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Distributed Hash Tables

DHTs are designed to be infrastructure for other 
applications 

General concept 
Assign peers IDs evenly across an ID space (e.g., [0, 2n-1]) 
Assign resources IDs in the same ID space, and associate resources with the closest (in 
ID space) peer 
Distance = distance in ID space 
Peers have  broad knowledge of the network, and deep knowledge about their 
neighbourhood 
Arrange peers in a network that they easily (iteratively or recursively) can be found 
Searching for a resource and searching for a peer become the same 
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Distributed Hash Tables

Challenges 
Routing information must be distributed – no central index 
How is the routing information created and maintained? 
How are peers inserted into the network? How do they leave? How are resources 
added? 
Resources are stored at their closest peer 
• resources should be relatively small...
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Kademlia 
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Chord

One operation: 
IP address = lookup(key): Given a key, find node responsible for that key 

Goals 
load balancing, decentralisation, scalability, availability, flexible naming 
performance and space usage: 
• lookup in O(log N) 
• each node needs information about O(log N) other nodes
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Use of Hashing in Chord

Keys are assigned to nodes with hashing 
good hash function balances load 

Nodes and keys are assigned m-bit identifiers 
using SHA-1 on nodes’ IP addresses and on keys 
m should be big enough to make collisions improbable 

“Ring-based” assignment of keys to nodes 
identifiers are ordered on an identifier circle modulo 2m 
a key k is assigned to the first node n where IDn ≥ IDk: n = successor(k)
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Hash function?

“A hash function is any function that can be used to map 
data of arbitrary size to data of fixed size” 

e.g., from some data to a number belonging to some range 
good hash functions generate a uniform distribution of numbers across its range 

Cryptographic hashes (such as SHA-1, SHA-256, etc) 
are excellent hash functions where it is very hard to 
guess the data that led to a specific hash value 

even tiny changes in data leads to dramatically different hash values 
the range is usually very large, e.g. SHA-1 is [0, 2160=1,46⨉1048] 
(note that these days SHA-1 is no longer considered safe, so use SHA-256 instead)
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A ring consisting of 10 nodes storing 5 keys
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Key Allocation in Chord

Designed to let nodes enter 
and leave network easily 

Node n leaves: all of n's assigned keys are 
assigned to successor(n) 
Node n joins: keys k ≤ n assigned to 
successor(n) are assigned to n 
Example: N26 joins ⇒ K24 becomes 

assigned to N26 

Each physical node may run 
a number of virtual nodes, 
each with its own identifier 
to balance the load
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Simple (Linear) Key Location

Simple key location can be 
implemented in time O(N) 
and space O(1) 

Example: Node 8 performs 
a lookup for Key 54
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K54

lookup(K54)

#ask node n to find the successor of id
n.find_successor(id)

if n < id ≤ successor
return successor

else
#forward query around circle
return successor.find_successor(id)

10



Scalable Key Location
N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

Finger table
N8 +  1   9.. 9  N14

N8 +  2  10..11  N14

N8 +  4  12..15  N14

N8 +  8  16..23  N21

N8 + 16  24..39  N32

N8 + 32  40.. 7  N42

+1

+2

+4

+8

+16+32

Uses finger tables 
n.finger[i] = find_successor(n + 2i-1), 1 ≤ i ≤ m
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Scalable Key Location
N1

N8

N14

N21

N32

N38

N42

N48

N51

N56

K54

lookup(K54)

Finger table
N42 +  1  43..43  N48

N42 +  2  44..45  N48

N42 +  4  46..49  N48

N42 +  8  50..57  N51

N42 + 16  58.. 9  N1

N42 + 32  10..41  N14

Finger table
N51 +  1  52..52  N56

N51 +  2  53..54  N56

N51 +  4  55..58  N56

N51 +  8  59.. 2  N1

N51 + 16   3..18  N8

N51 + 32  19..50  N21

Finger table
N8 +  1   9.. 9  N14

N8 +  2  10..11  N14

N8 +  4  12..15  N14

N8 +  8  16..23  N21

N8 + 16  24..39  N32

N8 + 32  40.. 7  N42

If successor not found, search finger table to find n’ whose ID most 
immediately precedes id 

This node will know the most about n’ of all nodes in the finger 
table

n.find_successor(id):
if n < id ≤ successor

return successor
else

n’ = closest_preceding_node(id)
return n’.find_successor(id)

n.closest_preceding_node(id):
for i = m downto 1

if n < finger[i] < id
return finger[i]

return n
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Self organisation - new node arrival
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Self organisation - node failures

Chord maintains successor lists to cope with node 
failures 

node leaving could be viewed as a failure 
if nodes leaves voluntarily, it may notify its successor and predecessor, allowing them 
to gracefully update their tables 
otherwise, Chord can on demand use the successor lists to rebuild the information
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Results–Path Length/#Nodes
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Summary

Decentralised lookup of nodes responsible for 
storing keys 

based on distributed, consistent hashing 
performance and space in O(log N) for stable networks 
simple; provable performance and correctness 
too simple; does not consider locality or strength of peers 
• though they do outline a solution using nearest (in IP space) nodes for finger 

tables rather than exact matches (in ID space)

16



Overview

Chord 
Pastry 
Kademlia 
Conclusions

17



Pastry

Aim: Effective, distributed object location and routing 
substrate for P2P networks 

Effective: O(log N) routing hops 
Distributed: no servers, routing and location distributed to nodes, only limited 
knowledge at nodes(routing tables size O(log N))  
Substrate: not an application itself, rather it provides Application Program Interface 
(API) to be used by applications. Runs on all nodes joined in a Pastry network 
Each node has a unique identifier (nodeId) (128 bits)
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Pastry API
nodeId = pastryInit(Credentials, 
Application) make the local 
node join/create a Pastry 
network. Credentials are 
used for authorisation. A 
callback object is passed 
through Application 

route(msg, key) routes a 
message to the live node 
with nodeId numerically 
closest to the key (at the 
time of delivery) 

Application interface to 
be implemented by 
applications using Pastry 

deliver(msg, key) called on the 
application at the destination node for 
the given id 

forward(msg, key, nextId) invoked 
on applications when the underlying 
node is about to forward the given 
message to the node with nodeId = 
nextId.
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Node Identifiers

Each node is assigned a 128 bit nodeId 
nodeIds are assumed to be uniformly distributed in the 128 bit ID space ⇒ 

numerically close nodeIds belong to diverse nodes 
nodeId = cryptographic hash of node's IP address
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Assumptions and Guarantees

Pastry can route to numerically closest node in 
log2b N steps (b is a configuration parameter) 

Unless |L|/2 (|L| being a configuration parameter) 
adjacent nodeIds fail concurrently, eventual 
delivery is guaranteed 

such failure is very unlikely 

Join, leave in O(log N) 

Maintains locality based on application-defined 
scalar proximity metric
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Routing table

b = 2; L = 8; M = 8
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Pastry routing
The node first checks if the key falls within the range 
of its leaf set. If yes, forward the message to the 
destination node. 

If not, use routing table to forward the message to a 
node that shares a common prefix with the key by at 
least one digit. 

In some rare cases, the appropriate entry is empty or 
unreachable, then the message will be forwarded to 
a known node 

that has a common prefix with the key at least as good as the local node (and is 
numerically closer)
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Routing in Pastry
2

128
-1 | 0

10233102

31203203

31300210

31321132

31323102

route(msg, 31323102)
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(Expected) Performance

1. Either: Destination one hop away 

2. Or: The set of possible nodes with a longer prefix 
match is reduced by 2b (i.e., one digit) 

3. Or: Only one extra routing step is needed (with high 
probability) 

given accurate routing tables, the probability for 3) is the probability that a node with 
the given prefix does not exist and that the key is not covered by the leaf set
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(Expected) Performance

Thus, expected performance is O(log N) 
The worst case routing step may be linear to N. (when many nodes fail 
simultaneously) 

Eventual message delivery is guaranteed unless |L|/2 
nodes with consecutive nodeIds fail simultaneously 

highly unlikely, as leafset nodes are widely distributed due to uniform hashing
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Self organisation – node arrival

New node, X, needs to know existing, nearby 
node, A, (can be achieved using, e.g., multicast 
on local network) 

X asks A to route a “join” message with key equal 
to X 

Pastry routes this message to node Z with 
nodeId numerically closest to X 

All nodes en-route to Z returns their state to X
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Self organisation – node arrival
X updates its state based 
on returned state: 

neighbourhood set = neighbourhood set of A 

leaf set is based on leaf set of Z (since Z has 
nodeId closest to nodeId of X) 

rows of routing table are initialised based on 
rows of routing tables of nodes visited en-route 
to Z (since these share increasing common 
prefixes with X) 

X calibrates routing table 
and neighbourhood set 
based on data from the 
nodes referenced therein 

X sends its state to all the 
nodes mentioned in its 
leaf set, routing table, 
and neighbour list 

O(log2bN) messages 
exchanged
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Locality

Routing performance is based on small number of 
routing hops – and “good” locality of routing with 
respect to underlying network 

Pastry relies on a scalar proximity metric (e.g., number of IP routing hops, 
geographical distance, or available bandwidth) 

Applications are responsible for providing proximity 
metrics 

Pastry assumes the triangle inequality holds 

Join protocol maintains locality invariant
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Locality – Upon node arrival

Assume the system holds locality property before 
the new node arrivals 

Assume A is actually near X, so the state updated 
from A should also hold the locality property 

The states updated from the routing path also 
tend to be close to X – at least in the beginning 

as we progress, there will be fewer and fewer candidate nodes to choose from 

A second stage which updates node X’s routing 
table with closer nodes is used to improve the 
locality property
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Locality
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Self Organisation – Node Failure

Repair of leaf set 
contact the live node with the largest index on the side of the failed node 
and get leaf set from that node 
returned leaf set will contain an appropriate node to insert 
this works unless |L|/2 nodes with adjacent nodeIds have failed
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Self Organisation – Node Failure

Repair of routing table 
contact other node on the same row to check if this node has a replacement node (the 
contacted node may have a replacement node on the same row of its routing table) 
if not, contact node on next row of routing table
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Self Organisation – Node Failure

Repair of neighbourhood set 
neighbourhood set is normally not used in routing ⇒ contact periodically to check for 

liveness 
if a neighbour is not responding, check with live neighbours for other close nodes
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Fault tolerance and malicious peers?

Choose randomly between nodes satisfying the 
criteria of the routing protocol 

A message can be forwarded to a node with longer 
common prefix or same common prefix but 
numerically closer 

randomly select a node from the nodes that satisfy the criterion described above 
thus the routing is not deterministic, and it is possible to avoid bad nodes
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Routing Performance
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Routing Distribution
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Routing Distance compared to Optimal 
Routing
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Summary
Pastry is a P2P content location and routing 
substrate 

structured overlay network 
usable for building various P2P application 

Applications built on top of Pastry 
SCRIBE: group communication/event notification 
PAST: archival storage 
SQUIRREL: co-operative Web caching 

Space and time requirements (expected) in O(log 
N), N = number of nodes in network 

Takes locality into account
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Kademlia: A Peer-to-Peer Information 
System Based on the XOR Metric

Distributed Hash Table 
NodeIDs and keys based on SHA-1 (160 bits) 

Routing done by halving the ID-space distance in each 
routing step 

Similar to Pastry's routing table routing (prior to leaf node) 

Routing done in O(log N), space used O(log N)
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Critique of other systems
Chord 

Finger tables only forward looking 

I.e., messages arriving at a peer tell it 
nothing useful – knowledge must be 
gained explicitly 

Separate track of control message 
exchanges 

Rigid routing structure 

Locality difficult to establish 

Pastry 
Complex routing algorithm 

First routing table,  then leaf set 

Maintains three different tables: leaf, 
routing and neighbour
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Aspects of Kademlia

All IDs are 160 bits long, found with SHA-1 
i.e., uniform distribution, etc 

To navigate this key space, Kademlia uses XOR 
d(X, Y) = X XOR Y; d(X, Y) = d(Y, X) 
intuition: higher order difference = longer distance 

A Kademlia routing table stores 160 k-buckets 
the ith  k-bucket contains nodes within a XOR distance of 2i to 2i+1 from itself (so the 
ith bit is significant) 
up to k nodes in each bucket, ordered by liveness (most recently seen at tail) 

• thus, once again, more complete knowledge of ‘close’ peers, but still knowledge 
about the rest of the world
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Kademlia routing table

Peer 0011 (•) must know some peers in the 
highlighted groups — all different prefixes to itself
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Kademlia routing table

45



Kademlia routing table

46



Locating a destination

Given a destination, use the (XOR) distance from 
ourselves to find the matching k-bucket 

Contact nodes in that k-bucket to get even closer 
nodes 

if there are not enough nodes in the bucket, use the nearest 

Repeat until the k closest nodes have been found
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Routing in Kademlia

Reaching 1110 from 0011. 0011 knows initially 101
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Operations in Kademlia

PING
STORE
FIND_NODE
FIND_VALUE
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FIND_NODE
FIND_NODEn(id) 

returns the k closest nodes to an ID that n knows 

Iterative process: 
n0 = origin 

N1 = FIND_NODEn0(ID) 

N2 = FIND_NODEn1(ID) 

…  

Nm = FIND_NODEnm-1(ID) 

The node can choose any peer among the returned k 
nodes for the next step 

Lookup terminates when k closest nodes have 
responded
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FIND_VALUE

FIND_VALUEn(key) 
works like FIND_NODE, unless n knows the value in which case the value is 
returned 
if one of the k closest nodes does not have the value, the requester will store it there
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Maintaining routing tables

Upon communication with another node 
Check the appropriate k-bucket 
• if already there, move to tail 
• if there is room, insert at tail 
• if unknown, and least recently seen node is unresponsive, replace with new node 

(and move to tail) 
• else: ignore node 

Thus, the routing tables are populated, and old, active nodes are given preferential 
treatment 
Implementation optimization: keep new peers in cache replacement list; replace only 
member of k-bucket if unresponsive during normal operations
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Maintaining routing tables

Why prefer old nodes? 
Studies show that the longer a peer stays online, the higher the probability is that it 
will remain online 
Makes it difficult to flood the network with bogus peers 

As SHA-1 is uniform, a Kademlia node will receive 
messages from nodes with IDs uniformly distributed 
across the key space 

Thus, all traffic is valuable and increase knowledge
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Parallelism in Kademlia

At each step in the lookup process, FIND_NODE/
FIND_VALUE queries α nodes in parallel 

The node can then choose the quickest peer and 
move on 

Ensures locality and takes advantages of the strongest 
peers 

The system does not have to wait until a node times 
out as with other systems
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Redundancy in Kademlia

Each (key, value) pair is republished every hour and 
stored at k locations close to the key 

(key, value) expires after 24 hours, so old data is 
flushed 

But, original publisher republishes (key, value) every 
24 hour, so valuable information is maintained 

Whenever a peer A observes a new peer B with ID 
closer to some of A's keys, A will replicate these keys 
to B
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Joining the network

Compute an ID 

(Somehow) locate a peer in the network 

Add that peer to the appropriate k-bucket 

Find neighbours by doing FIND_NODE on own ID 

Populate the other k-buckets by performing 
FIND_NODE 
This process (due to the reflected nature of Kademlia) 
ensures that the new peer is known across the 
network

56



Failure in Kademlia

Unlikely: Routing tables are continually refreshed due 
to ordinary traffic 

As SHA-1 is uniform, the k-buckets will be evenly 
updated 

If there is no traffic, a peer will regularly explicitly 
refresh oldest k-bucket 

Parallelism in queries ensures that a failing peer is 
detected 
routed around
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Use of Kademlia

Kademlia is fairly widespread for file sharing purposes 
eDonkey2000, Overnet, eXeem, Kad 
a number of BitTorrent clients use Kademlia to locate peers if the original tracker fails 

Files are stored using a hash of their contents 

File names 
are divided into keywords 

the network stores (SHA-1(keyword), (file name, file hash)) for each keyword

58



Summary

Built on the experiences from earlier structured 
networks 

Ensures high performance through parallelism 

All traffic contributes to routing table upkeep 

In widest use of all structured networks
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Structured P2P: A Summary

“First generation” 
Largely application-specific 

Few guarantees – worst case   
O(N) 

Well suited for “fuzzy” searches 

No particular overhead 

“Second generation” 
Based on structured network overlays 

Typically expected O(log N) time and space 
requirements 

• ...at the cost of overhead for maintaining 
network 

Usually, no “fuzzy” searches – this is exact 
matches only 

• …but sometimes exact is good enough 
…unless we create an appropriate ID space for 
keyword matching!
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Conclusions

Scalability 
Much more scalable than unstructured P2P networks measured in number of hops for 
routing 
However, churn results in control traffic; slow peers can slowdown entire system 
(especially in Chord); weak peers may be overwhelmed by control traffic 

Fairness 
The load is evenly distributed across the network, based on the uniformness of the ID 
space 
More powerful peers can choose to host several virtual peers
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Conclusions

Integrity and security 
Most systems have various provisions for maintaining proper routing and defending 
against malicious peers 
A backhoe is unlikely to take out a major part of the system – at least if we store at k 
closest nodes 

Anonymity, deniability, censorship resistance 
If we have the key, it is trivial to locate the matching hosts
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Milestones!

To be presented in Week 37 
Kademlia: Implement FIND_NODE and PING 

To be presented in Week 38 
IoT: Hook up sensors, create web interface to read sensors and set actuators (LEDs) 

To be presented in Week 39 
Kademlia: Implement STORE and FIND_VALUE 

To be presented in Week 40 
IoT/Kademlia: Store IoT generated data in Kademlia. Ensure resilient data collection 
and storage. Provide interface to inspect collected data
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Milestone 1

You must implement basic Kademlia. Peers should be able to join and leave in an 
orderly manner. Implement PING and FIND_NODE, so k-buckets can be populated 
Requirements: All communication between peers should be RESTful. The individual 
peer should to a Web browser present a simple page, where the peer’s state (such as id 
and buckets (the latter ideally presented as links to the respective peers)) can be 
inspected, and where actions, such as searching for an id, can be performed 
You must document your REST API 
You may assume that one Kademlia peer is initially known and available for 
bootstrapping purposes 
Bonus: Make your system more robust against churn by periodic PINGs
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