes of P o

ur in T . If there are very few of su
h long pre�xes, then itwill rarely happen that a pattern-suÆx
omparison in a binary-sear
h step takes�(p) time, and generally the O(p logn) bound is quite pessimisti
. In \random"strings this algorithm requires O(p+logn) time. This latter bound
an be for
edto hold in the worst
ase too, by adding an auxiliary array,
alled L
p array,and designing a novel sear
h pro
edure [121℄. The array L
p stores the longest-
ommon-pre�x information between any two adja
ent suÆxes of SUF (T), thusit has the same length of SA. The novel sear
h pro
edure still pro
eeds via abinary sear
h, but now a pattern-suÆx
omparison does not start from the �rst
hara
ter of the
ompared strings but it takes advantage of the
omparisonsalready exe
uted and the information available in the L
p array. However, sin
epra
titioners prefer simpli
ity and spa
e-
ompa
tion to time-eÆ
ien
y guaran-tee, this faster but spa
e-
onsuming algorithm is rarely used in pra
ti
e. From apra
ti
al point of view, suÆx arrays are a mu
h spa
e-eÆ
ient full-text indexingdata stru
ture be
ause they store only one pointer per indexed suÆx (i.e. usually3 bytes suÆ
e). Nonetheless suÆx arrays are pretty mu
h stati
 and, in
ase oflong text strings, the
ontiguous spa
e needed for storing them
an be
ome too
onstraining and may indu
e poor performan
e in an external-memory setting.In fa
t, SA
an be easily mapped onto disk by stuÆng �(B) suÆx pointers per

20page [84℄, but in this
ase the sear
h bound is O(pB log2N + o

B) I/Os, and it ispoor in pra
ti
e be
ause all of these I/Os are random.To remedy this situation [23℄ proposed the use of supra-indi
es over the suÆxarray. The key idea is to sample one out of b suÆx array entries (usually b = �(B)and one entry per disk page is sampled), and to store the �rst `
hara
ters of ea
hsampled suÆx in the supra-index. This supra-index is then used as a �rst step toredu
e the portion of the suÆx array where the binary sear
h is performed. Su
ha redu
tion impa
ts favorably on the overall number of random I/Os requiredby the sear
h operation. Some variations on this theme are possible, of
ourse.For example the supra-index does not need to sample the suÆx array entries at�xed intervals, and it does not need to
opy in memory the same number ` ofsuÆx
hara
ters from ea
h sampled suÆx. Both these quantities might be seta

ording to the text stru
ture and the spa
e available in internal memory forthe supra-index. It goes without saying that if the sampled suÆxes are
hosen tostart at word boundaries and entire words are
opied into the supra-index, theresulting data stru
ture turns out to be a
tually an inverted index. This showsthe high
exibility of full-text indexing data stru
tures that, for a proper settingof their parameters, boil down eventually to the weaker
lass of word-basedindexes.On the other extreme, the smaller is the sampling step, the larger is thememory requirement for the supra-index, and the faster is the sear
h opera-tion. Sampling every suÆx would be fabulous for query performan
e but thequadrati
 spa
e o

upan
y would make this approa
h una�ordable. A
tually ifa
ompa
ted trie is used to store all the suÆxes, we end up into the most famous,elegant, powerful and widely employed [15, 88℄ full-text indexing data stru
ture,known as the suÆx tree [128℄. Ea
h ar
 of the suÆx tree is labeled with a textsubstring T [i; j℄, represented via the triple (T; i; j), and the sibling ar
s are or-dered a

ording to their �rst
hara
ters, whi
h are distin
t (see Figure 2). Thereare no nodes having only one
hild ex
ept possibly the root and ea
h node hasasso
iated the string obtained by
on
atenating the labels found along the down-ward path from the root to the node itself. By appending the spe
ial
hara
ter# to the text, the leaves have a one-to-one
orresponden
e to the text suÆxes,ea
h leaf stores a di�erent suÆx and their rightward s
anning gives a
tually thesuÆx array. It is an interesting exer
ise to design an algorithm whi
h goes fromthe suÆx array and the L
p array to the suÆx tree in linear time.SuÆx trees are also augmented by means of some spe
ial node-to-node point-ers,
alled suÆx links [128℄, whi
h turn out to be
ru
ial for the eÆ
ien
y of
omplex sear
hes and updates. The suÆx link from a node storing a nonemptystring, say aS for a
hara
ter a, leads to the node storing S and this node alwaysexists. There
an be �(j�j) suÆx links leading to a suÆx-tree node be
ause we
an have one suÆx link for ea
h possible
hara
ter a 2 �. SuÆx trees requirelinear spa
e and are sometimes
alled generalized suÆx trees when built upon atext
olle
tion � [10, 89℄. SuÆx trees, and
ompa
ted tries in general, are veryeÆ
ient in sear
hing an arbitrary pattern string be
ause the sear
h is dire
tedby the pattern itself along a downward tree path starting from the root. This

21
ab

a
b

b
c

a
b

b
c

b
c

b
c

a
b

b
c

c

b
c

a
b
b
c

4 6 7

1

8

0

2

1 3

4

(T,1,2)

(T,3,4)

(T,5,8) (T,7,8)

3(T,7,8)

5 2

(T,5,8)

(T,1,2)

(T,7,8)

(T,1,2)

(T,2,2)
(T,1,2)

v

4 7

1

8

0

6

(a)

2

1 3

4
3

5 2

v

(b)Fig. 2. (a) The suÆx tree for string T = \abababb
". We have that node v spells outthe string `abab'. The substrings are represented by triples to o

upy
onstant spa
e,ea
h internal node stores the length of its asso
iated string, and ea
h leaf stores thestarting position of its
orresponding suÆx. For our
onvenien
e, we illustrate in (b)the suÆx tree showed in (a) by expli
itly writing down the string T [i; j℄ represented bythe triple (T; i; j). The endmarker # is not shown. Reading the leaves rightward we getthe suÆx array of T .gives a sear
h time proportional to the pattern length, instead of a logarithmi
bound as it o

urred for suÆx arrays. Hen
e sear
hing for the o

 o

urren
esof a pattern P [1; p℄ as a substring of �'s texts requires O(p log j�j+ o

) time.Inserting a new text T [1;m℄ into � or deleting an indexed text from � takesO(m log j�j) time. The stru
ture of a suÆx tree is ri
h of information so thatstatisti
s on text substrings [15℄ and numerous types of
omplex queries [88, 148℄
an be eÆ
iently implemented.Sin
e the suÆx tree is a powerful data stru
ture, it would seem appropriateto use it in external memory. To our surprise, however, suÆx trees loose theirgood sear
hing and updating worst-
ase performan
e when used for indexinglarge text
olle
tions that do not �t into internal memory. This is due to thefollowing reasons:a. SuÆx trees have an unbalan
ed topology that is text-dependent be
ause theirinternal nodes are in
orresponden
e to some repeated substrings. Conse-quently, these trees inevitably inherit the drawba
ks pointed out in s
ien-ti�
 literature with regard to paging unbalan
ed trees in external memory.There are some good average-
ase solutions to this problem that group �(B)nodes per page under node insertions only [109, Se
t.6.2.4℄ (deletions makethe analysis extremely diÆ
ult [182℄), but they
annot avoid storing a down-ward path of k nodes in
(k) distin
t pages in the worst
ase.b. Sin
e the outdegree of a node
an be �(j�j), its pointers to
hildren mightnot �t into O(1) disk pages so they would have to be stored in a separateB-tree. This
auses an O(logB j�j) disk a

ess overhead for ea
h bran
h outof a node both in sear
hing and updating operations.

22
. Bran
hing from a node to one of its
hildren requires further disk a

essesin order to retrieve the disk pages
ontaining the substring that labels thetraversed ar
.d. Updating suÆx trees under string insertions or deletions [10, 89℄ requiresthe insertion or deletion of some nodes in their unbalan
ed stru
ture. Thisoperation inevitably relies on merging and splitting disk pages in order too

upy �(NB) of them. This approa
h is very expensive: splitting or merginga disk page
an take O(Bj�j) disk a

esses be
ause �(B) nodes
an movefrom one page to another. The �(j�j) suÆx links leading to ea
h movednode must be redire
ted and they
an be
ontained in di�erent pages.Hen
e we
an
on
lude that, if the text
olle
tion � is stored on disk, thesear
h for a pattern P [1; p℄ as a substring of �'s texts takes O(p logB j�j+ o

)worst-
ase disk a

esses (a

ording to Points a{
). Inserting an m-length textin � or deleting an m-length text from � takes O(mBj�j) disk a

esses in theworst-
ase (there
an be �(m) page splits or merges, a

ording to point (d)).From the point of view of average-
ase analysis, suÆx tree and
ompa
tedtrie performan
es in external memory are heuristi
 and usually
on�rmed byexperimentation [14, 132, 144, 59, 13℄. The best result to date is the Compa
tPAT-tree [49℄. It is a su

in
t representation of the (binary) Patri
ia tree [137℄,it o

upies about 5 bytes per suÆx and requires about 5 disk a

esses to sear
hfor a pattern in a text
olle
tion of 100Mb. The paging strategy proposed tostore the Compa
t PAT-tree on disk is a heuristi
 that a
hieves only 40% pageo

upan
y and slow update performan
e [49℄. From the theoreti
al point of view,pattern sear
hes require O(hpp + logpN) I/Os, where h is the Patri
ia tree'sheight; inserting or deleting a text in �
osts at least as sear
hing for all of itssuÆxes individually. Therefore this solution is attra
tive only in pra
ti
e and forstati
 textual ar
hives. Another interesting implementation of suÆx trees hasbeen proposed in [112℄. Here the spa
e o

upan
y has been
on�ned between 10and 20 bytes per text suÆx, assuming a text shorter than 227
hara
ters.3.2 Hybrid data stru
turesAlthough suÆx arrays and
ompa
ted tries present good properties, none ofthem is expli
itly designed to work on a hierar
hy of memory levels. The simplepaging heuristi
s shown above are not a

eptable when dealing with large text
olle
tions whi
h extensively and randomly a

ess the external storage devi
esfor both sear
hing or updating operations. This is the reason why various re-sear
hers have tried to properly
ombine these two approa
hes in the light of the
hara
teristi
s of the
urrent hierar
hy of memory levels. The result is a familyof hybrid data stru
tures whi
h
an be divided into two large sub
lasses.One sub
lass
ontains data stru
tures that exploit the no longer negligiblesize of the internal memory of
urrent
omputers by keeping two indexing levels:one level
onsists of a
ompa
ted trie (or a variant of it) built on a subset of thetext suÆxes and stored in internal memory (previously
alled supra-index); theother level is just a plain suÆx array built over all the suÆxes of the indexed

23text. The trie is used to route the sear
h on a small portion of the suÆx array,by exploiting the eÆ
ient random-a

ess time of internal memory; an external-memory binary sear
h is subsequently performed on a restri
ted part of the suÆxarray, so identi�ed, thus requiring a redu
ed number of disk a

esses. Variousapproa
hes to suÆx sampling have been introdu
ed in the literature [50, 102, 144,11℄, as well various trie
oding methods have been employed to stu� as mu
hsuÆxes as possible into internal memory [23, 13, 59, 105℄. In all these
ases theaim has been to balan
e the eÆ
ient sear
h performan
e of
ompa
ted tries withthe small spa
e o

upan
y of suÆx arrays, taking into a

ount the limited spa
eavailable into internal memory. The result is that: (1) the sear
h time is fasterthan in suÆx arrays (see e.g. [23, 11℄) but it is yet not optimal be
ause of thebinary sear
h on disk, (2) the updates are slow be
ause of the external-memorysuÆx array, and (3) slightly more spa
e is needed be
ause of the internal-memorytrie.The se
ond sub
lass of hybrid data stru
tures has been obtained by properly
ombining the B-tree data stru
ture [51℄ with the e�e
tive routing properties ofsuÆx arrays, tries or their variants. An example is the Pre�x B-tree [28℄ thatexpli
itly stores pre�xes of the indexed suÆxes (or indexed strings) as routinginformation (they are
alled separators) into its internal nodes. This design
hoi
eposes some algorithmi

onstraints. In fa
t the updates of Pre�x B-trees are
omplex be
ause of the presen
e of arbitrarily long separators, whi
h requirere
al
ulations and possibly trigger new expansions/
ontra
tions of the B-treenodes. Various works have investigated the splitting of Pre�x B-tree nodes whendealing with variable length keys [28, 115℄ but all of them have been fa
ed withthe problem of
hoosing a proper splitting separator. For these reasons, whileB-trees and their basi
 variants are among the most used data stru
tures forprimary key retrieval [51, 109℄, Pre�x B-trees are not a
ommon
hoi
e as full-text indi
es be
ause their performan
e is known to be not eÆ
ient enough whendealing with arbitrarily long keys or highly dynami
 environments.3.3 The string B-tree data stru
tureThe String B-tree [71℄ is a hybrid data stru
ture introdu
ed to over
ome thelimitations and drawba
ks of Pre�x B-trees. The key idea is to plug a Patri
iatree [137℄ into the nodes of the B-tree, thus providing a routing tool that eÆ-
iently drives the subsequent sear
hes and, more importantly, o

upies a spa
eproportional to the number of indexed strings instead of their total length. TheString B-tree a
hieves optimal sear
h bounds (in the
ase of an unbounded al-phabet) and attra
tive update performan
e. In pra
ti
e it requires a negligible,guaranteed, number of disk a

esses to sear
h for an arbitrary pattern string ina large text
olle
tion, independent of the
hara
ter distribution. We now re
allthe main ideas underlying the String B-tree data stru
ture. For more theoreti
aldetails we refer the reader to [71℄, for a pra
ti
al analysis we refer to [70℄ andSe
tion 3.4.String B-trees are similar to B+-trees [51℄, the keys are pointers to the stringsin SUF (�) (i.e. to suÆxes of �'s strings), they reside in the leaves and some

24

∆

1 8 17 18 19 20 21 22 2316964 532

292827262524 30 31 33 37 38 39 40 42 43 44 45 46

1514131211107

32 34 35 36 41

A A AT C

T T T T

T T

T

G G G G

GGG C CC

C

C A A

C C

G AA

A T T

T

A TC A

pattern
position

9 35

22

PTPTPTPT

PT

PT PT PT PT

PT PT PTPT

10

522 33 1 37 2 30 10 39 4 41 7 6 12 15 26 18 43 21 38 3 31 28 11 14 25 17 27

5 37 10 39 7 42 24 16 29 6 18 43 28 11 27

2718 4339 24 1622

42 20 13 24 16 32 8 36 29

5 occurrences

Fig. 3. An illustrative example depi
ting a String B-tree built on a set � of DNAsequen
es. �'s strings are stored in a �le separated by spe
ial
hara
ters, here denotedwith bla
k boxes. The triangles labeled with PT depi
t the Patri
ia trees stored intoea
h String B-tree node. The �gure also shows in bold the String B-tree nodes traversedby the sear
h for a pattern P = \CT 00. The
ir
led pointers denote the suÆxes, one perlevel, expli
itly
he
ked during the sear
h; the pointers in bold, in the leaf level, denotethe �ve suÆxes pre�xed by P and thus the �ve positions where P o

urs in �.
opies of these keys are stored in the internal nodes for routing the subsequenttraversals. The order between any two keys is the lexi
ographi
 order amongthe
orresponding pointed strings. The novelty of the String B-tree is that thekeys in ea
h node are not expli
itly stored, so that they may be of arbitrarylength. Only the string pointers are kept into the nodes, organized by meansof a Patri
ia tree [137℄ whi
h ensures small overhead in routing string sear
hesor updates, and o

upies spa
e proportional to the number of indexed stringsrather than to their total length.We denote by SBT� the string B-tree built on the text
olle
tion �, and weadopt two
onventions: there is no distin
tion between a key and its
orrespond-ing pointed string; ea
h disk page
an
ontain up to 2b keys, where b = �(B)is a parameter depending on the a
tual spa
e o

upan
y of a node (this will

25be dis
ussed in Se
tion 3.4). In detail, the strings of SUF (�) are distributedamong the String B-tree nodes as shown in Figure 3. SUF (�) is partitionedinto groups of at most 2b strings ea
h (ex
ept the last group whi
h may
ontainfewer strings) and every group is stored into a leaf of SBT� in su
h a way thatthe left-to-right s
anning of these leaves gives the ordered set SUF (�) (i.e. thesuÆx array of �). Ea
h internal node � has n(�)
hildren, with b2 � n(�) � b(ex
ept the root whi
h has from 2 to b
hildren). Node � also stores the stringset S� formed by
opying the leftmost and the rightmost strings
ontained inea
h of its
hildren. As a result, set S�
onsists of 2n(�) strings, node � hasn(�) = �(B)
hildren, and thus the height of SBT� is O(logB N) where N isthe total length of �'s strings, or equivalently, the
ardinality of SUF (�).The main advantage of String B-trees is that they support the standardB-tree operations, now, on arbitrary long keys. Sin
e the String B-tree leavesform a suÆx array on SUF (�), the sear
h for a pattern string P [1; p℄ in SBT�must identify foremost the lexi
ographi
 position of P among the text suÆxesin SUF (�), and thus, among the text pointers in the String B-tree leaves. On
ethis position is known, all the o

urren
es of P as a substring of �'s stringsare given by the
onse
utive pointers to text suÆxes whi
h start from thatposition and have P as a pre�x (refer to the observation on suÆx arrays, inSe
tion 3). Their retrieval takes O((p=B)o

) I/Os, in
ase of a brute-for
e mat
hbetween the pattern P and the
he
ked suÆxes; or the optimal O(o

=B) I/Os, ifsome additional information about the longest-
ommon-pre�x length shared byadja
ent suÆxes is kept into ea
h String B-tree leaf. In the example of Figure 3the sear
h for the pattern P = \CT 00 tra
es a downward path of String B-treenodes and identi�es the lexi
ographi
 position of P into the fourth String B-treeleaf (from the left) and before the 42th text suÆx. The pattern o

urren
es arethen retrieved by s
anning the String B-tree leaves from that position until the32th text suÆx is en
ountered, be
ause it is not pre�xed by P . The text positionsf42; 20; 13; 24; 16g denote the �ve o

urren
es of P as a substring of �'s texts.Therefore the eÆ
ient implementation of string sear
hes in String B-treesboils down to the eÆ
ient routing of the pattern sear
h among the String B-treenodes. In this respe
t it is
lear that the way a string set S�, in ea
h traversednode �, is organized plays a
ru
ial role. The innovative idea in String B-treesis to use a Patri
ia tree PT� to organize the string pointers in S� [137℄. Patri
iatrees preserve the sear
hing power and properties of
ompa
ted tries, althoughin a redu
ed spa
e o

upan
y. In fa
t PT� is a simpli�ed trie in whi
h ea
har
 label is repla
ed by only its �rst
hara
ter. See Figure 4 for an illustrativeexample.When the String B-tree is traversed downward starting from the root, thetraversal is routed by using the Patri
ia tree PT� stored in ea
h visited node�. The goal of PT� is to help �nding the lexi
ographi
 position of the sear
hedpattern P in the ordered set S� . This sear
h is a little bit more
ompli
ated thanthe one in
lassi
al tries (and suÆx trees), be
ause of the presen
e of only one
hara
ter per ar
 label, and in fa
t
onsists of two stages:

26{ Tra
e a downward path in PT� to lo
ate a leaf l whi
h points to an interestingstring of S� . This string does not ne
essarily identify P 's position in S�(whi
h is our goal), but it provides enough information to �nd that positionin the se
ond stage (see Figure 4). The retrieval of the interesting leaf lis done by traversing PT� from the root and
omparing the
hara
ters ofP with the single
hara
ters whi
h label the traversed ar
s until a leaf isrea
hed or no further bran
hing is possible (in this
ase,
hoose l to be anydes
endant leaf from the last traversed node).{ Compare the string pointed by l with P in order to determine their longest
ommon pre�x. A useful property holds [71℄: the leaf l stores one of thestrings in S� that share the longest
ommon pre�x with P . The length `of this
ommon pre�x and the mismat
h
hara
ter P [`+ 1℄ are used in twoways: �rst to determine the shallowest an
estor of l spelling out a stringlonger than `; and then, to sele
t the leaf des
ending from that an
estorwhi
h identi�es the lexi
ographi
 position of P in S� .An illustrative example of a sear
h in a Patri
ia tree is shown in Figure 4 for apattern P = \GCACGCAC 00 . The leaf l found after the �rst stage is the se
ondone from the right. In the se
ond stage, the algorithm �rst
omputes ` = 2 andP [` + 1℄ = A; then, it pro
eeds along the leftmost path des
ending from thenode u, sin
e the 3rd
hara
ter on the ar
 leading to u (i.e. the mismat
h G) isgrater than the
orresponding pattern
hara
ter A. The position rea
hed by thistwo-stage pro
ess is indi
ated in Figure 4, and results the
orre
t lexi
ographi
position of P among S�'s strings.We remark here that PT� requires spa
e linear in the number of strings ofS�, therefore the spa
e usage is independent of their total length. Consequently,the number of strings in S�
an be properly
hosen in order to be able to �t PT�in the disk page allo
ated for �. An additional ni
e property of PT� is that itallows to �nd the lexi
ographi
 position of P in S� by exploiting the informationavailable in �'s page and by fully
omparing P with just one of the strings in S�.This
learly allows to redu
e the number of disk a

esses needed in the routingstep. By
ounting the number of disk a

esses required for sear
hing P [1; p℄ inthe strings of �, and re
alling that �'s strings have overall length N , we getthe I/O-bound O(pB logB N). In fa
t, SBT� has height O(logB N), and at ea
htraversed node � we may need to fully
ompare P against one string of S� thustaking O(pB + 1) disk a

esses.A further re�nement to this idea is possible, thought, by observing that wedo not ne
essarily need to
ompare the two strings, i.e. P and the
andidatestring of S�, starting from their �rst
hara
ter but we
an take advantage of the
omparisons exe
uted on the an
estors of �, thus skipping some
hara
ter
om-parisons and redu
ing the number of disk a

esses. An in
remental a

ountingstrategy allows to prove that O(pB + logB N) disk a

esses are indeed suÆ
ient,and this bound is optimal in the
ase of an unbounded alphabet. A more
om-plete analysis and des
ription of the sear
h and update operations is given in [71℄where it is formally proved the following:

27
A

A A

G

G G G

GC
[G] [G]

A

0

3 4

5 6 6

u

[T]

 [C G C]

correct position
for P = GCACGCAC

for P = GCACGCAC
checked string

A
G
A
A
G
A

A
G
A
A
G
G

A
G
A
C

G
C
G
C
A
G
A

G
C
G
C
A
G
G

G
C
G
C
G
G
A

G
C

C
G
G
G
A

G

[G]
A

[G A]
A

Fig. 4. An example of Patri
ia tree built on a set of k = 7 DNA strings drawn fromthe alphabet � = fA;G;C; Tg. Ea
h leaf points to one of the k strings; ea
h internalnode u (they are at most k � 1) is labeled with one integer len(u) whi
h denotes thelength of the
ommon pre�x shared by all the strings pointed by the leaves des
endingfrom u; ea
h ar
 (they are at most 2k � 1) is labeled with only one
hara
ter (
alledbran
hing
hara
ter). The
hara
ters between square-bra
kets are not expli
itly stored,and denote the other
hara
ters labeling a trie ar
.Theorem 1. String B-trees support the sear
h for all the o

 o

urren
es ofan arbitrary pattern P [1; p℄ in the strings of a set � taking O(p+o

B + logB N)disk a

esses, where N is the overall length of �'s strings. The insertion or thedeletion of an m-length string in/from the set � takes O(m logB(N +m)) diska

esses. The required spa
e is �(NB) disk pages.As a
orollary, we get a result whi
h points out the String B-tree as ane�e
tive data stru
ture also for di
tionary appli
ations.Corollary 1. String B-trees support the sear
h for all the o

 o

urren
es ofan arbitrary pattern P [1; p℄ as a pre�x of the K strings in a set � takingO(p+o

B + logBK) disk a

esses. The insertion or the deletion of an m-lengthstring in/from the set � takes O(mB + logBK) disk a

esses. The spa
e usage ofthe String B-tree is �(KB) disk pages, whereas the spa
e o

upied by the stringset � is �(NB) disk pages.

28 Some authors have su

essfully used String B-trees in other settings: multi-dimensional pre�x-string queries [97℄,
onjun
tive boolean queries on two sub-strings [72℄, di
tionary mat
hing problems [73℄, distributed sear
h engines [74℄,indexing of XML texts [54℄. All of these appli
ations show the
exibility of thisdata stru
ture, its eÆ
ien
y in external memory, and foretell engineered im-plementations be
ause up to now String B-trees have been
on�ned mainly tothe theoreti
al realm perhaps be
ause of their spa
e o

upan
y: the best knownimplementation uses about 12 bytes per indexed suÆx [70℄. Given this bottle-ne
k, less I/O-eÆ
ient but spa
e
heaper data stru
tures have been preferred inpra
ti
e (e.g. supra-indexes [23℄). In the next se
tion we try to over
ome thislimitation by proposing a novel engineered version of String B-trees suitable forpra
ti
al implementations.3.4 Engineering the String B-treeString B-trees have the
hara
teristi
s that their height de
reases exponentiallyas b's value in
reases (with �xed N). The value of b is stri
tly related to thenumber of strings
ontained in ea
h node � be
ause b � jS� j � 2b. If the diskpage size B in
reases, we
an store more suÆxes in S� . However, sin
e B istypi
ally
hosen to be proportional to the size of a disk page, we need a te
hniquethat maximizes jS�j for a �xed disk page size B.The spa
e o

upan
y of a String B-tree node � is evaluated as the sum ofthree quantities:1. The amount of auxiliary and bookkeeping information ne
essary to node �.This is pra
ti
ally negligible and, hereafter, it will not be a

ounted for.2. The amount of spa
e needed to store the pointers to the
hildren of �. Thisquantity is absent for the leaves; in the
ase of internal nodes, usually a4-byte pointer suÆ
es.3. The amount of spa
e required to store the pointers to the strings in S�and the asso
iated ma
hinery PT�. This spa
e is highly implementationdependent, so deserves an a

urate dis
ussion.Let us therefore
on
entrate on the amount of spa
e required to store S�and PT�. This is determined by three kinds of information: (i) the Patri
ia treetopology, (ii) the integer values kept into the internal nodes of PT� (denoted bylen), and (iii) the pointers to the strings in S�. The na��ve approa
h to implement(i{iii) is to use expli
it pointers to represent the parent-
hild relationships in PT�and the strings in S�, and allo
ate 4 bytes for the len values. Although simpleand eÆ
ient in supporting sear
h and update operations, this implementationindu
es an una

eptable spa
e o

upan
y of about 24 bytes per string of S� !The literature about spa
e-eÆ
ient implementations of Patri
ia trees is huge butsome \pruning" of known results
an be done a

ording to the features of ourtrie en
oding problem. Hash-based representation of tries [58℄, although elegantand su

in
t,
an be dis
arded be
ause they do not have guaranteed performan
ein time and spa
e, and they are not better than
lassi
al tries on small string

29sets [5, 31℄, as it o

urs in our S�'s sets. List or array-based implementations ofPatri
ia trees adopting path and/or level
ompression strategies [13, 12, 157℄ arespa
e
onsuming and e�e
tive mainly on random data.More appealing for our purposes is a re
ent line of resear
h pioneered by [96℄and extended by other authors [143, 144, 49, 107, 117℄ to the su

in
t en
oding ofPatri
ia trees. Their main idea is to su

in
tly en
ode the Patri
ia tree topologyand then use some other data stru
tures to properly en
ode the other informa-tion, like the string pointers (kept into the leaves) and the len values (kept intothe internal nodes). The general poli
y is therefore to handle the data and thetree stru
ture separately. This enables to
ompress the plain data using any ofthe known methods (see e.g. [188℄) and independently �nd an eÆ
ient
odingmethod for the tree stru
ture irrespe
tive of the form and
ontents of the dataitems stored in its nodes and leaves.In the original implementation of String B-trees [70℄, the shape of PT� wassu

in
tly en
oded via two operations,
alled
ompress and un
ompress. Theseoperations allow to go from a Patri
ia tree to a binary sequen
e, and vi
e versa,by means of a preorder traversal of PT�. Although spa
e eÆ
ient and simple,this en
oding is CPU-intensive to be updated or sear
hed, so that a small pagesize of B = 1 kilobytes was
hosen in [70℄ to balan
e the CPU-
ost of node
ompression/un
ompression and the I/O-
ost of the update operations (see [70℄for details). Here we propose a novel en
oding s
heme that surprisingly throwsaway the Patri
ia tree topology, keeps just the string pointers and the len values,and is still able to support pattern sear
hes in a
onstant number of I/Os pervisited String B-tree node. As a result, the asymptoti
 I/O-bounds stated inTheorem 1 still hold with a signi�
ant spa
e improvement in the
onstants hiddenin the big-Oh notation.The starting point is the beautiful result of [69℄ that we brie
y re
all here. Letus be given a lexi
ographi
ally ordered array of string pointers,
alled SP , andthe array of longest-
ommon-pre�xes shared by strings adja
ent in SP ,
alledL
p. We
an look at SP and L
p as the sequen
e of string pointers and lenvalues en
ountered in an inorder traversal of the Patri
ia tree PT� stored into agiven String B-tree node �. Now, let us assume that we wish to route the sear
hfor a pattern P [1; p℄ through node �, we then need to �nd the lexi
ographi
position of P in SP sin
e it indexes S�. We might implement that sear
h via the
lassi
al binary sear
h pro
edure on suÆx arrays within a logarithmi
 numberof I/Os (see Se
tion 3.1). The result in [69℄ shows instead that it is enough toexe
ute only one string a

ess, few more �(p+ k) bit
omparisons and one fulls
an of the arrays L
p and SP . Of
ourse this new algorithm is una�ordableon large arrays, but this is not our
ontext of appli
ation: the string set S�a
tually
onsists of few thousands of items (stored in one disk page), and thearrays SP and L
p reside in memory when the sear
h is performed (i.e. thedisk page has been fet
hed). Hen
e the sear
h is I/O-
heap in that it requiresjust one sequential string a

ess, it is CPU-e�e
tive be
ause the array-s
an
anbene�t from the reading-ahead poli
y of the internal
a
he, and is spa
e eÆ
ientbe
ause it avoids the storage of PT�'s topology.

30 Let us therefore detail the sear
h algorithm whi
h assumes a binary patternP and
onsists of two phases (see [69℄ for the uneasy proof of
orre
tness). Inthe �rst phase, the algorithm s
ans rightward the array SP and indu
tivelykeeps x as the position of P in this array (initially x = 0). At a generi
 step iit
omputes ` = L
p[i℄, as the mismat
hing position between the two adja
entstrings SP [i℄ and SP [i+ 1℄. Noti
e that the `th bit of the string SP [i℄ is surely0, whereas the `th bit of the string SP [i+1℄ is surely 1 be
ause they are binaryand lexi
ographi
ally ordered. Hen
e the algorithm sets x = i+1 and in
rementsi if P [`℄ = 1; otherwise (i.e. P [`℄ = 0), it leaves x un
hanged and in
rements iuntil it meets an index i su
h that L
p[i℄ < `. A
tually, in this latter
ase thealgorithm is jumping all the su

eeding strings whi
h have the `th bit set to 1(sin
e P [`℄ = 0). The �rst phase ends when i rea
hes the end of SP ; it is possibleto prove that SP [x℄ is one of the strings in SP sharing the longest
ommon pre�xwith P . In the illustrative example of Figure 5, we have P = \GCACGCAC 00and
oded its
hara
ters in binary; the �rst phase ends by
omputing x = 4. These
ond phase of the sear
h algorithm initiates by
omputing the length `0 of thelongest
ommon pre�x between P and the
andidate string SP [x℄. If SP [x℄ = Pthen it stops, otherwise the algorithm starts from position x a ba
kward s
anningof SP if P [`0 + 1℄ = 0 or a forward s
anning if P [`0 + 1℄ = 1. This s
an sear
hesfor the lexi
ographi
 position of P in SP and pro
eeds until is met the positionx0 su
h that L
p[x0℄ < `0. The sear
hed position lies between the two stringsSP [x0℄ and SP [x0 + 1℄. In the example of Figure 5, it is `0 = 4 (in bits) andP [5℄ = 0 (the �rst bit of A's binary
ode); hen
e SP is s
anned ba
kward fromSP [4℄ for just one step sin
e L
p[3℄ = 0 < 4 = `0. This is the
orre
t position ofP among the strings indexed by SP .Noti
e that the algorithm needs to a

ess the disk just for fet
hing the stringSP [x℄ and
omparing it against P . Hen
e O(p=B) I/Os suÆ
e to route P throughthe String B-tree node �. An in
remental a

ounting strategy, as the one devisedin [71℄, allows to prove that we
an skip some
hara
ter
omparisons and thereforerequire O(p+o

B + logB N) I/Os to sear
h for the o

 o

urren
es of a patternP [1; p℄ as a substring of �'s strings. Preliminary experiments have shown thatsear
hing few thousands of strings via this approa
h needs about 200�s, whi
his negligible
ompared to the 5:000�s required by a single I/O on modern disks.Furthermore, the in
remental sear
h allows sometimes to avoid the I/Os neededto a

ess SP [x℄ !Some improvements to this idea are still possible both in time and spa
e.First, we
an redu
e the CPU-time of sear
h and update operations by adoptinga sort of supra-index on SP de�ned as follows. We de
ompose the array SP(and hen
e L
p) into sub-arrays of size �(log2 jSP j). The rightmost string ofea
h subarray is stored in a pointer-based Patri
ia tree. This way, the (sampled)Patri
ia tree is used to determine the subarray
ontaining the position of thesear
hed pattern; then the sear
h pro
edure above is applied to that subarrayto �nd the
orre
t position of P into it. The overall time
omplexity is O(p)to traverse the Patri
ia tree, and O(p + log2 jSP j) to explore the rea
hed sub-array. Noti
e also that only two strings in SP are a

essed on disk. The data

31

p1 p3 p5p4

0 1

0

0 0 01

1 1

1 1

0

p2 p6 p7

A = 00
G = 10
C = 11
T = 01

SA = [p1, p2, p3, p4, p5, p6, p7]

Lcp = [10, 6, 0, 12, 8, 12]

skip = [10, −4, −6, 12, −4, 4]

x

0

8

A
G
A
A
G
A

A
G
A
A
G
G

A
G
A
C

G
C
G
C
A
G
A

G
C
G
C
A
G
G

G
C
G
C
G
G
A

G
C

C
G
G
G
A

G

6

10 12 12

x’

Fig. 5. The arrays SP and L
p
omputed on the Patri
ia tree of Figure 4. The arraySkip is derived from the array L
p by subtra
ting its adja
ent entries. The Skips andL
ps are expressed in bits.stru
ture is dynami
 and every insertion or deletion of an m-length string takesO(m + log2 jSP j) time and only two string a

esses to the disk. The resultingdata stru
ture turns out to be simple, its
onstru
tion from s
rat
h is fast andthus split/merge operations on String B-tree nodes should be e�e
tive if PT� isimplemented in this way.We point out that due to the sequential a

ess to the array L
p, a furtherspa
e saving is possible. We
an
ompa
tly en
ode the entries of array L
p byrepresenting only their di�eren
es. Namely, we use a novel array Skip in whi
hea
h value denotes the di�eren
e between two
onse
utive L
p's entries (i.e.Skip[i℄ = L
p[i℄�L
p[i� 1℄, see Figure 5). Various experimental studies on thedistribution of the Skips over standard text
olle
tions have shown that mostof them (about 90% [177℄) are small and thus they are suitably represented viavariable-length
odes [49, 132℄. We suggest the use of the
ontinuation bit
ode,des
ribed in Se
tion 2, be
ause of two fa
ts: the string sampling at the internal

32nodes of SBT� and the results in [177℄ drives us to
onje
ture small skips andthus one byte
oding for them; furthermore, this
oding s
heme is simple to beprogrammed, indu
es byte-aligned
odes and hen
e it is CPU eÆ
ient.We
on
lude this se
tion by observing that up to now we assumed the text
olle
tion � to be �xed. In a real-life
ontext, we should expe
t that new textsare added to the
olle
tion and old texts are removed from it. While handlingdeletions is not really a problem as we have a plethora of tools inherited fromstandard B-trees, implementing the addition of a new text requires de
isely newte
hniques. This asymmetry between deletion and insertion is better understoodif we observe that the insertion of a new text T [1;m℄ into� requires the insertionof all of its m suÆxes fT [1;m℄; T [2;m℄; : : : ; T [m;m℄g into the lexi
ographi
allyordered set SUF (�). Consequently, the dominant
ost is due to the
omparisonof all
hara
ters in ea
h text suÆx that may sum up to �(m2). Sin
e T
anbe as large as m = 106
hara
ters (or even more), the res
anning of the text
hara
ters might be a
omputational bottlene
k. On the other hand, the deletionof a text T [1;m℄ from �
onsists of a sequen
e of m standard deletions of T 'ssuÆx pointers, and hen
e
an exploit standard B-tree te
hniques.The approa
h proposed in [71℄ to avoid the \res
anning" in text insertion ismainly theoreti
al in its
avor and
onsiders an augmented String B-tree wheresome pointers are added to its leaves. The
ounterpart for this I/O improvementis that a larger spa
e o

upan
y is needed and, when rebalan
ing the String B-tree, the redire
tion of some of these additional pointers may
ause the exe
utionof random I/Os. Therefore, it is questionable if this approa
h is really attra
tivefrom a pra
ti
al point of view. Starting from these
onsiderations [70℄ proposedan alternative approa
h based on a bat
hed insertion of the m suÆxes of T .This approa
h exploits the LRU bu�ering strategy of the underlying operatingsystem and proves e�e
tive in the
ase of a large m. In the
ase of a small m adi�erent approa
h must be adopted whi
h is based on the suÆx-array mergingpro
edure presented in [84℄: a suÆx array SA is built for T , together with its L
parray; the suÆx array SA� on the suÆxes in SUF (�) is instead derived fromthe leaves of SBT� within O(N=B) I/Os. The merge of SA and SA� (and their
orresponding L
p arrays) gives the new set of String B-tree leaves, the internalnodes are
onstru
ted within O(N=B) I/Os via the simple approa
h devised inSe
tion 3.3. Even if the merging of the two suÆx arrays
an be dramati
allyslow in theory, sin
e every suÆx
omparison might require one disk a

ess, the
hara
ter distribution of real text
olle
tions makes the L
p arrays very helpfuland allows to solve in pra
ti
e most of the suÆx
omparisons without a

essingthe disk. A throughtful sperimentation of these approa
hes is still needed tovalidate su
h empiri
al
onsiderations.3.5 String B-tree
onstru
tionThe eÆ
ient
onstru
tion of full-text indexes on very large text
olle
tions is ahot topi
: \We have seen many papers in whi
h the index simply `is', withoutdis
ussion of how it was
reated. But for an indexing s
heme to be useful it

33must be possible for the index to be
onstru
ted in a reasonable amount of time,....." [193℄. The
onstru
tion phase may be, in fa
t, a bottlene
k that
an preventthese powerful indexing tools to be used even in medium-s
ale appli
ations.Known
onstru
tion algorithms are very fast when employed on textual data that�t in the internal memory of
omputers [121, 165, 112, 124℄ but their performan
eimmediately degrades when the text size be
omes so large that the texts mustbe arranged on (slow) external storage devi
es. In the previous se
tion we haveaddressed the problem of updating the String B-tree under the insertion/deletionof a single text. Obviously those algorithms
annot be adopted to
onstru
t froms
rat
h the String B-tree over a largely populated text
olle
tion be
ause theywould in
ur in an enormous amount of random I/Os. In this se
tion we des
ribe�rst an eÆ
ient algorithm to build the suÆx array SA� for a text
olle
tion �of size N , and then present a simple algorithm whi
h derives the String B-treeSBT� from this array in O(N=B) I/Os. For further theoreti
al and experimentalresults on this interesting topi
 we refer the reader to [66, 55, 165, 84℄.How to build SA�. As shown in [55℄, the most attra
tive algorithm forbuilding large suÆx arrays is the one proposed in [84℄ be
ause it requires only4 bytes of working spa
e per indexed suÆx, it a

esses the disk mostly in asequential manner and it is very simple to be programmed. For the simpli
ity ofpresentation, let us assume to
on
atenate all the texts in � into just one singlelong text T of length N , and let us
on
entrate on the
onstru
tion of the suÆxarray SAT of T . The transformation from SAT to SA� is easy and left to thereader as an exer
ise.The algorithm
omputes in
rementally the suÆx array SAT in �(N=M)stages. Let ` < 1 be a positive
onstant �xed below, and assume to set a param-eter m = `M whi
h, for the sake of presentation, divides N . This parameter willdenote the size of the text pie
es loaded in memory at ea
h stage.The algorithm maintains at ea
h stage the following invariant: At the begin-ning of stage h, with h = 1; 2; : : : ; N=m, the algorithm has stored on the disk anarray SAext
ontaining the sequen
e of the �rst (h � 1)m suÆxes of T orderedlexi
ographi
ally and represented via their starting positions in T .During the hth stage, the algorithm in
rementally updates SAext by properlyinserting into it the text suÆxes whi
h start in the substring T [(h�1)m+1; hm℄.This preserves the invariant above, thus ensuring that after all the N=m stages,it is SAext = SAT . We are therefore left with showing how the generi
 hth stageworks.In the hth stage, the text substring T [(h�1)m+1; hm℄ is loaded into internalmemory, and the suÆx array SAint
ontaining only the suÆxes starting in thattext substring is built. Then, SAint is merged with the
urrent SAext in twosteps with the help of a
ounter array C[1;m+ 1℄:1. The text T is s
anned rightwards and the lexi
ographi
 position pi of ea
htext suÆx T [i; N ℄, with 1 � i � (h�1)m, is determined in SAint via a binarysear
h. The entry C[pi℄ is then in
remented by one unit in order to re
ordthe fa
t that T [i; N ℄ lexi
ographi
ally lies between the SAint[pi � 1℄-th andthe SAint[pi℄-th suÆx of T .

342. The information kept in the array C is employed to qui
kly merge SAintwith SAext: entry C[j℄ indi
ates how many
onse
utive suÆxes in SAextfollow the SAint[j� 1℄-th text suÆx and pre
ede the SAint[j℄-th text suÆx.This implies that a simple disk s
an of SAext is suÆ
ient to perform su
h amerging pro
ess.At the end of these two steps, the invariant on SAext has been properlypreserved so that h
an be in
remented and the next stage
an start
orre
tly.Some
omments are in order at this point. It is
lear that the algorithm pro
eedsby mainly exe
uting two disk s
ans: one is performed to load the text pie
eT [(h � 1)m + 1; hm℄ in internal memory, the other disk s
an is performed tomerge SAint and SAext via the
ounter array C. However, the algorithm mightin
ur in many I/Os: either when SAint is built or when the lexi
ographi
 positionpi of ea
h text suÆx T [i; N ℄ within SAint has to be determined. In both these two
ases, we may need to
ompare a pair of text suÆxes whi
h share a long pre�x notentirely available in internal memory (i.e., it extends beyond T [(h�1)m+1; hm℄).In the pathologi
al
ase T = aN , the
omparison between two text suÆxes takesO(N=M) bulk I/Os so that: O(N log2m) bulk I/Os are needed to build SAint;the
omputation of C takes O(hN log2m) bulk I/Os; whereasO(h) bulk I/Os areneeded to merge SAint with SAext. No random I/Os are exe
uted, and thus theglobal number of bulk I/Os is O((N3 log2M)=M2). The total spa
e o

upan
yis 4N bytes for SAext and 8m bytes for both C and SAint; plus m bytes to keepT [(h� 1)m+1; hm℄ in internal memory (the value of ` is derived
onsequently).The merging step
an be easily implemented using some extra spa
e (indeedadditional 4N bytes are suÆ
ient), or by employing just the spa
e allo
ated forSAint and SAext via a more tri
ky implementation.Sin
e the worst-
ase number of total I/Os is
ubi
, a purely theoreti
al anal-ysis would
lassify this algorithm not mu
h interesting. But there are some
on-siderations that are
ru
ial to shed new light on it, and look at this algorithmfrom a di�erent perspe
tive. First of all, we must observe that, in pra
ti
al situa-tions, it is very reasonable to assume that ea
h suÆx
omparison �nds in internalmemory all the (usually,
onstant number of)
hara
ters needed to
ompare thetwo involved suÆxes. Consequently, the pra
ti
al behavior is more reasonably de-s
ribed by the formula: O(N2=M2) bulk I/Os. Additionally, in the analysis aboveall I/Os are sequential and the a
tual number of random seeks is O(N=M) (i.e.,at most a
onstant number per stage). Consequently, the algorithm takes fullyadvantage of the large bandwidth of
urrent disks and of the high CPU-speedof the pro
essors [162, 164℄. Moreover, the redu
ed working spa
e fa
ilitates theprefet
hing and
a
hing poli
ies of the underlying operating system and �nally,a
areful look to the algebrai

al
ulations shows that the
onstants hidden inthe big-Oh notation are very small. A re
ent result [55℄ has also shown how tomake it no longer questionable at theoreti
al eyes by proposing a modi�
ationthat a
hieves eÆ
ient performan
e in the worst
ase.From SA� to SBT�. The
onstru
tion of SA�
an be
oupled with the
omputation of the array L
p�
ontaining the sequen
e of longest-
ommon-pre�x lengths (l
p) between any pair of adja
ent suÆxes. Given these two arrays,

35the String B-tree for the text
olle
tion �
an be easily derived pro
eeding in abottom-up fashion. We split SA� into groups of about 2b suÆx pointers ea
h (asimilar splitting is adopted on the array L
p�) and use them to form the leavesof the String B-tree. That requires s
anning SA� and L
p� on
e. For ea
h leaf� we have its string set S� and its sequen
e of l
ps, so that the
onstru
tion ofthe Patri
ia tree PT� takes linear time and no I/Os.After the leaf level of the String B-tree has been
onstru
ted, we pro
eed tothe next higher level by determining new string and l
p sequen
es. For this, wes
an rightward the leaf level and take the leftmost string L(�) and the rightmoststring R(�) from ea
h leaf �. This gives the new string sequen
e whose lengthis a fa
tor �(1=B) smaller than the sequen
e of strings stored in the leaf level.Ea
h pair of adja
ent strings is either a L(�)=R(�) pair or a R(�)=L(�0) pair(derived from
onse
utive leaves � and �0). In the former
ase, the l
p of thetwo strings is obtained by taking the minimum of all the l
ps stored in �; in thelatter
ase, the l
p is dire
tly available in the array L
p� sin
e R(�) and L(�0)are
ontiguous there. After that the two new sequen
es of strings and l
ps havebeen
onstru
ted, we repeat the partitioning pro
ess above thus forming a newlevel of internal nodes of the String B-tree. The pro
ess
ontinues for O(logB N)iterations until the string sequen
e has length smaller than 2b; in that
asethe root of the String B-tree is formed and the
onstru
tion pro
ess stopped.The implementation is quite standard and not fully detailed here. Preliminaryexperiments [70℄ have shown that the time taken to build a String B-tree fromits suÆx array is negligible with respe
t to the time taken for the
onstru
tionof the suÆx array itself. Hen
e we refer the reader to [55℄ for the latter timings.We
on
lude this se
tion by observing that if we aim for optimal I/O-boundsthen we have to resort a suÆx tree
onstru
tion method [66℄ expli
itly designedto work in external memory. The algorithm is too mu
h sophisti
ated to bedetailed, we therefore refer the reader to the
orresponding literature and, just,point out here that the two arrays SA� and L
p�
an be obtained from thesuÆx tree by means of an inorder traversal. It
an be shown that all these stepsrequire sorting and sequential disk-s
an pro
edures, thus a

ounting for overallO((N=B) logM=B(N=B)) I/Os [66℄.3.6 String vs suÆx sortingThe
onstru
tion of full-text indexes involves the sorting of the suÆxes of theindexed text
olle
tion. Sin
e a suÆx is a string of arbitrary length, we would bedriven to
on
lude that suÆx sorting and string sorting are \similar" problems.This is not true be
ause, intuitively, the suÆxes parti
ipating to the sortingpro
ess share so long substrings that some I/Os may be possibly saved when
omparing them, and indeed this saving
an be a
hieved as shown theoreti
allyin [66℄. Conversely [17℄ showed that sorting strings on disk is not nearly as simpleas it is in internal memory, and introdu
ed a bun
h of sophisti
ated, determinis-ti
 string-sorting algorithms whi
h a
hieve I/O-optimality under some
onditionson the string-
omparison model. In this se
tion we present a simpler random-ized algorithm that
omes
lose to the I/O-optimal
omplexity, and surprisingly

36mat
hes the O(N=B) linear I/O-bound under some reasonable
onditions on theproblem parameters.Let K be the number of strings to be sorted, they are arbitrarily long, and letN be their total length. For the sake of presentation, we introdu
e the notationn = N=B; k = K=B and m = M=B. Sin
e algorithms do exist that mat
h the
(K log2K + N) lower bound for string sorting in the
omparison model, itseems reasonable to expe
t that the
omplexity of sorting strings in externalmemory is �(k logm k + n) I/Os. But any na��ve algorithm does not even
ome
lose to meet this I/O-bound. In fa
t, in internal memory a trie data stru
turesuÆ
es to a
hieve the optimal
omplexity; whereas in external-memory the useof the powerful String B-tree a
hieves O(K logBK+n) I/Os. The problem hereis that strings have variable length and their brute-for
e
omparisons over thesorting pro
ess may indu
e a lot of I/Os. We aim at speeding up the string
omparisons, and we a
hieve this goal by shrinking the long strings via an hashingof some of their pie
es. Sin
e hashing does not preserve the lexi
ographi
 order,we will or
hestrate the sele
tion of the string pie
es to be hashed with a
arefullydesigned sorting pro
ess so that the
orre
t sorted order may be eventually
omputed. Details follow, see Figure 6 for the pseudo
ode of this algorithm.We illustrate the behavior of the algorithm on a running example and thensket
h a proof of its
orre
tness. Let S be a set of six strings, ea
h of length 10. InFigure 8 these strings are drawn verti
ally, divided into pie
es of L = 2
hara
tersea
h. The hash fun
tion used to assign names to the L-pie
es is depi
ted inFigure 7. We remark that L� 2 log2K in order to ensure, with high probability,that the names of the (at most 2K) mismat
hing L-pie
es are di�erent. Oursetting L = 2 is to simplify the presentation.Figure 8 illustrates the exe
ution of Steps 1{4: from the naming of the L-pie
es to the sorting of the
-strings and �nally to the identi�
ation of the mis-mat
hing names. We point out that ea
h
-string in C has a
tually asso
iated apointer to the
orresponding S's string, whi
h is depi
ted in Figure 8 below everytable; this pointer is exploited in the last Step 8 to derive the sorted permutationof S from the sorted table T . Looking at Figure 8(iii), we interestingly note thatC is di�erent from the sorted set S (in C the 4th string of S pre
edes its 5thstring !), and this is due to the fa
t that the names do not re
e
t of
ourse thelexi
ographi
 order of their original string pie
es. The subsequent steps of thealgorithm are then designed to take
are of this apparent disorder by driving the
-strings to their
orre
tly-ordered positions.Step 6 builds the logi
al table T by substituting marked names with theirranks (assigned in Step 5 and detailed in Figure 7), and the other names withzeros. Of
ourse this transformation is lossy be
ause we have lost a lot of
-string
hara
ters (e.g. the pie
e b
 whi
h was not marked), nonetheless we will showbelow that the
an
eled
hara
ters would have not been
ompared in sortingthe S's strings so that their evi
tion has not impa
t on the �nal sorting step.Figure 9(i-ii) shows how the forward and ba
kward s
anning of table T �lls someof its entries that got zeros in Step 6. In parti
ular Step 7(a) does not
hangetable T , whereas Step 7(b)
hanges the �rst two
olumns. The resulting table T

37Input: A set S of K strings, whose total length is N (bits)Output: A sorted permutation of S1. Every string of S is partitioned into pie
es of L bits ea
h. L is
hosen to be mu
hlarger than 2 log2K.2. Compute for ea
h string pie
e a name, i.e. a bit string of length 2 log2K, by meansof a proper hash fun
tion. Ea
h string of S is then
ompressed by repla
ing L-pie
es with their
orresponding names. The resulting set of
ompressed strings isdenoted with C, and its elements are
alled
-strings.3. Sort C via any known external-memory sorting algorithm (e.g. Mergesort).4. Compute the longest
ommon pre�x between any pair of
-strings adja
ent in (thesorted) C and mark the (at most two) mismat
hing names. Let l
px be the numberof names shared by the xth and the (x+ 1)th string of C.5. S
an the set C and
olle
t the (two) marked names of ea
h
-string together withtheir
orresponding L-pie
es. Sort these string pie
es (they are at most 2K) andassign a rank to ea
h of them| equal pie
es get the same rank. The rank isrepresented with 2 log2K bits (like the names of the string pie
es), possibly paddingthe most signi�
ant digits with zeros.6. Build a (logi
al) table T by mapping
-strings to
olumns and names of L-pie
es totable entries: T [a; b℄
ontains the ath name in the bth
-string of C. Subsequently,transform T 's entries as follows: repla
e the marked names with their
orrespondingranks, and the other names with a bit-sequen
e of 2 log2K zeros. If the
-stringshave not equal length, pad logi
ally them with zeros. This way names and ranksare formed by the same number of bits,
-strings have the same length, and their(name or rank) pie
es are
orre
tly aligned.7. Perform a forward and ba
kward pass through the
olumns of T as follows:(a) In the rightward pass,
opy the �rst l
px�1 entries of the (x� 1)th
olumn ofT into the subsequent xth
olumn, for x = 2; :::; K. The mismat
hing namesof the xth
olumn are not overridden.(b) In the leftward pass,
opy the �rst l
px entries of the (x+ 1)th
olumn of Tinto the xth
olumn, for x = K � 1; ::::; 1.8. The
olumns of T are sorted via any known external-memory sorting algorithm(e.g. Mergesort). From the bije
tion: string $
-string $
olumn; we derive thesorted permutation of S.Fig. 6. A randomized algorithm for sorting arbitrary long strings in external memory.L-pie
e name rankaa 6 1ab 1 2bb 4 3b
 2 -
a 5 4
b 3 5

 7 6Fig. 7. Names of all L-pie
es and ranks of the marked L-pie
es. Noti
e that the L-pie
eb
 has no rank be
ause it has been not marked in Step 4.

38 ab bb ab bb aa abab b
 ab b
 bb

b

a b

 aa
b aa aa

 bb b
ab bb bb aa aa ab1 2 3 4 5 6i. Step 1
1 4 1 4 6 11 2 1 2 4 72 5 2 7 7 63 6 6 7 4 21 4 4 6 6 11 2 3 4 5 6ii. Step 2

1 1 1 4 4 61 1 7 2 2 42 2 6 5 7 73 6 2 6 7 41 4 1 4 6 61 3 6 2 4 5iii. Steps 3{5Fig. 8. Strings are written from the top to the bottom of ea
h table
olumn. (i) Stringsare divided into pie
es of 2
hars ea
h. (ii) Ea
h L-pie
e is substituted with its nametaken from the (hash) table of Figure 7. (iii) Columns are sorted and mismat
hingnames between adja
ent
olumns are underlined.is �nally sorted to produ
e the
orre
t sequen
e of string pointers 5,3,1,6,2,4(Figure 9(iii)).0 0 2 3 3 10 2 6 0 0 00 0 0 4 6 05 1 0 0 0 00 0 0 0 0 01 3 6 2 4 5i. Step 6 and 7(a)
2 2 2 3 3 12 2 6 0 0 00 0 0 4 6 05 1 0 0 0 00 0 0 0 0 01 3 6 2 4 5ii. Step 7(b)

1 2 2 2 3 30 2 2 6 0 00 0 0 0 4 60 1 5 0 0 00 0 0 0 0 05 3 1 6 2 4iii. Step 8Fig. 9. (i) The rightward pass through table T . (ii) The leftward pass through tableT . (iii) The sorted T .As far as the I/O-
omplexity is
on
erned, we let sort(�; �) denote theI/O-
ost of sorting � strings of total length � via multiway Mergesort, a
tu-ally sort(�; �) = O(�B logm �B). Sin
e the string set S is sequentially storedon disk, Steps 1-2 take O(n) I/Os. Step 3 sorts K
-strings of total lengthN 0 = �(N(2 log2K)L + K), where the se
ond additive term a

ounts for thosestrings whi
h are shorter than L, thus requiring sort(K;N 0) I/Os. Step 4 markstwo names per
-string, so Step 5 requires sort(2K; 2KL) I/Os. Table T
onsistsof K
olumns of total length N 0 bits. Hen
e, the forward and ba
kward s
anningof Step 7 takes O(N 0=B) I/Os. Sorting the
olumns of table T takes sort(K;N 0)I/Os in Step 8. Summing up we haveTheorem 2. The randomized algorithm detailed in Figure 6 sorts K strings oftotal length N in sort(K;N 0 + 2KL) + n expe
ted I/Os.By setting L = �(logm n log2K), the
ost is O(n + k(logm n)2 log2K)I/Os. Moreover if it is K � N=(log2m n log2K), i.e. the average string length ispolylogarithmi
 in n, then the total sorting
ost results the optimal O(n) I/Os.It goes without saying that if one repla
es the mismat
hing names with theiroriginal L-pie
es (instead of their ranks), it would still get the
orre
t lexi
o-

39graphi
 order but it would possibly end up in the same I/O-
ost of
lassi
almergesort: in the worst
ase, Step 7 expands all entries of T thus resorting to astring set of size N !The argument underlying the proof of
orre
tness of this algorithm is nontrivial. The key point is to prove that given any pair of strings in S, the
or-responding
olumns of T (i.e.
-strings of C)
ontain enough information afterStep 7 that the
olumn
omparison in Step 8 re
e
ts their
orre
t lexi
ographi
order. For simpli
ity we assume to use a perfe
t hash fun
tion so that di�erentL-pie
es get di�erent names in Step 2.Let � and � be any two
-strings of C and assume that they agree up to theith name (in
luded). After C is sorted (Step 3), � and � are possibly separated bysome
-strings whi
h satisfy the following two properties: (1) all these
-stringsagree at least up to their ith name, (2) at least two adja
ent
-strings amongthem disagree at their (i + 1)th name. A

ording to Step 6 and Property (1),the
olumns in T
orresponding to � and � will initially get zeros in their �rsti entries; a

ording to Step 6 and Property (2) at least two
olumns between�'s and �'s ones will get a rank value in their (i + 1)th entry. The leftmostof these ranks equals the rank of the (i + 1)th name of �; the rightmost ofthese ranks equals the rank of the (i+ 1)th name of �. After Step 7, the �rst ientries of �'s and �'s
olumns will be �lled with equal values; and their (i+1)thentry will
ontain two distin
t ranks whi
h
orre
tly re
e
t the two L-pie
eso

upying the
orresponding positions. Hen
e the
omparison exe
uted in Step 8between these two
olumns gives the
orre
t lexi
ographi
 order between the twooriginal strings. Of
ourse this argument holds for any pair of
-strings in C, andthus overall for all the
olumns of T . We
an then
on
lude that the stringpermutation derived in Step 8 is the
orre
t one.3.7 Some open problems and future resear
h dire
tionsAn important advantage of String B-trees is that they are a variant of B-treesand
onsequently most of the te
hnologi
al advan
es and know-how a
quired onB-trees
an be smoothly applied to them. For example, split and merge strate-gies ensuring good page-�ll ratio, node bu�ering te
hniques to speed up sear
hoperations, B-tree distribution over multi-disk systems, as well adaptive over
owte
hniques to defer node splitting and B-tree re-organization,
an be applied onString B-trees without any signi�
ant modi�
ation. Surprisingly enough, thereare no publi
ly available implementations of the String B-tree, whereas somesoftwares are based on it [54, 97, 110℄. The novel ideas presented in this paperforetell an engineered, publi
ly available implementation of this data stru
ture.In parti
ular, it would be worth to design a library for full-text indexing largetext
olle
tions based on the String B-tree data stru
ture. This library shouldbe designed to follow the API of the Berkeley DB [181℄, thus fa
ilitating its usein well-established appli
ations. The String B-tree
ould also be adopted as themain sear
h engine for genomi
 databases thus
ompeting with the numerousresults based on suÆx trees re
ently appeared in the literature [88, 46, 103, 133,

40126℄. Another setting where an implementation of the String B-tree
ould �nda su

essful use is the indexing of the tagged stru
ture of an XML do
ument.Re
ent results [52, 47, 4℄ adopt a Patri
ia tree or a SuÆx tree to solve and/orestimate the sele
tivity of stru
tural queries on XML do
uments. However theyare for
ed to either summarize the trie stru
ture, in order to �t it into the inter-nal memory, or to propose disk-paging heuristi
s, in order to a
hieve reasonableperforman
e. Unfortunately these proposals [52℄ forget the advan
ements in thestring-mat
hing literature and thus inevitably in
ur into the well-known I/Obottlene
k deeply dis
ussed in Se
tion 3.1. Of
ourse String B-trees might besu

essfully used here to manage in an I/O-eÆ
ient manner the arbitrary longXML paths in whi
h an XML do
ument
an be parsed, as well provide a better
a
hing behavior for the in-memory implementations.The problem of multi-dimensional substring sear
h, i.e. the sear
h for thesimultaneous o

urren
e of k substrings, deserves some attention. The approa
hproposed in [72℄ provides some insights into the nature of two-dimensional queries,but what
an we say about multi-dimensions ? Can we
ombine the String B-treewith some known multi-dimensional data stru
ture [172, 86℄ in order to a
hieveguaranteed worst-
ase bounds ? Or,
an we design a full-text index whi
h al-lows proximity queries between two substrings [120, 72℄ ? More study is worthto be devoted to this important subje
t be
ause of its ubiquitous appli
ationsto databases, data mining and sear
h engines.When dealing with word-based indexes, we addressed the do
ument listingproblem: given a word-based query w �nd all the do
uments in the indexed
olle
tion that
ontain w. Conversely when dealing with full-text indexes, weaddressed the o

urren
e listing problem: given an arbitrary pattern string P�nd all the do
ument positions where P o

urs. Although more natural from anappli
ation-spe
i�
 point of view, the do
ument listing problem has surprisinglyre
eived not mu
h attention from the algorithmi

ommunity in the area of full-text indexes, so that eÆ
ient (optimal) solutions are yet missing for many of itsvariants. Some papers [127, 145℄ have re
ently initiated the study of
hallengingvariations of the do
ument listing problem and solved them via simple and ef-�
ient algorithms. Improving these approa
hes, as well extending these resultsto multiple-pattern queries and to external-memory setting turns out to be astimulating dire
tion of resear
h.Exa
t sear
hes are just one side of the
oin, probably the tool with the nar-rowest setting of appli
ation ! The design of sear
h engines for approximateor similarity string sear
hes is be
oming more urgent be
ause of the doubt-less theoreti
al interest and the numerous appli
ations in the �eld of genomi
databases, audio/video
olle
tions and textual databases, in general. Signi�
antbiologi
al breakthroughs have already been a
hieved in genome resear
h basedon the analysis of similar geneti
 sequen
es, and the algorithmi
 �eld is over-
ooding of results in this setting [148℄. However most of these similarity-basedor approximate-mat
hing algorithms require the whole s
an of the data
olle
-tion thus resulting mu
h
ostly in the presen
e of a large amount of string dataand user queries. Indexes for approximate, or similarity, sear
hes turn out to

41be the holy grail of the Information Retrieval �eld. Several proposals have ap-peared in the literature and it would be impossible to
omment the spe
ialtiesof, or even list, all of them. Just to have an idea, a sear
h for \(approximate ORsimilarity) AND (index OR sear
h)" returned on Altavista more than 500,000mat
hes. To guide ourselves in this jungle of proposals we state the following
onsideration: \it is not yet known an index whi
h eÆ
iently routes the sear
hto the
orre
t positions where an approximate/similar string o

urren
e lies".Most of the resear
h e�ort has been devoted to design �lters: they transform theapproximate/similarity pattern sear
h into another string or geometri
 queryproblem for whi
h eÆ
ient data stru
tures are known. The transformation is of
ourse \not perfe
t" be
ause it introdu
es some false positive mat
hes that mustbe then �ltered out via a (
ostly) s
an-based algorithm. The more �ltration isa
hieved by the index, the smaller is the part on whi
h the approximate/similars
an-based sear
h is applied, the faster is the overall algorithmi
 solution. Thekey point therefore relies on the design of a good distan
e-preserving transfor-mation.Some approa
hes transform the approximate sear
h into a set of q-gramexa
t sear
hes, then solved via known full-text indexes [185, 40, 155, 100, 160,41℄. Other approa
hes map a string onto a multi-dimensional integral pointvia a wavelet-based transformation and then use multi-dimensional geometri
stru
tures to solve the transformed query [103℄. Re
ently a more sophisti
ateddistan
e-preserving transformation has been introdu
ed in [146, 53℄ whi
h mapsa string into a binary ve
tor su
h that the hamming distan
e between two ofthese ve
tors provides a provably good approximation of the (blo
k) edit dis-tan
e between the two original strings. This way an eÆ
ient approximate nearest-neighbor data stru
ture (see e.g. [95, 113℄)
an be used to sear
h over these multi-dimensional ve
tors and a
hieve guaranteed good average-
ase performan
e. No-ti
e that this solution applies on whole strings; its pra
ti
al performan
e has beentested over genomi
 data in [147℄.It goes without saying that in the plethora of results about
omplex patternsear
hes a spe
ial pla
e is o

upied by the solutions based on suÆx trees [88, 152,126, 93℄. The suÆx-tree stru
ture is well suitable to perform regular expressions,approximate or similarity-based sear
hes but at an average-time
ost whi
h maybe exponential in the pattern length or polynomial in the text length [148℄.Although some re
ent papers [93, 171, 126℄ have investigated the e�e
tiveness ofthose results onto genomi
 databases, their usefulness remains limited due tothe I/O bottlene
ks in
urred by the suÆx tree both in the
onstru
tion phaseand for what
on
erns their spa
e o

upan
y (see Se
tion 3.1). Perhaps theadaptation of these
omplex sear
hing algorithms to the String B-tree mightturn into appealing these approa
hes also from a pra
ti
al perspe
tive.As a �nal remark, we mention that the te
hniques for designing �lteringindexes are not limited to genomi
 or textual databases, but they may be used toextend the sear
h fun
tionalities of relational and obje
t-oriented databases, e.g.provide a support to approximate string joins [85℄. This shows a new interestingdire
tion of resear
h for pattern-mat
hing tools.

42 In Se
tion 2.1 we addressed the problem of
a
hing inverted indexes for im-proving their query time under biased operations. This issue is
hallenging overall the indexing s
hemes and it be
omes parti
ularly diÆ
ult in the
ase of full-text indexes be
ause of their
ompli
ated stru
ture. For example, in the
aseof a suÆx tree its unbalan
ed tree stru
ture asks for an allo
ation of its nodesto disk pages, usually
alled pa
king, that optimizes the
a
he performan
e forsome pattern of a

esses to the tree nodes. This problem has been investigatedin [83℄ where an algorithm is presented that �nds an optimal pa
king with re-spe
t to both the total number of di�erent pages visited in the sear
h and thenumber of page faults in
urred. It is also shown that �nding an optimal pa
kingwhi
h minimizes also the spa
e o

upan
y is, unfortunately, NP-
omplete and aneÆ
ient approximation algorithm is presented. These results deal with a stati
tree, so that it would be interesting to explore the general situation in whi
h thedistribution of the queries is not known in advan
e,
hanges over the time, andnew strings are inserted or deleted from the indexed set. A preliminary insight onthis
hallenging question has been a
hieved in [48℄. There a novel self-adjustingfull-text index for external memory has been proposed,
alled SASL, based ona variant of the Skip List data stru
ture [161℄. Usually a skip list is turnedinto a self-adjusting data stru
ture by promoting the a

essed items up its levelsand demoting
ertain other items down its levels [62, 141, 130℄. However all of theknown approa
hes fail to work e�e
tively in an external-memory setting be
ausethey la
k lo
ality of referen
e and thus eli
it a lot of random I/Os. A te
hni
alnovelty of SASL is a simple randomized demotion strategy that, together witha doubly-exponential grouping of the skip list levels, guides the demotions andguarantees lo
ality of referen
e in all the updating operations; this way, frequentitems get to remain at the highest levels of the skip list with high probability, ande�e
tive I/O-bounds are a
hieved on expe
tation both for the sear
h and updateoperations. SASL furthermore ensures balan
edness without expli
it weight onthe data stru
ture; its update algorithms are simple and guarantee a good useof disk spa
e; in addition, SASL is with high probability no worse than StringB-trees on the sear
h operations but
an be signi�
antly better if the sequen
eof queries is highly skewed or
hanges over the time (as most transa
tions doin pra
ti
e). Using SASL over a sequen
e of m string sear
hes Si1 ; Si2 ; : : : ; Simtakes O(Pmj=1 � jSij jB �+Pni=1(ni logB mni)) expe
ted I/Os, where ni is the num-ber of times the string Si is queried. The �rst term is a lower bound for s
anningthe query strings; the se
ond term is the entropy of the query sequen
e and isa standard information-theoreti
 lower bound. This is a
tually an extension ofthe Stati
 Optimality Theorem to external-memory string a

ess [180℄.In the last few years a number of models and te
hniques have been devel-oped in order to make it easier to reason about multi-level hierar
hies [186℄.Re
ently in [80℄ it has been introdu
ed the elegant
a
he-oblivious model, thatassumes a two-level view of the
omputer memory but allows to prove resultsfor an unknown multilevel memory hierar
hy. Ca
he oblivious algorithms aredesigned to a
hieve good memory performan
e on all levels of the memory hi-erar
hy, even though they avoid any memory-spe
i�
 parameterization. Several

43basi
 problems| e.g. matrix multipli
ation, FFT, sorting [80, 36℄| have beensolved optimally, as well irregular and dynami
 problems have been re
entlyaddressed and solved via eÆ
ient
a
he-oblivious data stru
tures [29, 37, 30℄. Inthis resear
h
ow turns out
hallenging the design of a
a
he oblivious trie be-
ause we feel that it would probably shed new light on the indexing problem: itis not
lear how to guarantee
a
he obliviousness in a setting where items arearbitrarily long and the size of the disk page is unknown.4 Spa
e-time tradeo� in index designA leitmotiv of the previous se
tions has been the following: Inverted indexes o
-
upy less spa
e than full-text indexes but are limited to eÆ
iently support poorersear
h operations. This is a frequent statement in text indexing papers and talks,and it has driven many authors to
on
lude that the in
reased query power offull-text indexes has to be paid by additional storage spa
e. Although this ob-servation is mu
h frequent and apparently established, it is
hallenging to askourselves if it is provable that su
h a tradeo� does exist when designing an index.In this
ontext
ompression appears as an attra
tive tool be
ause it allows notonly to squeeze the spa
e o

upan
y but also to improve the
omputing speed.Indeed \spa
e optimization is
losely related to time optimization in a disk mem-ory" [109℄ be
ause it allows a better use of the fast and small memory levels
loseto CPU (i.e. L1 or L2
a
hes), redu
es the disk a

esses, virtually in
reases thedisk bandwidth, and
omes at a negligible
ost be
ause of the signi�
ant speedof
urrent CPUs. It is therefore not surprising that IBM has re
ently installedon the eServers x330 a novel memory
hip (based on the Memory eXpansionTe
hnology [94℄) that stores data in a
ompressed form thus ensuring a perfor-man
e similar to the one a
hieved by a server with double real memory but, of
ourse, at a mu
h lower
ost. All these
onsiderations have driven developers tostate that it is more e
onomi
al to store data in
ompressed form than un
om-pressed, so that a renewed interest in
ompression te
hniques raised within thealgorithmi
 and IR
ommunities.We have already dis
ussed in Se
tion 2 the use of
ompression in word-basedindex design, now we address the impa
t of
ompression onto full-text indexdesign.Compression may of
ourse operate at the text level or at the index level, orboth. The simplest approa
h
onsists of
ompressing the text via a lexi
ographi
-preserving
ode [92℄ and then build a suÆx array upon it [138℄. The improvementin spa
e o

upan
y is however negligible sin
e the index is mu
h larger than thetext. A most promising and sophisti
ated dire
tion was initiated in [143, 144℄with the aim of
ompressing the full-text index itself. These authors showed howto build a suÆx-tree based index on a text T [1; n℄ within n log2 n + O(n) bitsof storage and support the sear
h for a pattern P [1; p℄ in O(p+ o

) worst-
asetime. This result stimulated an a
tive resear
h on su

in
t en
odings of full-textindexes that ended up with a breakthrough [87℄ in whi
h it was shown thata su

in
t suÆx array
an be built within �(n) bits and
an support pattern

44sear
hes in O(plog2 n + o

 log� n) time, where � is an arbitrarily small positive
onstant. This result has shown that the apparently \random" permutation ofthe text suÆxes
an be su

in
tly
oded in optimal spa
e in the worst
ase [60℄.In [168, 169℄ extensions and variations of this result| e.g. an arbitrary largealphabet| have been
onsidered.The above index, however, uses spa
e linear in the size of the indexed
olle
-tion and therefore it results not yet
ompetitive against the word-based indexes,whose spa
e o

upan
y is usually o(n) (see Se
tion 2). Real text
olle
tions are
ompressible and thus a full-text index should desiderably exploit the repeti-tiveness present into them to squeeze its spa
e o

upan
y via a mu
h su

in
t
oding of the suÆx pointers.The �rst step toward the design of a truly
ompressed full-text index ensur-ing e�e
tive sear
h performan
e in the worst
ase has been re
ently pursuedin [75℄. The novelty of this approa
h resides in the
areful
ombination of theBurrows-Wheeler
ompression algorithm [42℄ with the suÆx array data stru
-ture thus designing a sort of
ompressed suÆx array. It is a
tually a self-indexingtool be
ause it en
apsulates a
ompressed version of the original text inside the
ompressed suÆx array. Overall we
an say that the index is opportunisti
 inthat, although no assumption on a parti
ular text distribution is made, it takesadvantage of the
ompressibility of the indexed text by de
reasing the spa
eo

upan
y at no signi�
ant slowdown in the query performan
e. More pre
isely,the index in [75℄ o

upies O(n Hk(T))+o(n) bits of storage, where Hk(T) is thek-th order empiri
al entropy of the indexed text T , and supports the sear
h foran arbitrary pattern P [1; p℄ as a substring of T in O(p+ o

 log� n) time.In what follows we sket
h the basi
 ideas underlying the design of this
om-pressed index, hereafter
alled FM-index [75℄, and we brie
y dis
uss some exper-imental results [77, 76℄ on various text
olle
tions. These experiments show thatthe FM-index is
ompa
t (its spa
e o

upan
y is
lose to the one a
hieved bythe best known
ompressors), it is fast in
ounting the number of pattern o

ur-ren
es, and the
ost of their retrieval is reasonable when they are few (i.e. in
aseof a sele
tive query). As a further
ontribution we brie
y mention an interestingadaptation of the FM-index to word-based indexing,
alled WFM-index. Thisresult highlights further on the interplay between
ompression and index design,as well the re
ent plot between word-based and full-text indexes: everything ofthese worlds must be deeply understood in order to perform valuable resear
hin this topi
.4.1 The Burrows-Wheeler transformLet T [1; n℄ denote a text over a �nite alphabet �. In [42℄ Burrows and Wheelerintrodu
ed a new
ompression algorithm based on a reversible transformation,now
alled the Burrows-Wheeler Transform (BWT from now on). The BWTpermutes the input text T into a new string that is easier to
ompress. The BWT
onsists of three basi
 steps (see Figure 10): (1) append to the end of T a spe
ial
hara
ter # smaller than any other text
hara
ter; (2) form a logi
al matrix Mwhose rows are the
y
li
 shifts of the string T# sorted in lexi
ographi
 order;

45mississippi#ississippi#mssissippi#misissippi#misissippi#missssippi#missisippi#missisippi#mississppi#mississipi#mississipi#mississipp#mississippi
=)

F L# mississipp ii #mississip pi ppi#missis si ssippi#mis si ssissippi# mm ississippi #p i#mississi pp pi#mississ is ippi#missi ss issippi#mi ss sippi#miss is sissippi#m iFig. 10. Example of Burrows-Wheeler transform for the string T = mississippi. Thematrix on the right has the rows sorted in lexi
ographi
 order. The output of the BWTis
olumn L; in this example the string ipssm#pissii.(3)
onstru
t the transformed text L by taking the last
olumn ofM. Noti
e thatevery
olumn of M, hen
e also the transformed text L, is a permutation of T#.In parti
ular the �rst
olumn of M,
all it F , is obtained by lexi
ographi
allysorting the
hara
ters of T# (or, equally, the
hara
ters of L). The transformedstring L usually
ontains long runs of identi
al symbols and therefore
an beeÆ
iently
ompressed using move-to-front
oding, in
ombination with statisti
al
oders (see for example [42, 68℄).4.2 An opportunisti
 indexThere is a bije
tive
orresponden
e between the rows of M and the suÆxes of T(see Figure 10); and thus there is a strong relation between the string L and thesuÆx array built on T [121℄. This is a
ru
ial observation for the design of theFM-index. We re
all below the basi
 ideas underlying the sear
h operation inthe FM-index, referring for the other te
hni
al details to the seminal paper [75℄.In order to simplify the presentation, we distinguish between two sear
h tools:the
ounting of the number of pattern o

urren
es in T and the retrieval oftheir positions. The
ounting is implemented by exploiting two ni
e stru
turalproperties of the matrix M: (i) all suÆxes of T pre�xed by a pattern P [1; p℄o

upy a
ontiguous set of rows of M (see also Se
tion 3.1); (ii) this set ofrows has starting position first and ending position last, where first is thelexi
ographi
 position of the string P among the ordered rows of M. The value(last � first + 1) a

ounts for the total number of pattern o

urren
es. Forexample, in Figure 10 for the pattern P = si we have first = 9 and last = 10for a total of two o

urren
es.The retrieval of the rows first and last is implemented by the pro
edureget rows whi
h takes O(p) time in the worst
ase, working in p
onstant-time

46phases numbered from p to 1 (see the pseudo
ode in Fig. 11). Ea
h phase pre-serves the following invariant: At the i-th phase, the parameter \�rst" points tothe �rst row of M pre�xed by P [i; p℄ and the parameter \last" points to the lastrow of M pre�xed by P [i; p℄. After the �nal phase, first and last will delimitthe rows of M
ontaining all the text suÆxes pre�xed by P .Algorithm get rows(P [1; p℄)1. i = p,
 = P [p℄, first = C[
℄ + 1, last = C[
+ 1℄;2. while ((first � last) and (i � 2)) do3.
 = P [i� 1℄;4. first = C[
℄ +O

(
; first� 1) + 1;5. last = C[
℄ +O

(
; last);6. i = i� 1;7. if (last < first) then return \no rows pre�xed by P [1; p℄" else return(first; last).Fig. 11. Algorithm get rows �nds the set of rows pre�xed by pattern P [1; p℄. Pro
edureO

(
; k)
ounts the number of o

urren
es of the
hara
ter
 in the string pre�x L[1; k℄.In [75℄ it is shown how to implement O

(
; k) in
onstant time.The lo
ation of a pattern o

urren
e is found by means of algorithm lo
ate.Given an index i, lo
ate(i) returns the starting position in T of the suÆx
or-responding to the ith row in M. For example in Figure 10 we have pos(3) = 8sin
e the third row ippi#mississ
orresponds to the suÆx T [8; 11℄ = ippi.The basi
 idea for implementing lo
ate(i) is the following. We logi
ally mark asuitable subset of the rows of M, and for ea
h marked row j we store the start-ing position pos(j) of its
orresponding text suÆx. As a result, if lo
ate(i) �ndsthe ith row marked then it immediately returns its position pos(i); otherwise,lo
ate uses the so
alled LF-
omputation to move to the row
orresponding tothe suÆx T [pos(i) � 1; n℄. A
tually, the index of this row
an be
omputed asLF [i℄ = C[L[i℄℄ + O

(L[i℄; i), where C[
℄ is the number of o

urren
es in Tof the
hara
ters smaller than
. The LF-
omputation is iterated v times un-til we rea
h a marked row iv for whi
h pos(iv) is available; we
an then setpos(i) = pos(iv)+v. Noti
e that the LF-
omputation is
onsidering text suÆxesof in
reasing length, until the
orresponding marked row is en
ountered.Given the appealing asymptoti
al performan
e and stru
tural properties ofthe FM-index, the authors have investigated in [77, 76℄ its pra
ti
al behavior byperforming an extensive set of experiments on various text
olle
tions: 1992 CIAworld fa
t book (shortly world) of about 2Mb, King James Bible (shortly bible)of about 4Mb, DNA sequen
e (shortly e.
oli) of about 4Mb, SGML-tagged textsof AP-news (shortly, ap90) of about 65Mb, the java do
umentation (shortly,jdk13) of about 70Mb, and the Canterbury Corpus (shortly,
antrbry) of about

473Mb. On these �les they a
tually experimented two di�erent implementationsof the FM-index:{ A tiny index designed to a
hieve high
ompression but supporting only the
ounting of the pattern o

urren
es.{ A fat index designed to support both the
ounting and the retrieval of thepattern o

urren
es.Both the tiny and the fat indexes
onsist of a
ompressed version of the inputtext plus some additional information used for pattern sear
hing. In Table 1we report a
omparison among these
ompressed full-text indexes, gzip (thestandard Unix
ompressor) and bzip2 (the best known
ompressor based on theBWT [176℄). These �gures have been derived from [76, 77℄.File bible e.
oli world
antbry jdk13 ap90tiny index Compr. ratio 21.09 26.92 19.62 24.02 5.87 22.14Constru
tion time 2.24 2.19 2.26 2.21 3.43 3.04De
ompression time 0.45 0.49 0.44 0.38 0.42 0.57Ave.
ount time 4.3 12.3 4.7 8.1 3.2 5.6fat index Compr. ratio 32.28 33.61 33.23 46.10 17.02 35.49Constru
tion time 2.28 2.17 2.33 2.39 3.50 3.10De
ompression time 0.46 0.51 0.46 0.41 0.43 0.59Ave.
ount time 1.0 2.3 1.5 2.7 1.3 1.6Ave. lo
ate time 7.5 7.6 9.4 7.1 21.7 5.3bzip2 Compression ratio 20.90 26.97 19.79 20.24 7.03 27.36Compression time 1.16 1.28 1.17 0.89 1.52 1.16De
ompression time 0.39 0.48 0.39 0.31 0.28 0.43gzip Compr. ratio 29.07 28.00 29.17 26.10 10.79 37.35Compression time 1.74 10.48 0.87 5.04 0.39 0.97De
ompression time 0.07 0.07 0.06 0.06 0.04 0.07Table 1. Compression ratio (per
entage) and
ompression/de
ompression speed (mi-
rose
onds per input byte) of tiny and fat indexes
ompared with those of gzip (withoption -9 for maximum
ompression) and bzip2. For these
ompressed indexes we alsoreports the average time (in millise
onds) for the
ount and lo
ate operations. Theexperiments were run on a ma
hine equipped with Gnu/Linux Debian 2.2, 600MhzPentium III and 1 Gb RAM.The experiments show that the tiny index takes signi�
antly less spa
e thanthe
orresponding gzip-
ompressed �le, and for all �les ex
ept bible and
antrbryit takes less spa
e than bzip2. This may appear surprising sin
e bzip2 is alsobased on the BWT [176℄. The explanation is simply that the FM-index
omputesthe BWT for the entire �le whereas bzip2 splits the input in 900Kb blo
ks. This
ompression improvement is payed in terms of speed; the
onstru
tion of the tinyindex takes more time than bzip2. The experiments also show that the fat indextakes slightly more spa
e than the
orresponding gzip-
ompressed �le. For what

48
on
erns the query time we have that both the tiny and the fat index
omputethe number of o

urren
es of a pattern in a few millise
onds, independently ofthe size of the sear
hed �le. Using the fat index one
an also
ompute the positionof ea
h o

urren
e in a few millise
onds per o

urren
e.These experiments show that the FM-index is
ompa
t (its spa
e o

upan
yis
lose to the one a
hieved by the best known
ompressors), it is fast in
ountingthe number of pattern o

urren
es, and the
ost of their retrieval is reasonablewhen they are few (i.e. in
ase of a sele
tive query). In addition, the FM-indexallows to trade spa
e o

upan
y for sear
h time by
hoosing the amount of aux-iliary information stored into it. As a result the FM-index
ombines
ompressionand full-text indexing: like gzip and bzip2 it en
apsulates a
ompressed versionof the original �le; like suÆx trees and arrays it allows to sear
h for arbitrarypatterns by looking only at a small portion of the
ompressed �le.4.3 A word-based opportunisti
 indexAs far as user queries are formulated on arbitrary substrings, the FM-index is ane�e
tive and
ompa
t sear
h tool. In the information retrieval setting, thought,user queries are
ommonly word-based sin
e they are formulated on entire wordsor on their parts, like pre�xes or suÆxes. In these
ases, the FM-index su�ersfrom the same drawba
ks of
lassi
al full-text indexes: at any word-based queryformulated on a pattern P , it needs a post-pro
essing phase whi
h aims at �lteringout the o

urren
es of P whi
h are not word o

urren
es be
ause they lie entirelyinto a text word. This mainly
onsists of
he
king whether an o

urren
e ofP , found via the get rows operation, is pre
eded and followed by a non-word
hara
ter. In the presen
e of frequent query-patterns su
h a �ltering pro
essmay be very time
onsuming, thus slowing down the overall query performan
e.This e�e
t is more dramati
 when the goal is to
ount the o

urren
es of a word,or when we need to just
he
k whether a word does o

ur or not into an indexedtext.Starting for these
onsiderations the FM-index has been enri
hed with someadditional information
on
erning with the linguisti
 stru
ture of the indexedtext. The new data stru
ture,
alledWFM-index, is a
tually obtained by buildingthe FM-index onto a \digested" version of the input text. This digested text,shortly DT , is a spe
ial
ompressed version of the original text T that allows tomap word-based queries on T onto substring queries on DT .More pre
isely, the digested text DT is obtained by
ompressing the textT with the byte-aligned and tagged Hu�word algorithm des
ribed in Se
tion 2(see [153℄). This way DT is a byte sequen
e whi
h possesses a
ru
ial prop-erty: Given a word w and its
orresponding tagged
odeword
w, we have thatw o

urs in T i�
w o

urs in DT . The tagged
odewords are in some senseself-syn
hronizing at the byte level be
ause of their most signi�
ant bit set to 1.In fa
t it is not possible that a byte-aligned
odeword overlaps two or more other
odewords, sin
e it should have at least one internal byte with its most signi�-
ant bit set to 1. Similarly, it is not possible that a
odeword is byte-aligned andstarts inside another
odeword, be
ause the latter should again have at least one

49internal byte with its most signi�
ant bit set to 1. Su
h a bije
tion allows us to
onvert every word-based query formulated on a pattern w and the text T , intoa byte-aligned substring query formulated on the tagged
odeword
w, relativeto w, and the digested text DT .Of
ourse more
ompli
ated word queries on T , like pre�x-word or suÆx-word queries,
an be translated into multiple substring queries on DT as follows.Sear
hing for the o

urren
es of a pattern P as a pre�x of a word in T
onsists ofthree steps: (1) sear
h in the Hu�word di
tionary D for all the words pre�xed byP , say w1; w2; : : : ; wk; (2)
ompute the tagged
odewords
w1;
w2; : : : ;
wk forthese words, and then (3) sear
h for the o

urren
es of the
wi into the digestedtext DT . Other word-based queries
an be similarly implemented.It is natural to use an FM-index built over DT to support the
odewordsear
hes over the digested text. Here the FM-index takes as
hara
ters of theindexed text DT its
onstituting bytes. This approa
h has a twofold advantage:it redu
es the spa
e o

upied by the (digested) byte sequen
e DT and supportsover DT e�e
tive sear
hes for byte-aligned substrings (i.e.
odewords).TheWFM-index therefore
onsists of two parts: a full-text index FM-index(D)built over the Hu�word di
tionary D, and a full-text index FM-index(DT) builtover the digested text DT . The former index is used to sear
h for the queriedword (or for its variants) into the di
tionary D; from the retrieved words wederive the
orresponding (set of)
odewords whi
h are then sear
hed in DTvia FM-index(DT). Hen
e a single word-based query on T ,
an be translatedby WFM-index into a set of exa
t substring queries to be performed by FM-index(DT).The advantage of the WFM-index over the standard FM-index should beapparent. Queries are word-oriented so that the time
onsuming post-pro
essingphase has been avoided;
ounting or existential queries are dire
tly exe
utedon the (small) di
tionary D without even a

essing the
ompressed �le; theoverall spa
e o

upan
y is usually smaller than the one required by the FM-index be
ause D is small and DT has a lot of stru
ture that
an be exploited bythe Burrows-Wheeler
ompressor present in WFM-index. This approa
h needsfurther experimental investigation and engineering, although some preliminaryexperiments have shown that WFM-index is very promising.4.4 Some open problems and future resear
h dire
tionsIn this se
tion we have dis
ussed the interplay between data
ompression andindexing. The FM-index is a promising data stru
ture whi
h
ombines e�e
tivespa
e
ompression and eÆ
ient full-text queries. Re
ently, the authors of [75℄have shown that another
ompressed index does exist that, based on the BWTand the Lempel-Ziv parsing [192℄, answers arbitrary pattern queries in O(p+o

)time and o

upies O(nHk(T) log� n) + o(n) bits of storage. Independently, [150℄has presented a simpli�ed
ompressed index that does not a
hieve these goodasymptoti
 bounds but it
ould be suitable for pra
ti
al implementation. Themain open problem left in this line of resear
h is the design of a data stru
turewhi
h a
hieves the best of the previous bounds: O(p + o

) query time and

50O(nHk(T)) + o(n) bits of storage o

upan
y. However, in our opinion, the most
hallenging question is if, and how, lo
ality of referen
e
an be exploited in thesedata stru
tures to a
hieve eÆ
ient I/O-bounds. We aim at obtaining O(o

=B)I/Os for the lo
ation of the pattern o

urren
es, where B is the disk-page size.In fa
t, the additive term O(p) I/Os is negligible in pra
ti
e be
ause any user-query is
ommonly
omposed of few
hara
ters. Conversely o

 might be largeand thus for
e the lo
ate pro
edure to exe
ute many random I/Os in the
aseof a large indexed text
olle
tion. An I/O-
ons
ious
ompressed index might
ompete su

essfully against the String B-tree data stru
ture (see Se
tion 3.3).The Burrows-Wheeler transform plays a
entral role in the design of theFM-index. Its
omputation relies on the
onstru
tion of the suÆx array of the
ompressed string; this is the a
tual algorithmi
 bottlene
k for a fast imple-mentation of this
ompression algorithm. Although a plethora of papers havebeen devoted to engineering the suÆx sorting step [42, 174, 68, 176, 165, 156, 31℄,there is still room for improvement [124℄ and investigation. Any advan
ement inthis dire
tion would immediately impa
t on the
ompression time performan
eof bzip2. As far as the
ompression ratio of bzip2 is
on
erned, we point outthat the re
ent improvements presented in the literature are either limited tospe
ial data
olle
tions or they are not fully validated [43, 44, 166, 167, 68, 26,25℄. Hen
e the open-sour
e software bzip2 yet remains the
hoi
e [176℄. Furtherstudy, simpli�
ation or variation on the Burrows-Wheeler transform are neededto improve its
ompression ratio and/or possibly impa
t on the design of new
ompressed indexes. The approa
h followed in WFM-index is an example of thisline of resear
h.Although we have explained in the previous se
tions how to perform sim-ple exa
t sear
hes, full-text indexes
an do mu
h more. In Se
tion 3.1 we havementioned that suÆx trees
an support
omplex sear
hes like approximate orsimilarity-based mat
hes, as well regular expression sear
hes. It is also well-known that suÆx arrays
an simulate any algorithm designed on suÆx trees atan O(logn) extra-time penalty. This slowdown is payed for by the small spa
eo

upied by the suÆx array. It is
lear at this point that it should be easy toadapt these algorithms to work on the FM-index or on the WFM-index. Theresulting sear
h pro
edures might bene�t more from the
ompa
tness of theseindexes, and therefore possibly turn into in-memory some (e.g. genomi
)
om-putations whi
h now require the use of disk, with
onsequent poor performan
e.This line of resear
h has been pioneered in the experimental setting by [170℄whi
h showed that
ompressed suÆx arrays
an be used as �ltering data stru
-ture to speed up similarity-based sear
hes on large genomi
 databases. From thetheoreti
al point of view, [56℄ re
ently proposed another interesting use of
om-pression for speeding up similarity-based
omputations in the worst
ase. Therethe dynami
 programming matrix has been divided into variable sized blo
ks,as indu
ed by the Lempel-Ziv parsing of both strings [192℄, and the inherentperiodi
 nature of the strings has been exploited to a
hieve O(n2= logn) timeand spa
e
omplexity. It would be interesting to
ombine these ideas with theones developed for the FM-index in order to redu
e the spa
e requirements of

51these algorithms without impairing their sub-quadrati
 time
omplexity (whi
his
onje
tured in [56℄ to be
lose to optimal).The FM-index
an also be used as a building blo
k of sophisti
ated Infor-mation Retrieval tools. In Se
tion 2 we have dis
ussed the blo
k-addressings
heme as a promising approa
h to index moderate sized textual
olle
tions,and presented some approa
hes to
ombine
ompression and blo
k-addressingfor a
hieving better performan
e [122, 153℄. In these approa
hes opportunisti
string-mat
hing algorithms have been used to perform sear
hes on the
om-pressed blo
ks thus a
hieving an improvement of about 30-50% in the �nal per-forman
e. The FM-index andWFM-index naturally �t in this framework be
ausethey
an be used to index ea
h text blo
k individually [75℄; this way, at querytime, the
ompressed index built over the
andidate blo
ks
ould be employedto fasten the dete
tion of the pattern o

urren
es. It must be noted here thatthis approa
h fully exploits one of the positive properties of the blo
k-addressings
heme: The vo
abulary allows to turn
omplex sear
hes on the indexed text intomultiple exa
t-pattern sear
hes on the
andidate text blo
ks. These are properlythe types of sear
hes eÆ
iently supported by FM-index and WFM-index. Atheoreti
al investigation using a model generally a

epted in Information Re-trieval [21℄ has showed in [75℄ that this approa
h a
hieves both sublinear spa
eoverhead and sublinear query time independent of the blo
k size. Conversely, in-verted indi
es a
hieve only the se
ond goal [188℄, and the
lassi
al Glimpse toola
hieves both goals but under some restri
tive
onditions on the blo
k size [21℄.Algorithmi
 engineering and further experiments on this novel IR system are yetmissing and worth to be pursued to validate these good theoreti
al results.5 Con
lusionsIn this survey we have fo
used our attention on algorithmi
 and data stru
turalissues arising in two aspe
ts of information retrieval systems design: (1) rep-resenting textual
olle
tions in a form whi
h is suitable to eÆ
ient sear
hingand mining; (2) design algorithms to build these representations in reasonabletime and to perform e�e
tive sear
hes and pro
essing operations over them. Of
ourse this is not the whole story about this huge �eld as the Information Re-trieval is. We then
on
lude this paper by
iting other important aspe
ts thatwould deserve further
onsideration: (a) �le stru
tures and database mainte-nan
e; (b) ranking te
hniques and
lustering methods for s
oring and improv-ing query results; (
)
omputational linguisti
s; (d) user interfa
es and models;(e) distributed retrieval issues as well se
urity and a

ess
ontrol management.Every one of these aspe
ts has been the subje
t of thousands of papers and sur-veys ! We
ontent ourselves to
ite here just some good starting points from whi
ha user
an browse for further te
hni
al deepenings and bibliographi
 links [188,22, 123, 1℄.A
knowledgments This survey is the out
ome of hours of highlighting and,sometime hard and fatiguing, dis
ussions with many fellow resear
hers and

52friends. It en
apsulates some results whi
h have already seen the light in variouspapers of mine; some other s
ienti�
 results, detailed in the previous pages, arehowever yet unpublished and probably they'll remain in this state! So I'd like topoint out the persons who parti
ipated to the dis
overy of those ideas. The engi-neered version of String B-trees (Se
tion 3.4) has been devised in
ollaborationwith Roberto Grossi; the randomized algorithm for string sorting in externalmemory (Se
tion 3.6) is a joint result with Mikkel Thorup; �nally, the WFM-index (Se
tion 4.3) is a re
ent advan
ement a
hieved together with GiovanniManzini. I �nally thanks Valentina Ciriani and Giovanni Manzini for
arefullyreading and
ommenting the preliminary versions of this survey.Referen
es1. Home Page of ACM's Spe
ial Interest Group on information retrieval,http://info.sigir.a
m.org/sigir/.2. The XML home page at the WWW Consortium, http://www.w3.org/XML/.3. Abiteboul, S., Quass, D., M
Hugh, J., Widom, J., and Wiener, J. L. TheLorel query language for semistru
tured data. International Journal on DigitalLibraries 1, 1 (1997), 68{88.4. Aboulnaga, A., Alameldeen, A. R., and Naughton, J. F. Estimating thesele
tivity of XML path expressions for Internet s
ale appli
ations. In Pro
. ofthe International Conferen
e on Very Large Data Bases (2001), pp. 591{600.5. A
harya, A., Zhu, H., and Shen, K. Adaptive algorithms for
a
he-eÆ
ienttries. In Pro
. of the Workshop on Algorithm Engineering and Experimentation(1999), Le
ture Notes in Computer S
ien
e vol. 1619, Springer Verlag, pp. 296{311.6. Aguilera, V., Cluet, S., Veltri, P., Vodislav, D., and Wat-tez, F. Querying XML do
uments in Xyleme. In Pro
. of theACM-SIGIR Workshop on XML and Information Retrieval (2000),http://www.haifa.il.ibm.
om/sigir00-xml/.7. Ahn, V., and Moffat, A. Compressed inverted �les with redu
ed de
ondingoverhead. In Pro
. of the ACM-SIGIR Conferen
e on Resear
h and Developmentin Information Retrieval (1998), pp. 290{297.8. Ailamaki, A., DeWitt, D., Hill, M., and Wood, D. DBMSS on a modernpro
essor: where does time go? In Pro
. of the International Conferen
e on VeryLarge Data Bases (1999), pp. 266{277.9. Amir, A., Benson, G., and Fara
h, M. Let sleeping �les lie: Pattern mat
hingin Z-
ompressed �les. Journal of Computer and System S
ien
es 52, 2 (1996),299{307.10. Amir, A., Fara
h, M., Idury, R., La Poutr�e, J., and S
h�affer, A. Im-proved dynami
 di
tionary mat
hing. Information and Computation 119, 2(1995), 258{282.11. Andersson, A., Larsson, N. J., and Swanson, K. SuÆx trees on word.In Pro
. of the Symposium on Combinatorial Pattern Mat
hing (1996), Le
tureNotes in Computer S
ien
e vol. 1075, Springer Verlag, pp. 102{115.12. Andersson, A., and Nilsson, S. Improved behaviour of tries by adaptivebran
hing. Information Pro
essing Letters 46, 6 (1993), 295{300.13. Andersson, A., and Nilsson, S. EÆ
ient implementation of suÆx trees.Software{Pra
ti
e and Experien
e 25, 3 (1995), 129{141.

5314. Aoe, J.-I., Morimoto, K., Shishibori, M., and Park, K.-H. A trie
ompa
tionalgorithm for a large set of keys. IEEE Transa
tions on Knowledge and DataEngineering 8, 3 (1996), 476{491.15. Apostoli
o, A. The myriad virtues of suÆx trees. In Combinatorial Algorithmson Words (1985), NATO Advan
ed S
ien
e Institutes vol. 12, Series F, SpringerVerlag, pp. 85{96.16. Ara�ujo, M., Navarro, G., and Ziviani, N. Large text sear
hing allowingerrors. In Pro
. of the Workshop on String Pro
essing (1997), Carleton UniversityPress, pp. 2{20.17. Arge, L., Ferragina, P., Grossi, R., and Vitter, J. On sorting strings inexternal memory (extended abstra
t). In Pro
. of the ACM Symposium on Theoryof Computing (1997), pp. 540{548.18. Azagury, A., Fa
tor, M., and Mandler, B. XMLFS: An XML-aware �le sys-tem. In Pro
. of the ACM-SIGIR Workshop on XML and Information Retrieval(2000), http://www.haifa.il.ibm.
om/sigir00-xml/.19. Baeza-Yates, R., Moffat, A., and Navarro, G. Sear
hing large text
olle
-tions. In Handbook of Massive Data Sets, Kluwer A
ademi
, 2000.20. Baeza-Yates, R., and Navarro, G. Blo
k addressing indi
es for approxi-mate text retrieval. In Pro
. of the International Conferen
e on Informationand Knowledge Management (1997), pp. 1{8.21. Baeza-Yates, R., and Navarro, G. Blo
k addressing indi
es for approximatetext retrieval. Journal of the Ameri
an So
iety for Information S
ien
e 51, 1(2000), 69{82.22. Baeza-Yates, R., and Ribeiro-Neto, B. Modern Information Retrieval.Addison-Wesley, 1999.23. Baeza-Yates, R. A., Barbosa, E. F., and Ziviani, N. Hierar
hies of indi
esfor text sear
hing. Information Systems 21, 6 (1996), 497{514.24. Baeza-Yates, R. A., and Navarro, G. Integrating
ontents and stru
ture intext retrieval. SIGMOD Re
ord 25, 1 (1996), 67{79.25. Balkenhol, B., and Kurtz, S. Universal data
ompression based on theBurrows-Wheeler transformation: Theory and pra
ti
e. IEEE Transa
tions onComputers 49, 10 (2000), 1043{1053.26. Balkenhol, B., Kurtz, S., and Shtarkov, Y. M. Modi�
ation of the Burrowsand Wheeler data
ompression algorithm. In Pro
. of the Data CompressionConferen
e (1999), pp. 188{197.27. Barbosa, D., Barta, A., Mendelzon, A. O., Mihaila, G. A., Rizzolo, F.,and Rodriguez-Guianolli, P. TOX - the Toronto XML engine. In Pro
. of theWorkshop on Information Integration on the Web (2001), pp. 66{73.28. Bayer, R., and Unterauer, K. Pre�x B-Trees. ACM Transa
tions on DatabaseSystems 2, 1 (1977), 11{26.29. Bender, M. A., Demaine, E. D., and Fara
h-Colton, M. Ca
he-obliviousB-trees. In Pro
. of the IEEE Symposium on Foundations of Computer S
ien
e(2000), pp. 399{409.30. Bender, M. A., Duan, Z., Ia
ono, J., and Wu, J. A lo
ality-preserving
a
he-oblivious dynami
 di
tionary. In Pro
. of the ACM-SIAM Symposium on Dis
reteAlgorithms (2002), pp. 29{38.31. Bentley, J. L., and Sedgewi
k, R. Fast algorithms for sorting and sear
hingstrings. In Pro
eedings of the 8th ACM-SIAM Symposium on Dis
rete Algorithms(1997), pp. 360{369.32. Blandford, D., and Blello
h, G. Index
ompression through do
ument re-ordering. In Pro
. of the IEEE Data Compression Conferen
e (2002).

5433. Bloom, B. H. Spa
e/time trade-o� in hash
oding with allowable errors. Com-muni
ation of the ACM 13, 7 (1970), 422{426.34. Bookstein, A., Klein, S. T., and Raita, T. Markov models for
lusters in
on
ordan
e
ompression. In Pro
. of the IEEE Data Compression Conferen
e(1994), pp. 116{125.35. Bookstein, A., Klein, S. T., and Raita, T. Dete
ting
ontent-bearing wordsby serial
lustering. In Pro
. of the ACM-SIGIR Conferen
e on Resear
h andDevelopment in Information Retrieval. (1995), pp. 319{327.36. Brodal, G. S., and Fagerberg, R. Ca
he oblivious distribution sweeping. InPro
. of the International Colloquium on Automata, Languages and Programming(2002), Le
ture Notes in Computer S
ien
e vol. 2380, Springer Verlag, pp. 426{438.37. Brodal, G. S., Fagerberg, R., and Ja
ob, R. Ca
he oblivious sear
h trees viabinary trees of small height. In Pro
. of the ACM-SIAM Symposium on Dis
reteAlgorithms (2002), pp. 39{48.38. Brodnik, A., and Munro, I.Membership in
onstant time and almost-minimumspa
e. SIAM Journal on Computing 28, 5 (1999), 1627{1640.39. Brown, E., Callan, J., Croft, W., and Moss, J. Supporting full-text in-formation retrieval with a persistent obje
t store. In Pro
. of the InternationalConferen
e on Extending Database Te
hnology (1994), pp. 365{378.40. Burkhard, S., Crauser, A., Ferragina, H. P., Lenhof, P., Rivals, E., andVingron, M. QUASAR: Q-gram based database sear
hing using suÆx array.In Pro
. of the International Conferen
e on Computational Mole
ular Biology(1999), pp. 77{83.41. Burkhardt, S., and K�arkk�ainen, J. One-gapped q-gram �lters for Levenshteindistan
e. In Pro
. of the Symposium on Combinatorial Pattern Mat
hing (2002),Le
ture Notes in Computer S
ien
e vol. 2373, Springer Verlag, pp. 225{234.42. Burrows, M., and Wheeler, D. A blo
k sorting lossless data
ompressionalgorithm. Te
hni
al Report 124, Digital Equipment Corporation, 1994.43. Chapin, B. Swit
hing between two on-line list update algorithms for higher
ompression of Burrows-Wheeler transformed data. In Pro
. of the IEEE DataCompression Conferen
e (2000), pp. 183{192.44. Chapin, B., and Tate, S. R. Higher
ompression from the Burrows-Wheelertransform by modi�ed sorting. In Pro
. of the IEEE Data Compression Confer-en
e (1998), p. 532.45. Ch�avez, E., and Navarro, G. A metri
 index for approximate string mat
hing.In Pro
. of the Latin Ameri
an Symposium on Theoreti
al Informati
s (2002),Le
ture Notes in Computer S
ien
e vol. 2286, Springer Verlag, pp. 181{195.46. Chen, T., and Skiena, S. S. Trie-based data stru
tures for sequen
e assembly.In Pro
. of the Symposium on Combinatorial Pattern Mat
hing (1997), Le
tureNotes in Computer S
ien
e vol. 1264, Springer Verlag, pp. 206{223.47. Chen, Z., Jagadish, H. V., Korn, F., Koudas, N., Muthukrishnan, S., Ng,R. T., and Srivastava, D. Counting twig mat
hes in a tree. In Pro
. of theInternational Conferen
e on Data Engineering (2001), pp. 595{604.48. Ciriani, V., Ferragina, P., Lu

io, F., and Muthukrishnan, S. Stati
Optimality Theorem for external-memory string a

ess. In Pro
. of the IEEESymposium on Foundations of Computer S
ien
e (2002).49. Clark, D. R., and Munro, I. EÆ
ient suÆx trees on se
ondary storage. InPro
. of the ACM-SIAM Symposium on Dis
rete Algorithms (1996), pp. 383{391.

5550. Colussi, L., and Del Col, A. A time and spa
e eÆ
ient data stru
ture forstring sear
hing on large texts. Information Pro
essing Letters 58, 5 (1996), 217{222.51. Comer, D. Ubiquitous B-tree. ACM Computing Surveys 11, 2 (1979), 121{137.52. Cooper, B., Sample, N., Franklin, M. J., Hjaltason, G. R., and Shadmon,M. A fast index for semistru
tured data. The VLDB Journal (2001), 341{350.53. Cormode, G., Paterson, M., Sahinalp, S. C., and Vishkin, U. Communi-
ation
omplexity of do
ument ex
hange. In Pro
. of the ACM-SIAM symposiumon Dis
rete algorithms (2000), pp. 197{206.54. Corti, F., Ferragina, P., and Paoli, M. TReSy: A tool to indexSGML do
ument
olle
tions. Te
hni
al Report, 1999 (in italian), see alsohttp://www.
ribe
u.sns.it/ en index.html.55. Crauser, A., and Ferragina, P. A theoreti
al and experimental study on the
onstru
tion of suÆx arrays in external memory. Algorithmi
a 32, 1(2002), 1{35.56. Cro
hemore, M., Landau, G. M., and Ziv-Ukelson, M. A sub-quadrati
sequen
e alignment algorithm for unrestri
ted
ost matri
es. In Pro
. of theACM-SIAM Symposium on Dis
rete Algorithms (2002), pp. 679{688.57. Cro
hemore, M., Mignosi, F., Restivo, A., and Salemi, S. Text
om-pression using antidi
tionaries. In Pro
. of the International Colloquium on Au-tomata, Languages and Programming (1999), Le
ture Notes in Computer S
ien
evol. 1644, Springer Verlag, pp. 261{270.58. Darragh, J. J., Cleary, J. G., and Witten, I. H. Bonsai: a
ompa
t repre-sentation of trees. Software Pra
ti
e and Experien
e 23, 3 (1993), 277{291.59. DeJonge, W., Tanenbaum, A. S., and VanDeRiet, R. P. Two a

ess methodsusing
ompa
t binary trees. IEEE Transa
tions on Software Engineering 13, 7(1987), 799{810.60. Demaine, E. D., and Lopez-Ortiz, A. A linear lower bound on index sizefor text retrieval. In Pro
. of the ACM-SIAM symposium on Dis
rete algorithms(2001), pp. 289{294.61. Egnor, D., and Lord, R. Stru
tured information retrieval using XML. InPro
. of the ACM-SIGIR Workshop on XML and Information Retrieval (2000),http://www.haifa.il.ibm.
om/sigir00-xml/.62. Ergu, F., Sahinalp, S. C., Sharp, J., and Sinha, R. K. Biased di
tionarieswith fast insert/deletes. In Pro
. of the ACM Symposium on Theory of Computing(2001), pp. 483{491.63. Faloutsos, C. A

ess methods for text. ACM Computing Surveys 17, 1 (1985),49{74.64. Fara
h, M., Ferragina, P., and Muthukrishnan, S. Over
oming the mem-ory bottlene
k in suÆx tree
onstru
tion. In Pro
. of the IEEE Symposium onFoundations of Computer S
ien
e (1998), pp. 174{183.65. Fara
h, M., and Thorup, M. String mat
hing in Lempel-Ziv
ompressedstrings. Algorithmi
a 20, 4 (1998), 388{404.66. Fara
h-Colton, M., Ferragina, P., and Muthukrishnan, S. On the sorting-
omplexity of suÆx tree
onstru
tion. Journal of the ACM 47, 6 (2000), 987{1011.67. Feng, C. Pat-tree-based keyword extra
tion for
hinese information retrieval.ACM-SIGIR (1997), 50{58.68. Fenwi
k, P. The Burrows-Wheeler transform for blo
k sorting text
ompression:prin
iples and improvements. The Computer Journal 39, 9 (1996), 731{740.69. Ferguson, D. E. Bit-Tree: a data stru
ture for fast �le pro
essing. Communi-
ations of the ACM 35, 6 (1992), 114{120.

5670. Ferragina, P., and Grossi, R. Fast string sear
hing in se
ondary storage:Theoreti
al developments and experimental results. In Pro
. of the ACM-SIAMSymposium on Dis
rete Algorithms (1996), pp. 373{382.71. Ferragina, P., and Grossi, R. The String B-Tree: A new data stru
ture forstring sear
h in external memory and its appli
ations. Journal of the ACM 46, 2(1999), 236{280.72. Ferragina, P., Koudas, N., Muthukrishnan, S., and Srivastava, D. Two-dimensional substring indexing. In Pro
. of the ACM Symposium on Prin
iplesof Database Systems (2001), pp. 282{288.73. Ferragina, P., and Lu

io, F. Dynami
 di
tionary mat
hing in external mem-ory. Information and Computation 146, 12 (1998).74. Ferragina, P., and Lu

io, F. String sear
h in
oarse-grained parallel
om-puters. Algorithmi
a 24, 3{4 (1999), 177{194.75. Ferragina, P., and Manzini, G. Opportunisti
 data stru
tures with appli-
ations. In Pro
. of the IEEE Symposium on Foundations of Computer S
ien
e(2000), pp. 390{398.76. Ferragina, P., and Manzini, G. An experimental study of a
ompressed in-dex. Information S
ien
es: spe
ial issue on \Di
tionary Based Compression" 135(2001), 13{28.77. Ferragina, P., and Manzini, G. An experimental study of an opportunisti
index. In Pro
. of the ACM-SIAM Symposium on Dis
rete Algorithms (2001),pp. 269{278.78. Ferragina, P., and Mastroianni, A. The XCDE library: indexing and
om-pressing XML do
uments. http://sbrinz.di.unipi.it/�x
de, April 2002.79. Frakes, W., and Baeza-Yates, R. Information Retrieval: Data Stru
tures andAlgorithms. Prenti
e Hall, 1992.80. Frigo, M., Leiserson, C. E., Prokop, H., and Rama
handran, S. Ca
he-oblivious algorithms. In Pro
. of the IEEE Symposium on Foundations of Com-puter S
ien
e (1999), pp. 285{298.81. Ga�sienie
, L., Karpinski, M., Plandowski, W., and Rytter, W. EÆ
ientalgorithms for Lempel-Ziv en
oding. In Pro
. of the S
andinavian Workshop onAlgorithm Theory (1996), Le
ture Notes in Computer S
ien
e vol. 1097, SpringerVerlag, pp. 392{403.82. Ga�sienie
, L., Karpinski, M., Plandowski, W., and Rytter, W. Ran-domized eÆ
ient algorithms for
ompressed strings: The �nger-print approa
h.In Pro
. of the Symposium on Combinatorial Pattern Mat
hing (1996), Le
tureNotes in Computer S
ien
e vol. 1075, Springer Verlag, pp. 39{49.83. Gil, J., and Itai, A. How to pa
k trees. Journal of Algorithms 32, 2 (1999),108{132.84. Gonnet, G. H., Baeza-Yates, R. A., and Snider, T. Information Retrieval:Data Stru
tures and Algorithms.
h. 5, pp. 66{82, Prenti
e-Hall, 1992.85. Gravano, L., Ipeirotis, P. G., Jagadish, H. V., Koudas, N., Muthukrish-nan, S., and Srivastava, D. Approximate string joins in a database (almost) forfree. In Pro
. of the International Conferen
e on Very Large Data Bases (2001),pp. 491{500.86. Grossi, R., and Italiano, G. EÆ
ient te
hniques for maintaining multidimen-sional keys in linked data stru
tures. In Pro
. of the International Colloquiumon Algorithms, Languages and Programming (1999), Le
ture Notes in ComputerS
ien
e vol. 1644, Springer Verlag, pp. 372{381.

5787. Grossi, R., and Vitter, J. Compressed suÆx arrays and suÆx trees with ap-pli
ations to text indexing and string mat
hing. In Pro
. of the ACM Symposiumon Theory of Computing (2000), pp. 397{406.88. Gusfield, D. Algorithms on strings, trees and sequen
es:
omputer s
ien
e and
omputational biology. Cambridge University Press, 1997.89. Gusfield, D., Landau, G. M., and S
hieber, B. An eÆ
ient algorithm forthe all pairs suÆx-pre�x problem. Information Pro
essing Letters 41, 4 (1992),181{185.90. Harman, D. Overview of the third text retrieval
onferen
e. In Pro
. of the TextREtrieval Conferen
e (TREC-3) (1995), pp. 1{19.91. Heaps, H. S. Information retrieval: theoreti
al and
omputational aspe
ts. A
a-demi
 Press, 1978.92. Hu, T., and Tu
ker, A. Optimal
omputer sear
h trees and variable lengthalphabeti

odes. SIAM Journal of Applied Mathemati
s 21 (1971), 514{532.93. Hunt, E., Atkinson, M. P., and Irving, R. W. A database index to largebiologi
al sequen
es. In Pro
. of the International Conferen
e on Very LargeData Bases (2001), pp. 139{148.94. IBM Journal on Resear
h and Development. The Memory eXpansion Te
h-nology for xSeries servers, Mar
h 2001.95. Indyk, P., and Motwani, R. Approximate nearest neighbors: towards remov-ing the
urse of dimensionality. In Pro
. of the ACM Symposium on Theory ofComputing (1998), pp. 604{613.96. Ja
obson, G. Spa
e-eÆ
ient stati
 trees and graphs. In IEEE Symposium onFoundations of Computer S
ien
e (1989), pp. 549{554.97. Jagadish, H. V., Koudas, N., and Srivastava, D. On e�e
tive multi-dimensional indexing for strings. ACM SIGMOD Re
ord 29, 2 (2000), 403{414.98. Jang, H., Kim, Y., and Shin, D. An e�e
tive me
hanism for index update instru
tured do
uments. In Pro
. of the ACM-CIKM International Conferen
e onInformation and Knowledge Management (1999), pp. 383{390.99. Jin, S., and Bestavros, A. Temporal lo
ality in web request streams (postersession): sour
es,
hara
teristi
s, and
a
hing impli
ations. In Pro
. of the Inter-national Conferen
e on Measurements and Modeling of Computer Systems (2000),pp. 110{111.100. Jokinen, P., and Ukkonen, E. Two algorithms for approximate string mat
hingin stati
 texts. In Pro
. of Mathemati
al Foundations of Computer S
ien
e (1991),pp. 240{248.101. J�onsson, B., Franklin, M., and Srivastava, D. Intera
tion of query eval-uation and bu�er management for information retrieval. In Pro
. of the ACM-SIGMOD Conferen
e on Management of Data (1998), pp. 118{129.102. K�arkk�ainen, J., and Ukkonen, E. Sparse suÆx trees. International Conferen
eon Computing and Combinatori
s (1996), Le
ture Notes in Computer S
ien
evol. 1090, Springer Verlag, pp. 219-230.103. Kahve
i, T., and Singh:, A. K. EÆ
ient index stru
tures for string databases.In Pro
. of the International Conferen
e on Very Large Data Bases (2001),pp. 351{360.104. Kanne, C.-C., and Moerkotte, G. EÆ
ient storage of XML data. In Pro
. ofthe International Conferen
e on Data Engineering (2000), p. 198.105. K�arkk�ainen, J. SuÆx
a
tus: A
ross between suÆx tree and suÆx array.In Pro
. of the Symposium on Combinatorial Pattern Mat
hing (1995), Le
tureNotes in Computer S
ien
e vol. 937, Springer Verlag, pp. 191{204.

58106. K�arkk�ainen, J., Navarro, G., and Ukkonen, E. Approximate string-mat
hing over Ziv-Lempel
ompressed data. In Pro
. of the Symposium on Com-binatorial Pattern Mat
hing (2000), Le
ture Notes in Computer S
ien
e vol. 1848,Springer Verlag, pp. 195{209.107. Katajainen, J., and Makinen, E. Tree
ompression and optimization withappli
ations. International Journal of Foundations of Computer S
ien
e 1, 4(1990), 425{447.108. Kida, T., Takeda, M., Shinohara, A., and Arikawa, S. Shift-And approa
hto pattern mat
hing in LZW
ompressed text. In Pro
. of the Symposium on Com-binatorial Pattern Mat
hing (1999), Le
ture Notes in Computer S
ien
e vol. 1645,Springer Verlag, pp. 1{13.109. Knuth, D. E. Sorting and Sear
hing, vol. 3 of The Art of Computer Program-ming. Addison Wesley, 1998.110. Kodeks Software. The morphologial analysis module, July 2002.http://www.gubin.spb.ru/arti
les/di
tionary.html111. Korfhage, R. Information Storage and Retrieval. John Wiley and Sons, 1997.112. Kurtz, S. Redu
ing the spa
e requirement of suÆx trees. Software|Pra
ti
eand Experien
e 29, 13 (1999), 1149{1171.113. Kushilevitz, E., Ostrovsky, R., and Rabani, Y. EÆ
ient sear
h for ap-proximate nearest neighbor in high dimensional spa
es. In Pro
. of the ACMSymposium on Theory of Computing (1998), pp. 614{623.114. Lesk, M. Pra
ti
al digital libraries: books, bytes, and bu
ks. Morgan-Kaufman,1997.115. Litwin, W., Zegour, D., and Levy, G. Multilevel trie hashing. In Pro
. ofthe International Conferen
e on Extending Database Te
hnology (1988), Le
tureNotes in Computer S
ien
e vol. 303, Springer Verlag, pp. 309{335.116. Luk, R., Chan, A., Dillon, T., and Leong, H. A survey of sear
h engines forXML do
uments. In Pro
. of the ACM-SIGIR Workshop on XML and Informa-tion Retrieval (2000), http://www.haifa.il.ibm.
om/sigir00-xml/.117. M�akinen, E. A survey on binary tree
odings. The Computer Journal 34, 5(1991), 438{443.118. Manber, U. A text
ompression s
heme that allows fast sear
hing dire
tly in the
ompressed �le. In Pro
. of the Symposium on Combinatorial Pattern Mat
hing(1994), Le
ture Notes in Computer S
ien
e vol. 807, Springer Verlag, pp. 113{124.119. Manber, U. Foreword. In Modern Information Retrieval (1999), R. Baeza-Yatesand B. Ribeiro-Neto, Eds., Addison-Wesley.120. Manber, U., and Baeza-Yates, R. A. An algorithm for string mat
hing witha sequen
e of don't
ares. Information Pro
essing Letters 37, 3 (1991), 133{136.121. Manber, U., and Myers, G. SuÆx arrays: a new method for on-line stringsear
hes. SIAM Journal on Computing 22, 5 (1993), 935{948.122. Manber, U., and Wu, S. GLIMPSE: A tool to sear
h through entire �le systems.In Pro
. of the USENIX Winter Te
hni
al Conferen
e (1994), pp. 23{32.123. Manning, C. D., and S
h�utze, H. Foundations of Statisti
al Natural LanguagePro
essing. The MIT Press, 2001.124. Manzini, G., and Ferragina, P. Engineering a lightweight suÆx-array
on-stru
tion algorithm. In Pro
. of the European Symposium on Algorithms (2002),Le
ture Notes in Computer S
ien
e, Spring-Verlag.125. Markatos, E. On
a
hing sear
h engine results. Computer Communi
ations 24,2 (2001), 137{143.

59126. Marsan, L., and Sagot, M.-F. Algorithms for extra
ting stru
tured motifsusing a suÆx tree with appli
ation to promoter and regulatory site
onsensusidenti�
ation. Journal of Computational Biology 7 (2000), pp. 345{360.127. Matias, Y., Muthukrishnan, S., Sahinalp, S. C., and Ziv, J. AugmentingsuÆx trees, with appli
ations. In Pro
. of the European Symposium on Algorithms(1998), Le
ture Notes in Computer S
ien
e vol. 1461, Spring-Verlag, pp. 67{78.128. M
Creight, E. M. A spa
e-e
onomi
al suÆx tree
onstru
tion algorithm. Jour-nal of the ACM 23, 2 (1976), 262{272.129. M
Hugh, J., Abiteboul, S., Goldman, R., Quass, D., and Widom, J.LORE: A database management system for semistru
tured data. SIGMOD Re
ord26, 3 (1997), pp. 54{66.130. Mehlhorn, K., and Naher, S. Algorithm design and software libraries: Re
entdevelopments in the LEDA proje
t. In Pro
. of IFIP Congress (1992), vol. 1,pp. 493{505.131. Meira, W., Ces�ario, M., Fonse
a, R., and Ziviani, N. Integrating WWW
a
hes and sear
h engines. In Pro
. of the IEEE Global Tele
ommuni
ationsConferen
e (1999), pp. 1763{1769.132. Merret, T. H., and Shang, H. Trie methods for representing text. In Pro
.of the International Conferen
e on Foundations of Data Organization and Al-gorithms (1993), Le
ture Notes in Computer S
ien
e vol. 730, Springer Verlag,pp. 130{145.133. Mewes, H. W., and Heumann, K. Genome analysis: Pattern sear
h in biologi
alma
romole
ules. In Pro
. of the Symposium on Combinatorial Pattern Mat
hing(1995), Le
ture Notes in Computer S
ien
e vol. 937, Springer Verlag, pp. 261{285.134. Mitzenma
her, M. Compressed bloom �lters. In Pro
. of the ACM Symposiumon Prin
iples of Distributed Computing (2001), pp. 144{150.135. Moffat, A., and Stuiver, L. Exploiting
lustering in inverted �le
ompression.In Pro
. of the IEEE Data Compression Conferen
e (1996), pp. 82{91.136. Moffat, A., and Bell, T. In-situ generation of
ompressed inverted �les. Jour-nal of the Ameri
an So
iety for Information S
ien
e 46, 7 (1995), 537{550.137. Morrison, D. R. PATRICIA - pra
ti
al algorithm to retrieve information
odedin alphanumeri
. Journal of the ACM 15, 4 (1968), 514{534.138. Moura, E., Navarro, G., and Ziviani, N. Indexing
ompressed text. In Pro
.of the South Ameri
an Workshop on String Pro
essing (1997), Carleton UniversityPress.139. Moura, E., Navarro, G., Ziviani, N., and Baeza-Yates, R. Fast sear
hing on
ompressed text allowing errors. In Pro
. of the International ACM-SIGIR Con-feren
e on Resear
h and Development in Information Retrieval (1998), pp. 298{306.140. Moura, E., Navarro, G., Ziviani, N., and Baeza-Yates, R. Fast and
exibleword sear
hing on
ompressed text. ACM Transa
tions on Information Systems18, 2 (2000), 113{139.141. Mulmuley, K. Computational Geometry: An introdu
tion through randomizedalgorithms. Prenti
e-Hall, 1994.142. Munro, I. Su

in
t data stru
tures. In Pro
. of the Workshop on Data Stru
tures,within the Conferen
e on Foundations of Software Te
hnology and Theoreti
alComputer S
ien
e (1999), pp. 1{6.143. Munro, I., and Raman, V. Su

in
t representation of balan
ed parentheses,stati
 trees and planar graphs. In Pro
. of the IEEE Symposium on Foundationsof Computer S
ien
e (1997), pp. 118{126.

60144. Munro, I., Raman, V., and Srinivasa Rao, S. Spa
e eÆ
ient suÆx trees. InPro
. of the Conferen
e on Foundations of Software Te
hnology and Theoreti
alComputer S
ien
e (1998), Le
ture Notes in Computer S
ien
e vol. 1530, SpringerVerlag, pp. 186{195.145. Muthukrishnan, S. EÆ
ient algorithms for do
ument retrieval problems. InPro
. of the ACM-SIAM Annual Symposium on Dis
rete Algorithms (2002),pp. 657{666.146. Muthukrishnan, S., and Sahinalp, S. C. Approximate nearest neighbors andsequen
e
omparison with blo
k operations. In Pro
. of the ACM Symposium onTheory of Computing (2000), pp. 416{424.147. Muthukrishnan, S., and Sahinalp, S. C. Simple and pra
ti
al sequen
e near-est neighbors with blo
k operations. In Pro
. of the Symposium on CombinatorialPattern Mat
hing (2002), Le
ture Notes in Computer S
ien
e vol. 2373, Spring-Verlag, pp. 262{278.148. Navarro, G. A guided tour to approximate string mat
hing. ACM ComputingSurveys 33, 1 (2001), 31{88.149. Navarro, G. Regular expression sear
hing over Ziv-Lempel
ompressed text.In Pro
. of the Symposium on Combinatorial Pattern Mat
hing (2001), Le
tureNotes in Computer S
ien
e vol. 2089, Springer Verlag, pp. 1{17.150. Navarro, G. On
ompressed indexing via Lempel-Ziv parsing. Personal Com-muni
ation, 2002.151. Navarro, G., and Baeza-Yates, R. Proximal nodes: A model to query do
-ument databases by
ontent and stru
ture. ACM Transa
tions on InformationSystems 15, 4 (1997), 400{435.152. Navarro, G., and Baeza-Yates, R. A. A new indexing method for approximatestring mat
hing. In Pro
. of the Symposium on Combinatorial Pattern Mat
hing(1999), Le
ture Notes in Computer S
ien
e vol. 1645, Springer Verlag, pp. 163{185.153. Navarro, G., de Moura, E., Neubert, M., Ziviani, N., and Baeza-Yates,R. Adding
ompression to blo
k addressing inverted indexes. Information Re-trieval Journal 3 1 (2000), 49{77.154. Navarro, G., and Raffinot, M. A general pra
ti
al approa
h to pattern mat
h-ing over Ziv-Lempel
ompressed text. In Pro
. of the Symposium on Combina-torial Pattern Mat
hing (1999), Le
ture Notes in Computer S
ien
e vol. 1645,Springer Verlag, pp. 14{36.155. Navarro, G., Sutinen, E., Tanninen, J., and Tarhio, J. Indexing textwith approximate q-grams. In Pro
. of the Symposium on Combinatorial Pat-tern Mat
hing (2000), Le
ture Notes in Computer S
ien
e vol. 1848, SpringerVerlag, pp. 350{363.156. Nelson, M. Data
ompression with the Burrows-Wheeler transform. Dr. Dobb'sJournal of Software Tools 21, 9 (1996), 46{50.157. Nilsson, S., and Tikkanen, M. Implementing a dynami

ompressed trie. InPro
. of the Workshop on Algorithmi
 Engineering (1998), pp. 1{12.158. Patt, Y. N. Guest editor's introdu
tion: The I/O subsystem | A
andidate forimprovement. IEEE Computer 27, 3 (1994).159. Persin, M., Zobel, J., and Sa
ks-Davis, R. Filtered do
ument retrieval withfrequen
y-sorted indexes. Journal of the Ameri
al Mathemati
al So
iety for In-formation S
ien
e 47, 10 (1996), 749{764.160. Pevzner, P. A., and Waterman, M. S. Multiple �ltration and approximatepattern mat
hing. Algorithmi
a 13, 1{2 (1995), 135{154.

61161. Pugh, W. Skip Lists: A probabilisti
 alternative to balan
ed trees. Communi
a-tions of the ACM 33, 6 (1990), 668{676.162. Quantum Cooperation. Storage te
hnology and trends.http://www.quantum.
om/sr
/tt/storage te
h trends.htm, 2000.163. Raghavan, P. Information retrieval algorithms: A survey. Pro
. of the ACM-SIAM Symposium on Dis
rete Algorithms (1997), 11{18.164. Ruemmler, C., and Wilkes, J. An introdu
tion to disk drive modeling. IEEEComputer 27, 3 (1994), 17{29.165. Sadakane, K. A fast algorithms for making suÆx arrays and for Burrows-Wheeler transformation. In Pro
. of the IEEE Data Compression Conferen
e(1998), pp. 129{138.166. Sadakane, K. On optimality of variants of the blo
k sorting
ompression. InPro
. of the IEEE Data Compression Conferen
e (1998), pp. 570.167. Sadakane, K. A modi�ed Burrows-Wheeler transformation for
ase-insensitivesear
h with appli
ation to suÆx array
ompression. In Pro
. of the IEEE DataCompression Conferen
e (1999), pp. 548.168. Sadakane, K. Compressed text databases with eÆ
ient query algorithms basedon the
ompressed suÆx array. In Pro
. of the International Symposium on Al-gorithms and Computation (2000), Le
ture Notes in Computer S
ien
e vol. 1969,Springer Verlag, pp. 410{421.169. Sadakane, K. Su

in
t representations of LCP information and improvementsin the
ompressed suÆx arrays. In Pro
. of the ACM-SIAM Annual Symposiumon Dis
rete Algorithms (2002), pp. 225{232.170. Sadakane, K., and Shibuya, T. Indexing huge genome sequen
es for solvingvarious problems. Genome Informati
s (2002), pp. 175{183.171. Sagot, M.-F., and Viari, A. Flexible identi�
ation of stru
tural obje
ts in nu-
lei
 a
id sequen
es: palindromes, mirror repeats, pseudoknots and triple heli
es.In Pro
. of the Symposium on Combinatorial Pattern Mat
hing (1997), Le
tureNotes in Computer S
ien
e vol. 1264, Springer Verlag, pp. 224{246.172. Samet, H. The Design and Analysis of Spatial Data Stru
tures. Addison-Wesley,1990.173. Saraiva, P. C., de Moura, E. S., Fonse
a, R. C., Jr., W. M., Ribeiro-Neto, B. A., and Ziviani, N. Rank-preserving two-level
a
hing for s
alablesear
h engines. In Pro
. of the International Conferen
e on Resear
h and Devel-opment in Information Retrieval (2001), pp. 51{58.174. S
hindler, M. A fast blo
k-sorting algorithm for lossless data
ompression.http://www.
ompress
onsult.
om/szip/, 1996.175. S
h�oning, H. Tamino - A DBMS designed for XML. In Pro
. of the InternationalConferen
e on Data Engineering (2001), pp. 149{154.176. Seward, J. The bzip2 home page. http://sour
es.redhat.
om/bzip2/.177. Shang, H. Trie methods for text and spatial data stru
tures on se
ondary storage.PhD thesis, M
Gill University, 1995.178. Shibata, Y., Takeda, M., Shinohara, A., and Arikawa, S. Pattern mat
hingin text
ompressed by using antidi
tionaries. In Pro
. of the Symposium on Com-binatorial Pattern Mat
hing (1999), Le
ture Notes in Computer S
ien
e vol. 1645,Springer Verlag, pp. 37{49.179. Silverstein, C., Henzinger, M., Marais, H., and Mori
z, M. Analysis of avery large web sear
h engine query log. ACM SIGIR Forum 33, 1 (1999), 6{12.180. Sleator, D. D., and Tarjan, R. E. Self-adjusting binary sear
h trees. Journalof the ACM 32, 3 (1985), 652{686.

62181. Sleepy
at Software. The Berkeley DB. http://www.sleepy
at.
om/.182. Sprugnoli, R. On the allo
ation of binary trees in se
ondary storage. BIT 21(1981), 305{316.183. Tomasi
, A., and Gar
ia-Molina, H. Ca
hing and database s
aling in dis-tributed shared-nothing information retrieval systems. ACM SIGMOD Re
ord22, 2 (1993), 129{138.184. Turpin, A., and Moffat, A. Fast �le sear
h using text
ompression. AustralianComputing S
ien
e Communi
ation (1997), 1{8.185. Ukkonen, E. Approximate string mat
hing with q-grams and maximal mat
hes.Theoreti
al Computer S
ien
e 92, 1 (1992), 191{211.186. Vitter, J. External memory algorithms and data stru
tures: Dealing with mas-sive data. ACM Computing Surveys 33 , 2 (2001), 209{271.187. Williams, H., and Zobel, J. Compressing integers for fast �le a

ess. TheComputer Journal 42, 3 (1999), 193{201.188. Witten, I. H., Moffat, A., and Bell, T. C. Managing Gigabytes: Compressingand Indexing Do
uments and Images. Morgan Kaufmann Publishers, 1999.189. Wu, S., and Manber, U. Fast text sear
hing allowing errors. Communi
ationsof the ACM 35, 10 (1992), 83{91.190. Zipf, G. Human Behaviour and the Prin
iple of Least E�ort. Addison-Wesley,1949.191. Ziv, J., and Lempel, A. A universal algorithm for sequential data
ompression.IEEE Transa
tion on Information Theory 23 (1977), 337{343.192. Ziv, J., and Lempel, A. Compression of individual sequen
es via variable length
oding. IEEE Transa
tion on Information Theory 24 (1978), 530{536.193. Zobel, J., Moffat, A., and Ramamohanarao, K. Guidelines for presentationand
omparison of indexing te
hniques. SIGMOD Re
ord 25, 1 (1996), 10{15.194. Zobel, J., Moffat, A., and Ramamohanarao, K. Inverted �les versus signa-ture �les for text indexing. ACM Transa
tions on Database Systems 23 (1998),453{490.

