Web APIs forThlngs

N els Olof Bouv

Overview

o RESTful design for WoT
» Real time data for the Web of Things

Requirements for (WoT) Things

* It should be possible to access it
» It should be possible to access its constituent parts
» Representation should be tailored according to need

o Operations on things should follow predictable
patterns

» It should be possible to discover the parts of a Thing
as well as the operations supported by those parts

Representational State Transfer

» By following the REST principles, it becomes easier to
create maintainable, interoperable and scalable
internet services

» REST is an architectural style, not a protocol
° 0 it consists of a series of quidelines, constraints, and principles

REST requirements

o Client/Server
» all communication is strictly request/response

o Uniform interfaces (i.e., APlIs)
» following established practices enables faster learning

o Stateless
» the client holds its own state; it is communicated as needed in every request

o Cacheable
o servers can indicate that data may be cacheable — this improves performance

» Layered architecture

o the above ensures that a multi-layered architecture can be used, which can greatly
improve performance (e.q., proxies, load balancers, gateways, or CDNs)

Naming

> Naming is a basic problem of computer science

> How to define a naming scheme that provides unique
resources with unambiguous identifiers?

» Flat naming space: unique identifiers
®* fbh90ed86136c771386639bbh5f816eeh2a2d2a3a

o Structured name space: often hierarchical
°* /web/bouvin/public_html_cs/dBIoTP2PC/2017/milestones/milestone-3.html

o Attribute-based name space: essentially a query

®* /C=DK/0=Aarhus Universitet/0U=Computer Science

Uniform Resource Locators

protocol machine path fragment
_AG o AL

A~ - — N 7 . T : -
http ://www.daimi.au.dk /~bouvin/Arakne/readme.html #requirements

* A twice structured naming scheme

» Originally, path often mapped to folders and files

°* https://users-cs.au.dk/bouvin/dBIoTP2PC/2017/milestones/milestone-3.html
° /web/bouvin/public_html_cs/dBIoTP2PC/2017 /milestones/milestone-3.html

o The path of the URL is now interpreted in a far more
flexible manner, exploiting the hierarchical nature to
represent not only arbitrary resources, but also their
constituent parts

» URLs have thus become part of an API

7

Consistency in naming

o Interoperability implies predictability — APIs should
be structured compliant with established practices so
other developers can quickly adapt and adopt

o Simple is better than complex

o Resources are identifiers, not operations

® http://devices.webofthings.io/pi/sensors/temperature/
® http://devices.webofthings.io/pi/sensors/light

® http://devices.webofthings.io/pi/actuators/leds/1/

The strength of hierarchical names

Actuators LEDs LED #
/actuators /leds /{ledi#}

O O

Light sensor
/light

Root URL of Raspberry Pi
devices.webofthings.io/pi . ‘

Temperature sensor
/temperature

. Buttons
/buttons 1
Sensors ‘ ‘ /
® devices.webofthings.io/pi /sensors () /2
® devices.webofthings.io/pi/actuators Acceleration () /x
/accel
® devices.webofthings.1o0/pi/actuators/leds Oy
® devices.webofthings.io/pi/actuators/leds/1 () /2
® devices.webofthings.io/pi/sensors/pir/ Gyroscope () /x
/tilt
® devices.webofthings.io/pi/sensors/tilt/x O Iy

o Each of these URLs make sense in themselves—O -

Resources are identifiers, not methods

» Names should be descriptive

» Names should be nouns, not verbs
® itisthe thing you wish to operate on, not the operation

o If there are several resources of the same type, they
are addressed first as aggregate, second as individual

o devices.webofthings.io/pi/actuators/leds
o devices.webofthings.io/pi/actuators/leds/T

10

Design consequences for WoT Things

» AThing is a web server
» AThing should use good security practices
» AThing should have a root resource

o AThing should make its properties accessible through
a hierarchical naming scheme

11

Resources and their representations

» A resource is any kind of data that needs to be
addressed
* it must be given a unique URL as just outlined

o Resources are presented and manipulated through
their representation, which does not have to be what
is actually kept at the server

° e.g.,arowinaSQL database or a measurement from a sensor could be represented as
HTML, JSON, or otherwise

o it should be whatever the client and the server can understand

o This makes REST APIs very flexible

12

Design consequences for WoT Things

» AThing should use JSON as the default representation
» naming scheme should be camelCase: lastValue rather than last-value

o AThing should use UTF8 for text encoding

» AThing might provide HTML representations of their
resources for easier inspection and control

13

Operating on resources

o Just as a simple naming scheme simplifies
interoperability, restricting the types of possible
operations to a fixed set makes it easier to write
clients and servers

» Following the rules for each methods ensures
consistent behaviour with other systems

14

Operating on resources

o HTTP supports four main methods:

°GET

» retrieve the state of a resource — don't modify it

®* POST

° (reate new resource, do not specify identifier

°PUT

° update existing resource, or create new resource with an identifier

® DELETE

® remove a resource

15

GET

o Retrieve the resource in desired representation

o Safe and idempotent
* does not modify the resource; can be repeated over and over with similar result

Request:

GET /pi/sensors/temperature/value
Accept: application/json
Host: devices.webofthings.io

Response:

200 OK HTTP/1.1
Content-Type: application/json
{"temperature" : 37}

16

POST

e Creates a new resource

» Unsafe and non-idempotent
» changes status on server; repeated calls will have different results

Request:

POST /pi/display/messages HTTP/1.1

Host: devices.webofthings.io
Content-Type: application/json
{"content":"Hello World!”,"duration":30}

Response:

201 Created HTTP/1.1
Location: devices.webofthings.io/pi/display/messages/2210

» Location points to the newly created resource

17

PUT

» Updates an existing resource

o Unsafe and idempotent
o changes status on server; repeated calls will have the same result

Request:

PUT /pi/actuators/leds/4 HTTP/1.1
Host: devices.webofthings.io
Content-Type: application/json
{"red" : 0, "green" : 128, "blue" :

Response:

200 OK HTTP/1.1

18

DELETE

» Deletes an existing resource

o Unsafe and idempotent
o changes status on server; repeated calls will have the same result

Request:

DELETE /rules/24 HTTP/1.1
Host: devices.webofthings.io

Response:

200 OK HTTP/1.1

19

OPTION

o Lists the permitted operations on a resource

» Safe and idempotent
» No changes on server; repeated calls will have the same result

Request:

OPTIONS pi/sensors/humidity/ HTTP/1.1
Host: devices.webofthings.io

Response:

204 No Content HTTP/1.1
Content-Length: 0
Allow: GET, OPTIONS

Accept—-Ranges: bytes

20

A selection of HTTP status codes

® 200 OK
» Standard response for successful HTTP requests.

® 201 Created
» The request has been fulfilled and resulted in a new resource being created

® 202 Accepted
» The request has been accepted, but is not yet fulfilled

® 301 Moved Permanently
» This and all future requests should be directed to the given URI

® 404 Not Found
o The requested resource could not be found

® 500 Internal Server Error
o The server has experienced an error, anzg could not fulfil the request

Cross-Origin Resource Sharing

o JavaScript in the browser can by default only access
its own origin server

o this makes excellent security sense

o CORS addresses this:

Request:

GET /pi/sensors/temperature HTTP/1.1
Host: devices.webofthings.io
Origin: http://localhost:8090

Response:

200 OK HTTP/1.1
Access—-Control-Allow-0rigin: "x"

o See http://enable-cors.org/ for more information

Design consequences for WoT Things

» AThing should support standard HTTP methods

o AThing should always support GET on its root

» AThing should use standard HTTP error codes

» AThing should support CORS, so it can be integrated

23

HATEOAS

» Hypermedia as the Engine of Application State

» The Web is hypermedia, and we can enable the
discovery of the APl through the use of links

» Each layer should provide links to the layers above
and below, as well as links to possible actions

<html><body>
<h1l class="device—-name'">Raspberry Pi</hl>
Root URL of
this device.
View the list of sensors and

actuators on this device.

You can also view all links available on this
device. Or read the documentation.
</body></html>

24

A bank example

GET /accounts/12345 HTTP/1.1
Host: bank.example.com
Accept: application/xml

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length:

<?xml version="1.0"7>
<account>
<account_number>12345</account_number>
<balance currency="usd">100.00</balance>
<link rel="deposit" href="https://bank.example.com/accounts/12345/deposit" />
<link rel="withdraw" href="https://bank.example.com/accounts/12345/withdraw" />
<link rel="transfer" href="https://bank.example.com/accounts/12345/transfer" />
<link rel="close" href="https://bank.example.com/accounts/12345/close" />
</account>

» Every resource should report its state, and provide the
possible transitions from that state

» But surely these URLs are in violation of RESTfulness?

Design consequences for WoT Things

o AThing should always offer links to related resources,
enabling discovery by human and computer
o this can aid the developer, and make clients more flexible

o fully automated APIs are probably a little optimistic, but within defined areas this
should be able to work

o AThing can by supporting OPTIONS ease the
discovery of what can be done with its resources

26

Overview

o RESTful design for WoT
o Real time data for the Web of Things

27

REST is Request/Response

» Request/Response is well suited for many purposes

» But... how can the server announce a change or event
if the client does not request an update?

» How can events be efficiently propagated from server
to client?

28

Busy waiting

» The client requests the resource periodically
» highly inefficient, even if the client only uses HEAD to detect changes

» Good enough for slowly changing parameters, but not
for, e.g., button presses or IR detectors

29

Publish/subscribe

Subscribe Publish
Client Client Client Client
A B A B
1. Subscribes to 1. Subscribes to 3. /o
. /plr true
/temperature /pir
Broker Broker
1. Subscribes to 3. /pir true 2. Publishes
/pir /plr true
Client . Client .
C Thing C Thing

o |deally, clients interested in a change should be able
to register that interest, and then be alerted upon it

WebSockets

o Opens a permanent connection between Web
browser and server
o supported by all modern Web browsers

e Once established, data frames can be sent back and
forth through JavaScript
o the format is not http — the overhead per frame is 2 bytes, much less than http

» More efficient in data traffic, though having an open
connection might be a battery strain for a small device

o Strictly optional for Milestones 1-4
o (there are many libraries, socket.io seems to be popular for Node.js)

31

Conclusions

» The careful observance of established REST practices
enables Things to provide a well defined API that can
be explored by human and program alike

» This eases development and makes for robust systems

o The approach described is a style, rather than a law,
and some elements are in contention
o especially HATEAQS

32

