
Lodestar: Supporting Rapid Prototyping
of Data Science Workflows Through
Data-Driven Analysis Recommendations

Journal Title
XX(X):1–16
©The Author(s) 2023
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Deepthi Raghunandan1, Zhe Cui2, Kartik Krishnan1, Segen Tirfe1, Shenzhi Shi1, Tejaswi
Darshan Shrestha1, Leilani Battle3, and Niklas Elmqvist1

Abstract
Keeping abreast of current trends, technologies, and best practices in visualization and data analysis is becoming
increasingly difficult, especially for fledgling data scientists. In this paper, we propose LODESTAR, an interactive
computational notebook that allows users to quickly explore and construct new data science workflows by selecting from
a list of automated analysis recommendations. We derive our recommendations from directed graphs of known analysis
states, with two input sources: one manually curated from online data science tutorials, and another extracted through
semi-automatic analysis of a corpus of over 6,000 Jupyter notebooks. We validated Lodestar through three separate
user studies: first a formative evaluation involving novices learning data science using the tool. We used the feedback
from this study to improve the tool. This was followed by a summative study involving both new and returning participants
from the formative evaluation to test the efficacy of our improvements. We also engaged professional data scientists in
an expert review assessing the utility of the different recommendations. Overall, our results suggest that both novice and
professional users find Lodestar useful for rapidly creating data science workflows.

Keywords
Computational notebook, visualization recommendation, Markov chain, data science, Python.

Introduction

Data science is still a nascent and emerging discipline, which
makes it challenging for analysts to learn and keep up with
new tools and techniques. There is already a dizzying array
of libraries, such as Scikit-Learn, Pandas, and TensorFlow,
and best practices and workflows change often. Furthermore,
few standardized methods exist for data analysis: many times,
the exact data transformations, computations, and analyses
needed depends on the data, task, and user. This means that
cookbook methods or simple templates are insufficient to
teach fledgling analysts how to tackle realistic and ever-
changing data science problems.27

We present LODESTAR, an interactive and visual sandbox
for independent learning of analysis methods and best
practices in data science. Our aim in developing Lodestar
is to simplify the process of finding and experimenting
with new methods by providing automated, data-driven
recommendations. The vision is for Lodestar to be a self-
contained environment for rapid learning and prototyping that
combines everything the user needs to infer the function and
purpose of an analysis step in one place.

The Lodestar system shows a sequence of analysis steps
in the form of Python code cells (see Figure 1), like
in a computational notebook interface (such as Jupyter
notebook25), but enables the user to initially select from
and interact with self-contained code cells without having
to write any code. The user merely selects which data-
frame to analyze, and the system displays a ranked list of
recommendations of analysis steps to be executed on that
data. Each analysis step is represented by an interactive

visualization in the notebook interface, giving the user insights
into its output and behavior. Furthermore, users can view the
corresponding code for any analysis step, and even export
the resulting notebook from Lodestar, providing flexibility in
how users learn from and interact with Lodestar’s analysis
recommendations.

Lodestar provides recommendations for the user’s next
analysis step based on the current state of the analysis and
the dataset being analyzed. Recommended analysis steps
and workflows are derived from two sources representing
current best practices in data science: (1) existing data
science tutorials from online academies and training materials
(i.e., expert recommendations), and (2) common analysis
patterns mined from a large corpus of publicly available
Jupyter notebooks42 (i.e., crowd recommendations). The
code cells extracted from each source are manually curated,
then programmatically clustered into synonymous analysis
steps, and inserted into a large directed graph of connected
cells representing common analysis workflows. The Lodestar
recommendation engine can then identify and rank the most
relevant analysis steps given the user’s current position in the
graph.

We developed Lodestar using an iterative design process
through three separate user studies. In the first study, we
used early feedback from six novice data scientists to

1University of Maryland, College Park, MD
2Google, Inc., Mountain View, CA, USA
3University of Washington, Seattle, WA
Email: {draghun1, kkrishn1, segent, sshi1234, elm}@umd.edu,
shreshta.tj@gmail.com, zhecui@google.com, leibatt@cs.washington.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

Selected
recommendation

Notebook cell

Recommendation panel
(collapsed)

Analysis output

Visualization
output

Expert
Crowd

recommendation
Recommendation panel

Recommendation panel
(closeup)

Figure 1. Lodestar web interface. The top panel, above the selected recommendations, provides a data selection menu. The black
dividers between sections are recommendation panels combining suggested analysis steps from various sources (called advisors).
Areas that have graphs and analysis outputted are analysis cells, each with multiple tabs: “Analysis Results” gives charts or tables,
“Output Dataframe” and “Code Script” shows the outputs and current code block, and “What’s this analysis?” gives a brief description
of the analyses.

improve the interface design in a formative user study. Once
we made improvements to the interface design, we asked
three returning participants and seven new participants to
evaluate the improved version of the interface in a summative
user study. Our findings show that key Lodestar interactive
features, such as automated recommendations, a visualization
of the full analysis workflow, a code review pane for suggested
analysis steps, and support for Jupyter Notebooks, provide
significant value to those who are learning data science.
Finally, in a third study, we invited three professional
data scientists to evaluate Lodestar recommendations and
its recommendation engine. This evaluation showed that
Lodestar recommendations provide an easy way to explore
data and analysis techniques.

In this work, we make the following contributions:
(1) a recommendation system involving two sources of
data analysis practice: crowd-based and expert-based;
(2) a sandbox interface design integrating visualizations,
interactions, and code to facilitate learning about new data
analysis techniques; (3) results from formative study and
a summative study evaluating the Lodestar interface; (4)
results from a study evaluating Lodestar recommendations
and recommender engine; and (5) a novel data analysis
architecture that integrates a recommender system with an
interactive interface. All our materials have been made
available on OSF: https://osf.io/pztva/

Motivating Scenario

Chewie is a recently retired journalist, and is hoping to devote
his retirement to his true passion: traveling the world. He owns
a condo in a nice downtown area, and is now trying to decide
whether selling or subletting his house is the better choice
given the changing market. What will yield him the most
funds to travel in the long run? Unfortunately, while Chewie
has long experience finding the facts, he has no training in
data science or temporal forecasting. He turns to Lodestar for
help.

Chewie talks to his realtor, who is able to quickly get him
a dataset of recently sold homes in the neighborhood. The
resulting CSV file contains approximately 500 homes sold
in the last five years, including the price, address, square
footage, date sold, the income of the house owners, and school
statistics. The realtor also provides him with another dataset
of 1,000 rentals in the city for the last 10 years, including
monthly rent, address, size, and year.

Chewie first creates a Lodestar notebook and loads the 500
sold houses. The first few recommendations include several
descriptive statistics that give an overview of the dataset.
He chooses scatterplot-regression, which renders
scatterplots between various attributes with a estimated
regression line. He then selects the shuffle-split analysis from
the expert advisor, which is described as the first step of

Prepared using sagej.cls

https://osf.io/pztva/

3

training a model. The human-readable description informs
him that this is a standard method to randomly select a holdout
dataset for training, and one for testing. Then he goes along
with the next top recommendation fit-decision-tree, to actually
train a decision tree model; this shows up from both the expert
and crowd advisors, as it is a common step for forecasting.
He is now ready to make predictions and uses the Lodestar
default parameters to input the data for his house: selling it
now, versus in five years. The model suggests that selling
his house in five years instead of now will net him an extra
$25,000.

Satisfied, he creates a new Lodestar notebook and repeats
the process for the rental dataset. Again, the parameters of his
house will yield him a suggested rent—$1,200 per month—as
well as its market increase over the five years. He takes his
figure and manually deducts his monthly mortgage payment,
and realizes that his rental income over those five years will
be close to $5,000 more than selling the condo now. His
decision made, Chewie contacts his realtor and tells him to
list the condo for rent, and then turns to planning his escape
to warmer clime.

Background
Lodestar was architected to encourage best practices in
sensemaking. Richard Hamming described sensemaking
as “the process of searching for a representation and
encoding data in that representation to answer task-
specific questions”.43 Dubbed the sensemaking loop,36 each
sensemaking iteration works to refine and build on the
previous insights—ultimately enabling the analyst to address
less specialized audiences.

In combination, these iterations make up the data science
workflow. Analysts often use visualizations or other types of
intermediate results to guide further analysis. However, these
results can sometimes be dead ends. Kandel et al.22 found that
analysts will commonly overcome dead ends by backtracking
and exploring new branches.

Interactive Visualization Design Environments
Many visualization systems and toolkits are designed around
specific data analysis tasks, making the analysis process
easier to perform. Excel supports basic visualization and
data transformations. Shelf-based visualization environments
such as Tableau (née Polaris51) allow easy configuration
of visualizations through drag-and-drop of data attributes
and metadata onto “shelves” representing visual channels.
This approach is flexible enough for even novice users
to construct a wide range of visualizations. Interactive
visual design environments such as Lyra,45 iVoLVER,32

and iVisDesigner39 utilize direct manipulation to allow
users to bind data to visual representations. More recently,
Data-Driven Guides,24 Data Illustrator,28 DataInk,65 and
Charticulator40 provide advanced tools for representing data
items as visual elements and mapping their attributes to data
dimensions. Keshif,66 a faceted visualization tool, generates
grids of predefined charts to support visual exploration by
novices. ExPlates20 uses fluid drag-and-drop interaction to
support spatialized data analysis.

Visualization development toolkits such as D37 and
Protovis6 provide fine-grained control over designing

interactive visualizations, but require significant programming
expertise to use. Visualization grammars, such as ggplot2,61

Vega,47 and Vega-Lite,46 abstract away implementation
details, but still require programming knowledge to use.
Furthermore, even advanced visualization tools, toolkits, and
grammars offer only limited functionality for manipulating
the data, and only support a small number of statistical
functions.

Visualization Recommendation
The purpose of visualization recommendation is to suggest
relevant visualizations to the user to facilitate data analysis18,
where the visualizations are fully designed in advance
and therefore directly accessible to the user. It was first
proposed by Mackinlay29 in 1986 with automatic design
of effective presentations based on input data. The work
combines expressiveness and effectiveness criteria from
studies such as those by Bertin5 and Cleveland et al.8 to
recommend appropriate visualizations. In 2007, Tableau’s
Show Me feature30 revealed a commercial product with
the implementation of these ideas. Following the idea
of Mackinlay’s automatic visualization, Roth et al.41

enhances user-oriented design by completing and retrieving
partial design graphics based on their appearance and data
contents. The rank-by-feature framework48 ranks histograms,
scatterplots, and boxplots over 1D or 2D projections to
find important features in multidimensional data. SeeDB59

generates all possible visualizations given a query and
identifies the interesting ones. Perry et al.35 as well as van
den Elzen and van Wijk57 propose generating small multiple
visualizations shown as thumbnails using summary statistics.

In the last few years, recommender systems have
become widely used for visualization. Voyager62 generates
a large number of visualizations given a user-specified
partial specification, and organizes them by data attributes.
The generated visualizations are rendered as cards on a
scrolling view. Saket et al.44 propose the Visualization-by-
Demonstration framework, which allows users to provide
incremental changes to the visual representation. The
system recommends potential transformations such as data
mapping, axes, and view specification transformations.
Zenvisage49 automatically identifies and recommends desired
visualizations from a large dataset. Voyager 263 extended the
original Voyager through wildcard functionality that explores
all possible combinations of attributes. Draco33 automates
visualization design itself using partial specifications and
a database of design knowledge expressed as constraints.
VizML learns what visualizations to recommend by training
neural network models on millions of visualization designs
made using Plotly.19 Similarly, Qian et al.37 uses learning-
based approaches to generate relevant visualizations based on
data. Most recently, and uniquely, Solas14 learns to provide
visualization recommendations using a user’s analysis history.

Several tools extend these ideas to recommending
analytical insights and data processing steps. “Top-K
insights”53 provides a theory for generating top K insights
from multidimensional data. Similarly, Foresight11 presents
the top K insights in a dataset from 12 insight classes using a
corresponding visualization. DataSite10 organizes significant
automatic findings in a specific feed of notifications. Finally,

Prepared using sagej.cls

4 Journal Title XX(X)

Voder50 builds on a similar feed as DataSite to provide
“interactive data facts” using visualizations.

Our proposed Lodestar system combines these ideas
from visualization recommendation with an analytical
perspective, and allows stringing together such analytical
steps into a sequence. There are some existing efforts on
recommending data analysis techniques and workflows. Yan
et al.67 demonstrate that online repositories of computational
notebooks can be a valuable resource for modeling and testing
a recommendation system for data cleaning techniques. Milo
et al.3 take this a step further by automatically generating
entire data exploratory workflows using deep reinforcement
learning techniques. Our system builds on these works by
presenting a holistic model and code mining pipeline for
deriving new recommendation features in a data-driven way,
whether for data visualization, data preparation, or data
analysis workflows. Essentially, Lodestar extends the idea
of automated recommendations to the entire data science
pipeline, rather than visualizations only.

Interactive Notebooks

Donald Knuth’s notion of a “literate” form of programming,26

which merges source code with natural language and
multimedia, has extended to the concept of literate computing
in the form of computational notebooks,25 that combine
executable code, its output, and media objects in a single
document. This has proven to be very useful for rapid
prototyping and exploration as well as for replicability and
communication in data science.42

Because of their success, with adoption even at the level
of entire organizations,56 notebooks have enjoyed significant
progress in recent years. The new generation of computational
notebooks, such as Google Colaboratory and Codestrates,38

enable synchronous collaboration. The JavaScript-based
Observable notebook also supports reactive execution flows.

Visualization in particular has recently begun to adopt
computational notebooks. Altair58 builds on Vega47 and Vega-
Lite46 to provide statistical visualizations in Python, and thus
in Jupyter Notebooks as well. Idyll9 supports a notebook-like
markup language to create interactive data-driven document
for communication. Vistrates2 provides a collaborative
visualization workflow in a notebook. Observable leverages
computational notebooks to also provide a collaborative
visualization platform. Literate visualization64 integrates the
visualization design process with the choices that led to the
implementation.

End-user and live programming paradigms have proven
useful in creating intuitive interactions with visualizations
found in computational notebooks. For example, Wrex12 and
Mage23 leverage user interactions on data visualizations to
automatically generate exemplar code. Both tools demonstrate
the link between code and visual interactions. Torii17 uses
a live programming model to enable easy maintenance and
reuse of source code for building tutorials. These systems not
only add to the number of ways users can interact with their
literate document, but also connect code and visualization so
as to facilitate iterative analysis.

Design Requirements: Formative Study
Our goal is to make Lodestar an interactive and visual sandbox
environment for learning and experimenting with new data
science methods in a data-driven way. We also wanted to make
data science universally accessible to fledgling data analysts
and enthusiasts alike. These core ideas helped us compile a
set of design requirements and some preliminary prototypes.
In this section, we outline our major design requirements, and
report on a formative study conducted to validate and refine
our approach to the Lodestar interface design and system
development processes.

• D1: Informed by best practices. Recommendations
should be drawn from current practice, empowering
those new to data science to learn how to effectively
analyze data.27,30

• D2: Prioritize analysis steps over code. Our intended
users are trying to analyze data in a fast and fluid
fashion, but may not yet be familiar with specific
libraries or modules needed to complete different
analysis steps. Lodestar needs to build a bridge between
the high level analysis steps common in data science,
and the low-level code needed to accomplish these
steps.31 For example, recommendations should be
immediately relevant and situated within the overall
data science pipeline to enable users to progress in their
analysis.

• D3: Enable independent exploration. To ensure that
users can explore their data independently, educational
interface elements must also be incorporated to
automatically provide documentation and clarification
of system behavior.13 Furthermore, intermediate
and final results should be presented using visual
representations that can be easily interpreted regardless
of user expertise.55

We conducted a formative user study to evaluate the
usability of an early prototype of the Lodestar system, which
we used to validate our initial design requirements and
refine the design. Questions posed to the participants in the
formative study protocol can be found in the supplemental
material.

While we refer to Lodestar as a computational notebook,
we note that building a fully-fledged notebook system from
scratch is a vast engineering effort. Our goal in this research
project was to focus on novel aspects of recommendation for
data science and visualization, so our resulting notebook lacks
significant features normally associated with such systems.

Study Design
The study was conducted over a period of one month
in which we interviewed 6 fledgling analysts and data
scientists; all undergraduate university students. We focused
on recruiting university students, since they are generally
learning data science methods for the first time and thus could
provide helpful insights in our design process. Each student
had demonstrated knowledge of data science fundamentals
through attending a university-level introductory data science
course and/or other relevant machine learning/data science

Prepared using sagej.cls

5

experience. Although not a prerequisite of the recruitment
process, some students also had experience performing
analysis on platforms such as Excel and Tableau.

Method
Each interview lasted for 60 minutes and was divided into
three phases. Prior to the interview, each participant signed
a consent form, allowing us to record audio and screen
capture throughout the duration of the interview. The first
phase consisted of questions, delivered verbally, that assessed
the participant’s recent experience in learning data science
techniques and tools through classes, side projects, research,
and other such activities.

The second phase of the interview was dedicated to
introducing an early prototype of the Lodestar system in
which participants were given a brief 2-minute description
of Lodestar and associated goals. The next 5 minutes were
spent giving the participant a cursory tutorial of the system.
For each participant, the tutorial was given using a pre-written
script and with the same sample dataset to give each of them
equal knowledge of the system prior to their exploration.
The participants then spent the next 15-20 minutes using
the Lodestar system to conduct exploratory data analysis
on a dataset of their choosing. We restricted their choices
to two datasets; the Boston House dataset from a Udacity
tutorial,* and the Cars dataset. During this exploratory session,
participants verbalized their thought process, questions, and
comments with a think-aloud protocol. We encouraged
participants to “to use any and all features of the Lodestar
system” and to “explore whatever aspects of the data [they
found] interesting.” Participants were allowed to end the
session before the allotted time expired if they were satisfied
with their results.

The third and final phase of the interview consisted of
a post-exploration questionnaire that asked participants to
describe the utility of Lodestar for their common data analysis
tasks. Participants were specifically asked if they would adopt
Lodestar to learn new data science techniques.

All sessions were held in a lab environment using Google
Chrome on a Macbook Pro with a 15-inch Retina display.
Audio was recorded using the built-in voice recording
application on a mobile device. Screen capture was done
using Apple’s QuickTime Player. Observational notes from
the study coordinators, text responses from our questionnaires,
and audio and video recordings were collected for further
analysis and prioritization of design requirements and
functional features of the existing prototype. We used the the
participant responses from the think-aloud and questionnaire
portion of the study to illustrate the themes with respect to
the Lodestar enhancements.

Results
Our formative study found that a majority of participants were
in favor of using Lodestar in their daily work, but suggested
several modifications to make the system more useful. For
the sake of brevity, we focus primarily on summarizing their
constructive feedback below (participant IDs start with “FP”):

Provide Clear Documentation & Context: Our early
prototypes did not include tooltips or descriptions of
analysis steps. Several participants highlighted the need

for increased transparency in the interface. Specifically,
they wanted clearer naming conventions, documentation of
features and methodologies (e.g., the difference between
expert and crowd recommendations), and explanation of
expected system behavior. For example, some participants
had difficulties understanding the meaning of certain user
interface elements. Participants asked questions such as “what
are these percentages?” (FP6), or “[what do] the columns on
the left side represent?” (FP5). Participants FP1, FP2, FP3,
and FP5 also asked if there “is actually a way to view the
entire dataset?” (FP2).

There were many questions specific to the meaning of
recommendations. For example, FP3 said “I think the names
[are] misleading... there were some really complicated names
for just a simple linear regression. [It] should just be changed
[to more] obvious names.” Similarly, FP2 suggested that
there should be “a longer description [...] [or] some way
to show their effectiveness without the user having to Google
search them.” These misconceptions indicate that better
documentation is needed to help new users understand the
interface.

Improve Tracking of Analysis Progress: Several
participants wanted to be able to see what phase of the data
science process they were in based on the current state of
their analysis workflow. Our early prototypes did not include
the feature to track previously selected analysis. FP4 drew
parallels with a restaurant order tracker, where Lodestar
should partition each part of the data science process into
separate steps, and group analysis recommendations into these
steps. Users would then be able to better understand their
progress within the data science process.

Enable More Granular Control: The early Lodestar
prototype only allowed users to choose from pre-
loaded datasets, and did not provide any export or
customization functionality for analysis steps. However,
multiple participants expressed the desire to import their own
dataset and export their own code for later sharing and reuse.
Participant FP4 said that they would be frustrated if they
wanted to “export it or make some changes in the data or [try]
to do something that is not supported by Lodestar [while] not
having any way of doing so.” Participants also highlighted the
need for more control over what parameters or attributes were
being passed into different analysis steps, such as selecting
specific attributes when generating visualizations or executing
regression analyses. These observations suggest that users
should be able to customize analysis steps and export their
current analysis.

Further Refinement of Lodestar
Though participants could see promise in providing automated
recommendations (design requirement D1), the expressed
need for more tracking of workflow structure and progress
also reinforces design requirement D2. Without additional
context to help users situate themselves within the broader
data science process, users can easily lose their train
of thought, hindering their analytic flow. The need for

∗The Udacity tutorial is available here: https://github.com/
sajal2692/data-science-portfolio/blob/master/boston_

housing/boston_housing.ipynb.

Prepared using sagej.cls

https://github.com/sajal2692/data-science-portfolio/blob/master/boston_housing/boston_housing.ipynb
https://github.com/sajal2692/data-science-portfolio/blob/master/boston_housing/boston_housing.ipynb
https://github.com/sajal2692/data-science-portfolio/blob/master/boston_housing/boston_housing.ipynb

6 Journal Title XX(X)

more documentation and control observed in our formative
study supports design requirement D3. Without adequate
information, users are unable to explore new data analysis
techniques and interpret the results in Lodestar on their own.
Users also find it difficult to tailor their explorations to their
specific needs without access to the code.

These points of feedback served as motivation for
additional iteration on the Lodestar feature design. Specific
features that were added as a result of this study included
the ability to export the user’s notebook to an .ipynb
file for use outside of the system, a visual tracker that
displays the progress of the user’s analysis in each output cell,
showing which recommendations have been chosen so far,
and descriptive tool-tips of the different analysis techniques
in each output cell.

The Lodestar System
LODESTAR is a data analysis recommender, i.e., a system
that interactively suggests the next step to take in an analysis
workflow (D1). Lodestar is designed in the style of an
interactive computational notebook, and generally inspired by
the designs of existing notebooks such as Jupyter, Observable,
and Google Colaboratory. Given Python’s broad popularity in
data science contexts,42 we chose to focus on Python as our
target environment.

System Overview
Lodestar consists of four main components, shown in Figure 2:
a browser-based notebook interface, an interactive computing
protocol, a recommendation engine to suggest analysis steps,
and a server-side kernel to execute analysis steps. The
protocol manages communication between the client and
server (commands as well as computational results), and the
kernel on the server side runs each analysis step that the
user selects using an interpreter. The Flask server handles
all of the client requests for data processing, analysis, and
recommendations, with different endpoints.

Lodestar emphasizes an iterative workflow design where
analysis steps are added progressively, one at a time, providing
fine-grained control to the user (D3). To help users focus more
on analysis steps and best practices (D1, D2) rather than low-
level code, Lodestar allows the user to rapidly choose from a
list of recommended analysis steps. These recommendations
are displayed in the form of buttons, so a user can easily select
and execute an analysis step of interest with a single click.
Furthermore, these recommendations are mined from recent
Python tutorials and active GitHub repositories of Jupyter
Notebooks, enabling the user to construct new analysis
workflows based on best practices in a data-driven way.

Notebook Interface
The Lodestar interface (shown in Figure 1) is an interactive
notebook providing a literate computing environment26 that
runs in a web browser on the client. Similar to existing
computational notebooks, the Lodestar notebook is a linear
document that the user can selectively edit and execute. The
interface contains three major components: a menu panel at
the top, one or more notebook cells, and recommendation
panels for each cell. The notebook cells and recommendation

panels dynamically appear and update within the notebook
interface in response to user interactions.

The user begins their analysis using the menu panel to load
an existing dataset or a new dataset (in CSV format) into the
system. Once a dataset has been loaded, Lodestar generates
a recommendation panel within the notebook interface,
providing the user with an initial set of recommended analysis
steps. We refer to the actual code behind each analysis step as
an analysis block, and the displayed result of executing the
analysis step as a notebook cell. From this point onward, the
analysis process forms a cycle that repeats until the user is
satisfied with their new workflow:

1. The user selects an analysis step from a recommenda-
tion;

2. The kernel executes the analysis block on the server;
3. The notebook displays output by appending a new cell;

and
4. The notebook generates a new panel of recommen-

dations, based on the user’s previous selection.
When the user is ready to migrate their workflow to a

complementary tool, for example to iterate on the code
directly within a code editor, they can export the Lodestar
workflow as a Jupyter notebook file.

Recommendation Panel
Every notebook cell in the Lodestar interface has an
accompanying recommendation panel, allowing the user to
extend their latest analysis step by one cell. When the user
selects an analysis step from a recommendation panel, a new
notebook cell is generated for the selected recommendation,
along with a new recommendation panel underneath. Lodestar
uses the output of the preceding notebook cell as the input for
executing any analysis step selected in this recommendation
panel. Each panel provides two sets of recommendations,
one from a crowd advisor and one from an expert advisor.
The crowd advisor sources recommendations from online
data analysis repositories such as GitHub. The expert advisor
sources recommendations from educational resources such
as textbooks, online classes or online tutorials. Crowd and
expert advice are presented separately as a way to highlight a
data point the user can take into consideration while choosing
a recommendation. We believe that this type of transparency
betters independent exploration (design requirement D3).

If a user is unsatisfied with a given set of recommendations,
they can choose from Lodestar’s full catalog of analysis steps
in a drop-down menu at the bottom of each recommendation
panel. This list is available in the supplementary materials.

Notebook Cell
Once a selection is made in a recommendation panel, the
selected analysis step is highlighted and the results are
displayed in a new notebook cell, allowing the user to review
their past selections and the corresponding results with each
subsequent step. Furthermore, the user is able to go back
and update the results at any time by selecting a different
analysis step in any of the previous recommendation panels.
Any cell can also be deleted, which triggers the removal of all
downstream cells that depend on the deleted cell. In this way,
Lodestar maintains a linear structure in the notebook, making
it easier for users to navigate within the analysis.

Prepared using sagej.cls

7

Notebook Lodestar

Python
Datasets Code

Recommender
interface Server Engine

Blocks
interpreter

Interaction

Recommendations,
results, visualizations

Selections, data

Recommendations,
results

Code to
Results execute

Code block history

Recommendations

Figure 2. Overview of the Lodestar architecture. The user interacts with the notebook interface and selects either a data set to
bootstrap the notebook or an analysis step within a guided workflow. The notebook interface sends the selection as a request to the
Lodestar server. The Lodestar server sends requests to the recommendation engine for subsequent recommendations based on
current selections (data or analysis). Lodestar server also sends a request to the Python interpreter to execute any selected analysis.
Results from both these requests are sent back from the Lodestar server to the notebook interface for the user to view and interact.

To help users understand the functionality of each
recommended analysis step and its purpose within the context
of the larger data science process, notebook cells consist of
five tabs. Each tab describes the behavior of the analysis block
represented by this notebook cell. We refined the design of
each tab based on the feedback we received from the formative
study:

• Output Data Frame: Default view that renders the
output data frame produced by executing the analysis
step as a table.

• Analysis Results: Displays the raw results produced
by the analysis step (e.g., print output or Seaborn
visualization).

• Script: Displays the Python code within the analysis
block.

• “What’s this Analysis?”: High-level description of
the step.

• Analysis Progress: Displays the chain of analyses
leading to the current analysis step, where each step
has a name.

Exporting Code and Results
When the user is ready to migrate their analysis workflow to a
related tool, they can export content directly from Lodestar. To
export the code for a specific analysis step into an independent
Jupyter notebook file, the user can click on the export button
next to the Code Script tab of the corresponding cell. To
export the entire analysis workflow, the user can click on the
export button on the menu panel at the top of the interface.
Similarly, Lodestar enables users to export the output data of
any displayed notebook cell as a CSV file. To do this, the user
clicks on the export button next to the Output Data Frame tab.
The user can also download the visualizations displayed in
any notebook cell as PNG files.

Advisors and Recommendations
The Lodestar recommendation engine is based on the notion
of an advisor: a source of analysis recommendations. Lodestar
supports multiple advisors, each consisting of a library of
analysis steps and a set of advisor-recommended transitions
between analysis steps (i.e., a recommendation graph). In
our current implementation, we use two advisors: a “crowd”

advisor drawn from our semi-automatic code analysis, and an
“expert” advisor drawn from the manual code curation. For
each advisor, the recommendation panel will show a list of
up to five recommendations, ordered by probability, or how
frequently this analysis came next in the recommendation
graph.

In this section, we describe how we build our
recommendation graphs for the expert and crowd advisors,
and how we enable Lodestar to identify equivalent or related
states across both graphs.

Seaborn visualizations

Data frame
(+export)

Python code
(+export)

Export visualization

Explaining
analysis

Analysis
output

Analysis
progress

Figure 3. Figure grid. Visualizations generated by an analysis
block using the Seaborn statistical data visualization package for
Python.

Recommendation Graph
Lodestar models transitions between analysis steps by treating
analysis workflows (e.g., existing tutorials or computational
notebooks) as paths taken through a network graph. Each
node in the graph is an analysis step, and a directed edge
appears in the graph for each pair of consecutive analysis
steps observed in a workflow. Lodestar leverages the relative
frequency of these transitions to predict which analysis steps
are likely to occur next. The particular graph structure used
in Lodestar is a Markov chain, and the final computed graph
we refer to as a recommendation graph. We believe this to
be a good initial step towards modeling analytical decisions
but, acknowledge that more complex factors influence their
construction. We hope to explore this further in future work.

Lodestar traverses the recommendation graph one state
at a time for each user input (i.e., choice of analysis step).
As a result, our recommendation approach does not require

Prepared using sagej.cls

8 Journal Title XX(X)

maintaining specific state about the analysis itself. Instead, the
location in the Markov chain serves as state, and transitions
(e.g., recommendations) thus depend only on the current state.
In this way, recommendations are agnostic of the data being
analyzed, thus allowing users to draw from a wider range of
tools and techniques (D3).

We can infer these recommendation graphs programmat-
ically by mining analysis blocks (i.e., code snippets) from
existing computational notebooks. In this case, the analysis
blocks are used as the graph states, in place of their corre-
sponding analysis steps. Figure 4 shows the general approach
for mining analysis blocks into this recommendation graph.
We extract the analysis blocks from existing computational
notebooks and recover the transitions between states from
the sequences observed in each notebook, with the weights
signifying the frequency of observed transitions. Analysis
blocks become nodes Bi in this graph, and edges represent
probabilistic transitions Pr(j|i) = Pi, j, where the probabilities
Pi, j are taken from a stochastic matrix P that simply represents
the frequency of transitions between blocks in the individual
sequences.

Figure 4. Mining blocks into a recommendation graph
representing a Markov chain. In Step 1 (left), sources S1, . . . ,Sn
(manually curated or automatically extracted) yield (ordered)
sequences of blocks Si = (B1, . . . ,Bm). In Step 2, a
recommendation graph can be derived by matching blocks that
appear in multiple sequences and joining the sequences at those
nodes. Edges between blocks in the graph are the
frequency-weighted state transitions in the chain.

To infer the full recommendation graph, we first construct
a separate Markov chain for each notebook (or tutorial)
identified as a source for our advisors. Specifically, we model
each notebook as a Markov chain with one state per block
and the transition probability to move from block Bi to the
next block Bi+1 for each time step (e.g., user input) expressed
as Pr(i+1|i) = 1. Similar analysis steps are labeled with the
same high-level identifier, representing a broader category of
computation that transcends individual notebooks (e.g., B1,
B2, etc. in Figure 4). The result is a larger two-dimensional
nested list, where each notebook is one row within the list
(i.e., the left side of Figure 4), and each column a sequence of
analysis step categories.

We can then merge the resulting sequences into a single
graph (e.g., merging S1, S2, etc. in Figure 4), and aggregate the
relative frequencies associated with the different categories to
determine transition weights (i.e., how often do we see blocks
from category B1 executed before blocks from category B2?).

Specifically, the transition probability Pi, j (and thus edge
weight in the recommendation graph) for the ith row and the
jth column is the number of edges from Bi to B j across all the
sequences, divided by the out-degree of Bi. In other words,

the graph will have no edges (weight 0) between blocks that
never appeared in sequence, and will have normalized weights
for blocks that fan out to multiple different destinations
(because they are used by many notebooks). To bootstrap
the recommendation, we recommend the first analysis in
all the sequences (the root nodes in the graph). To validate
this method, we manually calculated the probabilities of two
edges, each corresponding to the crowd and expert advisor.
For example, we found that the recommendation of the
expert advisors specified a probability of 33% for group
statistic calculation transitioning to an ANOVA-test.
Indeed, we found that this transition occurred 33% of the
time in our sample of tutorials. The recommendation graph
corresponding to our crowd advisors specified a probability of
7% for matrix-normalization calculations transitioning
to the use of the numpy-hstack operation. We found this
was accurate with a manual calculation of the probability of
their co-occurrence.

Extracting Analysis Blocks for the Expert Advisor
We extracted analysis blocks for our expert advisor
from online tutorials†. These tutorials were either Jupyter
Notebooks or blogs which clearly delineated code from text.
Analysis blocks correspond directly to code cells found in
tutorial notebooks, or self-contained code snippets found in
blog posts. We derived analysis blocks from these sources
because we believed that it could sufficiently encapsulate
current best practices in Python data science programming
(D1).

While there exist many data science resources online,
their focus and depth vary widely, from simple hands-on
learning for beginners to expert-level guides on deep learning,
sensitivity analysis, and model building and tuning. As
a rule, we picked guides focused on teaching a specific
analysis task (D2). We narrowed our search to end-to-end
data science examples, which provide concrete sequences of
analysis steps along the data science pipeline. Specifically, we
selected examples that have an explicit purpose for the data
analysis, step-by-step explanations and results, and runnable
code. These requirements helped to ensure that the extracted
analysis blocks will have similar types of functionality and
were high-quality.

Formatting Analysis Blocks for the Expert
Advisor
To ensure that the extracted analysis blocks are executable
in Lodestar, we also apply a separate code curation process.
From our experience, each source has a specific analysis goal,
and the blocks across different sources may use different
libraries, data attributes, and variables to achieve it. For
example, a tutorial using the Boston housing dataset, may
generate a scatter to examine a linear relationship between
four housing attributes, while in a school test-scores dataset it
only makes sense to examine a linear relationship in between
two attributes. This is useful nuance for manual analysis, but
cannot be directly used in a generic data analysis system

†Our supplemental materials includes a detailed report of the full process
for extracting and curating analysis blocks for the expert advisor: https:
//osf.io/3gpsy/

Prepared using sagej.cls

https://osf.io/3gpsy/
https://osf.io/3gpsy/

9

such as Lodestar. In other words, the analysis blocks must
be curated—typically generalized—to be applicable across
multiple applications.

The block curation process is idiosyncratic, but consists
of the following steps: (1) adding missing dependencies,
(2) replacing data-specific labels and attributes, (3) setting
appropriate default parameters, and (4) generalizing code
to operate on general data frames and output data frames
too. This process is very similar to our curation strategy for
recommendations from our “crowd” advisor. We manually
compared new blocks to exiting blocks within the library,
to ensure there were no duplicates. Upon completion of the
curation process, each new analysis block is added to the
library for the recommendation graph.

Managing Analysis Blocks for the Crowd Advisor
We extracted analysis blocks for our crowd advisor from a
corpus of approximately 6,000 Jupyter notebooks, originally
collected by Rule et al.42 We filtered out notebooks that did
not contain import statements and API calls using common
data science libraries, such as Numpy, Scikit-Learn, or Pandas.
We first partition each notebook into discrete analysis blocks.
For Jupyter notebooks, the code is often already partitioned
by the notebook authors through the use of Jupyter notebook
code cells. Our straightforward approach is to identify existing
cells in the Jupyter notebook corpus as separate analysis
blocks for Lodestar. Please see our supplemental materials
for a detailed report on our full process for extracting and
curating analysis blocks for the crowd advisor.

Our key insight for this process is that similar data analysis
steps often use similar API calls in the code. For example,
notebooks that leverage sklearn.linear model to build a
linear regression model using the LinearRegression() module
could be characterized as performing the same analytical step.
Using this idea, we construct a term vector to represent each
analysis block, where the vector represents the normalized
frequency of each API call that appears within the block. Each
cell in the vector represents a unique API call observed in any
notebook in the dataset, allowing the vectors for the block to
be compared with any other block.

We use these term vectors to cluster the analysis blocks.
Specifically, the normalized vectors are passed to a k-means
clustering algorithm to be clustered for similarity. After some
iteration, we identified 200 clusters as an ideal number for
grouping the analysis blocks extracted from our corpus (please
see our supplemental materials for more details). We observed
cluster strength through the distribution of cells across clusters
and through a silhouette score (score = 0.287). Given the
underlying quality of the dataset, we found that 200 clusters
were acceptable for manual processing. Each resulting cluster
represents a set of analysis blocks that share similarities
in functionality, and thus could also represent a shared or
synonymous analysis step across the corresponding Jupyter
notebooks.

Of the 200 representatives (one for each cluster), we
ultimately selected 22 blocks as a starting set for the Lodestar
library. For any given cluster, Lodestar needs a way of
recommending a single analysis block to users. We use code-
line count as a heuristic to pick a representative analysis
blockfrom each cluster. Specifically, we pick the blocks which
have a median number of lines relative to all other blocks

within a cluster. We posit that this will yield the “average”
code unit.

Blocks for both the crowd and expert advisors are formatted
to follow the same consistent structure assumed by the
Lodestar system. We format each analysis block to be a
Python function, include necessary imports, convert the
function’s input and output to a data frame, and remove print
statements and irrelevant comments.

Identifying Synonymous States Across Advisors
Of course, managing multiple advisors means that the system
must track the state of the analysis in the recommendation
graph for all advisors when the user selects a recommendation
from a specific advisor. Our current solution uses a multi-
level tagging mechanism where each block is manually
tagged given its functionality; for example, a decision tree
block could be tagged with train-model and test-model.
Tags correspond to steps in the data analysis workflow. We
developed an understanding of these steps using previous
studies.4,21,67 Much like Yan et al.,67 we cast particular
Python APIs to specific analysis steps. For example, Pandas
dropna function was cast as a data-cleaning operation
since dropping empty elements is a common way to
clean data. Our tags include: statistical-sampling,
visualization, data-organization, data-cleaning,
data-formatting and statistical-summary.

In tagging analysis in this way, we allow for matching
the new state of the specific advisor, chosen by the user, to
relevant states in the other advisors. More specifically, if
the user chooses a recommendation from the expert advisor
that suggests running a specific decision tree block, the
Lodestar engine will advance the crowd advisor to a state in its
recommendation graph that corresponds to the train-model
and test-model tags. This design, as well as ordering
recommendations by probability ordering, allows Lodestar to
guide best practices.

The same functionality is used when the user eschews all
of the recommendations and instead selects directly from the
library through the drop-down box in the recommendation
panel. In this case, all of the advisor models will be advanced
to the appropriate state matching the block that the user
executed. This allows the user to iterate on techniques
unhindered by a guided system.

Summative Evaluation
We conducted a second user study to evaluate the
improvements we made to Lodestar after receiving formative
feedback from the first user study. While the formative study
evaluated the usability of the early prototype, this summative
study evaluated the viability of Lodestar for learning data
science practices.

The summative study was conducted over a period of
one month. We interviewed 10 fledgling data scientists. 7
of these participants were new to Lodestar and 3 were part
of our formative study. All participants were undergraduate
university students who demonstrated knowledge of data
science fundamentals through a university-level introductory
course or other relevant experiences. Again, some students
had experience with performing analysis on platforms like
Excel and Tableau, but this was not a prerequisite for the

Prepared using sagej.cls

10 Journal Title XX(X)

recruitment process. Similar to the formative study, we chose
undergraduate students for our user study population because
they were learning data science principles for the first time.
This study was approved by our home institution’s IRB.

Method
Each interview lasted for 60 minutes and was divided into four
phases. Unlike the formative study, this study was conducted
exclusively online with video conferencing software. Prior
to the interview, each participant gave us explicit consent to
record audio and screen capture throughout the duration of
the interview.

In our formative study, participants did not use Lodestar
before completing the data exploration task, making it difficult
to tease apart design challenges with the Lodestar prototype
from a lack of user training. As a result, we included a separate
training session where participants were given an overview
of system features and then trained to use the system with an
initial demo dataset. The training session was then followed
by a think-aloud data exploration session that lasted for 15-
20 minutes. Questions posed in the formative study can be
found in the supplement. Afterward, participants were asked
to verbally respond to a post-exploration questionnaire that
assessed their view on the viability of the system. Questions
included:

• What do you like about Lodestar? What do you dislike?
Why?

• Would you use Lodestar outside of this study?
Why/why not?

• If so, in what situations could you see yourself using
Lodestar?

We analyzed participant responses from the think-aloud
and questionnaire portion for themes regarding the usability of
Lodestar. We present the participants’ quotes which represent
common themes.

Results
Here, we summarize both the strengths of our design as
well as opportunities for future improvements as noted by
participants. Identifiers for new participants begin with “N”,
whereas returning participants have the same identifiers as
before.

Lodestar Strengths. Intuitive and Supportive UI Features.
Many participants said that they found the (new) Lodestar
interface design to be intuitive. For example, participant NP4
said they “liked [a lot] of the different UI features like the
tooltips and collapsing [views].” Participant NP4 also liked
that they were able to verify different analyses all on one
page. FP2, FP3 and NP6 echoed this sentiment. Thus, the new
learning widgets in Lodestar (e.g., tooltips and tabs) seem
to help users learn how to use the interface and verify their
work.

Integrates with Existing Tools and Workflows. Partici-
pants particularly liked the ability to export their workflow
as a Jupyter Notebook file for editing outside of Lodestar.
For example, NP4 said they “like the integration with Jupyter
Notebook and [the] exporting functionality.”

Eases Data Science Tasks. NP3, NP4, FP2 and NP5
appreciated how Lodestar “recommends what to do with the
data, and based on that result, [recommends] something else”

(NP4). Overall, they found Lodestar helpful for guiding their
analysis.

Lodestar also seemed to be helpful for specific data science
tasks. For example, participants liked that Lodestar allowed
them to quickly familiarize themselves with a particular
dataset, which helped them determine what kinds of patterns
or trends to analyze later on. This familiarization process is
part of data profiling, an important and early task in the data
science process.22 Participants also valued the features in
Lodestar for data exploration, for example participant FP3
said using Lodestar was “Really convenient to do exploratory
data analysis.” Participant NP1 also stated that they would
use Lodestar for “specific cases where [they] don’t know
how to write the code.” Participant NP6 and FP1 shared
similar sentiments. These findings suggest that Lodestar helps
users more easily complete data science tasks without being
hindered by low-level programming issues, and may help
users learn how relevant code could be written for future data
science projects.

Limitations. Customizing Visualization Outputs. Many
participants wanted the ability to customize and choose what
attributes of the data were used in generating visualizations.
For example, participant FP2 said that “it would be nice to be
able to set the parameters...” Thus, even finer-grained control
over visualization (and interaction) designs in Lodestar would
be a point of improvement.

Additional Documentation. Some participants noted that
providing more documentation of the features in Lodestar
would be helpful when navigating the interface. For example,
NP3 stated that it would be helpful if “you could have [some
information] about what the data is, where [it] came from,
what the columns are.” Thus, the Lodestar interface could be
improved further to give users more context for the inputs to
each analysis step.

Table 1. Participant demographics. These participants were
all data science professionals.

Position Title Age Degree Exp.

Machine Learning Engineer 30 C.S. B.S 2.6 yrs
Analytical Engineer 24 D.S. M.S 3.1 yrs
Data Scientist 34 D.S. M.S 2.4 yrs

Recommendation Evaluation
We conducted a third user study to evaluate the utility of
Lodestar recommendations. We recruited three professional
data scientists through a convenience sample of people within
a professional network connected with the authors. Participant
demographics can be found in Table 1. These professionals
took part in an hour-long expert review54 conducted using
online videoconferencing. The interviewer initiated a video
call with each participant and shared a screen with a running
instance of Lodestar.

To start, participants were presented with two different
analytical scenarios and asked to evaluate the strength of
crowd and expert recommendations on behalf of an intern
working within two scenarios. The first scenario proposed
that an intern would be exploring the cars dataset and using
Lodestar to understand the general trends. In the second

Prepared using sagej.cls

11

scenario the intern would be trying to identify the factors
which influence housing prices in the boston-housing dataset.

Participants were encouraged to remotely guide interac-
tions with Lodestar recommendations and to build a data
science workflow using Lodestar recommendations. At each
step, after considering and choosing a recommendation,
participants were asked to consider two questions:

• Why have they chosen this crowd or expert
recommendation?

• Are the current crowd or expert recommendations
appropriate for an intern performing the current task?
Why or why not?

We adopted this protocol to ensure that participants have the
flexibility to build an appropriate workflow for the objectives
presented and the structure to provide feedback regarding a
wide-array of analytical branches represented by the Markov
recommender. Questions posed to the experts can be found in
the supplement.

Results
We transcribed the verbal responses of each participant and
coded their responses using the identifiers “crowd,” “expert,”
and “workflow.” The crowd identifier classified reflections
regarding crowd recommendations. The expert identified
classified comments on expert recommendations. Finally,
participants’ reflections on how the data science workflow was
constructed and their interactions Lodestar were identified as
comments regarding the workflow. We summarize the results
of this analysis in this section. Identifiers for each professional
participants begin with “P.”

Figure 5. Visualization recommendations. Examples of
visualizations generated by Lodestar recommendations
implemented in Python and Seaborn.

Expert. All participants found that expert recommenda-
tions “were quite reasonable” (P1), and helpful for interns
performing exploratory analysis as in the first scenario. Expert
recommendations seemed to match expectations and act as
a helpful guide for further analysis. P1 and P3 found the
recommendations which visualized dataset attributes to be
particularly helpful during exploration. For example, P1 said
they found the “Category Distribution” recommendation

“almost too perfect” (Figure 5).
While performing more directed analysis as part

of the second scenario, participants found that expert
recommendations were helpful during the beginning of
the analysis. For example, P1 commented that “looking
at the data as the first step makes sense”. However, P1
and P3 expressed a desire for more control over how the
recommended techniques were being executed in order to dig
deeper into data. All participants found the idea of exporting
to a traditional notebook environment to be a useful next step
in reaction to reaching the end of a Lodestar analytical track.

Figure 6. Crowd advisor. The crowd advisor often
recommended complex techniques.

Crowd. Participants found crowd recommendations
overwhelming and unhelpful for exploratory tasks. The
fact that the Lodestar displayed low confidence in the
recommendations was a particularly strong deterrent for all
three participants. For example, P2 said that “there is one
[crowd recommendation] I might have wanted to click but...
the probability looks really low. So, I’m not really sure how
to interpret that” (Figure 6).

P1 and P2 found crowd recommendations equally unhelpful
for the directed tasks of the second scenario. However,
P3 felt that crowd recommendations could be occasionally
helpful when expert techniques seem less varied. Unlike
the other participants, P3 performed more than a handful
of the advanced techniques suggested by the crowd: k-mean
clustering, percentile range, and quantitative bar plots.

Workflow. Two participants found that expert and crowd
recommendations were appropriately generated based on
previous selections. However, these participants also found
the data agnosticism of the recommendations to be confusing.

The system seem to the sufficiently transparent since all
participants navigated to the “Code” tab in order to examine
the programming details of each analytical step. However, P1
and P2 did not find the categorization of recommendations
based on advisor (code source) to be helpful. Both P1 and
P3 suggested categorizing recommendations in more ways to
allow for better control over analytical goals. For example,
P3 suggested separating recommendations geared towards
visualizing a data attribute from recommendations which
provide analytical support. This would be an interesting
direction for our future work.

All three experts agreed that Lodestar recommendations
would be helpful for novice users who were learning new
analytical techniques and learning to program.

Summary. Participants found expert recommendations
more appropriate for data exploration than crowd recommen-
dations. This seems reasonable given that the tutorials we used
to train our expert advisor were demonstrating exploratory
data analysis. Participants generally found crowd recommen-
dations difficult to trust and understand. However, P1 and
P3 suggested that crowd recommendations occasionally sup-
ported directed analysis better than expert recommendations.
Finally, participants expressed that a combination of expert
and crowd recommendations would support interns who
wanted to safely sandbox unfamiliar data analysis techniques.

Discussion
We have presented Lodestar, a computational notebook
for rapid experimentation and learning of new data
science practices. Instead of forcing fledgling analysts to
search for and apply relevant data analysis methods by
hand, Lodestar recommends suitable next steps for the
current workflow using both manually curated as well as

Prepared using sagej.cls

12 Journal Title XX(X)

automatically crowd-sourced guidance. Our work on Lodestar
has uncovered several interesting discussion points: the
prospect for data science for novices, the actual “wisdom”
of crowd recommendations, and alternate recommendation
mechanisms.

Data Science for Non-Experts
The real power of Lodestar lies not in its data sources, which
are publicly available to anyone online, but in its ability to
synthesize the knowledge from these diverse sources into a
single unified model. By sharing this knowledge in the form
that data scientists are most familiar—Python (or R) source
code—Lodestar provides reusable building blocks that can be
transferred across workflows.

However, for the tool to be truly effective for its purpose,
the library of analysis blocks must be expanded and drawn
from a large set of sources. For example, new data sources
could be incorporated to customize Lodestar for specific
disciplines such as bio-informatics, computational journalism,
and computer vision. Lodestar’s advisor model may be one
way to support this; as suggested by our recommendation user
study, instead of the “expert” vs. “crowd” dichotomy that our
current implementation uses, a more robust implementation
could support a plethora of pluggable advisors drawn from a
central repository. In this way, the advisors, analysis blocks,
and library could be community-driven and improved by
anyone.

Choosing an analysis step or interpreting results in
our current prototype still requires baseline data science
knowledge, such as from a university data science course
(indeed, all our participants had this). However, the Lodestar
approach does alleviate lack of expertise in data science
practice, which is often the case for academic learning.

The philosophy of the current Lodestar implementation
is to give the user as many options as possible for how to
proceed with the analysis. However, choice is sometimes
a bad thing: for a novice data scientist, getting multiple—
and, worse, conflicting—advice can be bewildering. In future
work, it would be interesting to curate and coordinate
recommendations from multiple advisors to help the user
make better and more informed choices.

On the “Wisdom of the Crowd” for Data Analysis
While we are excited about the prospects of the “wisdom of
the crowd”52 for data science and analysis, it has become clear
that this is an area that will require significantly more work.
For example, our current approach is not entirely automated;
manual curation is still required in choosing a representative
block from the clustering analysis and in editing the block
into the appropriate form that Lodestar expects, including
eliminating side effects, removing output statements, and
resolving dependencies. We plan to automate these steps in
the future.

The need for manual curation, or at least review, is
compounded by the fact that a significant portion of Rule
et al.’s Jupyter corpus42 was of low quality: some notebooks
had cells with a single line of code, or all of the source code
in a single cell. Many had non-functional code, syntax errors,
or code that was never used. While we filtered such notebooks

from our analysis, the signal-to-noise ratio in crowdsourced
code is often low.

The remedy for many of these challenges can often be
found in sheer scale. While we studied the “sampler” dataset
containing 6,530 notebooks in this paper, the full 600 GB
dataset contains more than 1.25 million notebooks. With
access to this many examples, we could afford to discard
more problematic ones. Furthermore, frequency of use would
help ensure that best practices are easier to identify. Of course,
a dataset of this size brings with it a new set of scalability
challenges. Existing data processing34 and code analysis15,16

techniques could help address this big data challenge in the
future.

Different Recommendation Strategies
The Lodestar recommendation engine is based on Markov
chains, which are useful for representing a sequence of
chained states or commands, as in a data science script.
However Markov chains may oversimplify the relationships
between analysis steps and data science users in some ways.
It would be interesting to study how to use more sophisticated
methods as part of the Lodestar recommendation engine. For
example, state-of-the-art recommender systems tend to be
organized into collaborative filtering, content-based filtering,
and hybrid filtering.1 Collaborative filtering is based on a
social view of recommendation, where behavior by other
users such as navigation, ratings, and their personal traits
are used to match content to a specific user. In the case
of Lodestar, this would enable the historical preferences
of Lodestar users to guide other users. For content-based
filtering, recommendations can be derived by comparing
items to recommend with user preferences and auxiliary
information. This approach could enable Lodestar users to be
matched to specific analysis steps based on, e.g., workflows
they have created in the past, specific data types, and metadata
for existing datasets and code. Finally, we could combine
methods to develop new hybrid recommendation strategies.

A recent development in artificial intelligence is to
build recommender systems using deep learning techniques
(or deep recommenders3,68), particularly for content-based
approaches. Given our large available corpus of potential
training data, unsupervised methods such as Recurrent
Neural Networks could prove useful, since they are ideal
for sequential data. The Lodestar advisor model provides a
useful framework from which to incorporate and merge future
recommendation strategies for data science. However, these
topics are beyond the scope of this paper.

Limitations and Future Work
Our evaluation of the recommender suggests curated
recommendations, geared towards different types of
analytical goal (e.g. data cleaning, data exploration,
visualization..etc.) can enable rapid experimentation with
different programming techniques for the real-world. We
limited our system to tutorials which presented high-level
data explorations techniques. Advisors specifically geared to
provide recommendations on data wrangling techniques could
be the means to handle messy real-world datasets for Lodestar
users. Advisors can even be designed to provide “unique”
or less popular recommendations to ensure Lodestar users

Prepared using sagej.cls

13

consider many options. Diversifying the recommendation
techniques to target multiple goals will be an important part
of future work.

When we first curated crowd techniques, our aim was
to introduce users to a variety of more modern libraries
and conventions—particularly since expert tutorials become
outdated. The professional data science study participants,
rightfully, were sometimes confused by the complexity of the
techniques presented by the crowd advisor. We believe that
more detailed documentation60 would be helpful reducing
this type of confusing.

Due to the many challenges of automatic code analysis,
we currently do not allow users to write their own code
directly in Lodestar, or even to modify existing code. To make
online code editing possible, we would need an automatic
classification process that could determine how new code
fits into the recommendation graph so that the system could
resume the analysis with new recommendations after manual
code block. Such live updates to the recommender are not
currently part of Lodestar, but are an interesting direction for
future work. These live updates would provide a view into the
“latest” analysis trends and enable a means for the Lodestar
analysis library to grow in time. We anticipate that such a
live update mechanism would feed into a dashboard by which
Lodestar users could further view, label, and filter for valid
analysis techniques.

We made several design decisions to the Lodestar notebook
that will need to be revisited for a general implementation.
Lodestar currently does not consider specifics about each
input dataset while making recommendations—only display
recommendations which do not programmatically fail to
execute on the selected dataset. This should be studied in
future work. Furthermore, all of our analysis blocks take a
Pandas data frame as input, and generate a new data frame as
output. Also, other disciplines use other data representations,
and some computations may require passing multiple data
objects as arguments. To address these limitations, we look
to improving our existing design and thoroughly evaluating
these improvements in our future work.

Finally, with the release of state-of-the-art Large Language
Models (LLMs) from OpenAI, Microsoft, and Google, it is
safe to say that the future of data science recommendation is
changing rapidly. Plugins for these LLMs already exist that
allow users to upload datasets and then ask for customized
data science analysis using natural language queries. We think
that the findings in this paper can help guide and influence
these future directions.

References

1. Adomavicius G and Tuzhilin A (2005) Toward the next
generation of recommender systems: A survey of the state-
of-the-art and possible extensions. IEEE Transactions on
Knowledge and Data Engineering 17(6): 734–749. DOI:
10.1109/TKDE.2005.99. URL https://doi.org/10.1109/
TKDE.2005.99.

2. Badam SK, Mathisen A, Rädle R, Klokmose CN and Elmqvist
N (2019) Vistrates: A component model for ubiquitous analytics.
IEEE Transactions on Visualization and Computer Graphics
25(1): 586–596. DOI:10.1109/TVCG.2018.2865144. URL
https://doi.org/10.1109/TVCG.2018.2865144.

3. Bar El O, Milo T and Somech A (2020) Automatically
generating data exploration sessions using deep reinforcement
learning. In: Proceedings of the ACM Conference on
Management of Data. New York, NY, USA: ACM, pp. 1527—
-1537. DOI:10.1145/3318464.3389779. URL https://doi.
org/10.1145/3318464.3389779.

4. Battle L and Heer J (2019) Characterizing exploratory visual
analysis: A literature review and evaluation of analytic
provenance in Tableau. Computer Graphics Forum 38(3): 145–
159. DOI:10.1111/cgf.13678. URL https://doi.org/10.
1111/cgf.13678.

5. Bertin J (1983) Semiology of Graphics: Diagrams, Networks,
Maps. Madison, WI, USA: University of Wisconsin Press.

6. Bostock M and Heer J (2009) Protovis: A graphical toolkit
for visualization. IEEE Transactions on Visualization and
Computer Graphics 15(6): 1121–1128. DOI:10.1109/TVCG.
2009.174. URL https://doi.org/10.1109/TVCG.2009.
174.

7. Bostock M, Ogievetsky V and Heer J (2011) D3: Data-driven
documents. IEEE Transactions on Visualization and Computer
Graphics 17(12): 2301–2309. DOI:10.1109/TVCG.2011.185.
URL https://doi.org/10.1109/TVCG.2011.185.

8. Cleveland WS and McGill R (1984) Graphical perception:
Theory, experimentation, and application to the development
of graphical methods. Journal of the American Statistical
Association 79(387): 531–554. DOI:10.1080/01621459.1984.
10478080. URL https://doi.org/10.1080/01621459.
1984.10478080.

9. Conlen M and Heer J (2018) Idyll: A markup language for
authoring and publishing interactive articles on the web. In:
Proceedings of the ACM Symposium on User Interface Software
and Technology. New York, NY, USA: ACM, pp. 977–989.
DOI:10.1145/3242587.3242600. URL https://doi.org/10.
1145/3242587.3242600.

10. Cui Z, Badam SK, Yalçin A and Elmqvist N (2019) DataSite:
Proactive visual data exploration with computation of insight-
based recommendations. Information Visualization 18(2): 251–
267. DOI:10.1177/1473871618806555. URL https://doi.
org/10.1177/1473871618806555.

11. Demiralp Ç, Haas PJ, Parthasarathy S and Pedapati T (2017)
Foresight: Recommending visual insights. Proceedings of the
Very Large Database Endowment 10(12): 1937–1940. DOI:
10.14778/3137765.3137813. URL https://doi.org/10.
14778/3137765.3137813.

12. Drosos I, Barik T, Guo PJ, DeLine R and Gulwani S (2020)
Wrex: A unified programming-by-example interaction for
synthesizing readable code for data scientists. In: Proceedings
of the ACM Conference on Human Factors in Computing
Systems. New York, NY, USA: ACM, pp. 1–12. DOI:10.
1145/3313831.3376442. URL https://doi.org/10.1145/
3313831.3376442.

13. Drozdal J, Weisz J, Wang D, Dass G, Yao B, Zhao C, Muller M,
Ju L and Su H (2020) Trust in AutoML: Exploring information
needs for establishing trust in automated machine learning
systems. In: Proceedings of the ACM Conference on Intelligent
User Interfaces. New York, NY, USA: ACM, p. 297–307.
DOI:10.1145/3377325.3377501. URL https://doi.org/10.
1145/3377325.3377501.

14. Epperson W, Jung-Lin Lee D, Wang L, Agarwal K,
Parameswaran AG, Moritz D and Perer A (2022) Leveraging

Prepared using sagej.cls

https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1145/3318464.3389779
https://doi.org/10.1145/3318464.3389779
https://doi.org/10.1111/cgf.13678
https://doi.org/10.1111/cgf.13678
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1080/01621459.1984.10478080
https://doi.org/10.1080/01621459.1984.10478080
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.1177/1473871618806555
https://doi.org/10.1177/1473871618806555
https://doi.org/10.14778/3137765.3137813
https://doi.org/10.14778/3137765.3137813
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3377325.3377501
https://doi.org/10.1145/3377325.3377501

14 Journal Title XX(X)

analysis history for improved in situ visualization recommenda-
tion. Computer Graphics Forum 41(3): 145–155. DOI:10.1111/
cgf.14529. URL https://doi.org/10.1111/cgf.14529.

15. Glassman EL, Scott J, Singh R, Guo PJ and Miller RC
(2015) OverCode: Visualizing variation in student solutions
to programming problems at scale. ACM Transactions on
Computer-Human Interaction 22(2): 7:1–7:35. DOI:10.1145/
2699751. URL https://doi.org/10.1145/2699751.

16. Glassman EL, Zhang T, Hartmann B and Kim M (2018)
Visualizing API usage examples at scale. In: Proceedings
of the ACM Conference on Human Factors in Computing
Systems. New York, NY, USA: ACM, p. 1–12. DOI:10.
1145/3173574.3174154. URL https://doi.org/10.1145/
3173574.3174154.

17. Head A, Jiang J, Smith J, Hearst MA and Hartmann B
(2020) Composing flexibly-organized step-by-step tutorials
from linked source code, snippets, and outputs. In: Proceedings
of the ACM Conference on Human Factors in Computing
Systems. New York, NY, USA: ACM, p. 1–12. DOI:10.
1145/3313831.3376798. URL https://doi.org/10.1145/
3313831.3376798.

18. Herlocker JL, Konstan JA, Terveen LG and Riedl JT (2004)
Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems 22(1): 5–53. DOI:10.1145/
963770.963772. URL https://doi.org/10.1145/963770.
963772.

19. Hu K, Bakker MA, Li S, Kraska T and Hidalgo C (2019) VizML:
A machine learning approach to visualization recommendation.
In: Proceedings of the ACM Conference on Human Factors
in Computing Systems. New York, NY, USA: ACM. ISBN
9781450359702, p. 1–12. DOI:10.1145/3290605.3300358.
URL https://doi.org/10.1145/3290605.3300358.

20. Javed W and Elmqvist N (2013) ExPlates: Spatializing
interactive analysis to scaffold visual exploration. Computer
Graphics Forum 32(3): 441–450. DOI:10.1111/cgf.12131. URL
https://doi.org/10.1111/cgf.12131.

21. Kandel S, Paepcke A, Hellerstein J and Heer J (2011) Wrangler:
Interactive visual specification of data transformation scripts.
In: Proceedings of the ACM Conference on Human Factors
in Computing Systems. New York, NY, USA: ACM, pp. 3363–
3372. DOI:10.1145/1978942.1979444. URL https://doi.
org/10.1145/1978942.1979444.

22. Kandel S, Paepcke A, Hellerstein JM and Heer J (2012)
Enterprise data analysis and visualization: An interview study.
IEEE Transactions on Visualization and Computer Graphics
18(12): 2917–2926. DOI:10.1109/TVCG.2012.219. URL
https://doi.org/10.1109/TVCG.2012.219.

23. Kery MB, Ren D, Hohman F, Moritz D, Wongsuphasawat
K and Patel K (2020) Mage: Fluid moves between code and
graphical work in computational notebooks. In: Proceedings
of the ACM Symposium on User Interface Software and
Technology. New York, NY, USA: ACM, p. 140–151. DOI:10.
1145/3379337.3415842. URL https://doi.org/10.1145/
3379337.3415842.

24. Kim NW, Schweickart E, Liu Z, Dontcheva M, Li W, Popovic J
and Pfister H (2017) Data-driven guides: Supporting expressive
design for information graphics. IEEE Transactions on
Visualization and Computer Graphics 23(1): 491–500. DOI:
10.1109/TVCG.2016.2598620. URL https://doi.org/10.
1109/TVCG.2016.2598620.

25. Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier
M, Frederic J, Kelley K, Hamrick JB, Grout J, Corlay S,
Ivanov P, Avila D, Abdalla S and Willing C (2016) Jupyter
notebooks – a publishing format for reproducible computational
workflows. In: Positioning and Power in Academic Publishing:
Players, Agents and Agendas. Amsterdam, Netherlands: IOS
Press, pp. 87–90. DOI:10.3233/978-1-61499-649-1-87. URL
https://doi.org/10.3233/978-1-61499-649-1-87.

26. Knuth DE (1984) Literate programming. The Computer Journal
27(2): 97–111. DOI:10.1093/comjnl/27.2.97. URL https:
//doi.org/10.1093/comjnl/27.2.97.

27. Kross S and Guo PJ (2019) Practitioners teaching data science in
industry and academia: Expectations, workflows, and challenges.
In: Proceedings of the ACM Conference on Human Factors in
Computing Systems. New York, NY, USA: ACM, pp. 1–14.
DOI:10.1145/3290605.3300493. URL https://doi.org/10.
1145/3290605.3300493.

28. Liu Z, Thompson J, Wilson A, Dontcheva M, Delorey J, Grigg
S, Kerr B and Stasko J (2018) Data illustrator: Augmenting
vector design tools with lazy data binding for expressive
visualization authoring. In: Proceedings of the ACM Conference
on Human Factors in Computing Systems. New York, NY,
USA: ACM. ISBN 9781450356206, pp. 1–13. DOI:10.
1145/3173574.3173697. URL https://doi.org/10.1145/
3173574.3173697.

29. Mackinlay J (1986) Automating the design of graphical
presentations of relational information. ACM Transactions on
Graphics 5(2): 110–141. DOI:10.1145/22949.22950. URL
https://doi.org/10.1145/22949.22950.

30. Mackinlay J, Hanrahan P and Stolte C (2007) Show me:
Automatic presentation for visual analysis. IEEE Transactions
on Visualization and Computer Graphics 13(6): 1137–1144.
DOI:10.1109/TVCG.2007.70594. URL https://doi.org/
10.1109/TVCG.2007.70594.

31. Mathisen A, Horak T, Klokmose CN, Grønbæk K and Elmqvist
N (2019) InsideInsights: Integrating data-driven reporting in
collaborative visual analytics. Computer Graphics Forum 38(3):
649–661. DOI:10.1111/cgf.13717. URL https://doi.org/
10.1111/cgf.13717.

32. Méndez GG, Nacenta MA and Vandenheste S (2016) iVoLVER:
Interactive visual language for visualization extraction and
reconstruction. In: Proceedings of the ACM Conference on
Human Factors in Computing Systems. New York, NY, USA:
ACM, pp. 4073–4085. DOI:10.1145/2858036.2858435. URL
https://doi.org/10.1145/2858036.2858435.

33. Moritz D, Wang C, Nelson GL, Lin H, Smith AM, Howe B
and Heer J (2019) Formalizing visualization design knowledge
as constraints: Actionable and extensible models in Draco.
IEEE Transactions on Visualization and Computer Graphics
25(1): 438–448. DOI:10.1109/TVCG.2018.2865240. URL
https://doi.org/10.1109/TVCG.2018.2865240.

34. Mudgal S, Li H, Rekatsinas T, Doan A, Park Y, Krishnan G,
Deep R, Arcaute E and Raghavendra V (2018) Deep learning for
entity matching: A design space exploration. In: Proceedings of
the ACM Conference on Management of Data. New York, NY,
USA: ACM, pp. 19–34. DOI:10.1145/3183713.3196926. URL
https://doi.org/10.1145/3183713.3196926.

35. Perry DB, Howe B, Key AMF and Aragon C (2013) VizDeck:
Streamlining exploratory visual analytics of scientific data. In:
Proceedings of the iConference. Fort Worth, TX: iSchools, pp.
338–350. DOI:10.9776/13206. URL https://doi.org/10.

Prepared using sagej.cls

https://doi.org/10.1111/cgf.14529
https://doi.org/10.1145/2699751
https://doi.org/10.1145/3173574.3174154
https://doi.org/10.1145/3173574.3174154
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/3313831.3376798
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1111/cgf.12131
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/3290605.3300493
https://doi.org/10.1145/3290605.3300493
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1145/22949.22950
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1111/cgf.13717
https://doi.org/10.1111/cgf.13717
https://doi.org/10.1145/2858036.2858435
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.9776/13206

15

9776/13206.
36. Pirolli P and Card S (2005) The sensemaking process and

leverage points for analyst technology as identified through
cognitive task analysis. In: Proceedings of the International
Conference on Intelligence Analysis, volume 5. McLean, VA,
USA: The MITRE Corporation, pp. 2–4.

37. Qian X, Rossi RA, Du F, Kim S, Koh E, Malik S, Lee TY
and Chan J (2021) Learning to recommend visualizations from
data. In: Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining. New York, NY, USA: ACM, p.
1359–1369. DOI:10.1145/3447548.3467224. URL https:
//doi.org/10.1145/3447548.3467224.

38. Rädle R, Nouwens M, Antonsen K, Eagan JR and Klokmose
CN (2017) Codestrates: Literate computing with webstrates. In:
Proceedings of the ACM Symposium on User Interface Software
and Technology. New York, NY, USA: ACM, pp. 715–725.
DOI:10.1145/3126594.3126642. URL https://doi.org/10.
1145/3126594.3126642.

39. Ren D, Höllerer T and Yuan X (2014) iVisDesigner: Expressive
interactive design of information visualizations. IEEE
Transactions on Visualization and Computer Graphics 20(12):
2092–2101. DOI:10.1109/TVCG.2014.2346291. URL https:
//doi.org/10.1109/TVCG.2014.2346291.

40. Ren D, Lee B and Brehmer M (2019) Charticulator: Interactive
construction of bespoke chart layouts. IEEE Transactions on
Visualization and Computer Graphics 25(1): 789–799. DOI:
10.1109/TVCG.2018.2865158. URL https://doi.org/10.
1109/TVCG.2018.2865158.

41. Roth SF, Kolojejchick J, Mattis J and Goldstein J (1994)
Interactive graphic design using automatic presentation
knowledge. In: Proceedings of the ACM Conference on Human
Factors in Computing Systems. New York, NY, USA: ACM,
p. 112–117. DOI:10.1145/191666.191719. URL https:
//doi.org/10.1145/191666.191719.

42. Rule A, Tabard A and Hollan JD (2018) Exploration and
explanation in computational notebooks. In: Proceedings of
the ACM Conference on Human Factors in Computing Systems.
New York, NY, USA: ACM, pp. 32:1–32:12. DOI:10.1145/
3173574. URL https://doi.org/10.1145/3173574.

43. Russell DM, Stefik MJ, Pirolli P and Card SK (1993) The
cost structure of sensemaking. In: Proceedings of the
ACM Conference on Human Factors in Computing Systems.
New York, NY, USA: ACM, pp. 269–276. DOI:10.1145/
169059.169209. URL https://doi.org/10.1145/169059.
169209.

44. Saket B, Kim H, Brown ET and Endert A (2017) Visualization
by demonstration: An interaction paradigm for visual data
exploration. IEEE Transactions on Visualization and Computer
Graphics 23(1): 331–340. DOI:10.1109/TVCG.2016.2598839.
URL https://doi.org/10.1109/TVCG.2016.2598839.

45. Satyanarayan A and Heer J (2014) Lyra: An interactive
visualization design environment. Computer Graphics Forum
33(3): 351–360. DOI:10.1111/cgf.12391. URL https://doi.
org/10.1111/cgf.12391.

46. Satyanarayan A, Moritz D, Wongsuphasawat K and Heer J
(2017) Vega-Lite: A grammar of interactive graphics. IEEE
Transactions on Visualization and Computer Graphics 23(1):
341–350. DOI:10.1109/TVCG.2016.2599030. URL https:
//doi.org/10.1109/TVCG.2016.2599030.

47. Satyanarayan A, Russell R, Hoffswell J and Heer J (2016)
Reactive Vega: A streaming dataflow architecture for declarative

interactive visualization. IEEE Transactions on Visualization
and Computer Graphics 22(1): 659–668. DOI:10.1109/
TVCG.2015.2467091. URL https://doi.org/10.1109/
TVCG.2015.2467091.

48. Seo J and Shneiderman B (2005) A rank-by-feature
framework for interactive exploration of multidimensional data.
Information Visualization 4(2): 96–113. DOI:10.1057/palgrave.
ivs.9500091. URL https://doi.org/10.1057/palgrave.
ivs.9500091.

49. Siddiqui T, Kim A, Lee J, Karahalios K and Parameswaran A
(2016) Effortless data exploration with zenvisage: An expressive
and interactive visual analytics system. Proceedings of the
Very Large Database Endowment 10(4): 457–468. DOI:
10.14778/3025111.3025126. URL https://doi.org/10.
14778/3025111.3025126.

50. Srinivasan A, Drucker SM, Endert A and Stasko J (2019)
Augmenting visualizations with interactive data facts to
facilitate interpretation and communication. IEEE Transactions
on Visualization and Computer Graphics 25(1): 672–681. DOI:
10.1109/TVCG.2018.2865145. URL https://doi.org/10.
1109/TVCG.2018.2865145.

51. Stolte C, Tang D and Hanrahan P (2002) Polaris: A system for
query, analysis, and visualization of multidimensional relational
databases. IEEE Transactions on Visualization and Computer
Graphics 8(1): 52–65. DOI:10.1109/2945.981851. URL
https://doi.org/10.1109/2945.981851.

52. Surowiecki J (2004) The Wisdom of Crowds: Why the Many
are Smarter Than the Few and How Collective Wisdom Shapes
Business, Economies, Societies, and Nations. New York, NY,
USA: Anchor Books.

53. Tang B, Han S, Yiu ML, Ding R and Zhang D (2017) Extracting
top-k insights from multi-dimensional data. In: Proceedings of
the ACM Conference on Management of Data. New York, NY,
USA: ACM, pp. 1509–1524. DOI:10.1145/3035918.3035922.
URL https://doi.org/10.1145/3035918.3035922.

54. Tory M and Möller T (2005) Evaluating visualizations:
Do expert reviews work? IEEE Computer Graphics and
Applications 25(5): 8–11. DOI:10.1109/MCG.2005.102. URL
https://doi.org/10.1109/MCG.2005.102.

55. Tufte E (2001) The Visual Display of Quantitative Information.
Cheshire, CT, USA: Graphic Press.

56. Ufford M, Pacer M, Seal M and Kelley K
(2018) Beyond interactive: Notebook innovation at
Netflix. https://medium.com/netflix-techblog/

notebook-innovation-591ee3221233.
57. van den Elzen S and van Wijk JJ (2013) Small multiples, large

singles: A new approach for visual data exploration. Computer
Graphics Forum 32(3pt2): 191–200. DOI:10.1111/cgf.12106.
URL https://doi.org/10.1111/cgf.12106.

58. VanderPlas J, Granger BE, Heer J, Moritz D, Wongsuphasawat
K, Satyanarayan A, Lees E, Timofeev I, Welsh B and Sievert
S (2018) Altair: Interactive statistical visualizations for Python.
The Journal of Open Source Software 3(32). DOI:10.21105/joss.
01057. URL https://doi.org/10.21105/joss.01057.

59. Vartak M, Madden S, Parameswaran A and Polyzotis N
(2014) SeeDB: Automatically generating query visualizations.
Proceedings of the Very Large Database Endowment 7(13):
1581–1584. DOI:10.14778/2733004.2733035. URL https:
//doi.org/10.14778/2733004.2733035.

Prepared using sagej.cls

https://doi.org/10.9776/13206
https://doi.org/10.9776/13206
https://doi.org/10.1145/3447548.3467224
https://doi.org/10.1145/3447548.3467224
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1145/3126594.3126642
https://doi.org/10.1109/TVCG.2014.2346291
https://doi.org/10.1109/TVCG.2014.2346291
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1145/191666.191719
https://doi.org/10.1145/191666.191719
https://doi.org/10.1145/3173574
https://doi.org/10.1145/169059.169209
https://doi.org/10.1145/169059.169209
https://doi.org/10.1109/TVCG.2016.2598839
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1057/palgrave.ivs.9500091
https://doi.org/10.1057/palgrave.ivs.9500091
https://doi.org/10.14778/3025111.3025126
https://doi.org/10.14778/3025111.3025126
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/2945.981851
https://doi.org/10.1145/3035918.3035922
https://doi.org/10.1109/MCG.2005.102
https://medium.com/netflix-techblog/notebook-innovation-591ee3221233
https://medium.com/netflix-techblog/notebook-innovation-591ee3221233
https://doi.org/10.1111/cgf.12106
https://doi.org/10.21105/joss.01057
https://doi.org/10.14778/2733004.2733035
https://doi.org/10.14778/2733004.2733035

16 Journal Title XX(X)

60. Wang AY, Wang D, Drozdal J, Muller M, Park S, Weisz JD, Liu
X, Wu L and Dugan C (2022) Documentation matters: Human-
centered AI system to assist data science code documentation
in computational notebooks. ACM Transactions on Computer-
Human Interaction 29(2): 1–33. DOI:10.1145/3489465. URL
https://doi.org/10.1145/3489465.

61. Wickham H (2016) ggplot2: Elegant Graphics for Data
Analysis. New York, NY, USA: Springer. DOI:10.1007/
978-3-319-24277-4. URL https://doi.org/10.1007/
978-3-319-24277-4.

62. Wongsuphasawat K, Moritz D, Anand A, Mackinlay J, Howe
B and Heer J (2016) Voyager: Exploratory analysis via faceted
browsing of visualization recommendations. IEEE Transactions
on Visualization and Computer Graphics 22(1): 649–658. DOI:
10.1109/TVCG.2015.2467191. URL https://doi.org/10.
1109/TVCG.2015.2467191.

63. Wongsuphasawat K, Qu Z, Moritz D, Chang R, Ouk F, Anand
A, Mackinlay J, Howe B and Heer J (2017) Voyager 2:
Augmenting visual analysis with partial view specifications.
In: Proceedings of the ACM Conference on Human Factors
in Computing Systems. New York, NY, USA: ACM, pp. 2648–
2659. DOI:10.1145/3025453.3025768. URL https://doi.
org/10.1145/3025453.3025768.

64. Wood J, Kachkaev and Dykes J (2019) Design exposition with
literate visualization. IEEE Transactions on Visualization and
Computer Graphics 25(1): 759–768. DOI:10.1109/TVCG.2018.
2864836. URL https://doi.org/10.1109/TVCG.2018.
2864836.

65. Xia H, Riche NH, Chevalier F, Araújo BRD and Wigdor D
(2018) DataInk: Direct and creative data-oriented drawing. In:
Proceedings of the ACM Conference on Human Factors in
Computing Systems. New York, NY, USA: ACM, pp. 223:1–
223:13. DOI:10.1145/3173574. URL https://doi.org/10.
1145/3173574.

66. Yalçin MA, Elmqvist N and Bederson BB (2017) Keshif: Rapid
and expressive tabular data exploration for novices. IEEE
Transactions on Visualization and Computer Graphics 24(8):
2339–2352. DOI:10.1109/TVCG.2017.2723393. URL https:
//doi.org/10.1109/TVCG.2017.2723393.

67. Yan C and He Y (2020) Auto-Suggest: Learning-to-recommend
data preparation steps using data science notebooks. In:
Proceedings of the ACM Conference on Management of Data.
New York, NY, USA: ACM, pp. 1539—-1554. DOI:10.
1145/3318464.3389738. URL https://doi.org/10.1145/
3318464.3389738.

68. Zhang S, Yao L and Sun A (2018) Deep learning based
recommender system: A survey and new perspectives. ACM
Computing Surveys 52(1): 5:1–5:35. DOI:10.1145/3285029.
URL https://doi.org/10.1145/3285029.

Prepared using sagej.cls

https://doi.org/10.1145/3489465
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1109/TVCG.2018.2864836
https://doi.org/10.1109/TVCG.2018.2864836
https://doi.org/10.1145/3173574
https://doi.org/10.1145/3173574
https://doi.org/10.1109/TVCG.2017.2723393
https://doi.org/10.1109/TVCG.2017.2723393
https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1145/3318464.3389738
https://doi.org/10.1145/3285029

	Introduction
	Motivating Scenario
	Background
	Interactive Visualization Design Environments
	Visualization Recommendation
	Interactive Notebooks

	Design Requirements: Formative Study
	Study Design
	Method
	Results
	Further Refinement of Lodestar

	The Lodestar System
	System Overview
	Notebook Interface
	Recommendation Panel
	Notebook Cell
	Exporting Code and Results

	Advisors and Recommendations
	Recommendation Graph
	Extracting Analysis Blocks for the Expert Advisor
	Formatting Analysis Blocks for the Expert Advisor
	Managing Analysis Blocks for the Crowd Advisor
	Identifying Synonymous States Across Advisors

	Summative Evaluation
	Method
	Results
	Lodestar Strengths.
	Limitations.

	Recommendation Evaluation
	Results

	Discussion
	Data Science for Non-Experts
	On the ``Wisdom of the Crowd'' for Data Analysis
	Different Recommendation Strategies
	Limitations and Future Work

