
PolyZoom: Multiscale and Multifocus Exploration
in 2D Visual Spaces

Waqas Javed, Sohaib Ghani, and Niklas Elmqvist
Purdue University

West Lafayette, USA
{wjaved, sghani, elm}@purdue.edu

Figure 1. PolyZoom focus hierarchies where the color-coded selections and the connecting lines make the parent-child relationships explicit.

ABSTRACT
The most common techniques for navigating in multiscale
visual spaces are pan, zoom, and bird’s eye views. How-
ever, these techniques are often tedious and cumbersome to
use, especially when objects of interest are located far apart.
We present the PolyZoom technique where users progres-
sively build hierarchies of focus regions, stacked on each
other such that each subsequent level shows a higher mag-
nification. Correlation graphics show the relation between
parent and child viewports in the hierarchy. To validate the
new technique, we compare it to standard navigation tech-
niques in two user studies, one on multiscale visual search
and the other on multifocus interaction. Results show that
PolyZoom performs better than current standard techniques.

Author Keywords
Multifocus interaction; comparative visualization; maps;
navigation; visual exploration; visual analytics; interaction.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User
Interfaces—Interaction styles; I.3.6 Computer Graphics:
Methodology and Techniques—Interaction techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

INTRODUCTION
A multiscale visual space has different visual representation
depending on the zoom level used to view the space [14].
Navigation in such multiscale visual spaces is becoming in-
creasingly important for many everyday tasks. For example,
Google Maps is essentially a large, two-dimensional, and
multiscale geospatial dataset. The same could be said about
many visualizations, such as zoomable treemaps, large ad-
jacency matrices, or high-resolution scatterplots. However,
multiscale navigation has been shown to be a difficult prob-
lem because of the phenomenon known as desert fog [11],
where the immediate environment in the viewport is devoid
of navigational cues due to its multiscale nature. For exam-
ple, in Google Maps, seeing continents on the world map
will not help the user in finding a specific park in a city.
Zooming into the map to search for the target will automat-
ically cause a loss of overview. However, maintaining an
awareness of the full space is necessary for effectively ex-
ploring the space, otherwise the navigation process can eas-
ily become tedious [4].

We present PolyZoom, a navigation technique for two-
dimensional multiscale visual spaces that allows users to it-
eratively build a hierarchy of focus regions, thereby main-
taining their awareness of multiple scales of the visual space
at the same time (Figure 1). Using PolyZoom, users can
progressively narrow down the search space by creating re-
gions of increasing magnification into areas of interest on
the visual space. This allows the user to be aware of the
space at different scales, so they can easily backtrack if they
make a mistake during the visual exploration. In addition
to this, PolyZoom also supports multifocus interaction [2]

where several regions of interest can be compared side by
side while preserving their spatial relation and context.

We have implemented PolyZoom using Adobe Flash. The
application lets the user to smoothly navigate in a large
and multiscale visual space using the PolyZoom technique,
as well as using standard pan and zoom. Our implemen-
tation currently supports four different visual spaces: the
Google Maps world map, the NASA Universe dataset, a Lu-
nar dataset, and a Martian dataset.

The extra spatial awareness provided by PolyZoom comes
at the cost of smaller map viewports and suboptimal use of
screen space. To study the impact of this on visual explo-
ration, we performed two user studies comparing the new
technique to standard pan and zoom. In the first study, par-
ticipants were asked to perform a multiscale navigation task
that required them to search for a particular target using navi-
gational cues at different levels of scale. In the second study,
we studied the multifocus capabilities of the technique by
asking users to compare potential targets to a specific source
object. Despite the extra space required for the PolyZoom
technique, results from both studies indicate a performance
improvement for the new technique.

BACKGROUND
Here we review general techniques for navigating in 2D
spaces, highlighting issues that make navigation difficult.

Common Navigation Techniques
Scrolling is one of the standard techniques for navigating
large workspaces, but it can be cumbersome when the space
to explore is large. Igarashi and Hinckley [8] proposed a
method of speed-dependent automatic zooming (SDAZ) to
automatically vary the zoom level depending on the zoom
rate. Ishak and Feiner presented content-aware scrolling [9]
to vary the direction, speed, and zoom during scrolling based
on content properties. Despite these improvements:

Scrolling has little multiscale capability and requires con-
siderable effort when exploring large 2D workspaces.

Panning allows users to directly manipulate the position of
the viewport on the visual space, while zooming changes
the viewport’s magnification level (i.e., viewport space size).
Since the original infinitely zoomable canvas proposed in
Pad [14], there has been a large amount of work in this area.
Furnas and Bederson present the space-scale diagram [4] as
a method for understanding zoom and pan actions as paths
through space-scale. Multiple studies show that combining
zooming and panning is more efficient than only panning [4,
20]. However, panning and zooming alone is insufficient:

Pan and zoom for a large visual space means giving up
either overview or detail, and can be ineffective [3, 4].

Overview+detail techniques use multiple windows to
present both magnified and bird’s eye views of the space.
The overview window shows the entire workspace while
the detail window shows the current focus. Hornbæk and
Frøkjær [7] found that overview and detail techniques are
easy to use and can outperform pan+zoom and fisheye views
for some tasks. Of particular interest to our work is Drag-

Mag [21]—discussed in more detail below—which is an
overview+detail technique where the user directly drags a
focus region on the visual space to control an associated
magnification window. In general, overview and detail tech-
niques have been shown to be effective in navigating large
spaces [6, 12]. However, overview+detail has problems:

Overview+detail divides user attention between viewports,
and scales poorly to high magnification ratios.

Focus+context techniques combine a focus region shown in
great detail integrated with the surrounding context, typi-
cally using distortion. Magnifying lenses [1] and fisheye
views [3] are commonly used focus+context techniques.
Rubber sheet stretching [18] is another model of distort-
ing 2D space. Elmqvist et al. [2] propose a space-folding
technique called Mélange that combines different parts of
the workspace. Despite the benefits achieved through fo-
cus+context techniques:

Focus+context is unstable [5], scales poorly to large
spaces [7], and the focus transition is nonintuitive [15].

Multiscale Navigation
Multiscale navigation is defined as spatial navigation in a
multiscale visual space, i.e. a space that has different visual
representation depending on the magnification used to view
the space. Multiscale representations are important in many
domains such as cartography (where small-scale maps are
generated through the abstraction of large-scale datasets), vi-
sualization (examples such as zoomable adjacency matrices,
treemaps, and data cubes are all multiscale spaces), and even
common documents (which exhibit both macro- and micro-
level structure). The original Pad [14] provided an infinitely
zoomable multiscale space, and introduced the concept of
semantic zooming for navigating such structures. However:

Multiscale navigation is difficult due to missing naviga-
tional cues at different levels of scale (“desert fog” [11]).

Multifocus Interaction
Multifocus interaction [2] provides a way to simultaneously
view and compare multiple regions of interest while explor-
ing large visual spaces such as geographical maps. Below
we review prior work in this domain.

Split-screen techniques divide the screen into multiple view-
ports that each show a portion of the full workspace, and has
been adopted for multifocus interaction in the past. Plaisant
et al. [17] used a split-screen for exploring large time se-
ries data. Shoemaker and Gutwin [19] combine the split-
screen approach with dynamic focus creation that automati-
cally define focus regions as the interaction points move fur-
ther apart. However, these and other techniques have the
following characteristic in common:

Split-screen techniques support multifocus awareness, but
provide little spatial relations between viewports and gen-
erally do not allow for creating cascading viewports.

Many of the focus+context techniques can also be used for
multifocus interaction. Techniques like fisheye views [3,
19], rubber sheet [18], and space folding [2] support multiple

focus regions. However, there are issues with such methods:

Multifocus+context techniques do not permit creating fo-
cus hierarchies, which is needed for multiscale awareness.

Javed and Elmqvist [10] propose a multifocus overview+detail
technique called stack zooming that lets the user build a cas-
caded hierarchy of focus regions. The technique supports
most requirements, however, it has a limitation:

Stack zooming is designed for one-dimensional visual
spaces (e.g., time series), and its adaptation to two-
dimensional visual spaces (e.g., maps) is non-trivial.

POLYZOOM: TECHNIQUE
The PolyZoom technique was designed for exploring multi-
scale 2D spaces. We summarize our design goals as follows:

• Multiscale awareness: Most overview+detail techniques
are not effective when navigating large multiscale spaces,
since large differences in magnification between overview
and detail make navigation impractical. We aim to pro-
vide awareness of the visual space at multiple scale levels.

• Multifocus awareness: Many tasks require viewing sev-
eral regions simultaneously, e.g., for side-by-side compar-
ison [2]. We thus want to support multiple foci.

• No distortion: Spatial distortion can be confusing be-
cause it introduces non-linear elements into the display,
elements that are typically not visually stable under trans-
lation [5]. We thus want to avoid spatial distortion.

• No overlap: We want the technique to avoid overlapping
viewports and instead efficiently fill the available space.

The PolyZoom technique lets users build focus hierarchies
by selecting regions of interest in a viewport, thereby spawn-
ing a child viewport at higher magnification. This gives the
user awareness of multiple levels of scale simultaneously.
As shown in Figure 2, three focus regions (A, B, and C) have
been created on the visual canvas. Each new viewport forms
a parent-child relation where the new viewport becomes the
child of the parent viewport in which the selection was made.
The new viewport can further act as a parent for multiple
new viewports by performing the same selection operation.
For example, in Figure 2, the viewports A and B, children
of the main viewport, are the parents of viewports D and
E, respectively. This parent-child viewport relation provides
not only overview at multiple scale levels, but also facilitates
backtracking while navigating in a multiscale visual space.

Our approach of letting users create focus regions that spawn
magnification viewports is reminiscent of the DragMag tech-
nique [21], where a magnifying glass metaphor is used to
control a zoom window on top of a base window. How-
ever, PolyZoom takes the basic DragMag concept further
by allowing the user to create hierarchies of zoom windows
(i.e., focus regions within zoom windows), thereby produc-
ing a multiscale navigation technique. Furthermore, because
PolyZoom also supports creating multiple children for each
viewport, it inherently supports multifocus interaction [2,
19], the capability of comparing multiple focus regions side-
by-side. Unlike previous multifocus techniques, such as

space folding [2] and multiple fisheye views [19], it does
so without using distortion in the display.

The three main design aspects of PolyZoom are (1) the lay-
out algorithm, which dictates the positioning of different
viewports on the screen; (2) the viewport size management
algorithm, which manages the size of different viewports;
and (3) correlation graphics, which provide explicit linking
between parent and child viewports. In the following sub-
sections we will discuss each of these in detail.

Figure 2. General layout mechanism for PolyZoom. Color-coded zoom
areas and corresponding colored frames show parent-child relation-
ships, and visual lines make the relations explicit.

Layout
For the PolyZoom technique, we aimed for a layout that is
easy to understand, allows effective side-by-side compar-
isons at a given level of the focus hierarchy, and is logi-
cal and predictable based on the underlying tree structure.
Based on these requirements, we use a stack-based algo-
rithm to lay out a focus hierarchy as multiple viewports on
the screen. This is done by splitting the vertical space so that
each consecutive level in the focus hierarchy is allocated a
vertical segment, starting with the focus root at the top of the
space. Next the horizontal space in each segment is divided
and allocated as viewports to the focus regions on that level
in the hierarchy. This layout generates a visual tree struc-
ture that makes it easy to relate parent and child viewports,
thereby allowing the user to keep track of the context of any
focus region all the way to the root of the focus hierarchy.
Figure 2 shows an example layout where viewports A, B,
and C are children of the main viewport, and viewports D
and E are the children of viewports A and B, respectively.

The layout algorithm restricts the vertical positioning of
viewports based on the parent-child relation, but makes no
assumption on their horizontal positioning. This means that
focus regions for a level in the hierarchy can be reordered in
a vertical segment, e.g., for side-by-side comparison.

The layout also makes each viewport the same size. For most
visual spaces, such as for maps and images, the aspect ratio
between width and height is fixed. This means that no di-
mension in a focus region should be stretched or squashed.
For these situations, because PolyZoom allows the user to
freely select 2D focus regions, the viewports may need to

show some additional area of the visual space outside the
selection in order to preserve the aspect ratio. This is done
by fitting a rectangle of the correct aspect ratio to the se-
lection (which most likely does not have the correct aspect
ratio). This is only necessary if the underlying visual space
is sensitive to varying aspect ratio. Another approach is to
restrict the aspect ratio of the focus area during selection.

Figure 3. Viewport size management mechanism for PolyZoom. Two
windows A and E are selected as active viewports, causing them to be
allocated a larger part of the available view space.

Viewport Size Management
So far we have kept viewport size constant when perform-
ing the layout of the focus hierarchy in the visual space.
However, viewport size plays an important role for the ef-
fectiveness of PolyZoom: if viewports become too small as
the focus hierarchy grows, it will be difficult to see details in
each individual viewport. On the other hand, not all view-
ports are important all the time, and this will change as the
user navigates in the visual space. Hence, dividing the view
space equally among all the viewports is not always optimal.

As an alternative, we provide an interest-based viewport size
management algorithm that dynamically changes the sizes
of individual viewports while keeping their aspect ratio con-
stant. The algorithm allows users to dynamically flag the
viewports that are currently of interest as being active (or
even to let the active viewport be determined by the mouse
pointer). Active viewports are assigned a magnification fac-
tor M that captures how much larger an active viewport will
be compared to a passive one (if M = 1, this algorithm re-
verts to the equal-sized viewport layout algorithm above).

The algorithm proceeds by finding which of the vertical or
horizontal dimensions of the focus hierarchy requires the
most amount of space. For the vertical axis, this amounts
to summing up each level of the hierarchy, where a level has
value M if there is at least one active viewport in the level,
and 1 if there is none. For the horizontal axis, we select the
level with the maximum sum, where the sum of a level is
computed by counting each active viewport as M, and each
passive one as 1. Finally, we compare the horizontal and
vertical sums and select the maximum as the deciding fac-
tor (the intuition is that the axis with the maximum sum will
require the most display space). This factor is then used to

determine both width and height of passive and active view-
ports based on the magnification factor M.

Figure 3 shows an example of applying this algorithm.
Viewports A and E are active. Based on the magnification ra-
tio M = 2, the passive viewports are given considerably less
space. In this example, the vertical sum is 2M+1 (dominant)
and the horizontal is M+2 (for level 2 in the hierarchy).

Correlation Graphics
For maintaining the full context of viewports in the focus
hierarchy, we want to make the relationship between parent
and child viewports explicit. Prior work [10] in this field
uses correlation graphics to achieve this. We adopted this
idea for PolyZoom as follows:

• Color-coded selection areas: The selection areas in
a viewport are rendered as color-coded and semi-
transparent rectangles in the viewport the selection was
made. This makes it easy to identify the extent of selected
space that corresponds to a particular viewport in its par-
ent window. For example, in Figure 2, three regions A, B,
and C have been selected in the main viewport. The selec-
tion regions are highlighted using three different colors.

• Color-coded viewport frames: We use the same color-
coding for the frames around child viewports to indicate
the relation to the selection region in the parent (Figure 2).

• Correlation links: We use explicit correlation links as
color-coded lines that connect the selection region in the
parent to the child viewport (Figure 2). These are helpful
in the presence of a large number of viewports, but may
cause visual clutter. For this reason, we only link the base
of a focus region to the top of each child viewport.

POLYZOOM: SYSTEM
We built a web-based prototype implementation of Poly-
Zoom for multiscale and multifocus navigation in 2D mul-
tiscale visual spaces. Our implementation supports the
Google Maps dataset, NASA Universe, a Lunar dataset, and
a Martian dataset. Even though our prototype is tailored to
these datasets, there is nothing in the technique that prevents
it from being implemented for other datasets, such as Bing
Maps, DeepZoom1, or general 2D visual spaces.

Our implementation (Figure 1) starts with a single main
viewport that displays the complete visual space (i.e., for
Google Maps, the whole world). Users can pan and zoom
normally in this viewport just like in a normal Google Maps
implementation, i.e., using dragging and the mouse wheel
or the Google Maps navigation widget. In addition to this
standard functionality, we also allow users to specify focus
regions by left-clicking on the map to start a rubber band
rectangular selection, and left-clicking again to finish the se-
lection. This creates a new focus region that becomes a child
of the main viewport. The selected area in the main viewport
is drawn as a color-coded and semi-transparent rectangle.
This new child viewport has the exact same functionality as
its parent; specifically, it can have its own children if the user
1http://www.microsoft.com/silverlight/deep-zoom/

http://www.microsoft.com/silverlight/deep-zoom/

performs a focus region selection inside its borders. Further-
more, each viewport can naturally have more than one child.
The system also supports all three correlation graphics de-
scribed above to maximize the user’s spatial awareness.

The interaction design of navigating parents and children has
different alternatives depending on the application. In our
implementation, navigating in a child viewport will update
the size and position of its corresponding selection region in
the parent; analogously, moving the selection area of a child
in a parent viewport is the same as panning the child itself.
A child viewport is specified in relative coordinates to its
parent, so panning or zooming a parent will automatically
pan or zoom the child a corresponding amount. Finally, par-
ents are immutable from the viewpoint of a child, so children
viewports are restricted to the bounds of the parent, thereby
preventing interaction in one child to affect other siblings.

EVALUATION
PolyZoom provides spatial awareness simultaneously at
multiple different levels of scale. However, this comes at
the cost of reduced viewport size for each individual focus
region. In addition, as can be seen in some of the figures
in this paper, laying out a hierarchy of focus regions with
a fixed aspect ratio means that the entire screen cannot be
fully utilized. In other words, PolyZoom has both poten-
tial advantages and disadvantages over the standard pan and
zoom operations that are common when navigating in spatial
datasets such as Google Maps.

To better understand these tradeoffs, we performed two user
studies comparing PolyZoom to standard pan and zoom in-
teraction. Our study designs were influenced by the mul-
tiscale search operationalization proposed by Pietriga et
al. [16]. Thus, the first study focused on multiscale search,
and required participants to navigate in a hierarchy of vi-
sual cues on different levels of scale. The second study was
aimed at the multifocus aspects, and required participants to
compare foci in different locations on the visual space.

Both studies were performed back to back and with the
same participants. However, the order of performing a study
was balanced between participants. In this section, we dis-
cuss common aspects of both studies, whereas in subsequent
ones, we describe their unique details.

Participants
We recruited 12 participants (11 male, 1 female) from the
student population at our university (average age 22.2, me-
dian age 23). Participants were all self-selected volunteers,
had normal or corrected-to-normal vision, were not color
blind (self-reported), and were paid $10 upon completing a
full experimental session. No particular skills were required
other than basic knowledge of operating a computer.

Apparatus
The experiment was conducted on a standard 3 GHz dual-
core desktop computer with 4 GB RAM and running Mi-
crosoft Windows XP. The computer was equipped with a
standard two-button mouse (with mouse wheel), a keyboard,
and a 19” LCD monitor set to 1280×1024 resolution. Partic-

ipants only used the mouse to interact during the trials. The
experimental application was maximized on the screen.

Navigation Technique (T)
We used Navigation Technique T as a factor for both studies:

• Standard Pan and Zoom (S): Navigation in map windows
with all of the basic navigation techniques supported by
Google Maps. Participants were able to create multiple
map windows, and had access to the standard Google
Maps overview for each window.

• PolyZoom (P): Navigation using the PolyZoom naviga-
tion technique; no standard overview viewport.

In the context of Pietriga et al.’s operationalization of multi-
scale search [16], the Standard Pan and Zoom technique (S)
that serves as our baseline and comparison is equivalent to
the “Pan-Zoom + Overview” technique that is most efficient
in their experiment, with the difference that we use the stan-
dard overview window provided by the Google Maps API.
On the other hand, Nekrasovski et al. [13] found that the
presence of an overview had no impact on multiscale search,
so we think this small discrepancy will have minimal impact.

Software and Dataset
We used our PolyZoom implementation in Adobe Flash/Flex
(described above) as the experimental software using the
Google Maps standard dataset. This allowed us to use both
standard pan and zoom, as provided by the Google Maps
API, as well as the PolyZoom technique as discussed above.
Depending on the Technique factor, we restricted the use of
PolyZoom—participants could still pan and zoom using the
normal Google Maps user interface in both conditions.

In Study 2, we asked participants to compare two different
regions on the map. In a real setting, a user may solve this
task using two or more Google Map windows viewed side-
by-side. To support this strategy, we implemented our map
windows for the standard pan and zoom option as internal
frames in a multiple document interface (MDI). We chose a
MDI design (as opposed to creating separate browser win-
dows) so that we were able to instrument the windows for
the purpose of control and measurements for the user study.

For the standard pan and zoom condition, tasks started with
a single map window, but participants were able to create ad-
ditional windows simply by clicking a button. Each window
supported basic operations such as resizing (by dragging on
the lower-right corner of the window), bringing to top (by
clicking anywhere on the window), and closing (by clicking
on an X in the title bar). Beyond clicking on windows di-
rectly, users could switch between windows by clicking on
their titles in a taskbar implemented inside our MDI inter-
face. Pressing Shift-Tab also cycled between windows.

For both navigation techniques, viewports could be navi-
gated using all of the basic navigation techniques supported
by Google Maps: pan (left-drag), zoom (mouse-wheel), nav-
igation widget, etc. In the PolyZoom condition, participants
could also use the PolyZoom technique as described above,
but were not allowed to create multiple windows.

Procedure
Upon starting an experimental session, participants were
first allocated to a study order (i.e., Study 1 or 2 first). For
each study, the experiment administrator described the over-
all task. The participant was then assigned to an order of
techniques for the study, which we blocked on.

At the start of each technique block, participants were asked
to complete a set of training trials. During this training
session, the administrator demonstrated how to operate the
technique and how to use it to solve the task. Participants
were then asked to solve training trials on their own. They
were allowed to ask questions during the training trials (not
during real trials). Training continued until the participants
indicated that they were ready to proceed to the timed trials.

A trial started when the participant clicked on a button in a
dialog box that interleaved each trial. This dialog box served
as an intermission between trials. Clicking on the button
started the timer. Participants were instructed to complete
the task as quickly as possible. The means of ending a trial
(stopping the timer) was different for the two studies:

• For Study 1, the trial ended when the user had found and
clicked on the red balloon that served as the target.

• For Study 2, the trial ended when the user had entered a
target name they thought was correct and clicked “OK”.

At the end of each study, participants were asked to provide
comments and to give 5-point Likert scale ratings on how
efficient, how easy, and how rewarding the different tech-
niques were to use.

Figure 4. Top level view of the cue hierarchy (left) and complete sample
visual cue (right). Red nodes represent dead ends, white nodes are cor-
rect choices that give rise to new options. The bottom white node (N)
represents the target. The correct path is D, E, K, and N.

STUDY 1: MULTISCALE VISUAL SEARCH
Our first user study was designed to test the basic multiscale
navigation functionality of PolyZoom in comparison with
the standard pan and zoom provided in Google Maps (the
winning technique in the experiment by Pietriga et al. [16]).

Task
The intuition behind our scenario in this study was that mul-
tiscale search consists of knowledge at several different lev-
els of scale. To mimic this multiscale knowledge, we asked
participants to navigate a hierarchy of visual cues, in the

form of identical squares. This would emulate situations
where a user knows a little about the target at different zoom
levels, e.g., “it is a city near a coast”, but several alternatives
may have to be pursued to determine which one is correct.

Starting from the top view (shown at the start of a trial), and
at each subsequent level in this hierarchy, four visual cues
were shown as squares on the visual space. The visual cues
form a hierarchy, where three of the four visual cues are dead
ends, and only one is the correct and contains four new visual
cues in turn. This parent-child relationship between correct
visual cues continues for a given number of levels (depend-
ing on an experimental factor, see below).

Inside a visual cue, the squares representing the new visual
cues were equally spaced, with a random starting offset, on
the periphery of an invisible circle centered in the middle of
the space. The radius of this circle was equal to one third of
the parent cue’s width, and the width of a square representing
a visual cue is one tenth of the width of the parent. Figure 4
gives an overview, and Figure 5 gives an example.

The cues at different levels of the hierarchy were made visi-
ble only when a user is at a zoom level greater than or equal
to the zoom level associated with that cue hierarchy level.
When zooming into a visual cue representing a dead end,
the contents of the square would turn a transparent red (Fig-
ure 5(b)) to indicate this fact. When zooming into a visual
cue at the bottom of the hierarchy, the final target—a red
balloon—would appear (Figure 5(d)). The trial ended (stop-
ping the timer) when the participant clicked the balloon.

To simulate the effect of noticeable change in a multiscale
visual space with a change in scale, there was a difference
of three zoom levels between two adjacent levels of the cue
hierarchy. This difference was also sufficient to ensure that
at a time, only one of the visual cue at the previous levels of
cue hierarchy is visible (Figure 5(b) and (c)).

Nevertheless, it should be noted that the visual cue hierar-
chy is not a complete tree, where dead ends are only un-
veiled at the bottom level. We chose to “short-circuit” incor-
rect search branches immediately by indicating that they are
dead ends as soon as the participant zoomed into the visual
cue. If we had used a complete tree, PolyZoom would likely
benefit because it would offload the participant from having
to remember each zoom decision at each node in the tree.
The choice not to do this was made to keep the comparison
fair. Because this design was in effect (thus minimizing the
amount of backtracking arising from errors), we also chose
not to control for random chance (which we do in Study 2).

Study Design
We used a full-factorial within-participants design:

12 participants
× 2 Navigation Technique T (S, P)
× 3 Hierarchy Level L (3, 4, 5)
× 4 repetitions

288 Total trials (24 per participant)

The L factor modeled the number of levels in the visual cue
hierarchy, and we included it to study the effect of naviga-

Figure 5. Scenario for Study 1. (a) View at the start of a trial; (b) Visual
cues that represent dead ends are colored red when zoomed in; (c) The
correct visual cue yields the next level in the hierarchy when zoomed in;
(d) Zoom-in on the last level of the correct visual cue, where the target
becomes a red balloon that needs to be clicked to finish the experiment.

tional depth on multiscale navigation. The deeper the hier-
archy, the more stress will be placed on the navigation tech-
niques: more zoom stacks in PolyZoom, and more back-
tracking for standard zoom and pan.

We organized the trials in blocks based on technique. Block
order and the order of visual cue hierarchy levels within
each block were randomized across participants to counter-
act learning effects. During the experiment we collected the
time it took the participants to complete a task. Completion
times were averaged for the four repetitions.

Hypotheses
H1 P will be faster than S. We believe that PolyZoom’s in-

creased multiscale awareness will favor the technique.

Results
We followed common statistical practice to improve the ro-
bustness of our completion time data by removing outliers
(trials outside two standard deviations of the average) and
averaged between the four repetitions per participants. The
omitted trials were all above the average, and likely resulted
from interface mistakes. We then analyzed the comple-
tion time measurements using a repeated-measures analysis
of variance (RM-ANOVA, normality and equality of vari-
ances assumptions valid). We found a significant main effect
of Technique T on completion time (F(1,11) = 7.33, p <
.0071). Figure 6(a) shows completion times per technique
and hierarchy level; the average times were 27.47 (s.d. 5.80)
seconds for PolyZoom (P), and 29.39 (s.d. 6.13) seconds for
standard pan and zoom (S). This constitutes an approximate
6.5% speedup for PolyZoom over standard pan and zoom,
which is a small but non-negligible value.

Not surprisingly, there was also a significant main ef-
fect of Hierarchy Level L on completion time (F(2,22) =
51.76, p < .0001). Completion time was roughly linear with
the number of levels in the visual cue hierarchy. Pairwise

comparison of levels using a Tukey HSD showed that levels
were significantly different (p < .05) with completion times
ordered 3 < 4 < 5. However, we found no significant in-
teraction between T and L. This signifies that there is no
difference in how the techniques manage increasing scale.

Participants were able to create multiple windows in the
standard pan and zoom condition, but few did so: only in
10 out of the 144 trials for the S condition did participants
create additional windows, and even in those situations, the
maximum number of windows ever created was 2. Creat-
ing a second window is not an advantageous strategy for this
task, but the low number of instances this happened means
there should be only a very small impact on our results.

Subjective Feedback
Subjective ratings are shown in Figure 7 (left); differences
were significant (Friedman test, p < .05) except for reward.
In their comments also, participants found PolyZoom useful
for the given task. One of them stated ”[PolyZoom] is cool,”
and another wrote ”PolyZoom was very useful.”

Discussion
Our results confirmed hypothesis H1: participants per-
formed the multiscale search task 6.5% faster using Poly-
Zoom than using standard pan and zoom. While the
speedup is fairly small, this is nevertheless a significant re-
sult given the optimality of pan and zoom as indicated by
related work—for example, Pietriga et al. [16] found that
pan and zoom performed better than two advanced lens-
based techniques, and Hornbæk and Frøkjær [7] showed that
overview+detail was superior to panning and fisheye views.

The experimental application was maximized on the screen
at all times, which meant that both techniques had access to
the same, constant amount of display space. The explana-
tion for these results is likely that PolyZoom provides more
awareness of the visual space than pan and zoom with a sin-
gle overview. Our findings indicate that the impact of view-
ports becoming successively smaller, as well as suboptimal
use of display space, did not decrease performance for Poly-
Zoom, at least not in situations covered in our experiment.

The solution strategy that users adopted with PolyZoom was
interesting and worth describing: for each level in the vi-
sual cue hierarchy, the user would create one focus region
centered on one of the four visual cues. This new viewport
would immediately allow the user to determine whether this
was a dead end or not, and if it was, the user would simply
move the selection area in the parent to the next visual cue.
In other words, participants only ever had a single viewport
open at each zoom level. For pan and zoom, on the other
hand, the participants were forced to continually pan and
zoom the single viewport to focus on each visual cue.

The question is whether and how these results generalize,
and we think there are both qualitative and quantitative an-
swers to this question. On a qualitative level, we believe that
it is easy to see the usefulness of PolyZoom for general mul-
tiscale navigation, and we can foresee the technique being
used for even larger and more complex visual spaces than
those tested in our experiment. On a quantitative level, we

found no significant interaction between technique and hier-
archy level, which seems to indicate that PolyZoom’s perfor-
mance did not degrade as the number of levels in the visual
cue hierarchy increased. On the other hand, since PolyZoom
keeps every step of the navigation process visible, it is clear
that there does exist a limit to how far it will scale (although
it is always possible to restart PolyZoom on a new position in
the space, foregoing the existing focus hierarchy). However,
it should be noted that in our evaluation, the condition L = 5
used the full 23 zoom levels of the Google Maps dataset,
which clearly is a large and realistic multiscale visual space.

Standard Pan and Zoom PolyZoom

20
25

30
35

40

S3 S4 S5P3 P4 P5

C
om

pl
et

io
n

tim
e

(s
ec

on
ds

)

(a) Completion times (S1).

P2

Standard Pan and Zoom PolyZoom

40
50

60
70

80
90

10
0

S1 P1 S2 S3 S4 S5P3 P4 P5

C
om

pl
et

io
n

tim
e

(s
ec

on
ds

)

(b) Completion times (S2).

Figure 6. Performance metrics for both Study 1 and Study 2 as a func-
tion of the level L and discovery order D, respectively.

Figure 7. Subjective ratings for both studies (Likert 1-5 scale).

Figure 8. Scenario for Study 2. (a) Overall trial view. The target in
the center is the source, and the targets at the spokes of the circle are
destinations. (b) Detail view of target 4 (indicated in the overview with
a red rectangle) showing the 3× 3 grid of colored balloons (only visible
at maximum zoom) used to represent a target.

STUDY 2: MULTIFOCUS COMPARISON
Our second study was intended to explore the multifocus ca-
pabilities of PolyZoom. The novel technique provides a way

to manage a hierarchy of viewports, whereas the de facto
standard for looking at multiple regions in the same visual
space is to open two or more windows and compare them
side by side. We wanted to see whether the ever-shrinking
viewports of PolyZoom would actually result in better per-
formance than the multiple window approach.

Task
The motivation for the task in our second study was to cap-
ture situations when a user is trying to compare a particular
region in a visual space with a set of candidate regions to
find the one that matches. For this reason, we designed this
task as a multifocus comparison task.

A trial setup consisted of a source target placed at the cen-
ter of the visual space, and five potential destination targets
arranged with equal spacing on the periphery of a virtual cir-
cle centered at the source. The source was connected to all
destinations by a straight line. The task consisted of deter-
mining which of the five destination target exactly matches
the appearance of the source. Figure 8(a) gives an example.

Actually determining the appearance of a target—source
or destination alike—required navigating to the maximum
zoom level in the visual space for the target to be unveiled.
A target is a 3 × 3 grid of colored balloons where the center
balloon is always yellow (Figure 8(b)). The colors used were
red, green, blue, black, yellow, purple, cyan, and grey. The
source target has a unique configuration of colors, and one
of the destination targets—the actual target—has the exact
same configuration. All other destination targets have the
same color configuration but with two randomly swapped
colors. This was done to ensure that all destination targets
would be similar to the source, precluding matching on just
a part of the source’s color configuration.

Completing the trial consisted of finding the actual target
and inputing its number (shown in both overview and detail
views, see Figure 8) into a text field and clicking a button.

Study Design
We used a full-factorial within-participants design:

12 participants
× 2 Navigation Technique T (S, P)
× 5 Discovery Order D (1, 2, 3, 4, 5)
× 2 repetitions

240 Total trials (20 per participant)

We wanted to counterbalance the impact of random chance
in the navigation, so we introduced a factor D for which or-
der the participant would discover the actual target. In other
words, while we told the participants that the program ran-
domly selected one destination target to be the actual target
prior to the participant starting the trial, this was not actu-
ally the case. Instead, the application counted the number of
destination targets as they were unveiled (i.e., viewed at the
maximum zoom level), and made the n:th destination target
the actual target. With D taking on all values {1,2,3,4,5},
and with two repetitions, it is easy to see that all participants
twice encountered all orderings of when they found the ac-
tual target. This design mimics the counterbalancing done

by Pietriga et al. [16] and controls the impact of participants
being “lucky” and choosing the right target every time.

We again organized the trials in blocks by technique. Tech-
nique order was balanced and discovery orders were ran-
domized to counteract learning effects. During the experi-
ment we measured time and correctness. To detect guessing,
if a participant answered without ever having unveiled the
actual target, we counted that as a wrong answer. This was
also true for the last target, so participants were not able use
elimination (we informed participants of this fact).

Hypotheses
H2 P will be faster than S. We think that PolyZoom’s explicit

multifocus support will outperform pan and zoom with ac-
cess to multiple windows; no predictions on correctness.

Results
As in Study 1, we removed outliers and calculated the av-
erage across all repetitions of a trial. We then analyzed the
completion times using a repeated-measures analysis of vari-
ance (as before, all assumptions were valid). We found a
significant main effect of technique T on completion time
(F(1,11) = 28.10, p = .0001). Figure 6(b) shows the com-
pletion times per technique and order; the average times
were 60.7 (s.d. 17.6) seconds for PolyZoom, and 68.31 (s.d.
19.1) seconds for standard pan and zoom, an 11% speedup.

Not surprisingly, the discovery order D had a significant
main effect on completion time (F(4,44) = 46.08, p <
.0001). The effect was roughly linear, as expected, and the
pairwise differences in completion time between orders were
significant (Tukey HSD, p < .05). We found no interaction
effects between the two factors T and D, however.

We analyzed the correctness using logistic regression, but
found no significant main or interaction effects of T or D
on this metric. In general, correctness for Study 2 was high,
with more than 90% of all trials being answered correctly.

For the number of windows, all participants created at least
two windows when solving the task (there was no single trial
with less than two windows). This tells us that participants
were using an appropriate strategy, i.e., putting one window
on the source target and then creating at least one window for
comparing destination targets. Two was also the most com-
mon number, used in 32% of trials. These findings are also
consistent with our informal observations from the study.

Subjective Feedback
Differences in subjective ratings (see Figure 7 (right)) were
significant (Friedman test, p < .05) except for ease of use.
Like for Study 1, comments given by the participants were in
favor of PolyZoom; for example, ”PolyZoom [was] better,”
and ”[the standard pan and zoom] technique did not help.”

Discussion
Our results again confirm our hypothesis H2: participants
were 11% faster when using PolyZoom than when they were
using standard panning and zooming with two or more map
windows. This is significant given that spawning multi-
ple windows, each supporting pan and zoom, is the current

baseline for existing tools such as Google Maps. In fact,
our experimental platform made creating new map windows
trivial by providing an explicit button for this, whereas in a
real window environment you would need to duplicate your
browser window to achieve this. In other words, we suspect
a lightweight technique such as PolyZoom that incorporates
multiple viewports may compare even better.

The reason for PolyZoom performing better than standard
pan and zoom is fairly straightforward: PolyZoom not only
makes creating multiple viewports easy, but it also provides
an explicit correlation between viewports. We did not evalu-
ate this latter characteristic in Study 2, but we think it is easy
to see that giving the user an awareness of the spatial relation
of viewports may be highly useful in many situations.

It is worth noting that we did not compare PolyZoom against
existing multifocus interaction techniques such as space-
folding [2], multiple fisheyes [19], or rubber sheet interac-
tion [18]. However, none of these techniques support multi-
level awareness, and they all rely on visual distortion which
is visually unstable and can cause hunting effects [5]. While
it would be interesting to compare PolyZoom directly to
these techniques, we leave this for future work.

Finally, in terms of generalizing these results, we again give
both qualitative and quantitative arguments. For a qualitative
argument, we believe that PolyZoom will also generalize to
other, and potentially more complex, multifocus tasks than
the ones studied here. For example, our task only involved
comparing two regions, but it is easy to see that PolyZoom
could be used to compare three, four, or more regions. As
for the quantitative argument, we again saw no significant
interaction between technique and discovery order. In other
words, participants were not degrading in performance as
a function of how late the actual target came in the order of
visitation. While this will again clearly not scale indefinitely,
we still think that it indicates that our results will generalize
outside the context of our experimental setup.

Figure 9. PolyZooming in the 20 years of UIST diagram.

POLYZOOM: BEYOND MAPS
While both of our studies used the multiscale geographical
world maps through Google Maps, none of the actual tasks
actually made use of the geographical data itself. We used
the Google Maps example because it is familiar to our par-
ticipants, and it also represents the actual state of the art of
what people use today when interacting with maps.

However, as we have already established, PolyZoom can be
used for any 2D visual space, not just geographical maps.

Figure 1 shows a visual exploration session in a Lunar
dataset where the user is comparing the different craters on
the lunar surface. Similarly, we envision applying Poly-
Zoom to a variety of multiscale spaces defined by visual-
ization techniques, including large adjacency matrices, mul-
tiscale hierarchies, and multiresolution high-dimensional
data. Figure 9 shows an example of zooming in the large
UIST co-authorship graph created by Henry, Dragicevic,
and Fekete (http://www.aviz.fr/gallery/uist20years_
v2.jpg). Our findings in this paper easily confirm the gen-
eral utility of PolyZoom for multiscale spaces and we fore-
see much advances for other datasets.

CONCLUSIONS AND FUTURE WORK
We have presented PolyZoom, a multiscale and multifocus
navigation technique in which users progressively build hi-
erarchies of focus regions that are rendered on the screen si-
multaneously. We have implemented PolyZoom for Google
Maps, NASA Universe, and other multiscale datasets, and
we use this implementation to compare the technique to pan
and zoom in two controlled experiments involving human
subjects. Our findings show that PolyZoom is superior for
both multiscale search as well as multifocus comparison. In
the future we plan to continue to improve these tasks through
interest-based, topology-aware, and semantic methods.

REFERENCES
1. C. Appert, O. Chapuis, and E. Pietriga. High-precision

magnification lenses. In Proceedings of the ACM
Conference on Human Factors in Computing Systems,
273–282, 2010.

2. N. Elmqvist, N. Henry, Y. Riche, and J.-D. Fekete.
Mélange: Space folding for multi-focus interaction. In
Proceedings of the ACM Conference on Human Factors
in Computing Systems, 1333–1342, 2008.

3. G. W. Furnas. Generalized fisheye views. In
Proceedings of the ACM Conference on Human Factors
in Computer Systems, 16–23, 1986.

4. G. W. Furnas and B. B. Bederson. Space-scale
diagrams: Understanding multiscale interfaces. In
Proceedings of the ACM Conference on Human Factors
in Computing Systems, 234–241, 1995.

5. C. Gutwin. Improving focus targeting in interactive
fisheye views. In Proceedings of the ACM Conference
on Human Factors in Computing Systems, 267–274,
2002.

6. K. Hornbæk, B. B. Bederson, and C. Plaisant.
Navigation patterns and usability of zoomable user
interfaces with and without an overview. ACM
Transactions on Computer-Human Interaction,
9(4):362–389, 2002.

7. K. Hornbæk and E. Frøkjær. Reading of electronic
documents: The usability of linear, fisheye, and
overview+detail interfaces. In Proceedings of the ACM
Conference on Human Factors in Computing Systems,
293–300, 2001.

8. T. Igarashi and K. Hinckley. Speed-dependent
automatic zooming for browsing large documents. In
Proceedings of the ACM Symposium on User Interface
Software and Technology, 139–148, 2000.

9. E. W. Ishak and S. Feiner. Content-aware scrolling. In
Proceedings of the ACM Symposium on User Interface
Software and Technology, 155–158, 2006.

10. W. Javed and N. Elmqvist. Stack zooming for
multi-focus interaction in time-series data visualization.
In Proceedings of the IEEE Pacific Visualization
Symposium, 33–40, 2010.

11. S. Jul and G. W. Furnas. Critical zones in desert fog:
Aids to multiscale navigation. In Proceedings of the
ACM Symposium on User Interface Software and
Technology, 97–106, 1998.

12. V. Kaptelinin. A comparison of four navigation
techniques in a 2D browsing task. In Proceedings of the
ACM Conference on Human Factors in Computing
Systems, 282–283, 1995.

13. D. Nekrasovski, A. Bodnar, J. McGrenere,
F. Guimbretière, and T. Munzner. An evaluation of pan
& zoom and rubber sheet navigation with and without
an overview. In Proceedings of the ACM Conference on
Human Factors in Computing Systems, 11–20, 2006.

14. K. Perlin and D. Fox. Pad: An alternative approach to
the computer interface. In Computer Graphics (ACM
SIGGRAPH ’93 Proceedings), 57–64, 1993.

15. E. Pietriga and C. Appert. Sigma Lenses: Focus-context
transitions combining space, time and translucence. In
Proceedings of the ACM Conference on Human Factors
in Computing Systems, 1343–1352, 2008.

16. E. Pietriga, C. Appert, and M. Beaudouin-Lafon.
Pointing and beyond: an operationalization and
preliminary evaluation of multi-scale searching. In
Proceedings of the ACM Conference on Human Factors
in Computing Systems, 1215–1224, 2007.

17. C. Plaisant, B. Milash, A. Rose, S. Widoff, and
B. Shneiderman. LifeLines: Visualizing personal
histories. In Proceedings of the ACM Conference on
Human Factors in Computing Systems, 221–227, 1996.

18. M. Sarkar, S. S. Snibbe, O. J. Tversky, and S. P. Reiss.
Stretching the rubber sheet: A metaphor for visualizing
large layouts on small screens. In Proceedings of the
ACM Symposium on User Interface Software and
Technology, 81–91, 1993.

19. G. Shoemaker and C. Gutwin. Supporting multi-point
interaction in visual workspaces. In Proceedings of the
ACM Conference on Human Factors in Computing
Systems, 999–1008, 2007.

20. J. J. van Wijk and W. A. A. Nuij. Smooth and efficient
zooming and panning. In Proceedings of the IEEE
Symposium on Information Visualization, 15–22, 2003.

21. C. Ware and M. Lewis. The DragMag image magnifier.
In Extended Abstracts of the ACM Conference on
Human Factors in Computing Systems, 407–408, 1995.

http://www.aviz.fr/gallery/uist20years_v2.jpg
http://www.aviz.fr/gallery/uist20years_v2.jpg

	Introduction
	Background
	Common Navigation Techniques
	Multiscale Navigation
	Multifocus Interaction

	PolyZoom: Technique
	Layout
	Viewport Size Management
	Correlation Graphics

	PolyZoom: System
	Evaluation
	Participants
	Apparatus
	Navigation Technique (T)
	Software and Dataset
	Procedure

	Study 1: Multiscale Visual Search
	Task
	Study Design
	Hypotheses
	Results
	Subjective Feedback
	Discussion

	Study 2: Multifocus Comparison
	Task
	Study Design
	Hypotheses
	Results
	Subjective Feedback
	Discussion

	PolyZoom: Beyond Maps
	Conclusions and Future Work
	REFERENCES

