
Structured P2P Networks
Niels Olof Bouvin

1

Distributed Hash Tables

DHTs are designed to be infrastructure for other
applications

General concept
Assign peers IDs evenly across an ID space (e.g., [0, 2n-1])
Assign resources IDs in the same ID space, and associate resources with the closest (in
ID space) peer
Distance = distance in ID space
Peers have broad knowledge of the network, and deep knowledge about their
neighbourhood
Arrange peers in a network that they easily (iteratively or recursively) can be found
Searching for a resource and searching for a peer become the same

2

Distributed Hash Tables

Challenges
Routing information must be distributed – no central index
How is the routing information created and maintained?
How are peers inserted into the network? How do they leave? How are resources
added?
Resources are stored at their closest peer
• resources should be relatively small...

3

Overview

Chord
Pastry
Kademlia
Conclusions

4

Chord

One operation:
IP address = lookup(key): Given a key, find node responsible for that key

Goals
load balancing, decentralisation, scalability, availability, flexible naming
performance and space usage:
• lookup in O(log N)
• each node needs information about O(log N) other nodes

5

Use of Hashing in Chord

Keys are assigned to nodes with hashing
good hash function balances load

Nodes and keys are assigned m-bit identifiers
using SHA-1 on nodes’ IP addresses and on keys
m should be big enough to make collisions improbable

“Ring-based” assignment of keys to nodes
identifiers are ordered on an identifier circle modulo 2m
a key k is assigned to the first node n where IDn ≥ IDk: n = successor(k)

6

Hash function?

“A hash function is any function that can be used to map
data of arbitrary size to data of fixed size”

e.g., from some data to a number belonging to some range
good hash functions generate a uniform distribution of numbers across its range

Cryptographic hashes (such as SHA-1, SHA-256, etc)
are excellent hash functions where it is very hard to
guess the data that led to a specific hash value

even tiny changes in data leads to dramatically different hash values
the range is usually very large, e.g. SHA-1 is [0, 2160=1,46⨉1048]
(note that these days SHA-1 is no longer considered safe, so use SHA-256 instead)

7

A ring consisting of 10 nodes storing 5 keys

N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

K24

K10

K54

K30

K38

8

Key Allocation in Chord

Designed to let nodes enter
and leave network easily

Node n leaves: all of n's assigned keys are
assigned to successor(n)
Node n joins: keys k ≤ n assigned to
successor(n) are assigned to n
Example: N26 joins ⇒ K24 becomes

assigned to N26

Each physical node may run
a number of virtual nodes,
each with its own identifier
to balance the load

N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

K24

K10

K54

K30

K38

N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

K24

K10

K54

K30

K38

N26

9

Simple (Linear) Key Location

Simple key location can be
implemented in time O(N)
and space O(1)

Example: Node 8 performs
a lookup for Key 54

N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

K54

lookup(K54)

#ask node n to find the successor of id
n.find_successor(id)

if n < id ≤ successor
return successor

else
#forward query around circle
return successor.find_successor(id)

10

Scalable Key Location
N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

Finger table
N8 + 1 9.. 9 N14

N8 + 2 10..11 N14

N8 + 4 12..15 N14

N8 + 8 16..23 N21

N8 + 16 24..39 N32

N8 + 32 40.. 7 N42

+1

+2

+4

+8

+16+32

Uses finger tables
n.finger[i] = find_successor(n + 2i-1), 1 ≤ i ≤ m

11

Scalable Key Location
N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

K54

lookup(K54)

Finger table
N42 + 1 43..43 N48

N42 + 2 44..45 N48

N42 + 4 46..49 N48

N42 + 8 50..57 N51

N42 + 16 58.. 9 N1

N42 + 32 10..41 N14

Finger table
N51 + 1 52..52 N56

N51 + 2 53..54 N56

N51 + 4 55..58 N56

N51 + 8 59.. 2 N1

N51 + 16 3..18 N8

N51 + 32 19..50 N21

Finger table
N8 + 1 9.. 9 N14

N8 + 2 10..11 N14

N8 + 4 12..15 N14

N8 + 8 16..23 N21

N8 + 16 24..39 N32

N8 + 32 40.. 7 N42

If successor not found, search finger table to find n’ whose ID most
immediately precedes id

This node will know the most about n’ of all nodes in the finger
table

n.find_successor(id):
if n < id ≤ successor

return successor
else

n’ = closest_preceding_node(id)
return n’.find_successor(id)

n.closest_preceding_node(id):
for i = m downto 1

if n < finger[i] < id
return finger[i]

return n

12

Self organisation - new node arrival
N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

Finger table
N11 + 1 12..12

N11 + 2 13..14

N11 + 4 15..18

N11 + 8 19..26

N11 + 16 27..42

N11 + 32 43..10

N11

N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

Finger table
N11 + 1 12..12 N14

N11 + 2 13..14 N14

N11 + 4 15..18 N21

N11 + 8 19..26 N21

N11 + 16 27..42 N32

N11 + 32 43..10 N48

N11

N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

Finger table
N11 + 1 12..12 N14

N11 + 2 13..14 N14

N11 + 4 15..18 N21

N11 + 8 19..26 N21

N11 + 16 27..42 N32

N11 + 32 43..10 N48

N11

K10

13

Self organisation - node failures

Chord maintains successor lists to cope with node
failures

node leaving could be viewed as a failure
if nodes leaves voluntarily, it may notify its successor and predecessor, allowing them
to gracefully update their tables
otherwise, Chord can on demand use the successor lists to rebuild the information

14

Results–Path Length/#Nodes

15

Summary

Decentralised lookup of nodes responsible for
storing keys

based on distributed, consistent hashing
performance and space in O(log N) for stable networks
simple; provable performance and correctness
too simple; does not consider locality or strength of peers
• though they do outline a solution using nearest (in IP space) nodes for finger

tables rather than exact matches (in ID space)

16

Overview

Chord
Pastry
Kademlia
Conclusions

17

Pastry

Aim: Effective, distributed object location and routing
substrate for P2P networks

Effective: O(log N) routing hops
Distributed: no servers, routing and location distributed to nodes, only limited
knowledge at nodes(routing tables size O(log N))
Substrate: not an application itself, rather it provides Application Program Interface
(API) to be used by applications. Runs on all nodes joined in a Pastry network
Each node has a unique identifier (nodeId) (128 bits)

18

Pastry API
nodeId = pastryInit(Credentials,
Application) make the local
node join/create a Pastry
network. Credentials are
used for authorisation. A
callback object is passed
through Application

route(msg, key) routes a
message to the live node
with nodeId numerically
closest to the key (at the
time of delivery)

Application interface to
be implemented by
applications using Pastry

deliver(msg, key) called on the
application at the destination node for
the given id

forward(msg, key, nextId) invoked
on applications when the underlying
node is about to forward the given
message to the node with nodeId =
nextId.

19

Node Identifiers

Each node is assigned a 128 bit nodeId
nodeIds are assumed to be uniformly distributed in the 128 bit ID space ⇒

numerically close nodeIds belong to diverse nodes
nodeId = cryptographic hash of node's IP address

20

Assumptions and Guarantees

Pastry can route to numerically closest node in
log2b N steps (b is a configuration parameter)

Unless |L|/2 (|L| being a configuration parameter)
adjacent nodeIds fail concurrently, eventual
delivery is guaranteed

such failure is very unlikely

Join, leave in O(log N)

Maintains locality based on application-defined
scalar proximity metric

21

Routing table

b = 2; L = 8; M = 8
22

Pastry routing
The node first checks if the key falls within the range
of its leaf set. If yes, forward the message to the
destination node.

If not, use routing table to forward the message to a
node that shares a common prefix with the key by at
least one digit.

In some rare cases, the appropriate entry is empty or
unreachable, then the message will be forwarded to
a known node

that has a common prefix with the key at least as good as the local node (and is
numerically closer)

23

Routing in Pastry
2

128
-1 | 0

10233102

31203203

31300210

31321132

31323102

route(msg, 31323102)

24

(Expected) Performance

1. Either: Destination one hop away

2. Or: The set of possible nodes with a longer prefix
match is reduced by 2b (i.e., one digit)

3. Or: Only one extra routing step is needed (with high
probability)

given accurate routing tables, the probability for 3) is the probability that a node with
the given prefix does not exist and that the key is not covered by the leaf set

25

(Expected) Performance

Thus, expected performance is O(log N)
The worst case routing step may be linear to N. (when many nodes fail
simultaneously)

Eventual message delivery is guaranteed unless |L|/2
nodes with consecutive nodeIds fail simultaneously

highly unlikely, as leafset nodes are widely distributed due to uniform hashing

26

Self organisation – node arrival

New node, X, needs to know existing, nearby
node, A, (can be achieved using, e.g., multicast
on local network)

X asks A to route a “join” message with key equal
to X

Pastry routes this message to node Z with
nodeId numerically closest to X

All nodes en-route to Z returns their state to X

27

Self organisation – node arrival
X updates its state based
on returned state:

neighbourhood set = neighbourhood set of A

leaf set is based on leaf set of Z (since Z has
nodeId closest to nodeId of X)

rows of routing table are initialised based on
rows of routing tables of nodes visited en-route
to Z (since these share increasing common
prefixes with X)

X calibrates routing table
and neighbourhood set
based on data from the
nodes referenced therein

X sends its state to all the
nodes mentioned in its
leaf set, routing table,
and neighbour list

O(log2bN) messages
exchanged

28

Locality

Routing performance is based on small number of
routing hops – and “good” locality of routing with
respect to underlying network

Pastry relies on a scalar proximity metric (e.g., number of IP routing hops,
geographical distance, or available bandwidth)

Applications are responsible for providing proximity
metrics

Pastry assumes the triangle inequality holds

Join protocol maintains locality invariant

29

Locality – Upon node arrival

Assume the system holds locality property before
the new node arrivals

Assume A is actually near X, so the state updated
from A should also hold the locality property

The states updated from the routing path also
tend to be close to X – at least in the beginning

as we progress, there will be fewer and fewer candidate nodes to choose from

A second stage which updates node X’s routing
table with closer nodes is used to improve the
locality property

30

Locality

31

Self Organisation – Node Failure

Repair of leaf set
contact the live node with the largest index on the side of the failed node
and get leaf set from that node
returned leaf set will contain an appropriate node to insert
this works unless |L|/2 nodes with adjacent nodeIds have failed

32

Self Organisation – Node Failure

Repair of routing table
contact other node on the same row to check if this node has a replacement node (the
contacted node may have a replacement node on the same row of its routing table)
if not, contact node on next row of routing table

33

Self Organisation – Node Failure

Repair of neighbourhood set
neighbourhood set is normally not used in routing ⇒ contact periodically to check for

liveness
if a neighbour is not responding, check with live neighbours for other close nodes

34

Fault tolerance and malicious peers?

Choose randomly between nodes satisfying the
criteria of the routing protocol

A message can be forwarded to a node with longer
common prefix or same common prefix but
numerically closer

randomly select a node from the nodes that satisfy the criterion described above
thus the routing is not deterministic, and it is possible to avoid bad nodes

35

Routing Performance

36

Routing Distribution

37

Routing Distance compared to Optimal
Routing

38

Summary
Pastry is a P2P content location and routing
substrate

structured overlay network
usable for building various P2P application

Applications built on top of Pastry
SCRIBE: group communication/event notification
PAST: archival storage
SQUIRREL: co-operative Web caching

Space and time requirements (expected) in O(log
N), N = number of nodes in network

Takes locality into account
39

Overview

Chord
Pastry
Kademlia
Conclusions

40

Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric

Distributed Hash Table
NodeIDs and keys based on SHA-1 (160 bits)

Routing done by halving the ID-space distance in each
routing step

Similar to Pastry's routing table routing (prior to leaf node)

Routing done in O(log N), space used O(log N)

41

Critique of other systems
Chord

Finger tables only forward looking

I.e., messages arriving at a peer tell it
nothing useful – knowledge must be
gained explicitly

Separate track of control message
exchanges

Rigid routing structure

Locality difficult to establish 

Pastry
Complex routing algorithm

First routing table, then leaf set

Maintains three different tables: leaf,
routing and neighbour

42

Aspects of Kademlia

All IDs are 160 bits long, found with SHA-1
i.e., uniform distribution, etc

To navigate this key space, Kademlia uses XOR
d(X, Y) = X XOR Y; d(X, Y) = d(Y, X)
intuition: higher order difference = longer distance

A Kademlia routing table stores 160 k-buckets
the ith k-bucket contains nodes within a XOR distance of 2i to 2i+1 from itself (so the
ith bit is significant)
up to k nodes in each bucket, ordered by liveness (most recently seen at tail)

• thus, once again, more complete knowledge of ‘close’ peers, but still knowledge
about the rest of the world

43

Kademlia routing table

Peer 0011 (•) must know some peers in the
highlighted groups — all different prefixes to itself

44

Kademlia routing table

45

Kademlia routing table

46

Locating a destination

Given a destination, use the (XOR) distance from
ourselves to find the matching k-bucket

Contact nodes in that k-bucket to get even closer
nodes

if there are not enough nodes in the bucket, use the nearest

Repeat until the k closest nodes have been found

47

Routing in Kademlia

Reaching 1110 from 0011. 0011 knows initially 101
48

Operations in Kademlia

PING
STORE
FIND_NODE
FIND_VALUE

49

FIND_NODE
FIND_NODEn(id)

returns the k closest nodes to an ID that n knows

Iterative process:
n0 = origin

N1 = FIND_NODEn0(ID)

N2 = FIND_NODEn1(ID)

…

Nm = FIND_NODEnm-1(ID)

The node can choose any peer among the returned k
nodes for the next step

Lookup terminates when k closest nodes have
responded

50

FIND_VALUE

FIND_VALUEn(key)
works like FIND_NODE, unless n knows the value in which case the value is
returned
if one of the k closest nodes does not have the value, the requester will store it there

51

Maintaining routing tables

Upon communication with another node
Check the appropriate k-bucket
• if already there, move to tail
• if there is room, insert at tail
• if unknown, and least recently seen node is unresponsive, replace with new node

(and move to tail)
• else: ignore node

Thus, the routing tables are populated, and old, active nodes are given preferential
treatment
Implementation optimization: keep new peers in cache replacement list; replace only
member of k-bucket if unresponsive during normal operations

52

Maintaining routing tables

Why prefer old nodes?
Studies show that the longer a peer stays online, the higher the probability is that it
will remain online
Makes it difficult to flood the network with bogus peers

As SHA-1 is uniform, a Kademlia node will receive
messages from nodes with IDs uniformly distributed
across the key space

Thus, all traffic is valuable and increase knowledge

53

Parallelism in Kademlia

At each step in the lookup process, FIND_NODE/
FIND_VALUE queries α nodes in parallel

The node can then choose the quickest peer and
move on

Ensures locality and takes advantages of the strongest
peers

The system does not have to wait until a node times
out as with other systems

54

Redundancy in Kademlia

Each (key, value) pair is republished every hour and
stored at k locations close to the key

(key, value) expires after 24 hours, so old data is
flushed

But, original publisher republishes (key, value) every
24 hour, so valuable information is maintained

Whenever a peer A observes a new peer B with ID
closer to some of A's keys, A will replicate these keys
to B

55

Joining the network

Compute an ID

(Somehow) locate a peer in the network

Add that peer to the appropriate k-bucket

Find neighbours by doing FIND_NODE on own ID

Populate the other k-buckets by performing
FIND_NODE
This process (due to the reflected nature of Kademlia)
ensures that the new peer is known across the
network

56

Failure in Kademlia

Unlikely: Routing tables are continually refreshed due
to ordinary traffic

As SHA-1 is uniform, the k-buckets will be evenly
updated

If there is no traffic, a peer will regularly explicitly
refresh oldest k-bucket

Parallelism in queries ensures that a failing peer is
detected
routed around

57

Use of Kademlia

Kademlia is fairly widespread for file sharing purposes
eDonkey2000, Overnet, eXeem, Kad
a number of BitTorrent clients use Kademlia to locate peers if the original tracker fails

Files are stored using a hash of their contents

File names
are divided into keywords

the network stores (SHA-1(keyword), (file name, file hash)) for each keyword

58

Summary

Built on the experiences from earlier structured
networks

Ensures high performance through parallelism

All traffic contributes to routing table upkeep

In widest use of all structured networks

59

Overview

Chord
Pastry
Kademlia
Conclusions

60

Structured P2P: A Summary

“First generation”
Largely application-specific

Few guarantees – worst case
O(N)

Well suited for “fuzzy” searches

No particular overhead

“Second generation”
Based on structured network overlays

Typically expected O(log N) time and space
requirements

• ...at the cost of overhead for maintaining
network

Usually, no “fuzzy” searches – this is exact
matches only

• …but sometimes exact is good enough
…unless we create an appropriate ID space for
keyword matching!

61

Conclusions

Scalability
Much more scalable than unstructured P2P networks measured in number of hops for
routing
However, churn results in control traffic; slow peers can slowdown entire system
(especially in Chord); weak peers may be overwhelmed by control traffic

Fairness
The load is evenly distributed across the network, based on the uniformness of the ID
space
More powerful peers can choose to host several virtual peers

62

Conclusions

Integrity and security
Most systems have various provisions for maintaining proper routing and defending
against malicious peers
A backhoe is unlikely to take out a major part of the system – at least if we store at k
closest nodes

Anonymity, deniability, censorship resistance
If we have the key, it is trivial to locate the matching hosts

63

Milestones!

To be presented in Week 37
Kademlia: Implement FIND_NODE and PING

To be presented in Week 38
IoT: Hook up sensors, create web interface to read sensors and set actuators (LEDs)

To be presented in Week 39
Kademlia: Implement STORE and FIND_VALUE

To be presented in Week 40
IoT/Kademlia: Store IoT generated data in Kademlia. Ensure resilient data collection
and storage. Provide interface to inspect collected data

64

Milestone 1

You must implement basic Kademlia. Peers should be able to join and leave in an
orderly manner. Implement PING and FIND_NODE, so k-buckets can be populated
Requirements: All communication between peers should be RESTful. The individual
peer should to a Web browser present a simple page, where the peer’s state (such as id
and buckets (the latter ideally presented as links to the respective peers)) can be
inspected, and where actions, such as searching for an id, can be performed
You must document your REST API
You may assume that one Kademlia peer is initially known and available for
bootstrapping purposes
Bonus: Make your system more robust against churn by periodic PINGs

65

