
BitTorrent
Mads Darø Kristensen

Niels Olof Bouvin

1

Overview

BitTorrent terms
The BitTorrent protocol
The life of a torrent
Attacking BitTorrent

2

BitTorrent terms

The BitTorrent protocol operates with these important
terms:

Tracker: a centralised component used for peer discovery.
Seeds: peers that have fully downloaded the file being shared.
Leechers: peers that are actively downloading the file.
Swarm: the collection of peers participating in sharing the torrent data.
.torrent file: a meta data file containing information about the torrent.

3

Tracker

The tracker is the only centralised component in
BitTorrent.

It is used to bootstrap the system by providing peer
discovery.

The tracker thus does no heavy lifting at all. It is never involved in transferring any of
the data that is shared in the torrents it provides access to.
• … which is probably also why varying tracker sites have claimed to be innocent

when faced with infringement suits ;-)
Peer selection is done completely at random—there is no weighing of peers or peer
capabilities.

4

Seeders

A seeder is a peer that has the entire file being served.

Initially, when a torrent is initiated, a single seeder
connects to the tracker to make its content available.

While the torrent swarm is active, peers will change
from leechers to seeders when they finish
downloading the torrent.

Which also means that it is good practice to leave the BitTorrent client on for a while
after downloading finishes, so that you get to contribute to the swarm.

5

Leechers

A leecher is a peer that is actively downloading the
torrent.

Being a leecher does not mean that the peer
contributes nothing to the swarm.

All leechers must serve the pieces that they have already finished to the swarm.

6

Swarm

The swarm is all of the
peers currently
participating in the
torrent

The swarm may be huge, so most
peers only deal with a small subset of
the swarm—their personal peer set.

7

.torrent files

The .torrent file describes a given torrent.

It contains information about the tracker(s)
coordinating the torrent, as well as some meta
information about the file being shared.

The .torrent file is distributed “offline” (i.e., outside of
the BitTorrent system).

Typically it is hosted on a webpage (or send around to peers in an email).

8

A BitTorrent animation

9

Overview

BitTorrent terms
The BitTorrent protocol
The life of a torrent
Attacking BitTorrent

10

The BitTorrent protocol

In the following I will explain the basics of the
BitTorrent protocol.

For a more in-depth introduction to the nitty gritty details see
• http://bittorrent.org/beps/bep_0003.html
• http://wiki.theory.org/BitTorrentSpecification

11

The contents of a .torrent file

When a peer wishes to download a file, it retrieves
the .torrent file.

A .torrent file is a bencoded Python dictionary
containing (at least) the keys announce and info.
announce is the URL of the tracker.
Where info is another dict containing the following keys:
• name: the suggested file (or directory) name of the shared file.
• piece length: the length in bytes of the individual pieces.
• pieces: one big string containing the SHA1 hashes of all pieces.
• length: the total length of the file being shared.

12

Sharing directories

It is also possible to share an entire directory using
BitTorrent.

In this case the length field is exchanged for a files
field containing a list of files with information about
the length and path of each file.

For the purposes of the other keys, the multi-file case
is treated as only having a single file by concatenating
the files in the order they appear in the files list.

13

An example .torrent file

This .torrent was retrieved from Ubuntu’s homepage.
It has been parsed—the native format is bencoded.

14

Working with the tracker

After retrieving the .torrent file, the peer contacts the
tracker listed in that file.

The tracker responds by returning a list of (~50)
randomly chosen peers in the swarm.

After that point in time the tracker is only rarely
contacted:

• Once every 30 minutes to show that the peer is active,
• if running low on peers in the peer set,
• and when leaving the swarm.

15

The peer protocol

After receiving a list of ~50 peers, the new peer
proceeds to establish a TCP connection to ~30 of
these peers.

The peer thus enters into a neighbourhood of peers
and starts adhering to the peer protocol.

16

Spreading information about available pieces

Initially, when a peer enters a new neighbourhood of
the swarm (i.e., when it gets new neighbours) it sends
a bitfield message to the new neighbours.

The bitfield message contains a space efficient representation of the pieces that the
peer holds (a bitmap)
• If the peer has the piece at index x the x’th bit is set to one
• … and if it hasn’t got it the bit is set to zero

When a peer finished downloading a piece (and the
SHA1 sum matches) it sends a have message to all its
neighbours, telling them that the new piece has been
fetched.

17

Downloading

Peers may then start downloading pieces from each
other.

They know which peers have got pieces that they are interested in…

But peers are not allowed to download pieces willy
nilly. BitTorrent is a tit-for-tat protocol, meaning that
you have to give in order to receive.

Once a peer is allowed to fetch a given piece is does so
by sending the piece message with the index of the
piece as an argument.

18

Downloading

Each peer in a peer’s neighbour list has two state bits:
interested/uninterested: this bit tells us whether the neighbour is interested in the
pieces we have got.
choked/unchoked: this bit states whether we are currently choking the neighbour.

Choking a peer means disallowing it to download
pieces at this point in time.

Peers send choke, unchoke, interested, and not
interested messages to each other in the peer
protocol.

19

Choking

Choking works on a tit-for-tat basis:
If we are currently downloading from a peer, we will unchoke that peer so that it may
also download from us.
• This means, that when selecting a peer to download from, we should prefer peers

that are interested in us.
If a peer does not contribute (i.e., we are not able to download from it) we can choke it
again.

Optimistic unchoke:
One or more peers will be optimistically unchoked at all time. This role rotates every
30 seconds.
If an optimistically unchoked peer start contributing, it may stay unchoked.

20

Choking

Choked/unchoked state of neighbours is reconsidered
every 10 seconds.

At any point in time a peer should have a number of
unchoked neighbours.

This is of course implementation specific…
• Some implementations have a static value of 4, whereas others use the square

root of the upload capacity in KB/s

Replacing contributing peers
If an optimistic unchoke results in a peer that is performing better (yielding faster
download rates), one of the currently unchoked peers will be replaced.

21

Choking and seeders

When seeding, tit-for-tat stops making sense

A seeder works for the general good of the swarm
It wants to upload as much as possible to the swarm.
It thus prefers to unchoke peers to which it has a high upload rate.

22

Piece distribution

Piece selection strategies are in use in BitTorrent to
ensure that the swarm stays alive.

A client may choose to simply select pieces at random
This means, that the different peers will (with high probability) possess different
pieces of the file, meaning that they have something to contribute to the swarm

Another selection strategy is the rarest first strategy
In this strategy peers request the pieces that are least distributed within their peer set.
This decreases the likelihood of the the torrent “breaking” when a peer leaves.
• … no peers will be holding “the only copy” of a piece for very long.

23

Rarest first
Initially, a peer will request a randomly chosen piece.

This is done in order to get started—the rarest pieces will be slightly harder to get at,
since many peers are interested in them.

Then it will start adhering to the rarest first strategy:
By looking at its bitfields it will calculate a set of the n rarest pieces and at random
choose some pieces to download from that set.
• This randomisation is done to balance the load so that all peers do not jump on

the same least common piece.

In the end, when the peer only misses a few pieces, it
may start downloading all of them in parallel.

It is even allowed to download the same piece from two sources, but it is good form to
notify the slowest of the two when download has succeeded from another source.

24

Overview

BitTorrent terms
The BitTorrent protocol
The life of a torrent
Attacking BitTorrent

25

The life of a (legal) torrent

26

The first few days

27

Seeders vs. leechers

28

Contributions by seeders and leechers

29

Overview

BitTorrent terms
The BitTorrent protocol
The life of a torrent
Attacking BitTorrent

30

Collaboration?

BitTorrent is great for collaborating peers.
But can the protocol be subverted by malicious peers?

An “attack” on a BitTorrent may take on two forms:
Harming the swarm; i.e., making it difficult for other peers to download the file.
Taking advantage of the swarm; i.e., (mis)using the protocol to ones own advantage.

31

Harming the swarm

“Attacking a Swarm with a Band of Liars: evaluating
the impact of attacks on BitTorrent” explores methods
to poison a swarm.

… and provide an excellent overview and analysis of BitTorrent.

They mention two Sybil attacks on BitTorrent:
Piece lying
Eclipse attacks

32

Piece lying

A Sybil attack on a P2P network is an attack using
multiple, pseudonymous peers (Sybils)

This could be multiple peers spawned on the same physical machine.

In the piece lying attack the attacker(s) take
advantage of the rarest first piece selection scheme.

The attackers work in collusion lying about a set of pieces.
By having a large number of peers that claim to hold that set of pieces, the rare pieces
appear common, and thus nobody specifically requests them
• If a peer should request nonetheless randomly request one of the pieces, the lying

peers will simply choke the requesting peer.

Once the last true seed has left, the swarm has failed
33

A honest swarm

34

A swarm with piece lying (25 liars)

35

Effectiveness of piece lying

As the evaluation (the previous two graphs) show,
piece lying can be detrimental to swarm health.

The effectiveness is tied to
1) the number of sybils in the attack
2) the size of the swarm
3) peer behaviour—if e.g., all peers keep seeding for a long time, the attack will be
less effective.

36

Eclipsing correct peers

The idea behind an eclipse attack is to eclipse the
regular peers by making sure that they only (or at
least to a very high degree) connect to malicious
peers.

In BitTorrent, this is done by adding a large number of
malicious peers to the swarm.

These peers will try to connect to as many peers as possible to spread their influence
in the network.
When a correct peer connects to a malicious peer the malicious peer will notify other
malicious peers of this.
• … these will then try to connect to the correct peer also.

37

How many Sybils do you need to poison the swarm?

38

Peer eclipsing (10 Sybils lie about 32 pieces)

39

Taking advantage of the swarm

What if an attacker’s intension is selfishness?
The aim of such attacks is increasing one’s own benefits,
and not as such to harm the swarm—but of course the swarm is hurt in the process,
when some peers start to “free ride” the system.

BitTorrent has an incentive mechanism (tit-for-tat)
that should provide incentive to contribute, but this
can be circumvented.

The BitTyrant system is an example of a strategic client
that takes advantage of the BitTorrent protocol

insight: you want to do the minimal needed to stay unchoked

40

Some observations about upload/download bandwidth

Figure 4: Expectation of download performance as a
function of upload capacity. Although this represents a
small portion of the spectrum of observed bandwidth ca-
pacities, ⇥80% of samples are of capacity � 200 KB/s.

enough, so that the client can redistribute the downloaded
data and saturate its upload capacity. We have found that
indeed this is the case in the reference BitTorrent client
because of the square root growth rate of its active set
size.

In practice, most popular clients do not follow this dy-
namic strategy and instead make active set size a config-
urable, but static, parameter. For instance, the most pop-
ular BitTorrent client in our traces, Azureus, suggests a
default active set size of four—appropriate for many ca-
ble and DSL hosts, but far lower than is required for high
capacity peers. We explore the impact of active set sizing
further in Section 4.1.

3.5 Modeling altruism

Given upload and download throughput, we have all the
tools required to compute altruism. We consider two def-
initions of altruism intended to reflect two perspectives
on what constitutes strategic behavior. We first consider
altruism to be simply the difference between expected
upload rate and download rate. Figure 5 shows altruism
as a percentage of upload capacity under this definition
and reflects the asymmetry of upload contribution and
download rate discussed in Section 3.3. The second def-
inition is any upload contribution that can be withdrawn
without loss in download performance. This is shown in
Figure 6.

In contrast to the original definition, Figure 6 suggests
that all peers make altruistic contributions that could
be eliminated. Sufficiently low bandwidth peers almost
never earn reciprocation, while high capacity peers send
much faster than the minimal rate required for recipro-
cation. Both of these effects can be exploited. Note
that low bandwidth peers, despite not being reciprocated,
still receive data in aggregate faster than they send data.
This is because they receive indiscriminate optimistic un-
chokes from other users in spite of their low upload ca-
pacity.

Figure 5: Expected percentage of upload capacity which
is altruistic as defined by Equation 5 as a function of rate.
The sawtooth increase is due to the sawtooth growth of
active set sizing and equal split rates arising from integer
rounding (see Table 2).

Figure 6: Expected percentage of upload capacity which
is altruistic when defined as upload capacity not resulting
in direct reciprocation.

3.6 Validation

Our modeling results suggest that at least part of the al-
truism in BitTorrent arises from the sub-linear growth
of download throughput as a function of upload rate.
We validate this key result using our measurement data.
Each time a BitTorrent client receives a complete data
block from another peer, it broadcasts a ‘have’ mes-
sage indicating that it can redistribute that block to other
peers. By averaging the rate of have messages over the
duration our measurement client observes a peer, we can
infer the peer’s download rate. Figure 7 shows this in-
ferred download rate as a function of equal split rate, i.e.,
the throughput seen by the measurement client when op-
timistically unchoked. This data is drawn from our mea-
surements and includes 63,482 peers.

These results indicate an even higher level of altruism
than that predicted by our model (Figure 4). Note that
equal split rate, the parameter of Figure 7, is a conserva-
tive lower bound on total upload capacity, shown in Fig-
ure 4, since each client sends data to many peers simulta-
neously. For instance, peers contributing ⇥250 KB/s to
our measurement client had an observed download rate
of 150 KB/s. Our model suggests that such contribution,
even when split among multiple peers, should induce a

Altruistic upload as a function of rate
The powerful peers donate a large part of their bandwidth

41

Altruism when defined as upload capacity not resulting in direct
reciprocation. The strong peers contribute more than they get.

Figure 4: Expectation of download performance as a
function of upload capacity. Although this represents a
small portion of the spectrum of observed bandwidth ca-
pacities, ⇥80% of samples are of capacity � 200 KB/s.

enough, so that the client can redistribute the downloaded
data and saturate its upload capacity. We have found that
indeed this is the case in the reference BitTorrent client
because of the square root growth rate of its active set
size.

In practice, most popular clients do not follow this dy-
namic strategy and instead make active set size a config-
urable, but static, parameter. For instance, the most pop-
ular BitTorrent client in our traces, Azureus, suggests a
default active set size of four—appropriate for many ca-
ble and DSL hosts, but far lower than is required for high
capacity peers. We explore the impact of active set sizing
further in Section 4.1.

3.5 Modeling altruism

Given upload and download throughput, we have all the
tools required to compute altruism. We consider two def-
initions of altruism intended to reflect two perspectives
on what constitutes strategic behavior. We first consider
altruism to be simply the difference between expected
upload rate and download rate. Figure 5 shows altruism
as a percentage of upload capacity under this definition
and reflects the asymmetry of upload contribution and
download rate discussed in Section 3.3. The second def-
inition is any upload contribution that can be withdrawn
without loss in download performance. This is shown in
Figure 6.

In contrast to the original definition, Figure 6 suggests
that all peers make altruistic contributions that could
be eliminated. Sufficiently low bandwidth peers almost
never earn reciprocation, while high capacity peers send
much faster than the minimal rate required for recipro-
cation. Both of these effects can be exploited. Note
that low bandwidth peers, despite not being reciprocated,
still receive data in aggregate faster than they send data.
This is because they receive indiscriminate optimistic un-
chokes from other users in spite of their low upload ca-
pacity.

Figure 5: Expected percentage of upload capacity which
is altruistic as defined by Equation 5 as a function of rate.
The sawtooth increase is due to the sawtooth growth of
active set sizing and equal split rates arising from integer
rounding (see Table 2).

Figure 6: Expected percentage of upload capacity which
is altruistic when defined as upload capacity not resulting
in direct reciprocation.

3.6 Validation

Our modeling results suggest that at least part of the al-
truism in BitTorrent arises from the sub-linear growth
of download throughput as a function of upload rate.
We validate this key result using our measurement data.
Each time a BitTorrent client receives a complete data
block from another peer, it broadcasts a ‘have’ mes-
sage indicating that it can redistribute that block to other
peers. By averaging the rate of have messages over the
duration our measurement client observes a peer, we can
infer the peer’s download rate. Figure 7 shows this in-
ferred download rate as a function of equal split rate, i.e.,
the throughput seen by the measurement client when op-
timistically unchoked. This data is drawn from our mea-
surements and includes 63,482 peers.

These results indicate an even higher level of altruism
than that predicted by our model (Figure 4). Note that
equal split rate, the parameter of Figure 7, is a conserva-
tive lower bound on total upload capacity, shown in Fig-
ure 4, since each client sends data to many peers simulta-
neously. For instance, peers contributing ⇥250 KB/s to
our measurement client had an observed download rate
of 150 KB/s. Our model suggests that such contribution,
even when split among multiple peers, should induce a

Some observations about upload/download bandwidth

42

A Sybil attack

Looking at the data it seems that low capacity peers
have disproportionally high performance.

An obvious attack is then disguising a high capacity
peer as multiple low capacity peers.

flooding the local neighbourhood of high capacity peers these Sybils increase the
likelihood of tit-for-tat reciprocation
and of receiving optimistic unchokes

Such attacks may be mitigated by disallowing
multiple connections from one IP address.

43

Adaptively resizing the active set

From the data it seems that high capacity peers
upload “too much” to their neighbours.

that would imply that having more neighbours in the active set would be beneficial.

If the equal split capacity distribution of the swarm is
known, we can derive the active set size that
maximises the expected download rate.

44

Adjusting the active set size

Figure 8: Left: The expected download performance of a client with 300 KB/s upload capacity for increasing active
set size. Right: The performance-maximizing active set size for peers of varying rate. The strategic maximum is linear
in upload capacity, while the reference implementation of BitTorrent suggests active size ⇥

⇤
rate. Although several

hundred peers may be required to maximize throughput, most trackers return fewer than 100 peers per request.

rocation probability to equal split rate.
Figure 8 is for a single strategic peer and suggests that

strategic high capacity peers can benefit much more by
manipulating their active set size. Our example peer with
upload capacity 300 KB/s realizes a maximum down-
load throughput of roughly 450 KB/s. However, increas-
ing reciprocation probability via active set sizing is ex-
tremely sensitive—throughput falls off quickly after the
maximum is reached. Further, it is unclear if active set
sizing alone would be sufficient to maximize reciproca-
tion in an environment with several strategic clients.

These challenges suggest that any a priori active set
sizing function may not suffice to maximize download
rate for strategic clients. Instead, they motivate the dy-
namic algorithm used in BitTyrant that adaptively mod-
ifies the size and membership of the active set and the
upload bandwidth allocated to each peer (see Figure 9).

In both BitTorrent and BitTyrant, the set of peers that
will receive data during the next TFT round is decided by
the unchoke algorithm once every 10 seconds. BitTyrant
differs from BitTorrent as it dynamically sizes its active
set and varies the sending rate per connection. For each
peer p, BitTyrant maintains estimates of the upload rate
required for reciprocation, up, as well as the download
throughput, dp, received when p reciprocates. Peers are
ranked by the ratio dp/up and unchoked in order until the
sum of up terms for unchoked peers exceeds the upload
capacity of the BitTyrant peer.

The rationale underlying this unchoke algorithm is
that the best peers are those that reciprocate most for the
least number of bytes contributed to them, given accurate
information regarding up and dp. Implicit in the strategy
are the following assumptions and characteristics:

• The strategy attempts to maximize the download rate
for a given upload budget. The ranking strategy cor-
responds to the value-density heuristic for the knap-
sack problem. In practice, the download benefit (dp)
and upload cost (up) are not known a priori. The up-

For each peer p, maintain estimates of expected download
performance dp and upload required for reciprocation up.

Initialize up and dp assuming the bandwidth
distribution in Figure 2.

dp is initially the expected equal split capacity of p.

up is initially the rate just above the step in the
reciprocation probability.

Each round, rank order peers by the ratio dp/up and unchoke
those of top rank until the upload capacity is reached.

d0

u0
,
d1

u1
,
d2

u2
,
d3

u3
,
d4

u4| {z }
choose k |

Pk
i=0 ui � cap

, ...

At the end of each round for each unchoked peer:

If peer p does not unchoke us: up (1 + �)up

If peer p unchokes us: dp observed rate.

If peer p has unchoked us for the last r rounds:
up (1� �)up

Figure 9: BitTyrant unchoke algorithm

date operation dynamically estimates these rates and,
in conjunction with the ranking strategy, optimizes
download rate over time.

• BitTyrant is designed to tap into the latent altruism in
most swarms by unchoking the most altruistic peers.
However, it will continue to unchoke peers until it ex-
hausts its upload capacity even if the marginal utility
is sub-linear. This potentially opens BitTyrant itself to
being cheated, a topic we return to later.

• The strategy can be easily generalized to handle con-
current downloads from multiple swarms. A client can
optimize the aggregate download rate by ordering the
dp/up ratios of all connections across swarms, thereby

Expected download throughput for a peer with 300 KB/s upload
45

Adjusting the active set size

Figure 8: Left: The expected download performance of a client with 300 KB/s upload capacity for increasing active
set size. Right: The performance-maximizing active set size for peers of varying rate. The strategic maximum is linear
in upload capacity, while the reference implementation of BitTorrent suggests active size ⇥

⇤
rate. Although several

hundred peers may be required to maximize throughput, most trackers return fewer than 100 peers per request.

rocation probability to equal split rate.
Figure 8 is for a single strategic peer and suggests that

strategic high capacity peers can benefit much more by
manipulating their active set size. Our example peer with
upload capacity 300 KB/s realizes a maximum down-
load throughput of roughly 450 KB/s. However, increas-
ing reciprocation probability via active set sizing is ex-
tremely sensitive—throughput falls off quickly after the
maximum is reached. Further, it is unclear if active set
sizing alone would be sufficient to maximize reciproca-
tion in an environment with several strategic clients.

These challenges suggest that any a priori active set
sizing function may not suffice to maximize download
rate for strategic clients. Instead, they motivate the dy-
namic algorithm used in BitTyrant that adaptively mod-
ifies the size and membership of the active set and the
upload bandwidth allocated to each peer (see Figure 9).

In both BitTorrent and BitTyrant, the set of peers that
will receive data during the next TFT round is decided by
the unchoke algorithm once every 10 seconds. BitTyrant
differs from BitTorrent as it dynamically sizes its active
set and varies the sending rate per connection. For each
peer p, BitTyrant maintains estimates of the upload rate
required for reciprocation, up, as well as the download
throughput, dp, received when p reciprocates. Peers are
ranked by the ratio dp/up and unchoked in order until the
sum of up terms for unchoked peers exceeds the upload
capacity of the BitTyrant peer.

The rationale underlying this unchoke algorithm is
that the best peers are those that reciprocate most for the
least number of bytes contributed to them, given accurate
information regarding up and dp. Implicit in the strategy
are the following assumptions and characteristics:

• The strategy attempts to maximize the download rate
for a given upload budget. The ranking strategy cor-
responds to the value-density heuristic for the knap-
sack problem. In practice, the download benefit (dp)
and upload cost (up) are not known a priori. The up-

For each peer p, maintain estimates of expected download
performance dp and upload required for reciprocation up.

Initialize up and dp assuming the bandwidth
distribution in Figure 2.

dp is initially the expected equal split capacity of p.

up is initially the rate just above the step in the
reciprocation probability.

Each round, rank order peers by the ratio dp/up and unchoke
those of top rank until the upload capacity is reached.

d0

u0
,
d1

u1
,
d2

u2
,
d3

u3
,
d4

u4| {z }
choose k |

Pk
i=0 ui � cap

, ...

At the end of each round for each unchoked peer:

If peer p does not unchoke us: up (1 + �)up

If peer p unchokes us: dp observed rate.

If peer p has unchoked us for the last r rounds:
up (1� �)up

Figure 9: BitTyrant unchoke algorithm

date operation dynamically estimates these rates and,
in conjunction with the ranking strategy, optimizes
download rate over time.

• BitTyrant is designed to tap into the latent altruism in
most swarms by unchoking the most altruistic peers.
However, it will continue to unchoke peers until it ex-
hausts its upload capacity even if the marginal utility
is sub-linear. This potentially opens BitTyrant itself to
being cheated, a topic we return to later.

• The strategy can be easily generalized to handle con-
current downloads from multiple swarms. A client can
optimize the aggregate download rate by ordering the
dp/up ratios of all connections across swarms, thereby

Optimal active set size as a function of upload capacity
46

BitTyrant’s unchoke algorithm

For each neighbouring peer p BitTyrant maintains
estimates of the upload rate required for reciprocation
up,

as well as measured download throughput dp.

Peers are then ordered by dp/up and unchoked in
order until the sum of up terms exceeds the upload
capacity.

47

BitTyrant’s unchoke algorithm
Figure 8: Left: The expected download performance of a client with 300 KB/s upload capacity for increasing active
set size. Right: The performance-maximizing active set size for peers of varying rate. The strategic maximum is linear
in upload capacity, while the reference implementation of BitTorrent suggests active size ⇥

⇤
rate. Although several

hundred peers may be required to maximize throughput, most trackers return fewer than 100 peers per request.

rocation probability to equal split rate.
Figure 8 is for a single strategic peer and suggests that

strategic high capacity peers can benefit much more by
manipulating their active set size. Our example peer with
upload capacity 300 KB/s realizes a maximum down-
load throughput of roughly 450 KB/s. However, increas-
ing reciprocation probability via active set sizing is ex-
tremely sensitive—throughput falls off quickly after the
maximum is reached. Further, it is unclear if active set
sizing alone would be sufficient to maximize reciproca-
tion in an environment with several strategic clients.

These challenges suggest that any a priori active set
sizing function may not suffice to maximize download
rate for strategic clients. Instead, they motivate the dy-
namic algorithm used in BitTyrant that adaptively mod-
ifies the size and membership of the active set and the
upload bandwidth allocated to each peer (see Figure 9).

In both BitTorrent and BitTyrant, the set of peers that
will receive data during the next TFT round is decided by
the unchoke algorithm once every 10 seconds. BitTyrant
differs from BitTorrent as it dynamically sizes its active
set and varies the sending rate per connection. For each
peer p, BitTyrant maintains estimates of the upload rate
required for reciprocation, up, as well as the download
throughput, dp, received when p reciprocates. Peers are
ranked by the ratio dp/up and unchoked in order until the
sum of up terms for unchoked peers exceeds the upload
capacity of the BitTyrant peer.

The rationale underlying this unchoke algorithm is
that the best peers are those that reciprocate most for the
least number of bytes contributed to them, given accurate
information regarding up and dp. Implicit in the strategy
are the following assumptions and characteristics:

• The strategy attempts to maximize the download rate
for a given upload budget. The ranking strategy cor-
responds to the value-density heuristic for the knap-
sack problem. In practice, the download benefit (dp)
and upload cost (up) are not known a priori. The up-

For each peer p, maintain estimates of expected download
performance dp and upload required for reciprocation up.

Initialize up and dp assuming the bandwidth
distribution in Figure 2.

dp is initially the expected equal split capacity of p.

up is initially the rate just above the step in the
reciprocation probability.

Each round, rank order peers by the ratio dp/up and unchoke
those of top rank until the upload capacity is reached.

d0

u0
,
d1

u1
,
d2

u2
,
d3

u3
,
d4

u4| {z }
choose k |

Pk
i=0 ui � cap

, ...

At the end of each round for each unchoked peer:

If peer p does not unchoke us: up (1 + �)up

If peer p unchokes us: dp observed rate.

If peer p has unchoked us for the last r rounds:
up (1� �)up

Figure 9: BitTyrant unchoke algorithm

date operation dynamically estimates these rates and,
in conjunction with the ranking strategy, optimizes
download rate over time.

• BitTyrant is designed to tap into the latent altruism in
most swarms by unchoking the most altruistic peers.
However, it will continue to unchoke peers until it ex-
hausts its upload capacity even if the marginal utility
is sub-linear. This potentially opens BitTyrant itself to
being cheated, a topic we return to later.

• The strategy can be easily generalized to handle con-
current downloads from multiple swarms. A client can
optimize the aggregate download rate by ordering the
dp/up ratios of all connections across swarms, thereby

γ = 10%

δ = 20%

r = 3

48

BitTyrant in a regular swarm
that high capacity peers are likely to have trading deficits
with most peers. A cheating client can exploit this by dis-
connecting and reconnecting with a different client iden-
tifier, thereby wiping out the past history and increasing
its chances of receiving optimistic unchokes, particularly
from high capacity peers. This exploit becomes ineffec-
tive if clients maintain the IP addresses for all peers en-
countered during the download and keep peer statistics
across disconnections.

Downloading from seeds: Early versions of BitTor-
rent clients used a seeding algorithm wherein seeds up-
load to peers that are the fastest downloaders, an algo-
rithm that is prone to exploitation by fast peers or clients
that falsify download rate by emitting ‘have’ messages.
More recent versions use a seeding algorithm that per-
forms unchokes randomly, spreading data in a uniform
manner that is more robust to manipulation.

Falsifying block availability: A client would prefer
to unchoke those peers that have blocks that it needs.
Thus, peers can appear to be more attractive by falsi-
fying block announcements to increase the chances of
being unchoked. In practice, this exploit is not very ef-
fective. First, a client is likely to consider most of its
peers interesting given the large number of blocks in a
typical swarm. Second, false announcements could lead
to only short-term benefit as a client is unlikely to con-
tinue transferring once the cheating peer does not satisfy
issued block requests.

5 Evaluation
To evaluate BitTyrant, we explore the performance im-
provement possible for a single strategic peer in synthetic
and current real world swarms as well as the behavior
of BitTyrant when used by all participants in synthetic
swarms.

Evaluating altruism in BitTorrent experimentally and
at scale is challenging. Traditional wide-area testbeds
such as PlanetLab do not exhibit the highly skewed band-
width distribution we observe in our measurements, a
crucial factor in determining the amount of altruism.
Alternatively, fully configurable local network testbeds
such as Emulab are limited in scale and do not incorpo-
rate the myriad of performance events typical of opera-
tion in the wide-area. Further, BitTorrent implementa-
tions are diverse, as shown in Table 1.

To address these issues, we perform two separate eval-
uations. First, we evaluate BitTyrant on real swarms
drawn from popular aggregation sites to measure real
world performance for a single strategic client. This pro-
vides a concrete measure of the performance gains a user
can achieve today. To provide more insight into how Bit-
Tyrant functions, we then revisit these results on Planet-
Lab where we evaluate sensitivity to various upload rates

Figure 10: CDF of download performance for 114 real
world swarms. Shown is the ratio between download
times for an existing Azureus client and BitTyrant. Both
clients were started simultaneously on machines at UW
and were capped at 128 KB/s upload capacity.

and evaluate what would happen if BitTyrant is univer-
sally deployed.

5.1 Single strategic peer

To evaluate performance under the full diversity of real-
istic conditions, we crawled popular BitTorrent aggrega-
tion websites to find candidate swarms. We ranked these
by popularity in terms of number of active participants,
ignoring swarms distributing files larger than 1 GB. The
resulting swarms are typically for recently released files
and have sizes ranging from 300–800 peers, with some
swarms having as many as 2,000 peers.

We then simultaneously joined each swarm with a Bit-
Tyrant client and an unmodified Azureus client with rec-
ommended default settings. We imposed a 128 KB/s up-
load capacity limit on each client and compared comple-
tion times. This represents a relatively well provisioned
peer for which Azureus has a recommended active set
size. A CDF of the ratio of original client completion
time to BitTyrant completion time is given in Figure 10.
These results demonstrate the significant, real world per-
formance boost that users can realize by behaving strate-
gically. The median performance gain for BitTyrant is a
factor of 1.72 with 25% of downloads finishing at least
twice as fast with BitTyrant. We expect relative perfor-
mance gains to be even greater for clients with greater
upload capacity.

These results provide insight into the performance
properties of real BitTorrent swarms, some of which limit
BitTyrant’s effectiveness. Because of the random set of
peers that BitTorrent trackers return and the high skew
of real world equal split capacities, BitTyrant cannot al-
ways improve performance. For instance, in BitTyrant’s
worst-performing swarm, only three peers had average
equal split capacities greater than 10 KB/s. In contrast,
the unmodified client received eight such peers. Total
download time was roughly 15 minutes, the typical min-
imum request interval for peers from the tracker. As a re-

49

Summary

BitTyrant performs well in a regular swarm—where it
lives off the altruism of the other peers.

High bandwidth peers really benefit from BitTyrant.

It also lives well in a swarm of only BitTyrant peers—as
long as these are altruistic, i.e., they still contribute
excess capacity.

But when the entire BitTyrant swarm is acting selfishly
the performance takes a serious hit. Selfish meaning
that the peer will never use excess capacity.

50

Summary

We have seen a number of ways to attack BitTorrent:
Sybil attacks, piece lying, peer eclipsing

The BitTyrant system, a strategic BitTorrent client, was
presented. BitTyrant increases download speed by:

varying the active set size based on the reciprocation and,
making sure that you only give what is necessary to other peers.

51

Summary

Scalability
Highly scalable and widely used

Fairness
You are only involved if you are interested in a particular file, give and ye shall
receive…

Integrity and security
Files are integrity checked – peers may be malicious

Anonymity, deniability, censorship resistance
Not a part of the protocol – transactions can be (and are) followed, and trackers can
certainly be shutdown

52

