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But then I see where's

the plot? How does it

look here?

 

Once we have the data, the

first thing is to plot it and

see what it looks like.... P6

P3 P12

P13

and if the inference doesn't support

what you saw in the graph, something's

terribly wrong.

Oh yes. I use line graphs.

I use bar graphs. I use

scatterplots. Absolutely.

Fig. 1: Visualization as a bridge. Understanding how professional statisticians use and think about visualization may help designing
effective visualizations to support sensemaking for everyone. Note that these characters bear no likeness to the original participants
and their quotes have been slightly edited for brevity. (Images by MidJourney v5.)

Abstract—Statisticians are not only one of the earliest professional adopters of data visualization, but also some of its most prolific
users. Understanding how these professionals utilize visual representations in their analytic process may shed light on best practices
for visual sensemaking. We present results from an interview study involving 18 professional statisticians (19.7 years average in the
profession) on three aspects: (1) their use of visualization in their daily analytic work; (2) their mental models of inferential statistical
processes; and (3) their design recommendations for how to best represent statistical inferences. Interview sessions consisted of
discussing inferential statistics, eliciting participant sketches of suitable visual designs, and finally, a design intervention with our
proposed visual designs. We analyzed interview transcripts using thematic analysis and open coding, deriving thematic codes on
statistical mindset, analytic process, and analytic toolkit. The key findings for each aspect are as follows: (1) statisticians make extensive
use of visualization during all phases of their work (and not just when reporting results); (2) their mental models of inferential methods
tend to be mostly visually based; and (3) many statisticians abhor dichotomous thinking. The latter suggests that a multi-faceted visual
display of inferential statistics that includes a visual indicator of analytically important effect sizes may help to balance the attributed
epistemic power of traditional statistical testing with an awareness of the uncertainty of sensemaking.

Index Terms—Inferential statistics, qualitative interview study, thematic coding, statistical visualization.

1 INTRODUCTION

Statistics was one of the early adopters of data visualization, and graphi-
cal methods in themselves are a valid form of inference [7]. Even today,
statisticians remain some of the more prolific users of data visualization,
with certain statistical tests routinely involving visual inspection and
graphical inference. As a case in point, John W. Tukey’s 1977 book
on exploratory data analysis (EDA) [30] established the field of visual
statistics [4], where interactive visual representations are used to in-
form and generate hypotheses, or even confirm them. While workflows
differ between each practicing statistician, it is clear that most have an
intimate and working knowledge of visualization for sensemaking.

Interestingly, visualization is also commonly described as a key
enabling technology for helping people understand and make deci-
sions based on data [15, 19, 24]. Unlike arcane statistical tests and
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mathematical formalism, interactive visual representations straightfor-
wardly invite users to overview, filter, and drill into [27] data with
little prerequisite knowledge. Given appropriate prompting and visual
representations, even laypeople can manually perform statistical tests
such as comparing averages in time-series data [1, 8], fit trend lines
to point clouds [10], and make mean value judgments in multi-class
scatterplots [14]. The prevalence of visualization for both novices and
experts alike suggest that visualization could become a bridge for
giving people access to advanced statistical workflows.

In this paper, we perform an interview study with professional statis-
ticians to understand their practices for analyzing and making decisions
using visualization. Our research team is well placed to do this work:
the first author is a former practicing statistician with a career spanning
two decades in the U.S. Census Bureau. Using this author’s professional
network, we recruit a total of 18 statisticians with a combined 350 years
of experience (average 19.7 years). We focus on three questions:

RQ1 How do statisticians use visualization in their daily analytic work?

RQ2 What mental models of inferential statistics do statisticians have?

RQ3 How to design a representation for statistical inference that builds
on current practices of professional statisticians?

Our interview study was conducted as a semi-structured interview
over Zoom videoconference. Each session involved three phases: (1)
statistical practice; (2) graphical elicitation of their internal understand-
ing of inferential statistics; and (3) review of a design probe [13]: a

https://orcid.org/0000-0001-8777-0363
https://orcid.org/0000-0001-5805-5301


prototype visual representations for statistical inference. All sessions
were professionally transcribed and the first author used their statistical
expertise and experience to code the transcripts using an open-coding
approach [20]. We then derived our findings using thematic analysis.

At a high level, we found that visualization tends to be a key activity
in most statistician’s daily workflow, and not just during presentation.
Furthermore, our participants mostly reported mental models that are
visually based. Finally, we found that our participants tend to abhor
dichotomous thinking and distrust insights lacking multiple evidence.

2 BACKGROUND

Here we review the key background research on statistical inference,
visual statistics, and visualization.

2.1 Statistical Inference
Inferential statistics involves using statistical methods to make infer-
ences about a population based on a sample of data [6]. The field can
be traced back to the work of Ronald Fisher, who is considered one of
the founding fathers of modern statistics [12, 16].

The traditional approach to statistical inference is confirmatory data
analysis (CDA) [21, 26], which typically involves specifying a hypoth-
esis, and using a statistical test to determine whether a counter (null)
hypothesis might explain the data. CDA is often used in experimental
research and is a critical component of modern science.

Exploratory data analysis (EDA), on the other hand, first coined
by John Tukey in the 1970s [30], is an approach to analyzing data
that involves exploring and summarizing the data to gain insights and
identify patterns. Tukey argued that EDA was an essential first step in
data analysis that is necessary for understanding the data before apply-
ing confirmatory techniques. His work became part of the foundation
for visualization, where interactive visual representations are used to
inform, generate, or even confirm hypotheses. Most statisticians agree
that both EDA and CDA have important roles to play in data analysis.

2.2 Visual Statistics
There are many routine tasks for which a practicing statistician will
turn to graphical methods [7], including model selection (using residual
plots or Q-Q plots to verify assumptions), outlier detection (using
scatterplots or histograms), and quality control (plotting the data).

There has been a growing interest in the visualization community
in how graphical representations of data can facilitate higher-order
tasks, such as making inferences. To address this issue, Buja et al. [4]
proposed frameworks for visual statistics, which rely on visual repre-
sentations to serve as a test statistic while human cognition functions
as the statistical test. They demonstrated their approach using what
amounts to a “Rohrschach test” of random data in a lineup of small
multiples, where only one of the multiples utilized real data.

In subsequent research, Wickham et al. [32] adapted this concept
for the visualization community and discussed how it can be applied
to common visualizations to reveal new insights while minimizing
false positives. Beecham et al. [3] implemented the lineup protocol
for graphical inference in geographic clustering visualizations, while
Correll et al. [11] used it to examine the effectiveness of common
distribution graphics in displaying gaps or outliers.

2.3 Everyone a Statistician
Novices often struggle with choosing methods, understanding assump-
tions, interpreting results, and implementing tests when they are in need
of statistics to analyze and understand the data they deal with in their ev-
eryday lives [22]. Interestingly, a visual approach to statistics can help
even these novice users perform advanced statistical tests [15, 19, 24].
As a case in point, recent work has shown how even novice users can
compare averages in time-series data [1, 8], fit trend lines to point
clouds [10], and make mean value judgments in multi-class scatter-
plots [14] without specialized training or knowledge.

The theoretical basis of our work is grounded in the observation that
visualization represents common ground between novices and experts
alike, and thus that visualization can become a bridge for giving people
access to advanced statistical workflows. However, to achieve this, we

must first understand the visualization practices of expert statisticians.
Below we will describe our approach to achieve this goal.

3 METHOD

We conducted a qualitative study through semi-structured interviews
with professional statisticians. Our questioning focused on participants’
relationship with visualization and their understanding of statistical
inference with an emphasis on frequentist, parametric statistical tests
(even if many expressed their understanding of non-parametric and/or
Bayesian approaches as well). Data were coded according to a compos-
ite scheme that mixed a priori and emergent codes.

3.1 Positionality Statement
Given the qualitative nature of our evaluation study, the positionality of
the authors may have had an impact on our reporting and interpretation
of our findings. The first author is a recent Ph.D. in information science
and a former statistician with the U.S. Federal government, and the
second is a faculty member in information and computer science.

We have implemented the following strategies to mitigate the impact
of these potential biases:

• During participant recruitment, we drew from a mix of analytic
communities to ensure a diversity of analytic viewpoints, but also
to reach statisticians with experiences separate from ours.

• While creating the collection instrument, we mixed three differ-
ent collection modes (open-ended questions, graphic elicitation,
observations on designs probes). This diversity of data types gives
the data collection resilience against potential biases.

• In conducting interviews, we endeavored to create an environ-
ment which would provide participants the comfort of feeling
they were having a conversation with an interested and support-
ive colleague; to both create a space in which they could openly
discuss the most technical aspects of their work without fear of
alienating their listener, and safely share private thoughts about
their work. There is evidence this environment succeeded, as
more than one participant expressed their relief that the study’s
anonymity precautions would ensure none of their employers
would know what they had been saying.

• During coding of the findings, we used a combination of a pri-
ori and emergent codes. A priori coding required us to take a
disciplined approach to some of the results, with the potential to
directly falsify our initial hypotheses. Emergent coding encour-
aged us to think beyond these initial hypotheses.

Industry Professional title #years work Publications

Academia - 7 Professor Sum: 350+ Sum: 915+

Government - 7 Biostatistician Mean: 19.7 Mean: 51

Private Industry - 4 Data Scientist

Statistician

Survey methodologist

Highest degree What degree? Teaching?

PhD - 10 Biostatistics Yes - 13

Masters - 8 Data Science No - 5

Public Health

Sociology

Statistics

Survey Methodology

Age Gender Race

25 to 34 2 male - 7 White - 10

35 to 44 5 Female - 11 Hispanic or Latin American - 2

45 to 54 5 Black - 1

55 to 64 6 Asian - 4

Middle Eastern/North African - 1

Educational Experience

Professional experience

Demography

Table 1: Interview study summary. Summary of participants and their
demographics in our interview study.

3.2 Participants
We recruited 18 paid participants via direct email request. Participants
were offered $25 compensation in the form of a gift card. Two thirds



of participants were selected from among members of the American
Statistical Association, with guidance from the organization’s leader-
ship. With one exception, these participants had no prior professional
contact with the study authors. The remaining one third of participants
were reached through the authors’ professional networks.

Our recruitment efforts explicitly targeted statisticians working in
three broad industries: government statistical agencies, academia, and
private industry. We used the following screening criteria: at least 18
years of age; at least one relevant degree (undergraduate or graduate);
5 or more years of experience as a professional statistician after the
completion of their education; and job duties that included statistical
inference, such as statistical tests or confidence intervals.

Industry

#years 

work Publications

Highest 

degree Field of Degree

Significant 

teaching 

experience? Age Gender Self-Described Race

1 Academia 10 to 14 75 to 99 PhD Statistics yes 40 to 44 male White

2 Academia 15 to 19 150+ PhD Biostatistics yes 40 to 44 female Black

3 Academia 15 to 19 10 to 24 Masters Data Science yes 35 to 39 female Asian

4 Academia 15 to 19 50 to 74 PhD Statistics yes 45 to 49 female Asian

5 Academia 20 to 24 150+ PhD Public health yes 55 to 59 female Asian

6 Academia 20 to 24 50 to 74 PhD Statistics yes 50 to 54 female Hispanic/Latin American

7 Academia 25 to 29 100 to 149 PhD Statistics yes 50 to 54 female White

8 Government 10 to 14 10 to 24 Masters Statistics yes 35 to 39 male White

9 Government 15 to 19 25 to 49 PhD Statistics no 40 to 44 female Hispanic/Latin American

10 Government 20 to 24 10 to 24 Masters Sociology no 50 to 54 female White

11notes Government 25 to 29 0* Masters Data Science yes 60 to 64 male White

12 Government 25 to 29 10 to 24 Masters Statistics yes 50 to 54 male White

13notes Government 25 to 29 26 to 49 PhD Statistics yes 55 to 59 male Middle Eastern/North African

14 Government 25 to 29 10 to 24 Masters Survey methodology no 60 to 64 female White

15 Private industry 5 to 9 10 to 24 Masters Data Science no 30 to 34 male White

16 Private industry 5 to 9 5 to 9 Masters Survey methodology no 25 to 29 female Asian

17 Private industry 25 to 29 25 to 49 PhD Statistics yes 55 to 59 female White

18 Private industry 35 to 39 25 to 49 PhD Statistics yes 60 to 64 male White

Participant numbering is unrelated to the order interviews were taken in.

"notes" = interview recorded only through interviewer notes.

* = All interviewee's publications were strictly for internal agency use, and, therefore, not subject to peer-review processes.

Field of Degree summarized in some instances to protect the identity of interview subjects.

Table 2: Participant overview. Demographics, experience, and train-
ing for the 18 participants in our interview study.

Table 1 summarizes the study and Table 2 gives an overview of the
participants. As can be seen from the tables, partipants varied in their
professional experience, educational experience, and demographics.

3.3 Data Collection
All interviews were conducted via live videoconferencing on Zoom
using a laptop or desktop computer. Sessions were both video and
audio recorded. Video allowed for screen-captures of sketches drawn
by participants. Audio recordings were submitted to a transcrip-
tion service (http://rev.com) to provide accurate text for coding.
The researcher took notes during the sessions, including sketches of
participant-described visualizations, which the researcher then showed
to the participants via the video feed for their approval of the sketches.
The interviewer also took notes immediately after each session to record
general impressions, and recall details not captured in the moment.

There were a few exceptions to the interview protocol. The first
participant used their smartphone for the videoconferencing, which
resulted in lower fidelity transmission of graphics for the third section of
the interview. Two of the 18 interviews failed to record, and, therefore,
only the researcher’s notes captured the outcomes of these two sessions.
One interview skipped the graphic elicitation section of the interview,
while completing the other two sections in full.

3.4 Interview Script
Interviews followed a script (see supplemental material). Questions in
bold were asked word for word of all participants, optional follow-up
questions appear indented in the table. Prior to data collection, the
researchers conducted two practice interviews using early versions of
the interview script, and a sketch-version of a strawman graphic (see
below). Scripts and graphic were refined based upon feedback during
these practice runs, and a second strawman graphic was added.

3.5 Design Probes: Strawman Graphics
One phase of our evaluation involved the use of design probes [13, 31]
to elicit feedback from our expert participants. In this case, our design
probes were visual representations designed for supporting graphical
inference by experts. We call these probes “strawman graphics” because
we hope that participants will have constructive feedback on each.

During the course of our study, we ended up developing three sepa-
rate strawman graphics (labeled #1, #2, and #3) based on participant
feedback and suggestions collected from the interviews. The first was
designed prior to the first session, the second during the pilot interviews,
and the third came out of the first four interviews. We report on the
design iterations of each graphic in the results section.

3.6 Procedure
Pre-interview. Scheduling was conducted over email. Participants

were asked to fill out a consent form before their interview. This
included a small number of demographic and qualifying questions.

Interview: Preliminaries. At the start of each session before
recording began, participants were given the opportunity to ask any
questions they had. With these preliminaries cleared, recording began.

Interview: I - Analytic Process (RQ1). We first asked partici-
pants to recall the steps of their analytic process. This framed subse-
quent discussions as focused on their day-today work process. Probes
into these processes sought to capture how visualization played a part
(or not) in their workflow. Additional probes sought to uncover the
statisticians’ tacit understanding of their processes.

Interview: II - Graphic Elicitation (RQ2). Here we used any
references to inferential statistics from the prior interview section as
a bridge to turn the conversation toward participants’ understanding
of inferential statistics in general, and Student t-tests [28] in particular.
Participants were asked whether they had a picture in their heads of
what a two-mean t-test looked like. They were then asked to draw a
picture of that image and walk the interviewer through their sketch.

Interview: III - Strawman Graphics (RQ3). The interviewer then
presented participants with the design probes: strawman graphics of a t-
test constructed by the research team. Participants were walked through
each version (2 versions for the first three interviews, with strawman
#3 added to the rest based upon the early results). They were first asked
to use the graphics to answer whether the displayed example met a
selected significance level (p = {0.1,0.05,0.01,0.001} for strawman
#1 and #2 and only p = .05 for strawman #3). The same underlying
data were displayed with all three graphics, so that differences in
response would reflect the graphic rather than a difference in data
samples. After capturing participant performance in using each graphic,
‘correct’ answers were provided before moving onto the next graphic.
Afterward, participants answered a series of questions designed to
probe for their understanding or initial misunderstanding, what was
missing or wrong about the graphics, or other design recommendations.

Interview: Closing. The interviews ended in two phases. Par-
ticipants were first thanked, and asked on camera whether they had
additional questions or reactions to share. They were then given the
opportunity to share unrecorded feedback.

3.7 Coding Process
We used thematic coding methodology derived from grounded the-
ory [20] (although we did not use the full grounded theory machinery).
The three parts of the interview were coded by separate processes, with
some overlap. We used a combination of open and closed coding [20];
the details of the coding scheme are given in the results section. Here is
the rough procedure we followed: We first reviewed our notes, looking
for themes. Based upon the themes, we created the coding schema
(Table 3) combining a priori codes with open spaces for capturing
emergent themes. Tables 3 and 4 denote open codes with ’(list)’; other
codes are a priori. We then coded the transcripts, first by deriving
primary codes and refining them into detailed thematic codes. Finally,
we grouped all codes into broad themes.

To check the validity of the coding process, we engaged a second
coder external to the research team. Given the nature of the data, this
coder had to be a statistician of similar experience to the researchers
and participants. The external coder was provided with a 10% random
sample of texts (with codes stripped), along with the final state of the
codebook. After calculating the inter-coder reliability, we conferred
with the external coder to update the codebook appropriately.

http://rev.com


Dimension of analysis Code group Summary codes

Understanding of visual tool

Understanding of inferential 

statistics

Use of visual statistics

Building validity -- (list)

Violations to validity -- (list)

Tacit understanding of statistics Tacit understanding -- (list)

Understand the question - clarify 

or reform 

Understand available data - 

sources and collection methods

Data collection/cleaning Ordering data for use Structuring data

Estimation

Projection

Distribution

Outliers/Gaps Data discontinuities

Comparison Correlations

Hypothesis generation Predict pattern/model

Confirmatory stat testing

Outlier/gap analysis

Consistency over time/space

Make findings interpretable (list)

Overcoming misunderstanding (list)

Multi-use viz analytic tools (list)

Single purpose viz analytic tools (list)

Eye-brain system limitations (list)

Expertise

Novice

Expert
Epistemic warrants

Gather Background

NA

Pre-collection

Analytic Process

Mindset

What are they thinking?

Tasks

What are they doing?

Tools

With what are they doing it?

Theoretical Framework

Quantitative analysis 

as external cognition

Interface between human 

and machine

Calculative, language or symbol 

based metaphor

Visual metaphors

Using numbers (list)

Exploratory analysis

Confirmatory analysis

Communicate findings

Hypothesis testing

Reports

Quantification

Table 3: Coding scheme. Overview of the coding scheme developed
for the interview transcripts.

4 RESULTS

We transcribed and coded interviews for all participants. Here we
describe the coding scheme and the design probes. Then we give an
overview of the coding results and the inter-rater reliability. Finally we
report our detailed findings for each of the themes.

Note that this treatment only gives a high-level overview of our
findings; the supplemental material contains all of the detailed results
(including additional tables and charts).

4.1 Coding Scheme
We applied three parallel coding schema to the main body of the inter-
views based upon three analytical perspectives: expertise, tasks, and
tools. Each perspective answers a different fundamental question about
participant expectations from inferential statistical methods, potential
visualizations of inferential statistics, and visualizations in general.

• Expertise perspective: The explicit as well as tacit knowledge
that professional statisticians have about their field.

• Tasks perspective: Analysis steps that statisticians pursue.

• Tools perspective: The tools statisticians employ in their work.

4.1.1 Coding Process
The three perspectives constitute what amount to three different di-
mensions of analysis, orthogonal to one another, any or all of which
might be indicated by a single participant statement. For example, P7
described part of their analytic process as:

And then once we got the data, [...] half the time is un-
derstanding the data [...] using descriptive statistics, a
graphical illustration, [to see] missing data pattern or some
unusual outliers.

This response generated the following summary:

• Expertise – Preparing and understanding data is a major task.

• Tasks – Structure, background, distribution, estimates, etc.

• Tools – Multitool: descriptive graphics.

We then reviewed the summary to produce these primary codes:

• Expertise – DATA PREP IS MUCH OF STAT WORK (Tacit).

• Tasks – STRUCTURE, BACKGROUND, DISTRIBUTION, ESTI-
MATES, DISCONTINUITIES.

• Tools – DESCRIPTIVE GRAPHICS, a broad class of visualizations.
Had a specific tool (such as HISTOGRAM or SCATTERPLOT) been
mentioned, these would also have been coded.

We further grouped primary codes from the expertise perspective
into a detailed thematic code: REALITY IS THE AUTHORITY, which
we further group under the broad theme WARRANT.

4.1.2 Expertise Perspective

The Expertise perspective contrasts the mindset of experts with that of
novices. During interviews, the perspective can be summarized by the
question, “What is the participant thinking during their interaction with
inferential statistics?” The answers come under two broad groupings:

The first group of codes captured the EPISTEMIC WARRANTS ex-
perts attribute to different inferential methods, that is, the degree to
which a particular analytic method provides support for or against some
claim. Two emergent codes made up this group.

• BUILD VALIDITY captures those elements of analysis that shore
up a reasoned line of evidence.

• VIOLATIONS TO VALIDITY captures those elements of analysis
that tend to undercut evidence.

The second code group includes only a single emergent code: TACIT
captures the knowledge that experienced statisticians have, through
work experience, come to believe about their method.

4.1.3 Tasks Perspective

The Tasks perspective is composed primarily of a priori codes. It
emerged out of initial reviews of the interview results, and presumes
that there are common steps in the analytic process all statisticians
pursue, regardless of the sub-field in which they work. Identifying the
core tasks of analysis as perceived by experienced statisticians provides
a context in which to place the kinds of inferential statistics tools this
research effort hopes to design, and may suggest features the design
should incorporate. More broadly, the Tasks perspective sets the context
for understanding the other two dimensions of analysis.

The initial review of interviews indicated five analytic phases within
Tasks (Table 3). As the focus of this research is inferential statistics, a
later stage part of the analytic process, we sacrificed some detail during
coding of the earliest work phase. This meant that we consolidated the
code groups of understanding the research questions and understanding
data sources into a single code, GATHER BACKGROUND.

While we initially expected this perspective to only consist of a
priori codes, we found during early review that the COMMUNICATE
FINDINGS codes (labeled MYTH and COMM) often included details
of what needed to be communicated that gave further insight into the
mindset of participants. Thus, these were recoded as emergent codes,
with details captured and summarized for thematic coding using the
Expertise (mindset) thematic codes list.

4.1.4 Tools Perspective

The Tools perspective captures the specific interfacing-tools statisti-
cians choose to employ during their work. Broadly speaking, these tools
can either be VISUAL METAPHORS (data visualization) or SYMBOLIC
TOOLS (such as code or written equations).

The VISUAL METAPHOR code group includes three summary codes:

• BROAD-FOCUS VISUALIZATIONS that may have many uses (such
as histograms, from which an analyst might discern the mean,
median, variance, skewness, range, location and number of modes,
gaps in the distribution, outliers, and shape);

• NARROW-FOCUS VISUALIZATIONS with a single use (such as
QQ-norm plots, which are used almost exclusively to test the
normality of a distribution); and

• LIMITS: observations on the limitations of visualization and the
human visual system offered by participants.

Since visualization is the focus of this research, we captured the
non-visual SYMBOLIC TOOLS code group with only one summary
code and then listed each tool by name.

4.1.5 Graphic Elicitation Coding

Participant graphics were screen-captured along with participant de-
scriptions of the images. We labeled these by type and then grouped
them according to their analytic focus.



Understood

Misunderstood

Liked (list)

Disliked (list)

Recommendations positive (list)

Recommendation negative (list)

Reactions to Strawman Graphics

Testing strawman graphics

Understanding

Affinity

Recommendations 

Table 4: Strawman coding scheme. Overview of the coding scheme
developed for the strawman graphics.

-1 -0.85 -0.7 -0.55 -0.4 -0.25 -0.1 0.05 0.2 0.35 0.5 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.85 2

1:10
1:20
1:100
1:1000

(a) Strawman #1
-0.2 -0.1 0.0 0.1 0.2

(b) Strawman #2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(c) Strawman #3

Fig. 2: Strawman graphics. The graphics we used as design probes.

4.1.6 Strawman Graphics Coding
The strawman graphics section was coded using a combination of a
priori and emergent codes (Table 4). These codes captured as follows:

1. Participant Understanding: Whether the participant correctly
assessed the significance at the given alpha value with the graphic;

2. Participant Affinity for the Strawman Graphic: Whether par-
ticipants found the strawman graphic useful, informative, or oth-
erwise saw it in a positive or negative light; and

3. Participant Design Recommendations: Any directly stated or
implied design recommendations to improve the graphic.

The intention of this phase was to generate informative conversation
about, and observations on, potential elements for graphic inference
tools. By asking participants to actually use a graphic tool to perform a
statistical inference, we hoped to generate deeper insights than merely
asking them to comment on a novel graphic. This worked to such an
extent that, in addition to revealing several design recommendations,
this section of the interviews generated responses that were informative
of expert statisticians understanding of inferential statistics in general.

4.2 Strawman Graphic: Design Iterations
We produced a total of three versions of the strawman graphics used as
design probes during the interview study.

Strawman #1. This graphic illustrates the overlap of two sample
distributions—the blue and orange samples—represented both as a pair
of histograms and as a pair of normal curves that had been fit to the
samples (Figure 2a). The goal for users was to determine whether
the two samples were similar enough in their means that they were
likely drawn from a common population, or whether they were so
unlikely to have been drawn from a single population that they probably
represented sub-populations. The graphic included an aid for users to
make this determination in the form of a difference ruler: a pair of grey
lines connected by a double-headed arrow signifying the amount of
separation two sample means needed to show to represent a statistically
significant difference for a given confidence level (alphas corresponding
to a p-value of .1, .05, .01. or .001). We drew on our own work on
fitting bell curves [23] in designing overlapping histograms to represent
a statistical test of two samples.

Strawman #2. This iteration (Figure 2b) was suggested by a par-
ticipant during one of the pre-interviews. It attempts to represent the
distribution of the test statistic for the two sample means, with arrows to
indicate how far out on the distribution a test statistic needed to fall to

indicate statistical significance at a given alpha level. The graphic was
created using a simulation process, in which 10,000 pairs of samples
were drawn from a normally distributed population with a mean set as
the mean of the two original samples (orange and blue and a variability
(standard deviation) as the joint variability of the two original samples.
For each pair of samples, a difference of means was calculated and these
mean differences were plotted in a 50-bin histogram to yield a fairly
smooth distribution. We added arrows to indicate the bar in which the
mean-difference resided representing the minimum difference required
for statistical significance at a given confidence level.

Strawman #3. Three of the first four participants indicated that
some version of overlapping confidence intervals was their internal
model of a t-test. Inspired by these interviews, the third iteration was
designed as a pair of overlapping 95% confidence intervals (Figure 2c).
Therefore, we included strawman #3 in all subsequent interviews.

Coded 

texts

Summary 

of texts

Primary 

codes

Thematic 

codes

Broad 

Themes

All Mindset texts 313

Tacit 260 107 44 6

Validity 61 15

All Tool texts 149

Multi-focus 115

Narrow-focus 38

Numbers 33

Limits 7 4 3

All Task texts 383

Myths 16 13 6

Comm 14 5 4

Note: Texts may generate multiple codes

Table 5: Coding overview. Summary of codes in interview transcripts.

4.3 Overview

Transcripts from 16 participants were assigned a total of 845 codes.
Table 5 gives an coding overview for each of the three perspectives.
In all, 313 texts were assigned codes associated with the Expertise
perspective. Tool codes amounted to 149 for mentions of specific
tools, including 115 listing broad-focus tools, 38 narrow-focus, and 33
symbolic ones (numbers). Finally, there were 383 occurrences of Task
codes. This likely reflects the structure of the interviews, which was
focused on the analytic process. Some mentions of specific tools and
analytic tasks were also collected from researcher notes.

4.4 Intercoder Reliability

Coding was tested for intercoder reliability via a 10% sample of tran-
scripts. Since coding was done on individual texts, the context of the
full interview—such as participant comments just prior to and following
each text in sample—are missing. This may have reduced reliability.

The validity code agreement between coders was 71%; Cohen’s
Kappa was found to be .588 (moderate agreement). TACIT coding
was also tested for intercoder reliability via a 10% sample at the broad
themes and detailed thematic code levels. Among broad codes, there
was 67.7% agreement, with a Cohen’s Kappa of .611 (substantial
agreement). Agreement between coders for thematic codes was 51.7%,
with Cohen’s Kappa at .495 (moderate agreement).

4.5 Broad Themes

The six broad themes have wide support from participant interviews
(Table 6). A majority of participants made comments coded into all six,
and no participant made comments coded into fewer than three.

• CAUTION. This theme expressed the multifaceted concerns statis-
ticians have in pursuing their work, and their approaches to ad-
dressing those concerns. It included thematic codes such as



Caution Expertise Limits Planning Viz Warrant

Participant 1 � � � � � �
Participant 2 � � � � �
Participant 3 � � � � �
Participant 4 � � � � � �
Participant 5 � � � � � �
Participant 6 � � � � � �
Participant 7 � � � �
Participant 8 � � �
Participant 9 � � � � � �
Participant 10 � � � � �
Participant 11 � � � � � �
Participant 12 � � � � � �
Participant 13 � � � � � �
Participant 14 � � � � � �
Participant 15 � � � �
Participant 17 � � � � � �

Table 6: Broad themes. Participant coding for the six broad themes.

PEOPLE ACT UPON OUR RESULTS, an admonition to remem-
ber that people trust statistical work, take action based upon it,
and, therefore, it is a statistical professional’s responsibility to put
in whatever time and effort is required to always provide the best
possible advice. The group also includes, DISTRUST FINDINGS,
which captured the many ways participants remind themselves to
always check and recheck their work, since statistical analysis is
a fundamentally complex endeavor which allows for many points
of failure. The CAUTION theme also touched upon statisticians’
relationship to inferential statistical methods, with, P-VALUES
ENCOURAGE BAD THINKING, referring to concerns in the sta-
tistical community about the tendency for statistical testing to
foment dichotomous thinking about complex realities, and, STAT
TESTS REQUIRED FOR PUBLICATION, expressing participants’
belief that whatever risks parametric statistical tests entail, they
are nonetheless required for acceptance within many scientific
communities, and thus must be used as best they can.

• EXPERTISE. This group applies to the several aspects of acquired
analytic understanding which, as a body, represent a divide be-
tween statistical professionals and people outside the field. It
includes codes such as, ANALYSIS TAKES A STATISTICIAN, cap-
turing participants’ expressions of their belief that people outside
the statistical field typically misunderstand at least some aspects
of quantitative work. It also included, STAT TESTING IS HARD
FOR STATISTICIANS, TOO, which captured participants’ expres-
sions that statistical inference is a subject so complex that they
don’t trust their own knowledge without the use of references.

• LIMITS. This theme captured several observations from partici-
pants describing ways that details of a data collection can limit
the range of statistical tools available to apply, but also the ways
in which the choice of statistical methods can limit the scope of
analytic research. These codes are not specifics about the various
limitations discussed, but, rather, the awareness among partici-
pants that quantitative work entails limitations. Example codes
include SAMPLE SIZE IMPORTANT, expressing the multiple de-
pendencies between sample size and the validity of inferences
made about sampled populations, and, STAT METHODS DEFINE
SCOPE, capturing expressions of how the tools of statistics define
the kinds of questions statistical research can address.

• PLANNING. These codes capture the importance of planning in
quantitative work: its utility, costs, and pitfalls. For example,
the code, PREDICT TO ESCAPE RATIONALIZATION, captures
the participants’ understanding that post hoc rationalization is a
constant temptation during analytic work which threatens results
validity, and that the way to avoid this through planning ahead;
they plan the analyses they will run, the test statistics they will
accept, etc. PLAN DEFINES SCOPE, captures the participants’
awareness of how the planning process, while vital to the work,
once entered, limits possible discoveries the work may yield.

• VIZ. This theme captures participants’ understanding of data
visualization as a tool in their analytic work.

• WARRANT. These codes capture participants’ sometimes contra-
dictory understandings of what elements within, or conditions are
required by, their quantitative work to support statements about
the world. These codes can be broad, such as, REALITY IS THE
AUTHORITY, expressing participants’ focus on always connect-
ing their computations as directly as possible to the subject of
their study, or checking results against expected values extracted
from “facts on the ground” sources, such as news reports. Some
are more specific, such as, EFFECT SIZE ≥ P VALUE, which ex-
pressed the common feeling among participants that statistical
significance was less important, or at least no more important,
than the practical significance in their results. For example, a trial
on a cholesterol drug with a large enough sample size might show
a statistically significant reduction in blood cholesterol levels, but
that reduction could still be so small as to have no expected effect
on clinical outcomes for patients.
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Pre-collection Gather Background � � � � � � � � � � � � � � � � � �

Data collection/cleaning Structuring data � � � � � � � � � � � � � � � �
Estimation � � � � � � � � � � � �
Distribution � � � � � � � � � � � � � � � � �
Data discontinuities � � � � � � � � � � � � � � �
Correlations � � � � � � � � � � � � �
Predict pattern/model � � � � � � � � � � � � � �
Confirmatory stat testing � � � � � � � � � � � � �
Consistency over time/space � � � � � � �
Make findings interpretable � � � � � � � � � � � � � �
Overcoming misunderstanding � � � � � � � � � �

Number of interviewees

Pre-collection 18 � � � � � � � � � � � � � � � � � �
Data collection/cleaning 16 � � � � � � � � � � � � � � � �
Exploratory analysis 17 � � � � � � � � � � � � � � � � �
Confirmatory analysis 15 � � � � � � � � � � � � � � �
Communicate findings 16 � � � � � � � � � � � � � � � �

� � �� � �� � � �� � �

Exploratory analysis

Confirmatory analysis

Communicate findings

All 5 task groups 13

Table 7: Analytic tasks. Participant coding for the Tasks perspective.

4.6 Analytical Tasks
The Tasks perspective derived from the initial review of researcher
notes proved to be well supported by subsequent formal coding pro-
cesses. Table 7 gives an overview. Thirteen of 18 participants reported
performing work steps which fell within all 5 of the proposed tasks,
and no participant reported fewer than 3.

Pre-collection activities, such as meeting with clients to determine
their needs, gathering background information on available datasets, or
proposing analytic methods, were universally reported among partici-
pants, with other steps nearly so.

Note that to qualify for the study, all participants began by con-
firming that they performed statistical testing as part of their regular
work process, or had at some point. Similarly, 17 of 18 participants
reported publishing their work publicly, and the 18th reported sharing
their work internally within their organization, all of which constitutes
communicating results. Therefore, it is likely that while these steps
were not universally captured during the coding exercise, all partic-
ipants did, in fact, perform these steps during their work. This may
further substantiate the Tasks perspective.

4.7 Tools Reported
Parsing transcripts for mentions of specific analytic tools (named meth-
ods, procedures, or statistical routines encapsulated within software
packages) resulted in three lists: Broad-focus, narrow-focus, and sym-
bolic tools. Unsurprisingly given the visual-analytic focus of these
conversations, visual tools outnumbered purely symbolic ones. How-
ever, we were surprised by the diversity of narrow-focus tools.

Some broad-focus statistical graphics have a long history, wide avail-
ability in software packages, and ubiquitous appearances in literature



Table 8: Chart usage. Incidences of chart usage per participant.

with statistical content. The authors interpret use of such tools as an
indicator of the degree to which participants fold visualization into their
work. While we captured all mentions of visualization (see the supple-
mental material for details), we focused on seven graphic forms based
on frequency and familiarity: SCATTERPLOT, HISTOGRAM, BOXPLOT,
LINE DIAGRAM, BAR CHART, TABLE,1 and PIE CHART.

Table 8 gives an overview of this list. All 18 participants used some
visualization from this list, likely with analytic intent. Scatterplots
were the most widely named graphic form, mentioned by 13 of 18
participants. Histograms followed closely, with 12. Both of these
forms are explicitly analytic in function compared with other forms
(pie charts) which are less useful for analysis but are sometimes favored
in communicating findings. Among participants reporting only 1 tool
used, it was either a Scatterplot or Histogram. All graphic forms on
this list were widely used with the exception of the Pie Chart (2/18).
On average, participants reported use 3.8 out of these 7 tools.

4.8 Graphic Elicitation
Twelve of 18 participants provided sketches representing what a sta-
tistical test looks like to them. Of the remaining six, two participants’
sketches (P-A and P-B) were captured via researcher notes. Some
participants indicated that they did not have a mental image other than
the definitions/equations of the test. Thus, they had nothing to draw.

All participants who provided a sketch were asked to walk the re-
searcher through their work. These walkthroughs and sketches have
been summarized in Figure 3. In total, 9 participants communicated
that their vision of a statistical test was a pair of sample centers (mean
or median) displayed side by side, with some indicator of sample vari-
ability around those centers (such as overlapping confidence intervals
or side-by-side boxplots). Five participants indicated they envisioned
the distribution of the relevant test statistic, with the location of the
realized test statistic noted, and with an indicator of the likelihood of
being at that location on the distribution. Two participants expressed
that their mental image of a statistical test was that of an equation and
provided no sketch (a third drew an equation). One participant named
a Forrest plot as their internal image of a statistical test, and provided
an example from the literature. One participant did not participate in
the graphic elicitation portion of the interview.

5 DISCUSSION

Here we report on our findings from the interview study, including the
role of visualization in statistics, the use need for evidentiary warrants,
and our design guidelines. We also discuss the limitations of our work.

5.1 Visualization According to Statisticians
Statisticians make extensive use of visualization. Every par-

ticipant in this study employed visualization as a regular part of their
1While numeric in content, tables make use of a visual schema [2].

analytic process. All 18 made use of one or more of the common
broad-use visualizations. Most used several. Most also used narrow-
use visualizations; 14 of 18 participants reported making use of at least
one specialized visualization with a narrow analytic focus. Indeed,
participants reporting using the fewest of the common broad-focus
visualizations all reported making use of a specialized narrow-use vi-
sualization. A third of participants (6/18) shared observations on the
limits of data visualizations while still making use of them.

Statisticians often conceptualize their work in visual terms.
Fourteen of 17 participants indicated that their internal conception of at
least one inferential method is visual. Eleven of 16 participants felt that
visualization is analysis, fully integrated into their quantitative work.

Maybe I just take that for granted, the image thing. I think once
we have data and the first thing probably is to plot the data and
see what [it] looks like. I think [...] to understand the data,
visualization is a very important tool. (P6)

Visualizations are not always shared. Yet despite their frequent
use of visualization and their understanding of their analyses in visual
terms, it is not necessarily the visualization work they share with others.

Oh yes. I use line graphs. I use bar graphs. I use scatterplots.
Absolutely. [...] Not something I would share typically... (P13)

Not good enough for visualization. Some participants described
using visualization, but did not think that counted as visualization. Two
(P4 and P13) felt that artifacts which rose to the level of deserving the
label, “visualization,” had to exceeded mere utilitarian analysis and
achieve aesthetic value, something they had little confidence they could
themselves create: “I am really bad at visualizing things.” (P13)

Charts are for communication. Statisticians find visualization
an indispensable tool for communicating results. Ten analysts talked
about visualization’s ability to communicate stories:

You have your analysis, your P-value, your confidence intervals,
your hypothesis test, what decision did you make, all of that.
That’s not what I’m going to put in a presentation typically. It’s
going to be the graph. [...] It [numeric representation of results] is
important, I’m not trying to minimize the importance of it, but it’s
not what people understand when you’re trying to communicate
a result [...] unless you’re in a room with statisticians. (P12)

Chart or calculation? For some, visualization may be preferable
to purely calculative methods. Five participants reported that visualiza-
tion provides more powerful evidence than numeric methods:

I tell every class I teach when we go through inference, do the
graphs first. And if the inference that you do doesn’t support what
you saw in the graph, something’s terribly wrong. (P12)

Yet nearly as many (4) reported the opposite, that math is a greater
evidentiary warrant, and gave a reason, namely, that visualization relies
too much upon the judgement of the analyst. As participant 5 said,
“Yeah, you don’t want to rely on your eyes. Having a number is better.”

Other strikes against visualization include the primacy of calculative
methods in achieving publication. Two participants reported some
version of being wary of aspects of p-value based statistical tests, but
using them because publication required it.

The cost of vis. Visualization can also result in a lot of work for
the statistician, without necessarily earning them concomitant rewards.
Intuitive design is critical for visualizations meant to communicate
findings, but intuitive design tends to disappear from view. Thus, a
statistician who works hours creating a display which their client can
understand with a glance is, in effect, hiding their work. This is the
“Designer’s dilemma,” where the more successful the work, the less it
might be noticed (or appreciated) by its consumers:



Comparing Sample Distributions (means and variability) Distribution of Test Statistic(s)

Equation of the Statistical Test
Overlapping confidence intervals

Side by Side boxplots (and Participant B - unrecorded)

t-statisticial distribution (and Participant A - unrecorded)

Overlapping clusters
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Fig. 3: Graphic elicitation examples. Examples of graphics for statistical inference elicited from participants.

So, [clients] think maybe you hand them a graph and the analysis
results and [they think], “Oh, that probably took them 20 minutes
to do that.” [...] But they miss all the hours and hours of work
that go into that final result. (P12)

A strained relationship. The relationship between statisticians
and visualization is complex, despite visualization apparently being
integrated into every phase of a statistician’s workflow. Different practi-
tioners give more or less emphasis to its use, though all the participants
in this study report using visualization for at least some phases of their
work. While it is possible that this outcome is a result of the Hawthorne
effect, we note that our interview protocol used deliberately open-ended
questions. Our participants were also seasoned professionals and not
impressionable novices. They variously reported using process dia-
grams for planning analyses, visual exploratory data analysis for both
data cleaning and hypothesis formation, specialized narrow-use visual-
izations during confirmatory analysis either as a reasonableness check
or a source of primary findings, and, finally, communication of results.
Further, most think about their analyses in visual terms, and find in
visualization a powerful tool for supporting evidence-based results.

P3 may provide the clearest example of the conflicted relationship
statisticians appear to have with visualization. This person reported
both a preference for calculative math over visualization, and vice versa.
On the one hand, in referring to one of the strawmen graphics:

So it seems like it’s more subjective in a way. And I don’t think
that a new statistician or anyone who’s been through the school
that I went through [...] has seen this often enough to make the
best decisions with it. (P3)

But on the other hand, when describing the process of understanding
a hypothetical regression output during their workflow:

Then I see where’s the plot? How does it look here? What’s the
shape? So all those things go on in my head. (P3)

5.2 Evidentiary Warrants
The human element. If visualization acts as interface between

the human and computer in extended cognition [25], then the resulting
compound system hinges upon human judgment—our visual intuitions,
visual acuity, subject matter pre-knowledge, and imagination. It is

thus subject to human biases, mental blind spots, and the various short-
comings of our eyes, as pointed out by 5/16 participants (4 describing
visualization as too subjective, and a fifth making much the same point
when suggesting reliance upon visual systems can reduce validity).

By contrast, traditional, equation-based statistical tests fully external-
ize the critical decision point, ostensibly removing the human element.
Provided results criteria are selected in advance (said 6/16 participants),
and all test assumptions are met (3/16), results from statistical tests
feel more objective. Five of 16 participants described relying upon sta-
tistical tests to provide evidentiary warrants for their findings, despite
nearly as many warning that p values encourage bad thinking (4/16).

For example, participant 15 expressed both ideas. On the one hand,
statistical tests encourage dichotomous thinking about situations:

There’s nothing wrong with frequentist methods [such as para-
metric statistical tests], but it’s kind of black and white. (P15)

Yet at the same time:

... [valid statistical testing] tells me whether my results should
be actionable and meaningful to someone... the actual [sample]
estimates themselves being different does not necessarily mean
that things truly are different in the population. (P15)

This reliance upon calculative statistical tests and distrust of visual-
ization appears to conflict with visualization’s wide use as an analytic
method by participants; it is in direct conflict with participants expres-
sions that visualization is an important check on the tests themselves.

A resolution of apparent conflicts. A central thread may explain
this conflict: the statisticians in our study argue against their own judge-
ments wherever they can, constantly seeking to verify their findings
with multiple independent methods. In short, it is not that these statisti-
cians trust this or that method and distrust another—they distrust them
all, or more precisely, never trust any one method by itself.

10 of 16 participants expressed the idea that they should always
distrust their own findings. For example:

So, you want to use simulation to test that and also compare to
the previous methods [...] and then you apply your methods [...]
and at this time you also need to talk with your collaborators [...]
And then they will help you to evaluate whether the results make



sense or not. [...] And then you want to analyze whether it is
because there is a bug in your method or in your code [...] (P6)

There’s always a reason. [...] It sometimes will come down to
sample size or the overall variation if it’s a two-sample test of
maybe one group has larger variation than the other. [...] Maybe
I’m wrong, but in my head there’s always a reason... (P12)

When numbers would seem to support their favored hypotheses,
these statisticians look to visualization to see whether unknown outliers,
gaps, or the like, explain away their findings. But if they see a pattern
in a visualization, they look to calculative methods to act as a check
on their eyes. Presented with an apparent difference between sample
means, they test whether there is any likelihood that random chance
can explain that away. They check their assumptions (7/16 participants)
and conduct parallel analyses (4/16). With already checked and tested
findings in hand, they ask subject matter experts whether the results
make sense to them (3/16 participants).

In each of these cases, we speculate that the statisticians are seeking
ways to undercut apparent findings. They pit one analytic method
against another, and all must line up for the experienced analyst to
accept a finding as probably, or even possibly, true.

Staying connected to reality. Among the most frequently ex-
pressed understanding captured during this study is the constant effort
by participants to link their results back to the reality they are meant
to describe. Fourteen of 16 participants discussed this during their
interviews. For example, said P9: “if necessary, go back and revise the
statistical analysis plan in light of the reality of the situation as we’ve
discovered it.” P11 put it this way: “... you should trust the data and
not come in with [...] strong priors.” P17’s thoughts were shared by
many: “And I find generally data will tell the truth.”

Effect sizes over math. Five participants (p1, p5, p6, p8, p13)
talked about the validity of their results hinging upon a clear and well
understood link between their measures and their phenomena of interest.
Indeed, seven participants described how thinking through facts was
key to understanding the math of their analyses. For example:

I don’t understand statistics. I will freely admit I don’t under-
stand it, purely mathematically. I understand it if I’m looking at
something tangible that has meaning to me... (P1)

It appears that a key outgrowth of this reality-focus is a preference
among many statisticians for privileging effect sizes over p-values.
Nine of 16 participants expressed this idea. Effect sizes are typically
some ratio of the difference in a key measure to the variability in that
measure, where large values indicate analytically important, rather
than merely statistically improbable, results. Effect sizes thus concern
the practical significance of a finding, rather than statistical (or prob-
abilistic) significance. In the current climate of concern over p-value
statistical testing, focusing on effect sizes is one potential answer. This
is also what current best practices in statistical reporting suggests [5].
It is also supported by prior work showing that confidence intervals can
cause people to overestimate effect sizes [18], and that more sophis-
ticated visual representations beyond typical error bars are needed to
convey effect size nuances [9]. If nothing else, focusing on effect sizes
necessarily means focusing on the reality of the subject.

Uncertainty is certain. Nine of the participants expressed their
understanding of a t-test as some version of a comparison of overlap-
ping confidence intervals, i.e., sample means with some indicator of
variability. This approach emphasizes the samples themselves, rather
than the unseen population they are meant to represent.

The t-test and p-value focus ultimately on the population, by posing
the likelihood of drawing such a sample if the population were ran-
dom with regard to some independent variable. Yet the majority of
participants in this study keep their focus on the samples, while asking
whether their results achieve statistical significance, and thus provide
an evidentiary warrant to make statements about the population. The

practical result is logically equivalent, but speaks to the difficulty of
statistical inference. In many cases, even the experts don’t fully em-
brace the meaning of the mathematics they rely upon, instead mentally
falling back on simpler heuristics.

5.3 Design Recommendations

Given statisticians’ own use of visualization in their analytic process, it
appears that, as a general approach, visualizing inferential statistics is
acceptable to the statistical community. However, it also appears that
no single visualization approach will have the confidence of that com-
munity. Rather, visualization should be paired with other confirmatory
tools. This will provide the analyst both an intuitive understanding of
the data (visual), and “more objective” numbers (where the decision
point is determined by the calculation rather than the user’s eye).

Furthermore, our findings indicate that visual inferential tools should
include an indicator of effect size that is declared in advance of see-
ing the data, just like alpha (minimum acceptable p-value), to avoid
post-hoc rationalization. Selecting effect sizes requires users to un-
derstand their data, usually by speaking to subject matter experts. It
also automatically combats dichotomous thinking, as having two mea-
sures to choose (alpha and effect size) turns the significance decision
multi-dimensional. We base this recommendation on prior work show-
ing that visualizations that show nuanced aspects of data can reduce
dichotomous thinking [17], as well as general inferential statistics [29].

5.4 Limitations

Our study in this paper involved a total of 18 professional statisticians,
but while we took care to choose participants from many different fields,
educational backgrounds, and demographics, there are certainly several
threats to generalizing these results too widely. Given the qualitative
and highly personal nature of these practices, we feel that it can be hard
to draw conclusive findings from our work. Furthermore, as discussed
in our positionality statement (Section 3.1), we ourselves as researchers
represent only a small fraction of the worldwide statistician population.

Our study was focused on parametric inferential statistics. Statistical
inference is obviously a much larger field, and includes topics such as
non-parametric and Bayesian methods. This may limit the generality of
our design recommendations and suggests avenues for future research.

While design probes have been proven effective because they pro-
vide a common ground for discussion [31], which can be helpful for
laypersons, they may also constrain ideation. Furthermore, our straw-
man graphics (Figure 2) are not radical or even particularly novel, and
perhaps a more radical set of design ideas could have sparked more
innovation. However, we took care to ask for graphic elicitation (Phase
II) prior to showing our graphics (Phase III) to avoid biasing the partici-
pants. Furthermore, the purpose of this study was mostly to understand
the mindsets and practices of professional statisticians, and more effort
will be needed to develop these graphics in the future.

6 CONCLUSION

We have presented results from a qualitative interview study involving
18 professional participants with the goal of understanding their use of
visualization (RQ1), mental models of inferential statistics (RQ2), and
thoughts on designs for visual inference (RQ3). Our findings, which
were coded and summarized from interview transcripts, suggest a sig-
nificant influence of visualization even in the workflows of statisticians
who self-report as “traditionalists.” In fact, many of their mental models
of statistical inference appear to be at least somewhat visually based.
We use these findings to suggest several design guidelines for how to
design new statistical and visualization tools that can help people make
sense of their own data.
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