
Route Packing: Geospatially-Accurate Visualization of Route Networks

Jieqiong Zhao
Purdue University

zhao413@purdue.edu

Shehzad Afzal
King Abdullah University
of Science and Technology
shehzad.afzal@kaust.edu.sa

Morteza Karimzadeh
University of Colorado Boulder

karimzadeh@colorado.edu

Guizhen Wang
Purdue University

wang1908@purdue.edu

Hanye Xu
Purdue University

hanye.vera.xu@gmail.com

Niklas Elmqvist
University of Maryland College Park

elm@umd.edu

Abish Malik
Davista Technologies

amalik@davistatechnologies.com

David S. Ebert
Purdue University

ebertd@purdue.edu

Abstract

We present route packing, a novel (geo)visualization
technique for displaying several routes simultaneously
on a geographic map while preserving the geospatial
layout, identity, directionality, and volume of individual
routes. The technique collects variable-width route
lines side by side while minimizing crossings, encodes
them with categorical colors, and decorates them
with glyphs to show their directions. Furthermore,
nodes representing sources and sinks use glyphs to
indicate whether routes stop at the node or merely
pass through it. We conducted a crowd-sourced user
study investigating route tracing performance with road
networks visualized using our route packing technique.
Our findings highlight the visual parameters under
which the technique yields optimal performance.

1. Introduction

Visualizing several routes on a geographic map
while preserving the geospatial layout of the routes is
a challenging task. Routes may overlap or cross each
other, merge and depart again, share the same edge but
have opposite directions, and have different semantics,
speeds or volumes. Many state-of-the-art techniques
tend to use visual or data grouping techniques—such
as edge bundles [1, 2], flow map layouts [3], and
metro maps [4, 5]— that not only cluster entities into
groups but also simplify their exact movement paths
into schematic maps. Based on the same principles as
Harry Beck’s tube map from 1931 [6], these techniques
reduce complex paths into straight lines and organize
haphazardly scattered nodes onto a regular grid to
facilitate comprehension and legibility.

But what if we are truly interested in the exact
geospatial position and layout of a particular path?
Consider a supply-chain network of multiple trucks
transporting goods from a distribution center to a set
of receiving sites on a daily basis, such as for a

fast food restaurant chain. What if we need to be
able to distinguish individual routes, even when they
temporarily merge together on the same physical road,
only to separate again? What if we need to be able to
follow a route that passes several nodes (i.e., restaurants)
without stopping before reaching its destination? And
what if we also need to preserve the temporal order and
volume of goods being transported on each individual
route? What if there is a high risk of flooding (or
other kinds of risks) in the covered area, and the
planners need to route the trucks while overlaying maps
with flood (or other kinds of risk) maps to mitigate
the delivery risk? Distorting the nodes and routes
into schematic maps in such scenarios at best slows
the human decision-maker down, and may lead to
confusion or poor planning. These additional constraints
conflict with the visual and data aggregation techniques
reviewed above, highlighting that current techniques are
ill-equipped to handle situations in which the geospatial
layout provides indispensable geographic context.

Compared to schematic maps (e.g., metro maps [4,
5]), geospatially-accurate maps (henceforth referred to
as geo-accurate) preserve the exact geographic location
of entity paths and are thus more understandable to
humans. For instance, London Underground publishes
a geo-accurate metro map [7], particularly after Guo [8]
estimated that up to 30% of London travelers take wrong
routes with the schematic metro map. Geo-accurate
maps can be particularly important for tasks where
location is critical to decision-making. For example,
supply-chain companies monitor road conditions of
specific locations when a hurricane may block their
delivery routes [9]. Similarly, Google Maps provides
traffic and accident locations on the map (for a single
route) to help users select a fast and safe route. Although
geo-accurate maps are important in decision-making,
research on how such maps can be best visualized
remains limited, especially on visualizing several routes.

In this paper, we present a novel technique for
geo-accurate visualization of routes called route packing

(A)

(A)

(B)

(B)

Figure 1. Route packing for a supply-chain network consisting of multiple individual routes (distinguished by

categorical color encoding). Routes that share the same road for part or all of their stretch are packed rather

than merged into a single line, preserving their identity. Glyphs on routes and on nodes indicate the direction of

the route and whether they pass or stop at a specific node.

(Figure 1) that groups multiple routes sharing the same
geographic space side-by-side without bundling them
(while minimizing crossings), thereby preserving the
identity of each individual route. While similar to metro
maps [5], route packing does not simplify routes into
straight or diagonal lines, but instead preserves their
length, direction, and geospatial layout, making it useful
for logistics planning and applications where geographic
context is important. The route packing algorithm is
sufficiently flexible to encode volume (such as amount
of goods, traffic, or cost) into the width of the graphical
line representing each route. To indicate whether a
route stops at a specific node or merely passes it by,
we use glyph decorations on nodes. Route packing is
appropriate for visualizing 10-20 routes simultaneously
(typical of supply-chain planning scenarios), enabling
decision makers to compare the routes while preserving
geographic context. Figure 1 presents an exemplar
supply chain network from a fast food company, with
five trucks delivering products to 20 stores, where each
truck stops at 5–9 stores.

We also evaluate our route packing technique using
a crowd-sourced user study involving more than 100
participants. Since no directly-comparable visualization
technique exists in the literature, we opted to measure
user performance using variations in route packing
design. We applied the design choices proposed by

Holten et al. [10, 11] for visualizing directed node-link
diagrams to route packing, comparing visual perception
for arrows, tapered routes, and transparency. Our
findings show that redundant encoding using both
arrows and tapered lines resulted in the best performance
for tracing routes in the network.

2. Related Work

Route networks can be visualized in three major
ways [12]: When the geospatial position of vertices
and edges is important, geo-accurate (or geo-referenced)
networks are required, which can further be organized
into traditional space-preserving vs. distortion-based
representations. On the other hand, sometimes only
the connectivity of the network is needed, in which
general graph visualization is sufficient. Metro maps
are a hybrid approach in which the network is laid out
to maximize legibility, yet maintain some relation to the
geographic position of the vertices and edges. Below we
review these topics in more detail.

To show multiple routes simultaneously in
geo-accurate maps, many techniques have utilized
entity clustering algorithms with flowlines, including
Phan et al.’s flow map layout [3], Andrienko and
Andrienko’s silhouette graphs [13], Hadlak et al.’s
attributed hierarchical structures that change over
time [14], and Bouvier and Oates’s staining with flow

arrows [15]. Cornel et al. recently presented composite
flow maps [16], which extract flows based on the
structure of route shapes but then abstract and combine
flows as ribbons. Our route packing technique stays
faithful to the geospatial layout of the route network
(helping users perceive the length of routes), preserving
the individual identity and direction of routes while
minimizing displacement and crossings.

Distortion-based methods distort the geometries in
geographic space to optimize legibility or visual search.
Cartograms, where area and distances in a map are
distorted based on a variable such as population, are
the origin such techniques [17], leading to work such
as Mélange space-folding [18], and the generalized
transmogrification space distortion framework [19] for
keeping visibility by distorting space.

Our route packing technique does not distort the
geographic space of the map itself, but it does distort
the geometric stretch of the routes in order to avoid
occlusion. This is essentially similar to a static version
of the EdgeLens [20], which provides an interaction
to visually separate multiple edges around a node to
optimize their visibility.

Modeling a route network as a graph is possible
if only the connectivity of the network is significant.
Current graph layout algorithms can be used to find
optimal positions for the vertices and edges [21].
Some graph visualization techniques have focused on
preserving the overall topology (e.g., [22]) or intelligent
routing of edges [23, 24]. However, while these efforts
fulfill part of our needs in visualizing route networks,
they are not suitable for geo-accurate maps.

Similar to geospatial visualization, scale is a key
challenge for graph visualization. Early solutions
focused on clustering vertices into groups [25], but
recent work has instead used edge bundling [1, 2]
where edges are grouped together to reduce occlusion.
Interestingly, current edge bundling approaches are
reminiscent of the flow map and flowline layouts
discussed above. However, clustering and bundling
for graphs have the same drawback, which is that the
identity of individual entities is not preserved.

Nevertheless, we draw on prior graph visualization
research. Holten and van Wijk in 2009 presented
an in-depth user study on edge tracing in node-link
diagrams [11], and in 2011, extended the study to a
wider set of visual representations [10]. Our user study
in this paper is based on these two studies, and we also
derive our visual representations for directionality from
their design space exploration.

Metro map layouts usually use vertical, horizontal,
and diagonal edge directions, but maintain the
geographic relations between nodes (or stations) [12].

Wu et al. [26, 5] studied the visualization aspects of
automatically generating metro maps from a geographic
map and connectivity graph. While this kind of
layout has does not respect the geographic locations of
edges, there are overarching design ideas here that are
worth adopting. For example, Shen and Ma [4] use
map layouts to visualize multiple parallel paths in an
adjacency matrix representation of a graph. Similarly,
Alper et al. [27] provide a linearized view of their
LineSets visualization using the familiar visual language
of metro maps. Our route packing technique builds on
these ideas; we juxtapose incident routes side by side
without bundling them together into a single unit, and
use metro station visual encodings to communicate route
crossings and shared stops.

Excessive crossings in metro maps can cause visual
clutter and confusion for the end-user. The metro-line
crossing minimization (MLCM) problem was proposed
and formulated by Benkert et al. [28] in 2007. Bekos
et al. [29] studied the MLCM problem on the graph
structure of a path or tree. Later, Asquith et al. [30]
applied integer linear programming to solve the problem
for general graphs. Nöllenburg [31] and Mink at el. [32,
33] applied their line ordering methods on embedded
graphs with an obvious relationship between vertices
and edges. Extending these design principles from the
MLCM research, we adapted the prior lines placement
algorithms to keep the relative order along the edges and
change the order in vertices.

3. The Route Packing Technique

Route packing juxtaposes overlapping routes side by
side to keep the identity of each route distinguishable
while staying faithful to its geographic footprint. In this
section, we describe the details of our approach.

3.1. Data Model

The data model for route network visualization
consists of a georeferenced graph G =< V,E >
modeling both the topology and the geographic position
of the network as well as a set of routes R =
{r0,r1, . . . ,rn}. A route ri =<Vi,Ei > is a list of vertices
Vi = (vi,0,vi,1, . . . ,vi,n) representing the stops along the
way, as well as a list of edges Ei = (ei,0,ei,1, . . . ,ei,n−1)
representing the path between them.

Unlike some road networks that model only
the major cities in the network using vertices,
the georeferenced graph uses vertices with specific
geographic positions to model the geometry of the road.
Figure 2 shows an example of a small route network
with major nodes A,B, . . . ,G, and many minor vertices
modeling waypoints along the roads. Since the edge list
in a route ri contains sufficient information to determine

its geometry, the vertex list in the route is only used
to determine which of the vertices along the route are
stopping points. We call each consecutive pair of
vertices in a route a leg. For example, the highlighted
route in Figure 2 consists of the legs (A,B) and (B,F).

A

B

C

D
E

F

G

e1
e2 e3

e4

e5

e6
e7

e8

Figure 2. Example of a route in a route network.

The highlighted route consists of two legs—A to B,

and B to F—where the route stops temporarily, as

well as the edges e1, . . . ,e8 making up the actual path.

3.2. Design Rationale

Given this data model, we formalize our design
requirements for the route packing technique as follows:

R1 Preserve route edges: All edges in a route network
should be preserved so that they can be distinguished
from other edges and matched to routes.

R2 Preserve route legs: Legs along a route should be
distinguishable so that endpoints can be identified.

R3 Convey direction: The direction of a particular
route should be conveyed across its entire path.

R4 [Optional] Convey volume: Legs can optionally be
associated with a weight representing volume, e.g.
the amount of goods being transported.

The challenge for virtually all of these requirements
is that a typical multi-route network contains a
significant amount of overlap. For R1 (preservation of
edges), the problem is that many routes will be sharing
the same geographic stretch of a road for a partial (or
full) leg. Sometimes the same stretch of road will
be shared by two different routes heading in opposite
directions, which challenges R3. For R3, routes may
pass by certain vertices without stopping, whereas other
routes do stop. Here, the challenge is to convey whether
or not a particular route stops at a vertex.

3.3. Visual Design: Route Layout

Since different routes may share the same stretch of
a road, directly visualizing different routes can generate
severe visual confusion and hinder effective recognition
of routes. For example, in Figure 3(a), the visual
overlapping of the three routes makes it hard for a

(a) Occlusion of edges in route. (b) Route packing to preserve
edges.

Figure 3. Example of three routes in (a) with

significant overlap in a shared part of the road,

causing occlusion. In (b), route packing has been

applied to separate edges so that they are

distinguishable and identifiable. Edge crossings are

sometimes inevitable.

viewer to see detailed geographical information about
the occluded edges. Route packing shifts and packs
route edges to minimize visual overlap, resulting in the
packed layout in Figure 3(b). The layout algorithm
consists of several steps:

1. Detecting overlap: Due to the high precision of
GPS coordinates, small data errors in GIS databases,
and specific terrain conditions such as varying road
width, route edges do not necessarily have to
share the exact coordinates to exhibit overlap when
rendered on the screen. To detect overlapping edges,
we apply linear Kernel Density Estimation (KDE)
to build a route network skeleton that groups route
edges that are in close geographic proximity. Route
edges are overlapped if they share some part of the
skeleton.

2. Shifting and packing: Once overlapping edges
have been detected, we shift them (displace them
from their original position) to eliminate the overlap,
and then pack them (bring them together along the
same path while respecting edge width) one by
one (Figure 3(b)). The displacement should be
minimal and perpendicular to the edge direction for
consistency. When displacing one edge, another
edge that was not previously overlapped may become
occluded. Therefore, these two stages—detection
and shift/pack—are iterative and must be repeated
until no more overlap is detected. When two edges
overlap, only one of them must be shifted and
packed. We apply route crossing minimization to
decide which edge should have priority over the
others (more details in Section 3.6).

3. Rendering: We use a categorical color assignment
based on the topology of the route network skeleton
(from Step 1) to render adjacent routes with different
colors. Additionally, we use a white halo around each
route line to visually separate packed routes.

3.4. Visual Design: Route Direction

Route Direction: Visualizing route direction (R3) is
challenging due to limited space and potential for visual
clutter. Inspired by Holten et al. [10, 11], we propose
three alternative designs for conveying direction:

• Arrow glyph: An arrow is an intuitive representation
to encode direction. We place multiple arrow glyphs
at regular intervals along the entire route to fulfill R3
(Figure 4(a)). The size of the arrow is scaled by the
width of the route line to save space and reduce clutter.

• Transparency gradient: This method uses a gradient
of increasing transparency to convey the directionality
(Figure 4(b)). The gradient can be applied to an entire
route, or repeated for each leg.

• Tapered line: This design uses a variable-width
route line that starts out at full thickness on the
start node and tapers to smaller thickness at the end
(Figure 4(c)). As for the transparency gradient, this
design can be applied globally for an entire route, or
repeated over and over again for each leg on the route.

(a) Arrow glyphs (b) Transparency
gradient

(c) Tapered line

Figure 4. Three visual design alternatives for

conveying route directionality.

While we considered using a color scale such as the
red-to-green mapping proposed by Holten et al. [10, 11],
we ultimately decided against this visual design because
we already use categorical color to differentiate routes.

3.5. Visual Design: Nodes

Multiple routes may share the same locations
as starting or stopping points; for example, in a
supply-chain network, all routes tend to begin and end
at a few distribution centers. This poses a challenge to
effectively identifying and distinguishing those points of
multiple routes (R2). For this reason, we propose three
visual designs for communicating this information:

• Concentric rings: Inspired by metro maps [6], we
overlay concentric rings with different colors on the
node to indicate whether it is a waypoint for the
corresponding color-coded route (Figure 5(a)).

• Cookie bites: Here, arrows pointing into the center of
the node convey a stopping point; an arrow pointing
out conveys the route leaving the node (Figure 5(b)).

• Integrated arrows: Similar to cookie bites, but
the arrowheads are integrated into the route lines
themselves to reduce visual clutter (Figure 5(c)).

(a) Concentric rings (b) Cookie bites (c) Integrated arrows

Figure 5. Design alternatives for nodes where the

blue route (SW → NE) passes by a node, but where

the green route (NW → SE) makes a stop.

Our current implementation uses concentric rings
because of their ubiquity in metro and subway maps.

3.6. Implementation

Our route packing system is implemented using the
web-based D3 [34] toolkit. Map and route network data
are retrieved using the Bing Maps REST services1. For
each route, we query for the shortest driving distance
and retrieve high-precision coordinates along the routes.

Bing Maps’s outputs include thousands of sequential
pairs of latitude and longitude. To simplify the raw
graph data model, we first detect all overlapping routes
(i.e., e4, e5, e6, e7 between leg (B, F) in Figure 2). For
each shared route, we extracted its start point (i.e., B
in Figure 2) and end point (i.e., vertice between e7 and
e8 in Figure 2) as the crucial vertices to build a pruned
graph. After that, we juxtapose shared routes side by
side and minimize the number of crossings between
routes (Algorithm 1). We preserve the relative shared
routes displacement order within an edge between two
crucial vertices and rearrange the displacement order for
its consecutive edges if needed. In what follows, we
elaborate on the details of our approach.

3.6.1. Detecting Shared Routes

We first detect shared sections of different routes,
which may be occluded and hinder the effective
recognition of routes (Figure 3). We use an approach
based on linear KDE adopted from Lampe and
Hauser [35] to extract the skeleton of the road network
and identify groupings based on proximity. Figure 6(a)
shows the result of applying linear KDE on the raw
output from Bing Maps APIs. After converting to a
binary image, we then apply the Zhang-Suen thinning
algorithm to extract a skeleton of the route network [36]
(Figure 6(b)). Finally, we apply a bifurcation detection

1https://msdn.microsoft.com/en-us/library/
ff701713.aspx

https://msdn.microsoft.com/en-us/library/ff701713.aspx
https://msdn.microsoft.com/en-us/library/ff701713.aspx

(a) Linear KDE. (b) Thinning. (c) Bifurcation Points

Figure 6. An illustration of applying linear KDE in (a) and then thinning algorithm to extract the skeleton of the

road network in (b). In (c), red rectangles highlight the extracted results of bifurcation points.

algorithm [37] to identify intersections (Figure 6(c)) as
crucial vertices to build a pruned graph.

Algorithm 1. Minimize route crossings algorithm.

3.6.2. Shifting and Packing Overlapping Edges

After detecting shared routes, we obtain a graph
of vertices (intersections and destinations) and
intermediary connecting edges. Each vertex in the

graph is assigned a unique integer ID and each route leg
as a sequence of vertices with these IDs. Two phases
of processing are applied to obtain the proper ranking
and the displacement of shared edges. To minimize
crossings and reduce visual clutter, we adopted the
MLCM algorithm in [31] and customized it for Route
Packing to account for turns greater than 90 degrees.

We consider each vertex as an intersection of traffic
either merging or diverging, and based on that, we
determine the displacement order of different edges.
This strategy has drawbacks when we draw an entire
route along multiple edges, e.g. a large shift of
displacement for two consecutive edges may generate
extra curves. Our displacement algorithm can reduce
such turbulence and minimizes crossings along the
direction of a route: Algorithm 1 takes the reconstructed
route network graph as input and generates the relative
rank of each route. We generalize the comparison
between two routes as diverging traffic.

𝑉𝑝𝑟𝑒𝑉𝑐𝑢𝑟

𝑉𝑔,𝑛𝑒𝑥𝑡

𝑉𝑟,𝑛𝑒𝑥𝑡

𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑓𝑓𝑔

𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑓𝑓𝑟

𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟
vector

𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑓𝑓𝑔 = 𝑎𝑛𝑔𝑙𝑒 𝑉𝑔,𝑛𝑒𝑥𝑡 − 𝑉𝑐𝑢𝑟 − 𝑎𝑛𝑔𝑙𝑒(𝑉𝑝𝑟𝑒 − 𝑉𝑐𝑢𝑟);

𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑓𝑓𝑟 = 𝑎𝑛𝑔𝑙𝑒 𝑉𝑟,𝑛𝑒𝑥𝑡 − 𝑉𝑐𝑢𝑟 − 𝑎𝑛𝑔𝑙𝑒 𝑉𝑝𝑟𝑒 − 𝑉𝑐𝑢𝑟 ;

𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑣𝑒𝑐𝑡𝑜𝑟 ⟵ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑐𝑙𝑜𝑐𝑘𝑤𝑒𝑖𝑠𝑒 90° 𝑡𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 𝑉𝑐𝑢𝑟 − 𝑉𝑝𝑟𝑒 ;

𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑓𝑓𝑔 > 0, 𝑎𝑛𝑔𝑙𝑒𝐷𝑖𝑓𝑓𝑟 < 0

⟹ 𝑟𝑒𝑑 𝑟𝑜𝑢𝑡𝑒 𝑡𝑒𝑛𝑑 𝑡𝑜 𝑏𝑒 𝑡𝑜𝑝 𝑎𝑙𝑜𝑛𝑔 the direction of perpendicular vector;

𝑥

𝑦

Figure 7. A generalized scenario of calculating the

order of routes for a shared subpath.

Suppose two route legs share at least one edge. The
displacement of routes on shared edges is decided by
the angles where the routes leave the overlap subpath.
Figure 7 demonstrates a visual example corresponding
to pseudocode line 4–17 in Algorithm 1. First, we
need to identify the longest common subpaths between
all route legs. The displacement among the common
subpath does not change, until two routes separate. As
shown in Figure 7, we put the last vertex in shared

subpath on the center of the coordinate system. Then
we align the second to last vertex in the shared subpath
on the positive x Axis by subtracting the angle of vector
(Vpre−Vcur). The range of an angles is (−180,180]. The
perpendicular vector is defined as counter-clockwise 90
degrees to the vector (Vcur −Vpre) along the moving
direction. The red route tends to be top towards the
direction of the perpendicular vector. After comparison
of all shared subpaths, the rankings of all edges are
determined. The ranking of a route for an edge towards
its perpendicular vector direction is equal to how many
time it lost in comparisons.

3.6.3. Transparency Gradient and Tapered Line

We use a gradient of increasing transparency
to indicate route direction, where the transparency
increases along the route from the starting point until
the end point. For the current implementation, we
set 35% and 100% as the minimum and maximum
opacity.Similarly, for the tapered line, we utilize a
variable-width route line that begins at maximum
thickness at the start node, and tapers down to a
minimum thickness by the end node. The width
value is chosen to avoid unnecessary space usage while
facilitating visual identification of the change in line
width. In our implementation, we select 2 and 6 pixels
as the minimum and maximum width.

4. User Study

We conducted a crowdsourced user study using
Amazon Mechanical Turk to validate our design choices
and determine the best directionality encoding for route
packing (Table 1). Our participant pool were all
crowdworkers. Route maps are common in daily life,
and thus, it makes sense to engage a general population
in the study. We recruited 132 (56 female) participants
using Amazon Mechanical Turk with an age range
between 20 to 68. Color blind users were excluded
through self-reporting. Participants were paid $0.80
and spent an average of 10 minutes on the experiment.
Sessions were performed using a web browser on
desktops, laptops, and a few tablets.

Table 1. Experiment setting.

Group ID Representations Participants

Group 1 Transparency Gradient, Arrow Glyph (TRA) 32Local Tapered Line, Arrow Glyph (LTA)

Group 2 Transparency Gradient (TR) 35Local Tapered Line (LT)

Group 3 Arrow Glyph (AG) 37Global Tapered Line, Arrow Glyph (GTA)

Group 4 Global Tapered Line (GT) 28Arrow Glyph, Concentric Ring (AGR)

4.1. Dataset and Task

Our experimental trials were designed by choosing
different locations in the U.S. to generate random
georeferenced graphs. To generate a georeferenced
graph, we first randomly selected 10 nodes for a
specified geospatial bounding box. To ensure similar
task complexity, the 10 nodes were connected in an
undirected graph. From these 10 nodes, we generated
a total of 3 to 5 routes by randomly selecting 3 to 5
nodes (i.e., stops) to generate a connected route. We
then retrieved a georeferenced subgraph for each route
using the Bing Maps REST services API. Finally, we
applied route packing on the resulting graph.

In the experiment, participants were shown a map
visualization with two highlighted nodes. They were
asked to determine whether the two nodes (i.e., stops)
were connected through a route; that is, whether there
existed a route that allowed them to travel from a
given source to destination. We chose this task to
ensure that our technique is able to visualize a route
between two nodes effectively, even when multiple
routes (sharing the same legs or crossing) are present.
Jumping from one route to another route to reach the
destination was explicitly forbidden, but there could be
intermediate stops along the path between A and B, as
shown in Figure 9(a). We emphasized the importance of
directionality in the route network, but did not limit the
number of intermediate nodes between stop A and B.

4.2. Experimental Factors and Design

The two experimental factors tested in the
experiment are visual representations to convey
directionality and levels of complexity. It is important
to note that these two factors were tested in the
context of multiple routes, and therefore, testing route
packing in general. Firstly, We have three major
designs for preserving route directionality: arrow glyph
(Figure 8(a)), transparency gradient (Figure 8(b)),
and tapered line (Figure 8(c)). The tapered line can
be applied at two different scales: localized tapered
line (stop to stop), and global tapered line (an entire
route). Three different visual encoding strategies
for indicating directionality were also evaluated:
transparency gradient, local tapered line, and global
tapered line. All these strategies can be applied alone or
in combination with arrows that results in dual encoding
of directionality. Beyond connectivity, we also studied
the utility of the concentric ring design (Section 3.5).
Table 1 shows the final set of representations we tested
in the experiment. Secondly, the two complexity levels
of questions tested in our experiment are: (a) stop
A is directly connected with stop B, or (b) stop A is

(a) Arrow glyph (AG). (b) Transparency gradient (TR). (c) Local tapered line (LT).

Figure 8. Three variants of route packing using different directionality methods.

connected with stop B through an intermediate node
(Figure 9). This connectivity task is equivalent to that
of Holten et al. [10, 11].

A	 B	

(a)

A	 B	
C	

(b)

Figure 9. Complexity levels of user study questions.

To minimize the number of different visual
representations for each participant and to keep each
session under 10 minutes, we conducted the experiment
in four groups. For each group, the participants were
presented with two visual representations (2×Vis), and
were given ten trials per representation: 5× two− stop
(directly connected) routes, and 5× three− stop (one
intermediate node) routes. This total of twenty trials in
each group was generated using the same georeferenced
graph data, but with different representation methods.
We measured both accuracy and time spent on each trial.

After conducting the user study with 135 number
of participants, we analyzed the correctness and
completion times for different visual representations
by averaging the results of all trials for the specific
representation. We removed the data of 29 participants
from our analysis as their performance was determined
to be similar to chance (i.e., their results indicated that
they had randomly clicked on any answer).

Table 2. Effects of factors on completion time.

Effect Num OF Den DF F Value Pr >F
Vis 7 2216 6.88 <.0001

Difficulty 1 2216 1.74 0.1867
Vis*Difficulty 7 2216 2.00 0.0519

4.3. Experiment Results
Figure 10(a) summarizes the correctness results for

the eight different visual representations. The vertical
axis shows the correctness ratio scaled from 0 to
1. We conducted a logistic regression with binomial
distribution on the correctness ratings, and found
no significant effect of visualization on correctness:
F(1,7) = 0.46, p = 0.8650. This indicates that the
different visual representations have similar correctness
results (i.e., the different representations convey the
information with similar accuracies).

TRA LTA TR LT AG GTA GT AGR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

C
or
re
ct
ne
ss

TRA
LTA
TR
LT

AG
GTA
GT
AGR

(a) Average correctness.

TRA LTA TR LT AG GTA GT AGR

0
20

40
60

C
om

pl
et

io
n

Ti
m

e
in

 s
ec

on
ds

TRA
LTA
TR
LT

AG
GTA
GT
AGR

(b) Average completion time.

Figure 10. Correctness and completion time plots

for eight route visual representations.

We measured the completion time for each
representation by averaging across all trials. We
analyzed the results using a repeated-measures analysis
of variance (assumptions met). Visual representation
had a significant effect on completion time: F(1,7) =
6.88, p < .001 (Table 2). Figure 10(b) shows average
completion time as a function of the eight route visual
representations. These two completion time results
indicate that the different route visual representations
have significant effect on completion time in our study.

The participants completed a post-test questionnaire
for providing subjective feedback and overall preference
on visualizations. 76 participants (≈57.5%) preferred
arrow glyphs (AG), followed by transparency
(33 participants≈25.0%), and tapered design (23
participants≈17.5%). It is notable that participant
preference is different from their performance.
Participants achieved the highest speed with the
tapered design (tapered<TR<AG). We compared the
preference of individual designs to actual completion
time. The participants who preferred AG spent
20.2 seconds on average, while the participants who
preferred the tapered design spent 14.7 seconds on
average. To sum up, AG might be easier to understand
and more preferable due to familiarity, but the tapered
design is a better choice in actual tasks for following
directions of routes.

We summarize our findings from the user study as
follows (Figure 11):

• Users spent less time solving trials using local tapered
lines with arrows (LTA) than using transparency
gradient with arrows (TRA) and arrow glyphs (AG).

Fast

Slow

LTA	
2	

GTA	
6	

LT	
4	

TRA	
1	

AG	
5	

TR	
3	

Figure 11. Pairwise relationships of visualization by

completion time (Tukey HSD, p < 0.05).

• Users spent less time solving trials using local tapered
lines (LT) than using transparency gradient (TR) and
arrow glyphs (AG).

• Users spent less time solving trials using global
tapered lines with arrows (GTA) than with using arrow
glyphs (AG).

• There were no significant differences between arrow
glyphs with concentric rings (AGR) and other
visualizations.

• Overall, tapered representation performed the best.

4.4. Explaining the Results
The results from our study validate our design

objectives that different route visual representations
would garner different performances. We also find that
design add-ons (arrows, concentric rings) do not have a
major effect on completion time. These results provide
guidance for the optimal design of route visualizations.

In Figure 11, we demonstrate the relationships
between the 6 different route visual representations
based on our posthoc analysis (significant to p <
0.05). We find that tapered line design is the best
design compared to the other options because all of
the techniques involving tapered designs—GRA, LTA,
and LT—are superior to some other techniques even if
there is no global order. More specifically, both LTA
and LT have a shorter completion time compared to
TRA, TR, and AG. In addition, GTA performed better
than AG. We conclude that the tapered line design
outperforms the other visualizations in conveying route
directionality. This result is also consistent with the
work by Holten et al. [10, 11], which found that a
tapered design was optimal for visualizing directed
edges in graphs. However, we find no significant
difference in performance between the transparency
design and routes with arrows. In addition, add-on
arrows do not increase user performance with any of the
types of visual design. Surprisingly, our analysis shows
that there is no advantage to adding concentric rings at
stops for conveying waypoints. A case study that shows
the utilization of a tapered design and concentric rings
for flight planning in the aviation domain is provided in
the appendix2.

2https://docs.lib.purdue.edu/purvacsup/1

4.5. Generalizing the Results
Our design is applicable to any closed route network

for the visualization of 10-20 routes simultaneously. The
number of routes is limited because the route packing
technique consumes extra spaces to juxtapose routes
while preserving their geographic information.

Furthermore, we conducted our study using
Mechanical Turk. Our participants were diverse with
different proficiency levels. This indicates that our
participant pool is fairly representative of the general
population. We also obtained consistent results from
our participants, which is another indication that our
findings generalize to other audiences. Though our
subjects were non-experts, we expect that our results
will hold with route planning experts.

Finally, the scalability of our techniques is difficult
to assess given our evaluation results. The tasks were
relatively small in scope; see Figures 8 for example
images. To evaluate the effectiveness of conveying
directionality, we only included 10 nodes (i.e., potential
stops) in our route network trials. For larger and more
dense route networks, route packing may cause too
many routes to be packed in parallel, thereby consuming
too much screen space. For instance, the packing
strategy would fail if a dozen routes share the same
tight U-turn on the map. Thus, additional filtering and
zooming interactions need to be incorporated to support
the analysis of larger networks.

5. Conclusion and Future Work
We presented a novel technique for visualizing

routes on geographic maps called route packing,
where the focus is to remain faithful to the identity,
directionality, and weight of each individual route. To
validate the utility of the technique, we also presented
results from a controlled user study. The results
point to the overall utility of the technique as well
as the tradeoffs involved in the complexity and detail
of the dataset to be visualized. In future research,
we plan to apply route packing to a visual analytics
tool for supply-chain logistics and simulation, as well
as exploring its potential in other domains. Given
that our current study in this paper was conducted
with participants drawn from a general population, we
are interested in determining how domain experts in
supply-chain management may utilize our visualization.
A comparative experiment against other techniques
tackling route overlap is another possible direction that
future research can undertake.

6. Acknowledgments
This work is funded in part by the U.S. Department

of Homeland Security VACCINE Center under Award
Number 2009-ST-061-CI0003.

https://docs.lib.purdue.edu/purvacsup/1

References
[1] D. Holten, “Hierarchical edge bundles: Visualization of

adjacency relations in hierarchical data,” IEEE Transactions
on Visualization and Computer Graphics, vol. 12, no. 5,
pp. 741–748, 2006.

[2] D. Holten and J. J. van Wijk, “Force-directed edge bundling for
graph visualization,” Computer Graphics Forum, vol. 28, no. 3,
pp. 983–990, 2009.

[3] D. Phan, L. Xiao, R. B. Yeh, P. Hanrahan, and T. Winograd,
“Flow map layout,” in Proceedings of the IEEE Symposium on
Information Visualization, pp. 219–224, 2005.

[4] Z. Shen and K.-L. Ma, “Path visualization for adjacency
matrices,” in Proceedings of the EuroGraphics/IEEE VGTC
European Symposium on Visualization, pp. 83–90, 2007.

[5] H.-Y. Wu, S. Takahashi, C.-C. Lin, and H.-C. Yen,
“Travel-route-centered metro map layout and annotation,”
Computer Graphics Forum, vol. 31, no. 3, pp. 925–934, 2012.

[6] A. Degani, “A tale of two maps: Analysis of the London
underground ”diagram”,” Ergonomics in Design, vol. 21, no. 3,
pp. 7–16, 2013.

[7] J. Brownlee, “The London Underground finally
publishes a geographically accurate Tube Map.”
http://www.fastcodesign.com/3051293/the-london-underground-
finally-publishes-a-geographically-accurate-tube-map, 2015.
Online; accessed 15 June 2019.

[8] Z. Guo, “Mind the map! the impact of transit maps on path
choice in public transit,” Transportation Research Part A: Policy
and Practice, vol. 45, no. 7, pp. 625–639, 2011.

[9] S. Ko, J. Zhao, J. Xia, S. Afzal, X. Wang, G. Abram,
N. Elmqvist, L. Kne, D. V. Riper, K. P. Gaither, S. Kennedy,
W. J. Tolone, W. Ribarsky, and D. S. Ebert, “VASA: Interactive
computational steering of large asynchronous simulation
pipelines for societal infrastructure,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 12,
pp. 1853–1862, 2014.

[10] D. Holten, P. Isenberg, J. J. van Wijk, and J.-D. Fekete, “An
extended evaluation of the readability of tapered, animated, and
textured directed-edge representations in node-link graphs,” in
Proceedings of the IEEE Pacific Symposium on Visualization,
pp. 195–202, 2011.

[11] D. Holten and J. J. van Wijk, “A user study on visualizing
directed edges in graphs,” in Proceedings of the ACM
Conference on Human Factors in Computing Systems,
pp. 2299–2308, 2009.

[12] M. Steiger, J. Bernard, T. May, and J. Kohlhammer, “A survey
of direction-preserving layout strategies,” in Proceedings of the
ACM Spring Conference on Computer Graphics, pp. 21–28,
2014.

[13] N. V. Andrienko and G. L. Andrienko, “Interactive visual tools
to explore spatio-temporal variation,” in Proceedings of the ACM
Conference on Advanced Visual Interfaces, pp. 417–420, 2004.

[14] S. Hadlak, C. Tominski, H.-J. Schulz, and H. Schumann,
“Visualization of attributed hierarchical structures in a
spatiotemporal context,” International Journal of Geographical
Information Science, vol. 24, no. 10, pp. 1497–1513, 2010.

[15] D. J. Bouvier and B. Oates, “Evacuation traces mini challenge
award: Innovative trace visualization staining for information
discovery,” in Proceedings of the IEEE Symposium on Visual
Analytics Science and Technology, pp. 219–220, 2008.

[16] D. Cornel, A. Konev, B. Sadransky, Z. Horváth, A. Brambilla,
I. Viola, and J. Waser, “Composite flow maps,” Computer
Graphics Forum, vol. 35, no. 3, pp. 461–470, 2016.

[17] W. Tobler, “Cartograms and cartosplines,” in Proceedings of
the Workshop on Automated Cartography and Epidemiology,
pp. 53–58, 1976.

[18] N. Elmqvist, Y. Riche, N. Henry, and J.-D. Fekete, “Mélange:
Space folding for visual exploration,” IEEE Transactions
on Visualization and Computer Graphics, vol. 16, no. 3,
pp. 468–483, 2010.

[19] J. Brosz, M. A. Nacenta, R. Pusch, S. Carpendale, and C. Hurter,
“Transmogrification: causal manipulation of visualizations,” in
Proceedings of the ACM Symposium on User Interface Software
and Technology, pp. 97–106, 2013.

[20] N. Wong, M. S. T. Carpendale, and S. Greenberg, “EdgeLens:
An interactive method for managing edge congestion in
graphs,” in Proceedings of the IEEE Symposium on Information
Visualization, pp. 51–58, 2003.

[21] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice
Hall, 1999.

[22] T. Dwyer, K. Marriott, and M. Wybrow, “Topology preserving
constrained graph layout,” in Proceedings of the International
Symposium on Graph Drawing, vol. 5417 of Lecture Notes in
Computer Science, pp. 230–241, 2008.

[23] D. P. Dobkin, E. R. Gansner, E. Koutsofios, and S. C. North,
“Implementing a general-purpose edge router,” in Proceedings
of the International Symposium on Graph Drawing, vol. 1353 of
Lecture Notes in Computer Science, pp. 262–271, 1997.

[24] T. Dwyer and L. Nachmanson, “Fast edge-routing for large
graphs,” in Proceedings of the International Symposium on
Graph Drawing, vol. 5849 of Lecture Notes in Computer
Science, pp. 147–158, 2009.

[25] P. Eades and Q.-W. Feng, “Multilevel visualization of clustered
graphs,” in Proceedings of the International Symposium on
Graph Drawing, vol. 1190 of Lecture Notes in Computer
Science, pp. 101–112, 1996.

[26] H.-Y. Wu, S. Takahashi, D. Hirono, M. Arikawa, C.-C. Lin, and
H.-C. Yen, “Spatially efficient design of annotated metro maps,”
Computer Graphics Forum, vol. 32, no. 3, pp. 261–270, 2013.

[27] B. Alper, N. H. Riche, G. Ramos, and M. Czerwinski, “Design
study of LineSets, a novel set visualization technique,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 2259–2267, 2011.

[28] M. Benkert, M. Nöllenburg, T. Uno, and A. Wolff,
“Minimizing intra-edge crossings in wiring diagrams and public
transportation maps,” in Proceedings of Graph Drawing 2007
(LNCS 4372), pp. 270–281, Springer, 2007.

[29] M. A. Bekos, M. Kaufmann, K. Potika, and A. Symvonis, “Line
crossing minimization on metro maps,” in Proceedings of Graph
Drawing 2008 (LNCS 4875), pp. 231–242, Springer, 2008.

[30] M. Asquith, J. Gudmundsson, and D. Merrick, “An ILP for the
metro-line crossing problem,” in Proceedings of the fourteenth
symposium on Computing: the Australasian theory (CATS ’08),
vol. 77, pp. 49–56, 2008.

[31] M. Nöllenburg, “An improved algorithm for the metro-line
crossing minimization problem,” in Proceedings of Graph
Drawing 2010 (LNCS 5849), pp. 381–392, Springer, 2010.

[32] M. Fink and S. Pupyrev, “Metro-line crossing minimization:
Hardness, approximations, and tractable cases,” in Proceedings
of Graph Drawing 2013 (LNCS 8242), pp. 328–339, Springer,
2013.

[33] M. Fink, S. Pupyrev, and A. Wolff, “Ordering metro lines by
block crossings,” Journal of Graph Algorithms and Applications,
vol. 19, no. 1, pp. 111–153, 2015.

[34] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven
documents,” IEEE Transactions on Visualization & Computer
Graphics, vol. 17, no. 12, pp. 2301–2309, 2011.

[35] O. D. Lampe and H. Hauser, “Interactive visualization of
streaming data with kernel density estimation,” in Proceedings of
the IEEE Pacific Visualization Symposium, pp. 171–178, 2011.

[36] T. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning
digital patterns,” Communications of the ACM, vol. 27, no. 3,
pp. 236–239, 1984.

[37] B. M. Mehtre, “Fingerprint image analysis for automatic
identification,” Machine Vision and Applications, vol. 6, no. 2-3,

pp. 124–139, 1993.

	Introduction
	Related Work
	The Route Packing Technique
	Data Model
	Design Rationale
	Visual Design: Route Layout
	Visual Design: Route Direction
	Visual Design: Nodes
	Implementation
	Detecting Shared Routes
	Shifting and Packing Overlapping Edges
	Transparency Gradient and Tapered Line

	User Study
	Dataset and Task
	Experimental Factors and Design
	Experiment Results
	Explaining the Results
	Generalizing the Results

	Conclusion and Future Work
	Acknowledgments

