
Web APIs for Things
Niels Olof Bouvin

1

Overview

RESTful design for WoT
Real time data for the Web of Things

2

Requirements for (WoT) Things

It should be possible to access it

It should be possible to access its constituent parts

Representation should be tailored according to need

Operations on things should follow predictable
patterns

It should be possible to discover the parts of a Thing
as well as the operations supported by those parts

3

Representational State Transfer

By following the REST principles, it becomes easier to
create maintainable, interoperable and scalable
internet services

REST is an architectural style, not a protocol
so it consists of a series of guidelines, constraints, and principles

4

REST requirements
Client/Server

all communication is strictly request/response

Uniform interfaces (i.e., APIs)
following established practices enables faster learning

Stateless
the client holds its own state; it is communicated as needed in every request

Cacheable
servers can indicate that data may be cacheable — this improves performance

Layered architecture
the above ensures that a multi-layered architecture can be used, which can greatly
improve performance (e.g., proxies, load balancers, gateways, or CDNs)

5

Naming

Naming is a basic problem of computer science

How to define a naming scheme that provides unique
resources with unambiguous identifiers?

Flat naming space: unique identifiers
fb90ed86136c771386639bbb5f816eeb2a2d2a3a

Structured name space: often hierarchical
/web/bouvin/public_html_cs/dBIoTP2PC/2017/milestones/milestone-3.html

Attribute-based name space: essentially a query
/C=DK/O=Aarhus Universitet/OU=Computer Science

6

Uniform Resource Locators

A twice structured naming scheme

Originally, path often mapped to folders and files
https://users-cs.au.dk/bouvin/dBIoTP2PC/2017/milestones/milestone-3.html
 /web/bouvin/public_html_cs/dBIoTP2PC/2017/milestones/milestone-3.html

The path of the URL is now interpreted in a far more
flexible manner, exploiting the hierarchical nature to
represent not only arbitrary resources, but also their
constituent parts

URLs have thus become part of an API

protocolz }| {
http ://

machinez }| {
www.daimi.au.dk /

pathz }| {
⇠bouvin/Arakne/readme.html#

fragmentz }| {
requirements

7

Consistency in naming

Interoperability implies predictability — APIs should
be structured compliant with established practices so
other developers can quickly adapt and adopt

Simple is better than complex

Resources are identifiers, not operations
http://devices.webofthings.io/pi/sensors/temperature/
http://devices.webofthings.io/pi/sensors/light
http://devices.webofthings.io/pi/actuators/leds/1/

8

The strength of hierarchical names

devices.webofthings.io/pi

devices.webofthings.io/pi/actuators

devices.webofthings.io/pi/actuators/leds

devices.webofthings.io/pi/actuators/leds/1

devices.webofthings.io/pi/sensors/pir/

devices.webofthings.io/pi/sensors/tilt/x

Each of these URLs make sense in themselves
9

Resources are identifiers, not methods

Names should be descriptive

Names should be nouns, not verbs
it is the thing you wish to operate on, not the operation

If there are several resources of the same type, they
are addressed first as aggregate, second as individual

devices.webofthings.io/pi/actuators/leds
devices.webofthings.io/pi/actuators/leds/1

10

Design consequences for WoT Things

A Thing is a web server

A Thing should use good security practices

A Thing should have a root resource

A Thing should make its properties accessible through
a hierarchical naming scheme

11

Resources and their representations

A resource is any kind of data that needs to be
addressed

it must be given a unique URL as just outlined

Resources are presented and manipulated through
their representation, which does not have to be what
is actually kept at the server

e.g., a row in a SQL database or a measurement from a sensor could be represented as
HTML, JSON, or otherwise
it should be whatever the client and the server can understand

This makes REST APIs very flexible

12

Design consequences for WoT Things

A Thing should use JSON as the default representation
naming scheme should be camelCase: lastValue rather than last-value

A Thing should use UTF8 for text encoding

A Thing might provide HTML representations of their
resources for easier inspection and control

13

Operating on resources

Just as a simple naming scheme simplifies
interoperability, restricting the types of possible
operations to a fixed set makes it easier to write
clients and servers

Following the rules for each methods ensures
consistent behaviour with other systems

14

Operating on resources

HTTP supports four main methods:

GET
retrieve the state of a resource — don’t modify it

POST
create new resource, do not specify identifier

PUT
update existing resource, or create new resource with an identifier

DELETE
remove a resource

15

GET
Retrieve the resource in desired representation

Safe and idempotent
does not modify the resource; can be repeated over and over with similar result

Request:

GET /pi/sensors/temperature/value
Accept: application/json
Host: devices.webofthings.io

Response:

200 OK HTTP/1.1
Content-Type: application/json
{"temperature" : 37}

16

POST
Creates a new resource

Unsafe and non-idempotent
changes status on server; repeated calls will have different results

Location points to the newly created resource

Request:

POST /pi/display/messages HTTP/1.1
Host: devices.webofthings.io
Content-Type: application/json
{"content":"Hello World!”,"duration":30}

Response:

201 Created HTTP/1.1
Location: devices.webofthings.io/pi/display/messages/2210

17

PUT
Updates an existing resource

Unsafe and idempotent
changes status on server; repeated calls will have the same result

Request:

PUT /pi/actuators/leds/4 HTTP/1.1
Host: devices.webofthings.io
Content-Type: application/json
{"red" : 0, "green" : 128, "blue" : 128}

Response:

200 OK HTTP/1.1

18

DELETE
Deletes an existing resource

Unsafe and idempotent
changes status on server; repeated calls will have the same result

Request:

DELETE /rules/24 HTTP/1.1
Host: devices.webofthings.io

Response:

200 OK HTTP/1.1

19

OPTION
Lists the permitted operations on a resource

Safe and idempotent
No changes on server; repeated calls will have the same result

Request:

OPTIONS pi/sensors/humidity/ HTTP/1.1
Host: devices.webofthings.io

Response:

204 No Content HTTP/1.1
Content-Length: 0
Allow: GET, OPTIONS
Accept-Ranges: bytes

20

A selection of HTTP status codes
200 OK

Standard response for successful HTTP requests.

201 Created
The request has been fulfilled and resulted in a new resource being created

202 Accepted
The request has been accepted, but is not yet fulfilled

301 Moved Permanently
This and all future requests should be directed to the given URI

404 Not Found
The requested resource could not be found

500 Internal Server Error
The server has experienced an error, and could not fulfil the request

21

Cross-Origin Resource Sharing
JavaScript in the browser can by default only access
its own origin server

this makes excellent security sense

CORS addresses this:

See http://enable-cors.org/ for more information

Request:

GET /pi/sensors/temperature HTTP/1.1
Host: devices.webofthings.io
Origin: http://localhost:8090

Response:

200 OK HTTP/1.1
Access-Control-Allow-Origin: "*"

22

Design consequences for WoT Things

A Thing should support standard HTTP methods

A Thing should always support GET on its root

A Thing should use standard HTTP error codes

A Thing should support CORS, so it can be integrated

23

Hypermedia as the Engine of Application State

The Web is hypermedia, and we can enable the
discovery of the API through the use of links

Each layer should provide links to the layers above
and below, as well as links to possible actions

<html><body>
 <h1 class="device-name">Raspberry Pi</h1>
 Root URL of
 this device.
 View the list of sensors and
 actuators on this device.
 You can also view all links available on this
device. Or read the documentation.
</body></html>

HATEOAS

24

A bank example

Every resource should report its state, and provide the
possible transitions from that state

But surely these URLs are in violation of RESTfulness?

GET /accounts/12345 HTTP/1.1
Host: bank.example.com
Accept: application/xml
...

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: ...

<?xml version="1.0"?>
<account>
 <account_number>12345</account_number>
 <balance currency="usd">100.00</balance>
 <link rel="deposit" href="https://bank.example.com/accounts/12345/deposit" />
 <link rel="withdraw" href=“https://bank.example.com/accounts/12345/withdraw" />
 <link rel="transfer" href="https://bank.example.com/accounts/12345/transfer" />
 <link rel="close" href="https://bank.example.com/accounts/12345/close" />
</account>

25

Design consequences for WoT Things

A Thing should always offer links to related resources,
enabling discovery by human and computer

this can aid the developer, and make clients more flexible
fully automated APIs are probably a little optimistic, but within defined areas this
should be able to work

A Thing can by supporting OPTIONS ease the
discovery of what can be done with its resources

26

Overview

RESTful design for WoT
Real time data for the Web of Things

27

REST is Request/Response

Request/Response is well suited for many purposes

But… how can the server announce a change or event
if the client does not request an update?

How can events be efficiently propagated from server
to client?

28

Busy waiting

The client requests the resource periodically
highly inefficient, even if the client only uses HEAD to detect changes

Good enough for slowly changing parameters, but not
for, e.g., button presses or IR detectors

29

Publish/subscribe

Ideally, clients interested in a change should be able
to register that interest, and then be alerted upon it

30

WebSockets

Opens a permanent connection between Web
browser and server

supported by all modern Web browsers

Once established, data frames can be sent back and
forth through JavaScript

the format is not http — the overhead per frame is 2 bytes, much less than http

More efficient in data traffic, though having an open
connection might be a battery strain for a small device

Strictly optional for Milestones 1-4
(there are many libraries, socket.io seems to be popular for Node.js)

31

Conclusions

The careful observance of established REST practices
enables Things to provide a well defined API that can
be explored by human and program alike

This eases development and makes for robust systems

The approach described is a style, rather than a law,
and some elements are in contention

especially HATEAOS

32

