The Blockchain & The Internet of Things

Niels Olof Bouvin

The Blockchain & the Internet of Things

- The blockchain
- Blockchains for the Internet of Things

The problem of distributed trust

- We have touched upon this before
- How do you establish trust in something important shared with faceless strangers?
- You can choose to put your trust in an authority
 - like MobilePay, PayPal, eBay, etc
- or you can do something else

Requirements for public trust

Transparency

• all is public—no special privileges required except participation

Verifiability

• everybody can check and verify what takes place

Integrity & Immutability

• once committed, records cannot be changed

Consistency

• all will have the same records (eventually)

The blockchain

- A linked list of blocks containing data and a (crypto) hash value of the previous block (e.g., SHA256)
- Each hash validates the previous block, and thus the whole chain of blocks can be verified from the newest back to the genesis block
- Once it exists, a block cannot be modified without detection as that would invalidate the next and thus all subsequent blocks

What use is an immutable list?

Previous Block Hash
Transaction
Transaction
Transaction

 It can be used to represent a *ledger*, i.e., a series of financial (or other) transactions collected in a block

• a transaction might be 'Bob paid Alice B100'

- To defend against fraud, a transaction should be cryptographically signed by the issuer
 - i.e., (Bob paid Alice B100)_{signed by Bob} where Bob's public key is known by all
- Once bundled up in a published block, the information cannot be modified

Fraud prevention

- Does Bob even have B100?
- This can be checked by transversing all prior transactions, looking for Bob
- All Bob's previous financial transactions are public, so doing a sum of all transactions adding to or subtracting from to Bob's account will yield Bob's net worth

• Sounds like hard work! Who should do this and why?

Mining

Miners gather transactions, verify, and bundle them

- in return for a small transaction fee from the payer
- as well as the *block reward* for creating and publishing the completed block
- Before they can publish the transactions in a block, they have to perform a computational heavy task, so that it becomes infeasible to recreate (parts of) the blockchain for fraudulent purposes
- This is most often a Proof-of-Work, consisting of generating a nonce (a number) so that the hash of the block header satisfy some requirement:
 - SHA256(block header) < some slowly decreasing target threshold

Forking

- Two miners may well create each a valid block at approximate the same time, but there can be only one
- The network prefers the more difficult, i.e., longer, chain, so if a fork happens, the longer of the forks will be accepted as the consensus chain
- Thus, the miners race to complete new blocks in order to protect already generated blocks and their rewards

The cost of doing Proof-of-Work

- In the most popular blockchain, Bitcoin, the difficulty of the PoW has been steadily increasing to match the rising computation power of the miners
- The miners currently earn 12,5 bitcoin per block, approximately (14/11/2017) equivalent to 500.000 kr
 - thus, that is the upper bound cost of electricity spent to generate the block, ignoring other expenses
- Current estimates put the electricity cost of a single transaction (*not* block) at 215 KWh
 - an average Danish family uses 5.200 KWh per year, so that is 2 weeks worth of electricity (!)

Alternatives to Proof-of-Work

• Proof-of-Stake

- defer block creation to those, who have most to lose (have most at stake), if consensus is not reached
- not widely adopted, seems to be a hard problem to solve

• Proof-of-Space

• defer block creation to those, who can prove that they hold a specific (large) data structure/file—trades CPU cycles for disk space

 Regardless, if a cryptocurrency is traded at a certain value, it will be worth spending up to that amount in resources to generate it

Smart contracts

- Apart from transactions (a simple form of code), the data in a block could also be used to store executable code, known as *smart contracts*
 - takes input from the blockchain, and generates output to the blockchain
 - the smart contracts run on all peers when triggered by a transaction pointing to it
- The code is as public as the blockchain, and bugs and vulnerabilities are thus also visible to all
 - however, in contrast to open source software, a faulty smart contract is not easy to withdraw, as it resides in an immutable block
 - Ethereum especially has suffered from time to time because of this

Does it scale?

Not very well

- Bitcoin (Core) blocks cannot (currently) be bigger than 1 MB
- Estimates put transactions per second for Bitcoin around 3-4
- Ethereum clocks in around 25 TPS

• There are other systems that scale considerably better

• though shouldn't they then be the dominant ones?

 Still, a private rather than public blockchain, might be made to scale better as PoW requirements may be different between trusted participants

 but they might as well use other, more classic and *far* faster, methods to handle their transactions

ls it P2P?

• Well, yes...

- no central authority
- all can, in principle, perform all actions, though some actions are *very* resource heavy

But not particularly well designed P2P

- (ignoring mining, which is often *grotesquely* energy inefficient, and which because of economy of scale has become quite centralised with giant mining server farms wherever in the world electricity is cheap)
- every peer stores all the state
- every peer performs all the smart contracts
- if they defer these actions to other, more capable peers, how is this different from trusting a central authority?

The Blockchain & the Internet of Things

- The blockchain
- Blockchains for the Internet of Things

So, what use might it be?

• Well...

Use cases

- decentralised architecture for IoT (sounds good, but why build it on blockchains?)
- micropayment infrastructure for microservices (performing sensor readings, doing calculations, storing data)
- direct access to manufacturing equipment
- energy trading (from one home to another)
- logistics tracking (containers from origin to destination)

Many if not all of these can be solved today using common PKI (public-key infrastructure) methods

So, is it a good idea?

- At this point, it seems as a grossly inefficient solution searching for a problem
- Having an immutable, public accessible record is a great idea for some use cases
 - not everything should be public—and other methods can be used to ensure immutability
- There are already, rock solid, cryptographic methods to do secure transactions with strangers
 - PKI for many purposes—a signed transaction is also immutable
 - Secure Multiparty Computations for the truly cautious ones

Hype and speculation are not evidence of usefulness

• actual, useful work is proof of usefulness