
P2P Applications
Niels Olof Bouvin

1

Purpose

Demonstrate the use of P2P techniques in ‘real’
applications

Show how a well designed P2P framework can be
extended to support wildly different uses

2

Overview

YouServ
YouSearch
PAST
SCRIBE

3

YouServ

What is YouServ and how does it differ form other
personal web servers?

Central concepts within YouServ

Making content available

Accessing content

Replication

Firewall traversal

Summary

4

What is YouServ?

A (rather elegant) distributed approach to handling
multitudes of small Web servers within an
organisation

Rather than distributing files in email, data is kept
close to their originator

Transience of user machines is handled through
transparent replication and firewall tunnelling

Very modest hardware requirements (2900 users with
a couple of (very) standard PCs as central co-
ordinators)

5

Use-Case:
File sharing in companies

Email distribution
inefficient (how many identical
copies? how many different
versions?)

no control (recipients can forward
email at will)

Central Web servers
cumbersome publishing

single point of failure

access controls?

P2P file sharing
requires special software

bad image

access control?

Shared file systems
hard to maintain structure

bogged down by rules and
regulations :-)

Cloud services
control? NSA? Industrial espionage?

6

Locating the Right Web Server

Data stored on Web servers is easily browsable with
ordinary Web browsers

But how is a particular Web server located, if there are thousands in the organisation?
Who can remember IP numbers, and what if the machine is upgraded?

Solution: personal uServ Web servers are named after
the user hosting them, i.e., bayardo.userv.ibm.com
and this information is stored in a dynamic DNS server

7

Central concepts within YouServ

YouServ peer nodes
client running on user’s machine

Web server + special YouServ
protocols

unique name based on user's
company identity

Dynamic DNS server
rapidly updated DNS entries
directing users to current address of
the YouServ peer

YouServ coordinator
user authentication

registers proxying and replication

checks availability

but no heavy lifting!

8

Network overview

Centralised components

CoordinatorDynamic
DNS

HTTP

HTTP

HT
TP

Proxy
Prox

y

Proxy

HTTP
9

Screen shot

10

Making content available

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

YouServ Login

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

Determines that
Joe is reachable

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

Registers
9.1.2.3 as Joe's

site

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

Joe is now
registered

11

Accessing content

Data is kept at users’ machines running small Web
servers

Data is accessed by other users (who need not run any
special software) with ordinary Web browsers

they only need to know the name of the user

12

Accessing content

dynDNS

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://joe.userv.com

dynDNS

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://joe.userv.com

Resolve
joe.userv.com

dynDNS

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://joe.userv.com

Return 9.1.2.3

dynDNS

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://joe.userv.com HTTP

Request

dynDNS

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://joe.userv.com HTTP

Response

dynDNS

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://joe.userv.com

13

Replication

Problem: User machines are transient
on and off
laptop computers

Solution: Replication
peers (designated manually) replicate data
peers maintain summaries of files and synchronise every 3 minutes
• this distributes availability checking to the peers

Replication registered with YouServ Coordinator
upon unavailability, DNS is updated to point at most current replica
original target still in HTTP HOST header as with virtual hosting

14

Replication

YouServ logout

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

Peer Node (Alice)
IP: 9.1.2.4

YouServ
CoordinatordynDNS

Peer Node (Alice)
IP: 9.1.2.4

Check if Alice is
able to replicate

YouServ
CoordinatordynDNS

Peer Node (Alice)
IP: 9.1.2.4

Provide
summary

YouServ
CoordinatordynDNS

Registers
9.1.2.4 as Joe's

site

Peer Node (Alice)
IP: 9.1.2.4

dynDNS

Peer Node (Alice)
IP: 9.1.2.4

Webbrowser
http://joe.userv.com

Resolve
joe.userv.com

dynDNS

Peer Node (Alice)
IP: 9.1.2.4

Webbrowser
http://joe.userv.com

Return 9.1.2.4

dynDNS

Peer Node (Alice)
IP: 9.1.2.4

Webbrowser
http://joe.userv.comHTTP Request

HOST=joe.userv.com

dynDNS

Peer Node (Alice)
IP: 9.1.2.4

Webbrowser
http://joe.userv.comHTTP Response

replicated Joe data

dynDNS

Peer Node (Alice)
IP: 9.1.2.4

Webbrowser
http://joe.userv.com

15

Proxying – traversing firewalls

Problem: User machines may have port 80 (in-going)
blocked

Solution: Maintain socket connection from firewalled
peer to proxying peer

All traffic routed through proxy and over permanent
socket

16

Proxying

YouServ login

YouServ
CoordinatordynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

YouServ
Coordinator

cannot respond

YouServ
CoordinatordynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

? Request proxy

YouServ
CoordinatordynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

Return Joe's
contact info

YouServ
CoordinatordynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

YouServ
CoordinatordynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

Establish proxy
connection

YouServ
CoordinatordynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

Request IP
update to 9.1.2.3

YouServ
CoordinatordynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

Register 9.1.2.3
for Bob's site

dynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://bob.userv.com

Resolve
bob.userv.com

dynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://bob.userv.com

Return 9.1.2.3

dynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://bob.userv.com

HTTP request
HOST=bob.userv.com

dynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://bob.userv.com

Check header &
forward request

dynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://bob.userv.com

Return content

dynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://bob.userv.com

HTTP response

dynDNS

Peer Node (Bob)
IP: 1.0.1.0

Peer Node (Joe)
IP: 9.1.2.3

Webbrowser
http://bob.userv.com

17

Summary

Relegates all heavy lifting to the peers
content never reaches the server

Servers handle DNS and light coordination tasks

Elegant design that seamlessly integrates P2P
networking with existing technologies

Most efficient in organisations such as IBM with
centralised authentication

18

Summary

Scalability
Central components are not heavily utilised, but the coordinator will still be a
bottleneck if the network becomes sufficiently large
All major traffic handled by the peers
Replication and proxying ensures high availability

Fairness
You share your own stuff
And stuff you agree to replicate or proxy

19

Summary

Integrity and security
Safer than email distribution
Security tied to authentication scheme used at organisation

Anonymity, deniability, censorship resistance
Not even a little – not the purpose of this system

20

Overview

YouServ
YouSearch
PAST
SCRIBE

21

YouSearch

Problems with search on personal Web servers

YouSearch
Distributed indexing
Scalability
Caching

Summary

22

Searching personal web servers

While data is kept on Web server, standard Web
techniques are not applicable

Crawling
slow
never up to date (and never complete)
can return dead links
requires some big central server

23

YouSearch interface

24

Distributed indexing

Nodes index their own documents

A “summarizer” computes a bloom filter over the
index and sends it to the central registrar

bloom filters: bit vectors created with hashes over terms
if H(‘term’) yields k, the kth bit is set in the bit vector
if the kth bit is not set, then ‘term’ is not present
(if you are interested, there is an excellent description of Bloom filters at Wikipedia
http://en.wikipedia.org/wiki/Bloom_filter)

Central registrar combines bloom filters from clients

25

Architecture

Registrar

Peer Node (Alice)

SummarizerIndexerInspector

Summary
Manager

IP addressBit

26

Bloom filters

0 00 0 00 0 0 00 0 00 00 0000 00 000

m = 24
k = 3

Hash1()
Hash2()
Hash3()

0 00 1 00 0 0 00 0 00 00 0001 00 010

m = 24
k = 3

Insert "foo"

Hash1(foo) = 2
Hash2(foo) = 9
Hash3(foo) = 17

0 00 1 00 0 0 00 0 01 00 0101 00 010

m = 24
k = 3

Insert "bar"

Hash1(bar) = 0
Hash2(bar) = 17
Hash3(bar) = 21

0 00 1 00 0 0 00 0 01 00 0101 00 010

m = 24
k = 3

Look up "foo"

Hash1(foo) = 2
Hash2(foo) = 9
Hash3(foo) = 17

0 00 1 00 0 0 00 0 01 00 0101 00 010

m = 24
k = 3

Look up "foo"

Hash1(foo) = 2
Hash2(foo) = 9
Hash3(foo) = 17Answer: "foo" may exist

0 00 1 00 0 0 00 0 01 00 0101 00 010

m = 24
k = 3

Look up "baz"

Hash1(baz) = 0
Hash2(baz) = 8
Hash3(baz) = 5

0 00 1 00 0 0 00 0 01 00 0101 00 010

m = 24
k = 3

Look up "baz"

Hash1(baz) = 0
Hash2(baz) = 8
Hash3(baz) = 5Answer: "baz" doesn't exist

27

Scalability

K hash functions may be used to make a bloom filter
more precise; all of the resulting bits (for each hash
function) are thus set in the bit vector.

This technique is used in YouServ but…
Instead of setting k bits per term in a single bit vector k bit vectors are maintained, one
for each hash function.
This makes for future scalability of the registrar’s part of the searching, i.e., k registrars
may be used in parallel.

28

Searching in YouSearch

Searching can originate at any peer running YouServ

The registrar can quickly decide which peers might
have documents matching the query using the Bloom
filters

The set of matching peers is returned to the
originator, who then queries the peers in turn

“Dead peers tell no tales”
but are discovered by the other peers and reported to the central registrar

Results are presented to the user as they come in

29

Caching / Context

Queries are cached by querying peer who informs the
registrar

registrar stores only query and IP address
cached queries have a TTL

Work groups as context
search context (only stuff within this work group)
recommendation of search results to other work group members
search results can be made persistent by users

30

Performance of search

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

Fra
cti

on
 of

 bi
ts

se
t

Rank of peer

(a) BITS PER PEER

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2^{4}

Fra
cti

on
 of

 pe
ers

 w
ith

 bi
t s

et

Rank of bit

(b) PEERS PER BIT

Figure 8: Characteristics of bloom filters from approximately
peers.

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

Un
its

Rank of query

TIME TO GATHER ALL RESULTS

MEDIAN (8.18s)

MAXIMUM (354.20s)

Time (sec)
Peers (count)

Figure 9: Time taken to gather all results. Note that the re-
sponse time seen by a browser is a small fraction of this time.

are indexed. Users can also explicitly declare specific directories to
be indexable or not. For each indexable file, the Indexer indexes
keywords that appear in its URL. In addition, if the file is of type
HTML or text, the Indexer indexes keywords within the file itself.
Figure 8(a) shows that only a few peers have a large (two-thirds)

fraction of their bits set. In addition to increasing network traffic,
these peers could face high query processing loads. A relatively
simple solution to this problem is to create partitions of content at
such peers, with distinct bloom filters summarizing each partition
instead of each node. Figure 8(b) shows that most of the bits in the
bloom index are highly selective, though a few bits that correspond
to the most frequently occurring words (about) are set by almost

of peers. YouSearch could be made to filter stop words to
reduce this effect.

5.5 Time to answer queries
To evaluate overall query performance, we logged statistics for

global queries asked at a YouSearch peer. We formed a query set
comprised of the first global queries logged during the mon-
itoring period (September 9, 2002 to November 9, 2002). The
queries were sorted based on the time taken to gather answers at
the querying peer. Figure 9 shows that more than half the queries
were answered in less than seconds. Nearly of the queries
took more than a minute to be answered. Note that these times are
not the response times seen by the browser. As discussed in Sec-
tion 3, the results are displayed to the user while they are being
gathered.
We also plotted the number of peers that were contacted for an-

swers to the corresponding query. Not surprisingly, the curve for
number of peers contacted follows the time curve closely. The jitter

0
10
20
30
40
50
60
70
80

10 20 30

Tim
e t

o g
ath

er
res

ult
s

Rank of query

GAINS FROM CACHING

Network
Cached

Figure 10: Time to gather results with and without caching.

in this curve can be attributed to the geographic distance between
peers and the fact that even on the IBM intranet, nodes have vastly
different bandwidth and latency characteristics (some connect via
dialup VPN, for example). We note that the current implementation
probes peers sequentially. Parallelizing such probes by contacting
nodes simultaneously will result in proportional improvements

in gather times. A factor of ten in improvement is easily feasible
and will bring the median gather time to a sub-second range.
Not surprisingly, the longest queries were also observed to have

large answer sets. For these queries, the collection of results were
in fact collected faster than the speed at which a user is likely to
inspect them.

5.6 Query Characteristics
We examined queries in the query set discussed earlier in Sec-

tion 5.5. A large fraction () of queries were simple keyword
queries with an average length of keywords and standard de-
viation . The remaining (of the) involved an
advanced feature like site or group search. About of the
queries had at least one answer with an average of answers
per query obtained from an average of peers. Figure 9 plots
the number of peers (size of) that were probed to obtain answers.
We believe that the users are still adjusting to the availability of

search, with a significant amount of content remaining unindexed
due to YouSearch’s default behavior of leaving content unindexed
should it be hidden behind index.html files. As users become
more familiar with YouSearch, more data will be made available
for searching, and the fraction of successful queries will increase.
We observed that of the queries had a false-positive peer

in its result set. The average number of false-positive peers was
which corresponds to of an average result set of size
peers. Most of these false positives are due to the few peers

in Figure 8(a) that have a large fraction of their bits set.
Of the successful queries, were served from peer caches.

This value will increase as the system grows due to higher query
loads. Additionally, we have been very aggressive in clearing caches:
the default cache lifetime is set to minutes. Increasing this default
parameter will lead to improved cache hit rates, though with a slight
penalty in result freshness. Indeed, nearly a third () of all
queries in our sample were asked more than once.
To better quantify the effect of caching on performance, we is-

sued a sample of queries at one peer, and then repeated these
same queries at different peers in the network. The second time
a query was executed, results were gathered from a cache instead
of gathered from scratch. Figure 10 shows the times taken in the
two invocations. Clearly caching improves performance, often by
an order of magnitude.

584

31

Caching matters

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

Fra
cti

on
 of

 bi
ts

se
t

Rank of peer

(a) BITS PER PEER

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2^{4}

Fra
cti

on
 of

 pe
ers

 w
ith

 bi
t s

et

Rank of bit

(b) PEERS PER BIT

Figure 8: Characteristics of bloom filters from approximately
peers.

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

Un
its

Rank of query

TIME TO GATHER ALL RESULTS

MEDIAN (8.18s)

MAXIMUM (354.20s)

Time (sec)
Peers (count)

Figure 9: Time taken to gather all results. Note that the re-
sponse time seen by a browser is a small fraction of this time.

are indexed. Users can also explicitly declare specific directories to
be indexable or not. For each indexable file, the Indexer indexes
keywords that appear in its URL. In addition, if the file is of type
HTML or text, the Indexer indexes keywords within the file itself.
Figure 8(a) shows that only a few peers have a large (two-thirds)

fraction of their bits set. In addition to increasing network traffic,
these peers could face high query processing loads. A relatively
simple solution to this problem is to create partitions of content at
such peers, with distinct bloom filters summarizing each partition
instead of each node. Figure 8(b) shows that most of the bits in the
bloom index are highly selective, though a few bits that correspond
to the most frequently occurring words (about) are set by almost

of peers. YouSearch could be made to filter stop words to
reduce this effect.

5.5 Time to answer queries
To evaluate overall query performance, we logged statistics for

global queries asked at a YouSearch peer. We formed a query set
comprised of the first global queries logged during the mon-
itoring period (September 9, 2002 to November 9, 2002). The
queries were sorted based on the time taken to gather answers at
the querying peer. Figure 9 shows that more than half the queries
were answered in less than seconds. Nearly of the queries
took more than a minute to be answered. Note that these times are
not the response times seen by the browser. As discussed in Sec-
tion 3, the results are displayed to the user while they are being
gathered.
We also plotted the number of peers that were contacted for an-

swers to the corresponding query. Not surprisingly, the curve for
number of peers contacted follows the time curve closely. The jitter

0
10
20
30
40
50
60
70
80

10 20 30

Tim
e t

o g
ath

er
res

ult
s

Rank of query

GAINS FROM CACHING

Network
Cached

Figure 10: Time to gather results with and without caching.

in this curve can be attributed to the geographic distance between
peers and the fact that even on the IBM intranet, nodes have vastly
different bandwidth and latency characteristics (some connect via
dialup VPN, for example). We note that the current implementation
probes peers sequentially. Parallelizing such probes by contacting
nodes simultaneously will result in proportional improvements

in gather times. A factor of ten in improvement is easily feasible
and will bring the median gather time to a sub-second range.
Not surprisingly, the longest queries were also observed to have

large answer sets. For these queries, the collection of results were
in fact collected faster than the speed at which a user is likely to
inspect them.

5.6 Query Characteristics
We examined queries in the query set discussed earlier in Sec-

tion 5.5. A large fraction () of queries were simple keyword
queries with an average length of keywords and standard de-
viation . The remaining (of the) involved an
advanced feature like site or group search. About of the
queries had at least one answer with an average of answers
per query obtained from an average of peers. Figure 9 plots
the number of peers (size of) that were probed to obtain answers.
We believe that the users are still adjusting to the availability of

search, with a significant amount of content remaining unindexed
due to YouSearch’s default behavior of leaving content unindexed
should it be hidden behind index.html files. As users become
more familiar with YouSearch, more data will be made available
for searching, and the fraction of successful queries will increase.
We observed that of the queries had a false-positive peer

in its result set. The average number of false-positive peers was
which corresponds to of an average result set of size
peers. Most of these false positives are due to the few peers

in Figure 8(a) that have a large fraction of their bits set.
Of the successful queries, were served from peer caches.

This value will increase as the system grows due to higher query
loads. Additionally, we have been very aggressive in clearing caches:
the default cache lifetime is set to minutes. Increasing this default
parameter will lead to improved cache hit rates, though with a slight
penalty in result freshness. Indeed, nearly a third () of all
queries in our sample were asked more than once.
To better quantify the effect of caching on performance, we is-

sued a sample of queries at one peer, and then repeated these
same queries at different peers in the network. The second time
a query was executed, results were gathered from a cache instead
of gathered from scratch. Figure 10 shows the times taken in the
two invocations. Clearly caching improves performance, often by
an order of magnitude.

584

32

Summary

Relegates all heavy lifting to the peers
indexing, summarizing, and performing actual search

Servers handle light coordination of search tasks
look up in Bloom filters, coordinate caching

33

Summary

Scalability
Central components are not heavily utilised, can be clustered if need be
All major traffic handled by the peers
Caching removes a lot of load from both the coordinator and the individual peers

Fairness
You host the search engine capable of searching through your own stuff

Integrity and security
only public stuff is searchable so no security measures have been taken

Anonymity, deniability, censorship resistance
Not even a little – not the purpose of this system

34

Overview

YouServ
YouSearch
PAST
SCRIBE

35

PAST

What is the purpose of PAST?

Key characteristics of PAST

PAST operations
insert
lookup
reclaim

Storage management
replication and diversion
caching

PAST evaluation
36

Purpose of PAST

Exploit multitude and diversity of Internet nodes to
achieve strong persistence and high availability

Create global storage utility for backup, mirroring, ...

Share storage and bandwidth of a group of nodes –
larger than capacity of any individual node

37

Key characteristics of PAST

Large-scale P2P persistent storage utility
strong persistence (resilient to failure)
high availability
scalability
security

Self-organizing, Internet-based structured overlay of
nodes cooperate

route file queries
store replicas of file
cache popular files

Based on Pastry
38

PAST design

Any node running the PAST system may participate in
the PAST network

nodes minimally act as access points for users, but may also contribute storage and
routing capabilities to the network
nodes have 128 bit quasi-random IDs (lower 128 bit of SHA-1 on the node’s public key)
→ nodes with adjacent IDs diverse
file publishers have public/private cryptographic keys

39

Quick Pastry recap

Pastry is a structured P2P network
supports effective, distributed object location and routing
• O(log N) routing
• Routing tables of size O(log N)

A “routing ring”
nodes are given unique, quasi-random IDs and are placed on the ring accordingly
during placement a routing table is built

Locality awareness
Pastry maintains a “neighbourhood set” of the |M| nodes that are closest by some
proximity measure (e.g., routing hops)

40

The Pastry routing ring

Routing of a messageLeaf set, |L| = 2Neighbourhood set, |M| = 2

41

PAST operations

fileId = Insert(name, owner-credentials, k, file)
inserts replicas of file on the k nodes whose IDs are numerically closest to fileId
(k ≤ |L|)
the system must maintain k copies of the file

file = Lookup(fileId)
retrieve file designated by fileId if it exists and one of the k replica hosts are reachable
the file is usually retrieved from the “closest” (in terms of proximity) of the k nodes

Reclaim(fileId, owner-credentials)
weak delete: lookup of fileId is no longer guaranteed to return a result

42

Insert

fileId = Insert(name, owner-credentials, k, file)
fileId is calculated (SHA-1 of file name + public key + random number (“salt”))
Storage required deducted against a client quota
File certificate created and signed with private key
• Contains fileId, SHA-1 of file content, replication factor k, the random salt, various

meta data
File certificate + file is then routed to the fileId destination
Destination verifies certificate, forwards to k-1 closest nodes (i.e. to k-1 nodes in its
Pastry leaf set)
Destination returns store receipt if all accepts

43

So where does the file go?

NodeId 10233102
Leaf set

Neighbourhood set

Routing table

102332321023323010233001 10233000
10233122102331201023302110233033

332133213120320302212102 22301203
31301233113012331020023013021022

2
0 102331-2-0

10233-2-3210233-0-01 1
1023-0-322 31023-1-000 1023-2-121
102-0-0230 3102-1-1302 102-2-2302

10-3-2330210-0-31203 10-1-32102 2
1-3-0210221-2-2302030 1-1-301233
-3-1203203-2-23012031-0-2212102

Smaller Larger

NodeId 10233102
Leaf set

Neighbourhood set

Routing table

102332321023323010233001 10233000
10233122102331201023302110233033

332133213120320302212102 22301203
31301233113012331020023013021022

2
0 102331-2-0

10233-2-3210233-0-01 1
1023-0-322 31023-1-000 1023-2-121
102-0-0230 3102-1-1302 102-2-2302

10-3-2330210-0-31203 10-1-32102 2
1-3-0210221-2-2302030 1-1-301233
-3-1203203-2-23012031-0-2212102

Smaller Larger

NodeId 10233102
Leaf set

Neighbourhood set

Routing table

102332321023323010233001 10233000
10233122102331201023302110233033

332133213120320302212102 22301203
31301233113012331020023013021022

2
0 102331-2-0

10233-2-3210233-0-01 1
1023-0-322 31023-1-000 1023-2-121
102-0-0230 3102-1-1302 102-2-2302

10-3-2330210-0-31203 10-1-32102 2
1-3-0210221-2-2302030 1-1-301233
-3-1203203-2-23012031-0-2212102

Smaller Larger

44

Lookup

file = Lookup(fileId)
Given a requested fileId, a lookup request is routed towards a node with ID closest to
fileId
Any node storing a replica may respond with file and file certificate (and won’t
forward the query)
Since k numerically adjacent nodes store replicas and Pastry routes towards local
nodes, a node close in the proximity metric is likely to reply

45

Reclaim (weak delete)

Reclaim(fileId, owner-credentials)
Analogous to insert, but with a “reclaim certificate” verifying that the original
publisher reclaims the file
A reclaim receipt is received, used to reclaim storage quota
Reclaim is not the same as delete – copies may still be out there, but there are no
longer any guarantees

46

Storage management

We want the aggregated size of stored files to be close
to the aggregated capacity in a PAST network, before
insert requests are rejected

unused disk space is wasted disk space
should be done in a decentralized way...

Two ways of ensuring this
replica diversion
file diversion

47

Replica diversion

Balances free storage space among nodes in a leaf set

If a node cannot store a replica locally, it asks a node
in its leaf set (but outside of k) if it can, and stores a
pointer to the file

protocol must handle failure of leaf nodes then

In case of failure
storage node fails → find a new node

original node fails → k+1 leaf becomes member of k

k+1 leaf fails → take the next one

48

When to accept a replica

Acceptance of a replica at a node for storage is subject
to policies

file size divided by available size should be lower than a certain threshold (leave room
for small files)
threshold lower for nodes containing diverted replicas (leave most space for primary
replicas)

49

File diversion

If there is no room for the file in the given ID space, file
diversion can be employed

this is done simply by calculating a new fileId by choosing a new random salt
only used as a last resort, when replica diversion can not be used

Once a new fileId is obtained the file can try to insert it
once more

and if that also fails file diversion can be used once more...
• but you have to stop at some point and realise that there is no more room in the

network

50

Caching
Goals of cache management

minimize access latency (here routing distance)
maximize throughput
balance query load in system

The k replicas ensures availability, but also gives some
load balancing and latency reduction because of
locality properties of Pastry

A file is cached in PAST at a node traversed in lookup
or insert operations, if the file size is less than some
fraction of the node’s remaining cache size

Caching files are evicted as needed
51

PAST evaluation

Experimental setup
prototype implementation of PAST in Java
network emulation environment
all nodes run in same Java VM

Different normal distributions of storage capacity of
nodes used

Workload data from traces of file usage
eight Web proxy logs (1,863,055 entries, 18.7 GB)
workstation file system (2,027,908 files, 166.6 GB)
“problematic to get data of real P2P usage”

2250 PAST nodes, k=5, b=4
52

Storage management is needed

Experiment without replica diversion and file
diversion

primary replica threshold = 1, diversion replica threshold = 0
insertion rejection on first file insertion failure

51.1% insertion rejection...

60.8% ultimate storage utilization...

53

Storage management is effective

Adding file and replica diversion changes the picture
completely

primary replica threshold = 0.1, diversion replica threshold = 0.05

Insertion rejection is now down to 0.6% – 5.5%

Storage utilisation is up to 94.0% – 99.3%

54

Caching is good

20971520 - - r - ~.---,-;----.; ~ - - ; ~] - 0.01
, ° . * ~ ° * • , , ° , . . , ~ .

. . . . - . " '.: .:... : ' : . _ _ . . . ":~0.008
° ° . . . • ~ ° *

-" . . . • . • ~s. * * • : ~ 0 . 0 0 8
~ , . , * % - * , t572 o . . . : ; ; ":t
. . . . : ~= : 0.006~ ° o

• " . ' . ° ~ # ~) • • ° 4 ~ / F a

N ~ 10485760 - ' - . • . ; . ~ i= ; . " '~1 0 005 = , . . ¢ .,.-...~-.~.'.o" .:. • .~
"m • Failed Insertmn : : . ;:. • ~1 f • ~ J ^ ^ ^ .

~- ~ Failure ratio [" . IY:~,~ . , - ~ I
5242880. " - ~ . . ' " ~ ; M ~ - o.oo3

, o o

0.001

0 L` , 0

0 20 40 60 80 100
Utilization (%)

F i g u r e 7: F i l e i n s e r t i o n fa i lures v e r s u s s torage uti-
l i z a t i o n for t h e f l l e s y s t e m w o r k l o a d , w h e n tpri = 0.1,
tdiv ---- 0.05.

issued from PAST nodes that are close to each other in our
emulated network.

The first time a URL is seen in the trace, the referenced file
is inserted into PAST; subsequent occurrences of the URL
cause a lookup to be performed. Both the insertion and
lookup are performed from the PAST node that matches
the client identifier for the operation in the trace. Files
are cached at PAST nodes during successful insertions and
during successful lookups, on all the nodes through which
the request is routed. The c parameter is set to 1. As before,
the experiment uses 2250 PAST nodes with the dl storage
capacity distribution, tpri = 0.1 and tdiv= 0.05.

1 2.5
0.9 ~ ~ " None: # Hops , , . . _ _ . _ ~ * * m ~ . ~ j

: Hit Rate
0.7

~- o.s " ~
~ 0 . 5

0.3 ~ ' - ' - ~ N ' - , r y - " ~ G D - S : Hit Rate ~ "
0.2 j ~ ' 5 ~ . ' # Hops -.w,- LRU : Hit Rate " ~

"-'~" GD-S: # Hops
0.1 - * - LRU: # Hops

- ' * - None: # Hops
0 0

20 40 60 80 100

Utgization (%)

F i g u r e 8: Globa l c a che hit ra t io a n d average
n u m b e r o f m e s s a g e h o p s v e r s u s u t i l i z a t i o n u s i n g
L e a s t - R e c e n t l y - U s e d (L R U) , G r e e d y D u a l - S i z e (G D -
S), a n d no caching, w i t h tpri = 0.1 a n d tdi~ = 0.05.

1 .5

0 . 5

Figure 8 shows both the number of routing hops required to
perform a successful lookup and the global cache hit ratio
versus utilization. The GreedyDual-Size (GD-S) policy de-
scribed in Section 4 is used. For comparison, we also include
results with the Least-Recently-Used (LRU) policy.

When the caching is disabled, the number of routing hops
on average required is constant to about 70% utilization and
then begins to rise slightly. This is due to replica diversion
occurring; therefore, on a small percentage of the lookups a

diverted replica is retrieved, adding an extra routing hop. It
should be noted that [1og182250] = 3. The global cache hit
rate for both the LRU and the GD-S algorithms decreases as
storage utilization increases. Because of the Zipf-like distri-
bution of web requests [10], it is likely that a small number
of files are being requested very often. Therefore, when the
system has low utilization, these files are likely to be widely
cached. As the storage utilization increases, and the num-
ber of files increases, the caches begin to replace some files.
This leads to the global cache hit rate dropping.

The average number of routing hops for both LRU and GD-
S indicates the performance benefits of caching, in terms of
client latency and network traffic. At low storage utiliza-
tion, clearly the files are being cached in the network close
to where they are requested. As the global cache hit ratio
lowers with increasing storage utilization, the average num-
ber of routing hops increases. However, even at a storage
utilization of 99%, the average number of hops is below the
result with no caching. This is likely because the file sizes
in the proxy trace have a median value of only 1,312 bytes;
hence, even at high storage utilization there is capacity to
cache these small files. In terms of global cache hit ratio
and average number of routing hops, GD-S performs better
than LRU.

We have deliberately reported lookup performance in terms
of the number of Pastry routing hops, because actual lookup
delays strongly depend on per-hop network delays. To give
an indication of actual delays cause by PAST itself, retriev-
ing a 1KB file from a node one Pastry hop away on a LAN
takes approximately 25ms. This result can likely be im-
proved substantially with appropriate performance tuning
in our prototype implementation.

6. R E L A T E D W O R K
There are currently several peer-to-peer systems in use, and
many more are under development. Among the most promi-
nent are file sharing facilities, such as Gnutella [2] and Free-
net [13]. The Napster [1] music exchange service provided
much of the original motivation for peer-to-peer systems,
but it is not a pure peer-to-peer system because its database
is centralized. All three systems are primarily intended for
the large-scale sharing of data files; persistence and reliable
content location are not guaranteed or necessary in this en-
vironment.

In comparison, PAST aims at combining the scalability and
self-organization of systems like FreeNet with the strong per-
sistence and reliability expected of an archival storage sys-
tem. In this regard, it is more closely related with projects
like OceanStore [20], FarSite [8], FreeHaven [15], and Eter-
nity [5]. FreeNet, FreeHaven and Eternity are more focused
on providing strong anonymity and anti-censorship.

OceanStore provides a global, transactional, persistent stor-
age service that supports serializable updates on widely repli-
cated and nomadic data. In contrast, PAST provides a sim-
ple, lean storage abstraction for persistent, immutable files
with the intention that more sophisticated storage semantics
(e.g., mutable files) be built on top of PAST if needed.

Unlike PAST, FarSite has traditional filesystem semantics.

199

55

Summary

Scalability
tied to the scalability of Pastry

Fairness
There is a quota system, so in order to use storage space you must also provide some

Integrity and security
file integrity is ensured using hashes
public/private key system ensures (if properly used) ownership and privacy
k copies makes data loss unlikely

Anonymity, deniability, censorship resistance
not really the system for anonymous data storage
caching ensures that a file can not be requested out of existence

56

Overview

YouServ
YouSearch
PAST
SCRIBE

57

SCRIBE

What is the purpose of SCRIBE?

General observations about P2P multicast trees

SCRIBE
Group management
Message dissemination
Tree maintenance

SCRIBE evaluation

58

The purpose of SCRIBE

SCRIBE is an example of a P2P based multicast system.

Multicast can be used for a number of things
group chat (text, sound, or video)
live media streaming (sound or video)
multiplayer games
… and anything else you can think of where a group of peers need to communicate
one-to-many or many-to-many in an efficient manner

59

An example multicast tree

Root

Leafs

60

Message passing in multicast trees
— top-down —

Root

Leafs

Please send
message

Root

Leafs

Root

Leafs

Root

Leafs

Root

Leafs

61

Message passing in multicast trees
— crawl —

Root

Leafs

Root

Leafs

Root

Leafs

Root

Leafs

Root

Leafs

Root

Leafs

Root

Leafs

62

Message dissemination, pros and cons

Letting the root control message flow means that
sequence becomes easy to handle

… but the “connection” load on the root can be huge

In the crawling dissemination all nodes are equal
… but maintaining a sequence is hard

Which one to use depends heavily on use-case
e.g., in live media streaming (one-to-many) a top-down approach would be fine
in a game, where sequence is of importance, top-down would probably also be
preferable
in systems that must scale to thousands of users, and where sequence is of less
importance, a crawl is best suited

63

Security

There are many ways to be malicious in a multicast
system

by flooding the network – messages are replicated throughout the network making it
easy to create a tsunami of data
by not forwarding messages
… and much more

There are lots of systems that try to circumvent these
attacks

e.g., by using multiple trees, cryptographic measures etc.

64

SCRIBE: Creating a group

A groupID is generated
… it’s the SHA-1 hash of the textual name + creator name
which gives a uniform distribution of rendezvous nodes = balances the load

A “create” message is routed towards the node in the
Pastry network whose ID is closest to the groupID

The receiving node is now the rendezvous point for
the group (the root of the tree).

65

SCRIBE: Joining the group

The peer sends a “join” message towards the groupID

An intermediate node forwarding this message will:
 If the node is currently a forwarder for the group it adds the sending peer as a child
and we’re done.
If the node is not a forwarder, it adds the sender as a child and then sends its own
“join” message towards the groupID
• thus becoming a forwarder for the group

Every node in a group is a forwarder – but this does
not mean that it is also a member

66

SCRIBE: Leaving the group

The peer locally marks that it is no longer a member
but merely a forwarder

It then proceeds to check whether it has any children
in the group

and if it hasn’t it sends a “leave” message to its parent (which continues recursively up
the tree if necessary)
otherwise it stays on as a forwarder

67

SCRIBE: Sending messages

Messages are sent directly (outside of Pastry) to the
rendezvous (root) node

it is thus a top-down approach

68

SCRIBE: Repairing the tree

Periodically, each non-leaf node sends a heartbeat
message to its children

multicast messages are used as an implicit heartbeat

If children have not received a heartbeat for a set
amount of time it simply rejoins the group by sending
a “join” message towards the rendezvous node.

69

SCRIBE: Recovering from a lost root

The state kept in the root node is replicated in the
Pastry leaf set of the root

These nodes are numerically close to the root = the
new root is therefore amongst these nodes

When the root disappears the children will rejoin the
group, and the new root will receive these join
requests

upon which it notices that it is now the root and starts acting accordingly

70

Summary

Scalability
tied to the scalability of Pastry
• which is good by the way

Fairness
All nodes are responsible for forwarding messages in the tree (except for leaf nodes)
Some non-member nodes must also forward messages
The role of rendezvous (root) node is uniformly distributed

71

Summary

Integrity and security
Being a top-down approach some authentication scheme can be employed at the root
node
… but apart from that security is not really discussed in the paper

Anonymity, deniability, censorship resistance
is not considered at all

72

