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(a) Simple line graph. (b) Braided graph.

(c) Small multiples (d) Horizon graphs.

Fig. 1. Four visualization techniques for multiple time series. This example shows the same four time series (200 data points).

Abstract—Line graphs have been the visualization of choice for temporal data ever since the days of William Playfair (1759–1823),
but realistic temporal analysis tasks often include multiple simultaneous time series. In this work, we explore user performance
for comparison, slope, and discrimination tasks for different line graph techniques involving multiple time series. Our results show
that techniques that create separate charts for each time series—such as small multiples and horizon graphs—are generally more
efficient for comparisons across time series with a large visual span. On the other hand, shared-space techniques—like standard line
graphs—are typically more efficient for comparisons over smaller visual spans where the impact of overlap and clutter is reduced.

Index Terms—Line graphs, braided graphs, horizon graphs, small multiples, stacked graphs, evaluation, design guidelines.

1 INTRODUCTION

When William Playfair (1759–1823) invented the line graph in
1786 [24] to help people understand time series data, he can hardly
have imagined the repercussions his work would have on posterity.
Now hailed as the father of statistical graphics [11], Playfair—a Scot-
tish engineer—used his line, bar, pie, and circle graphs to communi-
cate political and economical data [12]. Line graphs are today one of
the most common types of statistical data graphics [3], and are used
to visualize temporal data in a wide array of domains such as finance,
politics, science, engineering, and medicine.

However, while standard line graphs can easily deal with a few
time series simultaneously, common tasks involving time series data
often involve many concurrent series [17]. Consider a stock analyst
surveying the history of a set of stocks in an effort to find the next
investment. This comparison will have to be conducted across each
of the time series representing each individual stock. While recent
work [16] investigated the performance of a novel time series visual-
ization technique—horizon graphs [26]—for different chart sizes, this
study only involved two time series at all times. Other similar graph-
ical perception work tend to only involve discrimination and estima-
tion between two charts as well [27]. Lam et al. [20] studied multiple
(more than two) time series, but focused on multi-resolution visualiza-
tion techniques. Thus, there exists little data on graphical perception
for multiple time series as a function of different line graph techniques.

In this paper, we address this lack of knowledge by rigorously eval-
uating graphical perception for different tasks involving multiple time
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series through controlled laboratory experiments. The main motiva-
tion for this work is to provide guidelines for designers who need to
find a suitable method when building a temporal visualization applica-
tion. Beyond studying simple line graphs [24], we also include small
multiples [28] and horizon graphs [26] in our experiment. In addition,
to aid perception of multiple color-coded time series, we include a
novel visualization technique that we call a braided graph where filled
areas are sorted in depth order for each position along the time axis.

Our results could influence a wide range of disciplines where tem-
poral data are viewed and analyzed. However, there is a limit to the
perceptual abilities of the human analyst, and thus there comes a point
when the graphical perception task becomes impossible due to too
many concurrent time series and to the correspondingly high visual
clutter [8]. For these situations, we need alternative methods such as
temporal queries [17], hierarchical aggregation [9], or temporal clus-
tering [19]. While these methods are outside the scope of this paper,
we are also interested in finding the point where the graphical percep-
tion of a typical user breaks down for the above techniques.

2 RELATED WORK

Evaluation of graphical perception for statistical data graphics has a
long history, originating from even before there were computers and
graphics to turn charts into interactive visualizations. The pioneering
work by Eells [7] set the stage for comparing different types of graph-
ical representations. Croxton et al. compared bar charts with circle
diagrams and pie charts [6], and also discussed the relative merits of
bars, squares, circles and cubes to perform the comparison tasks [5].
Peterson et al. [23] measured the accuracy of reading values from eight
different graphical representations of statistical data.

Early work to find the effectiveness and merits of different graph
types later came under the umbrella of graphical perception of sta-
tistical graphics [4]. Graphical perception is defined as the ability of
users to comprehend the visual encoding and thereby decode the infor-
mation presented in the graph [22]. Simkin and Hastie [27] compared
the accuracy of judgment while using simple bar charts, divided bar
charts, and pie charts based on the comparison and estimation tasks,
but they only involved two charts at a time.



In the human-computer interaction field, Lohse [22] worked on de-
veloping a cognitive model to understand graphical perception. He
also performed an empirical study to compare computer-simulated
graphical perception based on his model with the actual performance
of the user [21]. Meanwhile, Gillan [13] developed a perceptual model
that explains human interaction with graphs. In later work [14], he
studied this model for various representations like line graphs, scatter-
plots, stacked bars, and pie charts.

Huang et al. [18] conducted three user studies to determine the use-
fulness of a cognitive approach for measuring graphical perception.
They argued that the cognitive behavior of the user can be useful be-
yond merely measuring time and error. Most recently, Heer et al. [16]
performed two controlled experiments to measure the effect of chart
size and layering on user performance while performing discrimina-
tion and estimation tasks on data.

Finally, Lam et al. [20] did investigate graphical perception of mul-
tiple line series, but their study focuses more on differences between
low-resolution and high-resolution visual representations than on com-
paring the performance of line graph techniques. While their motiva-
tion is different, parts of their study are very relevant to ours.

3 VISUALIZATION OF MULTIPLE TIME SERIES

It is not clear that the existing results on graphical perception of two
data series, discussed above, generalize to the case where we have
more than two time series. In this section, we will derive suitable
evaluation criteria and then discuss different line graph visualization
techniques individually. In the following sections, we will test them
empirically using controlled experiments.

In the below discussion, let N annotate the number of time series to
visualize simultaneously and let S be the total vertical space (in pixels)
available for visualizing the data.

3.1 Evaluation Criteria
Graphical perception of multiple time series depend on a large number
of factors. Below we list the most important of these factors and dis-
cuss how they can be used to classify actual visualization techniques:

• Space management: This factor describes whether space is
“shared” or “split” between time series. Shared space is typi-
cally more amenable to comparison between series (because they
are overlaid in the same space), while data in split space may be
easier to perceive (less clutter).

• Space per series: The amount of vertical display space allocated
to each individual time series. Some techniques allocate space
proportional to the time series value.

• Identity: Distinguishing between time series can be difficult for
shared space visualizations, where we often have to use graph-
ical attributes such as color, fill pattern, or line style to convey
identity. This is often more difficult for “line” techniques than
for “area” techniques, where more of the color or style can be
shown than for a thin line.

• Baseline: Comparison between time series is made easier with
a “common” baseline than for an “individual” baseline, or one
based on the “previous” time series displayed.

• Visual clutter: The clutter [8] associated with the visualization
technique, especially for large values of N.

Table 1 summarizes our classification for the five line graph tech-
niques surveyed in this paper. We discuss these techniques below.

3.2 Simple Line Graphs
The simple line graph technique we study in this paper is basically
the original graph invented by William Playfair in 1786 [24]. Time is
mapped to the horizontal (X) axis, and the value is mapped to the ver-
tical (Y) axis. Displaying a time series on the graph simply consists of
placing the points using the time and value mappings and connecting

the points with lines. Adding multiple time series is easy—just assign
each series a unique graphical property, such as a color or a line style,
and then add them to the shared space (normalizing axes as needed).

Figure 2 shows an example with four time series, each assigned a
unique color for identity. As seen in Table 1, simple line graphs use
a common baseline in shared space, making comparisons across se-
ries simple. However, because each series is represented by a line,
distinguishing identity without labels or interactive drill-down is chal-
lenging. Also, the graph may become cluttered at high values of N.

Fig. 2. Simple line graph visualization for 4 time series.

3.3 Small Multiples
Small multiples applied to line graph visualization means that instead
of adding all time series to the same graph space, we split the space
into individual graphs, one for each time series [28]. Because we no
longer have to support several time series on the same graph space, we
can turn the line into a filled area to ease identification. It is clearly
important that all charts use the same axis scaling to allow for compar-
ison across the charts.

Figure 3 shows an example scenario. Again, we assign unique col-
ors for each of the time series, but distinguishing identity is now trivial
because the graphs are separate. This also results in less visual clutter.
On the other hand, this allocates less vertical resolution to each indi-
vidual time series, and also makes comparison across series difficult,
especially if the respective graphs are spaced far apart.

Fig. 3. Small multiples visualization for 4 time series.

3.4 Stacked Graphs
Stacked graphs have been known and used for some time, but were
recently discussed and evaluated for time-series visualization by By-
ron and Wattenberg [2]. A stacked graph is a shared space technique
where each time series in the graph is drawn sequentially, and one time
series uses the value of the previous series as a baseline (the first series
will use the origin of the graph as a baseline). In other words, the time
series are stacked on top of each other, one at a time.

Figure 4 shows an example stacked graph for four time series. Be-
cause of this curious use of variable baselines, stacked graphs can use
filled areas instead of lines to ease identification, but this comes at the
cost of more complex comparison across time series [2]. It also means
that the space allocation for each graph is proportional to the sum of
values of all time series, so individual time series cannot use the whole
vertical space despite using shared space. However, by separating the
filled areas, the visual clutter can be kept reasonably low.

Fig. 4. Stacked graph visualization for 4 time series.

3.5 Horizon Graphs
The horizon graph time series visualization technique was originally
presented by Saito et al. [26] under the name “two-tone pseudo color-
ing”. The construction of a horizon graph is summarized in Figure 5.



Table 1. Classification of visualization techniques for multiple time series. S is the total vertical space available for each chart, N is the number of
time series to visualize, and B is the number of bands used in the horizon graph [26].

Visualization Space management Space per series Identity Baseline Visual clutter
simple line graph [24] shared S line common medium
small multiples [28] split S/N – common low
stacked graph [2] shared proportional area previous medium
horizon graph [26] split S/N ∗2 ·B – common/individual low
braided graph shared S area common high

Basically, starting with a simple line graph (Figure 5(a)), we fill the
area beneath the curve with a blue color for positive values, and a red
color for negative (Figure 5(b)). We then split the value range into
B discrete ranges, or bands, and mirror the negative values above the
baseline (Figure 5(c)). In the final step, we introduce the notion of
virtual resolution [16] by wrapping the graph space using the bands
(Figure 5(d)). For multiple time series, we create one horizon graph
per series; Figure 6 shows our implementation for N = 4 and B = 2.

(a) Standard line graph centered around a baseline.

(b) Color (blue is positive, red is negative) and layering.

(c) Mirroring around the baseline.

(d) Wrapping bands into a single space.

Fig. 5. Step-by-step construction of a horizon graph (adapted from [10]).

This virtual resolution and wrapping of negative values means that
more space can be allocated for each individual time series despite
the fact that horizon graphs use split space—instead of S/N, the space
allocation for small multiples (the other split space technique), hori-
zon graphs allocate S/N ∗ 2 ·B pixels per each graph, where B is the
number of bands used (according to Heer et al. [16], B = 2 yields op-
timal performance for small vertical space allocations). Like for small
multiples, the split space layout means that the visual clutter is low.

The baseline value for a horizon graph may be any value, not nec-
essarily zero. However, one caveat with horizon graphs is that they
perform best with baselines that are individual to each time series so
that the ranges for the bands are utilized optimally (for example, the
baseline could be the average of the vertical extents of the data, or the
initial data value). On the other hand, if the baselines are not identical
across all time series, it is difficult to compare them in a meaningful
way. This is similar to how the value axes for other line graph tech-
niques must be normalized for all time series being visualized.

It is also worth noting that Heer et al. [16] proposed a variant of
horizon graphs where negative values were offset instead of mirrored
around the baseline. This helps users perceive that negative values are,
in fact, dipping and not peaking. However, Heer found no significantly
better performance for these offset graphs, so we disregard them here.

Fig. 6. Horizon graph visualization for 4 time series (2 bands).

3.6 Braided Graphs
Having come this far in our survey of static time series visualization
techniques, we can note two facts: that (i) shared space layout benefits
comparison across time series over split space, but that (ii) split space
layout makes identification easier. The stacked graph technique tries
to combine these two benefits, but the stacked baselines means that
interpretation and comparison can be difficult.

The main reason why time series in simple line graphs can be diffi-
cult to identify is that the identifying graphical properties are restricted
to a single (often thin) line representing the time series. This is par-
ticularly difficult if the color coding uses similar colors. If we could
somehow fill the whole area beneath the line, there would be more
space (i.e., more pixels) to help the viewer distinguish between dif-
ferent time series. However, turning the lines into filled areas means
that one curve might hide the other. Even sorting the curves so that
the highest-value curve is behind the lowest-value curve will not work
if the two series ever change value ordering because then there ex-
ists no single depth order that avoids overlap at some point along the
time axis. For example, given two series A and B, filling the area be-
neath the curves for these series will not work unless A(ti) > B(ti) or
A(ti)< B(ti) for all time positions ti in the series.

Fig. 7. Braided graph visualization for 4 time series.

Braided graphs solve the problem by identifying the intersection
points in time where two series change value ordering, i.e., all points
ti that fulfill the condition A(ti−1)> B(ti−1) and A(ti)< B(ti) (or vice
versa). Each filled area representing a series is cut into two different
segments at these intersection points, and the individual segments are
then depth-sorted and drawn with the highest value segment first. This
guarantees that all series segments will always be visible. Figure 8
gives a graphical view of this process.

Figure 7 shows our braided graph implementation with four con-
current time series. The technique maintains common baseline while
using area curves to aid identitification. However, the resulting graph
has a potentially high visual clutter for large numbers of N.

4 USER STUDY

Our intention with this work is to study user performance for different
line graph visualization techniques in the presence of multiple time
series. More specifically, we are interested to see how different tech-
niques perform under different space and cardinality constraints. In
other words, is there a benefit to introducing more complex representa-
tions than simple line graphs for situations with limited vertical screen
space available, or when visualizing a large number of time series?



Fig. 8. Braided graphs use a common baseline but still fill the area beneath each curve. Areas are cut at points where the curves change value
ordering and are depth-sorted with the highest value drawn first (in the back).

To investigate these issues, we designed a quantitative user study to
measure time and correctness performance for different combinations
of visualization technique, screen space, and number of time series.

4.1 Hypotheses

Our intuition is that split-space and shared-space line graph techniques
have different strengths and weaknesses for tasks with different visual
span [20]: local, when targets span a limited horizontal display width,
and dispersed, when targets span the entire display width.

H1 Shared-space techniques will perform better for tasks with local
visual span. The strength of shared space techniques is that they
permit easier direct comparison across series than split-space
techniques for a small visual span. Therefore, we predict that
shared-space techniques (braided and simple graphs) will have
better completion time for this kind of tasks.

H2 Split-scape techniques will perform better for tasks with dis-
persed visual span. Our pilot study indicated that for larger vi-
sual spans, overlap and visual clutter will become a major fac-
tor for shared-space techniques. Split-space techniques (horizon
graphs and small multiples), on the other hand, avoid occlusion,
and we thus predict that they will have better time performance.

H3 Many concurrent time series will cause decreased performance.
This is the basic premise of our research: that the number of
visible time series has a strong impact on the user performance
of tasks that involve all series.

H4 Small display space will cause decreased performance. We also
predict that the amount of vertical display allocated to each visu-
alization will have a direct effect on user performance.

4.2 Participants

We recruited 16 participants (11 male, 5 female) from the student pool
at our university (average age 23, median age 23). Participants were
all volunteers, were paid $10 upon completing a full experimental ses-
sion, had normal or corrected-to-normal vision, and not color blind
(self-reporting). We also screened participants to have reasonable
computer experience (which we define as using a computer more than
20 hours per week). To ensure graph reading experience, all partici-
pants were second-year or higher engineering students (average graph
reading skill was self-rated as 4.5 out of 5).

4.3 Apparatus

Both experiments were conducted on a standard Dell desktop com-
puter equipped with a mouse, a keyboard, and a 19” monitor set to
1280×1024 resolution. The experimental application was maximized
on the screen. Participants only used the mouse during the actual trials.

4.4 Scenario
A single trial in our study consisted of displaying a controlled number
of time series on the screen using a particular visualization type and
given a particular amount of vertical screen space. Time series were
labeled with letters as ’A’, ’B’, ’C’, etc, and were deterministically
assigned colors using the “Dark2” list of 8 isoluminant colors derived
from [15] (so that series A was always green, B was always orange,
etc). All trials used the full width of the visualization window, 900
pixels, for the time series visualization.

There was no interactive control available for any of the experi-
mental conditions beyond inputting the answer for each trial using a
dialog box showing radio buttons, one for each time series (’A’, ’B’,
’C’, etc); the visualizations were static (i.e., no drill-down or details-
on-demand). Each visualization type used a different strategy for uti-
lizing the available vertical space as well as laying out the individual
time series. These details are discussed below.

Time series data (constrained to positive values) were created for
each trial using the chart generation algorithm used by Heer et al. [16].
The time series were randomized for each new trial. This was done to
avoid learning effects during each experimental session, as well as to
minimize the effect of any particular dataset on the final results.

4.5 Tasks
Our hypotheses are based on the premise that split-space and shared-
space time series visualization techniques have different strengths and
weaknesses for different tasks. Therefore, we want to include tasks
that are representative for common uses of temporal visualization:

• Maximum: local comparison across all time series [20]);
• Slope: dispersed rate estimation across all time series [1]; and
• Discrimination: dispersed comparison of time series [27].

4.5.1 Maximum (local task)
This task required the participants to find the time series with the high-
est value at a specific point in time. This is a slight change from Lam
et al. [20], where users were given a limited time period and not a spe-
cific point. Our pilot testing showed that this change gave the most
differentiation between visual representations.

4.5.2 Slope (global task)
Assessing the global slope required users to find the time series with
the highest increase during the whole displayed time period. Adapted
from Beattie and Jones [1], this task can often be solved by estimating
the slope of the lines in a simple line graph, but we were interested in
knowing how this strategy would translate to other graph techniques.

4.5.3 Discrimination (global task)
The discrimination task, adapted from Simkin and Hastie [27], con-
sisted of having the user determine which time series had the highest
value at a point specific to each series. For example, for a trial with two
time series, the user would be asked to determine whether the value of



series A at point pA was greater than series B at point pB. In other
words, the primary task here was to find the individual values of each
time series and then figure out which one was the largest one.

Discrimination points were created by evenly splitting the time di-
mension, adding one point per time series. Each point was indicated
with a tick mark on the horizontal axis as well as a label showing the
series name. The label was drawn using the corresponding color of
each series. The order of discrimination points along the horizontal
axis was randomly generated (but the actual positions were fixed).

4.6 Procedure

Participants were asked to fill out a demographic questionnaire prior
to starting a session. They were then placed in front of the study com-
puter and given an introduction to the goals and purpose of the exper-
iment by the test administrator.

Trials were blocked by task type, then line graph visualization type:
trials would all be of the same task, and a participant would finish all
trials for a particular visualization type before moving on to another.
This was an intentional design to enable participants to only deal with
a single task and visualization style at a time. In addition, partici-
pants would undergo a training phase for each visualization type prior
to undertaking the trials for that block. The training would consist
of the administrator describing the technique (using a script) and then
showing how to solve the different task for a single training trial. Par-
ticipants were then asked to repeatedly solve trials on their own until
they were able to correctly solve three consecutive training trials.

During the training session, the participants were given feedback
as to whether their answer was correct and could choose to repeat a
training trial (with new data), regardless of being correct or not. No
such feedback or choice was given during the actual trials.

Participants were instructed to perform each trial as quickly as pos-
sible (mirroring a realistic overview task). They were allowed (and
encouraged) to ask questions about trials and techniques during the
training phase, but not during the actual trial phase. An average ex-
perimental session lasted up to two hours. To enable time for rest and
general questions, each individual trial was interleaved with an inter-
mission screen. While on this screen, there was no timer running.

4.7 Experimental Conditions

4.7.1 Visualization Type

This factor controlled the line graph visualization type used to display
the time series data on the screen:

• Simple graph (SG): A basic line graph visualization where the
whole vertical space was used for a single graph containing all
time series, each drawn with colored lines.

• Small multiples (SM): A set of simple line graphs, one per time
series, where each graph was given an equal amount of vertical
screen space. Lines were drawn using their corresponding col-
ors. Value (Y) axes used the same scale across all charts.

• Horizon graph (HG): A set of 2-band1 horizon graphs, one
per time series, where each graph was given an equal amount
of vertical screen space. Graphs were drawn using the standard
red/blue horizon color scheme. Value (Y) axes used the same
scale across all charts, and the baseline reference for the graph
was set to the average of the extents to fully utilize the graph’s
virtual resolution (equal ranges on each side of the baseline).

• Braided graph (BG): A single braided line graph using the
whole vertical space where each time series was drawn as a filled
line graph using its corresponding color.

1Two bands is the optimal number for small graph sizes [16].

4.7.2 Number of Time Series
Previous studies have mostly restricted themselves to only comparing
two data series [16, 27], but we are interested in how this number
would impact performance. Therefore, we included the number of
time series to concurrently display as a factor. Pilot testing yielded
three different levels: 2, 4, and 8 simultaneous time series.

4.7.3 Total Chart Size
In this work, we are mainly targeting the comparison and comprehen-
sion of multiple time series, such as studying trends over time for mul-
tiple stocks, disease outbreaks in different parts of a state, or visitors
to various museums in a city. In these situations, the amount of screen
space that the visualization consumes is an important measure, so we
include this as a factor. Furthermore, because of the potential for sum-
marization, aggregation, or windowing on the horizontal (time) axis,
it is primarily vertical screen space that is important. Our pilot studies
indicated three suitable levels for the chart size: 48, 96, and 192 pixels.

Note in the above description that different visualizations use dif-
ferent space management schemes; simple and braided graphs use a
single graph area, whereas small multiples and horizon graphs split the
available space into equal-sized subgraphs, one per each time series.
In other words, given 8 time series to visualize, and 48 pixels to do it
in, a simple line graph could use the full 48 pixels for all series (but
force users to cope with occlusion for overlapping lines). A horizon
graph, on the other hand, would only allocate 48/6 = 6 pixels to each
individual graph, but instead support a virtual resolution [16] (which
for a 2-band horizon graph consequently is twice the space allocation
per graph). These are all intrinsic properties of each visualization type,
and we therefore incorporate this into the experimental design.

4.8 Study Design
We included the following factors in our study (all within-subjects):

• Visualization type (V): Simple (SG), SmallMultiples (SM),
Horizon (HG), Braided (BG)

• Number of time series (N): 2, 4, 8
• Total chart size (S): 48 px (small), 96 px (medium), 192 px

(large) (spacing not included for split space graphs)
• Task (T): Maximum, Slope, Discrimination

We designed the study as a within-subjects factorial analysis on the
above factors, yielding a V ×N×S×T design with 4×3×3×3= 108
different conditions. In addition, each condition was repeated 2 times
to increase robustness, yielding a total of 216 trials per participant.

The order of tasks was not counterbalanced, but rather given in the
order of simple to complex to better prepare participants for the more
difficult task (Discrimination) at the end. The order of visualization
types was counterbalanced between subjects using a Latin square to
avoid systematic effects of practice; the order of size and number of
time series was randomized within each visualization block.

With 16 participants and 216 trials per participant, the study sys-
tem collected time and correctness measurements for a total of 3,456
individual trials for the whole experiment.

4.9 Study Design Choices
Prior to conducting the actual experiment, we performed an extensive
pilot study involving 10 students from our university and including
several candidate tasks and visualizations. We used the results from
this pilot to inform the final design decisions for the study. In the spirit
of Lam et al. [20], we here discuss these design decisions:

• Synthetic data. We follow the conventions of Heer et al. [16] and
Lam et al. [20] in using synthetic data to allow control over the
characteristics of each time series.

• Tasks. We limit our study to only three tasks—maximum, slope,
and discrimination—to keep the experiment manageable in time
and effort for the participants. Our choice of tasks was informed
by the pilot study to be representative of general tasks for time
series data, and also by similar studies.



• Static representations. Our evaluation only involves static visual
representations and avoids animation. We base this on findings
that suggest that animation gives significantly lower accuracy for
trend visualization compared to static charts [25].

• No interaction. In the spirit of classic graphic perception exper-
iments, we evaluated the different techniques based on their vi-
sual representation alone, disabling brushing, drill-down, zoom-
ing, and other interactive operations.

• No stacked graphs. We opted not to include stacked graphs after
our pilot study showed—both from the performance results and
from comments given by participants—that stacked graphs were
mostly unsuitable for the tasks studied in this experiment. This
decision is supported by the legibility issues of stacked graphs
discussed by Byron and Wattenberg [2], and previous results on
graphical perception by Cleveland and McGill [4].

• Color choice. We used the standard “Dark2” isoluminant color
scale for categorical data proposed by Brewer [15] to ensure con-
sistent graphical perception of each time series. However, hori-
zon graphs by design use a specific color scheme as an intrinsic
part of their mapping [10]: blue for positive values (i.e., above
the baseline), and red for negative values (below the baseline).
We do not see this as a confounding factor; each series is indi-
vidually labeled, and a color legend is integrated with the display
(below all graphs) to ease color identification.

• Number of series. We limited our study to include only up to
eight concurrent time series to make trials tractable for shared-
space line graph techniques. Realistic tasks often involve many
more than eight time series, but this typically requires creating
small multiples for the series, and so we regard this as being out-
side the scope of this experiment. For example, Lam et al. [20]
study low data resolution techniques for these situations.

5 RESULTS

Our experiment used two repetitions for each experimental condition.
We used the average of the two repetitions for the following analysis.
In the following treatment, we first discuss correctness and completion
time for all tasks. We then present results for each task individually.

Correctness Table 2 summarizes the main effects on correctness
for all tasks, analyzed using logistic regression. Figure 9(a) shows the
correctness as a function of the visualization type and the task. Each
individual task yielded the same significant effects, so we choose not
to present these results in full detail.

From the table we can see that visualization type is not significant
for correctness. This is as we expected—there should be no accuracy
difference for the overview tasks included here—and it indicates that
the participants were equally careful, regardless of line graph type.

Table 2. Effects of factors on correctness (logistic regression).
Task Factors df, den F p
All Visualization type (V) 3, 45 1.40

Number of time series (N) 2, 30 32.95 **
Total chart size (S) 2, 30 5.05 *

Task (T) 2, 30 6.81 *
* = p ≤ 0.05, ** = p ≤ 0.001.

Completion Time The time to complete a trial was measured
from when the charts were first displayed to when the user clicked
the Okay button on the answer dialog. We found that the time samples
violated the normality assumptions of the analysis of variance, so we
analyzed the logarithm of the times (other assumptions were met).

Table 3 summarizes the main effects on completion time using a
repeated-measures analysis of variance (RM-ANOVA). We analyze
both all tasks combined, as well as each task individually. Figure 9(b)
shows completion time as a function of both N and T , and Figure 9(c)

Table 3. Effects of factors on time (ANOVA).
Task Factors df, den F p
All Visualization type (V) 3, 45 20.49 **

Number of time series (N) 2, 30 858.92 **
Total chart size (S) 2, 30 1.37

Task (T) 2, 30 24.42 **
V * N 6, 90 5.40 **
V * T 6, 90 96.70 **
N * T 4, 60 25.47 **

V * N * T 12, 180 5.63 **
Max Visualization type (V) 3, 45 72.95 **

Number of time series (N) 2, 30 152.69 **
Total chart size (S) 2, 30 0.78

V * N 6, 90 5.40 **
Disc Visualization type (V) 4, 56 167.46 **

Number of time series (N) 2, 30 611.23 **
Total chart size (S) 2, 30 4.55 *

V * N 6, 90 17.29 **
Slope Visualization type (V) 4, 56 12.77 **

Number of time series (N) 2, 30 227.65 **
Total chart size (S) 2, 30 0.16

V * N 6, 90 0.63
* = p ≤ 0.05, ** = p ≤ 0.001.

shows time as a function of S and T . As can be seen from the table, the
number of time series N has a significant main effect on completion
time, but total chart size S has no significant effect.

Completion times for each task as a function of the visualization
type are shown in Figure 10. We analyzed this effect using a Tukey
HSD test; Figure 11 shows pairwise relations for all tasks (p < .05).

6 INFORMAL FOLLOW-UP USER STUDY

Our results are limited to up to eight concurrent time series, but
many realistic tasks involve substantially higher numbers of series. To
study this effect closer, we designed an informal follow-up experiment
where we investigated performance for higher numbers of time series.

We wanted experienced visualization users because of the high
numbers of time series we were investigating. For this reason, we re-
cruited four unpaid participants (all male) from another visualization
laboratory at our university. As opposed to attempting to get statisti-
cally significant results with such a small participant pool, we set out
only to capture completion time data for comparison in graphical form.
We chose the discrimination task because it was the most taxing task
(by virtue of having the highest average completion time).

Because our main study did not show a significant effect for total
chart size S given our parameters (down to 6 pixels per chart for split
space graphs), we opted to fix the chart size to 6 pixels per time series,
and instead allocated total chart size to be proportional to the number
of time series (i.e., S = N × 6 pixels). However, as for the number of
time series N, we included 2, 4, 8, 10, 12, 14, and 16 concurrent series.
Color choice is a problem for this many series—we based our colors
on the 12-color qualitative color scheme proposed by Brewer [15].

With 4 participants and 28 trials for each, we collected data for 112
individual trials. Figure 12 plots time for V and N, where we can note
that split-space techniques seem to scale better for higher values of N.

7 DISCUSSION

We can summarize our findings as follows:

• Shared-space techniques (SG and BG) were faster than split-
space techniques for the local Maximum task (confirming H1);

• Split-space techniques (SM and HG) were faster than shared-
space techniques for the dispersed Discrimination task (H2);

• The Slope task, with dispersed visual span, was special—SM and
SG were fastest here;



(a) Correctness (V ×T ). (b) Completion time (N ×T ). (c) Completion time (S×T ).

Fig. 9. Correctness and completion time plots for the overall study (all tasks combined).

(a) Discrimination task. (b) Maximum task. (c) Slope task.

Fig. 10. Completion time as function of visualization type V for each task.

• Higher numbers of concurrent time series caused decreased cor-
rectness and increased completion time (confirming H3); and

• Decreased display space allocation had a negative impact on cor-
rectness, but had little effect on time (partially confirming H4).

7.1 Explaining the Results
The results from this study confirm our intuition that different visual
representations have different strengths and weaknesses—a perhaps
not surprising result. However, these findings can be useful as guide-
lines for designers looking to build visualization systems based on line
graph representations. We believe that superimposed (shared-space)
techniques excel at comparisons with a local visual span because these
techniques have the benefit that the comparison is done in the same
space. Juxtaposed (split-space) techniques require the user’s gaze to
travel vertically between different screen regions for comparison.

However, for dispersed visual span tasks, we introduce an addi-
tional horizontal travel distance necessary for the comparison. In a
shared-space representation, clutter and overlap between time series
is inevitable and increases as the number of series increases, and this
makes following individual lines over a distance difficult. Split-space
techniques, on the other hand, do not have this problem because they
disambiguate each series using vertical distance, and managing large
visual spans becomes easier. For this reason, split-space techniques are
more robust against high numbers of concurrent series for dispersed
tasks. This is particularly clear from the results from the follow-up
study, where the overlap and clutter is significant at high values of N.

Having said that, the pairwise comparisons in Figure 11 do show
that for these three tasks at least, simple graphs (SG) and small multi-
ples (SM) end up at the top more often than horizon (HG) and braided

Fig. 11. Pairwise relations for completion time for all three tasks. Arrows
indicate that the source is significantly faster than the destination. Tech-
niques on the same level have no significant completion time difference.

graphs (BG). This indicates that these former two representations are
more robust towards different task types than the latter two.

For shared-space techniques, the clutter problem is compounded by
the limited color acuity of the human visual system—it is plain diffi-
cult to differentiate between eight (or sixteen, for the follow-up study)
unique colors, particularly when each color is represented by a thin
line. Our braided graph was designed to improve color perception by
filling the area under each curve. However, while braided graphs were
better than both small multiples and horizon graphs for the Maximum
task, it was only equivalent and never better than the simple graph.
Therefore, it is not clear this technique fully reached its design goals.

One surprising outcome of our study is that the total display chart
size had no significant effect on completion time. In other words, it ap-
pears that participants did not become slower when the chart size de-
creased. We explain this by that participants were asked to solve each
trial as quickly as possible and thus tended to use the same amount of



Fig. 12. Interaction of V ×N for completion time for the follow-up study.

time regardless of chart size. This was manifested in decreased cor-
rectness instead, on which chart size did have a significant effect; in
other words, a classic time/accuracy trade-off.

Finally, horizon graphs were significantly slower than all other tech-
niques for the maximum task, the quickest (and presumably easiest)
task. We speculate that this is because horizon graphs are not really
preattentively perceivable, but require some cognitive effort to decode.

7.2 Generalizing the Results
The design of this experiment is broad enough that our results should
be generalizable to other settings and tasks. The results are also con-
sistent with previous work on graphical perception for statistical data
graphics [1, 16, 27]. In particular, according to the reasoning above,
simple graphs and small multiples in general appear to be most versa-
tile of the visual representations tested in this work.

On the other hand, our study, while fairly comprehensive, only in-
cludes three of the many potential tasks users may want to perform on
a time series visualization. In particular, our chosen tasks are designed
for quick overview and not detailed drill-down, whereas the virtual
resolutions of horizon graphs and the shared space of superimposed
techniques may lend themselves to this kind of detail task. Conduct-
ing an accuracy-based evaluation is left for future studies on this topic.

Finally, as our results show, there clearly is a limit to how many
time series are practical to display simultaneously before the visual
clutter becomes too high for effectively perceiving individual series.
For higher values of N, we must instead turn to methods involving
compact visual representations [20], temporal queries [17], or aggre-
gation [9]. In other words, it is clear that visualizing individual tempo-
ral data series is not generalizable to any number of concurrent series.

8 CONCLUSION AND FUTURE WORK

We have presented results from a user study on the graphical percep-
tion of multiple simultaneous time series. Our results show that su-
perimposed line graph techniques work best for local tasks, whereas
juxtaposed techniques work best for dispersed ones.

In our future endeavors, we would like to study graphical perception
for massive numbers of time series. Virtually all data can be analyzed
with respect to time, and it is not unusual to have datasets consisting
of hundreds, if not thousands, of time series. One promising approach
is to aggregate time series (e.g., [29]) and visualize the aggregates.
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