
P2P Streaming
Niels Olof Bouvin

1



Sharing the cost of streaming

Multicasting or streaming is data-intensive, timing-
critical, and sensitive to data loss 

Centralised or Cloud solutions are expensive, 
bandwidth- and storage-wise 

though a fascinating study—Netflix’ blog is highly recommended 

Could the burden be shared among the users without 
affecting the quality?

2



Characteristics & Terms

Time 
live vs. stored video 

Topology 
single tree 

multiple trees 

mesh 

combinations hereof 

Interior node 
a node that also forwards data 

Leaf node 
a node than only receives 

Push 
data forwarded as it comes in 

Pull 
data forwarded on demand

3



Overview

Tree-based 
Multi-tree-based 
Mesh-based

4



Single tree multicast

Best known example: SCRIBE 
based on Pastry 
the foundation of SplitStream (more about that later) 

Fairly rare for streaming purposes, as 
leaf nodes contribute nothing, yet consume a stream 
interior nodes leaving requires costly rebalancing of tree, which results in missed or 
delayed data delivery 

(Re)join is either done at the root, or through a walk 
towards the root (e.g., with a list of (grand)parents) 

periodically, the tree will need to be rebalanced for better performance 
ideally, you would have stronger, more stable peers high in the tree

5



Overview

Tree-based 
Multi-tree-based 
Mesh-based

6



Multiple trees

Concept: 
divide the data stream into n sub streams, usually encoded with redundancy in mind 
create n disjoint trees (one per sub stream) with all nodes 
every node is an internal node in one tree, and a leaf node in the others 

All nodes contribute (serve as internal nodes) 

All nodes receive the n sub streams 
or a sufficient number of sub streams to reconstruct the streamed media 

The disruption of a node leaving will affect at most 
one sub stream (the one where it is an internal node) 

and if the sub streams are encoded using some error correcting method, the missing 
data can still be recovered from the received sub streams

7



(Error correcting codes)

Encode the signal so that data loss can be recovered 

Trivial example using XOR (⊻) 
given (a piece of) of a data stream 31415926, divide it into sub blocks: 3141 5926 and 
create a ⊻ block: 3141 ⊻ 5926 = 7011. Transmit the 3 blocks along 3 sub streams 
if either of the data blocks is lost, it can be reconstructed by the remaining data block 
and the ⊻ block: 3141 ⊻ 7011 = 5926; 5926 ⊻ 7011 = 3141 
if the ⊻ block is lost, there is no data loss, and it can be recreated and transmitted 

Far fancier, more robust, and more efficient methods 
exist, such as Reed-Solomon and Fountain codes — 
see https://en.wikipedia.org/wiki/Erasure_code 

8



Challenges

Construct the n trees satisfying the requirement 

Timing becomes critical: a node must receive all n 
packets within a narrow time span for good playback 

nodes close in IP space should be close in the tree to minimise latency 

All the complexities of maintaining a single multicast 
tree × n + some extra overhead

9



SplitStream

Based on Pastry and SCRIBE 

The stream is split into stripes, encoded such that only 
a subset is sufficient for playback 

A joining peer specifies its in- and outbound capacity

10



Creating interior-node-disjoint trees

Pastry routes messages by finding longer and longer 
common shared prefixes, at least one digit per hop 

SCRIBE trees are created by a joining peer forwarding 
a ‘join’ message towards the groupID. Join is achieved, 
once a peer, either a member or a forwarder, is found 

any peer along the way is added to the multicast tree as forwarders 
thus, all interior nodes in a SCRIBE tree will share at least one common digit in their ID 

Therefore, if we create stripeIDs with different first 
digits, we ensure that nodes are interior in only one 
tree, namely the one where they have the first digit in 
common, and leaf nodes in all others

11



Memberships

All peers are members of the k stripes 
where they will be leafs in most 

If they have unused outbound capacity, they are also 
members of the spare capacity group

12



Joining a peer at capacity

If a peer attempted to join an already full peer in 
SCRIBE, the peer would be rejected and sent to one of 
the children instead, where the process would be 
repeated until the new peer found a capable peer 

this will work because every SCRIBE peer is required to accept at least one child 

In SplitStream, things are a bit more complicated, 
because a leaf peer might already be at capacity from 
being an interior node in another stripe tree 

so we cannot just “push-down” the joining peer

13



Joining a full peer in SplitStream

Which peer should be orphaned? 
If a peer joins, and there are children whose stripeID does not match the node’s own, 
orphan one of those 
if there are no peers not matching the stripeID, orphan the peer with the shortest 
prefix match 

Where do orphans go? 
the orphan sends a message to the (IP) nearest peer in the spare capacity group 
the peer searches for a child that can supply the desired stripe—if there is no such 
child, the search is sent to a parent until a match is found and joined by the orphan

14



Evaluation

Very extensive simulation tests (40.000 peers) 

…as well as live PlanetLab tests (72 peers)

15



Effect of 4 peers leaving

16



Effect of 4 peers leaving

17



CDF of packet delay

18



Summary

A sophisticated system cleverly built on top of Pastry 

The reorganisation of peers has complications, but the 
arrangement of stripes also ensures that peers will 
contribute

19



Overview

Tree-based 
Multi-tree-based 
Mesh-based

20



Mesh-based streaming

No fragile parent-child relationships 

Peers can send and receive data to/from many other 
peers 

Traffic is usually pull rather than push, as one peer 
cannot know what another peer has or has not got 

Peers share bitfields with their neighbours, and 
request data blocks that they have not yet received 

More robust than trees

21



DONet/CoolStreaming

Mesh-based system 

DONet is the architecture, CoolStreaming an 
application that saw actual deployment and use 

All DONet peers have a unique ID, and maintains a 
mCache, a partial list of other peers, maintained 
through gossiping, as well as a partner list of M active 
neighbours 

Origin node: the source node 

Deputy node: nodes connected directly to the origin 

BufferMaps: bitfields of segments owned or desired
22



Joining DONet

A new peer contacts the origin, who forwards the 
request to a randomly chosen deputy 

The deputy responds with a list of candidate peers 
from its mCache 

The peer can then contact the candidate peers and 
register itself as a partner, updating its own and its 
partners’ partner lists and mCaches in the process

23



Streaming

The streamed content is divided into segments 
1 second long in the paper 

Each peer will continuously exchange BufferMaps of 
the segments in its possession with its partners 

If some segments are desired, a BufferMap expressing 
this is created and sent to the peer holding them

24



Segment selection

Each segment has a playback deadline, and partners 
have varying bandwidth 

Given BMs from the partners, select the missing 
segments, and calculate the #partners per segment 

segments held by one partner: start downloading, if there is still time 
segments held by several partners: select the partner with highest available 
bandwidth and sufficient time to send the desired segments 
no point in trying to download what will arrive too late 

BMs matching the desired segments are sent, and the 
partner will start transferring the segments

25



Partners leaving

Graceful leave: send departure message to partners 

If a partner leaves, its neighbours will delete their 
BufferMap of that partner 

Hard leave: a neighbour will detect the failed peer, 
and gossip a departure message in its stead

26



Maintaining partner lists and mCaches

Peers periodically gossip about known peers 

New peers are added to the mCache, and may 
experimentally be added to the partner list 

Partners are periodically evaluated on the number of 
segments shared, and the lowest scoring partner is 
rejected

27



Evaluation

PlanetNet: 200 peers 

CoolStreaming: deployed with up to 4000 users

28



Overhead: static network

29



Overhead: dynamic network (4 partners)

30



Continuity: static network

31



Continuity: dynamic network (4 partners)

32



CoolStreaming: actual users

33



Summary

Far simpler than SplitStream 
this makes for more robust code—tree balancing on a live system is challenging 

Remiscent of BitTorrent—Popcorn Time is BT-based

34



P2P streaming

Is absolutely feasible 

Robustness requires encoding to handle data loss, as 
it is inevitable in a distributed system 

Streaming pre-recorded content is easier, as deep 
buffering can handle most irregularities 

with a BT approach, the trick is then creating a specialised piece selection strategy, as 
well as having the tracker select peers roughly at the same playback time

35


