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Purpose

Demonstrate the use of P2P techniques in ‘real’ 
applications 

Show how a well designed P2P framework can be 
extended to support wildly different uses
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Overview

YouServ 
YouSearch 
PAST 
SCRIBE
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YouServ

What is YouServ and how does it differ form other 
personal web servers? 

Central concepts within YouServ 

Making content available 

Accessing content 

Replication 

Firewall traversal 

Summary
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What is YouServ?

A (rather elegant) distributed approach to handling 
multitudes of small Web servers within an 
organisation 

Rather than distributing files in email, data is kept 
close to their originator 

Transience of user machines is handled through 
transparent replication and firewall tunnelling 

Very modest hardware requirements (2900 users with 
a couple of (very) standard PCs as central co-
ordinators)
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Use-Case: 
File sharing in companies

Email distribution 
inefficient (how many identical 
copies? how many different 
versions?) 

no control (recipients can forward 
email at will) 

Central Web servers 
cumbersome publishing 

single point of failure 

access controls? 

P2P file sharing 
requires special software 

bad image 

access control? 

Shared file systems 
hard to maintain structure 

bogged down by rules and 
regulations :-) 

Cloud services 
control? NSA? Industrial espionage?
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Locating the Right Web Server

Data stored on Web servers is easily browsable with 
ordinary Web browsers 

But how is a particular Web server located, if there are thousands in the organisation? 
Who can remember IP numbers, and what if the machine is upgraded? 

Solution: personal uServ Web servers are named after 
the user hosting them, i.e., bayardo.userv.ibm.com 
and this information is stored in a dynamic DNS server
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Central concepts within YouServ

YouServ peer nodes 
client running on user’s machine 

Web server + special YouServ 
protocols 

unique name based on user's 
company identity 

Dynamic DNS server 
rapidly updated DNS entries 
directing users to current address of 
the YouServ peer 

YouServ coordinator 
user authentication 

registers proxying and replication 

checks availability 

but no heavy lifting!
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Network overview
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Screen shot

10



Making content available

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

YouServ Login

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

Determines that 
Joe is reachable

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

Registers 
9.1.2.3 as Joe's 

site

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

Joe is now 
registered
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Accessing content

Data is kept at users’ machines running small Web 
servers 

Data is accessed by other users (who need not run any 
special software) with ordinary Web browsers 

they only need to know the name of the user
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Accessing content
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Webbrowser
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13



Replication

Problem: User machines are transient 
on and off 
laptop computers 

Solution: Replication 
peers (designated manually) replicate data 
peers maintain summaries of files and synchronise every 3 minutes 
• this distributes availability checking to the peers 

Replication registered with YouServ Coordinator 
upon unavailability, DNS is updated to point at most current replica 
original target still in HTTP HOST header as with virtual hosting

14



Replication

YouServ logout

YouServ
CoordinatordynDNS

Peer Node (Joe)
IP: 9.1.2.3

Peer Node (Alice)
IP: 9.1.2.4

YouServ
CoordinatordynDNS

Peer Node (Alice)
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YouServ
CoordinatordynDNS
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IP: 9.1.2.4
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Webbrowser
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dynDNS
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Webbrowser
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Proxying – traversing firewalls 

Problem: User machines may have port 80 (in-going) 
blocked 

Solution: Maintain socket connection from firewalled 
peer to proxying peer 

All traffic routed through proxy and over permanent 
socket
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Proxying

YouServ login
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Summary

Relegates all heavy lifting to the peers 
content never reaches the server 

Servers handle DNS and light coordination tasks 

Elegant design that seamlessly integrates P2P 
networking with existing technologies 

Most efficient in organisations such as IBM with 
centralised authentication
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Summary

Scalability 
Central components are not heavily utilised, but the coordinator will still be a 
bottleneck if the network becomes sufficiently large   
All major traffic handled by the peers 
Replication and proxying ensures high availability 

Fairness 
You share your own stuff 
And stuff you agree to replicate or proxy
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Summary

Integrity and security 
Safer than email distribution 
Security tied to authentication scheme used at organisation 

Anonymity, deniability, censorship resistance 
Not even a little – not the purpose of this system
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Overview

YouServ 
YouSearch 
PAST 
SCRIBE
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YouSearch

Problems with search on personal Web servers 

YouSearch 
Distributed indexing 
Scalability 
Caching  

Summary
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Searching personal web servers

While data is kept on Web server, standard Web 
techniques are not applicable 

Crawling 
slow 
never up to date (and never complete) 
can return dead links 
requires some big central server
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YouSearch interface
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Distributed indexing

Nodes index their own documents 

A “summarizer” computes a bloom filter over the 
index and sends it to the central registrar 

bloom filters: bit vectors created with hashes over terms 
if H(‘term’) yields k, the kth bit is set in the bit vector 
if the kth bit is not set, then ‘term’ is not present 
(if you are interested, there is an excellent description of Bloom filters at Wikipedia 
http://en.wikipedia.org/wiki/Bloom_filter) 

Central registrar combines bloom filters from clients
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Architecture

Registrar

Peer Node (Alice)

SummarizerIndexerInspector

Summary 
Manager

IP addressBit
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Bloom filters

0 00 0 00 0 0 00 0 00 00 0000 00 000

m = 24
k = 3

Hash1()
Hash2()
Hash3()

0 00 1 00 0 0 00 0 00 00 0001 00 010

m = 24
k = 3

Insert "foo"

Hash1(foo) = 2
Hash2(foo) = 9
Hash3(foo) = 17

0 00 1 00 0 0 00 0 01 00 0101 00 010

m = 24
k = 3

Insert "bar"

Hash1(bar) = 0
Hash2(bar) = 17
Hash3(bar) = 21

0 00 1 00 0 0 00 0 01 00 0101 00 010

m = 24
k = 3

Look up "foo"

Hash1(foo) = 2
Hash2(foo) = 9
Hash3(foo) = 17

0 00 1 00 0 0 00 0 01 00 0101 00 010

m = 24
k = 3

Look up "foo"

Hash1(foo) = 2
Hash2(foo) = 9
Hash3(foo) = 17Answer: "foo" may exist

0 00 1 00 0 0 00 0 01 00 0101 00 010

m = 24
k = 3

Look up "baz"

Hash1(baz) = 0
Hash2(baz) = 8
Hash3(baz) = 5

0 00 1 00 0 0 00 0 01 00 0101 00 010

m = 24
k = 3

Look up "baz"

Hash1(baz) = 0
Hash2(baz) = 8
Hash3(baz) = 5Answer: "baz" doesn't exist
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Scalability

K hash functions may be used to make a bloom filter 
more precise; all of the resulting bits (for each hash 
function) are thus set in the bit vector. 

This technique is used in YouServ but…  
Instead of setting k bits per term in a single bit vector k bit vectors are maintained, one 
for each hash function. 
This makes for future scalability of the registrar’s part of the searching, i.e.,  k registrars 
may be used in parallel. 
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Searching in YouSearch

Searching can originate at any peer running YouServ 

The registrar can quickly decide which peers might 
have documents matching the query using the Bloom 
filters 

The set of matching peers is returned to the 
originator, who then queries the peers in turn 

“Dead peers tell no tales” 
but are discovered by the other peers and reported to the central registrar 

Results are presented to the user as they come in
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Caching / Context

Queries are cached by querying peer who informs the 
registrar 

registrar stores only query and IP address 
cached queries have a TTL 

Work groups as context 
search context (only stuff within this work group) 
recommendation of search results to other work group members 
search results can be made persistent by users
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Performance of search
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Figure 9: Time taken to gather all results. Note that the re-
sponse time seen by a browser is a small fraction of this time.

are indexed. Users can also explicitly declare specific directories to
be indexable or not. For each indexable file, the Indexer indexes
keywords that appear in its URL. In addition, if the file is of type
HTML or text, the Indexer indexes keywords within the file itself.
Figure 8(a) shows that only a few peers have a large (two-thirds)

fraction of their bits set. In addition to increasing network traffic,
these peers could face high query processing loads. A relatively
simple solution to this problem is to create partitions of content at
such peers, with distinct bloom filters summarizing each partition
instead of each node. Figure 8(b) shows that most of the bits in the
bloom index are highly selective, though a few bits that correspond
to the most frequently occurring words (about ) are set by almost

of peers. YouSearch could be made to filter stop words to
reduce this effect.

5.5 Time to answer queries
To evaluate overall query performance, we logged statistics for

global queries asked at a YouSearch peer. We formed a query set
comprised of the first global queries logged during the mon-
itoring period (September 9, 2002 to November 9, 2002). The
queries were sorted based on the time taken to gather answers at
the querying peer. Figure 9 shows that more than half the queries
were answered in less than seconds. Nearly of the queries
took more than a minute to be answered. Note that these times are
not the response times seen by the browser. As discussed in Sec-
tion 3, the results are displayed to the user while they are being
gathered.
We also plotted the number of peers that were contacted for an-

swers to the corresponding query. Not surprisingly, the curve for
number of peers contacted follows the time curve closely. The jitter
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Figure 10: Time to gather results with and without caching.

in this curve can be attributed to the geographic distance between
peers and the fact that even on the IBM intranet, nodes have vastly
different bandwidth and latency characteristics (some connect via
dialup VPN, for example). We note that the current implementation
probes peers sequentially. Parallelizing such probes by contacting
nodes simultaneously will result in proportional improvements

in gather times. A factor of ten in improvement is easily feasible
and will bring the median gather time to a sub-second range.
Not surprisingly, the longest queries were also observed to have

large answer sets. For these queries, the collection of results were
in fact collected faster than the speed at which a user is likely to
inspect them.

5.6 Query Characteristics
We examined queries in the query set discussed earlier in Sec-

tion 5.5. A large fraction ( ) of queries were simple keyword
queries with an average length of keywords and standard de-
viation . The remaining ( of the ) involved an
advanced feature like site or group search. About of the
queries had at least one answer with an average of answers
per query obtained from an average of peers. Figure 9 plots
the number of peers (size of ) that were probed to obtain answers.
We believe that the users are still adjusting to the availability of

search, with a significant amount of content remaining unindexed
due to YouSearch’s default behavior of leaving content unindexed
should it be hidden behind index.html files. As users become
more familiar with YouSearch, more data will be made available
for searching, and the fraction of successful queries will increase.
We observed that of the queries had a false-positive peer

in its result set. The average number of false-positive peers was
which corresponds to of an average result set of size
peers. Most of these false positives are due to the few peers

in Figure 8(a) that have a large fraction of their bits set.
Of the successful queries, were served from peer caches.

This value will increase as the system grows due to higher query
loads. Additionally, we have been very aggressive in clearing caches:
the default cache lifetime is set to minutes. Increasing this default
parameter will lead to improved cache hit rates, though with a slight
penalty in result freshness. Indeed, nearly a third ( ) of all
queries in our sample were asked more than once.
To better quantify the effect of caching on performance, we is-

sued a sample of queries at one peer, and then repeated these
same queries at different peers in the network. The second time
a query was executed, results were gathered from a cache instead
of gathered from scratch. Figure 10 shows the times taken in the
two invocations. Clearly caching improves performance, often by
an order of magnitude.
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Caching matters
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are indexed. Users can also explicitly declare specific directories to
be indexable or not. For each indexable file, the Indexer indexes
keywords that appear in its URL. In addition, if the file is of type
HTML or text, the Indexer indexes keywords within the file itself.
Figure 8(a) shows that only a few peers have a large (two-thirds)

fraction of their bits set. In addition to increasing network traffic,
these peers could face high query processing loads. A relatively
simple solution to this problem is to create partitions of content at
such peers, with distinct bloom filters summarizing each partition
instead of each node. Figure 8(b) shows that most of the bits in the
bloom index are highly selective, though a few bits that correspond
to the most frequently occurring words (about ) are set by almost

of peers. YouSearch could be made to filter stop words to
reduce this effect.

5.5 Time to answer queries
To evaluate overall query performance, we logged statistics for

global queries asked at a YouSearch peer. We formed a query set
comprised of the first global queries logged during the mon-
itoring period (September 9, 2002 to November 9, 2002). The
queries were sorted based on the time taken to gather answers at
the querying peer. Figure 9 shows that more than half the queries
were answered in less than seconds. Nearly of the queries
took more than a minute to be answered. Note that these times are
not the response times seen by the browser. As discussed in Sec-
tion 3, the results are displayed to the user while they are being
gathered.
We also plotted the number of peers that were contacted for an-

swers to the corresponding query. Not surprisingly, the curve for
number of peers contacted follows the time curve closely. The jitter
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in this curve can be attributed to the geographic distance between
peers and the fact that even on the IBM intranet, nodes have vastly
different bandwidth and latency characteristics (some connect via
dialup VPN, for example). We note that the current implementation
probes peers sequentially. Parallelizing such probes by contacting
nodes simultaneously will result in proportional improvements

in gather times. A factor of ten in improvement is easily feasible
and will bring the median gather time to a sub-second range.
Not surprisingly, the longest queries were also observed to have

large answer sets. For these queries, the collection of results were
in fact collected faster than the speed at which a user is likely to
inspect them.

5.6 Query Characteristics
We examined queries in the query set discussed earlier in Sec-

tion 5.5. A large fraction ( ) of queries were simple keyword
queries with an average length of keywords and standard de-
viation . The remaining ( of the ) involved an
advanced feature like site or group search. About of the
queries had at least one answer with an average of answers
per query obtained from an average of peers. Figure 9 plots
the number of peers (size of ) that were probed to obtain answers.
We believe that the users are still adjusting to the availability of

search, with a significant amount of content remaining unindexed
due to YouSearch’s default behavior of leaving content unindexed
should it be hidden behind index.html files. As users become
more familiar with YouSearch, more data will be made available
for searching, and the fraction of successful queries will increase.
We observed that of the queries had a false-positive peer

in its result set. The average number of false-positive peers was
which corresponds to of an average result set of size
peers. Most of these false positives are due to the few peers

in Figure 8(a) that have a large fraction of their bits set.
Of the successful queries, were served from peer caches.

This value will increase as the system grows due to higher query
loads. Additionally, we have been very aggressive in clearing caches:
the default cache lifetime is set to minutes. Increasing this default
parameter will lead to improved cache hit rates, though with a slight
penalty in result freshness. Indeed, nearly a third ( ) of all
queries in our sample were asked more than once.
To better quantify the effect of caching on performance, we is-

sued a sample of queries at one peer, and then repeated these
same queries at different peers in the network. The second time
a query was executed, results were gathered from a cache instead
of gathered from scratch. Figure 10 shows the times taken in the
two invocations. Clearly caching improves performance, often by
an order of magnitude.
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Summary

Relegates all heavy lifting to the peers 
indexing, summarizing, and performing actual search  

Servers handle light coordination of search tasks 
look up in Bloom filters, coordinate caching
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Summary

Scalability 
Central components are not heavily utilised, can be clustered if need be 
All major traffic handled by the peers 
Caching removes a lot of load from both the coordinator and the individual peers 

Fairness 
You host the search engine capable of searching through your own stuff 

Integrity and security 
only public stuff is searchable so no security measures have been taken 

Anonymity, deniability, censorship resistance 
Not even a little – not the purpose of this system
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Overview

YouServ 
YouSearch 
PAST 
SCRIBE
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PAST

What is the purpose of PAST? 

Key characteristics of PAST 

PAST operations 
insert 
lookup 
reclaim 

Storage management 
replication and diversion 
caching 

PAST evaluation
36



Purpose of PAST

Exploit multitude and diversity of Internet nodes to 
achieve strong persistence and high availability 

Create global storage utility for backup, mirroring, ... 

Share storage and bandwidth of a group of nodes – 
larger than capacity of any individual node
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Key characteristics of PAST

Large-scale P2P persistent storage utility 
strong persistence (resilient to failure) 
high availability 
scalability 
security 

Self-organizing, Internet-based structured overlay of 
nodes cooperate 

route file queries 
store replicas of file 
cache popular files 

Based on Pastry
38



PAST design

Any node running the PAST system may participate in 
the PAST network 

nodes minimally act as access points for users, but may also contribute storage and 
routing capabilities to the network 
nodes have 128 bit quasi-random IDs (lower 128 bit of SHA-1 on the node’s public key) 
→ nodes with adjacent IDs diverse 
file publishers have public/private cryptographic keys
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Quick Pastry recap

Pastry is a structured P2P network 
supports effective, distributed object location and routing  
• O(log N) routing 
• Routing tables of size O(log N) 

A “routing ring” 
nodes are given unique, quasi-random IDs and are placed on the ring accordingly 
during placement a routing table is built 

Locality awareness 
Pastry maintains a “neighbourhood set” of the |M| nodes that are closest by some 
proximity measure (e.g., routing hops)
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The Pastry routing ring

Routing of a messageLeaf set, |L| = 2Neighbourhood set, |M| = 2
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PAST operations

fileId = Insert(name, owner-credentials, k, file) 
inserts replicas of file on the k nodes whose IDs are numerically closest to fileId            
(k ≤ |L|) 
the system must maintain k copies of the file 

file = Lookup(fileId) 
retrieve file designated by fileId if it exists and one of the k replica hosts are reachable 
the file is usually retrieved from the “closest” (in terms of proximity) of the k nodes 

Reclaim(fileId, owner-credentials) 
weak delete: lookup of fileId is no longer guaranteed to return a result

42



Insert

fileId = Insert(name, owner-credentials, k, file) 
fileId is calculated (SHA-1 of file name + public key + random number (“salt”)) 
Storage required deducted against a client quota 
File certificate created and signed with private key 
• Contains fileId, SHA-1 of file content, replication factor k, the random salt, various 

meta data 
File certificate + file is then routed to the fileId destination 
Destination verifies certificate, forwards to k-1 closest nodes (i.e. to k-1 nodes in its 
Pastry leaf set) 
Destination returns store receipt if all accepts
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So where does the file go?

NodeId 10233102
Leaf set

Neighbourhood set

Routing table

102332321023323010233001 10233000
10233122102331201023302110233033
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-3-1203203-2-23012031-0-2212102
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332133213120320302212102 22301203
31301233113012331020023013021022

2
0 102331-2-0

10233-2-3210233-0-01 1
1023-0-322 31023-1-000 1023-2-121
102-0-0230 3102-1-1302 102-2-2302

10-3-2330210-0-31203 10-1-32102 2
1-3-0210221-2-2302030 1-1-301233
-3-1203203-2-23012031-0-2212102

Smaller Larger
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Lookup

file = Lookup(fileId) 
Given a requested fileId, a lookup request is routed towards a node with ID closest to 
fileId 
Any node storing a replica may respond with file and file certificate (and won’t 
forward the query) 
Since k numerically adjacent nodes store replicas and Pastry routes towards local 
nodes, a node close in the proximity metric is likely to reply
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Reclaim (weak delete)

Reclaim(fileId, owner-credentials) 
Analogous to insert, but with a “reclaim certificate” verifying that the original 
publisher reclaims the file 
A reclaim receipt is received, used to reclaim storage quota 
Reclaim is not the same as delete – copies may still be out there, but there are no 
longer any guarantees
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Storage management

We want the aggregated size of stored files to be close 
to the aggregated capacity in a PAST network, before 
insert requests are rejected 

unused disk space is wasted disk space 
should be done in a decentralized way... 

Two ways of ensuring this 
replica diversion 
file diversion
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Replica diversion

Balances free storage space among nodes in a leaf set 

If a node cannot store a replica locally, it asks a node 
in its leaf set (but outside of k) if it can, and stores a 
pointer to the file 

protocol must handle failure of leaf nodes then 

In case of failure 
storage node fails → find a new node 

original node fails → k+1 leaf becomes member of k 

k+1 leaf fails → take the next one

48



When to accept a replica

Acceptance of a replica at a node for storage is subject 
to policies 

file size divided by available size should be lower than a certain threshold (leave room 
for small files) 
threshold lower for nodes containing diverted replicas (leave most space for primary 
replicas)
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File diversion

If there is no room for the file in the given ID space, file 
diversion can be employed 

this is done simply by calculating a new fileId by choosing a new random salt 
only used as a last resort, when replica diversion can not be used 

Once a new fileId is obtained the file can try to insert it 
once more 

and if that also fails file diversion can be used once more...  
• but you have to stop at some point and realise that there is no more room in the 

network 
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Caching
Goals of cache management 

minimize access latency (here routing distance) 
maximize throughput 
balance query load in system 

The k replicas ensures availability, but also gives some 
load balancing and latency reduction because of 
locality properties of Pastry 

A file is cached in PAST at a node traversed in lookup 
or insert operations, if the file size is less than some 
fraction of the node’s remaining cache size 

Caching files are evicted as needed
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PAST evaluation

Experimental setup 
prototype implementation of PAST in Java 
network emulation environment 
all nodes run in same Java VM 

Different normal distributions of storage capacity of 
nodes used 

Workload data from traces of file usage 
eight Web proxy logs (1,863,055 entries, 18.7 GB) 
workstation file system (2,027,908 files, 166.6 GB) 
“problematic to get data of real P2P usage” 

2250 PAST nodes, k=5, b=4
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Storage management is needed

Experiment without replica diversion and file 
diversion 

primary replica threshold = 1, diversion replica threshold = 0 
insertion rejection on first file insertion failure 

51.1% insertion rejection... 

60.8% ultimate storage utilization...
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Storage management is effective

Adding file and replica diversion changes the picture 
completely 

primary replica threshold = 0.1, diversion replica threshold = 0.05 

Insertion rejection is now down to 0.6% – 5.5% 

Storage utilisation is up to 94.0% – 99.3%
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Caching is good
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F i g u r e  7: F i l e  i n s e r t i o n  fa i lures  v e r s u s  s torage  uti-  
l i z a t i o n  for t h e  f l l e s y s t e m  w o r k l o a d ,  w h e n  tpri = 0.1, 
tdiv ---- 0.05. 

issued from PAST nodes that  are close to each other in our 
emulated network. 

The first time a URL is seen in the trace, the referenced file 
is inserted into PAST; subsequent occurrences of the URL 
cause a lookup to be performed. Both the insertion and 
lookup are performed from the PAST node that matches 
the client identifier for the operation in the trace. Files 
are cached at PAST nodes during successful insertions and 
during successful lookups, on all the nodes through which 
the request is routed. The c parameter is set to 1. As before, 
the experiment uses 2250 PAST nodes with the dl storage 
capacity distribution, tpri = 0.1 and tdiv= 0.05. 
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Figure 8 shows both the number of routing hops required to 
perform a successful lookup and the global cache hit ratio 
versus utilization. The GreedyDual-Size (GD-S) policy de- 
scribed in Section 4 is used. For comparison, we also include 
results with the Least-Recently-Used (LRU) policy. 

When the caching is disabled, the number of routing hops 
on average required is constant to about 70% utilization and 
then begins to rise slightly. This is due to replica diversion 
occurring; therefore, on a small percentage of the lookups a 

diverted replica is retrieved, adding an extra routing hop. It  
should be noted that  [1og182250] = 3. The global cache hit 
rate for both the LRU and the GD-S algorithms decreases as 
storage utilization increases. Because of the Zipf-like distri- 
bution of web requests [10], it is likely that  a small number 
of files are being requested very often. Therefore, when the 
system has low utilization, these files are likely to be widely 
cached. As the storage utilization increases, and the num- 
ber of files increases, the caches begin to replace some files. 
This leads to the global cache hit rate dropping. 

The average number of routing hops for both LRU and GD- 
S indicates the performance benefits of caching, in terms of 
client latency and network traffic. At low storage utiliza- 
tion, clearly the files are being cached in the network close 
to where they are requested. As the global cache hit ratio 
lowers with increasing storage utilization, the average num- 
ber of routing hops increases. However, even at a storage 
utilization of 99%, the average number of hops is below the 
result with no caching. This is likely because the file sizes 
in the proxy trace have a median value of only 1,312 bytes; 
hence, even at high storage utilization there is capacity to 
cache these small files. In terms of global cache hit ratio 
and average number of routing hops, GD-S performs better 
than LRU. 

We have deliberately reported lookup performance in terms 
of the number of Pastry routing hops, because actual lookup 
delays strongly depend on per-hop network delays. To give 
an indication of actual delays cause by PAST itself, retriev- 
ing a 1KB file from a node one Pastry hop away on a LAN 
takes approximately 25ms. This result can likely be im- 
proved substantially with appropriate performance tuning 
in our prototype implementation. 

6. R E L A T E D  W O R K  
There are currently several peer-to-peer systems in use, and 
many more are under development. Among the most promi- 
nent are file sharing facilities, such as Gnutella [2] and Free- 
net [13]. The Napster [1] music exchange service provided 
much of the original motivation for peer-to-peer systems, 
but it is not a pure peer-to-peer system because its database 
is centralized. All three systems are primarily intended for 
the large-scale sharing of data files; persistence and reliable 
content location are not guaranteed or necessary in this en- 
vironment. 

In comparison, PAST aims at combining the scalability and 
self-organization of systems like FreeNet with the strong per- 
sistence and reliability expected of an archival storage sys- 
tem. In this regard, it is more closely related with projects 
like OceanStore [20], FarSite [8], FreeHaven [15], and Eter- 
nity [5]. FreeNet, FreeHaven and Eternity are more focused 
on providing strong anonymity and anti-censorship. 

OceanStore provides a global, transactional, persistent stor- 
age service that  supports serializable updates on widely repli- 
cated and nomadic data. In contrast, PAST provides a sim- 
ple, lean storage abstraction for persistent, immutable files 
with the intention that more sophisticated storage semantics 
(e.g., mutable files) be built on top of PAST if needed. 

Unlike PAST, FarSite has traditional filesystem semantics. 
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Summary

Scalability 
tied to the scalability of Pastry 

Fairness 
There is a quota system, so in order to use storage space you must also provide some 

Integrity and security 
file integrity is ensured using hashes 
public/private key system ensures (if properly used) ownership and privacy 
k copies makes data loss unlikely 

Anonymity, deniability, censorship resistance 
not really the system for anonymous data storage 
caching ensures that a file can not be requested out of existence
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Overview

YouServ 
YouSearch 
PAST 
SCRIBE
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SCRIBE

What is the purpose of SCRIBE? 

General observations about P2P multicast trees 

SCRIBE 
Group management 
Message dissemination 
Tree maintenance 

SCRIBE evaluation
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The purpose of SCRIBE

SCRIBE is an example of a P2P based multicast system. 

Multicast can be used for a number of things 
group chat (text, sound, or video) 
live media streaming (sound or video) 
multiplayer games 
… and anything else you can think of where a group of peers need to communicate 
one-to-many or many-to-many in an efficient manner
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An example multicast tree

Root

Leafs

60



Message passing in multicast trees 
— top-down —

Root

Leafs

Please send
message

Root

Leafs

Root

Leafs

Root

Leafs

Root

Leafs
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Message passing in multicast trees 
— crawl —

Root

Leafs

Root

Leafs

Root

Leafs

Root

Leafs

Root

Leafs

Root

Leafs

Root

Leafs
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Message dissemination, pros and cons

Letting the root control message flow means that 
sequence becomes easy to handle 

… but the “connection” load on the root can be huge 

In the crawling dissemination all nodes are equal 
… but maintaining a sequence is hard 

Which one to use depends heavily on use-case 
e.g., in live media streaming (one-to-many) a top-down approach would be fine 
in a game, where sequence is of importance, top-down would probably also be 
preferable 
in systems that must scale to thousands of users, and where sequence is of less 
importance, a crawl is best suited 
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Security

There are many ways to be malicious in a multicast 
system 

by flooding the network – messages are replicated throughout the network making it 
easy to create a tsunami of data 
by not forwarding messages 
… and much more 

There are lots of systems that try to circumvent these 
attacks 

e.g., by using multiple trees, cryptographic measures etc.
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SCRIBE: Creating a group

A groupID is generated  
… it’s the SHA-1 hash of the textual name + creator name 
which gives a uniform distribution of rendezvous nodes = balances the load 

A “create” message is routed towards the node in the 
Pastry network whose ID is closest to the groupID 

The receiving node is now the rendezvous point for 
the group (the root of the tree).
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SCRIBE: Joining the group

The peer sends a “join” message towards the groupID 

An intermediate node forwarding this message will: 
 If the node is currently a forwarder for the group it adds the sending peer as a child 
and we’re done. 
If the node is not a forwarder, it adds the sender as a child and then sends its own 
“join” message towards the groupID 
• thus becoming a forwarder for the group 

Every node in a group is a forwarder – but this does 
not mean that it is also a member
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SCRIBE: Leaving the group

The peer locally marks that it is no longer a member 
but merely a forwarder 

It then proceeds to check whether it has any children 
in the group 

and if it hasn’t it sends a “leave” message to its parent (which continues recursively up 
the tree if necessary) 
otherwise it stays on as a forwarder
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SCRIBE: Sending messages

Messages are sent directly (outside of Pastry) to the 
rendezvous (root) node 

it is thus a top-down approach
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SCRIBE: Repairing the tree

Periodically, each non-leaf node sends a heartbeat 
message to its children 

multicast messages are used as an implicit heartbeat 

If children have not received a heartbeat for a set 
amount of time it simply rejoins the group by sending 
a “join” message towards the rendezvous node. 
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SCRIBE: Recovering from a lost root

The state kept in the root node is replicated in the 
Pastry leaf set of the root 

These nodes are numerically close to the root = the 
new root is therefore amongst these nodes 

When the root disappears the children will rejoin the 
group, and the new root will receive these join 
requests 

upon which it notices that it is now the root and starts acting accordingly
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Summary

Scalability 
tied to the scalability of Pastry 
• which is good by the way 

Fairness 
All nodes are responsible for forwarding messages in the tree (except for leaf nodes) 
Some non-member nodes must also forward messages  
The role of rendezvous (root) node is uniformly distributed 
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Summary

Integrity and security 
Being a top-down approach some authentication scheme can be employed at the root 
node 
… but apart from that security is not really discussed in the paper 

Anonymity, deniability, censorship resistance 
is not considered at all
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