Security for the **WoT**

Niels Olof Bouvin

Overview

- The state of IoT security
- Securing and sharing the Web of Things

The Internet of Things

Myriad interconnected devices, reporting and controlling

- many different suppliers
- many different architectures and systems
- many different use situations ranging from trivial to absolutely crucial
- many different actors and agendas
- What could *possibly* go wrong?
- Very early days, yet things are not well

http://www.insecam.org/en/bycountry/DK/

Most popular Manufacturers - Countries - Places - Cities Timezones New online cameras FAQ Contacts E - Google Custom Search

IP cameras: Denmark

« 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... 18 »

Maybe, just maybe, you should set a password?

Watch Vivotek camera in Denmark, Tranbjerg

Watch Vivotek camera in Denmark, Silkeborg

Watch PanasonicHD camera in Denmark,Taastrup

Watch Foscam camera in Denmark, Ballerup

Watch Vivotek camera in Denmark,Skanderborg

Types of attacks

Denial of Service

- removing ability to use a device or a service
- annoying, if I can't use my IoT toaster; catastrophic, if national power grid is down

Surveillance

• by the state, by commercial interests, by criminals

Intrusion

• a root kit on a smart device inside an installation could potentially compromise all devices within network reach

Fear the IoT_Reaper

- A new Botnet is attacking surveillance cameras, home routers, NAS boxes, etc, *right now*
 - devices from D-Link, TP-Link, Avtech, Netgear, MikroTik, Linksys, Synology, and others
- Current estimates put the number of infected machines around 1-2 mill.
- It is still growing and it has not yet been used for anything

How did we get here?

Many IoT devices have very poor security

- unencrypted traffic
- firmware not being patched—either by the manufactor or the owner
- best security practices not followed

• They are in homes and companies—*inside* the firewall

- and can thus act as trojan horses or vectors for attacks
- as well as surveillance and industrial espionage
- (this is why *all* communication inside and outside your network should be encrypted)

• This is not bad. This is really, *really* bad

Network level security

Challenge: Heterogeneity

- strong cryptography may be straightforward to implement on ordinary computers, but what about much more constrained devices?
- public key infrastructure may be difficult to handle in a large IoT setting
- gateways can handle part of the burden

Centralistic solution simplest, but also a single of point of failure

• competent actors will act responsible, but that still leaves the rest...

Privacy

A user's data should belong to the user

• unless this can be ensured, the IoT can become the perfect surveillance infrastructure

Centralistic solutions easier to exploit

- how can the user ensure proper treatment of collected data?
- Distributed solutions keep data closer to the user (and their control)
 - but leaves more points to attack

Identity

- IoT objects must have identities that can be found and authenticated by other services
 - identities can be fixed (5794–118), or fluid (lecture hall for P2P/IoT course)
 - identities can be revealed or hidden (behind authenticated third parties)
- Typical much easier to implement in a centralised system—many challenges remain in a distributed system with ad-hoc connections

Trust

• How can trust be built?

One thing is the negotiation between devices

• based on authentication, negotiation, and observation

Another is the trust of users in the IoT

- transparency
- control

Fault tolerance

• Things will go wrong

The system must cope

- identify errors and failing sensors
- choose alternative sensors or services

Sometimes systems will come under attack

- identify compromised systems
- route around damage

Summary

- Security and privacy are major requirements for a successful IoT
- So far, there have been plenty of examples of early IoT systems susceptible to attacks
- Clearly, this will have to change
- Industry standards and/or government regulations
- Who owns the data?
 - the generator of the data?
 - the provider of the service?

Overview

- The state of IoT security
- Securing and sharing the Web of Things

The elements of a secure Thing

- Encrypted communications
- Authenticated servers
- Authenticated clients
- Secure access control
- Secure software updates

Encrypted communications

- The basic requirement
- Provided that keys are exchanged securely, this should ensure no eavesdropping
- Asymmetric and symmetric encryption combined

Authenticated server

- We need to know the Thing is the *actual* Thing
 - HTTPS and TLS to the rescue
- Keys can be generated locally, and HTTPS support is in Node.js
- <u>https://letsencrypt.org/</u> provides free
 certificates

Authenticated client/user

Some IoT devices may not need user authentication

• weather stations, public sensors, ...

Others certainly require it

• cameras, anything with an actuator, anything privacy sensitive

Letting users in

• Simplest approach: create user profiles with

- user names
- passwords
- privileges
- etc
- Require authentication over secure connection before access is granted
- Access, once granted, handled through a token
 - generated by the server
 - exchanged in headers between client and server

OAuth

- Rather than having users remember yet another password (and having to store that securely), let users connect using preexisting identities
- The user authenticates themselves to a known service, and that service then authorises access to their API for that user from your server
- Not a perfect system—users have been fooled by phishing attacks with sites purporting to be, e.g., Google Docs requesting authorisation
 - though this is no different than ordinary phishing attacks

Roles in OAuth

The application

• the application needs access to some part of the user's account for, e.g., identity

• The resource server

• provides the API for accessing the user's account

The authorisation server

• handles the interaction with the user granting/denying access (i.e., login to Twitter)

The resource owner

• the user, who is granting/denying access to part of their account at the resource server

Requisites

- The application must be registered with the authorisation server, which provides
 - client id (this can be public information)
 - client secret (this cannot)

The application must provide an redirection URL

• which must be secure, e.g., HTTPS

- The interaction between a user, an application, and Facebook authorisation & content servers
- Tokens exchanged through redirects
- Given the access token, the application can access the Facebook API

The Social Web of Things

- Using OAuth helps with authorisation and identities of users
- Having each and every Thing maintain lists of users is a bit cumbersome though...
- An Authentication Proxy could handle this interaction
 - registering all the Things
 - handling access to the authorisation servers through OAuth
- One Authentication Proxy for, e.g., a building, a company, or a home

SWoT flow

 Using the token generated, the user can then access the protected resources

• in *Fahrenheit?*

User identity is not enough

- User roles must also be defined, also known as Access Control Lists
- Some users can be administrators, others cannot or should not

So... what if there is a bug?

- Software contains bugs, and so will IoT devices
- Providing a secure mechanism to push software updates out to devices becomes crucial
 - if the software is not updated, security holes may not be patched, and new features cannot be added
 - if the update mechanism is compromised, the device can be loaded with malware by criminals
 - one solution is an App Store with automatic downloads

• <u>resin.io</u> provides such a service

- based on git, node.js and/or Docker
- and it's free, if you have no more than 10 devices

Security is tricky

• Security is not an end goal—it is a process

- all software contains bugs, including security software, so we must adapt over time
- the web stack is the most used in the world, so its security will receive much scrutiny
- Many IoT devices provide terrible security, which puts only the devices and their users at risk, but the entire Internet, if these devices are weaponised into botnets
- Therefore: do better, be careful, follow best practices