
Niels Olof Bouvin

University of Aarhus
November 2000

Ph.D. Thesis

Augmenting
the Web
through

Open Hypermedia

The Development of
the Arakne Environment,

a Collaborative Open Hypermedia
System for Web Augmentation

2

Contents

1 Foreword 7
1.1 Structure of this Thesis . 7
1.2 Papers . 8
1.3 The Arakne Environment . 9
1.4 My Background . 9
1.5 Acknowledgements . 10

2 Danish Summary 11

3 Introduction and Motivation 13
3.1 Working on the Web . 13
3.2 Lies Open Hypermedia Dead in the Wake of the Web? 14
3.3 The Vision of the Augmented Web 15
3.4 Open Hypermedia Web Augmentation Tool: A Definition 16

4 Hypermedia and the Web 17
4.1 A Brief History of Hypermedia . 17
4.2 The Classical Monolithic Hypermedia Systems 17
4.3 Open Hypermedia . 19

4.3.1 Sun’s Link Service . 20
4.3.2 Microcosm . 21
4.3.3 Devise Hypermedia . 22
4.3.4 HyperDisco . 23
4.3.5 HOSS . 24
4.3.6 Chimera . 25
4.3.7 Construct . 25
4.3.8 Integrating Third-party Applications 26
4.3.9 Open Hypermedia on the Web 27

4.4 Hypermedia Standardisation Efforts 29
4.4.1 The Dexter Hypertext Reference Model 30
4.4.2 Open Hypermedia Systems Working Group 31

4.5 CSCW and Collaborative Hypermedia 32
4.6 Hypermedia: Concluding Remarks 35
4.7 A Brief History of the Web . 35

4.7.1 Hyper-G . 36
4.7.2 The Semantic Web? . 37
4.7.3 Collaboration on the Web 38
4.7.4 WebDAV . 39

3

4 CONTENTS

4.8 WWW, or What is Wrong with the Web? 39
4.9 Summary . 41

5 Related Work 43
5.1 XLink . 43
5.2 Internet Explorer Add-ons . 44

5.2.1 Flyswat . 45
5.2.2 iMarkup . 46
5.2.3 Third Voice . 46

5.3 Summary . 46

6 Contributions 47
6.1 [P1]: Unifying Strategies for Web Augmentation 47
6.2 [P2]: Opening Temporal Media for Web Augmentation 48
6.3 [P3]: The Arakne Environment and the future of OHSWG 49
6.4 [P4]: The Collaborative Arakne Environment 52
6.5 [P5]: The iScent Framework . 52
6.6 Prototypes . 55

6.6.1 DHM/WWW . 55
6.6.2 Navette . 56
6.6.3 The Arakne Environment . 56

6.7 Summary . 60

7 Challenges for Web Augmentation 61
7.1 Working with Web Browsers . 61

7.1.1 The Ideal Web Browser . 63
7.2 Experiences with Java . 64
7.3 Hypermedia Scalability . 65

7.3.1 Scalability through Interchange Files 66
7.4 Summary . 67

8 Conclusion 69
8.1 Primary Results . 69
8.2 Web Augmentation in the Future? 70

8.2.1 Commercial future of Web augmentation 71
8.3 Future Work . 72

8.3.1 Collaboration in the Arakne Environment 72
8.3.2 Open Sourcing the Arakne Environment 72

A Use Studies 75
A.1 Landbrugets Rådgivningscenter . 75

A.1.1 The Information Series . 77
A.1.2 Assembling a publication . 77
A.1.3 Handling law material . 77
A.1.4 Moving from paper to the Web 78
A.1.5 Work with Landbrugets Rådgivningscenter 78
A.1.6 Experiments at Landbrugets Rådgivningscenter 80

A.2 Guided Tours at Opasia . 80

CONTENTS 5

B Installing the Arakne Environment 83
B.1 Systems Requirements . 83
B.2 Installing JIntegra . 83
B.3 Installing the Arakne Environment 83
B.4 Starting the Construct Servers . 84
B.5 Starting the Arakne Environment . 84

C Vocabulary 85

Bibliography 87

List of Figures

4.1 The Construct Process Architecture (from [52]) 26
4.2 The General Dexter Architecture (from [62]) 30
4.3 The OHSWG Navigational Data Model . 32
4.4 The Uniform Resource Locator . 36
4.5 The General Web Architecture . 37

5.1 The iMarkup Application (fromhttp://www.imarkup.com/) 45

6.1 The Arakne Framework . 47
6.2 Mimicry playing the endpoint ’Endpoint 14’ 49
6.3 The Arakne Environment with Mimicry . 50
6.4 The iScent Framework . 54
6.5 The DHM/WWW Prototype . 55
6.6 The Navette Prototype . 57
6.7 Early Arakne Version . 58
6.8 The Arakne Environment: Two sessions, two views, and a Session Manager.

The ticker tape is visible at the bottom. The tabbed panes just above the ticker
tape is used to switch between joined sessions. 59

A.1 The Organisation of Danish Agricultural Advisory Services 75
A.2 Guided Tour at Opasia . 81

List of Tables

4.1 Components and entities in the Dexter model 31

6

http://www.imarkup.com/

Chapter 1

Foreword

1.1 Structure of this Thesis

This report forms the first part of of my Ph.D. thesis titled “Augmenting the Web
through Open Hypermedia”. This part summarises my work and relate it to the hyper-
media and Web research fields. The second part is formed by the five papers described
below in Section 1.2, all dealing with augmenting the Web with open hypermedia or
collaboration. The third and final part of my Ph.D. is the Arakne Environment, a sys-
tem for creating open hypermedia structures on top of Web pages, which availability is
described in Appendix B. It is also available on the CD delivered with this text.

Foreword This chapter

Danish Summary A summary of the thesis in Danish.

Introduction and Motivation The Web is briefly introduced, along with some sce-
narios, highlighting some shortcomings of the Web. These scenarios are used to
introduce the term ’Web augmentation’, that is using open hypermedia technol-
ogy to structure the Web.

Hypermedia and the Web My work is related to both open hypermedia research and
the Web community. This chapter gives an overview of both fields as well as a
brief introduction to the relevant CSCW topics, with special focus on the areas
directly related to my work.

Related work There are a growing number of commercial products aimed at Web
augmentation. This chapter introduces some of these systems along with a de-
scription of XLink, a W3C XML standard for navigational hypermedia.

Contributions My contributions to the field based on the papers described in Sec-
tion 1.2. I have mainly worked directly on Web augmentation and this is re-
flected in the papers. My experiences with the Open Hypermedia Systems Work-
ing Group compliant Construct servers are reported, as is work on extending and
generalising the approach to shared awareness found in the Arakne Environment.

Challenges for Web Augmentation While Web augmentation is greatly eased by the
accessibility of Web standards, there are some lessons with Web browsers and
Java accumulated through my work, that identifies some of the obstacles remain-
ing.

7

8 CHAPTER 1. FOREWORD

Conclusion This chapter summaries the results, I have achieved, and sets the direc-
tions of my future work. The Arakne Environment and its related technologies
have now reached a point where work can begin in earnest.

Use studiesTwo cases, one detailing the need for Web augmentation at Landbrugets
Rådgivningscenter, another showing Web augmentation in the form of guided
tours used in practice at the Opasia Web portal (the largest Danish ISP).

Installing the Arakne Environment A short description detailing how to download
and install the Arakne Environment.

Vocabulary Short definitions of various terms used throughout this text.

1.2 Papers

The core part of this thesis consists of the following papers, included with the thesis:

• N. O. Bouvin. Unifying strategies for Web augmentation. InProceedings of
the10th ACM Hypertext Conference, pages 91–100, Darmstadt, Germany, Feb.
1999. This paper introduces the term “Web augmentation”. Based on a study
of a number of Web augmentation tools, a general framework to model Web
augmentation, as well as an implementation using this framework is presented.
Referred to in this text as [17] and then marked with [P1].

• N. O. Bouvin and R. Schade. Integrating temporal media and open hypermedia
on the World Wide Web. InComputer Networks — The International Journal of
Computer and Telecommunications Networking, (31):1453–1465, 1999. Tradi-
tionally, Web augmentation has concentrated on adding links to Web pages, that
is, HTML documents. This paper describes how temporal media, such as video
or audio clips, may be augmented with links on the Web. Referred to in this text
as [20] and then marked with [P2].

• N. O. Bouvin. Experiences with OHP and issues for the future. inLecture Notes
in Computer Science1903. Springer, 2000. Based on the work of porting the
Arakne Environment to the Open Hypermedia Protocol, this paper reflects on
the state of the standards developed by the Open Hypermedia Systems Working
Group, and discusses how this work can continue in the future. Referred to in
this text as [19] and then marked with [P3].

• N. O. Bouvin. Collaborative Web-based open hypermedia and mutual awareness.
To be submitted for publication. This paper describes how collaborative work
and shared awareness is supported in the Arakne Environment, with special focus
on how collaboration can be seamlessly integrated into the interaction with the
system. Referred to in this text as [15] and then marked with [P4].

• K. M. Anderson and N. O. Bouvin. Enabling project awareness and intersub-
jectivity via hypermedia-enabled event trails. Submitted for publication. This
paper introduces the iScent architecture, a system to support shared awareness
and intersubjectivity between co-workers. As such it is a continuation and gen-
eralisation of the awareness tools already present in the Arakne Environment.
Referred to in this text as [6] and then marked with [P5].

1.3. THE ARAKNE ENVIRONMENT 9

1.3 The Arakne Environment

The Arakne Environment is a tangible result of my Ph.D. It is a collaborative openhttp://www.bouvin.net/
Arakne/hypermedia system aimed at Web augmentation. The basis of the system is an environ-

ment wherein an open set of hypermedia tools, known as “views”, exists and currently
provide the user with navigational, spatial, and guided tour structuring mechanisms for
Web pages. Details on how to obtain and install the system is found in Appendix B.

It had not reached its current state without the help of the following Coconut student
programmers, to whom I am grateful: René Thomsen, Michael Bang Nielsen, and
Henning Jehøj Madsen.

1.4 My Background

It was 1993, and I was a summer student at the Department for Electronics and Comput-
ing for Physics in Geneva CERN, when Tim Berners-Lee introduced me to the Web...http://www.cern.ch/

In thosedays, you could still find Web pages (at CERN and at NCSA) that listed thehttp://www.ncsa.edu/

whole of the Web... Since then things have changed considerably. In spring 1994 I
decided to attend a new class on Hypermedia, because I thought it sounded interesting
(it was). Four concepts particularly caught my attention at that time — Bush’s trail
blazer, Engelbart’s ambition to augment the human intellect, Nelson’s Docuverse, and
the elegance of NoteCards.

I received my Master’s Degree in late July 1996 (mastering in computer science
with a minor in mathematics) at the Department of Computer Science, University of
Aarhus, Denmark. Together with Christina Nielsen and Christian Mulvad Sejersen I
had been involved in an activity theoretical HCI evaluation of a research prototype
created by EuroPARC Cambridge for the Esprit EuroCODE project, which we doc-
umented in our Master’s thesis “Spirits in a Material World”, with Susanne Bødker
as our supervisor. Our contribution to the EuroCODE project was published in the
EuroCODE Deliverable 1.4.2.

After graduation I accepted an offer to work at the Department of Computer Sci-
ence, where I developed the DHM/WWW applet, the first application to offer client-
side open hypermedia links in Web pages by integrating an ordinary Web browser. The
results were published in [48], co-authored by Kaj Grønbæk, Lennert Sloth, and my-
self. This paper later won the Engelbart Award for best paper at Hypertext 1997 in
Southampton, England.

This wetted my appetite for what I later would term “Web augmentation”, and in
September 1997 I was accepted as a Ph.D. student at Aarhus with Kaj Grønbæk as
my supervisor, with the topic of open hypermedia on the Web. I became a member
of the Coconut project, a project collaboration between the Department of Computer
Science and Tele-Danmark Internet (the largest Danish ISP). The aim of the Coconuthttp://www.opasia.dk/

project was twofold: to make new hypermedia research, and explore the possibilities
for collaborative component-based Web technology. The project ended by the end of
1999, while my Ph.D. studies continued to the end of August 2000.

It has been exciting to work within Coconut — pure research coupled with the
needs of a corporate entity — and I wish to thank all the participants: Kaj Grøn-
bæk, Ole Hedegård, Jesper Jühne (original co-developer of Ariadne), Henning Jehøj
Madsen, Michael Bang Nielsen, Peter J. Nürnberg, Lars Pind, Olav Reinert (original
co-developer of CAOS), René Schade (original developer of Mimicry), Jörg Schneider,
Kristine Thomsen, René Thomsen, and Uffe Kock Wiil

http://www.bouvin.net/
http://www.cern.ch/
http://www.ncsa.edu/
http://www.opasia.dk/

10 CHAPTER 1. FOREWORD

I spent the first five months of 2000 at the University of Colorado, Boulder, visiting
Kenneth M. Anderson. The stay was very enjoyable and fruitful with good discus-
sions and work on hypermedia and with the development of the iScent framework
(Section 6.5) as the main result.

1.5 Acknowledgements

A very special thank you to the people, without whose comments and suggestions, this
text would look quite different: Kaj Grønbæk, Christina Nielsen, and Marianne Graves
Petersen.

Chapter 2

Danish Summary

Jeg har i min Ph.D. beskæftiget mig med, hvorledes man udbygger funktionaliteten af
World Wide Web ved hjælp af åben hypermedieteknologi. WWW er en stor success,
men visse ting er fortsat vanskelige. Man kan således ikke lave links fra andre folks
sider, da linking indebærer modifikation af den Web side, som man linker fra. De
links, mankanskabe fra egne sider er simple unidirektionale links med ét endepunkt.
Som struktureringsmekanisme er et så simpelt link begreb relativt begrænset. En anden
begrænsning af WWW er den ringe understøttelse for samarbejde.

Problemet med struktur på WWW vil ikke blive mindre med tiden, idet WWW
fortsat vokser med stor hast. F.eks. gør en lang række danske statslige institutioner
i stigende grad deres materiale tilgængeligt over WWW. Hertil kommer de dagligehttp://www.danmark.dk/

referencer til Web sider for uddybende information i medierne.
Hypermedieforskningen har i løbet af de sidste 55 år produceret en mængde spæn-

dende systemer med struktureringsmekanismer af meget forskellig art. Fra traditionelt
navigationelt hypermedie (dvs. links og ankre), som også anvendes på WWW, til guid-
ede ture, spatialt eller taksonomisk hypermedie. Hertil kommer, at hypermedie syste-
mer allerede tidligt fokuserede på samarbejdsstøtte til specielt forfattervirksomhed af
den ene eller anden art.

De klassiske hypermedie systemer var lukkede eller monolitiske. Dette vil sige,
at de kun i ringe grad eller slet ikke var i stand til at håndtere dokumenter lavet med
andre værktøjer. Såfremt man ønskede at benytte hypermedie, måtte man således for-
lade sine eksisterende programmer, og forlade sig på de i hypermedie systemet tilgæn-
gelige. Dette medførte en begrænset udbredelse af hypermedie teknologien. I 1989
publicerede Meyrowitz sin artikel “The Missing Link: Why We All doing Hypertext
Wrong” [78], hvor han identificerede den manglende støtte for almindeligt forekom-
mende værktøjer (såsom tekstbehandlingsprogrammer eller regneark) som hypermedie
forskningens største problem. Denne artikel afstedkom en fokusering på at integrere
hypermediefunktionalitet ind i almindelige programmer. Dette område betegnes sæd-
vanligvis som åbent hypermedie forskning. Området er i år 2000 elleve år gammelt
(regnet efter den første publikation, der omhandlede et åbent hypermediesystem, Sun’s
Link Service [86]), og i den periode er der blevet udviklet mange forskellige åbne
hypermediesystemer, der har demonstreret, at det er muligt at tilbyde hypermediefunk-
tionalitet i programmer, der ikke er specielt udviklede til formålet.

Et andet område, der også i år er elleve år gammelt er World Wide Web. Det blev
oprindeligt skabt af Tim Berners-Lee på kerneforskningsinstituttet CERN i Geneva i
Schweiz. WWW er reelt et monolitisk hypermediesystem, der primært fungerer ved

11

http://www.danmark.dk/

12 CHAPTER 2. DANISH SUMMARY

hjælp af dokument formatet HTML. Ironisk nok er WWW det eneste kendte eksempel
på et monolitisk hypermediesystem, der har formået at få endog stor udbredelse, og
som oven i købet har evnet at få andre systemer til at tilpasse sig. Den store succes, som
WWW har nydt, må hovedsageligt tilskrives den simple bagvedliggende arkitektur.
Denne arkitektur har imidlertid også, som nævnt i indledningen, nogle begrænsninger.

Mit arbejde har taget udgangspunkt i den åbne hypermedieforskning med det for-
mål at udvide hypermedie funktionaliteten af WWW. Dette mål kalder jeg “Web aug-
mentation”, hvilket løseligt kan oversættes til “Web forbedring”. I forbindelse med mit
arbejde har jeg dels udviklet en række prototyper, der demonstrerer åbnet hypermedie
kombineret med WWW, dels arbejdet med den generelle arkitektur for sådanne værk-
tøjer, og endeligt beskæftiget mig med, hvorledes samarbejde kan understøttes bedre
på nettet.

Det foreløbige højdepunkt af mit arbejde er “the Arakne Environment” (kort Arakne).
Arakne er en hypermedieomgivelse, der i øjeblikket understøtter navigationelt, guidet
tur og spatialt hypermedie på WWW. Ved hjælp af denne omgivelse kan en bruger
skabe noter og tovejs mange til mange links på kryds og tværs af WWW, desuagtet
om vedkommende har skriveadgang til de pågældende sider eller ej. Systemet gem-
mer de skabte hypermediestrukturer i en hypermedie server, og først når en Web side
hentes af brugeren, indsættes de relevante links og noter, således at de fremstår på skær-
men. Såfremt flere brugere er tilknyttet de samme hypermedieservere, kan de igennem
Arakne samarbejde omkring skabelsen af hypermediestrukturer. Hvis en bruger måtte
ønske det, er det også muligt at eksportere hypermediestrukturer til en XML fil, som
brugeren så kan sende til andre via elektronisk post, eller placere på sin Web side.
Arakne er et Windows program og anvender Microsoft Internet Explorer som sin Web
browser.

I forbindelse med udviklingen af Arakne og de systemer, der gik forud, har jeg
naturligvis haft lejlighed til at høste en del erfaringer med kombinationen af åbne hy-
permedie systemer og WWW. Disse erfaringer (såsom problemerne omkring at skulle
tilpasse en Web browser til denne anvendelse) er beskrevet i dette dokument.

Foruden selve udviklingen af diverse systemer, består min Ph.D. også af fem artik-
ler, som er vedlagt dette dokument. Disse artikler beskriver udviklingsprocessen, der
førte til Arakne, herunder det generelle Arakne Framework; arbejdet med at udvide
Arakne, således at man kan linke til og fra videofilm på WWW; tilpasningen af Arakne
til Construct hypermedieserverne; samarbejdsstøtte i Arakne; og endeligt en generel
arkitektur til at kunne understøtte intersubjektivitet på Internet skala.

Mit arbejde med “Web augmentation” har vist, dels teoretisk og praktisk, at WWW
med fordel kan udvides med mere avancerede hypermediefunktionalitet. Den ud-
videlse har til formål at forbedre WWW, men ikke at erstatte det. WWW er i dag
så stort, at en udskiftning er aldeles urealistisk. Hertil kommer, at WWW på mange an-
dre områder end netop hypermediemodellen er et glimrende system, hvilket dets store
udbredelse også vidner om. Snarere er det interessant at se på de anvendelsesområder,
hvor WWW har svagheder, og afhjælpe disse, og mit arbejde viser, at dette i høj grad
er muligt.

Chapter 3

Introduction and Motivation

The Web as it stands today is a tremendous success. It is the single largest collection
of information ever created, and it is readily available to everyone with access to a
Web browser. As hypermedia systems go, the Web is unfortunately lacking in some
respects, especially with regards to the hypermedia model and the support for collabo-
rative work. I will in this introduction illustrate some of the shortcomings of the Web
through some scenarios.

3.1 Working on the Web

John D. Hansen is an agricultural consultant, and he spends most of
his time researching and writing up reports and articles for the farming
community. His company has in the last couple of years started to focus
on the Web and John is currently working on the Web version of his most
recent article about herbicides. John is not quite satisfied with the contents
of the Web pages from one large herbicide manufacturer, and decides to
put in a link on the manufacturer’s Web page to his own analysis. Later,
when John publishes his article, users of his company’s site (and users of
their proxy) can see a link to his report on the manufacturer’s Web site.
While he is at it, John creates a guided tour juxtaposing some recent video
clips from national TV of sensationalistic claims with regards to the use of
the herbicide “Ground up” with the actual test reports and results, adding
his own comments.

This scenario illustrates several important points, much of which cannot be realised
with the Web, as it stands today. The Web is essentially (baring self publishing) a
read-only media, where users may access all kinds of information, but are barred from
making annotations, or modifying (their view of) documents. The study and develop-
ment of techniques to accomplish this using open hypermedia has been the focus of my
Ph.D.

An area, where the Web and Web browsers so far have been severely lacking is
the support for critical reading. There may be a lot of information available, but users
are not free to annotate these pages as they can with a book [73]. A recurring theme
on the topic of the Internet and the Web is the creation of special interest groups and
NGOs (non-goverment organisations), that span geographical borders. Related is the

13

14 CHAPTER 3. INTRODUCTION AND MOTIVATION

proliferation of meta Web sites, that largely consists of references (with short introduc-
tions) to pages on other Web sites. While still young, there is also such a thing as Web
journalism, where journalists review and comment on Web sites, or create overviews
of specific topics. Common to these cases is that the creators of comments are limited,
when referring to other Web pages: they can either make whole page references, or
copy and paste relevant parts into their own documents and thus leave it as an exercise
to the reader to locate the quoted portion in the original Web page.

Consider another situation, this time within an organisation. Many
organisations deploy intranet with Web servers accessible only from the
company network. If several groups within a project depend on the same
technical specification, a Web server is well suited for making these docu-
ments easily accessible. However, the Web is not only documents, it is also
links. Consider therefore the situation, where several of the groups wish to
insert links into the technical specification. This can be accomplished in
several ways using standard Web technologies. Either all links are placed
in the same document, or identical copies of the specification are made
for each group. Both solutions are unsatisfactory. In the former case, all
groups will either have write-access to the specifications in order to add
links, or possibly send their links to a single Web master. Both solutions
have both overhead and the possibility of accidently corrupting either the
specification or other groups’ links. In the latter case, each group has their
own copy. This too is unsatisfactory, if the specification at a later point
changes, asn copies of the specification then must be updated. It could
also be the case, that the specification is so important, that it may not be
modified at all to prevent accidental changes.

These examples highlight that some things are not feasible or easy on the current
Web. It is at this point quite unrealistic to replace the Web, and there is certainly
no need, as the Web performs admirably for most purposes. However, it would be
interesting to be able to perform the tasks described above better. One approach — the
one taken by me through the course of my Ph.D. — is to try to improve upon the Web by
adding an additional layer and leaving the layers below unchanged. This improved Web
is what I term the augmented Web, partly in remembrance of NLS/Augment [39, 40]
— a system that sought to augment the human intellect. I am not that ambitious, but I
wish to augment the Web.

3.2 Lies Open Hypermedia Dead in the Wake of the
Web?

It is the nature of my work that I place myself between two research communities, that
of open hypermedia and that of the Web. Tim Berners-Lee never presented his World
Wide Web formally to the hypertext community (at that time known as SIGLINK),
though he held a demonstration of the system at the hypertext conference. Since then
things have changed — the Web is big, and SIGLINK is today known as SIGWEB. So,http://www.acm.org/sigweb/

has hypermedia research been rendered obsolete, maintained only by a few academic
diehards? This question was discussed by Nürnberg and Ashman in [82] presenting
the thesis that Web is the open hypermedia system of the future, and the antithesis that
the Web is hardly a hypermedia system at all. These are extremist points of view, and

http://www.acm.org/sigweb/

3.3. THE VISION OF THE AUGMENTED WEB 15

the paper ends by reconciling thesis and antithesis into a synthesis. Briefly the paper
concludes that there is room for both parties and that both can benefit from joining
forces and learning from each other rather than focusing on differences.

Obviously, I think that there is room for both open hypermedia and the Web. In-
deed, I do not foresee any immediate doom for open hypermedia caused by the Web.
On the contrary I would argue that this is anexcellenttime to be doing research in open
hypermedia,preciselybecause we now have the Web. As a topic for open hyperme-
dia research, the Web has very nice properties. Most of the involved file formats and
protocols are open (a relief for a community used to dealing with proprietary editors
and formats), and there is a decent global naming scheme for documents and resources.
Given the size of the content available (much of it fairly poorly structured), this is the
time where the fruits of open hypermedia may be harvested. Hypermedia becomes
first really interesting and useful with large collections [4, 5], because this is where
good structuring tools really pay off. Not only is there a lot of stuff out there, there
is also a lot of people using it (according to some of the latest estimates∼ 300 mil-
lion, though this is notoriously hard to calculate). Organisations are actively moving
their documents on internal and external Web sites. The Web has provided open hy-
permedia researchers with what we could scarcely dream of before — a unified fairly
well-behaved document space with many users.

So what can we do with it? I along with many others have for the last few years
been engaged in what I term Web augmentation. It is an approach to Open Hypermedia
Systems development aimed at the Web, which seeks to combine the strengths of each
technology to build a better Web.

3.3 The Vision of the Augmented Web

Web augmentation allows users to create and use external hypermedia structures im-
posed on Web pages (i.e. not previously present on the pages), that they themselves
not necessarily have write-access to. This would empower users as they would be able
to use the Web in a more flexible way. Given Web augmentation tools, it becomes
possible to annotate, link, and otherwise structure all Web pages. Proper tools would
also allow users to share their links with others, or professionals to publish their work
to their colleagues, clients, or readers.

Revisiting the cases in Section 3.1, some things becomes possible or easier with
Web augmentation tools. The following scenarios are all possible today.

Web journalists can pinpoint their links to exactly what they want.
They can add annotations to documents, highlighting inconsistencies or
weaknesses in the text. They can create guided tours to help their readers
get an overview of a topic. As time goes by, their hypermedia structures
can be updated to reflect new material. With tools like this, there is sud-
denly room for trail blazers1 on the Web, rather than collectors of links to
other pages.

Professionals relying on technical or legal documentation can now sud-
denly all share the same documents. The documents are not changed by
the users, as they create the links and other structures they need in their
work. Each collection of hypermedia structures can be viewed on its own,
or combined with with other collections. They can be exported and mailed

1Trail blazers: In Bush’sAs We May Think[23], professional authors of hypermedia structures.

16 CHAPTER 3. INTRODUCTION AND MOTIVATION

to others. Using robust location specifiers [87] it becomes possible to have
links meaningfully survive document revisions.

One concern that is often raised in this context is that of intellectual property (IP):
is it OK to modify other people’s Web pages? In the Coconut project, this question
was put to the legal department of Tele-Danmark Internet. According to them, it is
permissable under Danish law, as long it is clear that such modification is taking place.
As Web augmentation generally requires users to install special software or to configure
their computer in a special way, the users can be expected to be aware that modification
may be taking place. IP laws vary from country to country, and this argument may not
hold water everywhere. It should be noted though, that Web augmentation in technique
if not in effect is apresentation— the original Web page is not modified, but the
presentation of it on the user’s machine is.

While not all problems of the Web can be addressed through Web hypermedia
augmentation (e.g. “Error 404: Page Not Found”), the lessons and techniques learned
in the open hypermedia community could very well benefit the users of the Web. Let
us therefore consider, what Web hypermedia augmentation is.

3.4 Open Hypermedia Web Augmentation Tool: A Def-
inition

A tool is a open hypermedia Web augmentation tool, if it through inte-
gration with a Web browser, a HTTP proxy or a Web server adds content
or controls not contained within the Web pages themselves to the effect
of allowing structure to be added to the Web page directly or indirectly,
or to navigate such structure. The purpose of such a tool is to help users
organise, associate, or structure information found on the Web using hy-
permedia structuring mechanisms. This activity may be done by a single
user or in collaboration with others.

Most Web augmentation tools operate solely on HTML, but as demonstrated by
Webvise [56] and Mimicry [20] [P2], other media types can be hypermedia enabled,
such as video (see Section 6.2 for further details on Mimicry). As the different me-
dia handlers grow more advanced and exhibit richer APIs (Application Programming
Interface), it becomes possible to augment more of the Web.

Already, there exists not only research prototypes, that demonstrates the possibili-
ties of Web augmentation, but also an increasing number of commercial products aimed
at this area (some of which are described in more detail in Section 5.2). The field of
Web augmentation is an intriguing one, that requires attention both to hypermedia re-
search and the current state of the Web.

Chapter 4

Hypermedia and the Web

This chapter describes the foundation for the fields within which I have worked and mo-
tivates my work by examining hypermedia with special focus on open and collaborative
hypermedia, as well as the Web. An understanding of what constitutes hypermedia and
open hypermedia in particular is the necessary foundation of my work. Likewise, the
history of the Web and its current state is needed to establish why augmenting it with
open hypermedia might be a good and feasible project.

4.1 A Brief History of Hypermedia

Hypertext as a term was introduced in the sixties by Ted Nelson. The classical under-
standing of the word is a collection of documents (or “nodes”) interconnected by links,
so that a user easily can go from one place to another, as well as create links between
documents. Today, hypertext (or hypermedia) is not just about links anymore, and it
is perhaps better to redefine hypertext to reflect this. A modern but vague definition of
hypertext could be the combination of content and structuring of that content.

Some argue, that the first example of hypertext is the Torah with its rich tapestry of
interlinked annotations. However, the first description of a device that through electric
or mechanical means provided what we today understand as hypermedia functionality
was the hypothetical Memex, invented by Vannevar Bush in his landmark article “As
We May Think” [23] published in theAtlantic Monthlyin 1945. The Memex allowed
the reader to speedily transverse a vast corpus of literature, to annotate pages, and to
store the trails taken through this landscape of text. The Memex had near infinite stor-
age capacity using microfilm, and new collections of texts and trails could easily be
added or shared with other Memex owners. Proficient Memex users would become
trail blazers, discovering new relations between texts and publishing them for other
readers to use. This hypothetical machine formed one of the foundations for hyperme-
dia research [68].

4.2 The Classical Monolithic Hypermedia Systems

The Memex was more than a glorified electric library, it was a machine designed to
help people utilise associative thinking, to help people see new relationships where
none had been apparent before. The idea to create a device to help people think better

17

18 CHAPTER 4. HYPERMEDIA AND THE WEB

is a radical one, and one that was taken up by two luminaries in the sixties. Douglas C.
Engelbart and Theodor H. Nelson. Their work took two different directions: Engelbart
as the innovator and creator, and Nelson as the visionary.

Engelbart’s NLS/Augment [39, 40] was the first real hypermedia system. This
ground breaking system provided its users with a collaborative, multi-window system
(with video conferencing!), where everything could be linked to, and where the main
interaction with the system was done through a mouse, another Engelbart innovation.
The expressed purpose of NLS/Augment was to augment human intellectual capabili-
ties.

The system designed by Nelson were no less impressive — he coined the term “hy-
pertext” and envisioned the Docuverse [80], whereall texts would be instantly avail-
able. This was to be realised through Project Xanadu — an extremely ambitious infor-
mation infrastructure/hypermedia system that would take care of editing, versioning,
backup, micro payment, typed hypermedia structuring, copyright, distribution, pub-
lishing, etc. — many issues still not solved satisfactorily today, nearly forty years later.
The Xanadu system has yet to materialise though the implemented parts of it recently
was released into open source. In some regards, the World Wide Web can be consid-
ered the actual Docuverse, though it is primitive compared to what Xanadu might have
been.

The seventies and eighties saw the creation of several important hypermedia sys-
tems. KMS [1] became the first system to featurelarge hypertexts (used by the Amer-
ican navy). Intermedia [106], developed at Brown University for educational purposes
had several interesting properties, and stands, at least in this author’s opinion, as the
pinnacle of monolithic hypermedia systems. Among its many advanced features were:

• Multi-user access to documents and hypermedia structures

• Access rights to read/write/annotate.

• Full fledged WYSIWYG applications

• Extensive undo/redo functionality

• Collections of documents (“corpus”)

• Collections of (externally stored) hypermedia structures (“Webs”)

• Span to span bidirectional links

• Graphical link browsers

• A large, object-oriented application framework to facilitate extensibility

A quite different but also impressive system was NoteCards [61] developed at Xe-
rox Palo Alto Parc. Based on a metaphor of3× 5 cards, NoteCards was designed to be
“a general purpose idea processing environment” [61, p. 45], intended for individual
rather than collaborative use (see [94] for a discussion on the work of making Note-
Cards collaborative). One very nice feature of NoteCards was the Browser card, which
was both a graphical representation of a link structure, an editor for said link structures,
and an entity which could be linked to as any other card. NoteCard was developed in
Xerox Interlisp, and could thus easily be modified and extended by the Lisp savvy. This
allowed for great flexibility and supported experimentation with new forms of hyper-
media structuring mechanisms, enabled NoteCards as a hypermedia testbed for further

4.3. OPEN HYPERMEDIA 19

experiments such as support for collaboration [94]. The lessons learned in the devel-
opment of NoteCards was crystallised in Halasz’ famous “seven issues” [60], where he
identified areas that should be covered by new hypermedia systems.

4.3 Open Hypermedia

While individually impressive, systems such as Intermedia or NoteCards suffered from
some problems. To be useful, they had to provide their users not only with hyperme-
dia functionality (at which they excelled), but also with good editors (such as word
processors, spreadsheets etc.). For specific purposes, such as an educational setting
(Intermedia) or idea generation/structuring (NoteCards), they did very well, but still
these hypermedia systems did not become widely used. One of the major obstacles to
widespread acceptance was identified by Meyrowitz in [78] as the lack of support of
the editors already in widespread use. Most organisations rely on standardised tools,
such as word processors, databases, spreadsheets, CAD systems, etc., and unless the
payoff is high, they are understandably hesitant to migrate to other tools. The mono-
lithic hypermedia systems could only provide hypermedia functionality to their own
editors and file formats, and thus required users to move exclusively to these editors.
With the personal computer revolution came a lot of new applications, and the hyper-
media developers could not keep up with the various new editors supported on the per-
sonal computers. The end result was that the hypermedia applications did not become
as widespread as they might. Meyrowitz realised this, and suggested that the correct
course was to embrace the third-party applications and to offer hypermedia function-
ality for them, ideally to the degree where hypermedia functionality was as ubiquitous
as copy and paste. This became known as “open hypermedia”, the augmentation of
third-party applications with hypermedia.

An added advantage of integrating third-party applications is that it allows people
to create relationships between documents handled by different programs, that would
otherwise be non-integrated. Thus, dissimilar applications are “knitted together” by
the open hypermedia system.

Some of the current open hypermedia systems are (listed alphabetically)

• Chimera [7] (University of Colorado, Boulder, USA)

• Construct [52, 53] (University of Aarhus and Aalborg University Esbjerg, both
Denmark)

• DHM [50], now Webvise [56] (University of Aarhus and Mjølner Informatics,http://www.mjolner.dk/

Denmark)

• HOSS [81] (Texas A&M University, USA)

• HyperDisco [103] (Aalborg University, Denmark)

• Microcosm [63] (Southampton University and Multicosm Ltd., UK) http://www.multicosm.com/

All of which are represented in the Open Hypermedia Systems Working Group
(OHSWG). See Section 4.4.2 for more details on this initiative.

Open hypermedia systems (OHSs) have in general many traits in common, which
given their similar problem space is to be expected. Given the need to integrate third-
party applications with different (often closed) document formats, it is in general im-
possible to store links etc. inside documents, and so OHSs utilise externally stored hy-
permedia structures. This necessitates some sort of storage of these structures, usually

http://www.mjolner.dk/
http://www.multicosm.com/

20 CHAPTER 4. HYPERMEDIA AND THE WEB

handled by a hypermedia server. Likewise, a client is needed to retrieve the hyper-
media structures, and display them somehow in conjunction with the document they
refer to. Areas where the OHSs often differ are aspects such as approaches to distribu-
tion, collaboration, link markup, and extensibility. The sections below describes a few
representative OHSs based on the findings of the first open hypermedia system.

4.3.1 Sun’s Link Service

The first open hypermedia system was Sun’s Link Service by Pearl [86]. The Link
Service consisted of a link server, and an API (Application Programming Interface) for
developers, so that they with small modifications of their applications could provide
users with bidirectional links. The Link Service was an integrated part of the operation
system (SunOS) and the windowing system (OpenLook), and was as such available to
all applications running on the platform. The system provided users with shared or
private collections of links, and support automatic or explicit link garbage collection.

Sun’s Link Service failed to penetrate the marked, perhaps because the success of
the system relied on third-party developers to actively modify their own applications
(the reliance on OpenLook quite probably did not help, either), but in the above men-
tioned paper, Pearl identified some interesting issues with the development of open
hypermedia systems:

User Interface Per definition an open hypermedia system relies on third-party editors
to handle documents. There are two user interface aspects in this: firstly, there
must be an interface to interact with the linking service; secondly, there must be
some “highlighting” identifying the linked objects.

Document control Another common theme in open hypermedia is the ultimate lack
of control of documents and their whereabouts. Unless documents reside in a
document management system, they can be modified, deleted, or moved without
the hypermedia system’s notice.

Link consistency Related to document control, links may become inconsistent if one
of the constituent documents disappear, is moved or modified, or is otherwise
unavailable.

Locating endpoints Apart from the problem of disappearing or changing documents,
it can in itself be a problem to locate an endpoint in a document type not designed
for such uses. Especially if (or rather when) the document is modified.

Distribution Traditional monolithic hypermedia systems typically functioned within
a context ofone file system. An open hypermedia system may well contain
documents residing on other, possibly remote, file systems. This raises questions
with regards to document control and link consistency — should the link be
marked as invalid (or even deleted) if the connection to the server holding a
constituent document is down?

Collaboration It is natural to collaborate on the material held within a hypermedia
system, and this should of course be supported by the system. This raises ques-
tions about sharing, permissions, locking, etc.

Versioning Both documents and hypermedia structures can be versioned. While hy-
permedia versioning presumably would be under the hypermedia system’s con-
trol, document versioning can be a problem. E.g. what should a link point to?

4.3. OPEN HYPERMEDIA 21

The version of the document it originally pointed to, or the latest version? What
if the latest version does not contain the link’s endpoint?

It should be noted, how these issues relate to respectively the client and the hy-
permedia server. User interface and the location of endpoints are clearly client side
problems. Another more interesting case is link consistency. Most implementations of
open hypermedia systems would have the client determine link deterioration, as this is
most often discovered upon link decoration. As long as the server is able to store lo-
cation specifications of a sufficient general nature, the client should be able to attempt
to regenerate the link by locating the lost anchor. Of course, if the location specifica-
tion of the hypermedia model employed is very specific, such as byte offsets, this is not
possible. Link consistency problems related to lack of control of documents is however
a general systems characteristics.

I will revisit these issues, as I go through some of the open hypermedia systems
below, as they are still valid, and illustrate some different design decisions in these
hypermedia systems.

4.3.2 Microcosm

The Microcosm Link Service [33, 42] from Southampton University was the first open
hypermedia system, that is still in development and use. It is an innovative and (in some
ways) unconventional hypermedia system. The hypermedia group at Southampton (and
later the company Multicosm) has excelled in the integration of many third-party ap-
plications, a topic described in more detail in Section 4.3.8.

One of the innovations of this system wasgenericlinks — links with a destination
endpoint with a specific location, but with a source specifying only the content of a
source endpoint, rather than its location. One of the problems with much hypermedia
linking is that link authors have to authorall the links, so that if new documents are
added to the corpus, they are initially “unlinked”. By creating links that rely on e.g.
keywords in text, it becomes possible to reuse existing links in new documents. A triv-
ial example of the usability of generic links would be an electronic dictionary, allowing
the user to rapidly access definitions of words and terms.

The Microcosm approach called for an aggressive inclusion of third-party editors
(“viewers”), many of which could not be made Microcosm “aware”. In order to sup-
port these kinds of applications, some functionality such as automated highlighting of
anchors were eschewed. Anchors in a document could instead be found on demand or
displayed in a separate window.

A particular feature of the Microcosm architecture is the filter model. Messages
from e.g. clients are processed by filters that can stop, process or in other ways modify
the message by e.g. adding the anchors present in a given document. These filters can
be added or rearranged by the user.

Returning to the issues raised by Pearl in Section 4.3.1, the design of Microcosm
has some interesting consequences. Interface-wise, the reliance on generic links means
that there often is no markup of links. Indeed, the creators cite this as a strength of
the system. On the other hand, it makes it much easier to integrate editors, and thus
vastly expands the number of applications that hypermedia functionality can be added
to. Microcosm features a little hypermedia button added to all application, from where
the user can follow links etc. This is for instance possible in Windows, and gives the
user immediate access to hypermedia functionality. Document control can handled by
a document manager, which addresses some of the concerns with regards to document

22 CHAPTER 4. HYPERMEDIA AND THE WEB

control. However, if the documents can be retrieved outside of the system, the possibil-
ity of corrupted documents (from the view point of the hypermedia system) remains.
This is however less of a problem in the context of Microcosm (baring the removal
of documents), given the focus on generic links. Link consistency is closely related
to this. While a generic link will work in all documents, as long as there is a selec-
tion matching the link, the destination document (or the specific location within that
document) may well be gone. Given the Microcosm approach, a problem such as lo-
cating an endpoint is circumvented, as many endpoints (especially to unaware editors)
are whole-component. With specific anchors, the default Microcosm approach is to use
byte offsets [32, p. 212] to locate anchors. Such an approach is quite fragile, and can be
supplemented by “macro” (for applications, that support such) to locate the selection.
With the work on Microcosm TNG (The Next Generation) [46], Microcosm can han-
dle distributed document, link, and service location. TNG also incorporates a notion
of sessions, wherein users can specify, share and collaborate on selected services and
applications, that is nodes and link collections. Versioning in Microcosm is described
in [76], as layers of applications. This arrangement allows user to freely access nodes
and links from different versions, but does not support merging.

4.3.3 Devise Hypermedia

The Dexter Hypermedia Reference model (described in further details in Section 4.4.1)
inspired the development of the Devise Hypermedia (DHM) at the University of Aarhus.
DHM was originally developed for the Macintosh and Unix platforms using the object-
oriented language, BETA. It saw much development during the EuroCODE project,
where it was used in a large engineering setting [47, 49]. It has been used exten-
sively as a research prototype, and has in its development history been a cross-platform
hypermedia system, a collaborative hypermedia system [49, 50], a tailorable system
with an embedded interpreter [51], hypermedia basis for an 3D collaboration system
[22, 79] and in its current incarnation the Windows based Webvise hypermedia system
integrating Microsoft Office and Internet Explorer [56].

While based on Dexter, the work involved with the implementation of DHM ne-
cessitated clarifications, extensions, and departures from the original model: The Dex-
ter model adamantly forbids dangling links, which DHM permits; composites contain
in Dexter their constituent components, where they in DHM may contain references
instead; anchors to whole components are not specificed in Dexter, which they are
in DHM. By design Dexter left the within-component layer largely unspecified save
the anchoring interface as to concentrate on the core hypermedia functionality of the
model, but for an open hypermedia system the within-component or application layer
is quite important. Dexter assumes that components are controlled by the hypermedia
system, but in open hypermedia documents etc. are usually owned by various other
applications, and this had to be encompassed in DHM. It should be noted that Dexter
in other aspects, such as anchoring and presentation specifications, was found to be
well suited for open hypermedia. One of the main focuses of the development of DHM
has been client integrations, as DHM has been used in various research projects where
certain applications has been used by the participants. This has resulted in integrations
with Microsoft Office applications, as well as technical software, such as CAD sys-
tems. The Webvise client was, to the author’s knowledge, pioneering in utilising the
Microsoft Internet Explorer’s COM (Component Object Model) interface to integrate
the Web, an approach later also used by the Arakne Environment.

DHM is a conceptual three-layer hypermedia system. The storage layer has varied

4.3. OPEN HYPERMEDIA 23

through the history of the system, originally a object persistence store was used — the
current version utilises file based storage. At the structure level the system currently
supportsn-ary, bidirectional links and guided tours. Client wise the system has it own
dedicated client, the Webvise Client, but has also supported the DHM/WWW [48] and
Navette [16] clients, as well the first version of the Arakne Environment [17] [P1].

As for Pearl’s issues, the DHM systems have always stressed the user interface,
which has resulted in some highly integrated interfaces in especially Microsoft ap-
plications, where the hypermedia functionality is made available through menus, and
where anchors are highlighted in the various documents. Documents are outside of the
system’s control, which leaves the possibility of link inconsistency, but depending on
the integrated application, Webvise has fairly robust anchor specifiers. While DHM
has at times been a collaborative, LAN (local area network) distributed hypermedia
system [50], the current incarnation, Webvise, is not aimed at collaboration, save by
exchanging interchange files. The exchange of such files is quite well supported, as
they by the client can be stored on WebDAV compliant servers (see Section 4.7.4 for
more information on WebDAV, and Section 7.3 for a discussion on how this may help
scalability), and their retrieval in a Web browser will on a computer with the Webvise
client installed automatically launch the client, and display the hypertext. DHM has no
provisions for versioning, though it can be used in conjunction with a system support-
ing document versioning, as done by the High Road Demonstrator in the EuroCODE
project.

4.3.4 HyperDisco

HyperDisco comes from a family of hypermedia systems developed at Aalborg Uni-
versity: Hyperbase 0–2 [100], Hyperform [101], the Emacs HyperText System (EHTS)
[99], and HyperDisco [102, 103].

A characteristic of these systems is the architectural focus on distribution, collabo-
ration, and hypermedia database systems. Few systems, save perhaps the hypermedia
systems developed at Texas A&M University (see Section 4.3.5 for a description of
HOSS), has focused as much on hypermedia infrastructure. Indeed, HyperDisco may
be considered a “meta hypermedia” system, to wit:

The HyperDisco project is about design, development, deployment and
assessment of OHSs. The overall goals of the project are to work towards
innovative new OHSs and to try to influence the development of future
generations of OHSs for the Internet. [104, p. 296]

The HyperDisco hypermedia system has several interesting properties. It is es-
sential a three-layered architecture with tools (integrated or native), tool integrators
(usually one per user), and workspaces. A workspace embodies hyperbase and col-
laborative functionality, and can be distributed over the Internet, and users can choose
which to operate on, assuming they have the proper permissions. Returning to Pearl’s
issues, HyperDisco addresses many of these concerns. HyperDisco integrated ten ap-
plications by October 1999, most well-known of which is XEmacs, which is integratedhttp://www.xemacs.org/

with menus and markup. HyperDisco can handle documents stored outside of the
workspace, as well as within it, and certainly in the latter case can exert document con-
trol. This also to a large degree answers the concern of link consistency. Certainly if
the document is held in HyperDisco’s control, link consistency should be assured. As
HyperDisco anchors are extensible, the ability to regenerate broken anchors lies with

http://www.xemacs.org/

24 CHAPTER 4. HYPERMEDIA AND THE WEB

the various client. HyperDisco handles versioning at the data model level by provid-
ing a Version Control class, that (through multiple inheritance) can be subclassed by
any component. This is used mainly for versioning of nodes, while other components
(such as links, composites, etc.) are not (at least at time of writing [102]) versioned.
Distribution and collaboration are areas, where HyperDisco shines. As described above
workspaces can be distributed Internet-wide, and users of the system can freely collab-
orate within these workspaces.

HyperDisco along with other systems (especially HOSS described in the follow-
ing section) informed the creation of the Construct hypermedia architecture, described
below (Section 4.3.7).

4.3.5 HOSS

HOSS [81, 83, 84] grew out of a series of hyperbases and hypermedia systems de-
veloped at Texas A&M University: PROXHY [67], HB1/SP1 [90], HB2/SP2 [91],http://www.csdl.tamu.edu/

and HB3/SP3 [71]. An interesting feature of HOSS is the focus on providing hyper-
media functionality on the operating system level. Usually hypermedia systems are
considered to belong to the application level, giving the user tools to interact with and
structure information. Another innovation of HOSS is the separation between data,
structure, and behaviour. Separating data and structure is arguably what hypermedia
is all about, and this system takes it one step further by allowing behaviour to be de-
fined separately. In contrast, most hypermedia systems have more or less fixed e.g.
link transversal behaviour. By opening up behaviour, and relegating both structure
and behaviour to the operating system level (where data has been all along), this ap-
proach opens up some radical possibilities. A hypermedia operating system would be
very flexible, and would provide users with superior performance when working with
structures, as the system would be able to prefetch needed data or structure, cache
behaviours and structure, automatically handle structure etc.

A prototype of this approach has been implemented in the HOSS system. HOSS
runs on SunOS, and provides services for handling data, structure, and behaviour. Thehttp://www.sun.com/

system offers an open set of behaviours (“Sprocs”), in the version described in [84]
navigational and taxonomic hypermedia, as well as annotations. Applicationwise, the
system integrates a spatial text editor [31], an animation tool, and a reviewing tool.
In addition, HOSS also provides launch-only integration for non-integrated tools. The
integrated tools use the object store provided by HOSS for storage. As the HOSS
storage layer offers versioning, this is also available for structures and the data stored
within the storage service. A fairly unique (certainly the author is aware no other
system providing this) client isHsh, the HOSS shell similar to Unix shells, but aimed
at controlling the hypermedia system. HOSS is a hypermedia-in-the-large system, and
can thus handle distribution. From [83, 84], it is unclear how collaboration is supported.
With regards to link consistency, by virtue of storing at least some documents within
its own object store, the system should be able to provide some consistency guarantees,
though this is largely conjecture on the part of the author.

Apart from the idea of integrating hypermedia on the operating system level, a
very interesting feature of HOSS is its development tool. HOSS’s designers stress the
importance of an open set of services and to that end provide the developer with the
PDC. The Protocol Definition Compiler generates, based on an IDL like specification,
C libraries to handle IPC (interprocess communication) between HOSS components.
The speeds up development time, as programmers are freed from the tedious and error
prone work of developing such code. The work on hypermedia development tools has

http://www.csdl.tamu.edu/
http://www.sun.com/

4.3. OPEN HYPERMEDIA 25

been continued at Aalborg University Esbjerg in the form of CSC [105], a development
tool for new Construct (Section 4.3.7) hypermedia services.

4.3.6 Chimera

Chimera [7, 8] is a hypermedia system developed at University of California, Irvine,
and University of Colorado, Boulder. It has seen industrial use [5], and has as such
been the topic for scalability studies [3, 4, 5], as well as some initial studies on XLink
[64]. From its beginning, the main focus of the Chimera system has been large software
development projects, which has, among other things, informed the work on scalability.
The Chimera architecture is three-layered with a relational database serving as storage.
An interesting feature of Chimera is the ability to serve Java applets to users, so that
they can access and manage the system without installing special software locally. Hy-
permedia wise, a unique feature of Chimera is the concept of “view”. Open hypermedia
systems in general handle viewers/editors as programs able to display a document, and
are often able to launch the viewer associated with a media type. Anchors are in such
a model associated with the document, and are presented depending on the abilities of
the viewer. Chimera has a different approach to this, as anchors are associated to views,
that is the combination of a viewer and a document. The implication is that Chimera
can present the same document differently (with different anchors), depending on the
viewer used. One example of this would be a spreadsheet presented either as a matrix
or as a graph.

Returning to Pearl, the interface for managing hypermedia structures lies, depend-
ing on the level of integration, in the Chimera Client or in the viewer. Chimera exerts
no document control, and can therefore as most other hypermedia systems get in trou-
ble with document and link consistency. As anchors are view specific, their appearance
and location depends naturally on the abilities of the viewer. Chimera supports collab-
oration through and distribution of HyperWeb servers through HyperWeb managers,
which (among other things) handles the location of HyperWeb servers. Versioning,
while outlined in [97], has not been implemented.

4.3.7 Construct

Construct is one of the results of the Coconut project. It is the codebase descendant
of HOSS [81, 83, 84], HyperDisco [102], and DHM [50], designed and developed
by the people (among others!) behind these systems. It is compliant with existing
OHSWG standards, along with several extensions, such as compositional and spatial
hypermedia. It is also the backend of the Arakne Environment.

Design wise, it has inherited much from its ancestors. It has a clear three-layer de-
sign with an open and extensible set of services. The architecture is highly symmetric
with regards to the three layers, which is illustrated by the overall process architecture
seen in Figure 4.1. This process architecture is found at all layers — clients com-
municate with a structure server through a virtual server, servers communicate with
clients through virtual clients and so on. The core holds “actual” functionality — thus
a navigational hypermedia client uses the Nav core to operate on navigational com-
ponents. The architecture with virtual servers and clients provides multiplexing and
leaves room for other transport layers — the current Construct uses XML over TCP/IP
sockets, but this may well change in the future, as OHSWG moves forward, as outlined
in Section 6.3.

26 CHAPTER 4. HYPERMEDIA AND THE WEB

Hypermedia structure wise, the Construct architecture currently supports naviga-
tional, compositional, and spatial hypermedia. Due to its extensible nature, this is how-
ever not a closed set. With the advent of the CSC tools [105] from Aalborg University
Esbjerg, the development cost of new hypermedia services will be greatly diminished.
As an example of the data model of Construct (and in this instance of OHSWG), see
Figure 4.3. The navigational data model is discussed in more details in Section 4.4.2.

Construct supports collaboration at the server level, mainly through the notion of
“sessions”. What this collaboration support means at the client is described in Sec-
tion 6.4. To address link consistency, the OHSWG navigational hypermedia model has
a flexible and extensible set of location specifiers. How this is utilised, depends on the
client. The current version of Construct does not support versioning.

virtual
client pool

virtual
client

session
proxy core

virtual
server pool

virtual
server

connection
manager

n
.
.
1

1
.
.
n

m..n

1..n

1..n

1..n

Figure 4.1: The Construct Process Architecture (from [52])

4.3.8 Integrating Third-party Applications

The defining characteristic of open hypermedia is the integration of third-party ap-
plications. It is also one of its greatest problems, as it is often hard to accomplish
satisfactory integrations. The first to write about this was Daviset al in [34], and it has
later been covered by Whitehead in [95]. Application integrations differ in the degree
with which the hypermedia structures can be made visible and manipulated directly
in the application user interface. The most basic integration is “launch-only”, that is
a situation where the hypermedia system launches an application to display a specific
document, but has no further control over the application. In such a situation, only
whole component (i.e. the entire document) references are possible. Fortunately, many
applications support various levels of scripting and tailoring, and by such means it is
possible to create quite sophisticated integrations, where fine-grained addressing of the
application’s document becomes possible, and where much of the hypermedia inter-
face may reside in the application. Applications with sophisticated integrations include
(X)Emacs, Microsoft Office, AutoCAD, MicroStation, Framemaker, and various Web
browsers.

In the course of the author’s work, the applications to integrate have been Web
browsers, and the experiences in this context can illustrate the various means, with
which such an integration may be accomplished. This is described in the following

4.3. OPEN HYPERMEDIA 27

section, and considerably more detailed in Section 7.1.

4.3.9 Open Hypermedia on the Web

The open hypermedia community is in some ways uniquely well suited to take on the
Web with hypermedia. The community has extensive experience of supplying other
applications with hypermedia functionality, and the Web has qualities (outlined in Sec-
tion 3.2) making it an “easy target” for integration.

This section focuses on the various approaches taken to support hypermedia inte-
gration with the Web, and will so in passing describe some of the systems that employ
such approaches. It should be noted that there are also open hypermedia systems, that
utilise the Web without actually performing Web augmentation. Chimera [7] actively
uses Web browsers, and Web-aware HyperWeb servers to provide users with hyper-
media clients and maintenence tools. These tools are however used for controlling the
Chimera system, not for hypermedia augmentating Web pages, and in this sense the
Chimera system uses the Web more as a transport layer.

Given the general architecture of the Web (see Figure 4.5), it is fairly obvious that
there are basically three “lines of attack”, when wanting to gain access to the Web
pages displayed in a Web browser. It can be done at either the Web server where the
pages reside, at an intermediary Web proxy, or in the Web browser. The possibilities
and consequences are outlined below.

Server side

It is quite easy to add content to a Web page through a Web server. This content can
be dynamic (relative to more static Web pages) and easily be switched on and off by
the user through the use of cookies etc. Often this kind of augmentation is achieved
through CGI (Common Gateway Interface) scripts, with Walden’s Paths [45], one of
the classic guided tour tools for the Web, as a prototypical example. The guided tour
navigation menu is dynamically added to the pages that constitute the contents of a
path. There are however some drawbacks to this approach. If one wishes to augment
Web pages from more than one Web server, these “foreign” pages must be modified in
some way. One typical approach is to modify all links encountered to invocations of
CGI scripts with the original link as an argument. However, the use of e.g. frames or
bookmarks in the Web browser defeats the modification of links, and thus all actions
by the user cannot be handled through this approach.

Similarly, the authoring of hypermedia structures becomes difficult, as there is no
interface, save the Web page. The common approach to this is either to have a separate
authoring tool (this is the case of Walden’s Paths), or to provide special Web pages with
forms allowing the authoring of e.g. links, though the latter approach quickly becomes
cumbersome.

The two greatest advantages of the server side solution are that the user does not
have to modify browser configuration other than using a specific Web site, and that the
services can be accessed from any Web browser.

Proxy side

To maintain the Web augmentation system’s access to the Web pages displayed in the
user’s Web browser, the most obvious approach is to use a proxy. Proxies are widely

28 CHAPTER 4. HYPERMEDIA AND THE WEB

used for caching purposes1, but can also be used to modify Web pages. The prototyp-
ical example of this is the Microcosm Distributed Link Service (DLS) system [25]. In
these cases the proxy acts as a hypermedia client, retrieving links etc. from link bases
and inserting them into the Web pages. The great advantage is that the system is, once
the Web browser has been configured properly, always available. This is ironically
also one of the greatest drawbacks — it is quite plausible that the user does not wish
to constantly use the proxy, as the querying of link bases inevitable will slow down
the process of browsing. Indeed, this drawback (among others) later led the Micro-
cosm group to create the AgentDLS system [24], where links were displayed alongside
the primary Web page in a periodically refreshed Web page rather than being inlined,
boosting performance considerably. This approach raises the question of whether this
kind of interface results in too many focus shifts, as users try to correlate a Web page
with the “links page”.

Another hypermedia proxy is the DHMProxy [56] created by the Coconut project,
using the DHM and Construct servers. An interesting feature of the DHMProxy was
the method of link decoration (i.e. the act of inserting links etc. into the Web page), as it
was, for Web browsers that supported it, like that of Webvise or the current Arakne En-
vironment. Based on the information retrieved from the hypermedia server, the proxy
inserted into the Web page Javascript code, which upon arrival was executed and per-
formed the link decoration. This was done to circumvent the problem described below
with dynamic Web pages.

The reservations with regards to hypermedia authoring noted above also hold for
proxy solutions, e.g. DLS used a separate Web page for link authoring. Of course,
one can opt to have a client running on the user’s computer. The early versions of
the Arakne Environment provided authoring, but employed the DHMProxy for link
decoration. In order to use a proxy solution, the user has to setup the Web browser to
use that particular proxy. This has some problems: The user may not want (or may not
be able) to make this configuration change; the use of a special proxy may collide with
the use of another proxy2; and the user will feel the performance hit of the hypermedia
proxy, whether the current Web page has any extra hypermedia content or not.

Client side

It is also possible to modify Web contents at the client. The first system to do so was
the DHM/WWW system [48], and the client-side approach has also been taken by its
descendants, Navette [16], and finally the Arakne Environment [17] [P1], as well as
Webvise [56].

Historically, there have been two approaches: Pre- and post-render page modifica-
tion, that is before and after the Web browser has displayed the page. DHM/WWW,
Navette, and the earliest incarnation of Arakne all utilised a pre-render approach,
DHM/WWW by retrieving the page, modifying it, and generating Javascript to out-
put it to the Web browser; and Navette by acting as a local proxy. Both instances can
thus be argued to be quasi-proxy solutions, both with the great disadvantage of having
to compute links, etc. before rendering the Web page. In contrast, both Webvise and the
current Arakne Environment use post-rendering page modification. There are several
advantages to this approach. The first advantage is that of performance, as pages are
displayed in the Web browser as fast as they would without the hypermedia application.
The second advantage is the ability to more robustly handle “difficult” HTML. Many

1Indeed, ISPs often use proxies transparent to their users.
2The Coconut proxy addressed this by allowing users to specify a proxy for the Coconut proxy to use.

4.4. HYPERMEDIA STANDARDISATION EFFORTS 29

Web pages are today highly dynamic in the sense, that they contain a lot of Javascript
which upon arrival is executed and modifies the page. This is very difficult to catch
efficiently pre-render, but easy after the Web browser has rendered the page.

The great advantage of a client side solution is that authoring becomes very easy
to support. Client side necessitates a hypermedia application running along the Web
browser3, and this application can of course also accommodate authoring. On the flip
side, it forces the user to shift focus between two application during authoring as well
as hypermedia applications other than simple link traversal.

The great disadvantage of client side integration is that, given the current generation
of Web browsers, the choice of Web browser (and hence operating system and com-
puting platform) becomes quite limited. Currently the post-render approach can only
be supported by the Microsoft Internet Explorer under Windows. This is highly unfor-
tunate as it locks many users out. Until other suitable Web browsers (such as Mozilla)
appear, the situation is unlikely to change. See Section 7.1 for further discussion on the
topic of Web browsers.

4.4 Hypermedia Standardisation Efforts

Throughout the history of hypermedia, there have been several attempts to standardise
hypermedia, both on a conceptual level and on an interchange and interoperability
level. This is important work for several reasons. Firstly, by clearly agreeing on what
hypermedia is, it becomes easier to focus and compare research efforts. Secondly, the
various hypermedia systems gain, if it is possible to either interchange documents, or
perhaps even get different hypermedia systems to work together. Thirdly, if there exists
a standard supported by several hypermedia systems, this standard becomes attractive
for other developers to support, thus spreading general hypermedia support to more
applications, and thus reinforcing development, as described by Whitehead [96].

Standardisation efforts are, however, not without pitfalls. Make a standard too big
and complicated, and it is unlikely to catch on, as the investment to become standard
compliant is too big. An example of such a standard is SGML, which while certainly
used in large organisations, was not seeing as widespread use as it might. This was
largely due to the very high development cost of producing tools compliant with the
very comprehensive standard. Few tools were developed, and these tools were quite
expensive. With the introduction of XML, a simpler version of SGML, the cost of
adopting was lessened dramatically to the extend, where parsers and other tools can be
obtained freely and open source. Today, XML is one of the new powerful paradigms
of Internet distributed computing, and is being used extensively in many areas.

In the context of open hypermedia, a standard should either be simple conceptually,
or modular, so that the hopeful standard adopters can incrementally implement what
they need. As there in open hypermedia are several well established systems, a stan-
dard that closes one out by specifications that cannot be met by this system is likely
to be met with resistance. Again, a modular standard is preferable, so that areas of
contention — such as composites or collaborative support — can be adopted by those
systems that can support them, while still allowing other systems to use other less con-
tentious modules of the standard. Furthermore, this would allow others to “pick and

3Systems may integrate directly into the Web browser, as the Internet Explorer add-ons (see Section 5.2),
but they are still separate processes. The Webvise client has experimentally been integrated with the Internet
Explorer in this fashion.

30 CHAPTER 4. HYPERMEDIA AND THE WEB

choose” from the standard, solving their problem space without having to implement
unnecessary or unwanted functionality.

4.4.1 The Dexter Hypertext Reference Model

The Dexter Hypertext Reference model [62] introduced a common framework for hy-
permedia systems. Its contributions were manifold. Among the more crucial were a
general hypermedia architecture, the generalisation of the link from binary to arbitrary
arity (i.e.n-ary or multiheaded links), the realisation that nodes, links, and composites
are separate first-class components, the generalisation of the composite, and the clear
specification of what the responsibilities of a hypermedia system is.

Presentation of the hypertext;
user interaction; dynamics

Storage Layer
a 'database' containing a

network of nodes and links

the content/structure
inside the nodes

Presentation Specification

Anchoring

Run-time Layer

Within-Component Layer

Focus of the
Dexter Model

Figure 4.2: The General Dexter Architecture (from [62])

The Dexter architecture is summarised in Figure 4.2. The focus of the Dexter model
was mainly on the storage layer and the entities stored within it. The objects stored in
the storage layer are summarised in Table 4.1. The hypermedia model of Dexter is
quite simple and elegant, and a novel aspect of it is that links and composites just as
atomic components can be the target for links. The composite is used to contain other
components, including other composites (though not itself).

The Dexter model does not concern itself with the applications wherein the atomic
components should be displayed. This is all a part of the within-component layer. The
focus is on the storage layer and the interplay between the run-time layer, containing
a running hypermedia system used by a user, and the storage layer, containing the
databases serving components to the hypermedia system.

Much is left out of the Dexter model — there is no collaboration; editors are
opaque; as are presentation specifications and anchor values. This is however one of the
model’s strengths: It does not get bogged down in implementation specifics. Thus, it
was able to inspire and provoke a lot of thinking [71] and (especially at Aarhus) devel-
opment of new hypermedia systems. See Section 4.3.3 for a more detailed discussion
of the Dexter based hypermedia systems developed at Aarhus.

One of the goals of the Dexter model was to facilitate interchange between hyper-
media systems, and some work has been published on that topic of KMS to Intermedia
[69]. The problem of interchanging files between too different hypermedia systems is
that there invariably will be “hacks” in order to accommodate hypermedia structures
not supported by both systems — a simple example is the translation of a one-to-many

4.4. HYPERMEDIA STANDARDISATION EFFORTS 31

Components All components have a globally unique identifier
(GUID), a list of anchor indexing into the component,
a presentation specification, and a list of attribute/value
pairs.

Atom The “nodes” of the Dexter model. Known in other hyper-
media systems as cards, frames, documents, etc. A Web
page is a node. Opaque in the Dexter model.

Link A link contains a list of specifiers
Composite A composite contains components, including other com-

posites.
Entities stored in
component info
Specifier A specifier contains an identity unique within the link, a

specification of a component (often the GUID), an anchor
id, a direction, and a presentation specification.

Anchor An anchor contains an identity unique within the compo-
nent, and an anchor value. The anchor value (opaque to
the Dexter model) identifies a part of a component.

Presentation specifi-
cation

The presentation specification determines how a compo-
nent should be presented to the user. This is opaque to
the Dexter model.

Table 4.1: Components and entities in the Dexter model

link into a system supporting only binary links. With such intermediary translations,
it becomes difficult to have “robust” interchange, that is, a situation where a hypertext
remains the same after being translated to another system and back. If this is not pos-
sible, the usefulness of interchange files are diminished, as they then serve more as an
migration path than as a possibility of working together across different hypermedia
systems. Section 7.3 deals with other uses for interchange formats.

4.4.2 Open Hypermedia Systems Working Group

The Open Hypermedia Systems Working Group [35] (OHSWG) was founded in 1994http://www.ohswg.org/

by the different parties involved in the development of open hypermedia systems.
Among the original goals of the OHSWG was to collaborate on third-party application
integrations, as this has always been the great challenge to open hypermedia develop-
ment and an area, where code sharing could be mutually beneficiary. Apart from this
utilitarian goal, OHSWG also wished to identify what constituted open hypermedia
and to devise a common standard, so that open hypermedia systems could interoperate.

The work of OHSWG has over the years evolved into the Open Hypermedia Proto-
col (OHP), a data model and protocol for collaborative, open hypermedia. Today, OHP
encompasses a growing number of protocols that covers hypermedia, such as navi-
gational, compositional, and spatial, collaboration support, subscriptions, naming and
location of hypermedia services, caching, and document retrieval. The scope of this
text does not permit a comprehensive study of the entire standard, but the navigational
data model can be seen in Figure 4.3.

Some aspects of the OHP navigational model are interesting in the sense that they

http://www.ohswg.org/

32 CHAPTER 4. HYPERMEDIA AND THE WEB

Object

AbstractObject
ID
Name
Type
Descriptions
CharacteristicSet

ContentSpec

equals

URI
Content
MimeType

LocSpec
Version
Reference
Selection
SelectionContext
SelectionType
equals

SessionState
Name
CouplingMode
VirtualClients
DocsOpen
Subscriptions

SessionRecord
Members
DocIDs
JoinPolicy

LocationRecord
Address
AddrType

Subscription
Pattern
Flags
Temp
ExpireDate
CompId

HMObject
Computation
PSpec

NaLoc
Spec

AxisLoc
AxisList
RevAxisList
Overrun

Context
Members

Link
EndpointIds

Endpoint
LinkId
Direction
AnchorId

Anchor
ParentId
LocSpec

Node
ContentSpec

Computation

Execute

InParam
OutParam
ContentSpec

PSpec
Spec

Figure 4.3: The OHSWG Navigational Data Model

are very general and allow for many kinds of extensions and innovative future uses. For
instance all HMObjects has presentation specifiers, as well as computations and arbi-
trary key/value pairs (“characteristics”). A Context is the container for other HMOb-
jects’ IDs — including other Contexts. The parentId of the Anchor is the identity of
the object containing it — this is usually a Node, but could just as well beany other
HMObject (as HMObjects all have IDs). Thus, a link can point to any other HMOb-
jects.

Aside from diverse hypermedia structuring mechanisms, OHP also supports col-
laboration through the notion of sessions. A group of people working together on
hypermedia structures on a set of documents using various hypermedia tools embodies
the session. A session is defined by a set of users, documents, and tools, and has a
coupling mode (ranging from uncoupled to tightly coupled) and a joining police (e.g. a
public or private session) associated with it. Through the session, each collaborator is
visible to the other collaborators, as are his or her actions, depending on the coupling
mode. If a collaborator so desires, special subscriptions can be set, so that specified
actions taken by certain users result in notifications. The session is persistent, so that a
group at a later point can resume work where it was left.

Collaboration in hypermedia was not introduced by the OHSWG. It is a fairly old
field within hypermedia research, and is described in the following section.

4.5 CSCW and Collaborative Hypermedia

The fields of computer supported collaborative work (CSCW) and hypermedia share
roots, as some of the first papers published on collaboration using computers were pio-
neer hypermedia papers “As We May Think” by Bush [23] and “A Conceptual Frame-
work for the Augmentation of Man’s Intellect” by Engelbart [39], published in respec-
tively 1945 and 1963. Bush and Engelbart both wished to improve work — Bush in
devising better ways to cope with a rapidly growing scientific literature, and Engelbart
in helping knowledge workers to handle difficult problems better.

4.5. CSCW AND COLLABORATIVE HYPERMEDIA 33

Work is rarely done by exclusively the individual; there is usually a social context
within an organisation, that determines why work is done, what work is done and
how it is carried out. This social context demands cooperation between workers, be
it on the same level of the organisation or between levels. The purpose of computer
supported cooperative work (CSCW) is to investigate and understand this cooperation,
and to support it with computers. Bannon and Schmidt have written one of the better
definitions of CSCW:

an endeavour to understand the nature and requirements of coopera-
tive work with the objective of designing computer-based technologies for
cooperative work arrangements. [11][p. 11]

The CSCW field is characterised by its diversity, and it attracts people from many
disciplines. As noted in [10], the term CSCW itself is contested. Whatis cooperative
work? Schmidt and Bannon use the social science tradition (reaching back beyond
Marx and onwards) to define cooperative work as the activity people engage in when
they work together and are mutually dependent in the sense that one cannot finish the
work without the contribution of the other. This interdependence requires planning,
coordination, allocation, scheduling, commitment etc. from the people engaged in the
work. These activities necessary for cooperative work are under one referred to as
articulation work. The different settings and conditions under which cooperation is
found may vary tremendously, but articulation is always needed to make the coopera-
tion work. By focusing on articulation, Bannon and Schmidt are able to come up with
a general understanding of what cooperative work is, and how it may be supported by
computers. They avoid a common pitfall of CSCW: focussing on the group. A good
example of the predominant group focus is the term “groupware”. Cooperative work
is not limited to the group: people work together across boundaries — an example is
networking between within and without organisations.

CSCW is a large field and the scope of this text does not permit a general overview.
One area especially pertinent to my work (papers [15] [P4] (Section 6.4) and [6] [P5]
(Section 6.5)) is the study and support of shared awareness. As described by Heath
and Luff [65] in their analysis of work done by traffic controllers in the London Un-
derground, maintaining shared awareness between co-workers can be crucial. Many
systems has endeavoured to support this. The GroupDesk system [44], the NESSIE
system [88], the Elvin system [41], the AREA system [43], and the BABBLE system
[21] to mention a few. These systems try to support shared awareness through means
such as messaging, chat, and event notification. Some of the awareness support require
explicit actions by the users, such as sending a message to another user, others are im-
plicit. The latter form is for instance the action of updating a file in a CVS repository,
which gets broadcast to all users of the Elvin system, or joining a topic in BABBLE,
which shows others users, that you are active. Some systems, notably AREA and
Elvin, attempt to integrate with other applications, so that actions in these applications
are broadcast to other users.

These tools are not only found within academia: a commercial and very widely
used system (reportedly 3 million users) is ICQ, a “buddy list” program, where usershttp://www.icq.com/

may see when their friends are online and engage in asynchronous message exchange
and synchronous chat.

In the context of shared or peripheral awareness tools, the topic of privacy becomes
important. Not all actions taken by a user belongs in the public, and the user will
(often rightly) fear a system facilitating “Big Brother”. When people work together,

http://www.icq.com/

34 CHAPTER 4. HYPERMEDIA AND THE WEB

they normally share an understanding of what is acceptable to the participants and
what is not. If not the boundaries between people are respected in the system, trust is
eliminated and that can prove disastrous to continued cooperation. Clement gives in
[29] a great deal of thought to the privacy issue in the context of media spaces (such as
Portholes [38]), but his conclusions and warnings are applicable to the entire CSCW
field. To return to Bannon and Schmidt:

visibility must be bounded[...] Deprive workers of that capability, and
they will exercise it covertly [11][p. 35]

Hypermedia is per definition used to structure information. This can of course be
very usable for the individual user, but already the earliest (hypothetical) hypermedia
system, the Memex, featured in addition to support for personal trails, the ability to
share trails among other Memex users. Apart from making trails/structures upon ex-
isting information, hypermedia systems have also found use in assisting the process of
writing new material, where the hypermedia system is for instance used to gather and
structure information, that is subsequently organised into a linear text (one example
of such a system would be NoteCards [61]). From these systems, the step to support
multiple authors seems natural.

NLS/Augment [40] was also in this aspect a groundbreaking system, where users
could co-author material and participate in video conferences complete with cursor
sharing in 1968. Later systems, such as KMS [1], also supported collaboration. In the
case of KMS, collaboration was partly supported by the system itself through optimistic
concurrency control, where the system would ensure that modified frames were not
accidently overwritten, partly through the use culture of KMS, where most frames can
be modified (or at least annotated) by the users of the system. Services such as locking
or notifications were however deemed too impractical, especially considering the strict
performance goals set for the KMS system.

In Intermedia [77] the notion of Webs, that is collections of links, became a use-
ful tool for collaboration. Just as the ability to share and access the same information
as in KMS is important for collaboration, the ability to work privately or in groups
on a Web and then later publish it for others to see, helps to focus collaboration. In-
termedia handled multiple users with different permissions, so that one person could
create documents, available only for reading and linking by others. Another of the
classic monolithic hypermedia systems, NoteCards, has also been extended to support
collaborative authoring [94].

SEPIA [58, 59, 93] is an ambitious collaborative hypermedia system from GMD
IPSI, Germany. Based on a cognitive model of the authoring process, SEPIA supports
collaborative authoring. Collaboration is handled through different coupling modes
ranging from uncoupled (a single author working on a document) to loosely (authors
collaborating) and tightly coupled (authors seeing each others’ updates as they are
made) modes. Coupling modes for documents are changed automatically as more or
less authors work on a document. An extension to SEPIA, DOLPHIN [72, 92] was cre-
ated to support activities around (possibly distributed) meetings, such as pre-meeting
planning, submittal of material to be a part of the meeting, as well as discussions, brain
storming, and decision making. Collaboration could take place distributed, or local,
using technologies such as LiveBoards (large touch sensitive displays) as whiteboards.

Among the open hypermedia systems, the collaborative aspects of HyperDisco has
been described above (Section 4.3.4). Also the Devise Hypermedia has, in some of its
incarnations [49, 50], supported collaboration. Webvise is also used in the Manufaktur

4.6. HYPERMEDIA: CONCLUDING REMARKS 35

system [22, 79], a collaborative system which uses a spatial metaphor for arranging
and organising documents and other computer artefacts in 3D.

Some aspects of collaboration are more easily accommodated by monolithic hyper-
media systems. Most collaborative hypermedia systems have centred around authoring,
not only of hypermedia structures (the Arakne Environment handles for instance only
this kind of collaboration), but also documents. In monolithic systems, the documents
are under the complete control of the hypermedia system, thus facilitating easier moni-
toring of changes, and enabling the possibility of locking parts of documents. The main
approach to collaboration in the Arakne Environment, apart from sessions and shared
awareness (described more fully in [15] [P4] (Section 6.4)), is the notion of collaborat-
ing through the annotation and structuring of shared artefacts, in this case Web pages.
By such an approach, users can build a shared understanding of a problem area, just as
they built an understanding by constructing a 3D world of documents in Manufaktur.

4.6 Hypermedia: Concluding Remarks

The field of hypermedia research encompasses much more that has been covered in the
previous sections. The purpose has been to show the shift from monolithic hyperme-
dia systems to open hypermedia systems, to discuss some of the systems and activities
undertaken by people in the open hypermedia field, and finally to touch upon the col-
laborative aspects of hypermedia. Hypermedia research, in one form or another, is very
much alive today, as witnessed by the solid participation in the Hypertext conferences.
There is much interesting work being done, however in this chapter I have only been
able to touch upon that which has had direct relevance upon my work.

The field of CSCW is likewise an active field. While my work has concentrated
predominantly on hypermedia; some CSCW aspects, especially shared awareness, has
contributed to my work.

Open hypermedia as such has been my tool of choice throughout my work. The
area where I have employed this tool is the Web, and therefore a description of the Web
as well as some related areas is in order.

4.7 A Brief History of the Web

The Web emerged in the beginning of the nineties [14]. It was developed by Tim
Berners-Lee at the European centre for high energy physics CERN in Geneva. It was
conceived as a technology that would allow visiting physicists to remain “connected” to
the experiments in which they had participated at CERN, usingoneprogram rather than
many heterogeneous programs (telnet , gopher , ftp , etc.). Arguably the main
innovation was the Uniform Resource Locator (URL), which elegantly combined the
various Internet protocols with machine names and the hierarchical Unix file system4

as seen in Figure 4.4. By using URLs it became possible to uniquely identify anything
accessible on the Internet.

Another, not as innovative but still essential, part of the WWW was the HyperText
Markup Language (HTML). HTML allowed users to markup their documents to some
degree and to insert URL links into these HTML pages. Finally, the WWW needed a

4The last part of the URL is usually based on a file system, but may in fact be any string to uniquely
identify a resource.

36 CHAPTER 4. HYPERMEDIA AND THE WEB

protocol︷︸︸︷
ftp ://

machine︷ ︸︸ ︷
ftp.daimi.au.dk /

file︷ ︸︸ ︷
∼bouvin/Arakne/readme.txt

Figure 4.4: The Uniform Resource Locator

transfer protocol, i.e. the HyperText Transfer Protocol (HTTP), which at the time5 was
a simple stateless file transfer protocol. HTTP was created as the overhead involved in
establishing a FTP connection was too great, especially as most Web use need many
connections created and destroyed over ordinary browsing.

The Web was originally conceived as collaborative, and the first graphical Web
browser developed by Berners-Lee for the NeXT was a browser/editor [13]. This
browser however never gained popularity and was soon overtaken by the NCSA Mo-
saic browse-only browser, which since has morphed into the Netscape and Microsoft
browsers.

The Mosaic browser was easy to use, ran on many platforms (the author used Mo-
saic extensively for the first time in CERN in 1993), and was free. “The Internet”,
which until then had been the realm of academics and specialists, suddenly became
usable for most people and it also became easier to publish material on what now was
“the Web”. This effect snowballed as few things have snowballed before, and leaves
us today less than a decade later with millions of Web users with access to approxi-
mately one billion Web pages, and where the average Westerner daily is bombarded
with URLs for additional information and commercials. The Internet is no longer the
realm of the professional — it has become a truly global information space.

What constitutes the success of the Web, that it has succeeded where other public
information systems failed? Some of the more important factors contributing to the
Web’s success were:

• Simplicity

• Freely available standards and software

• Decentralised architecture

• Scalability

• “Real” documents6

These are in essence the characteristics and strengths of the Internet itself, and by
leveraging these strengths, and by admittedly having the right technology at the right
time, the Web became huge.

4.7.1 Hyper-G

The Web did not rise to sovereignty unchallenged. Inspired by the early Web, the re-
searchers at Graz University in Austria created the Hyper-G (later HyperWave) systemhttp://www.hyperwave.com/

[9, 75]. Though very similar in some aspects (both used e.g. tagged ASCII almost com-
patible document formats), the Hyper-G system also provided some advanced func-
tionality of its own. These included hierarchical navigational structures, and built-in
multiple language support.

5It has since become much more complicated — the current specification is∼150 pages long.
6As opposed to Teletext or Gopher.

http://www.hyperwave.com/

4.7. A BRIEF HISTORY OF THE WEB 37

Web Client

Web Proxy

Web Server

request

request

response

response

Figure 4.5: The General Web Architecture

In many ways Hyper-G was technologically superior to the Web. Hyper-G offered
(automatically) indexed document collections, that could be shared and combined arbi-
trarily. The collections could be distributed and replicated automatically. Using the ap-
propriate clients, users could create bidirectional point-to-point links, that were stored
outside of the linked documents. Hyper-G was multi-protocol, as it could interface to
Gopher and Web clients. And yet, it did not replace the Web.

Several reasons for this can be found. One of the selling arguments of Hyper-G
was that it made Web sites easier to administer, as the system handled documents, and
updated links etc. if documents were moved. This is certainly a valuable service, and
a necessity as Web sites grow large. However, when faced with this problem, the com-
mon solution (and by far the most widespread today on the Web) was to use “real”
databases to form the backend of the system. This is not a dedicated hypermedia sys-
tem, but offers most of the advantages with regards to ease of administration, and has
been shown to scale well. Another problem with Hyper-G was the need for proprietary
clients. While Hyper-G offered a Web interface, the full benefits of the system could
only be reaped through the Hyper-G clients. At the point of introduction (1995), the
Netscape Navigator was the dominant browser with more (visual) bells and whistles
than the Hyper-G clients. In essence, the history of Hyper-G illustrates one of the
lessons of open hypermedia — that is hard to get people to cross over and abandon
their favourite tools.

4.7.2 The Semantic Web?

A much heralded theme of recent Web conferences has been the “Semantic Web”, a
future where meta-data of various sorts will optimise the way, humans use the Web by
allowing us to find what we want faster by having machines infer relationships between
documents. Technologies to support this include RDF (Resource Description Frame-
work) [70], a XML based meta data format. A RDF document basically consists of
statements in the form of three-tupels, consisting of a resource (identified with a URI),
a property type (an attribute of the resource, such as ’author’), and a value (such as
’John Doe’). A statement can itself be a resource for another statement, such that state-
ments become nested. RDF is a relatively new standard and is yet to see widespread
use. While not yet implemented, the RDF interest group states querying and searching
as future work. To support different meta data standards, RDF supports XML Name
Spaces, so that e.g. the Dublin Core can be represented in RDF. http://purl.oclc.org/dc

The vision of meta data and specifically RDF on the Web is that the future Web

http://purl.oclc.org/dc

38 CHAPTER 4. HYPERMEDIA AND THE WEB

would consist of not only Web sites with ordinary Web pages, but also collections of
meta data making statements about these Web pages. This presumably rich meta data
could then be used for queries and inference. A basic problem with this scenario, a
problem shared with hypermedia in general, is that this meta data must be generated
by someone. Some discussions have involved automatically generating meta data from
Web pages, but such meta data would not contain more information than the originating
Web pages. Not only must meaningful meta data be created, a difficult task in itself,
but if it is to be used for machine inference, the specification schemes must be fol-
lowed fairly accurately. Taking the current Web’s relaxed relationship to, say, HTML
standards, this seems a bit optimistic. There can be no question that meta data works
excellent in e.g. library settings, where index cards etc. are produced by trusted pro-
fessionals in an established fashion, but as Web search engines research shows, people
in general cannot be trusted to describe their Web sites truthfully7.

The problem of getting someone to author the meta data is, as mentioned above,
also shared by hypermedia. Someone has to author the links. However, links (or other
hypermedia structures) in general arehumanassociations accessed by other humans,
not building blocks to be used by computers, and humans are generally better to sift
information out of even questionable associations.

The general semantic Web seems at this point unlikely, if nothing else, just because
it expects the authors of the Web to adhere to shared encoding standards in the descrip-
tion of their pages. Data warehousing is the difficult field of combining the information
systems used by a large company into one system. This turns out to be a very difficult
problem in practice, even within just one company, given the different focus of differ-
ent communities of use within the organisation. Data warehousing the meta data of the
Web will be much, much worse.

4.7.3 Collaboration on the Web

Due to its pliable architecture, the Web forms the infrastructure for many kinds of
applications, not least the support for collaboration. Collaboration on the Web takes
many forms — from classical CSCW applications such as BSCW [12] to link recom-
mendation and discussion forums such as Slashdot . The former is a system to supporthttp://slashdot.org/

document sharing and authoring, as well as discussions. The latter has become quite
successful and has spawned many similar sites, as the software driving the site is open
source. The readers of the site contribute links to interesting articles or other newswor-
thy items on the Web; the editors of the site publish some of these link on the front
page of the site, and the news item then forms the starting point for an (at times) ani-
mated discussion between the readers. To help improve the quality of the discussion,
the postings by readers are scored by moderators. Moderators are not editors per se
— they are ordinary readers that have previously posted good material on the boards
(and have thus received a high score from other moderators). To keep the moderation
fair, the rest of the readers can rate the moderation itself, thus directing the work of the
moderators (of which there are several thousands). There are two advantages to these
kinds of sites, that greatly increases the usability of the Web. The sites are usually
fairly specialised in scope, and given the large readership (and hence the large number
of contributions), a site summarises most of the interesting events within a particular

7Panel on search engines at Digital Libraries 1998 in Pittsburgh, USA. HTML already supports meta data
in the<head> tag, but this is, according to the panel, largely ignored by search engines. The problem is that
this meta data is often used for “keyword spamming”, where the meta data field is filled by words unrelated
to the page itself in the hope of getting a higher ranking in (perhaps quite unrelated) search results.

http://slashdot.org/

4.8. WWW, OR WHAT IS WRONG WITH THE WEB? 39

field. Furthermore the discussions following the news item will often provide insights
and pointers otherwise difficult to obtain. In short, these sites allow the individual user
to benefit from the collective knowledge, Web browsing, and standards of the commu-
nity. Some sites, such as kuro5hin have even done away with the editor concept, sohttp://www.kuro5hin.org/

that the selection of newsworthy items among the contributions is carried out by the
readers. By the readers, and for the readers.

These kinds of Web sites highlight what is possible with the pliable architecture
of the Web. While well suited for discussions, they do not address other collaborative
efforts, such as authoring.

4.7.4 WebDAV

Another example of support for collaborative work (and one closer related to the CSCW
field) is Web Distributed Authoring and Versioning, WebDAV [98]. As mentioned inhttp://www.webdav.org/

section 4.7, the Web was originally by Tim Berners-Lee conceived as a read/write
environment, where the interaction with the Web took place in a browser-editor. To
support this functionality, the HTTP protocol has long provided theput operation.
Unfortunately, this has not found widespread use — the author is aware of but one
editor-browser, Amaya, which uses it, and hence Web server support is also scarce.http://www.w3.org/Amaya/

One problem withput is that there is no provisions against overwrites, as documents
cannot be locked, and given the arbitrary large size of Web pages, an optimistic con-
currency approach as in KMS [1] seems overly optimistic. WebDAV addresses this by
extending the HTTP protocol, and introducing locks on Web resources. Furthermore it
is also possible to store information about resources (or more precisely, about URIs).
Versioning is not (yet) a part of the WebDAV standard, but the∆V [36] group is ex-
pected to finish their work in year 2000. Compared to more ambitious collaborative
authoring systems, the WebDAV standard is somewhat modest, as it is only possible to
lock whole resources, not parts of a resource. Rather than a weakness, this can actually
be seen as a strength — WebDAV is format agnostic, and can thus be much simpler to
implement than a system that has to be able to handle the internals of diverse document
formats, and presumably be updated as new document formats are released.

Apart from direct collaborative authoring of documents, WebDAV enabled Web
servers opens some interesting possibilities as remote repositories. The Webvise client
[54] is able to export hypermedia structures into interchange files and store these on
WebDAV enabled Web servers. These files can then easily be accessed by anybody
with Web access.

4.8 WWW, or What is Wrong with the Web?

The Web is hugely successful and must clearly be doing something right, as has been
described in Section 4.7. However the Web could be more than it has become, and this
section outlines some of the shortcomings of the current Web.

The greatest immediate shortcoming of the Web from a hypermedia standpoint is
the linking model. Links on the Web have a number of constraining characteristics:

• Inline

• Author only linking

• Unidirectional

http://www.kuro5hin.org/
http://www.webdav.org/
http://www.w3.org/Amaya/

40 CHAPTER 4. HYPERMEDIA AND THE WEB

• one-ary

• Untyped

• One set of links per document

• URLs are physical adresses, rather than symbolic names

The main problem is that links are inlined in HTML documents, and this is the
cause of most of the other problems. The Web link is in essence little more than a goto
or a jump instruction to the Web browser to retrieve and display a new document (and
in this sense quite similar to KMS [1]). The owner of a Web page is the only one who
can create links or named regions in a page. As links are unidirectional, there is no way
of telling whether there are links pointing to a given page or resource8. It is not possible
to have more than one destination per link, nor can one distinguish between different
kinds of links9, such as annotations, references, etc. With thetarget attribute in the
<a tag, it became possible to signify some link behaviour as the destination document
can be displayed in an existing frame or in a new window, but it is e.g. not possible to
let a link be replaced by the document that it points to. Some of these points are minor,
but the perhaps most serious consequence of the inline linking model is that there can
be only one set of links per document. This is a drawback as it limits the possible uses
of a Web page. If it was possible to have multiple sets of links to a given page, this
page could be reused in other contexts without any modifications to the page. It would
e.g. be possible to publish a technical specification, the specification with annotations,
the specification with links to source code implementing it, etc., without changing the
specification document into multiple (slightly different) copies. Ignoring for a moment
temporarily unavailable Web servers, link rot is a reoccuring annoyance on the Web.
This often happens when authors or maintainers of Web pages decide to reorganise
or move their Web pages. This will break links relying on the previous organisation.
Partly, this problem also can be blamed on the inline link (it certainly does not lessen
the problem). Maintainers of Web pages have no way of knowing or anticipating the
use that others put their pages to. Thus, maintainers cannot know if moving a document
will have an impact on other Web pages. The arbitrary reorganisation of Web pages
would be a smaller problem, if URLs were not used aslocationspecifiers — the URL
has been likened to finding a book in a large library with directions like “twentieth
book on the third shelf on the seventh row on the first floor”. If the books are moved
around, the desired book can no longer be located. Similarly, if a file is moved to a new
directory, a URL previously pointing to it becomes useless.

The Web is a monolithic hypermedia system, and could therefore be expected to
be criticised for the problems associated with other monolithic hypermedia systems,
such as closedness, the lack of third-party application etc. In the case of the Web, this
critique does not have much merit, as the Web has succeed, where the other systems
did not. The computing world has become Web enabled, and many program are able
to work with the Web one way or another.

It should be made clear, that while the Web has a problematic linking model, this
simple model is also what has made the huge scale of the Web possible. While certainly
not perfect, it works surprisingly well, but as previous sections has outlined, there are
scenarios where more elaborate structuring mechanisms become desirable. Thus, for
many purposes, the Web suffices, and for the rest Web augmentation can play a part.

8Save by using a brute force method such as indexingall Web pages.
9It should be noted that the current HTML specification actually allows for some limited link typing, but

it is under specified and has not, to the author’s knowledge, been implemented in any Web browser.

4.9. SUMMARY 41

4.9 Summary

This chapter has provided a non-exhaustive overview of the fields, I have based my
work on. Largely, my project of Web augmentation can be seen as extending the expe-
riences of open hypermedia to the Web. The hypermedia research community has in its
more than fifty years long history developed many exciting and useful ideas, systems
and structuring mechanisms, and it would be a pity if this was not made available for
the Web. The Web itself is a fascinating entity with its simple and immensely flexible
architecture and the many different related technologies, many of which are still emerg-
ing. Apart from the systems already described, there are other systems, described in
the following chapter, that seek to augment the functionality of the Web.

42 CHAPTER 4. HYPERMEDIA AND THE WEB

Chapter 5

Related Work

In [17] [P1], I described many Web augmentation tools. In the interim some new tools
and technologies have emerged or matured, and this chapter describes some of them.
Broadly, they can be divided into two groups: XLink (and related technologies) and
personal tools aimed squarely at the Internet Explorer.

5.1 XLink

XLink1 [37] is a W3C initiative to extend the linking capabilities of the Web. XLink is
a general XML format to describe navigational hypermedia, and to allow expressions
of navigational hypermedia to be inserted into XML documents. While the main appli-
cation of XLink is expected to be linking within XML documents, the standard itself
is not limited to address solely XML locations, provided that appropriate locators have
been defined. XLink can support the linking currently found on the Web (e.g. unidirec-
tional one-ary untyped links), as well as bi-directionaln-ary typed links. Links can be
stored externally (“out-of-line”) of the documents, they address, or they can be in-line
(as with HTML documents). Traversal of a link may result in replacing the document
currently viewed (as is the standard behaviour in the context of HTML), or by inserting
the target for the link in the viewed document. The traversal may be initiated by the
user (e.g. by clicking on a link), or at the time of document retrieval.

XPointer [30] is used to identify regions of interest in XML documents. XPointer
allows for selection based on ids, hierarchical structure (from XPath [27]), or an ar-
bitrary user selection (e.g. selecting a string in the rendered XML document). This
is a quite sophisticated addressing scheme that should cover most uses. XPointer can
address arbitrary XML documents, but the explicit support for XPointer can also be
added to a DTD. A given region may be identified using several locators, which im-
proves reliability, as one locator might fail after a document has been edited.

XLink holds great potential. At this point it is still too early to discern whether it
will hold, but if it does, it holds interesting prospects for the future of the Web. In a
realised XLink future, complex linking structures are routinely stored outside of Web
resources, immediately available for the users of the Web. In such a scenario, there
will of course still be open hypermedia research (operating system research did not
cease because of Microsoft Windows). Indeed, just as the Web made “hypermedia”

1Parts of this section is taken from my contribution to [55].

43

44 CHAPTER 5. RELATED WORK

a widely understood term, XLink may have the same result on externally stored hy-
permedia structures. XLink is a very new technology, and so far there are only a few
systems providing XLink functionality. Presumably this can be expected to change. As
it currently stands, XLink is predominately biased towards navigational hypermedia2,
and while much hypermedia can be modelled in terms of links it has long since been
established at least in the OHSWG community that this is unnecessarily cumbersome
for hypermedia constructs such as guided tours, compositional, taxonomic, or spatial
hypermedia. Still, XLink is a good starting point. Currently XLink is mainly an inter-
change format — there are no standards for interaction between XLink applications or
XLink queries. Through XPointer and XPath, XLink is supremely well suited for link-
ing XML documents. It is however completely feasible to write locator (or LocSpec in
OHSWG parlance) specifications for non XML documents, e.g. images [64].

5.2 Internet Explorer Add-ons

A new form of Web augmentation tools has emerged since [17] [P1] — the specialised
Internet Explorer add-ons. The Internet Explorer lends itself supremely well to this
kind of integration, as it is a COM (Component Object Model) component and has an
excellent interface3 for accessing the Document Object Model of the displayed doc-
ument. Functionally most of these new tools integrate themselves directly into the
Internet Explorer interface by added a new tool bar or menu.

The tools described in this section are commercial, and as such have to generate
revenue for their companies. The approaches taken by their respective owners are in-
teresting and in some ways similar. Flyswat and Third Voice both generate what are
essential generic links by highlighting key phrases in the displayed document. These
links will typically contain links to sites related to the phrase and, noteworthy in this
context, commercial ventures — e.g. the phrase “Pokémon” or “Pikachu” will have
links to sites where this merchandise may be purchased. Flyswat directly offers part-
nerships with companies, so that they can make their services directly available to users
through the Flyswat service. Both the Flyswat and the Third Voice clients are free,
and presumably generate their revenue from the “product placement” partnerships. In
contrast, iMarkup, which seems to have a different marketing plan, currently charges
money for their clients and their servers.

This is perhaps not exactly what Bush had in mind, when he wrote of trail blazers.
It seems, at least to the hopeful author, that there may be room for both kinds of activity
on the Web. The in some circles much lamented commercialisation of the Internet has
in retrospect had many benefits, as it by the economy of scale has made the Internet
available to the “non-technical” population. Just as the Web made hypermedia acces-
sible to everybody4, these kind of tools can perpetrate the idea of adding another layer
of information on top of existing Web pages. iMarkup is in this context interesting as
their aim, apart from the individual markup of pages for personal use, is to provide
groups and organisations with shared annotations. This is an daring endeavour, and
whether their business plan will translate in profitability remains to be seen. As such

2It should be noted however that according to Steve DeRose and Lloyd Rutledge (both participants in the
XLink authoring process) that the term “link” in the XLink standard document should be read as “relation-
ship” (private communication).

3This interface is also the reason why the Arakne Environment at an early date changed from the Netscape
Communicator to the Microsoft Internet Explorer. The difference in interface richness is dramatic.

4In the so called Western World, that is. The “digital divide” between the Western World and the rest of
the Earth remains very much in place.

5.2. INTERNET EXPLORER ADD-ONS 45

these companies’ fate can be quite crucial as their products are not too dissimilar from
“real” open hypermedia systems integrating the Web, or indeed open hypermedia in
general. If they succeed, so may we. One item of concern is that iMarkup and Fly-
swat both announce on their Web sites that they have secured or are in the process of
securing patents on their respective “key technologies”, though exactly what entails re-
mains unclear. Whether this will have implications for hypermedia research is an open
question.

5.2.1 Flyswat

Flyswat is an ActiveX component integrated with the Windows operating system.http://www.flyswat.com/

When enabled, it highlights keywords on Web pages displayed in the Internet Explorer,
so that a click on the keywords can lead to a definition of the word, the Web site as-
sociated with the term, or a page where the item may be purchased. The Flyswat
functionality is not limited to the Internet Explorer (though markup is found only in
the Internet Explorer) — a Alt-Click on any word in a Windows application will result
in a lookup. The effectiveness of Flyswat greatly depends on whether a given subject
is covered by the Flyswat company or any of the associated partners. There does not
seem to be any possibility of submitting links or keywords to the service, outside of
becoming an associated partner with Flyswat.

Figure 5.1: The iMarkup Application (fromhttp://www.imarkup.com/)

http://www.flyswat.com/
http://www.imarkup.com/)

46 CHAPTER 5. RELATED WORK

5.2.2 iMarkup

iMarkup is another add-on to the Microsoft Internet Explorer. It provides the userhttp://www.imarkup.com/

with the ability to interactively markup Web pages with highlighting, annotations, and
freehand drawings. The marked up pages are stored locally, but can be sent to others
using email or ICQ (a popular Internet instant messaging service). iMarkup is closely
integrated into the Internet Explorer’s interface, as seen in Figure 5.1, where iMarkup
resides in the leftside of the window.

The iMarkup is now also available distributed. By adding an iMarkup Group server
to a Microsoft IIS Web server, groups can access shared annotations. The server is a
commercial product and the license fee depends on the number of users.

Given its proprietary nature, it is unclear from the company’s documentation, how
the markup is achieved and how markup is localised in conjunction with the rest of
a Web page. According to the company’s Web site, iMarkup employs patent pending
techniques. However, it is most likely that the system utilises the same techniques
as Webvise and Arakne Environment, that is accessing and manipulating the DOM
(Document Object Model, a hierarchal model of a Web page) of a Web pages to add
new content.

5.2.3 Third Voice

Third Voice is an add-on to the Microsoft Internet Explorer. Originally, Third Voicehttp://www.thirdvoice.com/

offered users the ability to annotate Web pages with “sticky notes”, very much like
iMarkup. However in the latest version, this has changed radically. Third Voice now
offers services similar to Flyswat, including the partnership model. Additionally users
of the service can discuss Web pages or topics in boards provided by Third Voice.

5.3 Summary

The different directions taken by the above described systems are interesting. XLink
is an attempt to provide good general navigational hypermedia for especially but not
only XML documents. It takes its outset in defining open standards, which develop-
ers are free to adopt. Once the different standards have settled, implementations will
hopefully follow. At the other side of the spectrum, we find commercial tools, which
offer services today, but does so with closed, indeed sometimes “patent pending”, stan-
dards. I can only wish these companies luck in their bold ventures, but from an open
hypermedia standpoint, I hope that open technologies such as XLink will prevail, or
that these companies eventually will make their systems open for others.

http://www.imarkup.com/
http://www.thirdvoice.com/

Chapter 6

Contributions

This chapter presents the main results of my Ph.D. project. My method of work has
been that of experimental computer science, where theories and concepts are validated
through implementation of prototypes. My starting point has been the concept of Web
augmentation, and through theory building of conceptual frameworks and the imple-
mentation of prototypes I have examined this topic. This work is reflected in the fol-
lowing papers.

6.1 [P1]: Unifying Strategies for Web Augmentation

Web augmentation tools has been a recurring theme of this text. Such tools are available
in many different forms, and the Arakne Framework seen in Figure 6.1 is an attempt to
unify the various approaches taken by these tools. This has been documented in [17]
[P1], presented at Hypertext 1999 in Darmstadt, Germany.

Structure layer

Structure
Server

HyperStore

Operations

Navlet Bean 1 Navlet Bean 2

Proxy

Web Server

HTTP

Web
Browser

Hyperstructure
Store

Browser

HTTP

OHP

Service layer

Content layer

Arakne

Structure
Server

HyperStore

Figure 6.1: The Arakne Framework

47

48 CHAPTER 6. CONTRIBUTIONS

One of the basic problems of Web augmentation is to maintain control over the
Web pages and the Web browser as described in Section 4.3.9. In general Web aug-
mentation tool developers wish their tool be remain active and relevant to what the user
is doing with the Web. Thus, the system must be kept aware of what Web page is being
displayed, and may also need some way of modifying the contents of the current Web
page. These seemingly simple requirements have not been without some difficulties
during the progression of the Web and the dominant Web browsers.

The Arakne Framework can be seen in Figure 6.1. It was based on the analysis of
many, quite different, Web augmentation tools, and models such tools by identifying
the necessary constituent components and their interactions. A Web augmentation tool
needs an interface so the user can interact with it; it must know which Web page is being
displayed; it needs to retrieve the information pertinent to the Web page in question;
and if such information exists, it may need to modify the Web page. These tasks are
reflected in the Arakne Framework. The Arakne Framework can be used to model
arbitrary Web augmentation tools, and some examples of this are given in the paper.

The Arakne Environment, presented for the first time in [17] [P1], followed the
Arakne Framework. One of the purposes of the Arakne Environment has been to imple-
ment the components used by Web augmentation tools, so that prospective developers
can concentrate on the more interesting task of developing their tool’s core function-
ality. As such, the Arakne Environment supports an open set of Web augmentation
tools. The development leading to the current version of the Arakne Environment is
described in more detail in Section 6.6.3 and Chapter 7.

6.2 [P2]: Opening Temporal Media for Web Augmen-
tation

The Web is more than HTML pages. As the common Internet connection becomes
faster, other media types, such as audio or video, become more widespread. In order to
demonstrate that the open hypermedia Web augmentation approach could be extended
to more than HTML, the Coconut project set out to create a hypermedia integration
of video files with Arakne. This work has been documented in [20] [P2], presented at
WWW9 in Toronto, Canada.

At the time of development, we were faced with the recurring problem of open hy-
permedia: Content handlers that could not be sufficiently integrated for our purposes.
We could do “launch only” integrations, but this is also possible with ordinary Web
links, and would thus be a rather pointless exercise. We therefore resolved to create
our own media player, which was to mimic the media player used by the Web browser,
hence the name Mimicry. While not trivial, the task of creating this media player was
greatly helped by the Java Media Framework, which is able to handle a rich set of time-http://java.sun.com/

products/java-media/jmf/ based media types. At the point of creation, the Arakne Environment did not do its own
link decoration, as we had yet to implement the full Internet Explorer integration. Web
page modifications were handled by the DHMProxy [56], which in this case identified
embedded media clips (identified by<embed> or <object> tags) of the types han-
dled by Mimicry, and rewrote these to<applet> tags, invoking the Mimicry applet to
play the media file, as well as specifying the anchors, if any, in the media clip. Through
this technique, the normal media players or plug-ins were circumvented, and we had a
media player with a much richer programming interface. Through integration with the
navigational view Navette in the Arakne Environment, it was thus possible for users to

http://java.sun.com/

6.3. [P3]: THE ARAKNE ENVIRONMENT AND THE FUTURE OF OHSWG 49

author links with anchors in ordinary HTML pages as well as in media clips as seen
in Figure 6.2. The general architecture of the Arakne Environment at this time can be
seen in Figure 6.3.

Begin
Anchor

Play

Play
Anchor

Follow
Link

Create
Anchor

End
Anchor

Figure 6.2: Mimicry playing the endpoint ’Endpoint 14’

Mimicry was largely an experiment, and has not received much development since.
At the point of development, the Java Media Framework did not support streaming
media. This has been corrected in later releases. Today, the situation is however slightly
different, as at least the Microsoft Media Player has a sufficient interface to support
open hypermedia needs (and has e.g. been integrated with Webvise), so the need for
our own media player may no longer exist. A problem of the temporal media types
is that they often rely on proprietary formats and players, which makes an integration
more difficult. This is of course nothing new in the context of open hypermedia.

Apart from illustrating that Web augmentation is not limited to HTML pages, the
main contribution of the paper is the identification of the problematic closed nature of
plug-ins and other media handlers. Not only does this make life more difficult for open
hypermedia people (admittedly a minor concern for the developers of these programs),
it also makes it more difficult for “normal” Web authors to utilise such media in creative
ways.

6.3 [P3]: The Arakne Environment and the future of
OHSWG

The experience of porting Arakne to Construct, or more generally to OHP is docu-
mented in [19] [P3].

The Arakne Environment originally relied on the DHM hypermedia servers. As the
Coconut project progressed, and the Construct servers matured, it was a natural step to

50 CHAPTER 6. CONTRIBUTIONS

Browser

Structure
layer

Operations

Navette Ariadne

DHMProxy

Web Server

HTTP

Hyperstructure
Store

HTTP

OHP

Service
layer

Content
layer

Arakne Environment

Structure
Server

Structure
Server

HyperStore DBMS

Mimicry
Controller

Mimicry
Controller

Web Browser

OHP

Figure 6.3: The Arakne Environment with Mimicry

move from DHM to Construct. This would provide Construct with a client for testing
purposes, and provide the Arakne Environment with the richer functionality, especially
with regards to collaboration, of Construct.

The move to Construct was accomplished in two steps. Version 2.0 of Arakne was
the first to utilise Construct, and did so by essentially wrapping Construct. This was
done for two main reasons: Firstly to make a speedy transition, and secondly to isolate
the views from the changes made in the backend.

At the time of this first step, the Arakne Environment was organised as seen in Fig-
ure 6.3. While the Internet Explorer could be controlled from the Arakne Environment
(for purposes such as reloading pages), link decoration was still handled by the DHM-
Proxy. The views in the Arakne Environment provided the GUI for creation of links
and guided tours, and interfaced to the “Hyperstructure Store”1 for the required func-
tionality to create these structures at the hypermedia server. As one of the priorities of
the first transition was not to break existing views, the interface from the Hyperstruc-
ture Store to the views was retained. To fit within Construct, the Hyperstructure Store
and its associated data model was drastically changed. The data model was changed,
so that each class (such as Link or Anchor) became wrapper classes for the matching
Construct classes. While tedious work, this was fairly simple, especially as Construct
like Arakne is written in Java. While this first integration made the creation of links and
guided tours possible, the more advanced features of Construct, such as collaboration
support through sessions was still not available. We therefore resolved to make Arakne
a native Construct client. This required a more elaborate redesign to accommodate the
Construct data model and to handle sessions correctly. This new architecture, which is
the current one, is described in more detail in Section 6.6.3.

Having ported Arakne to OHP, it was time to take a step back, and consider OHP.
It has many good points, and is a very advanced hypermedia architecture. It is also an
open standard, yet there has to this date been zero migration to it outside of OHSWG.
This led to some considerations about OHSWG and the nature of standardisation.

1Note: Store as in “convenience store”, not as in “storage”.

6.3. [P3]: THE ARAKNE ENVIRONMENT AND THE FUTURE OF OHSWG 51

Over the years, OHSWG has held demos at the Hypertext conferences to demon-
strate the advances made by the group with regards to interoperation and collaboration
support. Up to these events the participating parties has more often than not been
feverishly working to correlate their almost but not quite compatible implementations
of OHP. Thus, even within OHSWG itself, the OHP standard is not clear. OHP is
currently defined de rigueur if not de facto by the “Darmstadt DTD”, which specifies
the protocol and data model in an XML DTD (Document Type Definition). DTDs are
suited for specifying syntax, but not semantics. Thus, a lot of the specification is not
in the DTD, but is essential left to the implementor. Currently the only complete im-
plementation of OHP is Construct, and there has invariably during the implementation
of this architecture been made deviations from the OHP standard. This is to be ex-
pected, as implementation is one of the better ways to evaluate standards. However,
for future purposes and for the cause of OHSWG, one implementation of OHP is not
enough. It is unlikely that Construct can cater to all needs and it is more than likely that
idiosyncracies of the Construct will remain undetected unless they are verified against
an independent implementation. So, if the goal is to make OHP more widely accepted
and employed, we must consider the means.

One obvious lack of OHP today is that it is underspecified. One DTD does not
a standard make, and given that Construct demonstrates that OHP can survive imple-
mentation, the time has come to create a more substantial standards documentation. To
this end, a DTD is unsuitable, because it is too unclear on semantics, while being too
low level. A good specification should not tie itself to one transport protocol, such as
XML over sockets. I participated in decision to recommended that XML should be
used over sockets for the entry-level implementations, while CORBA should be used
for more ambitious implementations. This decision was perhaps in retrospect suspect,
but it made sense at the time. XML was widely supported on many language platforms,
it was easy to debug, as it was human readable, and it would lend itself readily to e.g.
an interchange format. A major consideration was also the decision not to bind our-
selves to one particular platform (language or otherwise), such as DCOM which even
today is predominantly a Microsoft platform, or CORBA, which at the time was not
freely available. The downside to XML became clearer as the various implementations
progressed, as there were no tools to unambiguously generate skeleton source code
from a specification, as is possible with e.g. IDL (Interface Description Language).
This led to the problems with interoperability described above. Today the situation has
changed. CORBA is now more widely supported, and another interesting development
is the CSC tools developed at Aalborg University Esbjerg [105]. Based on an IDL or
UML (Unified Modelling Language) specification, these tools generate skeleton code
for Construct services. The transport layer is independent of the IDL specification,
which rightfully becomes the main focus. These tools are a step in the right direc-
tion. Future work for the OHSWG will be to create a proper standards based on higher
level transport agnostic specifications of both data model and semantics with a clear
mapping from specification to implementation. CSC provides one such mapping, and
I have volunteered to coordinate the writing of an OHP standard — a task I expect to
commence this autumn.

The contributions of this paper are firstly an discussion of how a hypermedia client
can be ported from one hypermedia system to another with special focus on the trade-
offs involved. Secondly, it also contributes to the on-going discussion within the
OHSWG to further the state of open hypermedia.

52 CHAPTER 6. CONTRIBUTIONS

6.4 [P4]: The Collaborative Arakne Environment

Support for collaborative hypermedia authoring became a priority in Arakne Environ-
ment with the introduction of the Construct servers. The work to support collaborative
work in Arakne is documented in [18], presented at Hypertext 2000 in San Antonio,
USA and in the yet unpublished [15] [P4].

For a more general discussion of CSCW, see Section 4.5. The basic notion of col-
laboration in the Arakne Environment was present before the move to the Construct
servers (see Section 4.3.7), which supports collaboration explicitly. The previous ver-
sions still allowed people collaborate implicitly through the annotation of Web pages
with notes or links. With the move to the Construct servers, it became possible to take
this collaboration to Arakne itself, and how this was accomplished is the topic of this
paper.

OHP and thus Construct handles collaboration through sessions. A session is de-
fined by a coupling mode, a set of users, a set of tools, and a set of documents. Of these
the coupling mode is the most interesting. The coupling mode defines the visibility
of each users’ actions. The current version of the Arakne Environment supports three
coupling modes: Uncoupled, loosely, and tightly. The difference between these cou-
pling modes lies in the frequency with which updates are broadcast to other members
of the session. In the uncoupled mode, there is no broadcast at all, and in the tightly
coupled mode, all changes are broadcast.

To supplement the coupling modes, OHP also supports subscriptions on OHP events.
This allows a user to for instance be alerted, when John creates a link, but not when
Jim does.

To accommodate this new functionality without disrupting the existing user inter-
face too much, an attempt was taken to make it possible to collaborate without having to
focus on the collaborative parts of the interface, such as the Session Manager. This was
accomplished to a degree, where a user need only use the Session Manager for creating
or deleting sessions, but where the switch between active sessions or the awareness of
other users online has been integrated into the user interface. The main interface for
keeping users aware of each others’ actions is a ticker tape, located at the bottom of
the Arakne Environment (visible in Figure 6.8). This ticker tape displays items such
as the subscriptions described above, as well as monitors users logging in or out of the
system. It should be noted, that at the time this paper was written (Spring 2000), the
Arakne Environment had an Internet Relay Chat view, which allowed participants in
a session to chat together. Due to problems with the IRC protocol supported by the
libraries used by this view, it is currently not available, though it can be expected to be
reinstated, once these bugs have been fixed. Given the automatic upgrade functionality
of the Arakne Environment, such a change will be seamless to the users.

The contributions of this paper is a discussion of how the abovementioned goals
may be achieved, and how one may use a collaborative framework as the one found in
Construct to facilitate shared awareness.

6.5 [P5]: The iScent Framework

As it stands today, the Arakne Environment sports a nucleus of message notification
through the use of a ticker tape. However, much is still lacking before such a message
notification system can be regarded as truly useful. Firstly, the range of the Arakne
ticker tape is limited to events taking place within connected OHP compliant clients

6.5. [P5]: THE ISCENT FRAMEWORK 53

— typically other Arakne Environments. Secondly, the information provided in the
messages is not very detailed. Thirdly, if a user misses a message as it scrolls by, it is
lost for good (the object the message was about might still be present, but how would
the user know?). Fourthly, while compact and easy to handle, the ticker tape as a tool
is fairly limited in what it can actually do (despite the successes of Elvin [41] ticker
tape).

The original goal of the Arakne ticker tape was to help users stay aware of each
others’ actions, that is to maintain a shared awareness (for a further description of
systems supporting shared awareness, see Section 4.5). To further shared awareness2,
to address the concerns raised in the previous paragraph, and to design a versatile
architecture using a message notification system as infrastructure, Kenneth Anderson
and I have devised the iScent framework. This work is to be published in [6] [P5].

There are numerous message notification systems available today, both commer-
cially and described in the literature (e.g. NSTP [85]). The beauty of these systems are
the publish/subscribe model, where parties can subscribe to message matching certain
criteria, without having to specifying the origin of the desired data. Similarly, other
parties can publish information on the system, knowing that interested parties will get
the data, but without having to establish direct connections with these parties. All rout-
ing of messages back and forth between parties is handled by the transport layer, that
is the message notification system.

The iScent framework does not attempt to replace existing message notification
systems. Rather, it utilises a message notification system (currently Siena [26]) as
infrastructure or backbone. The purpose of the iScent (intersubjectivecollaborative
event environment) framework is to help people increase intersubjectivity and to aug-
ment their (collective) memory through the use of high fidelity persistent events. In
the extreme case all tools used by a user would be iScent enabled, and then all actions
taken by the user with the computer would generate iScent events. These events would
be stored by sinks, and could later be queried and retrieved by the user. The general
architecture of iScent can be seen in Figure 6.4. The two kinds of arrows to the Arakne
Environment illustrates that it is both an iScent aware application (i.e. generates events)
and contains the Trail Viewer for visualising trails of events.

The iScent framework is still a work in progress. While the general architecture
and protocols are by now stable, the greatest challenge and greatest benefit will be the
development of a powerful client (the “Trail Viewer”), able to allow users to visualise
and structure events, as they see fit.

A novel part of the iScent framework is the introduction of sinks. Rather than
letting events and messages be fleeting things, the sinks storeall iScent events. Sinks
can through subscriptions be setup to store specific events (such that a working group
would utilise a local sink rather than relying on one further away). At a later point, a
sink can be queried to return matching iScent events. Off hand, this sounds like the
ultimate Big Brother scenario. Why is this useful? There are several scenarios, where
such a system comes in handy:

Augmented memory Jane recalls she was using a really good resource, when she
was working on the Epsilon project, but where was it? Looking in her calendar
to pinpoint when she was involved in the Epsilon project, Jane queries “Docu-
mentOpened” events in this interval in the Trail Viewer, and quickly locates the
relevant document.

2Or rather reflected awareness (also known asintersubjectivity)

54 CHAPTER 6. CONTRIBUTIONS

Watchdog

Kennel

Sink

Sink

iScent Aware
Application

Trail Viewer

(iScent Aware Application)
The Arakne Environment

Sink
iScent Aware
Application

Events
Socket

Figure 6.4: The iScent Framework

Discovering relations John is working on the database part of the Phi project, and
while reading some online Oracle documentation, queries the Trail Viewer to
see who else has read that particular page. Apparently Jane read the same page
some months previously, and John sends Jane a technical question in an email.

Intersubjectivity Jane is writing some documentation, and would like some feedback
from John. After finishing the page, she sticks a watchdog on it, so that she will
be alerted, whenever John reads the page. She then emails John to tell him about
the page. Later John gets around to reading the page, and by doing so sets off
the watchdog. He is himself alerted to this, as is Jane. Jane now knows that John
has read the page (and John knows he can expect a call from Jane), and can thus
call him to hear his opinion.

With regards to privacy concerns, it is of course crucial that the individual can
control what and when to publish events, and this can easily be accommodated in the
client interfaces. As described, the iScent framework could lend itself to abuse by being
used for monitoring, and a model of use, where events belonged to and were controlled
by the originator, will have to be implemented. It should be noted that while some
actions may be judged private, such as Web browsing, others such as committing a file
into a CVS repository are public actions. As mentioned in Section 8.3.1, one approach
to ensure privacy would be to encrypt all events at the originating machine using the
user’s personal key or keys belonging to projects, in which the user participate.

The main contribution of this paper is the concept of supporting intersubjectivity
through persistent events and triggers. This is a work still in progress, but the general
architecture of iScent seems sound, and could be used in many settings.

6.6. PROTOTYPES 55

6.6 Prototypes

Throughout my Ph.D. I have designed and developed several Web augmentation pro-
totypes. This chapter will describe them in turn, briefly beginning with DHM/WWW3,
with a special focus on their design, and how the experiences from one design itera-
tion helped create the next versions. As is the fate of prototypes, these systems have
been abandoned as new versions were created, so only the latest version, the Arakne
Environment 2.1 is publicly available at the author’s Web site . http://www.bouvin.net/

Arakne/The experiences gained and difficulties encountered during development with re-
gards to Web browsers and Java are described in Section 7.1 and Section 7.2. This
section concentrates on the functionality of the prototypes, and the rationale behind the
design.

Figure 6.5: The DHM/WWW Prototype

6.6.1 DHM/WWW

DHM/WWW [48], shown in Figure 6.5, was a prototype to showcase the possibilities
of applying open hypermedia to the Web. Functionally, it was a Java applet, and as
such quite easy for the user to start — this only required the user to retrieve a Web
page containing the applet. Once the applet had started, the user could then proceed to
browse Web pages as before, provided that the user constrained the browsing activities
to the Web server whence the applet came, did not use bookmarks, and avoided pages

3Strictly speaking, this system is prior to my Ph.D., but it set the course for my work, so I decided to
include it.

http://www.bouvin.net/

56 CHAPTER 6. CONTRIBUTIONS

with frames. Under these restrictions, the user could create bi-directionaln-ary links,
as well as browse existing links. Link creation involved copying and pasting a context
around the desired endpoint into the selection area and then selecting the endpoint.
There was only one collection or hyperspace of links, and no notion of different users.
Link decoration was pre-render, and thus fairly slow. The applet ran on all platforms
supported by the Netscape Navigator, and used CGI-scripts to communicate with the
DHM hypermedia server.

6.6.2 Navette

Navette [16], shown in Figure 6.6, was the first prototype, I created during my Ph.D.
It was, just as DHM/WWW, a Java applet. Where DHM/WWW had been in separate
window, Navette was placed in a frame in the Web browser, as the small DHM/WWW
window tended to disappear under other windows. To address the limitations of the
“Java Sandbox”, Navette was digitally signed, allowing it to access arbitrary Web and
hypermedia servers. To increase performance, communication with the hypermedia
server was handled directly through TCP/IP. Link decoration was handled through a
proxy thread, as the Netscape browser supported dynamic proxy configuration changes
through digitally signed Javascript. The newly introduced event model reduced the
complexity of Web page modification considerably by eliminating the need to modify
every link, and this coupled with the proxy made link decoration considerably swifter,
if not as swift as hoped for. Navette supported multiple users (through not collabo-
ration as such) and collections of links. While the event of a user clicking on a link
(“onClick ”) could be detected across frame boundaries, and hence by Navette, the
act of selecting text (“onSelection ”) could not, regardless of digital signing, so
link creation was still a two-step process. Interface wise, the GUI had been broken
up into tabbed panes to maximise the space allotted to its frame. While more robust
than DHM/WWW, Navette was still susceptible to Web pages with frame sets (because
these frame sets could overwrite the frame Navette resided in, thus terminating the
applet), and the use of bookmarks.

6.6.3 The Arakne Environment

Arakne was my third Web augmentation prototype. Arakne was originally created
to accommodate the two different Java Web augmentation tools developed by the Co-
conut project members, Ariadne [66] and Navette. Rather than adding the functionality
of one to the other, it seemed more promising to create a system wherein the tools could
co-exist. There were shared functionality between Ariadne and Navette: Both needed
to communicate with a DHM hypermedia server, and both required some control over
a Web browser, so this functionality was factored out. The earliest known screen shot
of Arakne is seen in Figure 6.7. The screen shot is unique in the sense, that Arakne
evidently at this point still was an applet. Soon after, the applet idea was abandoned,
and Arakne became an application. There were several reasons for this. Firstly, ap-
plications do not have any of the security restrictions imposed on applets; secondly,
applications are not as fragile as applets, i.e. applications do not cease to exist, just
because the user retrieves a new Web page; thirdly, the work on the local proxy had
ceased, and instead Arakne employed the DHMProxy [56] for link decoration, remov-
ing the link decoration need to tightly manipulate the Web browser. At this point, we
switched from the Netscape Communicator to the Microsoft Internet Explorer. At this
point, the Internet Explorer had become the dominant Web browser, and it had a rich

6.6. PROTOTYPES 57

Figure 6.6: The Navette Prototype

interface for controlling the browser and manipulating the displayed Web page. Arakne
ran on Microsoft Java, which supported easy COM communication for control of the
Web browser.

The early versions of Arakne supported navigational hypermedia as before, as well
as guided tours through Ariadne. The DHM hypermedia server supported multiple
users, but had no special provisions for collaboration. As all link decoration was han-
dled through the DHMProxy, the task of the Arakne hypermedia tools were limited to
handle authoring and link/guided tour browsing. Communication with the DHMProxy
was handled through overloading URLs with instructions to change hyperspace etc.
Interface wise, Arakne operated (and still operates) with the MDI (Multiple Document
Interface) idiom — where the hypermedia tools (“views”) are contained as windows
within a larger window. As described above it was the experience that small win-
dows tended to become hidden behind other windows on the desktop, and the move
of all (small) hypermedia tools into one larger window eliminated this phenomena.
The downside was (and still is) that Arakne was fairly large, which could be annoying
on smaller screen. This however is less of a problem that it would have been with a
Netscape browser, as the Microsoft Internet Explorer supports the addition of tools in
the context (i.e. right click) menu. By adding the most common operations (such as
“Create Link”, “Add Endpoint”, etc.) to this menu, user only need to switch to Arakne
for link browsing or other more advanced tasks.

The design of Arakne was based on the Arakne Framework (described in Sec-
tion 6.1) with an almost one-to-one mapping to classes. One of the aims of this design
was to create a modular system, where single components (such as the Browser class
responsible for controlling a Web browser) could be replaced without affecting the rest
of the system. By implementing event listening interfaces, components (e.g. a view)
could subscribe to events, such as browsing events.

Since the initial Arakne prototype, the system has seen two major revisions, both

58 CHAPTER 6. CONTRIBUTIONS

Figure 6.7: Early Arakne Version

involving the move from DHM to OHP hypermedia servers. The experiences with
the move to OHP, described in Section 6.3, showed that this was the case to a certain
degree, as it was indeed possible to move to Construct without greatly affecting the in-
terfaces to the views. This convenience however happened at some considerable cost,
codewise. The component identified as “Operations” in the Arakne Framework (Fig-
ure 6.1) was dealing with Construct servers, and thus used the Construct data model
and the associated classes. The top layers, that is the views and the interface to the Hy-
perstructure Store used the data model inherited from the previous version of Arakne.
This older data model had some advantages over the Construct model. It was, from
a navlet developer’s point of view, less cumbersome to work with, and fitted more
directly into the Java idiom. It natively supported the model/view paradigm, so that hy-
permedia objects alerted their viewers or associated objects of changes made to them.
Thus, a developer could create a few event listeners and be alerted to any changes
that took place within the data model. This, while very nice when developing views,
proved to a debugging and maintenance nightmare, as well as imbuing a considerable
overhead to the system. All elements in the Construct data model has to be duplicated
in the Arakne data model by wrapper classes that maintained the original functionality.
Clearly, there was need for some innovation. It also became clear that there was still
room for considerable improvement in the design to facilitate greater flexibility with
regards to future expansion. The early Arakne Environments relied on the “Hyperstruc-
ture Store”, one class consisting of convenience methods for all navlets. We wanted to
maintain a convenience layer, as it eases development, but having this functionality in
one class was clearly a problem. This class was ever growing in size and in complexity,
and a modular approach was in order.

The new design had to fulfil certain requirements:

• New functionality (such as new structuring mechanisms) should not influence
existing code

6.6. PROTOTYPES 59

• Modular and dynamic architecture — no large monolithic classes, and no in-
stances of unneeded classes

• “Plug and play” functionality — updates and new releases of views or services
should be automatically integrated into the system

• Conceptually simple for the view programmer

• As much code reuse from Construct as possible — no duplicated efforts

Figure 6.8: The Arakne Environment: Two sessions, two views, and a Session Man-
ager. The ticker tape is visible at the bottom. The tabbed panes just above the ticker
tape is used to switch between joined sessions.

The end result of this redesign is the current version of the Arakne Environment,
seen in Figure 6.8. When Arakne starts, it checks whether its constituent classes, lo-
cated in JAR (Java Archive) files, are up to date by checking a distribution Web site. If
a new version has been released, the new JAR file is retrieved and made available for
the system. Through introspection, the Arakne Environment determines which views
and services are available, and updates its user interface accordingly. If a user launches
a view, the necessary service (or core) is instantiated and made available for the view.

60 CHAPTER 6. CONTRIBUTIONS

New views and matching cores as well as central Arakne classes can be added to the
distribution Web sites, and seamlessly integrated into the existing system.

This functionality is facilitated by two new central classes: TheJarLoader and
theDynamicEntity . The former is responsible for retrieving updates from the dis-
tribution Web site. The latter handles the instantiantion of the views and their services.
Neither of these classes require any modification for the addition of new services or
views. There is still a convenience layer in Arakne, but now it has been delegated to
the individual services, and the structure of these convenience classes has been stream-
lined considerably to the point, where they eventually can (and in all likelihood will)
be auto-generated to a large degree.

In some ways the convenience layer is “thinner” than it was before — the view
developer is closer to the core functionality. However, this cost is offset by the lower
development cost of the services due to a simpler design, which should also reflect in
the number of bugs encountered in the code.

Some steps are still missing, before the Arakne Environment can be considered re-
ally easy to develop for. One thing is developing new views for existing services, such
as a replacement for the navigational hypermedia tool, Navette. In such a case, the ex-
isting services are readily available. However, a system should also support the addition
of genuinely new functionality, such as a new structuring mechanism (e.g. taxonomic
hypermedia). In some aspects, the Arakne Environment supports such extensions very
well, as it will automatically update and reconfigure itself for new services and views.
In the development phase however, specialised development tools, like CSC [105],
would allow more rapid prototyping of new services. Such tools can certainly not take
the hard work out of making hypermedia applications, but it can address some of the
drudgery.

6.7 Summary

I have in this chapter detailed the work I have done during my Ph.D. During that pe-
riod I have with DHM/WWW as a starting point developed increasingly sophisticated
Web augmentation tools leaving me today with the Arakne Environment, a general ar-
chitecture for Web augmentation tools based on the OHP compliant Construct servers.
The Arakne Environment supports not only a number of hypermedia structuring mech-
anisms, but also session based collaboration. My latest work, the iScent framework,
seeks to develop a scalable architecture to support shared awareness and intersubjec-
tivity. This fits within the Arakne Environment, but can also be used in many other
settings, where tools can be integrated to generate events, reporting the user’s activi-
ties.

Chapter 7

Challenges for Web
Augmentation

Throughout the development of prototypes, some lessons about Web augmentation are
learned. This chapter sums up the experiences not directly related to Web augmentation
per se, but still important. A dominant theme in my work has been the challenge of
working with standard technology and existing standards. In open hypermedia we
do not have the luxury of writing everything from the bottom, we have to adapt our
systems to existing systems. In many ways, the experiences learned with integrating
with Web browsers over these past years are prototypical for open hypermedia. Another
challenge for Web augmentation is that of scalability. The foremost quality of the Web
is its scalable nature. Apart from the added functionality of Web augmentation, it
also becomes important that users should not feel hampered performance wise, when
using Web augmentation. Likewise, it should be possible to design Web augmentation
systems able to withstand the load of many concurrent users. Some advances made in
this area through the active use of interchange files are presented.

7.1 Working with Web Browsers

One inescapable consequence of my client-side approach to Web augmentation is the
necessity of integrating existing Web browsers. Open hypermedia is based on the tenet
that hypermedia must be integrated with the applications, users are already using1.
An important part of developing Web augmentation hypermedia systems has thus been
working with Web browsers. This section describes my experiences with Web browser,
going into details on how the Web browsers over time has influenced (or hampered) my
work.

The work on Web augmentation at the Department of Computer Science at Univer-
sity of Aarhus started in 1996, at a time where the dominant Web browser was the pre-
3.0 Netscape Navigator. Java applets in Web browsers was a fairly new phenomenon,
and the new Navigator 3.0 had just introduced the integration between Javascript and
Java. This integration made the early browser integrations possible. The DHM/WWW
Java applet (Figure 6.5) retrieved Web pages, as well as links and anchors, merged the

1Interestingly, the Web is an exception from this. The Web is a monolithic hypermedia system, yet has
managed to conquer the rest of the world, regardless of platform and operation system. No other system (and
certainly no hypermedia system) has, to the author’s knowledge, ever achieved this feat.

61

62 CHAPTER 7. CHALLENGES FOR WEB AUGMENTATION

twain, and displayed the result in a Netscape window by generated Javascript code that
wrote the actual pages. This approach was quite slow, regardless of whether the Web
pages in question contained any external anchors. Furthermore, the Netscape brow-
ser did not allow selections to be detected, nor the Java applet to access the displayed
document in any way — this resulted in a rather cumbersome arrangement, where the
Java applet would cache an unmodified copy of the displayed document for reference
purposes. Link creation consisted of copying a context for the desired anchor to the
Java applet, and selecting the text to be the anchor in this copied context (this two step
approach was taken to improve probability of correct anchor identification). The Java
applet would then proceed to find the context and the anchor within the cached copy
of the original document. It should be noted that due to the so called “sandbox” se-
curity constraints imposed on Java applets, the DHM/WWW applet was restricted to
retrieving Web pages exclusively from the Web server, wherefrom it originated. While
the document displayed in the Netscape browser as such was closed to the Java ap-
plet, the converse was not true, as it was possible to call the Java applet through the
use of Javascript. Under ordinary circumstances, the act of following a link would
render a Java applet impotent to influence the Netscape browser. To avoid this, the
DHM/WWW applet replaced all occurrences of ordinary<a href links with links
that through Javascript called the DHM/WWW applet. Thus, the applet was able to
retain control under normal browsing. Of course, as soon as the user entered a URL
into the Netscape browser rather than the DHM/WWW applet or used a bookmark, this
control was irretrievably lost.

These circumstances all lead to an inefficient, cumbersome, and fragile prototype.
The only advantage of the DHM/WWW applet over the systems I have later designed
and developed was that of platform independence. DHM/WWW worked on all plat-
forms supported by the Netscape browser.

Basic features, such as selection detection, was not available, and the coming of the
next version of the Netscape browser was eagerly awaited, as improvements had been
announced. The next version of Netscape, version 4.x, opened up new possibilities for
Java applet based Web augmentation. Recognising that the Java “sandbox” was too re-
strictive, the notion of digitally signed Java applets were introduced2, allowing trusted
Java applets to gain a wider access to the Internet, the local file system, or, especially
relevant to our cause, the Netscape browser itself. This version of the Netscape brow-
ser supported an event system, where actions such asmouseOver , mouseClick ,
onSelection , etc. could be captured through Javascript. This finally made it pos-
sible to determine selections on a Web page for elegant link creation, and to capture
attempted link following without modifying every link on a Web page, as was neces-
sary with DHM/WWW. Unfortunately, even with digital signing, the Netscape brow-
ser did not permit capture ofonSelection events across frame boundaries, and link
creation was thus still a two-step process. Through improved, the Netscape browser
did not allow post-render modification of Web pages. To accommodate the pre-render
modification of pages while trying to avoid the high performance hit of generating
Javascript to generate the entire page, a trick, possible only on the Netscape brow-
ser was employed. It is through digitally signed Javascript possible to change proxy-
settings dynamically. Thus, upon start, Navette (Figure 6.6) would launch a small local
proxy, and setup the browser to use this proxy. If the browser already were config-
ured to employ a proxy, this proxy was in turn used by the Navette proxy. While a

2It should be noted that at this point, there were three different signing standards for Java applets: Sun,
Netscape, and Microsoft. This situation has not improved, and digitally signed Web browser independent
Java applets are thus impossible.

7.1. WORKING WITH WEB BROWSERS 63

marked improvement over the approach taken by DHM/WWW, this approach was still
fairly slow, as it (discussed in Section 4.3.9) invariably slowed the retrieval of all pages,
regardless of the amount of hypermedia content.

At this time, the Webvise client was being integrated with the Microsoft Internet
Explorer. This browser featured a COM interface which not only made it possible to
control the browser itself, but also access and modify the Web page currently displayed.
This allowed the Webvise client (as the first open hypermedia client to the author’s
knowledge) to perform post-render link decoration on a standard Web browser. This
was much faster, and considerably more elegant, and clearly the way to proceed. Thus,
the Netscape browsers, who did not feature such interfaces, were abandoned in lieu of
the Microsoft Internet Explorer.

This move had of course some consequences. The Netscape browser supported
more computing platforms that the Microsoft Internet Explorer, and these platforms
were lost in the move. Furthermore, the integration with the Internet Explorer relied
on using a COM interface, which required us to use the proprietary Microsoft version
of Java, which explicitly supported this. Thus, even the platform independence of Java
were lost in the move. Yet, some of these losses were acceptable. At this, the so
called “Browser War” was nearing its end with Microsoft as the victor. By switching
to the Internet Explorer, we were supporting the most widely used Web browser. The
loss of platform independence was regrettable, but at least we were supporting the
most widespread operating system, Windows. It should be noted, that not all platform
independence was lost, as only the Web browser integration code relied on the COM
interface. Thus, only this platform specific code need rewriting, if we at a later time
should target a new Web browser on a different platform.

The first iterations of the Arakne prototype relied on Microsoft Java for COM in-
tegration. Unfortunately, as tensions heated between Microsoft and Sun, the former
stopped releasing new version of their Java tools. This locked the Arakne prototype
into Java version 1.1 for quite a while, and thus making the user interface and other
improvements made in Java 2 (version 1.2) unavailable. At this point, the move to Con-
struct was well underway, and as Construct relies on the collections classes found in
Java 2, the Construct used in Arakne had to be rewritten to accommodate Java 1.1. This
was an unacceptable development overhead, and the decision to move to abandon Mi-
crosoft Java was taken. This was possible only because of a commercial Java/DCOM
integration, JIntegra, which we started to use. This leaves the Arakne Environment
where it is today. The prototypes which started out as platform independent if browser
dependent applets have today evolved into an application supporting only one browser
and one operating system.

7.1.1 The Ideal Web Browser

What would, from a Web augmentation standpoint, constitute the ideal Web browser?
As described in the previous section, most of my Web augmentation work has been
hindered as much as helped by the available Web browsers. Especially the development
utilising the Netscape browsers were frustrating. Clearly, there must be a better way.

As describing in Section 7.2, I have throughout development used Java. As the first
Web augmentation tools were Java applets, this was a natural choice. Today, this de-
velopment however leaves an application, that cannot reap the platform independence
benefits of Java, but must suffer under the Java platform’s weaknesses, such as (rela-
tively) slow user interfaces, relatively large memory requirements, and difficulties with
integrating native tools.

64 CHAPTER 7. CHALLENGES FOR WEB AUGMENTATION

In many ways, the current Internet Explorer is a good candidate to what a Web
browser should provide for prospective Web augmentation developers. It is modular,
and can be integrated into other applications, and other applications can be integrated
into it (as done by the tools described in Section 5.2). It has a rich interface, both
for control of the browser, and for manipulating the Web pages displayed by it. On
the flip side, it is predominantly Windows oriented, and requires COM for integration.
The newest version of the Internet Explorer (version 5.5) purports to support editing of
HTML files. We have only recently begun conducting experiments in this regard, but
the prospect is quite interesting.

The ideal future batch of Web browsers would support the functionality of the In-
ternet Explorer, but doing so by relying on a general cross-platform and -browser in-
dependent API, accessible regardless of programming language. This would simplify
the development of Web augmentation tools, and hence make the development of such
tools much more attractive. This could be accomplished either over a process to pro-
cess communication protocol (such as COM, Corba, or RMI), or by some scripting
language (i.e. accessing the internals of the browser through e.g. Javascript).

As such, the Mozilla browser holds some promise with its XPCOM componenthttp://www.mozilla.org/

model. It is still too early in the browser’s development process to see whether it will
be able to compete with Internet Explorer. Given the open source nature of the project,
it should be possible to create an API for Web augmentation tools. This however is
future work.

7.2 Experiences with Java

All the Web augmentation systems developed prior and during my Ph.D. has been
implemented in Java. The first prototype (pre Ph.D.) was DHM/WWW and was imple-
mented in 1996. During the course of these four years, the Java language has matured
considerably and this section will reflect on the experiences with Java development.

By far the greatest drawback of using Java has been the problematic support of
COM. The Internet Explorer is handled through COM, and thus the ability to han-
dle COM is crucial. Over the last few years, Sun and Microsoft has been engaged in
a lengthy legal dispute, with COM support as one of the casualties. Thus, the cur-
rent incarnation of the Arakne Environment relies on a commercial third-party DCOM
integration, JIntegra. This makes distributing Arakne problematic, as the license forhttp://www.linar.com/

JIntegra is quite expensive.
In hindsight, it is fair to question the decision to stay with Java throughout the de-

velopment process. Certainly, the Internet Explorer integration would be much easier,
if the Arakne Environment was written inC++. On the other hand, the last two versions
of the Arakne Environment has reused much code from the Construct effort — code
we would have been forced to reimplemente, had we not used Java. Clearly, there are
pros and cons to this question. Apart from the Construct code, we have also benefitted
from the extensive standard libraries found in Java. There are things, that could be
better in Java (such as the lack of templates), but it is a very accommodating language
to develop in.

If I was starting from scratch today, given the current Web browser situation, I think
the wisest course had been to use C++. This would have allowed a much closer integra-
tion with the Internet Explorer. One problem that remains is that this would effectively
lock us with the Internet Explorer. Currently, there are no real challengers to this Web
browser, but this may change in the future — once the Netscape browser was com-

http://www.mozilla.org/
http://www.linar.com/

7.3. HYPERMEDIA SCALABILITY 65

pletely dominant. If the Arakne Environment in the future should continue with Web
augmentation (it might also extend to other types of applications), the system should
not be tied to one browser. If a new browser was to emerge today, and if it provided
in one way or another an interface similar to the one found in the Internet Explorer,
porting the Arakne Environment to support this browser would require rewrite of a few
classes, but it would not affect the rest of the system.

My work has been on the client side of open hypermedia, and I have done rel-
atively limited development on the server side. On the server, the benefits of Java
are much clearer. The ability to run servers anywhere (or at least where Java is sup-
ported) should not be underestimated. Likewise, the platform independence, most Java
programs should exhibit eases code sharing between different system considerably.
Currently, both the Construct and the Chimera backends are implemented in Java. Per-
formancewise, the penalty of Java is not so great as on the client. Much of the heavy
calculations should in most modern hypermedia servers be relegated to the database
backend.

Javasoft has recently announced that they in the next quarters are going to focus onhttp://www.javasoft.com/

the client-side of Java. The last few versions of Java has shown considerable progress,
and it is to be hoped that further progress will be made. The most essential, at least from
my point of view, is the ease with which COM communication can take place. Prior
to the move to JIntegra, we conducted some experiments with the Javasoft Java/COM
Bridge. At that point, it did not meet our requirements, and this is clearly an area,
where Javasoft could, to our benefit, focus its resources.

7.3 Hypermedia Scalability

One of the classic problems with any hypermedia system relying on externally stored
hypermedia structures is that this impacts scalability. Rather than just retrieving and
displaying a document, a hypermedia system also has to query its hypermedia servers
for relevant structures, retrieve these structures and display them in conjunction with
the document. Evidently, this is more computational and time intensive than just re-
trieving a Web page, and scalability is indeed one of the Web’s strong points. Web
augmentation will invariably be compared to what can be achieved with ordinary Web
technology, and as such scalability becomes a great concern for the Web augmentation
field, if it is ever to see widespread use.

In the context of this discussion I would like to approach scalability from two differ-
ent angles: Scalability in the sense of concurrently serving many users, and scalability
in sense of serving massive hypertexts. While both are highly desirable, they put dif-
ferent stresses on the overall system. The imperative of a myriad-user system is low
latency, that is completing single operations quickly. This is, where the Web shines.

The problem of supporting massive hypertexts is slightly different, and more com-
plex. Anderson has done a lot of work on achieving this form of scalability with the
Chimera system [3]. The hypermedia system must both on the server and the client side
be able to handle large structures. On the server, this implies large scale storage, which
in practice translates into using a solid database, in the case of Chimera, PostGreSQL.
Clients are usually built using standard GUI widgets, and these do often not scale well,
when confronted with tens of thousands links etc. One thing is the scalability of GUI
widgets, another question is if standards GUI widgets such as lists, trees, and tables re-
main an effective interface for managing many items. One approach taken by Anderson
was to implement filtering, so that users were only presented with the links of imme-

http://www.javasoft.com/

66 CHAPTER 7. CHALLENGES FOR WEB AUGMENTATION

diate interest. Given that the client and the server is able to handle massive hypertexts,
the protocol between them must be considered. For instance a protocol, where each
link is retrieved one at a time imbues an enormous overhead on the system, in com-
parison with a protocol where links are retrieved en masse. When replies to queries
can be large, it becomes relevant to modify the protocol, so that for instance the size
of the reply is reported before the entire reply is returned. This would allow the client
to inform the user of the retrieval in progress. Likewise, a client should be able handle
replies as they are being received, thus improving the apparent responsiveness of the
system. An interesting topic in this area is the visualisation of massive hypertexts. If
standard GUI widgets break down both with regards to both performance and usability,
new forms of interacting with such large collections must be devised. This is a difficult
problem, and one I for the Arakne Environment has relegated to future work.

The Coconut project has also been working with scalability issues, and we have
investigated two approaches. Firstly, one could build an infrastructure based on a
solid database such as Oracle, and by utilising the industrial strength of these systems
achieve solid performance. Secondly, one could try to do away with the hypermedia
server altogether. The Construct servers were originally based on a relational database
backend, and for large scale usage this still seems to be the proper course, given the pos-
sibilities of backup and security that these databases offer. However, the performance
of the Construct database never became satisfactory, and it was thus abandoned in lieu
of a simpler, but faster, file-based solution. Future work on the Construct servers would
certainly benefit from more work and optimisation on a database backend, so that the
advanced features of these systems, such as transactions and rollback could be used to
provide greater fault tolerance. The developers of the Chimera system [2, 5, 7, 8] at
University of Colorado, Boulder, has had good experiences with database backends, so
it can be done satisfactorily.

7.3.1 Scalability through Interchange Files

Another approach to attain scalability is to eliminate the bottleneck of the hypermedia
server, or (more correctly) to minimise the strain on the hypermedia servers. This can
be accomplished through the use of hypermedia interchange files. When an author of
hypermedia structures has finished working on a particular set of structures (typically
a context), it is saved into an interchange file, which can then be freely distributed. An
example of such an interchange format is the Open Hypermedia Interchange Format
(OHIF) [55], another is link base files in XLink [37].

The Open Hypermedia Interchange Format is strongly influenced by the data model
underlying the Open Hypermedia Protocol. Currently, OHIF supports navigational hy-
permedia and guided tours, but the format has been designed to easily accommodate
future expansions. Compared to XLink, there are some similarities, as both are XML
based, and both offern-ary, bi-directional links. Both XLink and OHIF can through
locators respectively locspecs address selections in arbitrary document types3. While
navigational hypermedia still is the mainstay of hypermedia, there are many other struc-
turing mechanisms, that cannot easily (or at all) be modelled by links, such as compo-
sitional, spatial, taxonomic, or issue-based hypermedia. As OHIF can be extended to
handle such structures, it is, in this aspect, a stronger interchange format than XLink.
Currently, OHIF is supported by Webvise and the Arakne Environment.

3Currently, XLink seems to be largely dependent on XPointer, which only addresses XML documents.
The standard is however open for other specifications.

7.4. SUMMARY 67

That interchange files contributes to scalability can be illustrated by the deployment
of Ariadne [66] at Opasia, discussed in Section A.2. The approach in this instance was
more extreme than the one taken by Webvise and Arakne, as the latter two still employ
a hypermedia server to handle the interchange file, whereas Ariadne has no server
interaction apart from downloading the interchange file (a retrieval handled by a Web
server). It should be noted though, that the Ariadne deployed at Opasia was a read-
only version, stripped of the ability to author guided tours. Thus, there is no need for a
hypermedia server.

This approach solves only some scalability issues. It certainly allows many users to
(read-only) access the same hypertext, and it provides collaborators with an easy way
of turn taking on hypertext authoring. It does however not address the larger problems
of simultaneous authoring access for many users or massive hypertexts.

7.4 Summary

I have in the preceeding sections detailed some of the obstacles to Web augmentation,
that I through my work have encountered. These are not an exhaustive list, but should
be fairly representative. Being a subfield within open hypermedia, Web augmenta-
tion shares many traits with the larger field, such as third-party application integration.
Web augmentation is not very interesting, lest it provides the user with a full hyperme-
dia integration (otherwise the improvement compared to unaugmented Web would be
slight), and as such integrations are a top priority. Partly due to the “Browser War”,
Web browsers over the last four years have seen tremendous development. The posi-
tive aspect of this in conjunction with my work was that if a feature was not present in
a Web browser, it probably would be in the next release a quarter later. The negative
aspect was that these newly implemented features (especially in the case of Netscape)
were often poorly thought out or implemented. With the move to the Microsoft Inter-
net Explorer, some stability has been achieved, but at the cost of tying Webvise and
the Arakne Environment to one Web browser and one platform. Interoperability be-
tween different platforms is always tricky, as has certainly been the case with Java and
Windows. Whether this situation will improve remains to be seen.

One sensible requirement of Web augmentation is that it should work well with
the user’s Web browser, another is that it should not degrade the overall Web experi-
ence by for instance slowing retrieval of Web pages down. On the client, this has been
addressed through post-rendering link decoration. The question of designing Web scal-
able open hypermedia systems still remains open, though it in the context of Web aug-
mentation partly has been addressed through the use of interchange files stored on Web
servers. Interchange files are well suited for publishing hypertexts, or for turn taking
co-authoring. Future scenarios of many users actively and simultaneously co-authoring
hypertexts on the Web cannot be handled through interchange files, and thus there are
good prospects for future work in this area.

68 CHAPTER 7. CHALLENGES FOR WEB AUGMENTATION

Chapter 8

Conclusion

I have in the preceeding chapters described my work on Web augmentation during
the course of my Ph.D. I have developed several prototypes, published papers about
them and their underlying models, as well as worked on OHSWG standards and future
systems for intersubjectivity support. My experience is that the realm of the Web is
definitely open to open hypermedia.

This chapter sums up my experiences and outlines my plans for the immediate
future, as well as some (hopefully educated) guesses on the long term prospects of
Web augmentation as a subfield of open hypermedia and the World Wide Web.

8.1 Primary Results

Throughout my Ph.D., I have designed conceptual models for Web augmentation, and
subsequently implemented a number of increasingly ambitious Web augmentation sys-
tems. These systems have demonstrated the viability of Web augmentation as a tech-
nology. As the Web stands today, there is still ample room for improvements with
regards to the structural and collaborative mechanisms available.

The Arakne Environment embodies an approach to Web augmentation that if it
does not attempt to do all things Web augmentation, at least accommodates the pos-
sibility through its modular design. Especially the integration with Construct with
its potential limitless amount of new hypermedia structuring mechanisms [105] holds
great promise. The Arakne Environment is not architecturally bound to one platform
or Web browser, and should thus prove adaptable to future developments.

Web augmentation allows users to structure their Web experience and to share this
with other users of the Web. As a tool it can find use in both professional settings as a
knowledge management and structuring tool, as well provide Web surfers or Web jour-
nalists with more powerful tools. The last few years have seen a proliferation of meta
Web sites, that largely reports on occurrences on other Web sites. Web augmentation
fits nicely within that niche.

The Web is not rendered obsolete by Web augmentation, quite the contrary. Web
augmentation strengthens the Web by extending the possibilities of interacting and
using the Web. Ultimately, Web augmentation is a question of liberating the link,
and allowing users to participate in a free, Web-wide discourse by linking, associating,
annotating, and restructuring the existing Web to fit their need and vision. An important
task for the future is to devise an architecture able to withstand such large scale use.

69

70 CHAPTER 8. CONCLUSION

Some steps has been taken in this direction with the work on the Open Hypermedia
Interchange Format.

I doubt that the Web will on a large scale be succeed by new technology anytime
soon. The Web is easily “good enough” to satisfy current and many future needs with-
out warranting replacement. The Internet, propelled by the Web, was a revolutionary
change in the general availability and use of computers as tools of communication.
When the Web emerged, or rather erupted, it filled a previously unfilled niche. Now
that the Web reigns supreme, future changes will in all likelihood be gradual rather
than sudden. Web augmentation is one such gradual change, improving the Web with-
out replacing it. Future changes to the Web will take place within a Web context, not
without it. This is also witnessed by the growing proliferation of Web technologies in
other contexts, such as the spread of XML. The Web and the Internet are increasingly
becoming infrastructures — the substrate upon which computing is built. One technol-
ogy thatmaybe challenged in the years to come is the client/server model underpin-
ning the Web in the sense that the distinction between clients and servers will become
blurred. There will be many more behemoth servers serving increasingly sophisticated
content, but simultaneously the common household computer will be connected per-
manently to the Internet. The permanence of connections coupled with the generous
storage and processing capabilities of modern computers enables a more widespread
use of peer-to-peer networking. This has already been convincingly demonstrated by
file sharing tools such Napster or Gnutella. While these tools predominantly has beenhttp://www.napster.com/

used for software and content piracy, the very model of clients connecting to clients is
viable. An interesting project is this context is the Freenet Project [28], which seeks tohttp://www.freenetproject.

org/ create a global docuverse, with all content encrypted to the degree that a maintainer of
a Freenet node cannot determine what is stored on that node.

Web augmentation as a technology is open hypermedia, which in its eleven year
old history has demonstrated its wide applicability. Web augmentation as such is lim-
ited to the Web, but as has been demonstrated by e.g. Webvise [56] and Mimicry [20]
[P2], Web augmentation does not end with HTML. The unique advantage of Web aug-
mentation as a subfield of open hypermedia, is that the Web in general works with open
formats and standards. While proprietary differences in implementations exist and may
hamper work, the principle of openness still holds. Compared to the general work of
open hypermedia dealing with applications with often closely held proprietary docu-
ment formats, the subfield of Web augmentation has it much easier. The possibilities
inherent in the Web architecture (such as creating specialised hypermedia proxies), or
the combination of dynamic HTML with scripting and stylesheets are many indeed,
and I am certain we have only begun to scratch the surface of what can be done.

8.2 Web Augmentation in the Future?

A work such as mine, aimed as it is to better the current state of affairs, should also be
considered in the longer term. Apart from technical concerns, such as the availability
of a certain Web browser or or a specific programming language, the long term viability
of Web augmentation as such must be considered.

The most probable successor to HTML is the XML based XHTML.If the Web
evolves into a space of XML documents1, initiatives such as XLink (see Section 5.1)
can come into play. In such a context, where XLink has been adopted by the leading

1This is not given — the inertia of the existing approximately1× 1012 Web pages, much of which does
not conform to any known HTML standard whatsoever, is considerable.

http://www.napster.com/
http://www.freenetproject

8.2. WEB AUGMENTATION IN THE FUTURE? 71

Web browsers, some of what the Arakne Environment can accomplish today will be
directly supported in the Web browser. In such a best-case scenario, the Web would
have evolved into a “proper” hypermedia system [82], allowing arbitrary linking and
annotations to take place. Furthermore, a XML future could also entail that other
document types, such as word processing files or spreadsheets, would migrate to XML,
and would then also be subject for easy linking. What would be the role of the Arakne
Environment or indeed any Web augmentation tool in such a context?

My immediate reaction to such a scenario is very positive. The purpose of my work
has been to investigate the possibilities of Web augmentation, not to developtheWeb
augmentation system of the future. I wish Web augmentation and the possibilities it
gives people to become widespread, so any technology that can bring that about is fine
by me.

While base functionality such as authoring of navigational hypermedia would re-
side in the Web browser, the hypermedia research community has developed so many
other exciting hypermedia structuring mechanisms, that there would still be ample
room for Web augmentation research. While the basic ability to author links is an
essential part of most hypermedia systems, another problem with the Web also war-
rants our interest, namely that “getting lost in hyperspace” with a corpus as large and
as unstructured as the Web is a common phenomena. Some technologies, such as spa-
tial hypermedia [74, 89] or advanced structure visualisation, hold some promise to help
us navigate this jungle of information. In this regard, the community driven meta Web
sites mentioned in Section 4.7.3 are interesting. They demonstrate the viability of thou-
sands of Web surfers scourging the Web for interesting stories and reporting the cream
of the crop in a common forum. If this could be moved into a large, ever evolving hy-
pertext with many authors and moderators, such a system might be the tool to handle
the complexities of the Web.

Another possible future is that of the heterogeneous Web — while there will be a
move to XML, this will not be nearly complete, and thus essentially leaving us with a
Web not too different with what we have today. Additionally, the future Web will most
likely be accessed not only from more or less comparable (and increasingly powerful)
personal computers, but also from a growing number of appliances2, such as PDAs,
mobile phones, etc. Such devices have fairly limited displays, and the work to provide
good hypermedia functionality on such devices will be interesting.

8.2.1 Commercial future of Web augmentation

As described in Section 5.2, there are several commercial ventures into Web augmen-
tation. Whether these will survive, or suffer the fate of many dot coms remains to be
seen. My earliest fascination, when introduced to the hypermedia research litterature,
was that of the trail blazer, the professional creator of associations. The question is:
Can you sell links on the Web? The described companies seem to focus on making
partnerships with other companies, e.g. essentially advertising. One business model
that might work is the combination of an informative Web site, which in addition to its
general services could offer its subscribers an “enriched Web” through Web augmenta-
tion. This was the vision at Landbrugets Rådgivningscenter (described in more detail
in Appendix A.1). Another possibility would be use Web augmentation to attract more
users to a Web site, as done by Opasia with Ariadne (see Appendix A.2). The current

2According to several keynotes at WWW9, the number of such devices connected to the Internet will
surpass that of personal computers in a few years.

72 CHAPTER 8. CONCLUSION

Web is largely financed on an advertisement basis, and whether this model holds for
Web augmentation remains to be seen. The advert of micro payment (to the author’s
knowledge still a technology under development) may very well change that, though
it of course is a question whether it will meet with general approval from the Web’s
users.

8.3 Future Work

In many ways my Ph.D. has been mainly establishing a base for future work. The real
applicability of Web augmentation can only be tested in a setting with mature tools,
and only recently has the Arakne Environment reached a sufficient level of usability.
As such there still remains much to be done.

8.3.1 Collaboration in the Arakne Environment

The Arakne Environment provides the collaboration support found in the OHP compli-
ant Construct servers. This functionality of one of the newest additions to the system,
and quite likely also still a source for bugs. Collaboration support is notoriously diffi-
cult, and it will not suffice that Arakne Environment performs as expected, if this is not
the functionality needed in a given work setting. The Arakne Environment has never
seen use in other organisations, and until such testing has taken place, it is too early
to evaluate the Arakne Environment as a collaborative environment. While prototypes
and mock-ups certainly has their place in the design process, I believe that applications
can onlyreally be tested, when they offer full functionality. One of the hard lessons of
my Ph.D. is the time it takes to get to that point.

I am quite excited about the iScent framework. As planned, the system offers to be
an externalised memory for the individual user as well the projects, the user participates
in. One part is the collection of events documenting a user’s actions, another (and much
more interesting in my opinion) is the user’s retrieval, analysis, and use of these events.
The client to handle this, the Trail Viewer, is quite prototypical at the moment, but
we (Ken Anderson and I) hope to develop it into an application supporting advanced
structuring of events. This will (of course) take place within the Arakne Environment.
One area, where I plan to extend the iScent framework is the protection of privacy.
The current design suggests that users decide which kind of events they wish to be
published. While this certainly protects them from “prying eyes”, it also limits their
own use of the iScent tools, as they themselves of course cannot retrieve non-published
events. An alternative solution would be to introduce encryption of all events at the
user level, presumably with some events being private and thus encrypted with the
personal key, and with others encrypted with project keys. Thus, only the keeper of the
matching keys would be able to retrieve the encrypted events. In such a scenario, users
could then, if they so wished, establish “communities of trust” within which the users
would be able to see each others’ events.

8.3.2 Open Sourcing the Arakne Environment

It is the aim of the author, that the Arakne Environment along with Construct should be
open sourced, so that it may benefit more. This decision is reached for the following
reasons: Firstly, it seems only proper that computer scientists along with their pub-
lished results should publish the source code with which they created their results (lest

8.3. FUTURE WORK 73

we become a science of irreproducible results). Secondly, the emphasis especially in
the later versions of the Arakne Environment on dynamically extendible hypermedia
services and nice coding environments for hypermedia developers would be an exercise
in futility, unless it was given a test in the real world.

The main obstacle to open sourcing Arakne is the current reliance on JIntegra for
COM integration. JIntegra is a commercial product, and Arakne must thus in the fu-
ture handle its own COM integration, before it makes any sense as an open source
project. This autumn will hopefully bring that about, as well as maturing the code base
sufficiently for general release.

74 CHAPTER 8. CONCLUSION

Appendix A

Use Studies

Web augmentation has potentially quite wide appeal. In this appendix, I focus on two
use studies — one that I have done myself, and another done by other members of
the Coconut project. The first case, Landbrugets Rådgivningscenter, illustrates how
knowledge workers may use Web augmentation to supply their customers (agricultural
consultants) with better services and more in-depth information. The second case,
Opasia, shows that Web augmentation can also have wide appeal, in this case Web
surfers following guided tours written by Web journalists.

A.1 Landbrugets Rådgivningscenter

Landbrugets Rådgivningscenter is the central Danish agricultural advisory centre. The
organisation is controlled jointly by the Danish Farmers’ Unions and the Danish Family
Farmers’ Association. Landbrugets Rådgivningscenter provides service and expertise
for the local advisory centres’ advisors, who in turn advise the farmers. There are 85
local centres throughout the country. Landbrugets Rådgivningscenter does not gener-
ally work directly with farmers. The organisations and their relationship can be seen in
Figure A.1.

Danish Farmers'
Union

Unions

Danish Family
Farmers' Association

Landbrugets
Rådgivningscenter

Local DFU advisory
centres

Farmers

Local DFFA advisory
centres

Figure A.1: The Organisation of Danish Agricultural Advisory Services

Landbrugets Rådgivningscenter is organised into the following departments

75

76 APPENDIX A. USE STUDIES

• The National Department of Plant Production

• The National Department of Cattle Husbandry

• The National Department of Pig Production

• The National Department of Horse Breeding

• The National Department of Farm Buildings and Machinery

• The National Department of Education

• The National Department of Farm Accounting and Management of the Danish
Farmers’ Union

• The National Department of Farm Accounting and Management of the Danish
Family Farmers’ Association

• The National Department of Poultry Production

• The Department of Agricultural Law

• International Department

• Section of Ecology

With a very few exceptions (such as pig production, which is predominantly han-
dled by Danske Slagterier (Danish Bacon & Meat Council) Landsudvalget for Svin
(Danish Meat Research Institute)), these departments are main source of information
related to agriculture in Denmark. The activities include

• Special advice

• Distribution of know-how

• Development

• Experiments and studies

• Education and in-service training

• Maintenance and service tasks

In our work with Landbrugets Rådgivningscenter we have concentrated on the two
first areas, this will therefore be described in more detail. The essential task of Land-
brugets Rådgivningscenter is to keep the local advisors updated and to be “the experts’
experts”. The advisors at Landbrugets Rådgivningscenter keep themselves updated
with regards to the latest literature and law development and are thus able to answer
questions from the local advisors, who may not the time available for this. Further-
more the advisors at Landbrugets Rådgivningscenter keep a close contact to the local
advisors, keeping them aware of the needs of their customers.

A.1. LANDBRUGETS RÅDGIVNINGSCENTER 77

A.1.1 The Information Series

The distribution of information from Landbrugets Rådgivningscenter to the local cen-
tres is primarily done through the information series - publications sent out on a regular
basis from the departments. Every department will typically produce several informa-
tion series catering to specific needs in their field. The information series are copied
and distributed by mail on a massive scale (approximately 15 mill. copies/year).

Each publication will typically consist of several articles written by various advi-
sors in the department. Every article is given a unique number to ease archival and
reference. The indexing scheme varies from department to department, there is no
general pattern. Apart from the individual articles, a few pages of abstracts, briefly
describing every article usually accompany every publication. These abstracts are just
intended to give the local advisors an immediate overview over the publication, but are
often archived at the local centres.

A.1.2 Assembling a publication

Our main case study was at the department of plant production and the description of
the process of assembling a publication will therefore be based on this department.
We had the process described during meetings with representative from both the plant
production and the agricultural law departments. The representatives indicated that
the process throughout Landbrugets Rådgivningscenter is comparable to that of the
department of plant production.

The advisors at the department of plant production have well-defined fields of ex-
pertise, and according to what is happening in their individual field will write articles
for publication. Occasionally their supervisor will request an advisor to write a topical
article or decide that two advisors who have been writing on related material should
work together. The articles will often be inspired by journal articles, new laws, or news,
and will as such usually contain quotes from, references to, or abstracts of material not
written at Landbrugets Rådgivningscenter. The supervisor maintains an understanding
of what the individual advisor is working on — a blackboard outside his office supports
this, as advisors write the title of their current work in progress (this also ensures that
double work is not done). It is the task of the supervisor and his secretary to ensure
that each article is given a unique number. Whenever an advisor finishes an article, he
sends the WordPerfect file to the supervisor, who reviews it. If the article is accepted, it
is added to the current publication in progress. At the department of plant production,
the deadline is early Wednesday. Given this week’s worth of articles, the supervisor
and the secretary compile the abstracts, check the numbering of the articles and ship
the publication to the printing department.

A.1.3 Handling law material

Our initial contact with Landbrugets Rådgivningscenter was with the department of
agricultural law. They are mainly occupied with laws and revisions of laws. All Danish
laws are accessible on the Web , and the department was investigating, how the Webhttp://www.retsinfo.dk/

should affect their work, and how to improve their service to the local advisory centres.
While laws are never changed (and thus are a nice stable environment for electronic
maintenance) they are often revised. Keeping track of these changes is no trivial task,
and it can be quite complicated (at least for a lay person) to establish what is current
law, as this requires reading through many revisions. It was therefore one of our early

http://www.retsinfo.dk/

78 APPENDIX A. USE STUDIES

common goals that this process of consolidating the law texts into one document should
be supported by our tools. Later the department of agricultural law decided (wisely in
our opinion) that maintaining a law Web site was better handled by outsourcing, rather
than using their own advisors to keep track of changes.

A.1.4 Moving from paper to the Web

Landbrugets Rådgivningscenter is currently in a transitional phase, as more and more
material is made available on the Web. It is the ultimate goal to make the Web the main
publishing method. Currently it is the task of the supervisor and his secretary to create
the HTML documents. All word-processing at Landbrugets Rådgivningscenter is done
with Corel WordPerfect 8.0, and while special macros have been written to ease the
translation, it is still no trivial task. The job is complicated by the typographical limita-
tions of HTML, especially with regards to tables. One solution would be to create only
PDF-files, which would solve all typographical issues, but PDF is not as searchable or
accessible as HTML, so for now the supervisor keeps fighting with HTML. The work
of preparing the articles for the Web will eventually move down from the supervisor to
the individual advisors, but for now the work is centralised.

Landbrugets Rådgivningscenter is not the only one moving onto the Web. Many of
state departments, and private companies and organisations that Landbrugets Rådgivn-
ingscenter regularly quote or base their work on, are moving their material onto the
WWW. Most noticeable is Pl@nteinfo , which provides the farmers and local advisorshttp://www.planteinfo.dk/

with exhaustive information during the growth season.

A.1.5 Work with Landbrugets Rådgivningscenter

Meetings between Landbrugets Rådgivningscenter and the Coconut project started in
November 1997. The first meetings were exploratory in nature, where both parties were
trying to establish whether collaboration would be mutual beneficial. Later meetings
focused on the departments of agricultural law and of plant production and their needs
with document handling on the Web. These meetings were also used to showcase
various forms for Coconut technology. Eventually a collaborative effort between the
department of plant production and Coconut project member resulted in a first Web
mock-up of just how the future Landbrugets Rådgivningscenter Web site might appear.
The first mock-up was a pure technological showcase but was used as input in the
development of the second mock-up. This time the basis of the mock-up was a week’s
worth of articles from the department of plant production and the possibilities that
should be explored were decided on during two meetings. Based on this mock-up it
was decided that there were good reasons to continue the collaboration. Over the next
months, the systems that were to be tested at Landbrugets Rådgivningscenter were
further developed.

The meetings with Landbrugets Rådgivningscenter resulted in a wish-list of fea-
tures and functionality that would be desirable in a future setting. The advisors should
in general be able to create links to and from whatever resource they may come across
on the Web. These links come in various types, all which should not require the author
of the links to have write permission over the relevant Web pages. Based on their input,
we created the following scenarios.

The anchor texts that John D. added were mainly to help readers nav-
igate, and John D. realises that a short comment on the entire law would

http://www.planteinfo.dk/

A.1. LANDBRUGETS RÅDGIVNINGSCENTER 79

be nice. Using Webvise he composes a short paragraph and inserts the
comment in the beginning of the page, so that readers who do not read
his article still can benefit from his summary. The summary is marked by
a comment icon in the beginning of the page (clicking on the icon will
expand the comment), so that readers are not required to read John D.’s
summary.

The topic of §25 is the amount of manure allowed per area adjusted by
soil type and amount of rain. While the soil type is constant for a particular
part of the country, the amount of rain is not, and John D. would like to add
“live” data on the amount of rain to his article. John D. turns to the Web
site of the Danish Meteorological Institute, who has a nice, daily updated http://www.dmi.dk/

table of the accumulated downpour in the regions. The rest of the DMI
page is not relevant to the issue at hand, and John D. decides to transclude
the table using Webvise. The procedure of create the transclusion is similar
to linking, and the effect is that the (always current) DMI table appears a
part of the article.

Some of terms used in the manual are fairly unusual and to ensure that
all advisors out in the country understand, John D. decides to add these
terms to the “dictionary”. As the other advisors at the department, John D.
has permission to modify the shared dictionary of Landbrugets Rådgivn-
ingscenter. John D. creates new entries for the terms by creating a new
Web page for each term, as this is company policy (an alternative would
be to have one large file, but it was felt that this would be cumbersome,
as it eventually would be quite large). Having placed his entries at the ap-
propriate place on the Web site, John D. creates a global link from the first http://www.lr.dk/

occurrences of the terms he encounters in the manual to his definitions.
Henceforth any of the terms (in all old, new or future documents) can used
to look up the definition.

Based on these scenarios, we have so far identified the following needs:

• Anchor-basedn-ary bi-directional links

• Creation of notes and comments to parts of documents. It should be possible to
hide these comments from view.

• Transclusions: displaying data from one document in another, so that if the data
is modified in the original document, the change is reflected in the other docu-
ment.

• Creation of links with only a string rather than a document, a position, and a
string as starting point. This can be used to create online dictionaries, e.g. any
occurrence of the word “camomile” would be the starting point of a link that
would end in a Web-page with pictures and descriptions of the plant.

• The ability to create links from and into PDF documents. While Web links can
be predefined in a PDF document, no technique exists today to create these links
dynamically1.

• Frame sets are notorious for making linking to a specific set of frames difficult:
either you link to the starting frame set or you link to the specific page (and then

1According to the Adobe Acrobat Reader license agreement such a tool would violate the agreement.

http://www.dmi.dk/
http://www.lr.dk/

80 APPENDIX A. USE STUDIES

loose the context of the other frames). Both solutions are unsatisfactory, and a
better approach is clearly needed.

• Rather than linking into a piece of text, it should be possible to create an anchor
that would appear before or after the relevant section. This anchor would then
have anchor text defined at the time of creation, which would be displayed along
with the link, when the Web page was displayed.

• The presentation of the external structures above should be very customisable.

• There should different sets of contexts to accommodate different needs (e.g. a
plant advisor might be interested in less detail than a law advisor, when reading
a law text)

• Exception handling: the change, move or removal of a Web page should be
handled gracefully by the system.

• All these features should be present in a reader’s only solution, so that advisors
and farmers could have the advantages of these sophisticated structures without
actually installing any special software.

A.1.6 Experiments at Landbrugets Rådgivningscenter

In late autumn 1998, user testing began at Landbrugets Rådgivningscenter. One user,
the supervisor of one department, was elected to be the first adopter, and I was involved
in the preliminary testing of Webvise and DHMProxy at Landbrugets Rådgivningscen-
ter.

In February 1999, this lead to a more comprehensive study, where a weeks worth
of Web publications were done using Webvise and published through DHMProxy. Se-
lected customers were then to evaluate the system and report back on their experiences.
Unfortunately, noone reported back. At the same time, both parties (Landbrugets Råd-
givningscenter and the Coconut project) became very occupied with other work, and
the experiments ended at this time. This leaves the question, why the customers did
not report back. While pure conjecture on my part, I would suspect two reasons: That
changing the proxy configuration was too much hassle, and that they did not have time.
Clearly, this calls for another attempt.

A.2 Guided Tours at Opasia

Tele-Danmark Internet was the commercial partner in the Coconut project. One of the
direct results of the Coconut project was the deployment of a read-only version of the
Ariadne guided tour tool on the Tele-Danmark Internet portal, Opasia . I have not beenhttp://www.opasia.dk/

linkguide/guidedeture/ involved with this deployment, but have gracefully been given access the logs of some
of the early deployments of Ariadne.

The guided tours were deployed in December 1999, and by early January 2000,
more than 15000 users had browsed guided tours on the Opasia Web site. A link to
these tours is featured on the Web site’s frontpage , and the service reportedly still ishttp://www.opasia.dk/

widely used. An example of a guided tour, in this case on the topic of the Olympic
Games, can be seen in Figure A.2.

The guided tours are written by Opasia’s Web journalists using a stand-alone ver-
sion of Ariadne. Upon completion, the tour is saved in a XML file, and placed on the

http://www.opasia.dk/
http://www.opasia.dk/

A.2. GUIDED TOURS AT OPASIA 81

Figure A.2: Guided Tour at Opasia

Web portal. Users can then follow a link, which opens a read-only Ariadne with the
guided tour in a separate windows. Topics for guided tours have varied from geneal-
ogy to the Euro referendum. There are currently (October 14th 2000) nine guided tours
available.

The greatest difficulty encountered in the development of this tool was to slim down
the original Ariadne to a small applet, that could run as many different Web browsers
as possible. Users may for instance not have the latest version of Java installed, and it
therefore necessary to develop for the lowest common denominator.

82 APPENDIX A. USE STUDIES

Appendix B

Installing the Arakne
Environment

An important result of my Ph.D. (and a recurring theme in this text) is the Arakne
Environment. It can be retrieved from the author’s Web site. The text below can alsohttp://www.bouvin.net/

Arakne/be found at this Web site, complete with links to the necessary components.

B.1 Systems Requirements

The Arakne Environment currently supports only Windows NT 4.0 and Windows 2000,
as it relies on DCOM for the Internet Explorer integration, and this is only found in
these operating systems. The system has been tested with the Internet Explorer 4.0–
5.5.

The integration with the Internet Explorer is handled through JIntegra, which must
be installed. Additionally, the Java Runtime System (version 1.2 or 1.3) must also be
installed.

B.2 Installing JIntegra

JIntegra can be retrieved as an evaluation version from Linar Ltd. . Whenjinte- http://www.linar.com/

gra.zip has been downloaded, proceed as follows:

1. Unzip thejintegra.zip file into a directory (e.g.c: \Program Files \JIntegra).

2. Add JIntegra to thePATHenvironment variable (in this example, addc: \Program
Files \JIntegra \bin).

B.3 Installing the Arakne Environment

Assuming that JIntegra and the Java Runtime System has been installed, the Arakne
Environment can be installed using the Arakne Installer. This program is available at
the Web site mentioned above:

1. Download theinstall.jar to a directory (e.g. c:\temp)

83

http://www.bouvin.net/
http://www.linar.com/

84 APPENDIX B. INSTALLING THE ARAKNE ENVIRONMENT

2. In a DOS shell, move to this directory, and issue the commandjava -jar
install.jar

3. Follow the instructions in the Installer

4. Copy the filejintegra.jar found inc: \Program Files \JIntegra \LIB
to c: \arakne \Jars \

B.4 Starting the Construct Servers

In thec: \arakne directory, there are three batch filesstartNameLoc.bat , startM-
SIS.bat , andstartHsHm.bat . Start these batch files in this order, and wait for
the servers to be ready.

B.5 Starting the Arakne Environment

The Arakne Environment can then be started using therunme.bat file found in the
c: \arakne directory. It will upon launch check whether its JAR files are current, and
if not, automatically retrieve and install them.

Appendix C

Vocabulary

API Application Programming Interface. A set of interfaces allowing programs to
interact with a system.

Arakne (English: Arachne) Mythological Greek princess turned into the first spider
by the vengeful Pallas Athena.

CGI Common Gateway Interface. A standard for communicating with programs run-
ning on a Web server through a Web browser.

Construct The OHSWG compliant server family developed at University of Aarhus
and Aalborg University Esbjerg.

Context A set of hypermedia structure entities, such as links, anchors, endpoints, com-
posites, etc. A context is in the OHSWG standard defined as a set of GUIDs. A
context can contain other contexts, ´ But not directly or indirectly itself. Known
in other hypermedia systems as hyperspace (DHM, Hypervise), hyperWeb (Chi-
mera), link base (DLS, XLink), Web (Intermedia) and so on.

Editor A program able to display and modify some media type, e.g. text, video, Word
documents, Web pages, etc.

GUID Globally Unique Identifier.

Hypermedia The combination of contents (e.g. a set of documents of any media type)
and structure (e.g. a set of links) that establish relationships between parts of
the content. The traditional hypermedia model has been navigational, i.e. links
and anchors, but hypermedia is not no longer limited to that kind of structuring
mechanism.

Intersubjectivity Reflective shared awareness. I know that you know that I know.

IPC Interprocess Communication.

Java Sandbox Security restrictions put upon Java applets. Java applets cannot contact
foreign (i.e. different from their originating Web server) servers, foreign Java
applets, other processes, or access the local file system.

Link A relation between endpoints. The classic hypermedia link consisted of two
endpoints, a beginning and an end, but this was with Dexter [62] generalised
into a set of endpoints.

85

86 APPENDIX C. VOCABULARY

Link decoration Inserting links, annotations, etc. into a Web page.

LocSpec Location Specifier. A value that specifies a selection in a document of some
media type. A LocSpec may contain redundancy to support link recovery. Intro-
duced by Grønbæk and Trigg in [57].

Monolithic Hypermedia Hypermedia systems that rely on specially developed edi-
tors, rather than integrating third-party editors. Often, but not always, reliant
on proprietary file formats. Examples: KMS, Intermedia, the World Wide Web.
Structures such as links may be stored externally of documents.

Navigational Hypermedia Hypermedia structuring with links, anchors, and endpoints.
Traditionally, this has denoted what hypermedia is, and characterises many tra-
ditional systems, such as KMS or the World Wide Web. Hypermedia today also
covers other structuring mechanisms, such as guided tours, spatial or taxonomic
hypermedia.

Navlet See View.

OHP Open Hypermedia Protocol. The hypermedia architecture designed by the OHSWG.
Supported by the Construct servers and the Arakne Environment.

OHSWG Open Hypermedia Systems Working Group. A group composed of the cur-
rently active open hypermedia research groups. The main purpose of OHSWG
is to design a shared open hypermedia standard (OHP) allowing all open hyper-
media systems to interoperate.

Open Hypermedia Hypermedia systems, that exclusively or largely integrate third-
party editors. This generally implies externally stored hypermedia structures, as
“foreign” file formats often not will have provisions for linking etc. Examples:
Microcosm, HyperDisco, Webvise, the Arakne Environment.

View A tool running in the Arakne Environment (previously known as “Navlets”).
Views can for instance be hypermedia tools such as Ariadne, CAOS, and Navette.

Viewer A read-only editor — most Web browsers and image viewers are good exam-
ples of viewers.

Bibliography

[1] R. M. Akscyn, D. L. McCracken, and E. A. Yoder. KMS: A distributed hyper-
media system for managing knowledge in organizations.Communications of the
ACM, 31(7):820–835, July 1988.

[2] K. M. Anderson. Integrating open hypermedia systems with the World Wide
Web. In M. Bernstein, L. Carr, and K. Østerbye, editors,Proceedings of the 8th

ACM Hypertext Conference, pages 157–166, Southampton, UK, Apr. 1997.

[3] K. M. Anderson. Issues of data scalability in open hypermedia systems.The
New Review of Hypermedia and Multimedia, 5:151–178, 1999.

[4] K. M. Anderson. Scalability in open hypermedia systems. InProceedings of
the 10th ACM Hypertext Conference, pages 27–36, Darmstadt, Germany, Feb.
1999.

[5] K. M. Anderson. Supporting industrial hyperwebs: Lessons in scalability. In
Proceedings of the 21st International Conference on Software Engineering,
pages 573–582, Los Angeles, CA, USA, May 1999.

[6] K. M. Anderson and N. O. Bouvin. Enabling project awareness and intersubjec-
tivity via hypermedia-enabled event trails. Submitted for publication.

[7] K. M. Anderson, R. N. Taylor, , and E. J. Whitehead, Jr. Chimera: Hypermedia
for heterogeneous software development environments.ACM Transactions on
Information Systems, 18(3), July 2000.

[8] K. M. Anderson, R. N. Taylor, and E. J. Whitehead Jr. Chimera: Hypertext for
heterogeneous software environments. InProceedings of the European Con-
ference on Hypermedia Technology (ECHT 1994), pages 97–107, Edinburgh,
Scotland, Sept. 1994.

[9] K. Andrews, F. Kappe, and H. Maurer. Serving information to the Web with
Hyper-G.Computer Networks and ISDN Systems, 27(6), 1995.

[10] L. Bannon and K. Schmidt. CSCW: Four characters in search of a context.
In J. M. Bowers and S. D. Benford, editors,Studies in Computer Supported
Cooperative Work. Elsevier Science Publishers B. V. (North-Holland), 1991.

[11] L. Bannon and K. Schmidt. Taking CSCW seriously.CSCW Journal, 1(1–2),
1992.

87

88 BIBLIOGRAPHY

[12] R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D. Kerr, K. Sikkel, J. Trevor,
and G. Wötzel. Basic support for co-operative work on the World Wide Web.
International Journal of Human Computer Studies, 1997.

[13] T. Berners-Lee. The World Wide Web — past, present and future.Journal
of Digital information, 1(1), 1997. http://jodi.ecs.soton.ac.uk/
Articles/v01/i01/BernersLee/ .

[14] T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollerman. World-Wide Web:
The information universe.Electronic Networking: Research, Applications and
Policy, 1(2), 1992.

[15] N. O. Bouvin. Collaborative Web-based open hypermedia and mutual aware-
ness. Submitted for publication.

[16] N. O. Bouvin. Designing open hypermedia applets: Experiences and prospects.
In Proceedings of the 9th ACM Hypertext Conference, pages 281–282, Pitts-
burgh, USA, 1998.

[17] N. O. Bouvin. Unifying strategies for Web augmentation. InProceedings of
the 10th ACM Hypertext Conference, pages 91–100, Darmstadt, Germany, Feb.
1999.

[18] N. O. Bouvin. Designing user interfaces for collaborative Web-based open hy-
permedia. InProceedings of the 11th ACM Hypertext Conference, pages 230–
231, San Antonio, USA, May 2000.

[19] N. O. Bouvin. Experiences with OHP and issues for the future. InProceedings
of the Open Hypermedia Systems Workshop 6.0 Hypertext 2000, number 1903
in Lecture Notes in Computer Science. Springer, 2000.

[20] N. O. Bouvin and R. Schade. Integrating temporal media and open hypermedia
on the World Wide Web.Computer Networks — The International Journal of
Computer and Telecommunications Networking, (31):1453–1465, 1999.

[21] E. Bradner, W. A. Kellogg, and T. Erickson. The adoption and use of ’BABBLE:
A field study of chat in the workplace. In S. Bødker, M. Kyng, and K. Schmidt,
editors,Proceedings of the 6th European Conference on Computer Supported
Cooperative Work, pages 139–158, Copenhagen, Denmark, Sept. 1999. Kluwer
Academic Publishers.

[22] M. Büscher, P. Mogensen, D. Shapiro, and I. Wagner. The Manufaktur: Sup-
porting work practice in (landscape) architecture. In S. Bødker, M. Kyng, and
K. Schmidt, editors,Proceedings of the 6th European Conference on Computer
Supported Cooperative Work, pages 21–40, Copenhagen, Denmark, Sept. 1999.
Kluwer Academic Publishers.

[23] V. Bush. As we may think.The Atlantic Monthly, pages 101–108, July 1945.

[24] L. A. Carr, W. Hall, and S. Hitchcock. Link services or link agents? InProceed-
ings of the 9th ACM Hypertext Conference, pages 113–122, Pittsburgh, USA,
1998.

http://jodi.ecs.soton.ac.uk/

BIBLIOGRAPHY 89

[25] L. A. Carr, D. D. Roure, W. Hall, and G. Hill. The distributed link service: A
tool for publishers, authors and readers. InProceedings of the 4th International
World Wide Web Conference, Boston, USA, 1995. W3C.

[26] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and
expressiveness in an Internet-scale event notification service. InProceedings of
the 19th ACM Symposium on Principles of Distributed Computing, July 2000.

[27] J. Clark and S. DeRose (editors). XML Path language (XPath) version 1.0. W3C
Recommendation 16 November 1999, W3C, Nov. 1999.http://www.w3.
org/TR/xpath .

[28] I. Clarke. A distributed decentralised information storage and retrieval sys-
tem. Technical report, Division of Informatics, University of Edinburgh, 1999.
http://www.freenetproject.org/freenet.pdf .

[29] A. Clement. Considering privacy in the development of multi-media communi-
cations.CSCW Journal, 2(1–2), 1994.

[30] R. Daniel, S. DeRose, and E. Maler (editors). XML Pointer Language
(XPointer). W3C Working Draft 6 December 1999, W3C, Dec. 1999.http:
//www.w3.org/TR/xptr .

[31] C. X. D’Arlach and J. J. Leggett. HyperEd: a spatial hypertext editor. Techni-
cal Report TAMU-HRL-94-005, Department of Computer Science, Texas A&M
University, 1994.

[32] H. C. Davis. Referential integrity of links in open hypermedia systems. In
Proceedings of the 9th ACM Hypertext Conference, pages 207–216, Pittsburgh,
USA, 1998.

[33] H. C. Davis, W. Hall, I. Heath, G. Hill, and R. Wilkins. Towards an integrated
information environment with open hypermedia systems. In D. Lucarella, J. Na-
nard, M. Nanard, and P. Paolini, editors,Proceedings of the ACM Hypertext 1992
Conference, pages 181–190, Milan, Italy, Nov. 1992.

[34] H. C. Davis, S. Knight, and W. Hall. Light hypermedia link services: A study of
third party integration. InProceedings of the European Conference on Hyper-
media Technology (ECHT 1994), pages 41–50, Edinburgh, UK, Sept. 1994.

[35] H. C. Davis, D. E. Millard, S. Reich, N. O. Bouvin, K. Grønbæk, K. M. Ander-
son, U. K. Wiil, P. J. Nürnberg, and L. Sloth. Interoperability between hyperme-
dia systems: The standardisation work of the OHSWG. InProceedings of the
10th ACM Hypertext Conference, pages 201–202, Darmstadt, Germany, 1999.

[36] Delta-V Working Group.http://www.webdav.org/wg/#dv .

[37] S. DeRose, E. Maler, D. Orchard, and B. Trafford (editors). XML Linking
Language (XLink). W3C Working Draft 21 February 2000, W3C, Feb. 2000.
http://www.w3.org/TR/xlink/ .

[38] P. Dourish and S. Bly. Portholes: Supporting awareness in a distributed work
group. InProceedings of the ACM Conference on Human Factors in Computing
Systems, pages 541–547, May 1992.

http://www.w3
http://www.freenetproject.org/freenet.pdf
http://www.webdav.org/wg/#dv
http://www.w3.org/TR/xlink/

90 BIBLIOGRAPHY

[39] D. Engelbart. A conceptual framework for the augmentation of man’s intellect.
In P. Howerton, editor,Vistas in Information Handling, volume 1, pages 1–29.
Spartan Books, Washington DC, USA, 1963.

[40] D. Engelbart. Authorship provisions in Augment. InProceedings of the IEEE
Compcon Conference, San Francisco, USA, 1984. IEEE.

[41] G. Fitzpatrick, T. Mansfield, S. Kaplan, D. Arnold, T. Phelps, and B. Segall.
Augmenting the workaday world with Elvin. In S. Bødker, M. Kyng, and
K. Schmidt, editors,Proceedings of the 6th European Conference on Computer
Supported Cooperative Work, pages 431–450, Copenhagen, Denmark, Sept.
1999. Kluwer Academic Publishers.

[42] A. M. Fountain, W. Hall, I. Heath, and H. C. Davis. Microcosm: An open
model for hypermedia with dynamic linking. In A. Rizk, N. Streiz, and J. An-
drè, editors,Proceedings of the European Conference on Hypertext, Cambridge
University Press, U.K., 1990.

[43] L. Fuchs. AREA: A cross-application notification service for groupware. In
S. Bødker, M. Kyng, and K. Schmidt, editors,Proceedings of the 6th European
Conference on Computer Supported Copperative Work, pages 61–80. Kluwer
Academic Publishers, Sept. 1999.

[44] L. Fuchs, U. Pankoke-Babatz, and W. Prinz. Supporting cooperative awareness
with local event mechanisms: The GroupDesk system. InProceedings of the 4th

European Conference on Computer Supported Cooperative Work, pages 247–
262, Stockholm, Sweden, 1995.

[45] R. Furuta, F. M. Shipman III, C. C. Marshall, D. D. Brenner, and H.-W. Hsieh.
Hypertext paths and the World-Wide Web: Experiences with Walden’s Paths. In
M. Bernstein, L. Carr, and K. Østerbye, editors,Proceedings of the 8th ACM
Hypertext Conference, pages 167–176, Southampton, UK, Apr. 1997.

[46] S. Goose, J. Dale, W. Hall, and D. D. Roure. Microcosm TNG: a distributed ar-
chitecture to support reflexive hypermedia applications. In M. Bernstein, L. Carr,
and K. Østerbye, editors,Proceedings of the 8th ACM Hypertext Conference,
pages 226–227, Southampton, UK, Apr. 1997.

[47] K. Grønbæk. Eurocode workpackage wp2 task t2.2 report: Object oriented
model for the distributed hypermedia toolkit. Technical Report CODE-AU-93-
10, Aarhus University, Denmark, July 1993.

[48] K. Grønbæk, N. O. Bouvin, and L. Sloth. Designing Dexter-based hyperme-
dia services for the World Wide Web. In M. Bernstein, L. Carr, and K. Øster-
bye, editors,Proceedings of the 8th ACM Hypertext Conference, pages 146–156,
Southampton, UK, Apr. 1997.

[49] K. Grønbæk, J. A. Hem, O. L. Madsen, and L. Sloth. Designing Dexter-based
cooperative hypermedia systems. InProceedings of the 5th ACM Hypertext
Conference, pages 25–38, Seattle, USA, Nov. 1993.

[50] K. Grønbæk, J. A. Hem, O. L. Madsen, and L. Sloth. Cooperative hypermedia
systems: A Dexter-based architecture.Communications of the ACM, 37(2):64–
74, Feb. 1994.

BIBLIOGRAPHY 91

[51] K. Grønbæk and J. Malhotra. Building tailorable hypermedia systems: the
embedded-interpreter approach. InProceedings of the 9th conference on Object
Oriented Programming Systems, Language, and Applications (OOPSLA 1994),
pages 85–101. ACM, 1994.

[52] K. Grønbæk and P. J. Nürnberg. Technical documentation for the COCONUT
hypermedia services and infrastructure (Part 1). IM working papers 3, Interme-
dia, University of Aarhus, Denmark, 1999.

[53] K. Grønbæk and P. J. Nürnberg. Technical documentation for the COCONUT
hypermedia services and infrastructure (Part 2). IM working papers 3, Interme-
dia, University of Aarhus, Denmark, 1999.

[54] K. Grønbæk, L. Sloth, and N. O. Bouvin. Open hypermedia as user controlled
meta data for the Web. InProceeding of the 9th World Wide Web Conference,
pages 553–566, Amsterdam, Holland, May 2000. W3C.

[55] K. Grønbæk, L. Sloth, and N. O. Bouvin. Open hypermedia as user controlled
meta data for the Web.Computer Networks, (33):553–566, 2000.

[56] K. Grønbæk, L. Sloth, and P. Ørbæk. Webvise: browser and proxy support
for open hypermedia structuring mechanisms of the World Wide Web. InPro-
ceedings of the 8th International World Wide Web Conference, pages 253–267,
Toronto, Canada, 1999. W3C.

[57] K. Grønbæk and R. H. Trigg. Toward a Dexter-based model for open hyperme-
dia: Unifying embedded references and link objects. InProceedings of the 7th

ACM Hypertext Conference, pages 149–160, Washington DC, USA, 1996.

[58] J. M. Haake, T. Knopik, and N. Streitz. The SEPIA hypermedia system as part
of the POLIKOM telecooperation scenario. InProceedings of the 5th ACM
Hypertext Conference, pages 235–237, Seattle, USA, Nov. 1993.

[59] J. M. Haake and B. Wilson. Supporting collaborative writing of hyperdocu-
ments in SEPIA. InConference proceedings on Computer-supported coopera-
tive work, pages 138–146, Toronto, Canada, Nov. 1992.

[60] F. G. Halasz. Reflections on NoteCards: Seven issues for the next generation of
hypermedia systems.Communications of the ACM, 31(7):836–852, 1988.

[61] F. G. Halasz, T. P. Moran, and R. H. Trigg. NoteCards in a nutshell. InProceed-
ings of ACM Conference on Human Factors in Computing Systems and Graphics
Interface, pages 45–52, Toronto, Canada, Apr. 1987.

[62] F. G. Halasz and M. Schwartz. The Dexter hypertext reference model.Commu-
nications of the ACM, 37(2):30–39, Feb. 1994.

[63] W. Hall, H. C. Davis, and G. Hutchings.Rethinking Hypermedia: The Micro-
Cosm Approach. Kluwer Academic Publishers, Norwell, USA, 1996.

[64] B. Halsey and K. M. Anderson. XLink and open hypermedia systems: A pre-
liminary investigation. InProceedings of the 11th ACM Hypertext Conference,
pages 212–213, San Antonio, USA, May 2000.

92 BIBLIOGRAPHY

[65] C. Heath and P. Luff. Collaboration and control: Crisis management and multi-
media technology in London Underground line control rooms.CSCW Journal,
1(1–2):69–94, 1992.

[66] J. Jühne, A. T. Jensen, and K. Grønbæk. Ariadne: A Java-based guided tour
system for the World Wide Web. InProceedings of the 7th International World
Wide Web Conference, Brisbane, Australia, 1998. W3C.

[67] C. J. Kacmar and J. J. Leggett. PROXHY: A process-oriented extensible hyper-
text architecture.ACM Transactions of Information Systems, 9(4):399–419, Oct.
1991.

[68] P. Kahn, J. M. Nyce, T. Oren, G. Crane, L. C. Smith, R. Trigg, and N. Meyrowitz.
From Memex to hypertext: understanding the influence of Vannevar Bush. In
Proceedings of the 3rd ACM Conference on Hypertext, page 361, San Antonio,
USA, Dec. 1991.

[69] R. Killough and J. J. Leggett. Hypertext interchange with the Dexter model:
Intermedia to KMS. TAMU-HRL 90-002, Hypertext Research Lab, Texas A&M
University, Aug. 1990.

[70] O. Lassila and R. R. Swick (editors). Resource Description Framework (RDF)
model and syntax specification. W3C Recommendation 22 February 1999,
W3C, Feb. 1999.http://www.w3.org/TR/REC-rdf-syntax/ .

[71] J. J. Leggett and J. L. Schnase. Viewing Dexter with open eyes.Communications
of the ACM, 37(2):77–86, Feb. 1994.

[72] G. Mark, N. A. Streiz, and J. M. Haake. Hypermedia use in group work: Chang-
ing the product, process, and strategy.Computer Supported Cooperative Work:
The Journal of Collaborative Computing, (6):327–368, 1997.

[73] C. C. Marshall. Toward an ecology of hypertext annotation. InProceedings of
the 9th ACM Hypertext Conference, pages 40–49, Pittsburgh, USA, 1998. ACM.

[74] C. C. Marshall and F. M. Shipman III. Spatial hypertext: Designing for change.
Communications of the ACM, 38(8):88–97, 1995.

[75] H. Maurer.Hyperwave — The Next Generation Web Solution. Addison Wesley,
1996.

[76] M. Melly and W. Hall. Version control in Microcosm. In D. Hicks, A. Haake,
D. Durand, and F. Vitali, editors,Proceedings of the ECSCW’95: Workshop
on the Role of Version Control in CSCW Applications, number 289 in GMD-
Studien, GMD-IPSI, Darmstadt, Germany, Apr. 1996.

[77] N. K. Meyrowitz. Intermedia: The architecture and construction of an object-
oriented hypermedia system and applications framework. InProceedings of
ACM conference on Object Oriented Programming Systems, Languages and Ap-
plications (OOPSLA 86), 1986.

[78] N. K. Meyrowitz. The missing link: Why we’re all doing hypertext wrong. In
E. Barrett, editor,The society of text: Hypertext, hypermedia and the social con-
struction of information, pages 107–114. MIT Press, Cambridge, USA, 1989.

http://www.w3.org/TR/REC-rdf-syntax/

BIBLIOGRAPHY 93

[79] P. Mogensen and K. Grønbæk. Hypermedia in the virtual project room – toward
open 3d spatial hypermedia. In F. M. Shipman, III, editor,Proceedings of the
11th ACM Hypertext Conference, pages 113–122. ACM, May 2000.

[80] T. H. Nelson. Replacing the printed word.Information Processing, pages 1013–
1023, 1980.

[81] P. J. Nürnberg.HOSS: An Environment to Support Structural Computing. PhD
thesis, Department of Computer Science, Texas A&M University, College Sta-
tion, Texas, USA, 1997.

[82] P. J. Nürnberg and H. Ashman. What was the question? reconciling open hyper-
media and world wide web research. InProceedings of the 10th ACM Hypertext
Conference, pages 83–90, Darmstadt, Germany, 1999.

[83] P. J. Nürnberg, J. J. Leggett, E. R. Schneider, and J. L. Schnase. Hypermedia
operating systems: A new paradigm for computing. InProceedings of the 7th

ACM Hypertext Conference, pages 194–202, Washington DC, USA, Mar. 1996.

[84] P. J. Nürnberg, E. R. Schneider, and J. J. Leggett. Designing digital libraries for
the hyperliterate age.Journal of Universal Computer Science, 2(9):610–622,
1996.

[85] J. F. Patterson, M. Day, and J. Kucan. Notification servers for synchronous
groupware. InProceedings of the Conference of Computer Supported Coopera-
tive Work, pages 122–129, Boston, USA, 1996.

[86] A. Pearl. Sun’s link service: A protocol for open linking. InProceedings of
the 2nd ACM Conference on Hypertext, pages 137–146, Pittsburgh, USA, Nov.
1989.

[87] T. A. Phelps and R. Wilensky. Robust intra-document locations. InProceeding
of the 9th World Wide Web Conference, pages 105–118, Amsterdam, Holland,
May 2000. W3C.

[88] W. Prinz. NESSIE: An awareness environment for cooperative settings. In
S. Bødker, M. Kyng, and K. Schmidt, editors,Proceedings of the 6th European
Conference on Computer Supported Copperative Work, pages 391–410. Kluwer
Academic Publishers, Sept. 1999.

[89] O. Reinert, D. Bucka-Lassen, C. A. Pedersen, and P. J. Nürnberg. CAOS: A col-
laborative and open spatial structure service component with incremental spatial
parsing. InProceedings of the 10th ACM Hypertext Conference, pages 49–50,
Darmstadt, Germany, 1999.

[90] J. L. Schnase, J. J. Leggett, D. L. Hicks, P. J. Nürnberg, and J. A. Sánchez. De-
sign and implementation of the hb1 hyperbase management system.Electronic
Publishing — Origination, Dissemination and Design, 6(1):125–150, 1993.

[91] J. L. Schnase, J. J. Leggett, D. L. Hicks, P. J. Nürnberg, and J. A. Sánchez.
Open architectures for integrated, hypermedia-based information systems. In
Proceedings of the 27th Hawaii International Conference of Systems Sciences,
Maui, Hawaii, USA, Jan. 1994.

94 BIBLIOGRAPHY

[92] N. A. Streitz, J. Geißler, J. M. Haake, and J. Hol. Dolphin: integrated meet-
ing support across local and remote desktop environments and liveboards. In
Proceedings of the conference on Computer supported cooperative work, pages
345–358, Chapel Hill, USA, Oct. 1994.

[93] N. A. Streiz, J. M. Haake, J. Hannemann, A. Lemke, W. Schuler, H. Schütt,
and M. Thüring. SEPIA: A cooperative hypermedia authoring environment. In
Proceedings of the European Conference on Hypermedia Technology (ECHT
1992), pages 11–22, Milan, Italy, 1992.

[94] R. H. Trigg, L. A. Suchman, and F. G. Halasz. Supporting collaboration in Note-
Cards. InProceedings of the Conference on Computer-Supported Cooperative
Work, pages 153–162, 1986.

[95] E. J. Whitehead Jr. An architectural model for application integration in open
hypermedia environments. In M. Bernstein, L. Carr, and K. Østerbye, editors,
Proceedings of the 8th ACM Hypertext Conference, pages 1–12, Southampton,
UK, Apr. 1997.

[96] E. J. Whitehead Jr. Control choices and network effects in hypertext systems. In
Proceedings of the 10th ACM Hypertext Conference, pages 75–82, Darmstadt,
Germany, Feb. 1999.

[97] E. J. Whitehead, Jr., K. M. Anderson, and R. N. Taylor. A proposal for ver-
sioning support for the chimera system. InProceeedings of the Workshop on
Versioning in Hypertext Systems. Held in connection with ECHT ’94, pages 45–
54, Edinburgh, Scotland, Sept. 1994.

[98] E. J. Whitehead Jr. and Y. Y. Goland. WebDAV: A network protocol for remote
collaborative authoring on the Web. In S. Bødker, M. Kyng, and K. Schmidt,
editors,Proceedings of the 6th European Conference on Computer Supported
Cooperative Work, pages 291–310, Copenhagen, Danmark, 1999. Kluwer Aca-
demic Publishers.

[99] U. K. Wiil. Issues in the design of EHTS: A multiuser hypertext system for col-
laboration. InProceedings of the 25th IEEE Hawaii International Conference
on System Sciences, volume 2, pages 629–639, 1992.

[100] U. K. Wiil. Experiences with HyperBase: A multiuser hypertext database.ACM
SIGMOD RECORD, 22(4):19–25, Dec. 1993.

[101] U. K. Wiil. Hyperform: Rapid prototyping of hypermedia services.Communi-
cations of the ACM, 38(8):109–111, 1995.

[102] U. K. Wiil and J. J. Leggett. The HyperDisco approach to open hypermedia
systems. InProceedings of the 7th ACM Hypertext Conference, pages 140–148,
Washington DC, USA, Mar. 1996.

[103] U. K. Wiil and J. J. Leggett. Workspaces: The HyperDisco approach to Internet
distribution. In M. Bernstein, L. Carr, and K. Østerbye, editors,Proceedings of
the 8th ACM Hypertext Conference, pages 13–23, Southampton, UK, Apr. 1997.

BIBLIOGRAPHY 95

[104] U. K. Wiil and P. J. Nürnberg. Implications of open hypermedia systems re-
search for the World Wide Web. InProceedings of the 3rd IASTED Interna-
tional Conference on Internet and Multimedia Systems and Applications (IMSA
’99), pages 296–304, Nassau, Bahamas, Oct. 1999.

[105] U. K. Wiil, P. J. Nürnberg, D. Hicks, and S. Reich. A development environment
for building component-based open hypermedia systems. In F. M. Shipman,
III, editor, Proceedings of the 11th ACM Hypertext Conference, pages 266–267.
ACM, May 2000.

[106] N. Yankelovich, B. J. Haan, N. K. Meyrowitz, and S. M. Drucker. Interme-
dia: the concept and the construction of a seamless information environment.
Computer, pages 81–96, Jan. 1988.

Unifying Strategies for Web Augmentation
Niels Olof Bouvin

Aarhus University,
Department of Computer Science,

Aabogade 34A, DK8200 Aarhus N, Denmark
bouvin@daimi.aau.dk

ABSTRACT
Since the beginning of the WWW, tools have been devel-
oped to augment the functionality of the Web. This paper
provides an investigation of hypermedia tools and systems
integrating the World Wide Web with focus on functionality
and the techniques used to achieve this functionality. Simi-
larities are found and based on this, a new framework, the
Arakne framework, for developing and thinking about Web
augmentation is presented. The Arakne framework is flexi-
ble and supports most kinds of Web augmentation. Finally
an implementation of the Arakne framework is described
and discussed.

KEYWORDS
Web Integration, Open Hypermedia Systems, Open Hyper-
media Protocol, Collaboration on the Web, Unifying inter-
faces, Common Reference Architecture for open hyperme-
dia systems, Java

INTRODUCTION
The World Wide Web has in an amazing short time span
become the hitherto largest hypertext and is pervasive in
everyday life as few things before. This success has in part
been attributed to the simple architecture behind the Web: A
stateless file transfer protocol (HTTP), an universal Internet
naming scheme (URL) and an easily understood document
format (HTML). These standards have (largely) been ad-
hered to, and this has enabled the creation of a large amount
of software, be it Web servers or browsers to work together
to the benefit of all.

The success of this simple and hugely scaleable architecture
has come, from the standpoint of the hypermedia research
community, at some costs, as the Web itself is lacking in the
ways of more advanced (but ironically often far older) hy-
permedia systems. Web links are unidirectional jump links,
embedded in the HTML documents, severely diminishing
the flexibility of use. There is yet no widespread support for
collaborative ‘authoring, though an initiative such as
WebDAV [131) holds great promise.

An important development in the hypermedia community in
the nineties has been the focus on and development of open

Permission to makt: digital or hard copi,, of all or part ~tfthis work for
per~mal or class~~on~ US IS ganted without fee prwiided that copies
arc not rrude or tlistrlbutcd Ihr prvlil or commercial advnnlapc and that
topics bear this notlcc and the tillI citation on ~hc first page. TO COP>

&w-wise. to republish, to post on xrw!~‘s or to redistribute to lists.
rquirzs prior sprcific pumission ar&or il fee.
Hypertext 99 Darmstndt Germany
Copyright ACM 1999 l-58113-064-3/99/2...$5.00

hypermedia systems integrating third-party applications.
Significant work has been done in systems such as Micro-
Cosm [9][20], HyperDisco [44][45], HOSS [32], DHM
[14][151, and Chimera [11. These systems have all addressed
the problem of augmenting third-party applications, and the
lessons learned are important guidelines for future work of
Web augmentation. Based on these experiences,, taxono-
mies and studies have been developed, by Whitehead [43],
Granbaek & Wiil [17], and Wiil & asterbye [46][48], to
help researchers and developers discuss and reason about
the open hypermedia field and how to utilise hypermedia in
third-party applications. Given this experience of integration
it should come as no surprise that the open hypermedia
community was quick to develop open hypermedia Web
integrations, e.g. DLS [7], DHM/WWW [16], and Chimera
[2]. This article will investigate how they and others
achieved their goals of Web augmentation.

Adhering to standards has a large part of the success of the
Web and the very size of the Web has enormous inertia, so
an attempt to replace the Web with something perhaps more
advanced in certain aspects is, if not doomed, then up
against tremendous odds. Clearly this is not the way to im-
prove the Web. An approach that retains the benefits of the
Web as well as adding new desired functionality is the de-
velopment of systems that operate within Web standards, be
it HTTP, HTML, browsers, or servers. This is in spirit with
Meyrowitz’ call for hypermedia integration in third-party
applications [27], and the amount and quality of work done
using this approach would suggest that it is at the very least
possible.

AN OVERVIEW OF WEB AUGMENTATION STRATEGIES
As the scope of this article is to study the techniques used in
Web augmentation tools, an overview of augmentation
approaches is in order. This overview will work at two lev-
els of abstraction: first a broad grouping based on the func-
tionality of the tools and later a more specific characterisa-
tion of the individual tool. This characterisation will be
based on the chosen approach to common problems, such as
storage, Web browser integration, level of support for col-
laboration, and so forth. The former level of abstraction will
let us discuss and compare related tools, while the latter will
allow us to recognise reoccurring themes in the approaches
taken.

A tool shall be considered a Web hypermedia augmentation
tool, if it through integration with a Web browser, a HTTP
proxy or a Web server adds content or controls not con-
tained within the Web pages themselves to the effect of
allowing structure to be added to the Web page directly or
indirectly, or to navigate such structure. The purpose of such

91

a tool is help users organise, associate, or structure informa-
tion found on the Web. This activity may be done by a sin-
gle user or in collaboration with others.

Following this definition, the purpose of the Web augmen-
tations reviewed for this article is to help users structuralise
their Web work. Either by adding structure and displaying it,
or by extracting structure already present and making it
more visible. The displayed structure may be malleable,
allowing the user to modify it. The Web augmentation tools
reviewed for this article have been divided into four catego-
ries:

+ Annotations/Discussion support
+ Link creation and transversal
+ Guided tours
l Structuring/Spatial

We claim no universality to this categorisation, but have
found it handy when discussing the Web augmentation tools
and their use.

A Web augmentation tool can be classified by the schema
summarised in Table 1. Thus a tool can either be a part of a
Web browser; it can be an closely integrated tool loaded on
runtime; it can reside temporarily within the browser as an
applet or an ActiveX control; it can be an application run-
ning the user’s computer; or it can be located elsewhere (in
that case more often than not as a H’X”TP server or proxy).

The Web augmentation tool can either have no storage re-
quirements; it can store it data locally on the host computer,
or remotely on a server.

Many of these Web augmentation tools modify Web pages,
either to insert interfaces of their own or to add structure
(e.g. links) to the Web page. This modification can take
place at the Web server (perhaps a Web server translating a
proprietary data format into HTML), by calling CGI-scripts
that return modified pages, by using a special proxy, or by
modifying the Web pages as or after they are displayed in
the Web browser.

As for the collaborative aspect, a Web augmentation tool
can either be strictly personal, i.e. relevant to a single user
only; the created data or structures can be shared (e.g. send
to another user or placed on a Web site); the structures can
browsed or edited by turn-taking (asynchronously); or users
can collaborale through the structures in real time (synchro-
nously).

WEB AUGMENTATION TOOLS
In this section we will describe various Web augmentation
tools focusing on the elements introduced by Table 1. The
scope of this article does not allow for a comprehensive
study nor a general survey, so only a subset of the existing
Web augmentation tools is presented.

Annotations/Discussion support
Bush envisioned marginalia in the Memex [5], and the inter-
est in annotations and how they should be supported by
hypermedia has not diminished over the years, as witnessed

by the investigation done by Marshall 1251.

The first widely successful Web browser, NCSA Mosaic
[30], gave the user the opportunity to create annotations to
Web pages. The annotations were personal and stored lo-
cally. Later, this feature fell out of favour with Web browser
developers.

Recognising that annotations whilst useful for the individual
are even more beneficial for a community, several collabo-
rative annotation tools have been created. Rascheisen et
al.[35][36] have developed ComMentor, which have used
for several purposes, including content rating and annota-
tions. The system employs a Mosaic [30] browser, modified
to provide an interface to the annotation server, which con-
sists of a collection of CGI-scripts. The user has alongside
with the browser a merge library, which inserts comments
and links to comments into the Web pages. Annotations are
stored in sets, of which the user may activate an arbitrary

Method of integration
A part of the browser
Browser add-ons
Within the browser (plug-ins, applets and JavaScript)
Without the browser, local
Without the browser, remote
Within the proxy
Within the Web server
Location of storage
No storage
Local storage
Remote storage
Web page modification
No modification
At the Web server
CGI-scripts at a Web server
At the proxy
In the browser
Level of collaboration supported
Personal
Shareable
Asynchronous collaborative

, Synchronous collaborative

Table I - A classification scheme of Web augmentation tools

number. Collaborative annotation is supported through di-
viding users into groups that may share sets of annotations.
A set of annotations can be set to be private, available to a
group, or publicly available. Annotations are displayed
using in-place markers (small pictures) indicating either the
nature of the annotation or the author’s identity. An annota-
tion while write-protected may also be annotated.

Another system is CritLink Mediator, part of CritSuite [lo],
which is specialised to provide support for ‘critical discus-
sions’. CritLink employs predefined typed links (support,
issue, comment, query) akin to many hypermedia systems,
such as IBIS [34] and TEXTNET [40]. The comments are
created by a mix of CGI-scripts, Web forms, and JavaScript
and stored either on a designated server or in the user’s own
Web space as ordinary Web pages. Links to the comments

92

are inserted into Web pages by use of a Web server effec-
tively acting as a proxy server. The pages are also modified
to include a tool bar used for navigation, annotation, and the
launch of CritMap [39], a tool that generates maps of neigh-
bourhood Web pages. Links in pages presented by the server
are modified to go through the server. As comments are
Web pages in their own right, they can also be commented
on. There are only one set of annotations and no notion of
groups, though the individual user is identified.

Creating links
As noted in the introduction, quite a few research projects
have addressed the issue of adding external structures to
Web pages. An excellent investigation of the various ap-
proaches taken by the open hypermedia community can be
found in [2]. There are two main approaches: links (or other
kinds of structural information) are either displayed along-
side the Web page or inserted into the Web page. The for-
mer case requires either a program to display this structure
or a browser window where the structure has been converted
to HTML. The latter case involves modifying HTML pages
on the fly, which can be done at three places: at the origin,
in transit or at arrival, i.e. the Web server, the HTTP proxy,
or the Web browser.

Chimera [1][2] is an example of a system, where experi-
ments with either displaying structure information in a sepa-
rate program (an applet) or making the structure server ac-
cessible through HTTP have been carried out. By modifying
a Web server to interpret HTTP requests as requests to a
Chimera server to which the Web server is hooked up and in
turn translating the Chimera structures to HTML, a user is
able to browse the hypermedia structure using an ordinary
Web browser. This experiment was extended upon by the
creation of a Java applet capable of displaying Chimera
hypermedia structures. By the combination of a special Web
server, CGI-scripts and cookies, this applet was inserted into
all pages displayed in the Web browser, giving the user
immediate access to Chimera services.

Hyper-G [26] is a more specialised system, as it to achieve
full functionality relies on a special document format (HTF
- Hypertext Format), a special server, and a custom
browser. It is however possible to interface to the system
using an ordinary Web browser using a special WWW-
gateway, that will translates HTF document and hypermedia
structure to HTML. The hypermedia system offers strong
support for hierarchical structures and searching, and allows
users without a special browser to create links using forms.
In recent versions HyperWave [22] (as the system is now
known) offers an advanced interface utilising Java-applets
and JavaScript inserted into Web pages by the HyperWave
server.

DLS [6] (Distributed Link Service) is based on the Micro-
Cosm hypermedia system [7][9][20]. The first DLS systems
used a wrapper to attach a link service menu to a browser
(this integration being dependent on whether an integration
existed for the user’s browser), thus creating a (in the termi-
nology of Whitehead in [43]) shim integration with a third
party application. Links were followed by selection of text
and selecting ‘Follow Link’ in the attached menu. This

93

would cause the wrapper to contact the link server with an
URL encoding the request, resulting in a Web page of the
matching links. To address the problem of having to install
special software and to make links more visible, an inter-
faceless version was developed that used a link server proxy
to insert links in Web pages as requested by the user. The
user used a form to configure which link bases to use and
how the link should be presented in the document (to make
the distinction between links belonging in the document and
inserted links clear). Due to performance issues (beyond
‘conventional’ links, Microcosm offers computation inten-
sive links, such as keyword links, person links and citation
links) and copyright and authors’ rights concerns about
adding content to Web pages, a new design was introduced
with the AgentDLS [8]. Rather than offering synchronous
links (presented together and simultaneously with the docu-
ment), links are now displayed in a separate window. This
improves the performance of browsing considerably, as the
users’ primary window of interest does not have to wait for
links to be resolved. The linking service thus takes on a
more advisory nature. This system is implemented by using
a proxy that (as seen by the Web browser) acts as a normal
proxy but also sends the displayed document to a link server
agent that resolves the links relevant to the document. The
display of these links is handled by having the AgentDLS
browser window request a page from the link server agent
with regular intervals.

The Devise Hypermedia group, of which the author is a
member, has also made various Web integrations with its
Dexter-based hypermedia system [14][1.51. The first attempt
was DHM/WWW [161. The architecture consisted of a Java-
applet communicating through a CGI-script to a DHM
server. When the user requested a document by typing its
URL in the applet, the applet would retrieve the document
while querying the DHM server for endpoints in the docu-
ment. The endpoints retrieved was inserted into the Web
page as it was being downloaded and displayed in a Web
browser window using JavaScript. All links in the Web page
were modified so that a click on a link would result in the
applet being invoked, allowing it repeat the above described
process. The links and endpoints from the DHM server
could also be inspected and browsed within the applet. This
version had several shortcomings: it was dependent on the
user not using bookmarks or entering URLs in the Web
browser itself, as such actions would cause the applet to be
terminated as its own page would be unloaded. Furthermore
it was unable to handle frames (as the loading of a new ‘top’
frame set would also cause the unloading of the applet) and
was limited by the ‘sandbox’ imposed for security reasons
on Java appletsl. While supported by the DHM server, the
DHMiWWW applet could only handle one context (that is
one set of hypermedia structures) and had no user concept.
A second version, Navette [3], was developed to address
some of these issues. Navette was a signed Java applet,
allowing the system to use Web pages from arbitrary Web

1 The Java ‘sandbox’ security limits a Java applet in vari-
ous ways. Most crucial to DHM/WWW was the restriction
of network contact exclusively
server, thus making DHM/WWW
pages from other web servers.

to the originating web
unable to work with web

servers. To speed up communication with the DHM server,
TCP/IP and optimistic caching of hypermedia structures
(e.g. retrieving a whole context rather than only resolving
one link) were used. This version also handled multiple
contexts and users. The frame problem remained, and Web
pages were still displayed using JavaScript, which made for
noticeable degraded performance when browsing with
Navette. Simultaneously with Navette, the Webvise client
[18], a custom integration with the Microsoft Internet Ex-
plorer [28] was being developed. Operating as an applica-
tion rather an applet removed the limitations put on
DHM/WWW and Navette, and using the Microsoft Internet
Explorer [28] rather than the Netscape Communicator [31]
allowed Webvise to insert links after the browser had dis-
played the document, thus improving performance consid-
erably. This is done through DOM [11] and the COM-
interface available through the Internet Explorer. A second
version of Navette has been developed addressing the prob-
lems of prior releases using the Arakne framework, which
will described below.

Guided tours
Guided tours and trails have been a part of hypermedia from
the very beginning [.5], when Bush introduced the concept of
the trail linking related documents together. Trigg did more
recent groundbreaking work in [41]. Several existing sys-
tems try to exploit this idea with Web documents.

Walden’s Paths [12][37] is a system designed mainly to be
used in an educational setting, where a teacher composes
trails for students to follow. The teacher uses either the Path
Authoring Tool (a Java application) or VIKI [38] combined
with a browser as an authoring tool. Trails are stored on a
Path Server, which through the use of CGI scripts acts as a
proxy while modifying the pages to provide an interface to
the path. The interface consists of blocks in the top and the
bottom of the page. This block is a graphical representation
of (a part of) the path plus additional annotations written by
the path author. As all documents go through the Path Serv-
ers (links in the documents are modified to achieve this),
students can go ‘off path’ and still return to the path by
pressing a button in the interface block. State is communi-
cated by adding arguments into the URL given to the Path
Server’s CGI-scripts. The Walden’s Paths has been ex-
tended with regards to collaborative aspects, allowing stu-
dents to author and share paths of their own. Additionally
work has been done to extend upon the linear path by adding
conditional blanches. The logic to support this is handled by
the Path Server, thus still making all functionality accessible
from a standard Web browser.

Another Web-based guided tour system is Ariadne [23],
which is a Java-based applet. Ariadne operates in an exter-
nal window to the browser and controls the browser through
JavaScript. A guided tour in Ariadne is a directed graph, as
opposed to the linear (with branches) path of Walden’s
Paths. The Ariadne user interface supports both browsing
and editing of guided tours. The tours are stored as compos-
ites on the Dexter-based DHM [151 server. Leaving the Web
pages untouched has several advantages to the Walden’s
Path approach, as 1) it reduces overhead and complexity as
Web documents do not have go through an extra server, and

2) entering URLs or using bookmarks does not pose a
problem. On the other hand users are required to use a Java-
enabled Web browser rather than any Web browser, though
that currentIy is not a strong requirement. The Ariadne sys-
tem has recently been adapted to work within the Arakne
framework, which will be described in more detail below.

Structuring/Spatial
Spatial hypermedia as described by Marshall & Shipman
[24] and as implemented in VIKI [37] is a new kind of hy-
permedia application, where link structures are no longer
explicit but rather implicit based on the spatial relationship
between objects. This has become a very powerful tool for
organising and structuring, and few hypermedia systems are
in more need of organisation and structure than the Web.

Web Squirrel [42] is a URL management system, that uses a
spatial metaphor to help users organise their URLs into
‘information farms’. The user creates Neighbourhoods onto
which URLs are dragged and dropped. The Neighbourhoods
and the URLs are arranged spatial as the user wishes, and
are analysed by software agents that can create links be-
tween URLs according to user’s rating of the Web sites and
maintain link integrity. The user can create new agents using
a scripting language. The information farms are stored lo-
cally, but can be distributed to other users of Web Squirrel,
exported as HTML, or converted to the Hot Sauce MCF
format.

Hot Sauce 1211 is a spatial hypermedia plug-in created by
Apple. Hot Sauce displays a zoomable 2D representation of
a collection of collections and documents. This structure is
stored using the XML [47] based Meta Content Format [191,
a general format to describe meta content (MCF has thus
much wider application than its use in Hot Sauce). Links
and collections of links are arranged spatial and the user can
zoom in and out, move about, and open collections within
the collection. If the user double-clicks on a link, the docu-
ment is retrieved in a separate window, allowing the user to
continue to navigate using Hot Sauce. The Hot Sauce is a
media viewer and as such retrieves its MCF file from a Web
server.

SUMMARY OF STRATEGIES FOR WEB AUGMENTA-
TION
The tools and systems described above have addressed
many problems pertaining to the current Web, and have
utilised a lot of different techniques to attempt to solve these
problems. The Web augmentation strategies are, using the
schema introduced in Table 1, summarised in Table 2. We
will below outline some general trends and describe some of
the aspects of writing Web augmentation tools that make
developing them hard.

Some patterns become apparent. All of the tools reviewed
are responsive and need to be aware of the user’s actions, be
it to record the URL of the current Web page or to perform
link and endpoint computations. All need to provide the user
with a user interface (though it might be very discreet at
most times, as in the ‘interfaceless’ DLS). Most of the tools
need to store data somewhere and most choose to do this on
a remote server, thus raising the need to able to communi-

94

cate over network. The communication is often handled by
CGI-scripts, which is problematic, as the tool only gets data
when it requests it - the server cannot notify the tool of
changes. Many of the tools modify Web pages, and most of
the implementations of this functionality would have a hard
time interoperating with each other, as they in turn would
modify pages and links, quite possibly corrupting each
other’s data. Most of the Web page modifications are not
robust to things such as frames and JavaScript, and many
have a problem with forms. The tools relying on modifying
link with CGI-scripts rather than using a proxy are fragile to
the use of bookmarks or directly entered URLs. The tools

mentation.

The Arakne framework is an object-oriented, component-
based, three-layered model aimed at providing Web aug-
mentation tools a unified access to structure servers, proxies,
and Web browsers. It is an instantiation of the Common
Reference Architecture (CoReArc) for open hypermedia
systems, as described by Granbaek & Wiil [17]. CoReArc
divides the architecture of hypermedia systems into three
layers: The content layer (displaying and handling docu-
ments, displaying structure), the service layer (handling
navigation, integration, collaboration etc.), and the structure

Tool Method of Integration Storage Web page modification Collaboration support
ComMentor Part of browser, CGI-scripts Remote Local proxy Asynchronous
CritLink Mediator Within browser, JavaScript, forms; CGI-scripts Remote CGI-scripts Asynchronous
Chimera Web server Remote No Asynchronous
Chimera Within browser, apple& Web server; cookies, Remote Web server Asynchronous

CGI-scripts
Hyper-G Part of browser/Within browser, forms; web- Remote Web server Asynchronous

server;
HyperWave Within browser, applet, JavaScript, forms; Remote Web server Asynchronous

web-server
DLS Without browser, local; within browser, forms Remote No Asynchronous
DLS Within browser, forms; proxy Remote Proxy Asynchronous
AgentDLS Within browser, separate window; proxy Remote No Asynchronous
DHM/WWW Within browser, applet, JavaScript, CGI-scripts Remote Web browser Shared
Navette Within browser, applet, JavaScript Remote Web browser Asynchronous
Webvise Without browser, local Remote Web browser Asynchronous
Walden’s Paths Within browser, JavaScript, forms; CGI-scripts Remote CGI-scripts Shareable
Ariadne Within browser, applet, JavaScript Remote No Asynchronous
Web Squirrel Without browser, local Local No Shareable
Hot Sauce Within browser, plug-in Remote No Shareable

Table 2 - Summary of Web augmentation strategies

that modify Web pages through a proxy are hard to use with
other tools that rely on proxies to be informed of the user’s
actions, unless either of the proxies can it be modified to use
the other as a proxy. Furthermore the use of proxies requires
the user to modify the Web browser configuration which can
be unwieldy if the user does not wish to continually use the
tool relying on the proxy. These problems to which there
generally are no easy solutions, make it difficult for the
developer to create Web augmentation tools.

TOWARDS A COMMON FRAMEWORK
We are aware pf no single “silver bullet”, or all encompass-
ing solution, that will solve all the problems described
above. However, the similarities between the described Web
augmentation tools would suggest that it should be possible
to describe and model their functionality in a common
framework. This could provide workers in the field with a
tool for future conceptual and practical development. Trying
to create such a tool, we have come up with the Arakne
framework.

The Arakne framework is a conceptual model, which has
been implemented as an environment for Web augmentation
tools. The implementation is just one implementation of a
general framework. The practical issues raised by the sum-
mary above will be dealt in the description of the imple-

layer (storage and retrieval of structure).

The Arakne framework is aimed at modelling Web aug-
mentation tools, and the elements contained in the model
should now be familiar.

A diagram of the framework can be seen in Figure 1. The
framework may support any number of Web augmentation
tools. These tools (known as ‘navlets’) are dependent on
four core components of the Arakne framework: the Opera-
tions, the Hyperstructure Store, the Browser, and the Proxy.
The navlet is the domain specific part of a Web augmenta-
tion tool. It provides a user interface as well as special logic
to handle the specific domain. This may include deciding
which links to display in a Web page based on information
retrieved from the Hyperstructure Store component, or inter-
facing to the Proxy component for analysis of documents.
Depending on the situation the computation and analysis
may be carried out by the navlet or by another component.

The Operations component models the communication with
the structure server layer. This component will thus typically
support the same services as the structure server(s). This is
where on the wire issues, such as network communication,
marshalling, and multiplexing, are handled.

95

Content layer

Service layer

Structure layer

.
i Arakne
: .
: : Web
: Navlet Bean 1 Navlet Bean 2 : l-4 l3r,....,..T. .
: A : t

,; : : . . : : : : : : I Web Server
.

Structure
Server

L . I

Figure I - The Arakne Framework

The Hyperstructure Store is the interface between the nav-
lets and the Operations. The Hyperstructure Store provides
convenience functions for the navlets, as well as caching the
results of the queries retrieved with Operations. The Hyper-
structure Store will also alert navlets to changes in the
structures they subscribe to.

Arakne framework. We will in this section argue for the
genera1 applicability of the Arakne framework in each of the
general Web augmentation categories introduced earlier, and
specify the mapping of one representative from each cate-
gory to the Arakne framework.

The Proxy component models the modification and analysis
of Web content. Depending on their domain, navlets may
require the Proxy to modify Web pages, and these requests
for modifications are collected by the Proxy and used to
modify the Web page. Other navlets may require access to
the content of a Web page and the Proxy also handles this.

The Browser component models the user’s Web browser.
Through the Browser navlets can retrieve and modify the
state of the Web browser such as which URL is currently
displayed; the structure of the current frame set; whether a
selection has been made in a frame and if so, what and
where.

Annotation tools are in their functional requirements similar
to link creation tools and will dealt with as one, Both need to
retrieve hypermedia structures stored on a server, which are
handled by the Operations and the Hyperstructure Store
components. Many of these tools need to modify Web pages
in order to insert links or annotations, which is handled
through the Proxy component. Support for collaboration is
handled at different levels. The Hyperstructure Store com-
ponent is able to handle sets of structures as well multiple
users. Notifications from the structure servers are handled
by the Operations component and forwarded to the Hyper-
structure Store component, which notifies navlets, depend-
ing on what events they subscribe to.

The situation depicted in Figure 1 is a situation of two nav-
lets, where Navlet Bean 1 is a link creation tool, and thus
needs access to the Proxy in order to insert links into Web
pages. Navlet Bean 2 is a guided tour tool and does not
modify Web pages; and is not connected to the Proxy. Both
however need to be able to tell and set the state of the cur-
rently displayed documents, as well as retrieving data from
the structure server through the Hyperstructure Store.

The ComMentor system, described in [35], has three main
elements apart from the structure servers and the Web serv-
ers; namely the merge library, the interactive renderer, and
the user context control application. The merge library han-
dles the tasks of the Operations, Hyperstructure Store, and
Proxy components. The modifications made to the Mosaic
browser combined with the code handling it in the user
context control application makes up the Browser compo-
nent.

Mapping Web Augmentation Tools to Arakne The AgcntDLS 1x1 architecture consists of a link server
If we review the models of the Web augmentation tools agent, that analyses Web pages sent to it by a HTTP proxy
described in this paper, most can be mapped to the abstract and based on this uses link resolvers and link bases to con-

96

pile a list of relevant links. The role of the proxy is a simple
case of the Proxy component with the twist that documents
are sent to two parties. The link server agent acts as a com-
bined Operations and Hyperstructure Store component. The
analysis performed by link resolvers also would seem to
belong to this component, depending on the set-up of the
navlet. The Browser component’s responsibility - letting the
system set or get the state of the Web browser - is handled
at two levels: in the Proxy component (what document is
displayed now?) and in the AgentDLS window, where users
can directly influence, what URL to display in their Web
browser.

Guided tour tools require a structure server for storage of the
tours as well as the ability to communicate with this server.
This can be modelled through the Operations and Hyper-
structure Store components. To keep track of where the
reader is on the trail (and to put the reader back on track, if
need be), it must be possible to set and read the state of a
Web browser, which is modelled through the Browser com-
ponent. Some guided tour tools, e.g. Walden’s Paths, modify
the Web pages to add comments and interface. While it may
not be necessary for interface reasons in the Arakne frame-
work (this could be handled by a navlet), it certainly can be
done through the use of the Proxy component.

Could the current implementation of Walden’s Path be fitted
within the Arakne model? In this case, some of the Arakne
components collapse into one. The Path Server acts as the
Proxy, Hyperstructure Store, and Operations components,
by handling both external structures (guided tours) and Web
page modification. The Browser component aspect is han-
dled by the modification of links that keeps the system (i.e.
the Path Server) aware of the state of the Web browser. The
interface aspects of the navlet are the header and footer of
the displayed Web pages that give the user a possibility to
interact with the system.

Spatial and structuring Web augmentation tools certainly
need structure servers and information about the currently
display Web page just as the rest of the above described
tools. However, the main focus of the spatial/structure tools
described in this paper has been on the user interface and the
ability to analyse and process structure and relationships
using user written scripts. The user interface is handled by
the navlet itself. While the navlet of course would serve as
the front-end, the scripting capability fits best within the
Hyperstructure Store component, where all structure is
stored during run-time and where the Operations component
can be directly accessed.

AN IMPLEMENTATION OF THE ARAKNE FRAMEWORK
A system called the Arakne applet has been developed as a
part of the Coconut project. The immediate goal of the im-
plementation was to try out the soundness of the Arakne
framework by integrating the guided tour tool Ariadne and
the link creation tool Navette. The system has undergone
some development and has proven robust to the interchange
of components.

The system was originally developed as a Java applet run-
ning in Netscape Communicator [3 11. The components

within the dotted line in Figure 1 were a part of this particu-
lar implementation. This was an implementation choice; as
can be seen from the previous section, the framework itself
posits no such requirements on the location of the individual
components.

The components in Figure 1 correspond to Java classes in
the Arakne applet. The interfaces between components are
handled in the MVC (Model View Control) idiom, where
the ‘view’ (e.g. a graph displaying a guided tour) is loosely
coupled through events to the actual data, the ‘model’.
Modifications of data is handled as requests through the
‘controller’ and if granted notified to the view through the
use of events.

The Hyperstructure Store class caches structure retrieved
through the Operations class and is the only interface to the
structure servers given to the navlet beans. This is done to
improve performance (by not retrieving the same informa-
tion twice) and to ensure data integrity between the Hyper-
structure Store and the structure servers. The Hyperstructure
Store provides the navlet beans with a rich set of conven-
ience methods, which are translated into queries to the
structure servers by the Operations class.

The Browser class encapsulates the needed functionality to
communicate with a Web browser, in the original case the
Netscape Communicator. The interface is relatively simple
and can be adapted to another browser.

The Proxy class is a small proxy running as a thread in the
applet. The Netscape Communicator can via JavaScript be
set up to use a proxy on the fly, and when the Arakne applet
is running, the Proxy class acts as a proxy for the browser.
The Proxy class uses whatever proxy the browser was con-
figured to use, and when the Arakne applet is terminated,
everything is returned to normal. The Proxy handles re-
quests for Web page modifications and the correct display of
frames (thus allowing user to link into frame sets).

All of the classes visible to the navlet beans, the Hyper-
structure Store class, the Proxy class, and the Browser class
generate events that the navlet beans may subscribe to. The
navlet beans are currently restricted to being Java beans and
to follow some design guidelines. The current implementa-
tion supports only compile time integration of navlet beans
giving the user a fixed number of available navlet beans, but
future versions of the Arakne applet should be able to load
navlet beans on runtime so that the user can retrieve navlet
beans from different servers.

The current version of Netscape Communicator2 has a very
limited API for browser integration as well as a faulty Java
socket implementation. This lead to the abandonment of the
Communicator as the supported Web browser at a time
where most components as well as two navlets were finished
or nearing completion. The Microsoft Internet Explorer was
chosen as the new supported Web browser. This choice has
brought some costs, as the Arakne applet is now not only
browser-dependent (which was also the case before), but

2 Version 4.5

97

now also platform dependent, as Java is not supported in the
Microsoft Internet Explorer on anything but the Windows
platform.

The migration to the Internet Explorer also served as a (un-
intended) test of how much code needed to be rewritten to
accommodate the change. This code rewrite has been light.
The Browser class has been redone, as the Internet Explorer
is controlled not through JavaScript, but through a COM
interface. Furthermore some unique features such as the
ability to operate on selected text in a browser window
through the use of right-click menus have been exploited in
some changes in user interface, e.g. link creation.

The Internet Explorer does not allow proxy configuration
through JavaScript or other means, which has led to some
major changes in the Proxy component. The current version
relies on the DHMProxy [181 for Web page modification.
This is expected to change as the DOM model [l l] gives
excellent possibilities for Web page analysis and modifica-
tion, after the Web page has been rendered by the Web
browser. This work is expected to be heavily dependent on
the experiences from the Webvise application [181.

The current version uses the Devise Hypermedia server as a
structure server. This is changing rapidly however, as a new
Hyperstructure Store class is being developed to use a new
Operations component that utilises the Open Hypermedia
Protocol [33]. This has numerous advantages. The OHP is a
powerful protocol with a good and general data model.
Among the interesting features of OHP is the support for
sessions, so that e.g. link following happens simultaneously
on several machines as demonstrated at the demo at Hyper-
text 98. Finally the open hypermedia community supports
the OHP and the data model, so that the Arakne applet may
communicate with other structure servers such as OHP
compliant Microcosm or HyperDisco servers.

The synchronous collaborative aspects of the Arakne applet
have been put on hold until the OHP is fully integrated,
though the system as it is supports asynchronous collabora-
tion.

Currently the Arakne applet supports the Ariadne and
Navette navlet beans. The user is thus able to create links in
documents while creating guided tours, which was not pos-
sible before. Each of the navlet beans occupies an internal
window in the Arakne applet. The Arakne applet provides
the interface for logging on to structure servers and the se-
lection of contexts.

The Navette navlet has recently been extended to support
linking to and from segments in video and audio clips
through the Mimicry system [4]. Most temporal media plug-
ins do not have APIs well suited for the needs of open hy-
permedia, which has led to the development of the Mimicry
player. The Mimicry player is a Java applet capable of han-
dling most video and audio formats, and it provides a rich
API for open hypermedia integration.

Future Plans
Future plans for the Arakne applet include more navlet

beans. Currently a spatial navlet bean is under development.
The navlets currently supported are not aware of each other,
but future versions of Arakne will support inter-navlet
communication. The Microsoft Internet Explorer is not
expected to be the only Web browser supported by future
Arakne applets. The upcoming Mozilla 5.0 holds great
promise in this regard. Another area of interest to the devel-
opers is the implications of XLink and XPointer.

Experiences of the Development of the Arakne Applet
How does the current Arakne applet compare to the prob-
lems raised in the summary of strategies for Web augmenta-
tion? Network communication is handled through sockets
by the Operations Component, and the client maintains a
socket connection, so that the structure servers may contact
it. The Arakne applet has so far only supported navlets or-
thogonal to each other, so there is currently no experiences
with regards to two navlets trying to modify the same Web
page. However the architecture has only one component, the
Proxy component, allowed to modify Web pages, so it
should be possible to contain and perhaps avoid most prob-
lems. The Arakne applet is currently dependent on a proxy
with the usual advantages (all browsing activities are ‘cap-
tured’ by the system) and disadvantages (the user needs to
configure the Web browser to use the proxy). The proxy can
use other proxies without problems, though the use of two
Web page modifying proxies certainly would lead to unde-
fined results. The proxy handles frame sets and inserts links
through the use of JavaScript and DOM, so that Web pages
are (visibly) modified on arrival rather than in transit, which
solves many problem regarding dynamically created docu-
ments and frame sets. The Arakne applet is a Java applet
with the limitations imposed on Java applets. The security
restrictions are handled through digital signing. The Arakne
applet is fairly secure from being unloaded by mistake, as it
runs in a separate non-resizable browser window with dis-
abled menus and toolbars. A consequence of the integration
with the Microsoft Internet Explorer is that a user can not
just download and use the Arakne applet. Certain files have
to be installed by the user to provide the Arakne applet with
right-click menus. This process can however be largely
automated.

Some of the solutions found in the Arakne applet are strictly
browser and platform dependent. This is very unfortunate,
and the only thing that can remedy the situation is a new
standard Java API for Web browsers. This API should at
least provide functionality similar to that of the API of the
Microsoft Internet Explorer, but do so in a browser inde-
pendent way. Given the current Web browser situation, we
think that such an API is unlikely to appear anytime soon, SO

the next best solution would be a Web browser that provided
a platform independent API. Whether or not Mozilla 5.0 will
provide such an API remains to be seen.

CONCLUSION
Web augmentation tools will in all probability remain a part
of the Web, as researchers and users will continue to explore
the boundaries of what hypermedia is and what it can be
used to. An understanding of the strategies employed in
Web augmentation is needed to make the next generation of
Web augmentation tools easier to envision, develop and use.

98

We have investigated the recurring themes and techniques
found in current Web augmentation tools. Based on this, we
have developed and described the Arakne framework, and
shown that the Arakne framework accommodates existing
Web augmentation tasks, and that most tools can be mod-
elled using the framework. A shared framework for these
tools could benefit analysis and communication as well as
development, and it is hoped that the Arakne framework is a
step in the direction of the creation of such a framework.

The interesting and challenging part of creating a Web aug-
mentation tool is not the nitty-gritty of interfacing to a Web
browser or writing a proxy. The interesting part, at least in
the author’s experience, is to create tools that can help users
structure their work and their browsing, and by implement-
ing the Arakne applet some of the work needed to provide a
full infrastructure for Web augmentation tools have been
developed.

The Web has succeeded through (more or less) strict adher-
ence to open standards that have been jointly developed by
the interested parties. This has led to the development of
standard tools usable for all. The continuation of this trend is
crucial to the future development of the Web. The Open
Hypermedia System initiative if supported by the hyperme-
dia community can be become a shared standard from which
the entire hypermedia community will benefit.

ACKNOWLEDGEMENTS
The author is a member of the Coconut project
(hltn://www.cit.dklcoconut/), a joint research project consisting
of Department of Computer Science, Aarhus University and
Tele-Danmark Internet. The Danish National Centre for IT-
Research (hm:Nwww.cit.dkl) supports the Coconut project.

The author wishes to thank Jesper Jiihne for valuable discus-
sion of Arakne, RenC Thomsen for adding to the code, Kaj
Gr@nbzk for valuable advice, and the anonymous reviewers
for good suggestions to structure this paper.

REFERENCES
[II

PI

[31

[41

[51

Anderson, K. M., Taylor, R. N., and Whitehead JR., E.
J. (1994). Chimera: Hypertext for heterogeneous soft-
ware environments. In Proceedings of ECHT 94 Con-
ference, pp. 97-107, Edinburgh, Scotland.

Anderson, K. M. (1997) Integrating Open Hypermedia
Systems ,with the World Wide Web. In Proceedings of
the ACM Hypertext 97 Conference, pp. 157-166,
Southampton, England.

Bouvin, N. 0. (1998). Designing Open Hypermedia
Applets: Experiences and Prospects. In Proceedings of
the ACM Hypertext 98 Conference, pp. 28 l-282, Pitts-
burgh, USA.

Bouvin, N. O., and Schade, R. (1999). Integrating tem-
poral media with open hypermedia on the WWW.
Submitted for publication.

Bush, V. (1945). As we may think. In The Atlantic
Monthly 176, 1 (July 1945), pp. 101-108.

[61

[71

@I

[91

Carr, L. A., De Roure, D., Hall, W., and Hill, G. (1995).
The distributed link service: A tool for publishers,
authors and readers. In Proceedings of the 4” Interna-
tional World Wide Web 95 Conference, Boston, USA.

Carr, L. A., Hill, G., De Roure, D., Hall, W., and Davis,
H. (1996). Open information services. In Computer
Networks and ISDN Systems, 28, pp 1027-1036, 1996.

Carr, L. A., Hall, W., and Hitchcock, S. (1998). Link
services or link agents? . In Proceedings of the ACM
Hypertext 98 Conference, pp. 113-l 22, Pittsburgh,
USA.

Davis, H., Hall, W., Heath, I., Hill, G., and Wilkins, R.
(1992). Towards an integrated information environment
wiih open hypermedia systems. In Proceedings of the
ACM Hypertext 92 Conference, pp. 18 l- 190, Milan, It-
aly.

[IO] CritSuite. htte://crit.or!z/htto://crit.orp/index.html

[1 I] Document Object Model. htto:Nwww.w3c.ore/TWREC-
DOM-Level-l/

[121 Furuta, R., Shipman III, F. M., Marshall, C. C., Bren-
ner, D., and Hsieh, H-W. (1997). Hypertext Paths and
the World-Wide Web: Experiences with Walden’s
Paths. In Proceedings of the ACM Hypertext 97 Confer-
ence, pp. 167-176, Southampton, England.

[131 Goland, Y., Whitehead, J., Faizi, A., Carter, S., Jensen,
D. (1998). Extensions for Distributed Authoring on the
World Wide Web - WebDAV.
httD://\vww.ics.uci.edu/-eiw/authoring/orotocol/draft-ietf-
webdav-Drotocol-08.Ddf

[141 Gr@nb=k, K., and Trigg, R. H. (1994). Design issues
for a Dexter-based hypermedia system. In Communica-
tions of the ACM, 37 (2) February, pp. 40-49, 1994.

[151 Grenbek, K., and Trigg, R. H. (1996). Toward a Dex-
ter-based model for open hypermedia: Unifying em-
bedded references and link objects. In Proceedings of
the ACM Hypertext 96 Conference, pp.149-160,
Washington DC, USA.

[161 Gr@nbaek, K., Bouvin, N. O., and Sloth, L. (1997).
Designing Dexter-based hypermedia services for the
World Wide Web. In Proceedings of the ACM Hyper-
text 97 Conference, pp. 146-156, Southampton, Eng-
land.

[171 Gronbzk, K., and Will, U. K. (1997). Towards a com-
mon reference architecture for open hypermedia. In
JoDI, Journal of Digital Information, l(2), 1997.
htto://iodi.ecs.soton.ac.uk/Articles/vOl/i02/GronbaW

[18]Gr@nbzk, K., Sloth, L., and 0rbak, P. (1999).
Webvise: Browser and proxy support for open hyper-
media structuring mechanisms on the WWW. Submit-
ted for publication.

99

[191 Guha, R. V., and Bray, T. (Eds.). Meta content frame-
work using XML. t~ttr,://w\vw.textualitv.com/mcf/NOTE-
MCF-XML.html

[20] Hall, W., David, H., and Hutchings, G. (1996). Re-
thinking Hypermedia: The Microcosm Approach. Klu-
wer Academic Publishers, Norwell, USA.

[21] Hot Sauce. http://www.xspace.net/download/index.html

[22] HyperWave. http://www.hynerwave.com/

[23] Jiihne, J., Jensen, A. T., and Granbzk, K. (1998). Ari-
adne: A Java-based guided tour system for the World
Wide Web. In Proceedings of the 7”’ International
World Wide Web 98 Conference, Brisbane, Australia.

[24] Marshall, C. C., and Shipman III, F. M. (1995). Spatial
hypertext: Designing for change. In Communications of
the ACM, 38 (8) August, pp. 88-97, 1995.

[25] Marshall, C. C. (1998). Toward an ecology of hypertext
annotation. . In Proceedings of the ACM Hypertext 98
Conference, pp. 40-49, Pittsburgh, USA.

[26] Maurer, H. (Ed.) (1996). Hyper-G now, HyperWave:
The next generation web solution, Addison-Wesley,
Harlow. 1996.

[27] Meyrowitz, N. (1989). The missing link: Why we’re all
doing hypertext wrong. In Barrett, E. (ed.). The society
of text: Hypertext, hypermedia and the social construc-
tion of information, pp. 107- 114, MIT Press, Cam-
bridge, Massachusetts., USA, 1989.

[28] Microsoft Internet Explorer. htto://www.microsoft.com/ie/

[29] Mozilla. http://www.moziIla.org/

[30] NCSA Mosaic.
httn://www.ncsa.uiuc.edu/SDC;/Sol’tware/Tvlosaic/

[3 l] Netscape Communicator.
httn:Nhome.netscane.com/download/index.httnl?cu=diude~a~~

[32] Niirnberg, P. J., Leggett J. J., Schneider, E., and
Schnase, J. L. (1996) Hypermedia operating systems: A
new paradigm for computing. In Proceedings of the
ACM Hypertext 96 Conference, pp.l94-202, Washing-
ton DC, USA.

[33] The Open Hypermedia Systems Work Group.
httn:Nwww.ohswg.ord

[34] Rittel, H. and Webber, M. (1973). Dilemmas in general
theory of planning. In Policy Sciences, Vol. 4, 1973.

[35] Riischeisen, M., Mogensen, C., and Winograd, T.
(1995) Beyond browsing: Shared comments, SOAPS,
trails, and on-line communities. In Proceedings of the
3”’ International World Wide Web 95 Conference,
Darmstadt, Germany.

[36] Riischeisen, M., Winograd, T., and Paepcke, A. (1995).
Content ratings and other third-party value-added in-
formation: Defining an enabling platform. In D-Lib
Magazine, August 1995,
httn://www.dlib.or~dlib/aupust9S/stan~or~~~r~~sc~~eisen.html

[37] Shipman III, F. M., Furuta, R., Brenner, D., Chung, C-
C., and Hsieh, H-W. (1998). Using paths in the class-
room: Experiences and adaptations. In Proceedings of
the ACM Hypertext 98 Conference, pp. 267-276, Pitts-
burgh, USA.

[38] Shipman III, F. M., Furuta, R., and Marshall, C. C.
(1997). Generating web-based presentations in spatial
hypertext. In Proceedings of the 1997 International
Conference on International User Inteeaces, pp. 7 l-
78, Orlando, USA.

[39] Stanley, T. (1998). Contextures: Focus + context +
texture. In Proceedings of the ACM Hypertext 98 Con-
ference, pp. 295-296, Pittsburgh, USA.

[40] Trigg, R. H. and Weiser, M. (1986). TEXTNET: A
network-based approach to text handling. In ACM
Trans. OfJice Information. Systems 4, 1 (Jan 1986), pp
l-23.

[41] Trigg, R. H. (1988). Guided tours and tabletop: tools for
communicating in a hypertext environment. In ACM
Trans. Ofice Information. Systems 6,4, pp 398-414,
1988.

[42] Web Squirrel.
httn://www.eastgate.corn/suuirrel/Welcome.html

[43] Whitehead Jr., E. J. (1997). An architectural model for
application integration in open hypermedia environ-
ments. In Proceedings of the ACM Hypertext 97 Con-
ference, pp. 1-12, Southampton, England. .

[44] Wiil, U. K. and Leggett, J. J. (1996). The HyperDisco
approach to open hypermedia systems. In Proceedings
of the ACM Hypertext 96 Conference, pp. 140-148,
Washington DC, USA.

[45] Wiil, U. K. and Leggett, J. J. (1997). HyperDisco: col-
laborative authoring and Internet distribution. In Pro-
ceedings of the ACM Hypertext 97 Conference, pp. 13-
23, Southampton, England.

[46] Wiil, U. K., and asterbye, K. (1998). Using the Flag
taxonomy to study hypermedia system interoperability.
In Proceedings of the ACM Hypertext 98 Conference,
pp. 188-197, Pittsburgh, USA.

[47] XML - Extensible Markup Language.
htt~:llwww.w3c.or~XMLl

[48] asterbye, K., and Wiil, U. K. (1996). The Flag taxon-
omy of open hypermedia systems. In Proceedings of the
ACM Hypertext 96 Conference, pp. 129-139, Washing-
ton DC, USA.

100

Integrating Temporal Media and Open Hypermedia on
the World Wide Web

Niels Olof Bouvin* & René Schade**

*Department of Computer Science,
University of Aarhus,

Aabogade 34A, DK8200 Aarhus N, Denmark

**Tele Danmark Internet
Olof Palmes Allé 36

DK8200 Aarhus N, Denmark

1 ABSTRACT
The World Wide Web has since its beginning provided linking to and from text documents encoded
in HTML. The Web has evolved and most Web browsers now support a rich set of media types ei-
ther by default or by the use of specialised content handlers, known as plug-ins. The limitations of
the Web linking model are well known and they also extend into the realm of the other media types
currently supported by Web browsers. This paper introduces the Mimicry system that allows authors
and readers to link to and from temporal media (video and audio) on the Web. The system is inte-
grated with the Arakne Environment, an open hypermedia integration aimed at Web augmentation.
The links created are stored externally, allowing for links to and from resources not owned by the
(link) author. Based on the experiences a critique is raised of the limited APIs supported by plug-ins.

2 KEYWORDS
Temporal media, open hypermedia, plug-ins, Web augmentation

3 INTRODUCTION
The World Wide Web has since its beginning steadily embraced more and more types of media. To-
day the average Web user will be exposed to pictures, video clips, sound recordings, music, and will
interact with programs or 3D worlds residing on Web pages. These types of media are either handled
by the Web browser itself or handled by specialised programs, ‘viewers’ or ‘plug-ins’. Most media
types are however supported/handled in the sense that it is possible to link to the entire media clip or
to include it on a Web page, but not link from the media clip itself or to a segment of the media clip.
Pictures are the exception, using image maps, to provide starting points for navigation. However all
media types (HTML and otherwise) share the limitations of inline unidirectional links1; links cannot
originate from documents not owned by the hopeful link creator, and the destinations of a link into a
HTML document are limited to the named regions in the target document. These deficiencies are
being addressed by integrating open hypermedia systems and the Web, allowing link structures to be
stored externally of documents. This approach also allows for links to and from media types less
amenable to modification than HTML, provided that suitable plug-ins or viewers are used.

This paper describes an open hypermedia integration to provide linking facilities to and from tempo-
ral media (such as video and audio clips). A search for an appropriate plug-in to provide the neces-
sary functionality left the authors empty-handed. This resulted in the implementation of the Mimicry
player which substitutes for a plug-in. Through the Mimicry controller, the system interacts with the
Arakne Environment [4], allowing users to create multiheaded bi-directional links to and from tem-
poral media clips, embedded or otherwise, as well as to and from HTML documents.

The results achieved by the Mimicry system (and the relative ease of implementing the ideas behind
it) raise the question, why plug-in developers do not yet provide the functionality to support such a
system. It would substantially ease the work of Web page designers, as media clips or parts thereof

1 With the possible exception of image maps, which may have links defined externally.

could be reused, as well as supporting new (on the Web) technologies such as linking to and from
temporal media.

The paper begins by introducing related work in the field of open hypermedia and on the Web. The
merits of emerging standards such as SMIL, HTML+TIME, and XLink/XPointer are discussed. The
Arakne Environment wherein the Mimicry system runs is introduced and described. The Mimicry
system (player and controller) is described in detail and an example of Mimicry usage is given.
Based on the experiences with the Mimicry system, the current state of plug-ins is discussed in the
context of hypermedia systems. Finally directions for future work are discussed and a conclusion is
reached.

4 RELATED WORK
This section will introduce the notion of externally stored link structures, open hypermedia systems,
Web augmentation, and the work done with integration of temporal media and hypermedia systems.

Inline unidirectional links Anchor-based bidirectional links

link

Figure 1 - Inline and anchor-based linking

4.1 Separating document and structure
The linking model found in the World Wide Web is based on inline unidirectional links. While sim-
ple and scaleable, this linking model is in some contexts inadequate in comparison with the linking
model found in most modern hypermedia systems. Inline links are hard to maintain2; it is impossible
to determine which links point to a page3; there can be only one set of links in a document; a link
may point to only one destination rather than many; and this destination is limited to either a whole
document or a named region therein. The problems with this approach can be illustrated by the fol-
lowing example: consider a situation, where a company decides on a Web based Intranet solution to
allow easy access to their technical documentation. The Web, given the URL naming scheme, is very
well suited for document distribution. The technical documents are crucial to several independent
groups in the company and they all wish to put links into the technical document. Current Web tech-
nology yields two scenarios: either give each group access to copies modifiable by the respective
group, or incorporate all links into one central document. The former makes updating the technical
documentation difficult, and the latter will clutter the technical document with links interesting to
one group, but irrelevant to the rest. Both cases leave the technical document open to undesirable
modification. A safer and more maintainable solution would be to have one copy of the documenta-
tion available and then have each group use their own set of links into the documentation. This can
not be done with the existing Web linking model.

2 In the sense that links may point to documents that do no longer exist or have been moved.
3 Save a brute force approach using search engines, which is computational expensive and not nec-
essarily accurate.

A way to achieve this kind of flexibility is through the use of anchor-based hypermedia, which sepa-
rates the anchor (or endpoint) and the link from the document. An anchor specifies a span in a docu-
ment (up to the entire document), an area in a picture, a segment of a video clip and so forth. Links
specify relationships between anchors, as seen in Figure 1. Anchors and links are stored outside the
documents. A hypermedia application used by a user inserts links into documents as they are re-
trieved (e.g. not at the server, but at the client). The user can through the hypermedia application
decide which sets of links to use, and the company described above would thus be able to maintain
several sets of links to the same technical documentation.

There are pros and cons of this approach. As links and anchors are now separate they can be main-
tained separately and can be checked and updated independently of the documents they link. Links
can be bi-directional, multiheaded and link into documents without modifying them. However, the
insertion of links into the document on the fly carries some additional overhead, and does generally
not scale as well as the simpler inline link model.

A great benefit of the anchor-based linking approach is that of opaque anchors, that is, the general
system is not concerned with how an anchor addresses a selection in a media type. The general
model need not be modified if a new anchor type is introduced to support a new media type, as long
as the new anchor type adheres to the general anchor specification. The anchoring code (such as the
ability to display an anchor into the media type) must of course still be written, but storage, link fol-
lowing, etc. is unaffected. This allows for complex anchoring constructs, and allows the developers
to support new applications and media types without sacrificing existing work.

Anchors are created to match their media type. They must carry enough information to be able to
identify the selection that the user had in mind when the anchor was created. In the case of text an-
chors, this information often consists of a selection and a context around the selection, so that it may
be uniquely identified. An image anchor could (depending on its use) be as simple as two co-
ordinate pairs to identify a rectangular selection, or be complex enough to identify arbitrary shapes
as destinations. In the context of temporal media, it is natural to use time as unit in the system of co-
ordinate. Frames are another possibility but the frame rate of a media clip may vary accordingly to
the bandwidth of the user’s connection. Furthermore some temporal media types, such as audio may
not have frames at all.

4.2 Open Hypermedia and the Web
Open hypermedia systems are characterised by a focus on integration with third-party software.
Historically, hypermedia systems have often been closed and monolithic, requiring other programs to
comply to the standards of the hypermedia system in order to provide hypermedia functionality. This
is problematic as it closes the door on existing non-compliant applications, and expects developers to
change their programs – an unlikely proposition at best. Recognising that most people are not willing
to throw away their applications in order to utilise a hypermedia system has led the open hypermedia
community to integrate existing applications into their hypermedia systems instead. The level of
which this is possible varies accordingly to the applications, ranging from the simple (show docu-
ment) to the advanced (a full integration). Whitehead handles the implications of integrating third-
party applications with open hypermedia integration in [21].

A natural consequence of the open hypermedia approach is the interest of integrating the Web into
open hypermedia systems. Several groups in the field have created Web integration tools, and a non-
exhaustive list includes DLS [5][6], DHM/WWW [8], Webvise [9], Navette [3], Chimera [1], and
HyperWave [18].

A common approach to open hypermedia Web integration is to modify Web pages while en route to
the Web browser. This modification usually consists of the addition of links or other kinds of struc-
ture. These links are stored on a structure server and are inserted into the pages using CGI-scripts,
proxies, or programs controlling the Web browser. The interface presented to the user varies, ranging
from no interface at all to full authoring applications allowing the users to modify and extend upon
the existing collections of links and anchors. Most however allow the user to create links to and from
whatever pages the user may desire, thus alleviating one of the major limitations of the existing Web
architecture mentioned above. For a fuller discussion on the techniques of open hypermedia Web
integration and Web augmentation in general, see [4].

The main target of these integrations has been Web pages rather than other kinds of Web-distributed
media, as HTML is easily analysed and modified by use of proxies or other means. Other kinds of
media that could be interesting include graphics and temporal media, streaming or otherwise. These
data types are less readily modified, come in great variation, and requires viewers or plug-ins that
may be difficult to integrate with an open hypermedia system.

4.3 Hypermedia and Temporal Media
Several hypermedia systems have been extended or devised specifically to handle temporal media.
The most influential hypermedia model to incorporate the notion of temporal data is HyTime [7],
which allows for multidimensional anchors (including the temporal dimension). HyTime is a general
standard aimed at interchange and does as such not specify the interaction between hypermedia ap-
plication and multimedia applications. While many systems have integrated temporal media one way
or another, some systems go further, such as AEDI [2], which tries to ease work with large amounts
of temporal data with structured indexing. Some systems try to facilitate automatic tracking and lo-
cation of anchors in media clips; two well-known examples are Himotoki [10] and MAVIS [15].
While the possibility of selecting an object in one frame, and have the system automatically track the
object in the rest of the video clip certainly is alluring, it is also quite computational expensive, and
probably unlikely in a Web setting.

The ambitions of the authors are far more modest. We are merely interested in being able to create
links to and from segments of temporal media. Future version may include anchors that cover an
area of a video clip for some duration, but the area is not expected to move.

4.4 Temporal Media on the Web
The use of temporal media on the Web has steadily increased. It is today commonplace for news
sites to bring either video clips or to provide access to whole TV shows online. Likewise the research
community (notably the linguistic) has taken to making animations or sound recordings available.
This opens for a hitherto unseen availability of valuable research material (such as historic film clips
or language recordings), and therefore also an increasing demand to be able to interact with these
media clips in new and innovative ways.

An example of an organisation beginning to put large amounts of temporal data on the Web is the
Danish national library, Statsbiblioteket. In order to facilitate research, the library has made an in-
creasing amount of historically interesting Danish sound files available on the Web [20].

4.5 Emerging standards
Some of the new emerging W3C standards are of special interest to the subject of this paper. This
section will briefly describe these and discuss the implications for temporal media on the Web. It
should be noted however that these are still evolving standards, and can be expected to undergo
some transformation before being finalised.

SMIL [19] (Synchronised Multimedia Integration Language) is a recent Recommendation from
W3C. It is an effort to support the layout and synchronisation of multimedia clips, e.g. synchronising
a video clip with animations or a slide show with audio narrative and HTML documents. The stan-
dard is presentation oriented, and as such requires an authoring tool to modify.

HTML+TIME [12] (Timed Interactive Multimedia Extensions for HTML) is a proposed standard
inspired by SMIL, and is concerned with the implementation of SMIL concepts in HTML. It thus
adds a concept of timing to HTML and allows any HTML element to appear for a defined duration.
Of special interest in this context is the timed hyperlink, and the integration of media players, which
can be addressed and timed. Not only can the players be set to begin playing at a predetermined time,
it is also possible to address inside the media clip and thus play a segment of a media clip, using the
clip-begin and clip-end attributes. As HTML elements (in particular links) can be synchro-
nised with other elements’ timing events, it would be simple to create links that would synch with
segments of a media clip, e.g. links appearing during a segment of a video clip and disappearing after
the segment had been played.

As such HTML+TIME has certain requirements of content handlers that fit nicely with the require-
ments of links to and from temporal media. Specifically media players should be able to synch with
events, as well allow the showing of segments. This is however a very new (proposed) standard and
so far no Web browsers or media players the authors are aware of meet the HTML+TIME require-
ments.

A general problem with SMIL and HTML+TIME from the standpoint of the authors is that these
standards address authoring of presentations and thus is in principle (though admittedly far more
advanced) no different than the existing HTML authoring tools. The basic problem of links being
created exclusively by the author of the document remains. These standards also address a somewhat
different problem than linking to and from temporal media, as a key point of SMIL and
HTML+TIME is synchronisation and presentation.

Both standards are, as noted above, still in development and may very well change in the future.

XML defines a way to describe structured data and documents. XPointer and XLink (XML Linking
Language) are the accompanying resource location and linking standards. As of this writing, neither
is in ‘Recommended’ state from W3C, but this is expected to happen sometime in 1999.

XPointer [17] is designed to specify locations in XML and other well-structured documents. The
syntax is based on the Text Encoding Initiative ‘extended pointer’. This is a rather compact and tree-
oriented notation, which might take the following form: LG�IRR��FKLOG���6(&��FKLOG���/,67�. This expres-
sion would start at the entity identified as ‘foo’, continue at this entity’s third child of the type ‘SEC’,
and end with that child’s fourth child of the type ‘LIST’. This format is not XML, which might come
as a surprise, but it has the advantage that it can be used in URLs.

XLink [16] is the language that ties XPointers together in links. XLink are not limited to XPointers –
while endpoints in XML documents typically will be described with XPointers, XLink links can
have any Web resource as a destination. Links may be in-line (as in HTML) or out-of-line, that is
residing outside the linked documents. XLink supports bi-directional multiheaded links. Out-of-line
links may be stored in simple text files or handled by link bases. XLink does not offer any protocol
for such link servers.

XLink and XPointer are, from a Web augmentation standpoint, mainly interesting, if XML becomes
widespread on the Web. While the linking constructs are quite powerful in XML documents, the

standards are not aimed at improving the state of the art with respect to HTML, that is not well-
formed, nor does it address the intricacies of other media types, such as video or audio.

5 THE ARAKNE ENVIRONMENT
The Arakne Environment, shown in Figure 2, is a runtime environment aimed at supporting Web
augmentation tools. The environment is primarily but not exclusively aimed at providing advanced
hypermedia functionality to the Web. The environment is based on the Arakne framework [4], which
is a general Web augmentation model, and was designed to be open and extensible. It currently sup-
ports a navigational hypermedia tool, Navette, and a guided tour tool, Ariadne [14].

Structure layer

Operations

Navette Ariadne

Proxy

Web Server

HTTP

Hyperstructure
Store

Browser

HTTP

OHP

Service layer

Content layer

Arakne Environment

Structure
Server

Structure
Server

HyperStore DBMS

Mimicry
Controller

Mimicry
Controller

Web Browser

Figure 2 - The Arakne Environment

The framework may support any number of Web augmentation tools. These tools (known as ‘nav-
lets’) are dependent on four core components of the Arakne framework: the Operations, the Hyper-
structure Store, the Browser, and the Proxy. The navlet is the domain specific part of a Web aug-
mentation tool. It provides a user interface as well as special logic to handle the specific domain.
This may include deciding which links to display in a Web page based on information retrieved from
the Hyperstructure Store component, or interfacing to the Proxy component for analysis of docu-
ments or to modify documents. Depending on the situation the computation and analysis may be
carried out by the navlet or by another component.

The Operations component models the communication with the structure server layer. This compo-
nent will thus typically support the same services as the structure server(s). This is where on the wire
issues, such as network communication, marshalling, and multiplexing, are handled.

The Hyperstructure Store is the interface between the navlets and the Operations. The Hyperstructure
Store provides convenience functions for the navlets, as well as caching the results of the queries
retrieved with Operations. The Hyperstructure Store will also alert navlets to changes in the struc-
tures they subscribe to.

The Proxy component models the modification and analysis of Web content. Depending on their
domain, navlets may require the Proxy to modify Web pages, and these requests for modifications
are collected by the Proxy and used to modify the Web page. Other navlets may require access to the
content of a Web page, which is also handled by the Proxy.

The Browser component models the user’s Web browser. Through the Browser navlets can retrieve
and modify the state of the Web browser such as which URL is currently displayed; the structure of
the current frame set; whether a selection has been made in a frame and if so, what and where.
Communication with plug-ins and applets running in the Web browser is also handled through the
Browser component.

The situation depicted in Figure 2 is a situation of two navlets running in the Arakne Environment:
Navette is a link creation tool, and thus needs access to the Proxy in order to insert links into Web
pages. Ariadne is a guided tour tool and does not modify Web pages; and is thus not connected to the
Proxy. Both however need to be able to tell and set the state of the currently displayed documents
and to interact with the Web browser in other ways, as well as retrieving data from the structure
server through the Hyperstructure Store.

By providing the components described above and by having an open architecture, the Arakne Envi-
ronment aims to provide developers with an environment that allows for easy implementation of
Web augmentation tools. The Arakne Environment is written in Java (but is not an applet), and cur-
rently integrates with the Microsoft Internet Explorer. The current version uses the DHMProxy [9] to
insert links and other structures into Web pages. The relative ease of development has made the envi-
ronment well suited for experiments such as the Mimicry system described herein.

6 THE MIMICRY PLAYER
The Coconut project has developed the Mimicry player to support linking to and from temporal me-
dia in the Arakne Environment. Realising that if we wanted to integrate temporal media into our hy-
permedia system, we would have to do it ourselves, as no existing plug-in seemed to offer an ade-
quate API, we started looking for the easiest way to support temporal media.

The Java Media Framework [13] developed by JavaSoft, Intel, and Silicon Graphics is aimed at sup-
porting temporal media in Java. The framework supports a wide range of video and audio formats4,
and more CODECs can be added. The Mimicry player is a Java Bean encapsulating the Java Media
Framework player. It is basically interfaceless, but implements a rich API and event interface that
can be utilised by other components.

The Mimicry controller is, referring back to Figure 2, an applet that communicates with the Navette
tool through the Browser component; it thus acts as an intermediary between the Arakne Environ-
ment and the Mimicry player. The Mimicry controller provides the interface to the Mimicry player
as well as to Navette. The Mimicry controller acts as the interface of the Mimicry player to the user.
The controller has a control panel for the browsing and creation of anchors, which can be displayed
by right clicking on the player window.

4 Supported formats include AIFF, WAV, AVI, MIDI, MPEG-1, and QuickTime.

6.1 Web Page Modification by the DHMProxy
Multimedia files are normally presented in a Web browser using the appropriate plug-ins, according
to the MIME type of the file. This is done either by using a direct link to the file or by embedding it
into a Web page using <EMBED> or <OBJECT> tags. The Mimicry player is designed to mimic plug-
ins, and will appear (to the user) as an ordinary plug-in on a Web page.

Rather than depending on Web page designers to adopt the Mimicry player as the standard viewer
applet, the system utilises the DHMProxy [9] to modify Web pages, so that the Mimicry player is
used instead of plug-ins.

The DHMProxy is aware of the formats supported by the Mimicry player and changes the Web
pages accordingly. If a Web page embeds temporal media using <EMBED> or <OBJECT> tags, these
tags are replaced with a corresponding <APPLET> tag with the same layout dimensions. If a Web
page has a direct link to a temporal media file, the DHMProxy returns a Web page containing the
<APPLET> tag in the body of the page. Using this approach it is possible to translate plug-in invoca-
tions into applet invocations, without changing the layout of the Web pages.

The DHMProxy also takes care of inserting anchors from the chosen link collections on the structure
server into the Mimicry controllers. All the anchors residing in a media clip are passed on to the
applet in parameter tags consisting of name, id, and time span. When the Web page is loaded in the
Web browser and the Mimicry controller applet is launched, it is thus aware of the anchors in the
media clip. This modification or decoration is basically similar to the ordinary text decoration (that
is, insertion of links) done by the DHMProxy.

6.2 Mimicry in Action
In order to present Mimicry in action, we have started the Arakne Environment, which launches the
Web browser5, as presented in Figure 3. The Web browser has been configured to use the
DHMProxy. As we want to create links into Web pages and media files, we have started Navette in
the Arakne Environment.

The situation in Figure 3 is as following: another user has earlier created a link with the name ‘Link
10’ in the link collection ‘Hyperspace1’, which contains three anchors. The first anchor ‘Harrison
Ford’ originates in a Web page containing a description of the actor Harrison Ford. The second an-
chor ‘Quote’ originates in a Web page containing famous movie quotes, referring a specific quote.
The third anchor ‘Endpoint 14’ originates in a movie clip embedded in a Web page, referring to a 59
seconds long segment of the 2:02 minutes long clip, that features the quote.

Browsing the Web using the Arakne Environment, we encounter the Web page containing the movie
quotes. Since we have ‘Hyperspace1’ opened, the DHMProxy has decorated the page with the
‘Quote’ anchor. The anchor is presented, so that we can follow ‘Link 10’ either to the media segment
‘Endpoint 14’ or to the Web page containing the anchor ‘Harrison Ford’. We decide to follow the
link to the media anchor and the Web page containing the video clip is loaded, as shown in Figure 3.

The DHMProxy decorates the Web page by substituting the plug-in tag with an applet tag and an-
chors from the structure server. When the Mimicry controller applet is launched it retrieves its an-
chors from the parameter tags, alerts the Arakne Environment to its existence and asks the Mimicry
player to start downloading the media file. In Navette ‘Link 10’ is opened and the ‘Endpoint 14’ an-
chor is in focus.

5 The current version is integrated with the Microsoft Internet Explorer

Begin
Anchor

Play

Play
Anchor

Follow
Link

Create
Anchor

End
Anchor

Figure 3 - Playing the anchor endpoint "Endpoint 14"

Clicking on the Mimicry control applet, the 59 seconds segment ‘Endpoint 14’ will be played, start-
ing at 25.7 seconds and ending at 1:34.7. Interested in the movie clip we right-click on the applet and
a popup menu appear. In the popup menu it is possible to select other anchors in the clip or to open
the control panel. We choose “open control panel”, and the control panel, on top of the Web browser
and the Arakne Environment in Figure 3, is presented. The control panel consists of a slider, indi-
cating the length and current position of the media clip, buttons for creating/editing anchors and a
dropdown menu containing all the anchors in the media clip. The current anchor is drawn on the
slider.

Dragging the slider to the start position and pressing the “Play” button causes the Mimicry player to
start playing from the beginning. While watching the media clip, we notice the actor Gary Oldman,
and decide to find more information about him. In the dropdown menu containing all the anchors in
the media clip, we find another media anchor named ‘Endpoint 11’. Selecting ‘Endpoint 11’ and
playing it, we realise the anchor is covering the part of the clip depicting Gary Oldman. Wondering if
the link is about the actor, we click the “Follow Link” button on the control panel. The browser loads
another URL, which is a direct link to another movie clip, resulting in the situation shown in Figure
4.

Another Mimicry controller is launched and Navette has changed its focus to ‘Endpoint 12’ in ‘Link
5’. Clicking the Mimicry controller, the segment ranging from 1:04.8 to 1:33.7 of the movie file is
played. The ‘Endpoint 12’ segment does indeed refer to Gary Oldman appearing in another movie
trailer.

Watching the movie trailer from the beginning, we find yet another actor, Matt LeBlanc. Since we
have had the pleasure of following links created by others, we would like to add an additional link to
the current link collection. We know where to find further information about Matt LeBlanc and de-

cide to create this relation. In Navette we deselect the current link. In the control panel, we create a
new media anchor using the “Begin Anchor” and “End Anchor” buttons, editing a few times, re-
viewing the new anchor several times with “Play Anchor” and finally end up with exactly the portion
of the clip concerning Matt LeBlanc. We press “Create Anchor” in the control panel, and as no links
are selected in Navette, a new link ‘Link 25’ is created, initially containing the anchor ‘Endpoint 15’.
The Arakne Environment stores the new link and anchor on the structure server. We browse the Web
to a Web page containing more information about the actor as shown in Figure 5.

Figure 4 – Playing the anchor ‘Endpoint 12’

When the Web page is retrieved, we highlight the text ‘Matt LeBlanc’ in the Web browser, right
click and select “Add Anchor” in the popup menu6. This information is sent to Navette, which reacts
by creating the endpoint “Matt LeBlanc”. Pressing the refresh button in the Web browser forces the
DHMProxy to decorate the Web page with the newly created anchor. In the Web browser, the new
anchor is presented as a link in ‘[*]’ next to the Matt LeBlanc text. To test the link, we click it, and
the media clip from Figure 4 is loaded, ready to play ‘Endpoint 15’. If we open the control panel and
press the “Follow Link” button the Web page from Figure 4 is loaded. We have now created a link in
the link collection ‘Hyperspace1’. Next time another user is browsing the Web using the Arakne
Environment and the ‘Hyperspace1’ link collection, he or she will be able to see and follow these
links.

6 The essential commands for link creation with Navette are available through the use of right-click
menus on highlighted text in the Microsoft Internet Explorer.

Figure 5 – Creating a HTML anchor using Navette

We have now described how to follow a link to a media clip using Mimicry, how to follow links
between two media clips, and how to create anchors and links. In Figure 3 the Mimicry is used as
embedded on an HTML page, and in Figure 4 Mimicry is used standalone as a direct link to a media
clip.

7 DISCUSSION
The following will discuss the implication of the results in the context of plug-in developers.

7.1 The Problem with Current Plug-ins
Plug-ins are used to handle media types not supported natively by the Web browser. Plug-ins can be
controlled at runtime through LiveConnect [11] using JavaScript. In order to support linking in and
out of temporal media, we need to continuously be able to get and set the state of the plug-in. The
degree of openness to this kind of control varies tremendously. The most extreme example of an
open plug-in handling temporal media that the authors have been able to locate is the Beatnik plug-in
published by Headspace. Beatnik is a plug-in targeted at sound and music files, and has a very rich
API. The APIs supported by some popular plug-ins are shown in Table 1. Beatnik is sound only, and
is as such only used as a comparison to the other media players, as well as Microsoft Media Player
which cannot be controlled through JavaScript.

Apart from Beatnik, no plug-in allows for the playing of a designated but not in the media predefined
segment. This ability is fundamental to link following in temporal media, and it is thus not possible
to create a hypermedia system supporting links to and from media clips with these plug-ins. The rich
authoring environments of some media tools, especially QuickTime7, make the lack of support for
modifications at run-time more grating. The author should certainly have a very rich authoring tool

7 However, QuickTime offers another approach as mentioned in section 8.

at his or her disposal, but that does not eliminate the need to be able to dynamically alter the play-
back of a media clip, as it is shown on a Web page.

Plug-in/Content Handler Methods1 Callback Methods1

Real RealPlayer SetSource
DoPlayPause
DoNextItem2

DoPrevItem2

onClipOpened
onGoToURL

Apple QuickTime 3 3

HeadSpace Beatnik getPlayLength
getPosition
setPosition
setStartTime
setEndTime

onLoad
onReady
onStop

Microsoft Media Player4 GetCurrentPosition
SetCurrentPosition
GetSelectionStart
SetSelectionStart
GetSelectionEnd
SetSelectionEnd

1 This is not a comprehensive list, but merely methods relevant to linking.
2 These methods require that

the items are defined by the author of the media clip.
3
 QuickTime does only support arguments to the

<embed> tag.
 4
 The methods described are through the COM-interface, not JavaScript.

Table 1 - Supported APIs of various plug-ins

Integration with plug-ins requires some degree of openness on part of the plug-in API. In order to
support linking (and other kinds of integration) it must at least be possible to designate a segment of
a recording and to allow that segment to be played. Specifically we would suggest that the methods
outlined in Table 2 could the basic API of any plug-ins handling temporal media.

Methods Callback Methods
getSourceURL
setBeginClip
getBeginClip
setEndClip
getEndClip
getDuration
getCurrentTime
playPause
playClip

onLoad
callbackWhen

Table 2 - Basic API requirements for temporal media plug-ins

A plug-in would thus be able to play a designated clip or segment of a media clip and would report
its progress through the media clip. This API would allow a developer to support the kinds of inter-
actions supported by the Mimicry player through the use of JavaScript and LiveConnect [11]. This
API is simple and should be easy to implement for plug-in developers. The Beatnik plug-in clearly
demonstrates that this is indeed achievable.

Another solution investigated by the Coconut project is to make a specific integration with a media
player, in this case the Microsoft Media Player that through its COM-interface supports a rich API.
External applications would register events from the Media Player and through the COM-interface
control it. Being a COM-component the Media Player can be integrated into a user interface sup-
porting anchor and link creation. This approach does have some limitations. It is platform dependent,
and unless a proxy is used to modify the Web pages as described below, the supporting software is

forced to change content handler while the Web page containing the media clip is being displayed.
This is possible, but it is neither elegant nor seamless.

8 FUTURE DEVELOPMENT
Unless a media player emerges that satisfies the needs of temporal media linking, the authors will
continue to work on the Mimicry player. Some current development holds promise with regards to
future versions. Future versions of the Java Media Framework will support more media formats and
sport additional improvements. An interesting development would be Java Media Framework sup-
port for streaming, which is currently offered by Real Networks, but this version is so far limited to
Netscape Communicator.

As media players and Web browsers supporting SMIL and HTML+TIME become available, we will
investigate the possibilities of linking into the new structures supported by these standards, as well as
using the new generation of plug-ins and viewers supporting these formats.

Apple has created QuickTime for Java, featuring an API similar to the Java Media Framework, being
able to playback formats supported by the QuickTime plug-in 2.0 in an applet. This may be an area
worthy of future investigation.

The current Mimicry player is a Java applet, and a clear future direction would be to convert the
player into a plug-in. This would probably eliminate much of the need for the intervention by
DHMProxy, as the Mimicry plug-in would automatically launch on its registered MIME types.

9 CONCLUSION
We have described a system allowing users to dynamically create links to and from temporal media
on the Web regardless of the users’ ownership of the Web pages or media clips involved. The system
has not been created to compete with existing media players, but merely to allow for experimentation
and to highlight the lack of support for dynamic uses of temporal media currently found in most
plug-ins. As such it has been successful.

The future of temporal media on the Web is a bright one. Bandwidth will continue to rise and
emerging standards such as SMIL and HTML+TIME will support the use of temporal media in new
ways. Whether these standards will converge to support only presentation, or open for more dynamic
uses remains to be seen.

10 ACKNOWLEDGEMENT
The authors are members of the Coconut project (http://www.cit.dk/coconut/), a joint research proj-
ect consisting of Department of Computer Science, Aarhus University and Tele Danmark Internet.
The Coconut project is supported by the Danish National Centre for IT-Research
(http://www.cit.dk/).

The authors wish to thank Niels Husted and René Thomsen for adding to the code, Peter Ørbæk for
creating the DHMProxy, and the anonymous reviewers for good suggestions.

11 REFERENCES
[1] Anderson, K. M. (1997). Integrating Open Hypermedia Systems with the World Wide Web. In

Proceedings of the ACM Hypertext 97 Conference, pp. 157–166, Southampton, England.

[2] Auffret, G., Carrive, J., Chevet, O., Dechilly, T., Ronfard, R., and Bachimont, B. (1999). Audio-
visual-based hypermedia authoring: using structured representations for the efficient manipula-
tion, of AV documents. In Proceedings of the ACM Hypertext 99 Conference, pp. 169–178,
Darmstadt, Germany.

[3] Bouvin, N. O. (1998). Designing Open Hypermedia Applets: Experiences and Prospects. In Pro-
ceedings of the ACM Hypertext 98 Conference, pp. 281–282, Pittsburgh, USA.

[4] Bouvin, N. O. (1999). Unifying Strategies of Web Augmentation. In Proceedings of the ACM
Hypertext 99 Conference, pp. 91–100, Darmstadt, Germany.

[5] Carr, L. A., De Roure, D., Hall, W., and Hill, G. (1995). The distributed link service: A tool for
publishers, authors and readers. In Proceedings of the 4th International World Wide Web 95
Conference, Boston, USA.

[6] Carr, L. A., Hall, W., and Hitchcock, S. (1998). Link services or link agents? . In Proceedings of
the ACM Hypertext 98 Conference, pp.113–122, Pittsburgh, USA.

[7] DeRose, S. J., and Durand, D. G. (1994). Making HyTime Work. Kluwer Academic Publishers,
1994.

[8] Grønbæk, K., Bouvin, N. O., and Sloth, L. (1997). Designing Dexter-based hypermedia services
for the World Wide Web. In Proceedings of the ACM Hypertext 97 Conference, pp. 146–156,
Southampton, England.

[9] Grønbæk, K., Sloth, L., and Ørbæk, P. (1999). Webvise: Browser and Proxy Support for Open
Hypermedia Structuring Mechanisms on the WWW. In Proceedings of the 8th International
Conference on the World Wide Web, Toronto, Canada.

[10] Hirata, K., Hara, Y., Takano, H., and Kawasaki, S. (1996). Content-oriented Integration in Hy-
permedia Systems. In Proceedings of the ACM Hypertext 96 Conference, pp. 11–21, Washing-
ton D.C., USA.

[11] Hoque, R. Java, JavaScript and Plug-In Interaction Using Client-Side LiveConnect.
http://developer.netscape.com/docs/technote/javascript/liveconnect/liveconnect_rh.html

[12] HTML+TIME. http://www.w3.org/TR/NOTE-HTMLplusTIME

[13] Java Media Framework. http://www.javasoft.com/products/java-media/jmf/index.html

[14] Jühne, J., Jensen, A. T., and Grønbæk, K. (1998). Ariadne: A Java-based guided tour system for
the World Wide Web. In Proceedings of the 7th International World Wide Web 98 Conference,
Brisbane, Australia.

[15] Lewis, P. H., Davis, H. C., Griffiths, S. R., Hall, W., and Wilkins, R. J. (1996). Media-based
Navigation with Generic Links. In Proceedings of the ACM Hypertext 96 Conference, pp 215–
223, Washington D.C., USA.

[16] Maler, E., and DeRose, S.J. (Eds.). (1998). XML Linking Language (XLink) Design Principles.
http://www.w3.org/TR/NOTE-xlink-principles

[17] Maler, E., and DeRose, S.J. (Eds.). (1998). XML Pointer Language (XPointer).
http://www.w3.org/TR/WD-xptr

[18] Maurer, H. (Ed.) (1996). Hyper-G now, HyperWave: The next generation Web solution,
Addison-Wesley, Harlow, 1996.

[19] SMIL. http://www.w3.org/AudioVideo/

[20] Statsbiblioteket. Dansk Lydhistorie. http://www.sb.aau.dk/dlh/

[21] Whitehead Jr., E. J. (1997). An architectural model for application integration in open hyperme-
dia environments. In Proceedings of the ACM Hypertext 97 Conference, pp. 1–12, Southampton,
England.

12 VITAE

Niels Olof Bouvin is a Ph.D. student in Computer Science at University of
Aarhus, Denmark. His research interests include open hypermedia sys-
tems, Web augmentation, structural computing, and collaboration on the
Web. He is currently involved in the Coconut project, a co-project be-
tween the Department of Computer Science and Tele Danmark Internet.
Niels Olof Bouvin received his master’s degree in 1996 from Department
of Computer Science, University of Aarhus, Denmark.

René Schade is a system developer at Tele Danmark Internet, Denmark.
He is currently working at the Coconut project, a co-project with the De-
partment of Computer Science, University of Aarhus, Denmark. He fin-
ished his master degree in 1997 from the Department of Computer Sci-
ence, University of Aarhus. His research interests are: World Wide Web;
Hypermedia and Multimedia and Dynamic Programming Environments�

Experiences with OHP and Issues for the future

Niels Olof Bouvin

Department of Computer Science, University of Aarhus,
Aabogade 34, 8200 Århus N, Denmark

n.o.bouvin@daimi.aau.dk

Abstract. The OHSWG has by now moved from specifications to run-
ning code. This is an important step, not only because this is the only way
of maturing the specifications, but also because it strengthens the credi-
bility of the OHSWG. Showing that the ideas expressed by the OHSWG
can be implemented is however not enough, at least not if we desire a
wider audience than ourselves. Concomitantly the XLink standard has
begun to take shape, metadata on the Web seems to be on the rise, and
interconnectedness is sharply rising with various small devices (such as
WAP phones and PDAs) gaining access to the Internet. We are living in
interesting times. Based on the experiences of developing the Arakne En-
vironment, the author attempts to point out some worthwhile directions
for future work within the OHSWG.

1 Introduction

The original goal of the Open Hypermedia Systems Working Group was to iden-
tify what constituted open hypermedia and to devise a common standard, so
that open hypermedia systems could interoperate, and possibly share access
to integrated third-party applications. Some of these goals have now been met.
There is a common standard, and the Group has now several times at Hypertext
conferences demonstrated heterogeneous hypermedia systems working together
through the Open Hypermedia Protocol (OHP).

Existence has thus been established, and yet we do not find the world break-
ing our door down in order to get hold of this amazing technology. The author
has over the last few years designed and developed an open component-based hy-
permedia system, the Arakne Environment, which is now based on the OHSWG
compliant Construct servers. The experiences with converting to OHP are re-
lated in this position paper with some pointers for future concern are raised,
especially with regards to future standardization work.

2 The Arakne Environment

The Arakne Environment has been described in ([2], [4], [3]), and for the pur-
poses of this paper there is no need to go into great detail. Arakne is a framework
for open hypermedia programs, and currently supports navigational, temporal,
guided tour, and spatial hypermedia on the Web. The system has gone through

several iterations and now uses the OHSWG compliant Construct servers as
structure servers. The original design idea was to create a system where func-
tionality could be easily added without affecting the rest of the system — a
hypermedia plug and play system. Over the design and development iterations
this ideal has come closer.

3 Experiences with the development of the Arakne
Environment

This section will describe the process of converting the Arakne Environment
to a native OHP application. As Arakne started out as a Ph.D. project there
was never existing legacy applications, allowing for radical redesigns (such as
replacing the hypermedia protocol used in the original version with OHP).

3.1 The transition to OHP

The Arakne Environment did not start out using OHP. The original version relied
on the Devise Hypermedia servers, but as the Construct servers were completed
within the same project as Arakne, the transition to OHP began. One advantage
in the context of this conversion was the code sharing between server and client,
as both are written in Java. As OHP is language independent, the transition
would under all circumstances have been possible albeit admittedly more time
consuming. The open source nature of Construct does not limit the advantage
of code reuse to the developers associated with Construct.

The first version of Arakne to utilize OHP was version 2.0. This was not a
complete transition, as only the components that communicated with the struc-
ture servers were changed — the rest were (virtually) unchanged. This was a
relatively simple operation as the original data model was based on DHM [12]
(and thus Dexter [13]), and the gap to the OHSWG data model was relatively
minor. The components communicating with the Construct servers would then
transparently convert between the Arakne and the OHSWG data models, e.g.
folding OHSWG anchors and endpoints into Arakne endpoints and vice versa.
This ’hack’ allowed us to get up to speed relatively rapidly, so that we could
commence testing of the structure servers forthwith.

Given the nature of hypermedia conversion [15], this first step did not use
the full functionality of the Construct servers. The features not supported by
the hypermedia applications (known as ’NavLets’ or ’views’) could naturally not
be utilized on the structure servers. The most important missing feature was
the support for sessions, which is a key component in the OHSWG support for
collaborative work.

This, and extensibility concerns, led to a complete redesign of the Arakne
architecture and a full adoption of the OHSWG data model, resulting in the
current version 2.1. This was a considerably more involved task as all existing
components in the framework were either modified or completely rewritten and
new components handling sessions and collaboration had to be added.

The current architecture allows users to be engaged in an arbitrary number
of sessions using any number of hypermedia views. Each session has its own data
model, coupling mode, and views, independently of other sessions. This has been
accomplished without major changes in the views, while still allowing them room
to extend support for collaboration between users as the view developers see fit.

The author would like to see more hypermedia systems support OHP, and
there are some lessons that can be learned from the experience of converting
Arakne to OHP.

The first lesson is that the system actually works! OHP can be used for more
than once a year Hypertext Conference demonstrations. Arakne along with the
Construct servers are thus among the growing number of validations of the ba-
sic design of the OHP. One of the original goals of OHP was to allow dissimilar
hypermedia systems to interoperate and to share third party application inte-
grations. In this context the Arakne Environment is probably special, as it does
no longer have a hypermedia protocol of its own — it has fully embraced OHP.

The second lesson is it is not necessary to natively1 support OHP. Using an
extra component to convert from one data model to another is close in principle
to the shim of [6], though the conversion is from a protocol to an API rather than
from protocol to protocol. It should be noted that the task of converting Arakne
to OHP was considerably smaller than e.g. establishing interoperability between
Chimera and HyperDisco [19], where the target was true interoperability (we just
wished to move Arakne from DHM to OHP), and where there were significant
dissimilarities between the systems, including features, programming language,
and protocol format. DHM and OHP are fairly close — both utilize XML (or at
least tagged ASCII) for transport, the data model are similar, and the transition
to OHP was made easier by the existence of available Construct Java libraries.
The method used to integrate Chimera and OHP (under development as this
is written) is in principle similar to the one used by the version 2.0 Arakne.
Existing Construct libraries are plugged into Chimera with additional code to
handle the conversion back and forth. This is a more ambitious and exciting
integration, as Chimera (as opposed to Arakne 2.0) natively supports sessions.

3.2 Adding new functionality — “Embrace and Extend”

One of the original design goals of the Arakne framework was to provide a
general framework for all Web augmentation hypermedia tools. In practice the
first version integrated Navette (a navigational hypermedia tool and a successor
to DHM/WWW [9]) and Ariadne [14] (a guided tour tool not originally de-
veloped for Arakne). The latest hypermedia tool to be integrated with Arakne
is CAOS [17] (a spatial hypermedia tool), which also originally was not devel-
oped for Arakne. By having an open architecture, Arakne has thus been able
to “embrace and extend” already existing hypermedia tools. As support for col-
laborative work is now an integrated part of Arakne, this functionality is made
available for the new views.
1 i.e. abandon the existing data model etc. in lieu of OHP

3.3 New protocols

New structural domains (such as spatial hypermedia [16]) are emerging and are
swiftly becoming one of the most dynamic and interesting areas in hypermedia
(as witnessed by popularity of the Structural Computing workshops). Hyperme-
dia is no longer “just” navigational links and anchors.

OHP handles navigation and collaboration through sessions. The Construct
servers have been extended to provide additional services through the OHP-
Comp (composites) and OHP-Space (spatial hypermedia). New services can be
added to the Construct servers and Arakne, as they become available. Indeed,
with the development of the Esbjerg CSC tools [18], adding new services has
become even easier.

The new structural domains are areas where the OHSWG can contribute
tremendously to the hypermedia community at large by providing solid proto-
cols and structure servers. We have the knowhow and the robust servers, and
should be able to help other workers in the hypermedia community. The active
discussions following the presentation of CSC by Wiil and Nürnberg at HT2000
were witness to that this is an idea whose time has come.

3.4 The evolution of OHP

It should be noted that the OHP of the Construct servers does not fully follow the
Darmstadt DTD. This is not so much of a problem as it might first seem, for stan-
dards must necessarily be validated through implementation. Some changes and
clarifications became necessary and were subsequently implemented. It should
however be clear that the changes made to OHP must be documented and pub-
lished, in order to support further discussion and development of the OHP. The
issue of proper protocol documentation will be dealt with in section 4.

4 The need for further standardization

A basic requirement of any standard is a precise and unambiguous definition.
Unfortunately, the current OHSWG OHP specification is lacking in this respect.
This leads to problems with interoperability between different implementations,
exactly what OHSWG was supposed to solve! This section will describe the
problem and propose possible solutions.

4.1 The problem with XML

One result of the OHSWG 4.5 meeting was creation of the On the Wire group,
who was given the task to determine what transport layer the Open Hypermedia
Protocol should utilize. The author was a member of this group, and the eventual
recommendation was to use XML documents over sockets as the basic entry
point, with CORBA support left for more advanced servers.

The rationale behind choosing XML was fairly solid: XML is easy to parse
with free XML parsers available for most programming languages; it is human

readable which eases debugging considerably; and using validating XML parser
guarantees adherence to a given grammar. All this combines to make the entry
into OHP relative easy and painless. Furthermore one should not be blind to
necessity of being “buzzword-compliant” in this wired world, and XML certainly
fulfills that purpose.

One problem that has emerged over time with XML is the level of detail
expressible with the DTD grammar. DTD is well suited for general syntactic
declarations, but cannot express semantics nor more fine-grained syntactic as-
pects such as data types or ranges. This is witnessed by the proliferation of
#CDATA (i.e. unspecified character data) in most DTDs. Thus the specification
is not enough by itself. It must be accompanied by either exhaustive documen-
tation or code implementing the standard, if not the implementation will be
left to guesswork by the developer. Data and code are closely integrated in this
setting, and this has several disadvantages. XML was originally set out (though
admittedly like much Internet technology, it was over hyped at the time of its
introduction) to ease data interchange by creating solid specifications to separate
code and data. The reality is that while this goal has been partly accomplished,
the devil (as always) is in the details and this is where XML is still lacking.

The lack of detailed specification has also hurt OHP. The Darmstadt DTD
that forms the (excellent) basis for OHP contains many instances of #CDATA
where the details are left to the implementation. While this is just a set of
decisions to be made when dealing with one implementation of OHP (such as
Construct), it becomes a problem when interoperability — one of the purposes
of OHSWG — is the goal. As mentioned in section 3.4, the development of
Construct led to a number of choices with regards to what OHP is. Another
implementor of OHP can however not be relied on making the same choices —
the hectic work leading up to last year’s OHSWG demonstration showed the
problems with this approach, as there were several areas where the different im-
plementations had to be modified to accommodate the differences. One solution
to this is to adopt an existing implementation; this is the case of the current
OHP/Chimera integration (mentioned in section 3.1), but this requires a certain
compatibility between the systems with regards to e.g. programming languages.

It was suggested by Peter J. Nürnberg at OHSWG 5.5 that the time has
come for OHSWG to adopt a reference OHP implementation. The author agrees
with this notion, but would like to see it extended. One of the requirements
of a proposed standard submitted to the W3C is that there should be a clear
specification and at least two independent and compatible implementations of
the specification. This is a very important point, as it lessens the probability
of idiosyncrasies in one implementation determining the specification and for
tacit, unspecified details to make it into the final standard. If we are to move
forward to make OHP a “proper” standard (at standard bodies such as IETF
or W3C), as discussed in 5, we must address this issue. As long as we maintain
compatibility OHSWG can only benefit from such a move. One benefit would be
that is unlikely that “one size fits all” when it comes to server implementations,
e.g. a structure server using a file-based storage suited for a small work group or

an individual user, would not be applicable in the context of a large organization
with more demanding performance and stringent backup requirements.

This still leaves the issue of clear and detailed specification. In the author’s
opinion XML continue to have much going for it — all the original advantages
are still valid. OHSWG are however not the only party that has discovered that
DTDs are insufficient for detailed specification. Currently several standards are
under development to extend XML with a precise specification language. XML
Schema [8] is an ambitious W3C standard currently in Draft state. XML Schema
will allow the precise specification of data types and attributes as well as the
definition of new data types. As such, it can form an excellent specification
language for future versions of OHP.

It would better still, if we for future work could leave the highly detailed
world of XML behind, and work with higher level specifications. The Esbjerg
CSC tools [18] promises to be such a tool. Using IDL as a specification language,
allows developers to work with a more natural level of detail, while developing
new services or implementing existing ones. As CSC will have the ability to
export DTDs (and conceivably this could be extended to XML Schemas), the
low cost entry point of XML is maintained if a developer should desire to use
XML on the wire. Furthermore by distinguishing between specification (IDL)
and actual protocol, it is possible to support new protocols, such as CORBA,
by implementing the changes in the CSC tools.

A modest proposal for future standards submitted to the OHSWG would be
to accompany all specifications with open source code, so that other members
rapidly could use the new standards, if they should so desire. Indeed, the open
source nature of Construct, CSC, and to come, Arakne, are steps in such a
direction.

4.2 The existing data model

The OHP data model has been designed to be extensible. Through the use of
key/value attributes, it is possible to customize the existing data types to most
applications. Again this is something that works well within one implementation
of OHP, but makes it difficult to export e.g. the LocSpecs of one OHP implemen-
tation to another, as the exact content of the LocSpec is left to the individual
implementation. The OHSWG spans a wide field of hypermedia usage and media
types and it is probably not realistic to expect a complete standardization on the
content of e.g. LocSpecs. However, establishing shared standards for LocSpecs in
common media types such as Web pages, XML documents, and bitmap images
would facilitate one of the original goals of the OHSWG, namely the sharing of
third-party application integrations. In this area we should also not hesitate to
adopt standards such as XPointer [5] as we see fit.

4.3 An OHP interchange format

The author suspects that most of the hypermedia systems created by the mem-
bers of OHSWG have an interchange format in one form or another — it is

certainly the case for Webvise [11], Arakne, and Chimera [1]. There has previ-
ously been a call for an OHP interchange format [10], and at Aarhus we have
developed and used an interchange format based on OHP (essential following
Darmstadt minus the operations). This format has since been extended and is
documented as the Open Hypermedia Interchange Format (OHIF) in [11]. A
shared OHP interchange format would benefit us with regards to interchange,
but it would also make an essential part of a future IETF/W3C OHP standard.

Interchange formats have also other uses. As a part of Coconut project of
which the author is a member, a guided tour tool (Ariadne, which also is a part
of Arakne) were changed into an applet and deployed on a Danish high-profile
Internet portal http://www.opasia.dk/. The purpose was to give ordinary Web
surfers access to guided tours authored by the editorial staff at the portal. One
of the major concerns when designing this applet was scalability and a solution
based on a structure server was ruled out partly because of scale, partly because
of firewall concerns, and partly because of the Java applet sand box limitations.
The generated guided tours were instead exported into a XML interchange for-
mat, which then could be easily downloaded from the portal. The system received
wide use (at least 15.000 users had by January 2000 downloaded and used the
applet). This is an illustration of a case where the interchange format is actually
the main target and not some intermediary file.

5 The way to proper standardization

It will avail us naught that we create an excellent open hypermedia standard
if no one notices or uses it. At least not if we desire more than publication
opportunities. Furthermore a standard based “only” on the collaboration of a
bunch of academics is not likely to gather much steam in the IT industry.

As suggested by E. James Whitehead Jr. at the OHSWG 5.5 meeting the
time has indeed come for us to disseminate OHP outside OHSWG by creating
a “proper” standard.

That there is room for open hypermedia standard is supported by the emer-
gence of XLink [7] — a standard for (largely) navigational hypermedia in (mainly)
XML documents. The XLink community has in the context of XML been work-
ing with many problems familiar to the OHSWG. At this point the members
of the OHSWG have an established infrastructure, we support more than navi-
gational hypermedia, we have integrated numerous third-party applications, we
have the know-how to integrate more, and we are not limited to the Web. If
we can make our varied and sophisticated hypermedia applications interoperate
through OHP, and provide others with the technology to do the same, we will
have a strong demonstration of what OHP is capable of.

The first step to a proper standard will however be to establish something
that we can present to the world, possibly using the tools described in section 4.
Given that, it should be relatively painless to create a RFC. Such a standard
should consist of at least an interchange format (see section 4.3), as well a spec-
ification of the operations that can performed on the hypermedia structures. In

other words, an extended version of Darmstadt. We are already close to this
target, and it would be a pity not to go further. The worst-case scenario would
be that our proposed standard is ignored by the rest of the world, but then at
least we will ourselves have benefited from the clarification of pinning down the
standard.

Beyond RFC, we must consider which standard body our standard belongs
to — obvious choices are IETF or W3C, but the discussion of that should be
deferred to the time we have created an actual RFC.

6 Conclusion

One of the purposes of this position paper has been to document the feasibil-
ity of adopting OHP, and the advantages that it gives. In order to stop OHP
from becoming just yet another hypermedia protocol, it is important that the
momentum is kept and that other hypermedia systems either convert or inter-
face to the OHP. In that process we must further specify and standardize OHP.
This will benefit us double: it will allow systems and users to interoperate and
interact (and thus realizing the original goal of sharing third-party application
integrations), and it is a showcase for the validity of the work of the Open Hy-
permedia Working Group. We must practice what we preach, if we are to be
taken seriously.

7 Post Scriptum

As a result of OHSWG 6.0, the author has committed to lead in the creation of
an OHP RFC. The creation and discussion of this important document can be
expected to form a major part of the the OHSWG 6.5 meeting. As of this writing
the contents of the RFC can be expected to contain at least the following:

– The navigational data model (preferably also composite and spatial)
– OHP-Nav (ditto OHP-Comp and OHP-Space)
– Session data model
– OHP-Session
– A mapping to protocols (XML, CORBA) based on the Esbjerg CSC work

[18]
– An interchange format (presumably an extension and generalization of OHIF

[11].

Acknowledgments

The author is a member of the Coconut project (http://www.cit.dk/coconut/),
a joint research project consisting of Department of Computer Science, Aarhus
University and Tele-Danmark Internet. The Danish National Center for IT-
Research (http://www.cit.dk/) supports the Coconut project. The author
wishes to thank René Thomsen, Michael Bang Nielsen, and Henning Jehøj Mad-
sen for their work on Arakne, and Kenneth M. Anderson for valuable discussions.

References

1. K. M. Anderson. Integrating open hypermedia systems with the World Wide Web.
In M. Bernstein, L. Carr, and K. Østerbye, editors, Proceedings of the 8th ACM
Hypertext Conference, pages 157–166, Southampton, UK, Apr. 1997.

2. N. O. Bouvin. Unifying strategies for Web augmentation. In Proceedings of the
10th ACM Hypertext Conference, pages 91–100, Darmstadt, Germany, Feb. 1999.

3. N. O. Bouvin. Designing user interfaces for collaborative Web-based open hyper-
media. In Proceedings of the 11th ACM Hypertext Conference, pages 230–231, San
Antonio, USA, May 2000.

4. N. O. Bouvin and R. Schade. Integrating temporal media and open hypermedia
on the World Wide Web. In Proceedings of the 8th International World Wide Web
Conference, pages 375–387, Toronto, Canada, May 1999. W3C.

5. R. Daniel, S. DeRose, and E. Maler (editors). XML Pointer Language
(XPointer). W3C Working Draft 6 December 1999, W3C, Dec. 1999.
http://www.w3.org/TR/xptr.

6. H. C. Davis, A. Lewis, and A. Rizk. OHP: A draft proposal for a standard open
hypermedia protocol. In Proceedings of the 2nd Workshop on Open Hypermedia
Systems, number 96-10 in UCI-ICS Technical Report, pages 27–53, University of
California, Irvine, USA, 1996.

7. S. DeRose, E. Maler, D. Orchard, and B. Trafford (editors). XML Linking
Language (XLink). W3C Working Draft 21 February 2000, W3C, Feb. 2000.
http://www.w3.org/TR/xlink/.

8. D. C. Fallside (editor). XML Schema part 0: Primer. W3c working draft, W3C,
Feb. 2000. http://www.w3.org/TR/xmlschema-0/.

9. K. Grønbæk, N. O. Bouvin, and L. Sloth. Designing Dexter-based hypermedia ser-
vices for the World Wide Web. In M. Bernstein, L. Carr, and K. Østerbye, editors,
Proceedings of the 8th ACM Hypertext Conference, pages 146–156, Southampton,
UK, Apr. 1997.

10. K. Grønbæk and L. Sloth. Supporting interchange of open hypermedia structures
and contents. In U. K. Wiil, editor, Proceedings of the 5th Workshop on Open
Hypermedia Systems, number CS-99-01 in Technical Report, pages 34–37. Aalborg
University Esbjerg, Denmark, Feb. 1999.

11. K. Grønbæk, L. Sloth, and N. O. Bouvin. Open hypermedia as user controlled
meta data for the Web. In Proceeding of the 9th World Wide Web Conference,
pages 553–566, Amsterdam, Holland, May 2000. W3C.

12. K. Grønbæk and R. H. Trigg. Toward a Dexter-based model for open hypermedia:
Unifying embedded references and link objects. In Proceedings of the 7th ACM
Hypertext Conference, pages 149–160, Washington DC, USA, 1996.

13. F. G. Halasz and M. Schwartz. The Dexter hypertext reference model. Commu-
nications of the ACM, 37(2):30–39, Feb. 1994.

14. J. Jühne, A. T. Jensen, and K. Grønbæk. Ariadne: A Java-based guided tour
system for the World Wide Web. In Proceedings of the 7th International World
Wide Web Conference, Brisbane, Australia, 1998. W3C.

15. R. Killough and J. J. Leggett. Hypertext interchange with the Dexter model:
Intermedia to KMS. TAMU-HRL 90-002, Hypertext Research Lab, Texas A&M
University, Aug. 1990.

16. C. C. Marshall and F. M. Shipman III. Spatial hypertext: Designing for change.
Communications of the ACM, 38(8):88–97, 1995.

17. O. Reinert, D. Bucka-Lassen, C. A. Pedersen, and P. J. Nürnberg. CAOS: A
collaborative and open spatial structure service component with incremental spa-
tial parsing. In Proceedings of the 10th ACM Hypertext Conference, pages 49–50,
Darmstadt, Germany, 1999.

18. U. K. Wiil, P. J. Nürnberg, D. Hicks, and S. Reich. A development environment
for building component-based open hypermedia systems. In F. M. Shipman, III,
editor, Proceedings of the 11th ACM Hypertext Conference, pages 266–267. ACM,
May 2000.

19. U. K. Wiil and E. J. Whitehead Jr. Interoperability and open hypermedia sys-
tems. In U. K. Wiil, editor, Proceedings of the 3rd Workshop on Open Hypermedia
Systems, number SR-97-01 in CIT Scientific Reports, pages 137–145, Apr. 1997.

Enabling Project Awareness and Intersubjectivity via
Hypermedia-Enabled Event Trails

Kenneth M. Anderson
Department of Computer Science,
University of Colorado, Boulder
ECOT 717, Campus Box 430,
Boulder CO 80309-0430, USA
E-mail: kena@cs.colorado.edu

Niels Olof Bouvin
Department of Computer Science,

Aarhus University
Aabogade 34, DK8200̊Arhus N,

Denmark
E-mail: n.o.bouvin@daimi.aau.dk

ABSTRACT
Supporting project awareness in the context of large-scale
software development is difficult. One key problem is iden-
tifying appropriate abstractions and techniques for the in-
sertion of project awareness mechanisms into a software
development environment with minimal impact. An ad-
ditional problem is scaling project awareness mechanisms
to handle the demands of large-scale software development
projects. We present a framework to support awareness and
intersubjectivity among software team members through the
use of automatically collected, hypermedia-enabled event
trails. Event notification and open hypermedia concepts,
techniques, and tools are used to support the framework in
addressing the two problems identified above. A distinction
of the framework is the presence of mechanisms that explic-
itly support intersubjectivity among team members, enabling
a high degree of quality to the project awareness in the team.

Keywords
intersubjectivity, event trails, project awareness, hypermedia,
large-scale software engineering

1 Introduction
Software engineers in modern software development
projects are challenged by overwhelming information man-
agement tasks. These tasks include, but are not limited to: re-
quirements traceability, consistency management in the face
of change, and maintaining project awareness between team
members who may be distributed across both time and space.
This paper reports on work designed to address the third
task—project awareness—especially within the context of
large-scale software development. Project awareness per-
tains keeping individual team members informed of the over-
all project progress, and aware of teammates’ actions. As
Dourish and Bellotti state “... awareness is anunderstand-
ing of the activities of others, which provides acontext for
your own activity[13].” Awareness thus touches on issues of
sharing information between team members such that they

can effectively coordinate the activities of their group.

To gain insight into the scope of information management
tasks faced by large software development projects, consider
recent work in supporting requirements traceability tasks at
a major aerospace corporation [2]. In this instance, open hy-
permedia techniques [27] were applied to just two subsys-
tems of an avionics software package. These two subsys-
tems consisted of approximately 34,000 pages of documen-
tation used to document various aspects of their hundreds of
thousands of lines of code. For the requirements traceabil-
ity tasks, the aerospace engineers were interested in just six
different types of relationships, but on a system of this size,
over 500,000 instances of these relationships needed to be
created and managed by the open hypermedia system!

More relevant to the domain of this paper, consider the num-
ber of personnel that can be assigned to large-scale soft-
ware development projects. InThe Mythical Man-Month,
Fred Brooks states that, at one point, over one thousand em-
ployees were assigned to his project to develop the OS/360
operating system [9]. Modern projects addressing more
complex problem domains will, of course, have similar or
greater staffing levels but with different characteristics in
terms of distribution. All one thousand members of Brooks’
team were co-located at the same facility, whereas modern
projects are much more likely to be distributed across several
physical sites of the same organization or across multiple or-
ganizations (as is typical in the aerospace domain).

We therefore are concerned with two issues with respect
to project management. First, how can project awareness
mechanisms be inserted into the development environment
of large software organizations? What infrastructure is re-
quired and what techniques (and their associated tools) are
enabled by the infrastructure? Second, how can project
awareness mechanisms be scaled such that they can provide
utility in large-scale software development contexts?

With respect to the first issue, we develop a framework that
makes use of techniques from the fields of open hypermedia
and event-based messaging systems to achieveintersubjec-
tivity between team members. We call this frameworkiScent
(intersubjective collaborative event environment). Intersub-
jectivity can best be defined by the phrase “I know that you

know that I know.” It is difficult to communicate without
intersubjectivity, since humans typically need to know that
they are being understood before proceeding with a conver-
sation. In our framework, we view the actions performed by
software engineers as elements of a conversation. We pro-
vide concepts and mechanisms to enable intersubjectivity to
be achieved in that conversation, thus supporting awareness.
With respect to the second issue, we employ a variety of
techniques and strategies to construct a scalable implemen-
tation of our proposed framework.

The rest of this paper is organized as follows. In the next sec-
tion, we discuss related work. We then describe our unique
approach to the problem of project awareness in Section 3.
Section 4 describes our initial attempt to implement our
framework. Section 5 describes our future research plans.
We then conclude the paper with a summary of our contribu-
tions in Section 6.

2 Related Work
In this section, we cover related work from several disci-
plines including open hypermedia, event notification sys-
tems, process-centered environments, awareness support,
and document management systems.

Open Hypermedia
In open hypermedia systems, issues of collaboration have
been addressed along a variety of dimensions including the
collaborative creation of hypermedia structures [18], concur-
rency control in collaborative hypermedia systems [34], hy-
permedia services in shared workspaces [35], and the sup-
port for collaboration in Web augmentation systems [7, 8].
Typically, support for awareness is derived from event noti-
fication facilities contained in collaborative hypermedia sys-
tems. These facilities notify all clients of the actions of the
hypermedia system’s users. Thus, two users in a collabo-
rative session will be notified whenever either user creates
a link, deletes an anchor, etc. The Arakne environment, a
system for Web augmentation, [7] provides support over and
above simple event notification for its users by adding the no-
tion of coupling modes [12] within a collaborative session.
While these services in collaborative hypermedia systems
help to provide awareness with respect to the hypermedia-
related actions of members of a software team, they provide
little insight into other aspects of the team’s work. In con-
trast, the iScent framework is designed to support the capture
of multiple types of events covering a wide range of work
activities. We are currently in the process of integrating our
hypermedia systems, Arakne [7] and Chimera [3] into the
iScent framework such that we can capture the hypermedia-
related activities of software teams within iScent trails.

Event Notification Systems
The iScent framework builds on top of the services provided
by event notification systems (See Section 3 for details). In
fact, as will be explained in Section 3, the iScent framework
is independent of any particular event notification system,

such that an implementation can make use of any service
that meets the requirements specified in Section 3. Event
notification systems were first employed to support tool in-
tegration in software development environments. One of the
first systems to employ this approach in a local-area network
setting was Field [29]. Tool integration via events was also
a part of Hewlett Packard’s SoftBench environment [10]. In
recent years, event notification systems have been extended
to explore issues related to events across wide-area networks
[11] and enabling project awareness [15, 16, 28].

With respect to the latter, each of these systems adopt a sim-
ilar approach to iScent in which an event notification service
serves as infrastructure to a higher level set of services. For
instance, NESSIE [28] and Elvin [15] each use events gen-
erated by applications (and sensors in the case of NESSIE)
to provide project awareness through mechanisms such as
a ticker tape application in which event notifications scroll
across the bottom of a user’s screen. The iScent framework
differs slightly from these approaches in that it provides a
unifying abstraction around which project awareness is con-
veyed (event trails) and it provides additional mechanisms
(as explained in Section 3) to enable intersubjectivity. For
instance, with a ticker tape application, a user knows that
his events are being broadcast to other users in his or her
workgroup. However, they do not know if the users have ac-
tually seen these events scroll by, perhaps because they were
away from their desk at the time or the ticker tape applica-
tion’s display was covered by some other application win-
dow. In iScent, several mechanisms combine to achieve the
“I know that you know that I know” quality of intersubjectiv-
ity: namely that a user’s event has been delivered, its recipi-
ent has seen it, and the recipient knows that the sender knows
that he or she has seen it. These explicit mechanisms insure
that intersubjectivity has been achieved and thus raises the
quality and fidelity of the project awareness among iScent
users.

Process-Centered Software Environments
Process-centered software development environments [1]
provide techniques and tools for making the steps of a soft-
ware life cycle more explicit and visible to the developers
participating in a software development project. Recently,
we performed an analysis of these environments, using ac-
tivity theory [25], to examine their support for computer-
supported cooperative work [5]. Our analysis, in part, in-
spected the interaction paradigms employed by process-
centered environments. This aspect is relevant to project
awareness, since it is through these paradigms that the state
of a software life cycle is conveyed to developers. There are
three interaction paradigms used in these environments:

• Task-oriented: This interaction style involves the use
of agendas. Agendas manage lists of relevant tasks for
each user, as e.g. in SPADE-1 [4].

• Document-oriented: Interaction is achieved in these

2

systems via documents and document services. In Mer-
lin [21], for instance, awork contextgraphically dis-
plays the relevant documents available to and associated
with each user role.

• Goal-oriented: Interaction in this paradigm is centered
around a list of goals to be accomplished. In Marvel,
for instance, these goals represent currently active rules
that can be applied to the state of the process [22].

Each paradigm enables a limited form of project awareness
but without the full range of support for intersubjectivity that
the iScent framework provides. For instance, few of these
systems allow users to specify events such as “notify me
when Jane has viewed document A.” In addition, the pro-
cess formalism being applied constrains the type of aware-
ness that can be achieved among team members. At best,
they are aware of their process. In contrast, the iScent frame-
work’s use of trails of events allow the awareness of multiple
aspects of a work environment to be captured, whether or not
an event is associated with a particular software life cycle.

Awareness Support
Support for awareness has a rich history of research. For
instance, Dourish and Bellotti examined how shared feed-
back mechanisms can contribute to project awareness among
groups organized around a shared workspace [13]. Shared
feedback involves the automated collection and distribution
of information that is then presented as background informa-
tion to the participants of a shared workspace. The iScent
framework is an example of a shared feedback mechanism
in which events are automatically collected and distributed
in the background as team members perform work. These
events are then presented to users as hypermedia-enabled
trails of events. The trails of events can be organized along
many intersecting dimensions. For instance, the trail “all
events opening document A” can lead to the trail “what did
Jane do after she opened document A”. Each event in a trail
is “hypermedia-enabled,” which means that there is enough
information associated with an event to allow an open hyper-
media system to link the event with its associated application
and/or artifacts. In this way, the shared workspace is defined
by the event trails themselves; any application or artifact that
can be reached from an event is part of the workspace. This
allows workspaces to fluidly expand or contract based on
the activities of the software team. And, because trails are
persistent, it is possible to “travel back in time” and see the
structure of a workspace at any point.

One large class of project awareness research involves the
use of video to enable project awareness among the mem-
bers of an organization. Example work in this area includes
Portholes [14] and Montage [32]. iScent represents an or-
thogonal approach to project awareness from these video-
based systems; however an interesting intersection between
the two domains would be to integrate a video-based aware-
ness system into an event-based framework like iScent such

that the video interactions of team members became a part of
the project awareness captured by iScent.

A second class of project awareness research involves devel-
oping frameworks for adding awareness mechanisms to col-
laborative applications. Representative samples of this work
include [17, 19, 24, 31]. As discussed below in more detail,
our approach to supporting awareness does not involve the
integration of awareness mechanisms into tools directly. In-
stead, the iScent framework makes use of event notification
systems to transparently capture and distribute event infor-
mation generated by applications. The iScent infrastructure
can then assemble these events into trails. As such, integrat-
ing applications into an event notification system remains an
issue. However, this task involves significantly less effort
than integrating awareness mechanisms directly into an ap-
plication, since it avoids issues of modifying an application’s
user-interface. It can even be achieved when an application’s
source code is not available by the use of wrappers, as long
as the application provides some form of external interface.

A third class of project awareness research involves cre-
ating high-level frameworks for supporting awareness or,
more generally, collaborative functionality in applications.
The goal here is to specify a conceptual framework that ap-
plications can adhere to, backed by an implementation of
the framework that will automatically enable collaboration
through the application’s use of the framework. Example
work in this area includes [6, 20, 26, 30]. Again, iScent
places no restrictions on its participating applications other
than the requirement that they be integrated with an event
notification system. However, conceptually, iScent is able
to address issues present in other conceptual frameworks.
For instance, Hayashi et al., present a framework designed to
support the sharing of knowledge between people, projects,
and places [20]. They represent an activity as a chronolog-
ical thread of snapshots of the information in a workspace.
iScent event trails are not restricted to capturing activities
along a temporal dimension only. Events are stored persis-
tently and can be assembled into trails along a variety of di-
mensions. For instance, a user can request to see Jane’s trail
of events for the work she did last Wednesday, however they
can also request to see those same events organized by the
projects she was working on, or by the applications that she
used that day, or any other axis that can be represented by the
value of an event’s fields. In addition, the concepts of people,
projects, and places can all be inferred from standard event
fields such as the user who generated an event (e.g. “John”),
their work location at the time (e.g. “John’s laptop”), and the
project they were working on (e.g. “iScent documentation”).

Document Management
LaMarca et al., take an innovative approach for support-
ing document-centered collaboration in thePlaceless Doc-
umentsproject [23]. Here, coordination and collaborative
functionality is associated with documents rather than appli-
cations. This is enabled by associatingactive codewith all

3

operations that can occur on documents, including reading,
writing, deleting, etc. When an operation occurs, the ac-
tive code can maintain coordination and collaborative con-
straints by posting event notifications, performing additional
operations, and even denying the original operation in the
first place for example. LaMarca et al., use this framework
to describe an application,Shamus, that supports software
engineers with implementation activities such as checking
code in and out of a configuration management system and
automatically compiling code and documentation whenever
code is changed. They argue that the placeless documents
architecture enables a finer granularity of awareness to be
achieved than is normal in software development. For in-
stance, Shamus is able to inform developers working on the
same piece of code where exactly each developer is work-
ing within a file. Previously, developers could only know, at
best, that more than one person is working on the same file
at once.

In a similar fashion, the iScent framework is an attempt to
increase the granularity of awareness that can be achieved
via the use of hypermedia-enabled trails of events. As
will be discussed in detail in Section 3, an event can be at
any level of granularity ranging from key press events to
document events to process level events, depending on the
amount of detail provided by its source application. While
iScent has made a tradeoff because it depends on applica-
tion integration—a restriction that is not encountered in the
Placeless Documents approach—it then has the ability to
capture a wide range of events, including those that are not
associated with documents. In addition, by making use of
open hypermedia, we allow users to quickly traverse from
(a visualization of) an event to its related application and/or
documents. This latter feature allows users to access doc-
uments in a uniform way as part of a collaborative process
enabled and managed by the event trails themselves. Thus,
the iScent framework can be seen as another point in the de-
sign space first mapped by the Placeless Documents project,
because it also does not attempt to place coordination and
collaboration functionality into applications. It instead asso-
ciates this functionality with event trails as a new abstraction
for project awareness.

3 Approach
We now present the iScent framework. Since the transport
layer of iScent is an event notification system, we begin our
presentation with a brief review of the capabilities and char-
acteristics of these system. We then present the architecture
of the iScent framework and describe in detail its constituent
parts. The utility of the iScent framework is illustrated via
a scenario which includes a step by step explanation of how
iScent enables intersubjectivity. We then conclude this sec-
tion by briefly addressing privacy concerns raised by the
iScent approach.

Event Notification Systems
iScent uses an event notification system as a transport layer.

These systems are, in general, based on the concepts of
events, producers/consumers of events, and event subscrip-
tions/notifications. Typically, an event is a set of key/value
pairs. Producers publish events to an event server which
routes these events to consumers based on their subscrip-
tions. One benefit of this arrangement is that producers are
completely unaware of the location of interested consumers
(and are thus not dependent on these consumers in any way).
Likewise consumers are unaware (and not dependent on)
producers. This arrangement can lead to significant benefits.
For instance, the C2 architectural style makes use of these
characteristics to provide substrate independence in software
architectures [33]. Other advantages include:

• Producers and consumers focus only on events mean-
ingful to them. They have no need to understand the
entire event space being managed by the event system.
They are, thus, straightforward to create and configure.

• Event systems make efficient use of a network. When
an event is produced, only those consumers who sub-
scribed to the event are notified.

• If several event servers are used (which is, for instance,
possible with the Siena system [11]), the routing of
events can be further optimized (e.g. an event is only
sent to an event server if it has clients that are interested
in that event). This facilitates the use of an event notifi-
cation system across a wide-area network.

• The publish/subscribe model enables dynamic service
discovery. For instance, a consumer can publish an
event requesting a specific service. If there is a pro-
ducer that provides the service, it will notify the con-
sumer, and the consumer can subscribe to it.

By making use of an event notification system, the iScent
framework provides these same advantages and characteris-
tics to its users.

The Architecture of the iScent Framework
The architecture of the iScent framework is presented in fig-
ure 1. The components of the framework are:

iScent Client Applications iScent applications produce
iScent events.

Sink A sink consumes all iScent events. It is responsible
for making events persistent and provides an interface
that allows other components to issue queries over the
stored events.

Trail Viewer A trail viewer specializes in the visualization
and structuring of collections (“trails”) of iScent events.
A trail viewer provides hypermedia capabilities over its
trails such that software engineers can traverse from an

4

Watchdog

Kennel

Events
Socket

iScent Aware
Application

Sink

Sink

iScent Aware
Application

Trail Viewer

Sink

Figure 1: The Architecture of the iScent Framework

event to the event’s associated information. These hy-
permedia capabilities are provided via integration with
an open hypermedia system [27].

Watchdog A watchdog is a persistent trigger than can gen-
erate iScent events when a specified condition is met.
Watchdogs are used to support awareness since they
play a key role in achieving intersubjectivity (as de-
scribed below).

Kennel A kennel is a collection of watchdogs. A kennel
will often be associated with a sink, however they can
also exist independently.

Communication between iScent components is primarily
handled by iScent’s integrated event notification system.
Communication via events is symbolized in figure 1 by solid
arrows, i.e. no point to point network connections exist be-
tween components connected by solid arrows. Dashed ar-
rows signify point-to-point socket connections, which are
used when large packets of information must be transferred
between components. Event systems typically limit the
size of events to ensure adequate performance. Therefore,
queries with large result sets must be transferred outside the
event system.

A typical iScent configuration consists of one or more iScent
applications deployed on a set of user machines, and a set of
sinks and kennels distributed across a set of server machines.
Note, however, that a user can install a sink on his or her
local machine. The main benefit of this configuration is the
ability to use iScent “unplugged,” i.e. without contact with
other sinks or event servers. Once a machine is plugged into
the network, the local sink can offer its stored events to other
sinks for replication and distribution to other team members.

The configuration of iScent components involves linking

each component to a local event server and, in the case of
sinks, specifying the types of iScent events to store. An event
server will likely be coupled with other event servers which
are in turn connected to other sinks and iScent applications.
It is thus possible to create highly-distributed large-scale net-
works of iScent components.

An iScent Scenario
The utility of the iScent framework is now demonstrated via
a scenario. While the iScent framework is general enough to
be applied in many work settings, our first target setting is
the task of software development.

Jane, a system developer, has just returned from va-
cation. She begins her first day of work by starting a trail
viewer. While she has been away, many events match-
ing her criteria have been generated. The trail viewer
retrieves these events, and presents them in juxtaposed
trails sorted according to topic and time of occurrence.
There is too much information to digest, so Jane engages
a set of filters that she has previously defined, which
simplifies the view considerably by folding matching
patterns of events into meta events. Jane sees in the CVS
trail that several new files have been checked into a CVS
repository. Checking her e-mail, she notices a message
from John telling her about one of the new files and ask-
ing her to take a look at its associated design rationale in
the documentation. She clicks on the event representing
the check-in of the file to see further details, and no-
tices a link to the file’s documentation. She follows the
link which loads the documentation into a Web browser.
While reading, she notices that John has put a watchdog
on the documentation, and five minutes later, John calls
to hear her opinion of the design rationale.

This scenario illustrates key aspects of iScent’s functional-
ity. Since iScent events are persistent, it is easy for Jane to
come up to speed with what has happened while she was on
vacation. Jane need not worry about specifying where events
should be retrieved; this is handled automatically by iScent
(while she was away, the entire structure of sinks could have
been reorganized without her noticing or caring). Rather
than presenting a single, large list of events, the presenta-
tion of events is structured, and can be further manipulated.
To provide further structuring mechanisms, it is possible to
create links to and from the events stored in the sinks. Be-
cause Jane’s Web browser is iScent aware, her viewing of the
documentation creates an iScent event, which can trigger a
watchdog. This allows John to wait until Jane has actually
discovered and viewed his changes, before contacting her.

Enabling Intersubjectivity
We now parse the scenario into single iScent actions to il-
lustrate how the iScent framework enables intersubjectivity
among software developers.

When John checked in a new file, an iScent event represent-
ing his action was created and stored in a project-related

5

sink. The creation of the code’s documentation also gen-
erated iScent events, and according to good practice, John
created a link from the check-in event to the documentation
using his trail viewer. Because he knew that Jane had ex-
pertise on the topic of the new file, he sought her opinion of
the design through e-mail. Wanting to be told when she had
read the documentation, John used his trail viewer to create
a watchdog, set to trigger when Jane retrieved the documen-
tation with her Web browser. This watchdog was stored at a
project-related kennel, and the kennel issued a subscription
matching the criteria of the watchdog. By posting the watch-
dog, John automatically created a subscription matching the
event that the watchdog would send if triggered. To use the
iScent vocabulary, John wanted to be alerted if his and Jane’s
trails of actions intersected at the point of the documentation.
Having done this, John was free to work on other things,
knowing that he would be notified when to contact Jane.

When Jane started her trail viewer, the trail viewer issued a
series of query events on the topics she had configured it to
follow (essentially the subscriptions she had created earlier).
In this case, Jane was interested in iScent events of the types
“CVS” and “Documentation.” These query events were con-
sumed by a project-related sink which then confirmed that it
could answer her query. The confirmation events held infor-
mation (a network address and a port number) for the trail
viewer to retrieve the trails generated by the sink based on
the queries. The trail viewer proceeded to contact the sink
and retrieve the trails.

Once retrieved, the trail viewer displayed the trails, and Jane
could begin to manipulate them to gain an overview of the
changes made while she was on vacation. In this situation,
the trails were arranged by type (“CVS” and “Documenta-
tion”) along a time axis. When Jane read the e-mail from
John, she found the matching event, and followed a link from
it to the documentation. Following the link caused the doc-
umentation to be loaded into Jane’s Web browser. Since the
Web browser was iScent-aware, it generated an iScent event
that recorded the action of loading the documentation. At the
project kennel, John’s watchdog was triggered by this event.
The watchdog, in turn, generated an event containing its ID
and the information about the person, who had triggered it.
Because a trail viewer by default subscribes to events that
contains a “triggered by” field matching its user, the event
was received by Jane’s trail viewer, alerting her to the exis-
tence of a watchdog and to the identity of its creator. Simul-
taneously, the same event was received by John, and he now
knew that he could contact Jane, in the near future, to discuss
the design rationale.

By reading the email, Jane knew that John wanted her to read
the documentation. When she actually read the documenta-
tion, John was alerted, so that “he now knew that she knew”.
Conversely, Jane knew by being alerted by a watchdog, that
“John knew that she now knew” about the design rationale.
Thus, Jane was aware of the context for John’s call because

intersubjectivity had been achieved.

Trails
Trails are a cornerstone of the iScent framework. Through
the use of iScent applications, a user generates a trail of
iScent events (a “scent trail”). These are stored by sinks, and
can later be retrieved through queries. A trail is defined as a
set of iScent events. Thus, the actions of a user can be cap-
tured by a trail of iScent events matching the user over time.
Another trail could be the events matching a certain tool over
time, or following the history of a document. These trails in-
tersect, for instance, when a user makes use of a certain tool,
or modifies a certain document. Since trails are modeled as
sets of events, trails support the normal set operations: join,
intersection, and difference. These operations match on se-
lected common fields among the constituent events, and can
be performed by a trail viewer or by expressing a query to
reflect the desired operations.

The user manipulates trails in a trail viewer. Trails can be
plotted along axes defined by the user. Returning to the sce-
nario, Jane plotted two trails consisting of CVS events and
documentation events respectively along a time axis in order
to see the correlation between code produced and documen-
tation written. When plotting a trail, one field common to
all the constituent events is used to order the events along
an axis. As a time stamp is common among all iScent events
(see Table 1 for the default iScent fields), a common ordering
is time based, though other orderings can be used.

As a set of events, a trail can be arbitrarily large. One of the
design goals of iScent is to produce highly detailed events.
However in some circumstances too much detail can be a lia-
bility, since a user can easily lose his or her sense of the “big
picture” behind the events. To address this, without aban-
doning high fidelity events, trails can be filtered. A filter is
essentially pattern matching on events, such that matching
events are replaced in a trail viewer with a meta event (or
a “folded” event). One could for instance define a pattern
to replace a sequence of CVS events relating to a single file
with a single event representing all actions pertaining to the
file. The user can of course unfold a folded event to inspect
the constituent events. Once defined, filters are stored in a
trail viewer and can be applied as the user desires. Folded
events are iScent events and can, as such, also be subjected
to filtering.

Trails of events can be transient, e.g. existing only on a user’s
screen, or they can be stored — either as a specification of
the queries and filters that produce the trail, or as a sequence
of event ids (all iScent events have unique ids, as described in
Section 4). Finally, it is possible to export (or import) trails
as XML files for external use. The export format is identical
to the format used by sinks to send trails to trail viewers.

Privacy Concerns
Not all actions taken by an iScent user is necessarily relevant
for other users. Sometimes it makes sense to track all ac-

6

tions, such as a user’s CVS operations, and sometimes it does
not, such as what Web pages a user visited. User can and
should therefore be able to configure filters that designate the
types of events they want to publish. In the context of a Web
browser, one could, for instance, publish all events regarding
technical documentation. This not only addresses privacy
concerns, but also improves the overall signal-to-noise ratio
in the trails stored by sinks.

4 Implementation
We have constructed a prototype implementation of the
iScent framework, including initial implementations of the
following components: sinks, watchdogs, and kennels.
These components are sufficient to test the creation and stor-
age of iScent events and to validate the iScent type system
and query facility. Our work on a trail viewer is prelimi-
nary and has involved the design of its user interface and the
construction of a tool that can query and retrieve event trails
from sinks. Our initial prototypes have been stress tested
through the use of batch tools that generate tens of thousands
of events and then issue queries that validate the operation of
the sinks, watchdogs, and kennels. These initial efforts rep-
resent a proof-of-concept of the iScent framework; our future
work will involve fleshing out the trail viewer and integrat-
ing client applications. Below, we discuss the various issues
that our initial implementation has raised.

Requirements of the Event Transport Layer
The iScent architecture relies on an event notification system
to provide the transport layer for iScent events. The require-
ments on the transport layer are:

• Events must consist of key/value pairs

• Values can be arbitrary strings

• Subscriptions to events must be supported

• Subscriptions to events should be specific key/value
pairs (e.g. “name equals John Smith” or “age greater
than 24”)

These requirements are met by most event notification sys-
tems. Therefore, the iScent framework is independent of any
particular event system. The current version of iScent uti-
lizes the Siena event notification system [11], which easily
satisfies the above requirements.

Scalability of iScent
iScent’s scalability is dependent on the scalability of its as-
sociated event notification system. Our implementation of
iScent therefore depends on the scalability of Siena, which
has been characterized by Carzanigaet al. in [11]. One of
the main benefits of Siena is that Siena servers can be cou-
pled together in a network. Given a situation where many
iScent components and Siena servers are in use, Siena auto-
matically provides optimal routing of events from producer
to consumer to maximize performance and minimize latency.

Multiple Sinks
iScent can be configured with any number of sinks. This has
several advantages over a single store:

• Sinks can be local to a workgroup, and run on a local
machine. This provides improved performance as the
sink only stores events produced by its workgroup.

• While maintaining local sinks, the addition of larger
sinks collecting all events generated by, e.g. a depart-
ment, provides additional benefits. Data is automati-
cally replicated between sinks for greater data security,
and if one sink is down or slow due to high load, other
sinks can provide access to the desired events.

• These configurations are achieved by installing more or
less specialized subscriptions into sinks that determine
the set of events they store and share. A configuration
is flexibly manipulated since a sink can be added or
removedat run-timesimply by changing its subscrip-
tions.

Querying for Events
Sinks provide for the persistence of events and handle all
queries. Queries are sent to sinks via Siena. This allows
queries to be handled in an efficient and scalable manner.

A query is an iScent event that specifies the type of de-
sired events and (ranges of) values in these events. A sink
subscribes to the query events matching what it stores, and
queries are thus automatically routed (by the underlying
transport layer) to the sinks that can provide answers. When
an iScent component issues a query event, it also subscribes
to confirmation events matching the query. If there are sinks
that are able to fulfill the query, they will issue confirmation
events which are then received by the querying party. While
most event notification systems can efficiently route events,
they are in general not optimized for very large events (Siena
for instance has an upper limit of 64 K). Query results can
be arbitrarily large, and rather than returning the query result
itself in an event, the confirmation event contains contact in-
formation for the answering sink. Upon retrieval of the con-
firmation events, the querying party establishes direct socket
connections to the sinks and retrieves the events (it can also
choose to select only one of the sinks for retrieval). This
lessens the load on the event transport layer considerably. To
lessen the network load further, the queries are compressed
and decompressed automatically. The retrieval of query re-
sults is the only time where an iScent component makes a
direct point to point connection to a sink — at all other times
it generates iScent events that are automatically propagated
by the event transport layer.

The query and confirmation events are themselves iScent
events, and are, as such, stored by the sinks. Apart from
the awareness possibilities in these events, it also allows a
system administrator to monitor how the sinks are used, and

7

exploit this information to move sink data and subscriptions
to improve network performance.

A sink uses an SQL database for storage, and automatically
generates a new table, when an iScent event of a new type
(see below for information on types) is received. This fa-
cilitates rapid query resolution. The current query interface
has been designed to make the most of the SQL database.
Queries can be combined using logical operators, and is able
to create very precise queries.

iScent Events
An iScent event is the atom of the iScent framework. An
event is composed of key/value pairs (or “fields”). All events
have a default set of key/value pairs, shown in Table 1.

Key Example Value
User John Smith<john@comp.com>

Producer org.iscent.app.iScentApp
Host 138.128.34.10

Timestamp 956809312389
id 9KjxG3iBMCvHALTrOe=6xW

Types type1 type4

Table 1: The default iScent key/value pairs

Thus, an event can provide information about its user, how
it was created, where it was created, and when. The id is a
128 bit integer (here presented inbase64 form), created as
a MD5 hash signature of the rest of the event. The use of
MD5 ensures both a unique id and data integrity (since the
MD5 signature is recomputed at arrival and compared with
the existing one). In addition, most events use the Types field
to declare their type(s), i.e. specifying which other fields the
event contains.

The iScent Type System
iScent events are typed, and are checked upon creation and
arrival. The type system is component based and extensible.
Types are defined through iScent type declaration events and
are stored by sinks. A type declaration consists of a (globally
unique) type name, one or more fields with key names unique
within the type, and a definition of the types of these fields.

All values in an event (with the exception of the default val-
ues listed in Table 1) are encoded in XML. The field defini-
tion is a DTD specifying the format of legal values for that
field. The DTDs are stored by sinks and are used by them to
validate the events they consume.

The basis of the iScent type system is the declaration of sin-
gle types, but iScent events can have more than one type.
When an event declares several types, it guarantees that it
contains valid values for all the fields defined in all of the
types. The names of keys are a combination of their original
iScent type name and their own field name, which eliminates
name collisions between types. Combining types can be very

useful; a class of iScent applications can, for instance, share
a common “header” type, plus their own specialized types.
As the number of iScent applications grows, so do the types
defined. These types then provide building blocks that can
be used by other iScent developers when constructing new
iScent applications.

Watchdogs and Kennels
A crucial part of supporting intersubjectivity is the watch-
dog. The watchdog is used to detect the occurrence of certain
iScent events (for instance, opening a document), and alerts
the creator of the watchdog when the condition has been met.

Currently a watchdog consists of two parts: criteria that must
be met, and an event to send when triggered. Watchdogs
can be set to trigger only once, and then disappear, or to
continue to trigger when conditions are met. If a watchdog
reported only to its creator, it would increase the creator’s
project awareness but it would not provide intersubjectivity,
since the people triggering the watchdog would be unaware
of its existence. To enable intersubjectivity the watchdog
also reports to the person who has triggered it. Trail view-
ers automatically subscribe to watchdogs events triggered by
their user, and will alert its user when such an event is re-
ceived. Likewise, by creating a watchdog, a user automati-
cally subscribes to responses from it. These responses will
be received and displayed by a user’s trail viewer.

To ensure the persistence and vigilance of watchdogs, they
reside in kennels. A kennel is a server that registers the con-
ditions of its watchdogs and creates matching subscriptions.
When an iScent event is received, it is checked against the
conditions and, if a match is found, triggers the creation of
an event specified by the appropriate watchdog.

The triggering mechanism is currently a simple if-then
mechanism. Future work will involve the creation of more
sophisticated watchdogs. The most likely approach for im-
provement will be the creation of watchdog Java classes, that
can be uploaded into a kennel. These Java watchdogs can
maintain state between triggering events, so they can, for in-
stance, be used to detect patterns of events and generate an
event only after a pattern has been detected. Another topic
for future work is the migration of watchdogs. Currently
watchdogs are sent to the nearest kennel (or rather the ken-
nel that first accepts the watchdog event). To optimize per-
formance and minimize the network load, it would be better
if watchdogs could migrate to a kennel close to the producers
of events that match the watchdog’s criteria.

5 Future Work
There are many avenues for future work in further devel-
oping the iScent framework and its associated implementa-
tion. Chief among them is the need for evaluating the iScent
framework’s ability to address the project awareness needs of
modern software development projects. We plan to perform
this type of evaluation with two very different methods. The
first method is to conduct laboratory-based usability studies

8

on the user interface of the trail viewer and the kennel. We
need to determine if the conceptual model presented by the
iScent framework provides utility to software engineers and
if the user interface is effective in delivering the functionality
of the iScent framework into the hands of its end users. The
second method is to conduct field studies of the iScent frame-
work in use at an industrial site. The key problem here is
identifying industrial partners and obtaining a commitment
to participate in industrial collaboration. We have successful
track records in university/industry interchange [2] and are
beginning the process of obtaining industrial collaborators
to support this line of research. The goal of the field studies
will be to increase our understanding of the work practices
currently used in industry and how the iScent framework ei-
ther hinders or enhances these procedures.

Secondary plans for future work on the iScent framework
involve exploring techniques to increase the fidelity of event
trails from integrated iScent applications. Application events
of high fidelity leads to better “conversations” between engi-
neers and increases the intersubjectivity that can be achieved
by the iScent framework. However, it must not be difficult
to integrate applications into the iScent framework and thus
techniques are needed to reduce the effort required to inte-
grate an application into the framework. Again, such efforts
will enhance the project awareness that can be achieved by
the iScent framework by giving it more sources of events and
thus increasing the percentage of project work it captures.
In addition, we will be exploring new trail visualizations,
new query mechanisms over trails, more flexible support for
watchdog behaviors, and better tool support for managing
iScent networks.

6 Conclusions
We have presented a framework designed to support project
awareness in large-scale software development contexts that
takes a unique approach to the problem. Leveraging already
existing open hypermedia and event messaging infrastruc-
tures, the iScent framework combines the use of hypermedia
trails with event publish/subscribe techniques to enable in-
tersubjectivity between software engineers and thus promote
wide-spread project awareness throughout a software devel-
opment team. We have described the conceptual layout of
the framework and provided insight into an experimental im-
plementation of it. The implementation employed aggressive
reuse of fielded infrastructure, database technology, and dis-
tributed system techniques in order to scale the implemen-
tation to a level where it becomes feasible to conduct field
studies of the new technology in industrial settings. Having
met these initial scalability concerns, our attention now turns
to evaluating the utility of our formalisms and the effective-
ness of our prototypes.

REFERENCES

[1] V. Ambriola, R. Conradi, and A. Fuggetta. Assessing
process-centered software engineering environments.

ACM Transactions on Software Engineering, 6(3):283–
328, 1997.

[2] K. M. Anderson. Supporting industrial hyperwebs:
Lessons in scalability. InProc. of the 21st International
Conference on Software Engineering, pages 573–582,
Los Angeles, CA, USA, May 1999.

[3] K. M. Anderson, R. N. Taylor, and E. J. Whitehead
Jr. Chimera: Hypertext for heterogeneous software en-
vironments. InProc. of the European Conference on
Hypermedia Technology (ECHT 1994), pages 97–107,
Edinburgh, Scotland, 1994.

[4] S. Bandinelli, E. Di Nitto, and A. Fuggetta. Support-
ing cooperation in the SPADE-1 environment.IEEE
Transactions on Software Engineering, 22(12), 1996.

[5] P. Barthelmess and K. M. Anderson. A view of soft-
ware development environments based on activity the-
ory. Computer Supported Cooperative Work, To appear
in the Special Issue on Activity Theory, 2000.

[6] M. Beaudouin-Lafon and A. Karsenty. Collaboration
awareness in support of collaboration transparency:
Requirements for the next generation of shared window
systems. InProc. of the ACM Symposium on User In-
terface Software and Technology, pages 171–180, Nov.
1992.

[7] N. O. Bouvin. Unifying strategies for Web augmenta-
tion. In Proc. of the 10th ACM Hypertext Conference,
pages 91–100, Darmstadt, Germany, Feb. 1999.

[8] N. O. Bouvin. Designing user interfaces for collabora-
tive Web-based open hypermedia. InProc. of the 11th

ACM Hypertext Conference, San Antonio, USA, May
2000.

[9] F. P. Brooks Jr.The Mythical Man-Month. Addison-
Wesley, 20th anniversary edition, 1995.

[10] M. R. Cagan. The HP SoftBench environment: An
architecture for a new generation of software tools.
Hewlett-Packard Journal, 41(3):36–47, June 1990.

[11] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Achieving scalability and expressiveness in an Internet-
scale event notification service. InProc. of the 19th

ACM Symposium on Principles of Distributed Comput-
ing, July 2000.

[12] P. Dewan and R. Choudhary. Coupling the user-
interfaces of a multiuser program.ACM Transactions
on Computer-Human Interaction, 2(1):1–39, 1995.

[13] P. Dourish and V. Bellotti. Awareness and coordi-
nation in shared workspaces. InProc. of the ACM
1992 Conference on Computer-Supported Cooperative
Work, pages 107–114, Toronto, Canada, Oct. 1992.

9

[14] P. Dourish and S. Bly. Portholes: Supporting aware-
ness in a distributed work group. InProc. of the ACM
Conference on Human Factors in Computing Systems,
pages 541–547, May 1992.

[15] G. Fitzpatrick, T. Mansfield, S. Kaplan, D. Arnold,
T. Phelps, and B. Segall. Augmenting the workaday
world with Elvin. In Proc. of the 6th European Confer-
ence on Computer Supported Cooperative Work, pages
431–450, Copenhagen, Denmark, 1999.

[16] L. Fuchs. AREA: A cross-application notification ser-
vice for groupware. InProc. of the6th European
Conference on Computer Supported Cooperative Work,
pages 61–80, Sept. 1999.

[17] L. Fuchs, U. Pankoke-Babatz, and W. Prinz. Sup-
porting cooperative awareness with local event mech-
anisms: The GroupDesk system. InProc. of the4th

European Conference on Computer Supported Coop-
erative Work, pages 247–262, 1995.

[18] K. Grønbæk, J. Hem, O. L. Madsen, and L. Sloth. De-
signing Dexter-based cooperative hypermedia systems.
In Proc. of the5th ACM conference on Hypertext, Nov.
1993.

[19] C. Gutwin and S. Greenberg. Design for individu-
als, design for groups: Tradeoffs between power and
workspace awareness. InProc. of the ACM Conference
on Computer Supported Cooperative Work, pages 207–
216, Nov. 1998.

[20] K. Hayashi, T. Hazama, T. Nomura, T. Yamada, and
S. Gudmundson. Activity awareness: Framework for
sharing knowledge of people, projects, and places. In
Proc. of the6th European Conference on Computer
Supported Cooperative Work, pages 99–118, Sept.
1999.

[21] G. Junkerman, B. Peuschel, W. Schäfer, and S. Wolf.
MERLIN: Supporting cooperation in software devel-
opment through a knowledge-based environment. In
A. Finkelstein, J. Kramer, and B. Nuseibeh, editors,
Software Process Modelling and Technology, pages
103–130. Research Studies Press Ldt, 1994.

[22] G. E. Kaiser, N. S. Barghouti, and M. H. Sokolsky. Pre-
liminary experience with process modeling in the Mar-
vel software development environment. InProc. of the
23rd Annual Hawaii International Conference on Sys-
tem Sciences, volume Vol. II — Software Track, pages
131–140, 1990.

[23] A. LaMarca, K. Edwards, P. Dourish, J. Lamping,
I. Smith, and J. Thornton. Taking the work out of
workflow: Mechanisms for document-centered collab-
oration. InProc. of the6th European Conference on
Computer Supported Cooperative Work, pages 1–20,
Sept. 1999.

[24] J. C. Lauwers and K. A. Lantz. Collaboration aware-
ness in support of collaboration transparency: Require-
ments for the next generation of shared window sys-
tems. InProc. of the ACM Conference on Human Fac-
tors in Computing Systems, pages 303–312, Apr. 1990.

[25] A. Leontjev. Activity, Consciousness, and Personality.
Prentice Hall, 1978.

[26] D. Li and R. R. Muntz. COCA: Collaborative objects
coordination architecture. InProc. of the ACM Confer-
ence on Computer Supported Cooperative Work, pages
179–188, Nov. 1998.

[27] K. Østerbye and U. K. Wiil. The Flag taxonomy of
open hypermedia systems. InProc. of the 7th ACM Hy-
pertext Conference, pages 129–139, Washington DC,
USA, 1996.

[28] W. Prinz. NESSIE: An awareness environment for co-
operative settings. InProc. of the6th European Confer-
ence on Computer Supported Cooperative Work, pages
391–410, Sept. 1999.

[29] S. P. Reiss. Connecting tools using message passing
in the field environment.IEEE Software, 7(4):57–66,
1990.

[30] M. Roseman and S. Greenberg. Building real-
time groupware with GroupKit, a groupware toolkit.
ACM Transactions on Computer-Human Interaction,
3(1):66–106, 1996.

[31] M. Sohlenkamp. Integrating communication, cooper-
ation and awareness: The DIVA virtual office envi-
ronment. InProc. of the ACM Conference on Com-
puter Supported Cooperative Work, pages 331–344,
Oct. 1994.

[32] J. C. Tang, E. A. Isaacs, and M. Rua. Supporting dis-
tributed groups with a montage of lightweight interac-
tions. In Proc. of the ACM Conference on Computer
Supported Cooperative Work, pages 23–34, Oct. 1994.

[33] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead Jr., J. E. Robbins, K. A. Nies, P. Oreizy, and
D. L. Dubrow. A component- and message-based ar-
chitectural style for GUI software.IEEE Transactions
on Software Engineering, 22(6):390–406, June 1996.

[34] U. K. Wiil and J. J. Leggett. Concurrency control
in collaborative hypertext systems. InProc. of the
5th ACM Conference on Hypertext, pages 14–24, Nov.
1993.

[35] U. K. Wiil and J. J. Leggett. HyperDisco: Collabora-
tive authoring and Internet distribution. InProc. of the
8th ACM Conference on Hypertext, pages 13–23, Apr.
1997.

10

Collaborative Web-based Open Hypermedia and Mutual Awareness
Niels Olof Bouvin

Department of Computer Science, Aarhus University
Aabogade 34A, DK8200 Aarhus N, Denmark

E-mail: n.o.bouvin@daimi.aau.dk

Abstract
This paper addresses some issues in collaborative hyperme-
dia and how hypermedia can be augmented with recent ad-
vances in awareness technologies, especially event notifica-
tion systems. The work done in the Open Hypermedia Sys-
tems Working Group with special focus on collaboration is
presented, along with the Arakne Environment, a hyperme-
dia system based on the Open Hypermedia Protocol. These
systems are discussed in the context of the collaboration is-
sues raised.

Keywords
Collaborative hypermedia, open hypermedia, event notifica-
tion, peripheral awareness, World Wide Web.

1 Introduction
A basic form of collaboration in large document spaces is
collaborative structuring and annotation. By structuring a
document space, we begin to make sense out of it. From
its beginning with Bush’s Memex [10], the hypermedia re-
search community has worked with the structuring of docu-
ment spaces. The Memex was intended to make it possible
for knowledge workers to handle the in 1945 rapidly grow-
ing scientific literature efficiently by supporting associative
thinking. Users of the system would create trails connecting
related documents, and these trails could later be shared with
other Memex users.

Today, we face the largest document space ever created: the
World Wide Web [6]. The Web owes much of its success
to its simple architecture, yet this architecture has some lim-
itations, especially with regards to structuring and collabo-
ration. Users cannot create links from Web pages they do
not own, nor can they create annotations or other hyperme-
dia structures. Whereas the users of the (admittedly hypo-
thetical) Memex could share trails, the modern Web user is
limited to the exchange of URLs. To address this, open hy-
permedia systems have been extended to provide users with
sophisticated hypermedia functionality on the Web. Thus,
the basic collaborative act of structuring can be supported.

Another aspect of collaboration is keeping track of co-
workers’ actions inasmuch as they relate to one’s own ac-
tivities. Collaboration takes place within a shared under-
standing of the task at hand, and this shared understanding

or awareness may be supported by computers. Shared aware-
ness tools range from video systems such as Portholes [15]
to messaging systems such as Elvin [18].

On one side, we have hypermedia tools suited for structuring
large document spaces, and on the other we have awareness
tools suited for helping people collaborate. In the middle, we
have the Web.

Based on this context of collaborative hypermedia and
shared awareness tools, this paper presents a hypermedia
system to augment the Web, both structural and collabora-
tive.

The paper is structured as follows: Section 2 introduces the
main inspirations and foundations for this paper. Section 3
discusses collaboration in hypermedia and how this collabo-
ration may be achieved. Section 4 introduces the Open Hy-
permedia Systems Working Group (OHSWG), and describes
the work done by the group with special focus on collab-
oration. Section 5 introduces the Arakne Environment, a
hypermedia system based on OHSWG technologies. Sec-
tion 6 discusses collaboration in the Arakne Environment in
the context of the issues raised in Section 3. Section 7 de-
scribes directions for future work, and the paper concludes
in Section 8.

2 Related Work
CSCW and hypermedia share common roots. Some of the
earliest papers on both hypermedia and collaboration sup-
port were Bush’s Memex [10, 32] and Engelbart’s Augment
[16, 17]. These tools sought to improve work by helping
knowledge workers to better structure their data and thus
better understand their problem area. Memex would al-
low readers to share trails tying documents together, and
NLS/Augment was a distributed, collaborative hypermedia
and authoring system, even featuring video conferencing.

Being able to annotate and structure information can be seen
as a collaborative activity. While personal annotations cer-
tainly are beneficial to the original annotater, they are also
valuable to others, even when these annotations were not
originally written with the express purpose of publication,
as described by Marshall in [33]. By hypermedia structur-
ing, we impose order, we assert relationships where none
were before, we admit a text into a larger context. These are

1

basic characteristics of hypermedia, and characteristics that
can only be fully realised in a system where users are free to
link, annotate, and structure as they see fit.

The Web is no such hypermedia system. Barring self-
publishing, the Web is a read-only medium. Users cannot
link from pages, they do not own, and there are no provisions
for annotations. The Web is not unique in this aspect. The
field of open hypermedia has since 1989 [35, 37] worked on
providing users with advanced hypermedia functionality by
integrating third-party applications. By hypermedia enabling
the tools commonly used, the users gain the advantages of
hypermedia structuring without having to abandon their tools
of choice. Notable open hypermedia systems include Micro-
cosm [29], HyperDisco [43], DHM [24], Chimera [3], and
HOSS [36]. These system extend existing applications so
that users can create links and other hypermedia structures
between e.g. word-processing documents and spreadsheets.
Given this extension of existing systems, it should come as
no surprise, that the open hypermedia community has also
developed systems to extend the hypermedia functionality of
the Web. Systems, such as DLS [12, 11], DHM/WWW [21],
Webvise [23], and the Arakne Environment [7], all provide
users with the ability to create hypermedia structures on top
of arbitrary Web pages. This is accomplished without modi-
fying the original Web pages, and does thus not rely on hav-
ing write access.

As mentioned in the beginning of this section, some of the
earliest hypermedia systems were collaborative in nature.
Later systems, such as KMS [1], Intermedia [34], DHM [22],
HyperDisco [44], and SEPIA [27, 28, 40] have provided their
users with collaboration support for hypermedia authoring.

As described by Heath and Luff [30] in their analysis of
work done by traffic controllers in the London Underground,
maintaining shared awareness between co-workers can be
crucial. Many systems has endeavoured to support this. The
GroupDesk system [20], the NESSIE system [38], the Elvin
system [18], the AREA system [19], and the BABBLE sys-
tem [9] to mention a few. These systems try to support shared
awareness through means such as messaging, chat, and event
notification. On the Internet, commercial “buddy list” pro-
grams, such as ICQ or AIM, provide their users with similar
functionality.

The Web is increasingly becoming the infrastructure of com-
puting, and as such it becomes natural to collaborate over the
Web. An example of a system supporting this is BSCW [5].
To enable collaborative authoring on the Web, the HTTP pro-
tocol has been extended by the WebDAV (Web Distributed
Authoring and Versioning) working group [41]. WebDAV
compliant Web servers provide users with document lock-
ing and versioning. With advances such as these, the Web is
slowly becoming suited for collaboration.

3 Collaboration in Hypermedia
Wiil and Leggett [42] discuss the requirements of a collabo-

rative hypermedia system. Their six requirements are:

1. Event notification

2. Fine-grained notification

3. User-controlled locking

4. Shared locking

5. Fine-grained locking

6. Persistent collaboration information

This section discusses these requirements as well as other
techniques that might advance collaboration in hypermedia
systems.

Event notification
Shared awareness is a crucial part of collaborative working.
Indeed, shared awareness and mutual understanding forms
the foundation without which communication and thus work-
ing is rendered highly problematic. They form the basis of
articulation work [4], i.e. the process of co-ordinating work.
One technique to support shared or peripheral awareness is
event notification services. Users generate, either implicitly
(e.g. by using an application integrated with the notification
system that generate events automatically) or explicitly (e.g.
by messaging), events through the use of computer artifacts.
Other users can subscribe to these events and are thus kept
aware.

Event notification is only as valuable as the information con-
tained within the notification events. Furthermore, the value
of an event notification system does not necessarily increase
with the amount of information, i.e. received notifications.
Many of the actions taken by co-workers are not directly rel-
evant to the task at hand, but some may be crucial. Likewise,
there may be only a few notifications that are really impor-
tant to a user, and if many events are generated and received,
the important ones are likely to be overlooked, disappearing
in the “noise” of the other events. This problem is usually
addressed through a subscription model, where users before
hand signify which kind of notifications they are interested
in. Depending on the sophistication of the system, a sub-
scription can be simply to an entire class of events, or may
specify conditions only a few events will match. Subscrip-
tions cannot solve the whole problem, as a user may create
a too restrictive subscription and loosing important events,
or create a too inclusive subscription resulting in the sig-
nal/noise problem described above. Many of these concerns
can be addressed by employing “human filtering” through
messaging functionality, so co-workers can alert each other
directly. In practice, this is often accomplished through ordi-
nary communication or email.

An interface for notifications championed by the Elvin sys-
tem [18] is the ticker tape. The ticker tape is a non-intrusive

interface, where notifications scroll by as they are received.
The ticker tape is updated over time, as new notifications re-
place old ones. A user can focus on the ticker tape, when the
user wishes without being interrupted in the continuing work
and without having to open new windows or use a special in-
terface. A weakness of the Elvin model (also found in other
notification services) is that once a notification has scrolled
by or has timed out, it is lost, as notifications generated are
not stored (they are not “mailbox” notifications in the terms
of Wiil and Legget). It is thus most suited to support aware-
ness as work progresses, and cannot be used to catch up with
the activities of others.

Collaborative authoring systems as well as collaborative hy-
permedia systems often uses “live updates”, e.g. as one
worker makes updates, these updates are propagated to other
users working on the same artifacts. This keeps the focus
of the main tool used, rather than having the user consult
with other tools to see what others are doing. An example of
a system using this approach is SEPIA [27, 28, 40], where
changes to documents can be broadcast, as they are made.

The live update approach works well with notification ser-
vices, as users can see that changes have taken place, and
see in the notification interface who caused the change, or
see comments regarding the changes. A related technology
is the use of chat systems or discussion boards used in con-
junction with the ongoing work (exemplified by the Babble
system[9]). This allows users to engage in conversations and
co-ordination over time and location, and, depending on the
system, users can refer back to discussions past.

Locking
One of the basic co-ordination technologies found in most
collaborative authoring systems is the possibility of locking
resources, so that only one person may modify it at a time.
A prime example of a general document locking technol-
ogy that becoming increasingly more widespread is the Web-
DAV system, described by Whitehead and Goland [41]. By
relying on (WebDAV complicant) Web servers for storage,
users can issue time-based locks on Web resources, which
allows geographical dispersed users to work together on a
set of documents without accidently overwriting each oth-
ers’ changes. Locking requires that it is possible to identify
the resource to be locked. In the case of WebDAV the atom
resource is a single document. This is fairly coarse-grained
compared to other systems, where locking can take place
on e.g. one paragraph of text. The advantage of the Web-
DAV system is that it does not require the system to know
the semantics of resources stored within it and it can thus be
much simpler and is not vulnerable to changes in the inter-
nal format of the stored resources. Systems providing finer-
grained locking will in general have to use a special applica-
tion for editing which probably has contributed to the lack of
wide-spread use of fine-grained locking, as users are under-
standably hesitant to abandoning e.g. their word processor
of choice “just” to gain fine-grained locking.

In the context of hypermedia systems, locking is also con-
cerned with locking of hypermedia structures such as links
and anchors. The need for locking of such resources are
however less pressing than the need to be able lock entire
documents. One of the classic collaborative hypermedia
systems, KMS [1] used optimistic concurrency control of
frames. There were no locking mechanisms for frames as
it was unlikely that two persons would be editing the same
frame simultanously given the large number of frames. The
point can also argued from the point of long versus short
term exclusive use of a resource. Documents are often large,
so users can be expected to spend a relatively long time mak-
ing modifications, and in that case it makes very good sense
to lock document to avoid overwrites. However, when the re-
source in question is small and it takes a short time to modify
it, the need for locking decreases, especially if updates to a
resources are propagated to the relevant users, so no one is
unaware of the changes made. This is the case of most hyper-
media structuring mechanisms. Links and anchors are small
entities and the changes to them can be readily distributed.

Persistent collaboration information
Collaboration may but is unlikely to be over in one work
setting. Works continues the next day, as does the need for
co-ordination and awareness between workers. Collabora-
tive systems should and often do reflect this, so that users
need not start from scratch each morning.

Persistent information about collaboration can include infor-
mation such opened documents, tools used, subscriptions to
notifications, and so on. Thus, work can continue from the
point where it was left earlier. Another benefit of persis-
tent collaboration information is that it allows the user be en-
gaged in several collaborations at time (or to alternate differ-
ent collaborations), each collaboration with its own “space”
of documents, locks, tools, events, etc.

Modes of Collaboration
Depending on the work situation, it can make sense to dif-
fer between modes of collaboration. One situation might
dictate that the worked upon resources should be updated
across the participants’ computers as soon as the changes are
made. Some situations may go further with the need for e.g.
shared cursors, so that all using the system see the same. On
the other hand, a user might want to be temporarily isolated
from the actions and updates of others, allowing the user to
concentrate at the task at hand without interruptions or dis-
tractions. This can be supported in the collaborative applica-
tion by employing set “policy” as when and how to distribute
changes. In the context of notification services, it might be
possible to grade events, so that all or only the most impor-
tant notifications are displaying (thus returning to subscrip-
tions, but in this case with a defined set of subscriptions). It
is also possible that the user might want to be engaged in
one live session with immediate updates, and still continue
working in other contexts with less frequent updates. Thus,
working with one task, but being updated from time to time

on the progress on other tasks.

The SEPIA system handles modes of collaboration through
different “coupling modes” ranging from uncoupled (a sin-
gle author working on a document) over loosely (authors col-
laborating) and tightly coupled (authors seeing each others’
updates as they are made) modes. Coupling modes for doc-
uments are changed automatically as more or less authors
work on a document.

4 The Open Hypermedia Systems Working Group
This section briefly introduces the Open Hypermedia Sys-
tems Working Group (OHSWG)1, and the current state of its
work with regards to collaborative hypermedia.

OHSWG is a working group, now in its sixth year, consist-
ing of open hypermedia researchers. One of the goals of the
group has been to develop a shared understanding of open
hypermedia and to support interoperability between open hy-
permedia systems. The current result of this effort is the
Open Hypermedia Protocol (OHP) [13]. OHP specifies the
interaction between hypermedia clients and servers, and has
a general and extensible hypermedia data model. OHP has
been adopted by the Construct hypermedia servers [45], de-
veloped at Aarhus University and Aalborg University Esb-
jerg, Denmark. In addition to navigational hypermedia, Con-
struct also support compositional and spatial hypermedia

OHP supports collaboration through the notion of sessions.
A group of people working together on hypermedia struc-
tures on a set of documents using various hypermedia tools
embodies the session. A session is defined by a set of users,
documents, and tools, and has a coupling mode (ranging
from uncoupled to tightly coupled) and a joining police (e.g.
a public or private session) associated with it. Through the
session, each collaborator is visible to the other collabora-
tors, as are his or her actions, depending on the coupling
mode. The visibility of others’ actions depends on the cou-
pling mode, as does the degree of latency in updates of the
local runtime hypermedia structures. Members of a session
are engaged in the same coupling mode and are thus equally
visible to each other. Typical coupling modes include:

Uncoupled mode Updates on the structure server are not
broadcast to clients. Users save changes explicitly.

Loosely coupled modeChanges on the structure server are
broadcast to clients. Changes are stored automatically.

Tightly coupled mode Changed on the structure server are
broadcast to clients. Changes on the controlling client
are broadcast to other clients, keeping the hypermedia
views involved in sync.

If a collaborator so desires, special subscriptions can be set,
so that specific actions taken by certain users result in noti-
fications. The session is persistent and users can engage and

1http://www.ohswg.org/

disengage at any point, so that a group at a later point can
resume work where it was left.

To support collaboration a session keeps a session record and
a session state, which consists of key/value pairs. The pur-
pose is to record an extensible set of information regarding
the session. Both can in principle been persistent, but cur-
rently the session record is used for persistent information,
such as the members of a session and what tools they are
using, whereas the session state is transient and is used to
pass information of a more fleeting nature (e.g. the position
of a window) between the participating clients. This is es-
pecially used in the tightly coupled session mode, where the
tools used by the particpants closely resembles each other.
This is quite useful for (among other things) shared naviga-
tion through the Web.

Using the session as the central vehicle for collaboration,
OHP handles the basic interactions between collaborators.
The addition of arbitrary key/value pairs in the session state
allows for future extensions. As the session state is broad-
cast to all collaborators in a session (depending on coupling
mode), OHP thus offers finely grained event notification.

One area currently not covered by the OHP is the locking and
versioning of documents. The session state could certainly
be extended to this purpose, but this would only work within
one session. Locking must be handled on higher level to
functional appropriately. Another approach would be to add
an additional protocol to OHP to handle the locking and ver-
sioning of resources. This area has previously been handled
in hypermedia systems, and OHP could be extended like-
wise. As mentioned in Section 3, the need for locking de-
pends on the number and size of the resources to be locked.
If resources are small and numerous, the likelihood of colli-
sions is smaller.

The Construct Architecture
Having introduced the Open Hypermedia Protocol, we will
now turn to an implementation of the standard. The Con-
struct architecture is a hypermedia server architecture based
on the principles of OHSWG. It can be seen in Figure 1. The
application layer is in this figure illustrated by the Arakne
Environment [7]. The general three-layered architecture
compares with the Core Architecture of [25] and many oth-
ers. The responsibilities of the three layers are:

Application layer The programs that the user interacts with
reside here. The application layer is responsible for the
presentation of hypermedia structures and the integra-
tion with third-party applications, as well as allowing
users to interact with others through sessions. The hy-
permedia structure manipulation is handled by exten-
sible set of hypermedia tools (known as ‘Hypermedia
Views) through a likewise extensible set of services that
address specific kinds of hypermedia, such as naviga-
tional or spatial hypermedia.

Figure 1: The OHSWG based Construct architecture. The
hypermedia tools (or “Views”) manipulate the runtime and
storage data model through the interaction with the services
provided by the Arakne Environment. Through a communi-
cation layer the messages from these services are sent to the
Structure Server, where the appropriate core processes them,
resulting in queries to the Hyperstore Server. Every session
has instances of Views as well as services, communication
layers, etc. Thus, in a situation withn sessions, the above
picture would haven session boxes within the Application
layer andn session boxes within the Structure Server.

Structure layer The services above communicate using
Open Hypermedia Protocol with the cores found in the
Structure Server. These cores are responsible for the
actual structural computations (such as in the case of
navigational hypermedia ‘Follow Link). The cores are
also responsible for converting hypermedia structures
into generic structures called ‘units, which are stored
by the storage layer. At this layer we also find the Meta
Session Information Server (MSIS), which handles ses-
sions.

Storage layer The Hyperstore stores all hypermedia struc-
tures once they have been transformed into units at the
structure layer. The current implementation supports
two kinds of storage: file-based and an Oracle database.

When comparing this architecture to OHSWG, it should be
noted that the OHSWG standard currently only describes the
communication between the application layer and the struc-
ture layer. Furthermore, this communication is currently lim-
ited to navigational hypermedia. The Construct architecture
is based on OHSWG and implementation of navigational hy-
permedia complies with the standard. However, the system
has also been extended with support for composites and spa-
tial hypermedia using protocols closely based on the Open
Hypermedia Protocol.

The broadcast of messages is, in the Construct implementa-

tion, accomplished by giving each session a set of hyperme-
dia cores and communication layers in the structure server.
Symmetrically all active sessions at the application layer
have their own hypermedia views, hypermedia services, and
communication layer.

5 Augmenting the Web with Open Hypermedia
As described in the introduction, the Web is currently unable
to handle arbitrary linking and structuring. Several open hy-
permedia systems have been built to address this, and the
Arakne Environment is one such system.

The Arakne Environment is a general environment for an
open set of hypermedia tools. Through integration with the
Microsoft Internet Explorer, the system currently provides
its users with navigational hypermedia with bi-directional
multi-headed links in Web pages and in temporal media
through Navette [8], as well as the guided tour tool Ariadne
[31], and the spatial hypermedia tool CAOS [39].

Using the Arakne Environment and the tools within it, it is
possible to create complex structures on top of Web pages.
Links and annotations created by the hypermedia views are
added, when a Web page is displayed in the user’s Web
browser, so that it becomes possible to make for instance
links to and from pages without modifying the pages them-
selves (which would require ownership of the pages). For
structuring purposes other than navigation, users can create
guided tours with Web pages as nodes in the tour, or organise
many Web pages using spatial hypermedia. The tools can be
employed concurrently, e.g. a user could create links on a
Web page that was a part of a guided tour.

Through its support for hypermedia structuring, the Arakne
Environment allows users collaborate in the sense, that they
can annotate and structure a shared document space. In addi-
tion to this basic functionality, the Arakne Environment has
been extended to utilise the collaborative aspects of OHP,
and how this reflects on functionality as well as user inter-
face is described in the following section.

Handling Collaboration in the Arakne Environment
The current version of the Arakne Environment has been de-
signed to support the collaborative aspects of the Construct
server, and thus of the OHSWG standard. This section de-
scribes how this manifests itself in practice.

All user interactions with a hypermedia view take place
within a session. The user begins by default in a private
session, and can then decide to either launch a hyperme-
dia view in that session, create a new session, or to join an
existing session. Each session has a runtime data model,
shared among the hypermedia views active in the session.
Thus, with several active sessions, several runtime data mod-
els representing perhaps the same hypermedia structures are
present in the Arakne Environment. Rather than a waste of
resources, this conforms to the behaviour expected from cou-
pling modes. As described in Section 3, coupling modes dif-

fer in how often updates take place. So, if a user is engaged
in two sessions in two different coupling modes, a uncoupled
and a tightly coupled session, there should be no ‘spill-over
between the sessions, as this would violate the semantics of
the coupling modes.

Session states are used to communicate the changes within
one user’s hypermedia view to that of other users. A hyper-
media view can, depending on its abilities, generate events
matching changes in its own state (such as the display of an
endpoint, or the movement of a node in a guided tour), and
can symmetrically receive such events and update its own
state accordingly. The session state consists of key/value
pairs and uses a systematic name space to route the updates
received to the right hypermedia view.

The foundation for collaboration in the Arakne Environment
is the session, and Figure 2 shows a screenshot, where a
user is engaged in two sessions. The user is currently work-
ing within the session “OHS Session, using the hypermedia
views Navette and Ariadne. The Session Manager (shown
to the right) is the main interface to interact with sessions
and other users. Using the Session Manager users can see,
who else is using the system, what views they are using, cre-
ate new sessions, see what sessions are available, and join
(or leave) existing sessions. When a user joins a session, it
becomes active, and the user can switch between active ses-
sions through the tabs at the bottom of the Arakne Environ-
ment.

The bottom line of the Arakne Environment is the ticker
tape. Events and messages can be routed here, if the user
so desires. Events scroll by in the ticker tape gradually grey-
ing out, as to show their age. Event subscription is handled
through the Subscription preferences, seen in Figure 3. The
basic event system in the Arakne Environment is based on
the messages sent by OHP as well as session state changes.
In the figure, the user has selected to be alerted in the ticker
tape, whenever the user ’bouvin’ creates or deletes links or
nodes in the ’Web research’ session, as well as subscribing
to four session state changes. This interface is dynamically
created based on the backend’s and the hypermedia view’s
capabilities. Depending on the view’s capabilities, it is pos-
sible to route notifications directly to the view. The view can
then highlight the change reflected by the notification.

6 Collaboration and the Arakne Environment
In this section we will return to the issues raised in Sec-
tion 3, and investigate Arakne in this context. One of the
design goals of the Arakne Environment interface is to sup-
port the seamless transition between single-user and collabo-
rative work, and how this is supported will also be discussed.

Event notification
In the Arakne Environment the awareness of others actions
are supported in two ways: firstly through the use of ses-
sions, where the awareness is explicit, depending on the cou-
pling mode used, and secondly through event notification.

Figure 2: The Arakne Environment. This is is picture of
a situation with two active sessions (as seen by the session
tabs at the bottom), and two hypermedia views. The Session
Manager is shown in the upper right corner

Figure 3: The Subscription interface. Allows a user to sub-
scribe to notifications, and to designate where such notifica-
tions should appear. A line signifies the ticker tape, a box in
the hypermedia view, and a combination both.

As described above, The Arakne Environment sports a ticker
tape at the bottom of the window. The ticker tape is used to
display information that can help users stay aware of what
other people are doing. Such information includes the cre-
ation or modification of hypermedia structures, other actions
taken by other users (e.g. link transversal), or users leav-
ing or joining sessions. The messages displayed in the ticker
tape is repeated for a set time, determined by the user, and
fades during this time, so that a quick glance allows the user
to distinguish recent messages from older ones. Messages
can have associated actions to them, depending on their type,
and the user can select between these actions by clicking on
a message. This results in a popup menu with the appropriate
actions.

Filtering can be done on the type of event, on the issuer of
the event, and on the session the event occurs within. Thus, a
user might continue working in session, but setting the sub-
scription such that when another user returned to his or her
desk and started working with the Arakne Environment in
another session, it would generate a notification in the ticker
tape.

The ticker tape provides an relatively non-intrusive mecha-
nism for keeping users peripheral aware of each others’ ac-
tions. Still the default subscription is no subscriptions at all
(apart from being told when other users leave or join the ses-
sion), so if a user desires no intrusion at all, the system will
not force such an intrusion.

It should at this point be noted, that the Arakne Environment
until recently did not use a separate channel or protocol for
event notification. The notifications received and sent are all
based on either OHP or the Session State changes. As de-
scribed in Section 7, the Arakne Environment is currently
being integrated into the iScent event system [2]. The tran-
sition to iScent is quite simple (it is undergoing testing as of
this writing), and it will enable people not using Arakne to
see what is being done, as well as giving the Arakne users an
interface to a much more general event notification service.

To provide users with a more informal interface for inter-
action, the Arakne Environment sports an Internet Relay
Chat client. This functionality was originally added to facil-
itate the logging of debugging information from distributed
clients, but it has been trivial to extend this to allow the users
to chat with each other. By relying on the IRC standard, it
is also possible for users at a computer without the Arakne
Environment to interact with the other users by using a stan-
dard IRC client. The workplace value of chat tools has been
investigated by the BABBLE system [9]. The team behind
the development of the Arakne Environment (a distributed
team of four people) has used messaging extensively as co-
ordination tool with good results.

Locking
Locking is currently not supported by OHSWG, and thus not
by the Arakne Environment. This is a weakness and more

work needs to be done in this area. The problem domain of
the Arakne Environment is the annotation and structuring of
existing Web pages, and the main problem is then the lock-
ing of the hypermedia structures themselves. As mentioned
in Section 6, this is not necessarily a major problem, espe-
cially as users (depending on the coupling mode) are updated
continually.

In the context of locking Web documents, Arakne supports
WebDAV [41], which is mainly used for publishing annota-
tion as Web pages, but it can also be used to lock other Web
documents. As WebDAV becomes widely adopted this func-
tionality will in actual use probably be superseded by the
WebDAV locking found in the Web page editors employed
by the users.

Persistent collaboration information
As noted above the OHSWG standard provides persistent
sessions, so users can resume work within sessions with
other users at a later point. User can also resume work in
their private sessions, where the state of the views will be
restored as they left it. From the standpoint of the interface,
a session is just another page with some hypermedia views
running in it. It is easy to change between sessions, and it
is obvious which sessions are active. The coupling mode is
an important part of how session work, and the users can dy-
namically change the coupling mode of a session, without
any other changes in the interface. This allows the users to
go smoothly from non-collaborative to collaborative or vice
versa.

Versioning
Versioning is a important component of a collaborative hy-
permedia system, where documents and structures evolve
over time. Currently versioning is not a part of the OHSWG
specification, and this important functionality is thus missing
from the Arakne Environment. The Delta-V working group
[14] under the WebDAV project is expected to provide the
versioning functionality for documents some time this year,
which however still leaves the (harder?) problem of struc-
ture versioning. This is further complicated by the extensi-
ble nature of the Construct model, which can accommodate
many structuring mechanisms. Versioning for navigational
hypermedia cannot be expected to be the same as for spa-
tial hypermedia. One solution would be to apply versioning
at Hyperstore level, where all structure has been turned into
units, but much semantic knowledge might be lost that way.

7 Future Work
Through the development history of the Arakne Environ-
ment, it has undergone several informal user testings, mainly
involving other team members (not directly developing on
the Arakne Environment). This has greatly informed the de-
sign, and has led to numerous significant changes. Formal
user testings have however not been done yet, but are ex-
pected to take place over the summer.

To support more sophisticated event notification mecha-

nisms, the Arakne Environment is currently undergoing a
conversion to the iScent event service. iScent (intersubjec-
tive collaborative event environment) is designed for gen-
eral event notification, and has as an explicit goal to sup-
port intersubjectivity, e.g. reflected knowledge between co-
workers (“I know that you know that I know”). A special
feature of the iScent system is the storage of all generated
events, which then later can be used to catch up with what
has passed. The inclusion of this system is expected to enrich
the value of the notification mechanism already present in
the Arakne Environment, as the notifications displayed will
no longer be limited to “merely” OHP events. In extension of
this, the Arakne Environment will be extended with the Trail
Viewer, a tool for visualising and manipulating previous ac-
tions taken by a user. As all generated events are stored in
the iScent system, it becomes an automatic memory exten-
sion for the user. Given the number of the events generated,
the need for effective structuring and visualisation becomes
necessary, and the development of this tools promises to be
interesting.

8 Conclusion
Collaborative hypermedia is an exciting field, as is the
OHSWG standardisation effort. The session combined with
coupling modes offers a strong tool for support for collabora-
tive work, but there still remains much work to be addressed
by the OHSWG in this aspect. Most obvious is the current
lack of locking and versioning. However, the OHSWG is
still a work in progress, and these fields can be expected to
receive more attention in the future. The promise of inter-
operability between heterogeneous hypermedia systems, and
collaboration between these systems is grand.

So far the use of awareness tools and notification mecha-
nisms in the context of hypermedia seems promising. Sup-
port for collaborative work, while being available, should not
intrude or require unnecessary attention or effort to be used,
or it will not be used, as argued by Grudin [26]

A simpler and much more widespread system is the Web.
While progress is being made with locking and versioning,
the hypermedia model underpinning the Web remains fun-
damentally unsuited for shared structuring and annotation.
The combination of open hypermedia and the Web as exem-
plified in the Arakne Environment enables users to structure
the Web in new ways. The Web is supremely well suited
for this kind of extension, as it is based on open and well
understood document and protocol formats.

With the combination of the open hypermedia structuring
and collaboration support, the Arakne Environment enables
users to work closely together in the structuring of the Web.
The Web is large and not terribly well structured, and the
Web augmentation approach allows users to leverage the in-
formation found on the Web in new ways.

Acknowledgements
The author would like to thank René Thomsen and Michael

Bang Nielsen for their work on version 2.1. Kenneth M.
Anderson has been a valuable discussion partner. The au-
thor is a member of the Coconut projecthttp://www.
cit.dk/coconut/ , a joint research project consisting
of Department of Computer Science, Aarhus University
and Tele-Danmark Internet. The Danish National Centre
for IT-Research<http://www.cit.dk/> supports the Coconut
project.

REFERENCES

[1] R. M. Akscyn, D. L. McCracken, and E. A. Yoder.
KMS: A distributed hypermedia system for managing
knowledge in organizations.Communications of the
ACM, 31(7):820–835, July 1988.

[2] K. M. Anderson and N. O. Bouvin. Enabling project
awareness and intersubjectivity via hypermedia-
enabled event trails. Submitted for publication.

[3] K. M. Anderson, R. N. Taylor, , and E. J. Whitehead,
Jr. Chimera: Hypermedia for heterogeneous software
development environments.ACM Transactions on In-
formation Systems, 18(3), July 2000.

[4] L. Bannon and K. Schmidt. Taking CSCW seriously.
CSCW Journal, 1(1–2), 1992.

[5] R. Bentley, W. Appelt, U. Busbach, E. Hinrichs,
D. Kerr, K. Sikkel, J. Trevor, and G. Ẅotzel. Basic sup-
port for co-operative work on the World Wide Web.In-
ternational Journal of Human Computer Studies, 1997.

[6] T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Poller-
man. World-Wide Web: The information universe.
Electronic Networking: Research, Applications and
Policy, 1(2), 1992.

[7] N. O. Bouvin. Unifying strategies for Web augmen-
tation. In Proceedings of the 10th ACM Hypertext
Conference, pages 91–100, Darmstadt, Germany, Feb.
1999.

[8] N. O. Bouvin and R. Schade. Integrating temporal me-
dia and open hypermedia on the World Wide Web. In
Proceedings of the 8th International World Wide Web
Conference, pages 375–387, Toronto, Canada, May
1999. W3C.

[9] E. Bradner, W. A. Kellogg, and T. Erickson. The adop-
tion and use of BABBLE: A field study of chat in the
workplace. In S. Bødker, M. Kyng, and K. Schmidt,
editors,Proceedings of the 6th European Conference
on Computer Supported Cooperative Work, pages 139–
158, Copenhagen, Denmark, Sept. 1999. Kluwer Aca-
demic Publishers.

[10] V. Bush. As we may think.The Atlantic Monthly, pages
101–108, July 1945.

[11] L. A. Carr, W. Hall, and S. Hitchcock. Link services or
link agents? InProceedings of the 9th ACM Hypertext
Conference, pages 113–122, Pittsburgh, USA, 1998.

[12] L. A. Carr, D. D. Roure, W. Hall, and G. Hill. The dis-
tributed link service: A tool for publishers, authors and
readers. InProceedings of the 4th International World
Wide Web Conference, Boston, USA, 1995. W3C.

[13] H. C. Davis, D. E. Millard, S. Reich, N. O. Bou-
vin, K. Grønbæk, K. M. Anderson, U. K. Wiil, P. J.
Nürnberg, and L. Sloth. Interoperability between hy-
permedia systems: The standardisation work of the
OHSWG. In Proceedings of the 10th ACM Hyper-
text Conference, pages 201–202, Darmstadt, Germany,
1999.

[14] Delta-V Working Group. http://www.webdav.
org/wg/#dv .

[15] P. Dourish and S. Bly. Portholes: Supporting awareness
in a distributed work group. InProceedings of the ACM
Conference on Human Factors in Computing Systems,
pages 541–547, May 1992.

[16] D. Engelbart. A conceptual framework for the augmen-
tation of man’s intellect. In P. Howerton, editor,Vistas
in Information Handling, volume 1, pages 1–29. Spar-
tan Books, Washington DC, USA, 1963.

[17] D. Engelbart. Authorship provisions in Augment. In
Proceedings of the IEEE Compcon Conference, San
Francisco, USA, 1984. IEEE.

[18] G. Fitzpatrick, T. Mansfield, S. Kaplan, D. Arnold,
T. Phelps, and B. Segall. Augmenting the worka-
day world with Elvin. In S. Bødker, M. Kyng, and
K. Schmidt, editors,Proceedings of the 6th European
Conference on Computer Supported Cooperative Work,
pages 431–450, Copenhagen, Denmark, Sept. 1999.
Kluwer Academic Publishers.

[19] L. Fuchs. AREA: A cross-application notification ser-
vice for groupware. In S. Bødker, M. Kyng, and
K. Schmidt, editors,Proceedings of the 6th European
Conference on Computer Supported Copperative Work,
pages 61–80. Kluwer Academic Publishers, Sept. 1999.

[20] L. Fuchs, U. Pankoke-Babatz, and W. Prinz. Sup-
porting cooperative awareness with local event mech-
anisms: The GroupDesk system. InProceedings of the
4th European Conference on Computer Supported Co-
operative Work, pages 247–262, Stockholm, Sweden,
1995.

[21] K. Grønbæk, N. O. Bouvin, and L. Sloth. Designing
Dexter-based hypermedia services for the World Wide
Web. In M. Bernstein, L. Carr, and K. Østerbye, ed-
itors, Proceedings of the 8th ACM Hypertext Confer-
ence, pages 146–156, Southampton, UK, Apr. 1997.

[22] K. Grønbæk, J. A. Hem, O. L. Madsen, and L. Sloth.
Cooperative hypermedia systems: A Dexter-based ar-
chitecture.Communications of the ACM, 37(2):64–74,
Feb. 1994.

[23] K. Grønbæk, L. Sloth, and P. Ørbæk. Webvise: browser
and proxy support for open hypermedia structuring
mechanisms of the World Wide Web. InProceedings
of the 8th International World Wide Web Conference,
pages 253–267, Toronto, Canada, 1999. W3C.

[24] K. Grønbæk and R. H. Trigg. Design issues for a
Dexter-based hypermedia system.Communications of
the ACM, 37(2):40–49, Feb. 1994.

[25] K. Grønbæk and U. K. Will. Towards a com-
mon reference architecture for open hyperme-
dia. JoDI, Journal of Digital Information, 1(2),
1997. http://jodi.ecs.soton.ac.uk/
Articles/v01/i02/Gronbak/ .

[26] J. Grudin. Two analyses of CSCW and groupware.
Technical Report 323, Department of Computer Sci-
ence, University of Aarhus, Denmark, July 1990.

[27] J. M. Haake, T. Knopik, and N. Streitz. The SEPIA hy-
permedia system as part of the POLIKOM telecoopera-
tion scenario. InProceedings of the 5th ACM Hypertext
Conference, pages 235–237, Seattle, USA, Nov. 1993.

[28] J. M. Haake and B. Wilson. Supporting collaborative
writing of hyperdocuments in SEPIA. InConference
proceedings on Computer-supported cooperative work,
pages 138–146, Toronto, Canada, Nov. 1992.

[29] W. Hall, H. C. Davis, and G. Hutchings.Rethinking
Hypermedia: The MicroCosm Approach. Kluwer Aca-
demic Publishers, Norwell, USA, 1996.

[30] C. Heath and P. Luff. Collaboration and control: Cri-
sis management and multimedia technology in London
Underground line control rooms.CSCW Journal, 1(1–
2):69–94, 1992.

[31] J. J̈uhne, A. T. Jensen, and K. Grønbæk. Ariadne:
A Java-based guided tour system for the World Wide
Web. In Proceedings of the 7th International World
Wide Web Conference, Brisbane, Australia, 1998.
W3C.

[32] P. Kahn, J. M. Nyce, T. Oren, G. Crane, L. C. Smith,
R. Trigg, and N. Meyrowitz. From Memex to hyper-
text: understanding the influence of Vannevar Bush. In
Proceedings of the 3rd ACM Conference on Hypertext,
page 361, San Antonio, USA, Dec. 1991.

[33] C. C. Marshall. Toward an ecology of hypertext anno-
tation. InProceedings of the 9th ACM Hypertext Con-
ference, pages 40–49, Pittsburgh, USA, 1998. ACM.

[34] N. K. Meyrowitz. Intermedia: The architecture and
construction of an object-oriented hypermedia system
and applications framework. InProceedings of ACM
conference on Object Oriented Programming Systems,
Languages and Applications (OOPSLA 86), 1986.

[35] N. K. Meyrowitz. The missing link: Why we’re all do-
ing hypertext wrong. In E. Barrett, editor,The society
of text: Hypertext, hypermedia and the social construc-
tion of information, pages 107–114. MIT Press, Cam-
bridge, USA, 1989.

[36] P. J. N̈urnberg, E. R. Schneider, and J. J. Leggett.
Designing digital libraries for the hyperliterate age.
Journal of Universal Computer Science, 2(9):610–622,
1996.

[37] A. Pearl. Sun’s link service: A protocol for open link-
ing. InProceedings of the 2nd ACM Conference on Hy-
pertext, pages 137–146, Pittsburgh, USA, Nov. 1989.

[38] W. Prinz. NESSIE: An awareness environment for
cooperative settings. In S. Bødker, M. Kyng, and
K. Schmidt, editors,Proceedings of the 6th European
Conference on Computer Supported Copperative Work,
pages 391–410. Kluwer Academic Publishers, Sept.
1999.

[39] O. Reinert, D. Bucka-Lassen, C. A. Pedersen, and P. J.
Nürnberg. CAOS: A collaborative and open spatial
structure service component with incremental spatial
parsing. InProceedings of the 10th ACM Hypertext
Conference, pages 49–50, Darmstadt, Germany, 1999.

[40] N. A. Streiz, J. M. Haake, J. Hannemann, A. Lemke,
W. Schuler, H. Scḧutt, and M. Tḧuring. SEPIA: A co-
operative hypermedia authoring environment. InPro-
ceedings of the European Conference on Hypermedia
Technology (ECHT 1992), pages 11–22, Milan, Italy,
1992.

[41] E. J. Whitehead Jr. and Y. Y. Goland. WebDAV: A
network protocol for remote collaborative authoring on
the Web. In S. Bødker, M. Kyng, and K. Schmidt,
editors,Proceedings of the 6th European Conference
on Computer Supported Cooperative Work, pages 291–
310, Copenhagen, Danmark, 1999. Kluwer Academic
Publishers.

[42] U. K. Wiil and J. J. Leggett. Concurrency control in
collaborative hypertext systems. InProceedings of the
ACM Hypertext 1993 Conference, pages 14–24, Nov.
1993.

[43] U. K. Wiil and J. J. Leggett. The HyperDisco approach
to open hypermedia systems. InProceedings of the 7th

ACM Hypertext Conference, pages 140–148, Washing-
ton DC, USA, Mar. 1996.

[44] U. K. Wiil and J. J. Leggett. Workspaces: The Hyper-
Disco approach to Internet distribution. In M. Bern-
stein, L. Carr, and K. Østerbye, editors,Proceedings
of the 8th ACM Hypertext Conference, pages 13–23,
Southampton, UK, Apr. 1997.

[45] U. K. Wiil and J. J. N̈urnberg. Evolving hypermedia
middleware services: Lessons and observations. In
Proceedings of the 1999 ACM symposium on Applied
computing, pages 427–436, San Antonio, USA, Feb.
1999.

	Contents
	Chapter 1: Foreword
	Chapter 2: Danish Summary
	Chapter 3: Introduction and Motivation
	Chapter 4: Hypermedia and the Web
	Chapter 5: Related Work
	Chapter 6: Contributions
	Chapter 7: Challenges for Web Augmentation
	Chapter 8: Conclusion
	Appendix A: Use Studies
	Appendix B: Installing the Arakne Environment
	Appendix C: Vocabulary
	Bibliography
	P1: Unifying Strategies for Web Augmentation
	P2: Integrating Temporal Media and Open Hypermedia on the World Wide Web
	P3: Experiences with OHP and Issues for the future
	P4: Enabling Project Awareness and Intersubjectivity via Hypermedia-Enabled Event Trails
	P5: Collaborative Web-based Open Hypermedia and Mutual Awareness

