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Abstract

In this PhD Dissertation we develop methods for proving contextual equivalence
and termination.

Contextual equivalence. We present three papers on contextual equivalence.
All three share a common setup: They are based on an FM-denotational model
with a parameterized admissible Kripke-style logical relation on top of a univer-
sal recursive domain. The combination of expressible parameters and a recursive
domain makes it non-trivial to establish the existence of the relations, and this
has required some new ideas. Our method is the first proof method for contex-
tual equivalence based on a logical relation over a denotational semantics for a
language with recursive types and dynamic allocation of references of any type.
The first paper gives the general setup. The second paper gives a relationally
parametric interpretation of polymorphic types. This is not quite as general
as we would like; we restrict the type of references so that the type must be
closed. It is to our knowledge the first relationally parametric model for higher-
order store and polymorphic and recursive types. The third paper is primarily
concerned with refining the definition of parameters.

Termination analysis. In the last paper in the thesis we develop a sound
and fully-automated algorithm to show that evaluation of a given untyped λ-
expression will terminate under call-by-value. The “size-change principle” from
first-order programs is extended to arbitrary untyped λ-expressions in two steps.
The first step suffices to show call-by-value termination of a single, stand-alone
λ-expression. The second suffices to show termination of any member of a
regular set of λ-expressions, defined by a tree grammar.
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1 Introduction

In this thesis we develop proof methods for contextual equivalence and termi-
nation. The thesis consists of two articles and two technical reports. Three of
these papers are concerned with contextual equivalence and one with termina-
tion analysis. Equivalence is analyzed in a functional language extended with
constructs to dynamically allocate and update higher-order store. Termination
is analyzed in the untyped λ-calculus. Here in the introduction we give a short
overview of each paper and briefly mention its immediate predecessors. In the
individual papers there are further discussions about related and future work.

1.1 Contextual Equivalence

It is common to define two programs to be contextually equivalent if they have
the same termination behavior in all closing contexts. We aim at giving a sound
characterization that eases proofs of contextual equivalence in many cases. So we
aim to be able to prove a large set of pairs of programs equivalent in a relatively
easy way. Proving equivalence of programs is important for ensuring correctness
of module exchanges or program transformations. When we want to prove
contextual equivalence of two programs then the universal quantification over all
contexts makes the reasoning difficult. There has therefore been much research
activity targeted at developing accessible methods for equivalence proofs. Such
methods are particularly challenging to develop for higher-order languages with
recursive types, dynamic allocation and higher-order store. There are several
reasons for this. Circular structures in the store are possible and so is also
recursion through the store. Further, as programs may update as well as read
the store, it is necessary to consider the behavior of execution in related stores.
For higher-order store the behaviors of stored values depend themselves on the
contents of the store, and relatedness of stored values is dependent in a non-
trivial way of the contents of the stores. One of the consequences of this is
that we need to require a weakening property expressing that related values
of any type with respect to two stores s1, s2 will still be related also when
activated in any future possibly updated stores. This again requires a precise
way of expressing that two stores belong to the set of future updated stores
with relation to the stores s1, s2. When the language allows dynamic allocation
then relatedness must capture the possibility of keeping dynamically allocated
locations hidden and preserving a local invariant, as well as the possibility of
export of dynamically allocated locations.

Dynamic allocation in languages with store containing values of less general
types has been analyzed, prior to our work, by several researchers including
Pitts and Stark(39) and Benton and Leperchey(7). Here we extend this line of
research to encompass higher-order store and recursive and polymorphic types.
We will just briefly mention some key insights and ideas from these papers,
which are important for our work. Pitts and Stark (39) present a method for
reasoning about contextual equivalence for functional programs with recursion,
assignment and integer references. It is possible that local references can be
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exported out of their original scope during evaluation. They devise a family of
syntactic logical relations parameterized by state relations. To analyse program
equivalence it is necessary to define relations not only between expressions, but
also between continuations. First Pitts and Stark give a continuation based
formulation of termination where the continuations corresponds to evaluation
contexts (Felleisen). The formulation of termination via continuations makes
it possible to define a termination relation by structural induction. With this
formulation of termination many properties including the unwinding theorem
can be proven by induction on the derivation of termination. It is also essential
for the definition of the logical relations used for proving contextual equivalence
and for the proof of the fundamental property. The parametric logical relation
is given by simultaneous definition of three binary relations between values,
continuations and expressions. The definitions make extensions of the used
store explicit. The definition of a binary relation between values is by structural
induction on the type. This definition uses, in an essential way, that references
are of integer types such that lookup will not require another lookup and cannot
involve circularity. The logical relation is then extended to a relation between
open expressions. Pitts and Stark show that the fundamental property holds
and at simple parameters the relation coinside with contextual equivalence and
ciu-equivalence.

The most direct predecessor for our work is Nick Benton and Benjamin Lep-
erchey: “Relational reasoning in a Nominal Semantics of Storage” (7). Benton
and Leperchey give a method for proving contextual equivalence of programs
with local state in a monadically typed language with references to integers and
references to such. They develop the concept of accessibility maps to express
disjointness properties of store areas, and differentiate in their parameters be-
tween the visible area of stores and the hidden invariants. This understanding
of locality in stores, as also Reddy and Yang’s (46), takes inspiration from the
work in separation logic for local reasoning about storage. The proof method
by Benton and Leperchey use a parameterized logical relation over a nominal
denotational semantics, where the atom set is the set of store locations. The
logical relation is used to prove equivalences that involve privacy of local store.

We extend their work in several ways. We have richer type systems includ-
ing recursive and polymorphic types and higher-order store. We also give more
refined definitions of parameters. The structure of our setup is very much in-
spired from their work, but the additional features in the language add some
extra significant complications to the understanding of equivalence as well as to
the denotational interpretation. As Benton and Leperchey, we use FM-domains
where the atoms are location-names, but because we have higher-order store we
give our denotational interpretation in a universal recursive domain defined by
a mixed variant recursive equation. The proof that such an FM-domain exists
builds on results by Mark Shinwell in his PhD thesis: The Fresh Approach:
“Functional Programming with Names and Binders”(52). Shinwell transfers
the results from Andrew Pitts: “Relational Properties of domains”(40) to FM
domains. In the proof that our logical relations exist we also build on the work
of Pitts and Shinwell. Here, however, we have also developed some new ideas,
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so that we can define the relation in a way that makes a version of the proof
method applicable, and at the same time makes it possible to formulate very
precise properties for relatedness in the parameters.

So, we analyse equivalence in a monadically typed ML-like functional lan-
guage with dynamic allocation of higher-order store. The three papers on
contextual equivalence share a common setup: They are based on an FM-
denotational model with an admissible Kripke-style logical relation on top of
a universal recursive domain. The methods give ways to express why two pro-
grams are expected to be equivalent via definitions of local parameters. Such
definitions of local parameters express the intuition for why two programs are
equivalent and are essentially the only non-trivial parts in a proof of equivalence.
The combination of expressible parameters and a recursive domain makes it,
however, non-trivial to establish the existence of the relations in the first place.

Relational Reasoning for Recursive Types and References

The first article on contextual equivalence Relational Reasoning for Recursive
Types and References is background for the other two. It is a conference article
presented at APLAS 2006, joint work with Lars Birkedal. We develop a proof
method for contextual equivalence for a language with recursive types and dy-
namically allocated general references. As explained the proof method is based
on a Kripke-style logical relation on top of a nominal denotational semantics.
Our method is the first proof method for contextual equivalence based on a log-
ical relation over a denotational semantics for a language with recursive types
and dynamic allocation of references of any type. An alternative proof method
based on bisimulations was developed by Koutavas and Wand (28) in parallel
to ours.

In this paper we give the denotations in a four-tuple recursive domain
D = (V, K, M, S) where denotations of values belong in V, denotations of com-
putations in M, denotations of continuations in K and denotations of stores in
S. Our parameterized logical relation then consists of a parameterized relation
on each of the four domain parts. The parameters have the form Δr where Δ is
a store-type, typing the finite visible area of two stores and r express invariants
for local state. There is an order on the set of parameters written Δ′r′ � Δr.
A larger parameter corresponds to a later time in program executions where
some locations may have been updated, more visible locations may have been
allocated and more hidden invariants may have been built up.

We have formulated the definition of parameters so that they can be used to
express properties of higher-order store. In particular it is possible to express
for any type that when certain conditions hold for the stores then two locations
will hold values of that type related ’at the current time’ of program execution.
It is not always appropriate to require that the locations hold values related
at the time (expressed by a parameter) when the local parameter is initialized.
Because when later updated with related values, the relatedness of these new
values may demand additional properties of stores built up in the meantime
and expressed as added local parameters or extra visible locations. So these
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new stored values may not be related under the parameter corresponding to the
time where the invariant was initialized. To facilitate such an interpretation
we give, in these situations, the parameters a syntactic formulation as pairs of
locations together with types. There is a one way weakening property for related
values, computations and continuations expressing that relatedness is preserved
under larger parameters. One of the benefits of this is that when related values
are stored and later fetched again from the stores, then they are related also at
the time of retrieval.

The existence of the logical relation requires a separate proof in the style
of Andrew Pitts and Mark Shinwell. Since we express invariants for local state
in the parameters of our relation, and these will not necessarily be preserved
under approximations, one cannot immediately apply Pitts’ existence proof for
the relation. Thus we define a four-ary parameterized relation. An element may
be thought of as two pairs (d′1, d

′
2) and (d1, d2), where we require approximation

in the domain theoretical sense d′1 � d1 and d′2 � d2. The pair (d1, d2) may
be considered as having parameter status. For related states (s′1, s1, s

′
2, s2, Δr),

the invariants for local state expressed by the parameter r are required to hold
for s1, s2 while the approximation in the existence proof is carried out on the
primed places. Correspondingly we require for chains in the relation running
over the primed places, with d1, d2 fixed, that least upper bounds will be in the
relation.

For computations (m′
1,m1,m

′
2,m2, T τ, Δr) to be related we likewise require

m′
1 � m1 and m′

2 � m2 and additionally we require crosswise termination ap-
proximation under application from the approximated elements in one side to
the non-approximated elements in the other side. That is; for any extended
parameter Δ′r′ � Δr, related continuations (k′

1, k1, k
′
2, k2, (x : τ), Δ′r′) and re-

lated states (s′1, s1, s
′
2, s2, Δ′r′) it must hold that m′

1k
′
1s

′
1 = � ⇒ m2k2s2 = �

and m′
2k

′
2s

′
2 = � ⇒ m1k1s1 = �. With these definition we can prove by the

methods from Andrew Pitts and Mark Shinwell that the four-ary relation exists.
Based on the four-ary relation we can then extract a binary relation, in

which we can relate denotations of open terms. This binary relation implies
contextual equivalence at parameters which only give a set of visible locations
expected to hold related values but no hidden invariants. An equivalence proof
for two programs then requires us to show that their denotations are in the
binary relation under such a simple parameter. This proof then proceeds in a
modular way and it often requires that subexpressions are proven to be related
under more complicated parameters for which we define local parameters.

Relational Parametricity for Recursive Types and References of
Closed Types

The technical report Relational Parametricity for Recursive Types and Refer-
ences of Closed Types is joint with Lars Birkedal. Here we add impredicative
polymorphism to the language but restrict the type τ ref of references such
that τ must be closed. We then give a relational interpretation in a function
space lattice. In the relational interpretation of a type [[τ ]]t(Ξ�R)(Δr) we apply
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to a type environment Ξ together with relations �R for all the type variables in
Ξ. The relations �R are functions from parameters to admissible relations. A
technical reason for restricting our setup to references of closed types is that we
can then keep all type expressions in the parameters Δr closed. The store-types
are closed and we also only need to have closed types associated with pairs of
locations in the invariant r. So we do not need to apply our parameters Δr
to relations �R and relatedness for states does not depend on relations �R. This
enables us to prove the identity extension lemma. We want the interpretation of
[[τ ]]t(Ξ�R) to depend only on the relations for the free type variables that occur in
the type τ also if this is a strict subset of Ξ. We express this as the two proper-
ties ’Ξ-strengthening’ and ’Ξ-weakening’ which identify [[τ ]]t(fv(τ) �R) with any
[[τ ]]t(Ξ′ �R′) where (Ξ′ �R′) ⊇ (fv(τ) �R). Further we want our logical relation to
have the properties downwards closure, again on the primed places, and param-
eter weakening and admissibility. In this paper in the existence proof for our
logical relation all these properties are added as requirements to the relational
structure, we then prove that the properties are preserved under intersections.
The relations with these properties over a domain together with set inclusion
order and set intersection meets constitute a complete lattice. Further we prove
that the properties are preserved under the action of the domain construction
functor on relations. The existence proof for the relation is then done mainly
along the lines of Pitts and Shinwell but now in the lattice of relations with
these properties, so our fixed point relation has the properties.

This paper is to our knowledge the first relationally parametric model for
higher-order store and polymorphic and recursive types, even if it is not as
general as we would like due to the restriction on the type of references. We
hope in the future to be able to model relational parametricity in full generality;
this report is a step in that direction.

Relational Reasoning for Contextual Equivalence

The technical report Relational Reasoning for Contextual Equivalence is mostly
concerned with the format for parameters. The language we analyse has re-
cursive types, impredicative polymorphism and general dynamically allocated
references. There is no restriction on the type of references but we do not give
a relationally parametric interpretation of polymorphic types. For values to be
related in a polymorphic type we require that the corresponding computation
bodies are related as computations for any substitution of a closed type. As
before we define a four-ary relation on top of a recursive domain, and then
the existence proof for the relation is done mainly along the lines of Pitts and
Shinwell.

Equivalence proofs for two programs are in our setup in all three papers
done in a modular way, a proof will often involve sub-proofs where sub-terms
are proven to behave relatedly. To analyse if two programs are related, we
will expect related elements for the free variables and apply the programs’ de-
notations to continuations and states assumed to be related. Sometimes this
will be unfolded so that we get two sub-computations applied to continuations
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where the initial parts are generated by the original programs. For instance
this may happen if the programs have a free variable of function type, and this
function-variable is applied in the middle of the programs. In the technical
report we refine the definition of parameters, so that they can take advan-
tages of knowledge of initial parts of continuations. The development may seem
rather technical, there is an extensive explanation in the technical report. We
differentiate between parameters for computations and continuations, and the
refinement also involves two different order relations among parameters. The
relation is based on a more detailed understanding of the interaction between
computations and continuations in the presence of higher-order store. We can
express that functions may preserve more than one invariant. If the initial part
of continuations change states from one such invariant to another, then (stored)
related functions will still behave related. We have also added ways to express
that functions may change a local invariant in an irreversible way. Further, we
have added a way to express explicit divergence. A parameter may express, that
one side has diverged and in the other side an invariant holds which should then
eventually ensure divergence there. We find that the parameters can express in
a natural way hypotheses of why we expect two programs to be equivalent. A
proof of equivalence can then be a rather automatic test of hypotheses. Such
a proof may though require many rather trivial steps, unfolding of denotations
and of the definitions of the relation. Because the parameters are expressive we
find that the method gives much help to proofs of program equivalences. In the
future we intend to explore whether this method gives more help in equivalence
proofs than the methods based on sets of bisimulations.

1.2 Termination

Call-by-value Termination in the Untyped λ-Calculus

The last article Call-by-value Termination in the Untyped λ-Calculus is joint
work with Neil D. Jones. It is a journal article accepted for publication and
it extends an earlier conference paper by the same authors presented by Neil
Jones at RTA 2004.

The size change principle to prove termination for first order programs with a
well founded order on parameter values was described by C.S. Lee, N.D. Jones
and A.M. Ben-Amram (32). In the present article we develop a termination
analysis based on The Size Change Principle for a single lambda-expression
which we often think of as a program together with its input. We then further
develop the method so that we can analyse whether a program will terminate
when applied to any input from a well formed input set given by a tree grammar.
The analysis can be fully automated, we have developed a simple implementa-
tion (not included in the thesis). The method is safe. As the problem in general
is undecidable and the method is safe and fully automatic, so the proof method
is not complete and there are terminating programs which we cannot certify to
terminate.

It is not immediate to see how the ingredients from the first version of The
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Size Change Principle can be found in the λ-calculus. We use an environment
based version of operational semantics where we for applications instead of sub-
stitution make updates in the environment. A state has the form of a finite tree,
it is an expression together with an environment binding variables to states. The
initial state consists of the program together with the empty environment. Up-
dates in the environment are performed in the operational semantics during
program execution. We can then show that any occurring expression in a state
will be a subexpression of the original program. This opens up for a finite ap-
proximation of the state space. We may approximate a state by forgetting the
environment completely or, for instance, by only considering the parts of envi-
ronments up to some fixed level in the tree. In the paper we have chosen the
coarsest version and remove environments in the approximation. Further the
operational semantics is extended with an explicit calls-relation so that we can
find the control flow graph for the program and the call sequences that follow
it. We can then trace nontermination as an infinitely long sequential state tran-
sition. An environment will have the form of a finite tree, and the well founded
order in which we show decreases is based on the height of environments. Size
change graphs for calls relate bindings in environments. By abstract interpre-
tation we find an approximation to the execution of the program with its input
with a finite state space, where we can still generate safe size change graphs.
Based on that we can then perform a safe analysis.

When we extend the analysis to cover a program with any arbitrary input
from a given input set, e.g. Church numerals, we do this by extending the λ-
calculus language with nonterminals. A nonterminal represents a set of lambda
expressions, and we define what free variables of a nonterminal and what a
subexpression of a nonterminal should be. We prove that execution of the
program with nonterminals can simulate the execution of the program with any
arbitrary input from the input set, and that the generated size change graphs
are appropriate for a safe termination analysis. The termination analysis in
itself can then be performed very similar to before.
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Relational Reasoning for
Recursive Types and References

Nina Bohr and Lars Birkedal

IT University of Copenhagen (ITU)
{ninab,birkedal}@itu.dk

Abstract. We present a local relational reasoning method for reasoning
about contextual equivalence of expressions in a λ-calculus with recur-
sive types and general references. Our development builds on the work
of Benton and Leperchey, who devised a nominal semantics and a local
relational reasoning method for a language with simple types and simple
references. Their method uses a parameterized logical relation. Here we
extend their approach to recursive types and general references. For the
extension, we build upon Pitts’ and Shinwell’s work on relational rea-
soning about recursive types (but no references) in nominal semantics.
The extension is non-trivial because of general references (higher-order
store) and makes use of some new ideas for proving the existence of the
parameterized logical relation and for the choice of parameters.

1 Introduction

Proving equivalence of programs is important for verifying the correctness of
compiler optimizations and other program transformations. Program equivalence
is typically defined in terms of contextual equivalence, which expresses that two
program expressions are equivalent if they have the same observable behaviour
when placed in any program context C. It is generally quite hard to show directly
that two program expressions are contextually equivalent because of the univer-
sal quantification over all contexts. Thus there has been an extensive research
effort to find reasoning methods that are easier to use for establishing contextual
equivalence, in particular to reduce the set of contexts one has to consider, see,
e.g., [40, 9, 3, 33] and the references therein. For programming languages with
references, it is not enough to restrict attention to fewer contexts, since one also
needs to be able to reason about equivalence under related stores. To address
this challenge, methods based on logical relations and bisimulations have been
proposed, see, e.g., [42, 7, 55]. The approaches based on logical relations have
so far been restricted to deal only with simple integer references (or references
to such). To extend the method to general references in typed languages, one
also needs to extend the method to work in the presence of recursive types. The
latter is a challenge on its own, since one cannot easily establish the existence of
logical relations by induction in the presence of recursive types. Thus a number
of research papers have focused on relational reasoning methods for recursive
types without references, e.g., [9, 3]. Recently, the bisimulation approach has
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been simplified and extended to work for untyped languages with general refer-
ences [28, 27]. For effectiveness of the reasoning method, we seek local reasoning
methods, which only require that we consider the accessible part of a store and
which works in the presence of a separated (non-interfering) invariant that is
preserved by the context. In [7], Benton and Leperchey developed a relational
reasoning method for a language with simple references that does allow for local
reasoning. Their approach is inspired by related work on separation logic [47,
46]. In particular, an important feature of the state relations of Benton and Lep-
erchey is that they depend on only part of the store: that allows us to reason that
related states are still related if we update them in parts on which the relation
does not depend. In this paper we extend the work of Benton and Leperchey
to relational reasoning about contextual equivalence of expressions in a typed
programming language with general recursive types and general references (thus
with higher-order store). We arrive at a useful reasoning method. In particular,
we have used it to verify all the examples of [28]. We believe that the method is
simple to use, but more work remains to compare the strengths and weaknesses
of the method we present here with that of loc.cit.

Before giving an overview of the technical development, we now present two
examples of pairs of programs that can easily be shown contextually equivalent
with the method we develop. The examples are essentially equivalent to (or
perhaps slightly more involved than) examples in [28]. Section 5 contains the
proofs of contextual equivalence.

The programs M and N shown below both take a function as argument
and returns two functions, set and get. In M , there is one hidden reference y,
which set can use to store a function. The get function returns the contents of
y. The program N uses three local references y0, y1 and p. The p reference holds
a integer value. The set function updates p and depending on the value of p it
stores its argument in either y0 or y1. The get function returns the contents of y0

or y1, depending on the value of p. Note that the programs store functions in the
store. Intuitively, the programs M and N are contextually equivalent because
they use local storage. The proof method we develop allows us to prove that they
are contextually equivalent via local reasoning.

M = rec f (g: τ → Tτ ′): T (((τ → Tτ ′) → Tunit) × (unit → T (τ → Tτ ′))) =
let y ⇐ ref g in
let set ⇐ val (rec f1M (g1 : τ → Tτ ′) : Tunit = y := g1) in
let get ⇐ val (rec f2M (x : unit) : T (τ → Tτ ′) = !y) in

(set,get)

N = rec f (g: τ → Tτ ′): T (((τ → Tτ ′) → Tunit) × (unit → T (τ → Tτ ′))) =
let y0 ⇐ ref g in
let y1 ⇐ ref g in
let p ⇐ ref 0 in
let set ⇐ val (rec f1N (g1 : τ → Tτ ′) : Tunit =

if iszero(!p) then
(p := 1; y1 := g1)
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else
(p := 0; y0 := g1)) in

let get ⇐ val (rec f2N (x : unit) : (τ → Tτ ′) =
if iszero(!p) then !y0 else !y1) in

(set,get)

Next consider the programs M ′ and N ′ below. They both have a free variable
g of function type. In M ′, g is applied to a function that just returns unit and
then M ′ returns the constant unit function. In N ′, g is applied to a function
that updates a reference local to N ′, maintaining the invariant that the value
of the local reference is always greater than zero. After the call to g, N ′ returns
the constant unit function if the value of the local reference is greater than zero;
otherwise it diverges (Ω stands for a diverging term). Intuitively, it is clear that
M ′ and N ′ are contextually equivalent, since the local reference in N ′ initially
is greater than zero and g can only update the local reference via the function
it is given as argument and, indeed, we can use our method to prove formally
that M ′ and N ′ are contextually equivalent via local reasoning.

M ′ = let f ⇐ val (rec f ′(a : unit) : Tunit = val ()) in
let w ⇐ gf in

val f

N ′ = let x ⇐ ref 1 in
let f ⇐ val (rec f ′(a : unit) : Tunit) = x := !x + 1) in
let w ⇐ gf in

let z ⇐ if iszero(!x) then Ω else
val(rec f ′(a : unit) : Tunit = val ()) in

val z

We now give an overview of the technical development, which makes use of a
couple of new ideas for proving the existence of the parameterized logical relation
and for the choice of parameters.

In Section 2 we first present the language and in Section 3 we give a deno-
tational semantics in the category of FM-cpo’s. Adapting methods developed
by Pitts [40] and Shinwell [52, 51] we prove the existence of a recursive domain
in (FM-Cpo⊥)4, D = (V, K, M, S), such that i : F (D, D) ∼= D where F is our
domain constructor. The 4-tuple of domains D has the minimal invariant prop-
erty, that is, idD is the least fixed point of δ : (D → D) → (D → D) where
δ(e) = i ◦ F (e, e) ◦ i−1. Denotations of values are given in V, continuations in
K, computations in M and stores in S. We show adequacy via a logical relation,
the existence of which is established much as in [52].

The denotational semantics can be used to establish simple forms of contex-
tual equivalence qua adequacy. For stronger proofs of contextual equivalences
we define a parameterized relation between pairs of denotations of values, pairs
of denotations of continuations, pairs of denotations of computations, pairs of
denotations of stores. We can express contextual equivalence for two computa-
tions by requiring that they have the same terminaton behaviour when placed
in the same arbitrary closing contexts.
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Since our denotations belong to a recursive domain, the existence of the pa-
rameterized logical relation again involves a separate proof. The proof requires
that the relations are preserved under approximations. On the other hand we
want the parameters to express invariants for hidden local areas of related stores,
and such properties of stores will not be preserved under approximations. There-
fore our relations are really given by 4-tuples, which we think of as two pairs: the
4-tuples have the form (d′1, d1, d

′
2, d2), where d′1 � d1 and d′2 � d2. We can now

let the approximation be carried out over the primed domain elements d′1, d
′
2,

and preserve the invariant on the non-primed elements d1, d2. Correspondingly,
relatedness of computations is stated as a two-sided termination approximation.
Termination of application of an approximated computation m′

1 to an approxi-
mated continuation k′

1 and an approximated store S′
1 implies termination in the

other side of the non-approximated elements, m′
1k

′
1S

′
1 = � =⇒ m2k2S2 = �,

and similarly for the other direction. With this separation of approximation from
the local properties that the parameters express, we can prove that the relation
exists. We can then extract a binary relation, defined via reference to the 4-ary
relation, such that the binary relation implies contextual equivalence.

A parameter expresses properties of two related stores; and computations
are related under a parameter if they have equivalent termination behaviour
when executed in stores, which preserve at least the invariants expressed by the
parameter. Our parameters are designed to express relatedness of pairs in the
presence of higher-order store and therefore they are somewhat more complex
than the parameters used by Benton and Leperchey [7]. As we have seen in the
examples above, we can prove contextual equivalence of two functions, which
allocate local store in different ways, and then return functions set and get that
access the hidden local storage. These local locations can be updated later by
application of the exported set-functions to related arguments. In between the
return of the functions and the application of the returned set-functions, there
might have been built up additional local store invariants. Thus functions stored
by a later call to the returned set-function may require further properties of
stores in order to have equivalent behaviour, than was the case when our set and
get functions were returned. To handle this possibility our parameters include
pairs of locations; two stores are then related wrt. such pairs of locations if the
pair of locations contain values that are related relative to the invariants that
hold for the two stores.

In more detail, a parameter has the form Δ{r1, . . . , rn}. Here Δ is a store type
that types a finite set of locations; these are intuitively our “visible locations.”
The r1, . . . , rn are local parameters. A local parameter ri has its own finite
area of store in each side, disjoint from the visible area and from all the other
local parameters’ store areas. A local parameter ri has the form (P1, LL1) ∨
· · ·∨ (Pm, LLm). The P s express properties of two stores and the LLs are lists of
location pairs. It is possible to decide if two states fulfill the properties expressed
by the P s by only considering the contents of ris private areas of store. At least
one P must hold and the corresponding LL must hold values related relative to
the invariants that hold for the two stores (we can also think of this as related
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at the given time in computation). Using FM domain theory makes it posible
for us to express the parameters directly by location names.

We present the definition of our relation, state its existence and the theorem
that relatedness implies contextual equivalence in Section 4. In the following
Section 5 we show how we prove contextual equivalence of our example programs.
We hope that the proofs will convince the reader that our logical relations proof
method is fairly straightforward to apply; in particular the choice of parameters
is very natural. We conclude in Section 6.

For reasons of space most proofs have been omitted from this extended ab-
stract.

2 Language

The language we consider is a call-by-value, monadically-typed λ-calculus with
recursion, general recursive types, and general dynamically allocated references.
Types are either value types τ or computation types Tτ . Values of any closed
value type can be stored in the store.

τ ::= α | unit | int | τ × τ | τ + τ | τref | τ → Tτ | μα.τ
γ ::= τ | Tτ

Typing contexts, Γ , are finite maps from variables to closed value types. We
assume infinite sets of variables, ranged over by x, type variables, ranged over
by α, and locations, ranged over by l. We let L denote the set of locations. Store
types Δ are finite maps from locations to value types. Terms G are either values
V or computations M :

V ::= x | n | l | () | (V, V ′) | iniV | rec f(x : τ) = M | fold V
M ::= V V ′ | let x ⇐ M in M ′ | val V | πiV | ref V | !V |

V := V ′ | case V of in1x1 ⇒ M1; in2x2 ⇒ M2 |
V = V ′ | V + V ′ | iszero V | unfold V

G ::= M | V.

Continuations K take the following form:

K ::= val x | let y ⇐ M in K

The typing judgments take the form

Δ; Γ � V : τ Δ; Γ � M : Tτ Δ;� K : (x : τ)�

The typing rules for values and terms are as in [7] extended with rules for
recursive types, except that the type for references is not restricted. Here we
just include the following three selected rules:

Δ; Γ � V : τ

Δ; Γ � ref V : T (τref)
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Δ; Γ � V : τ [μα.τ/α]

Δ; Γ � fold V : μα.τ

Δ; Γ � V : μα.τ

Δ; Γ � unfold V : T (τ [μα.τ/α])

Stores Σ are finite maps from locations to closed values. A store Σ has store
type Δ, written Σ : Δ, if, for all l in the domain of Δ, Δ;� Σ(l) : Δ(l).

The operational semantics is defined via a termination judgment Σ, let x ⇐
M in K ↓, where M is closed and K is a continuation term in x. Typed contin-
uation terms are defined by:

Δ;� val x : (x : τ)�
Δ; x : τ � M : Tτ ′ Δ;� K : (y : τ ′)�

Δ;� let y ⇐ M in K : (x : τ)�

The defining rules for the termination judgment Σ, let x ⇐ M in K ↓ are
standard given that the language is call-by-value, with left-to-right evaluation
order. We just include one rule as an example:

Σ, let x ⇐ val V in K ↓
Σ, let x ⇐ unfold(fold V ) in K ↓

A context is a computation term with a hole, and we write C[.] : (Δ; Γ �
γ) ⇒ (Δ;− � Tτ) to mean that whenever Δ; Γ � G : γ then Δ;− � C[G] : Tτ .

The definition of contextual equivalence is standard and as in [7].

Definition 1. If Δ; Γ � Gi : γ, for i = 1, 2 then G1 and G2 are contextually
equivalent, written

Δ; Γ � G1 =ctx G2,

if, for all types τ , for all contexts C[.] : (Δ; Γ � γ) ⇒ (Δ;− � Tτ) and for all
stores Σ : Δ,

Σ, let x ⇐ C[G1] in val x ↓⇐⇒ Σ, let x ⇐ C[G2] in val x ↓ .

3 Denotational Semantics

We define a denotational semantics of the language from the previous section
and show that the semantics is adequate. The denotational semantics is defined
using FM-domains [52]. The semantics and the adequacy proof, in particular the
existence proof of the logical relation used to prove adequacy, builds on Shin-
well’s work on semantics of recursive types in FM-domains [52]. Our approach is
slightly different from that of Shinwell since we make use of universal domains to
model the fact that any type of value can be stored in the store, but technically
it is a minor difference.

We begin by calling to mind some basic facts about FM-domains; see [52]
for more details. Fix a countable set of atoms, which in our case will be the
locations, L. A permutation is a bijective function π ∈ (L → L) such that the
set {l | π(l) �= l} is finite. An FM-set X is a set equipped with a permutation
action: an operation π • − : perms(L) × X → X that preserves composition
and identity, and such that each element x ∈ X is finitely supported: there is
a finite set L ⊂ L such that whenever π fixes each element of L, the action
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of π fixes x: π • x = x. There is a smallest such set, which we write supp(x).
A morphism of FM-sets is a function f : D → D′ between the underlying
sets that is equivariant: ∀x.π • (fx) = f(π • x). An FM-cpo is an FM-set with
an equivariant partial order relation � and least upper bounds of all finitely-
supported ω-chains. A morphism of FM-cpos is a morphism of their underlying
FM-sets that is monotone and preserves lubs of finitely-supported chains. We
only require the existence and preservation of lubs of finitely-supported chains, so
an FM-cpo may not be a cpo in the usual sense. The sets Z, N, etc., are discrete
FM-cpos with the trivial action. The set of locations, L, is a discrete FM-cpo
with the action π • l = π(l). The category of FM-cpos is bicartesian closed: we
write 1 and × for the finite products, D ⇒ D′ for the internal hom and 0,+ for
the coproducts. The action on products is pointwise, and on functions is given
by conjugation: π • f = λx.π • (f(π−1 • x)). The category is not well-pointed:
morphisms 1 → D correspond to elements of 1 ⇒ D with empty support. The
lift monad, (−)L, is defined as usual with the obvious action. The Kleisli category
FM-Cpo⊥ is the category of pointed FM-cpos (FM-cppos) and strict continuous
maps, which is symmetric monoidal closed, with smash product ⊗ and strict
function space −−◦. If D is a pointed FM-cpo then fix : (D ⇒ D)−−◦D is defined
by the lub of an ascending chain in the usual way. We write O for the discrete
FM-cpo with elements ⊥ and �, ordered by ⊥ � �.

As detailed in [52], one may solve recursive domain equations in FM-Cpo⊥.
For the denotational semantics, we use minimal invariant recursive domains:

V ∼= 1⊥ ⊕ Z⊥ ⊕ L⊥ ⊕ (V ⊕ V) ⊕ (V ⊗ V) ⊕ (V −−◦ M)⊥ ⊕ V

K ∼= (S −−◦ (V −−◦ O))
M ∼= (K −−◦ (S −−◦ O))
S ∼= L⊥ −−◦ V.

Formally, these are obtained as the minimal invariant solution to a locally FM-
continuous functor F : (FM-Cpo4

⊥)op × FM-Cpo4
⊥ → FM-Cpo4

⊥. We write D for
(V, K, M, S) and i for the isomorphism i : F (D, D) ∼= D. We will often omit the
isomorphism i and the injections into the sum writing, e.g., simply (v1, v2) for
an element of V.

Types, τ are interpreted by [[τ ]] = V, computation types Tτ are interpreted
by [[Tτ ]] = M, continuation types (x : τ)� are interpreted by [[(x : τ)�]] = K,
and store types Δ are interpreted by [[Δ]] = S. Type environments Γ = x1 :
τ1, . . . , xn : τn are interpreted by V

n.
Typing judgments are interpreted as follows:

– [[Δ; Γ � V : τ ]] ∈ ([[Γ ]]−−◦ [[τ ]])
– [[Δ; Γ � M : Tτ ]] ∈ ([[Γ ]]−−◦ [[Tτ ]])
– [[Δ;� K : (x : τ)�]] ∈ K

The actual definition of the interpretations is quite standard, except for alloca-
tion which makes use of the properties of FM-cpo’s:

[[Δ; Γ � refV : T (τref)]] ρ = λk.λS.
k(S([l �→ [[Δ; Γ � V : τ ]] ρ])l

for some/any l /∈ supp(λl′.k(S[l′ �→ [[Δ; Γ � V : τ ]] ρ])l′)
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The definition is much as in [7]. The use of FM-cpo’s ensure that it is a good
definition. As in [7], we use the monad T to combine state with continuations to
get a good control over what the new location has to be fresh for.

We only include two additional cases of the semantic definition, namely the
one for unfold and the one for continuations:

[[Δ; Γ � unfold V : T (τ [μα.τ/α])]] ρ = λk.λS.
case [[Δ; Γ � V : μα.τ ]] ρ of i1 ◦ inμ(d) then kSd; else⊥,

where inμ is the appropriate injection of V into 1⊥ ⊕ Z⊥ ⊕ L⊥ ⊕ (V ⊕ V)⊕
(V ⊗ V) ⊕ (V −−◦ M)⊥ ⊕ V and i1 is the isomorphism from this sum into V.

[[Δ;� K : (x : τ)�]] = λS.λd.
[[Δ; x : τ � K : Tτ ′]]{x �→ d}(λS′.(λd′.�)⊥)⊥S

Theorem 1 (Soundness and Adequacy). If Δ;� M : Tτ , Δ;� K : (x : τ)�,
Σ : Δ and S ∈ [[Σ : Δ]] then

Σ, let x ⇐ M in K ↓ iff [[Δ;� M : Tτ ]] ∗ [[Δ;� K : (x : τ)�]] S = �.

Soundness is proved by induction and to show adequacy one defines a formal
approximation relation between the denotational and the operational semantics.
The existence proof of the relation is non-trivial because of the recursive types,
but follows from a fairly straightforward adaptation of Shinwell’s existence proof
in [52] (Shinwell shows adequacy for a language with recursive types, but without
references).

Corollary 1. [[Δ; Γ � G1 : γ]] = [[Δ; Γ � G2 : γ]] implies Δ; Γ � G1 =ctx G2.

4 A Parameterized Logical Relation

In this section we define a parameterized logical relation on D and F (D, D), which
we can use to prove contextual equivalence. (In the following we will sometimes
omit the isomorphism i, i−1 between F (D, D) and D).

4.1 Accessibility maps, simple state relations and parameters

Intuitively, the parameters express properties of two related states by expressing
requirements of disjoint areas of states. There is a “visible” area and a finite
number of “hidden invariants.” In the logical relation, computations are related
under a parameter if they have corresponding termination behaviour under the
assumption that they are executed in states satisfying the properties expressed
by the parameter.

Definition 2. A function A : S → Pfin(L) from S to the set of finite subsets of
L is an accessibility map if

∀S1, S2. (∀l ∈ A(S1). S1l = S2l) ⇒ A(S1) = A(S2)
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We let A∅ denote the accessibility map defined by ∀S.A∅(S) = ∅, and we let
A{l1,...,lk} denote the accessibility map defined by ∀S.A{l1,...,lk}(S) = {l1, . . . , lk}.
Definition 3. A simple state relation P is a triple (p̂, Ap1, Ap2) satisfying that
Ap1 and Ap2 are accessibility maps and p̂ is a relation on S satisfying, for all
states S1, S2, S

′
1, S

′
2 ∈ S,

(∀l1 ∈ Ap1(S1).S1l1 = S′
1l1 ∧ ∀l2 ∈ Ap2(S2).S2l2 = S′

2l2
)

⇒ (
(S1, S2) ∈ p̂ ⇔ (S′

1, S
′
2) ∈ p̂

)
.

Note that a simple state relation is essentially a relation on states for which it
can be decided whether a pair of states belong to the relation only on the basis
of some parts of the states, defined by a pair of accessibility maps.

We denote the “always true” simple state relation (S × S, A∅, A∅) by T .

We now define the notion of a local parameter, which we will later use to
express hidden invariants of two related states. Intuitively, a local parameter has
its own private areas of the states. These areas are used for testing conditions and
for storing related values. The testing condition is a disjunction of simple state
relations, where to each disjunct there is an associated list of pairs of locations
from the two related states. At least one condition must be satisfied and the
corresponding list of locations hold related values.

Definition 4. A local parameter r is a finite non-empty set of pairs
{(P1, LL1), .., (Pm, LLm)}, where each Pi is a simple state relation
Pi = (p̂i, Api1, Api2) and
each LLi is a finite set of location pairs and closed value types
LLi = { (li11, li12, τi1), . . . , (lini1, lini2, τni) }. (ni ≥ 0).

We often write a local parameter as r = ((P1, LL1) ∨ . . . ∨ (Pm, LLm)). For a
location list LL, we write L1 resp. L2 for the set of locations that occur as first
resp. second components in the location list LL. For a local parameter r, there are
associated accessibility maps Ar1 and Ar2 given by ∀S. Ar1(S) =

⋃
i Api1(S)∪L1

and ∀S. Ar2(S) =
⋃

i Api2(S) ∪ L2.
We denote the “always true” local parameter {(T, ∅)} also simply by T . It

has the associated accessibility maps A∅, A∅.

As explained in the introduction we have included the LL-list to be used
for storing related values which may later be updated by exported updating
functions. The updated values may require more invariants to hold for the stores
in order to have equivalent behaviour. This interpretation of the local parameter
is expressed in the definition of our invariant relation F (∇,∇) below.

Definition 5. A parameter Δr is a pair (Δ, r), with Δ a store type, and r =
{r1, .., rn} a finite set of local parameters such that T ∈ r.

For a parameter Δr we associate accessibility maps Ar1 and Ar2, given by
∀S. Ar1(S) =

⋃
Ari1(S) and ∀S. Ar2(S) =

⋃
Ari2(S).

For each store type Δ we have a special the “always true” parameter Δid∅ =
Δ{T}.
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Definition 6. For parameters Δ′r′ and Δr define
Δ′r′ � Δr

def⇐⇒ Δ′ ⊇ Δ and r′ ⊇ r.

The ordering relation � is reflexive, transitive and antisymmetric. For all pa-
rameters Δr it holds that there are only finitely many parameters Δ0r0 such
that Δr � Δ0r0. For convenience we sometimes write Δr � Δ′r′ for Δ′r′ � Δr.

4.2 Parameterized relations and contextual equivalence

In this section we will define a parameterized logical relation on D and F (D, D).
Let D = (DV , DK , DM , DS) ∈ {D, F (D, D)}. We define the set of relations R(D)
on D as follows.

R(D) = R̂V × R̂K × R̂M × R̂S where

R̂V = all subsets of
D4

V × {τ | τ is a closed value type} × {parameter} that include
{(⊥, v1,⊥, v2, τ, Δr) | v1, v2 ∈ DV , τ closed value type, Δr parameter}

R̂K = all subsets of
D4

K × {(x : τ)� | (x : τ)� is a closed continuation type} × {parameter} that
include {(⊥, k1,⊥, k2, (x : τ)�,Δr) |

k1, k2 ∈ DK , (x : τ)� closed continuation type, Δr parameter}
R̂M = all subsets of

D4
M × {Tτ | Tτ is a closed computation type} × {parameter} that include

{(⊥,m1,⊥,m2, T τ, Δr) |
m1,m2 ∈ DM , T τ closed computation type, Δr parameter}

R̂S = all subsets of D4
S × {parameter} that include

{(⊥, S1,⊥, S2,Δr) | S1, S2 ∈ DS ,Δr parameter}

A relation (R1, R2, R3, R4) ∈ R(D) is admissible if,
for each i, Ri is closed under least upper bounds of finitely supported chains of
the form (di

1, d1, d
i
2, d2, (type),Δr)i∈ω where d1, d2, type, Δr are constant. We let

Radm(D) denote the admissible relations over D.

Theorem 2. There exists a relational lifting of the functor F to (R(D)op ×
R(D)) → R(F (D, D)) and an admissible relation ∇ = (∇V ,∇K ,∇M ,∇S) ∈
Radm(D) satisfying the equations in Figure 1 and (i, i) : F (∇,∇) ⊂ ∇ ∧
(i−1, i−1) : ∇ ⊂ F (∇,∇).

Proof (Theorem 2, existence of an invariant relation ∇). The proof makes use
of the ideas mentioned in the Introduction in combination with a proof method
inspired from Pitts [40]. We have defined a relational structure on the domains
D and F (D, D) ∈ FM-Cpo4

⊥ as products of relations on each of their four
domain-projections. Each of these relations is a 4-ary relation with elements
(d′1, d1, d

′
2, d2, (type),Δr) where d′1 = d′2 = ⊥ relates to everything.

We define the action of F (−, +) on relations R−, R+ ∈ D such that it holds
that d′1 � d1 and d′2 � d2 in elements (d′1, d1, d

′
2, d2, (type),Δr) of F (R−, R+)n,
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F (∇,∇)V = {(⊥, v1, ⊥, v2, τ, Δr) } ∪
{(v′1, v1, v′2, v2, τ, Δr) |

v′1 � v1 �= ⊥ ∧ v′2 � v2 �= ⊥ ∧
(v′1, v1, v′2, v2, τ, Δr) ∈ ♦ }

where
♦ = {(in1∗, in1∗, in1∗, in1∗, unit, Δr) } ∪

{(inZn, inZn, inZn, inZn, int, Δr) | n ∈ Z } ∪
{(inLl, inLl, inLl, inLl, (Δl)ref, Δr) | l ∈ dom(Δ) } ∪
{(in⊕inid

′
1, in⊕inid1, in⊕inid

′
2, in⊕inid2, τ1 + τ2, Δr) |

∃Δ0r0 � Δr. (d′1, d1, d2, d2, τi, Δ0r0) ∈ ∇V , i ∈ {1, 2} } ∪
{(in⊗(d′1a, d′

1b), in⊗(d1a, d1b), in⊗(d′2a, d′2b), in⊗(d2a, d2b),
τa × τb, Δr) |
∃Δ0r0 � Δr. (d′1a, d1a, d′2a, d′2a, τa, Δ0r0) ∈ ∇V and

(d′1b, d1b, d′2b, d2b, τb, Δ0r0) ∈ ∇V } ∪
{(in−−◦d′1, in−−◦d1, in−−◦d′2 in−−◦d2, τ → Tτ ′, Δr) |

∀Δ′r′ � Δr, (v′1 , v1, v′2, v2, τ, Δ′r′) ∈ ∇V .
(d′1v

′
1, d1v1, d′2v

′
2, d2v2, Tτ ′, Δ′r′) ∈ ∇M } ∪

{(inμd′1, inμd1, inμd′2, inμd2, μα.τ, Δr) |
∃Δ0r0 � Δr. (d′1, d1, d′2, d2, τ [μα.τ/α], Δ0r0) ∈ ∇V }

F (∇,∇)K = {(k′
1, k1, k′

2, k2, (x : τ)�, Δr) |
k′
1 � k1 ∧ k′

2 � k2 ∧ ∀Δ′r′ � Δr.
∀(S′

1, S1, S′
2, S2, Δ′r′) ∈ ∇S .

∀(v′1, v1, v′2, v2, τ, Δ′r′) ∈ ∇V .
(k′

1S
′
1v

′
1 = � ⇒ k2S2v2 = �) ∧

(k′
2S

′
2v

′
2 = � ⇒ k1S1v1 = �) }

F (∇,∇)M = {(m′
1, m1, m′

2, m2, T τ, Δr) |
m′

1 � m1 ∧ m′
2 � m2 ∧ ∀Δ′r′ � Δr.

∀(k′
1, k1, k′

2, k2, (x : τ)�, Δ′r′) ∈ ∇K .
∀(S′

1, S1, S′
2, S2, Δ′r′) ∈ ∇S .

(m′
1k

′
1S

′
1 = � ⇒ m2k2S2 = �) ∧

(m′
2k

′
2S

′
2 = � ⇒ m1k1S1 = �) }

F (∇,∇)S = {(⊥, S1, ⊥, S2, Δr) } ∪
{(S′

1, S1, S′
2, S2, Δr) | r = {r1, . . . , rn} ∧

S′
1 � S1 �= ⊥ ∧ S′

2 � S2 �= ⊥ ∧ ∀i �= j, i, j ∈ 1, . . . , n.
Ari1(S1) ∩ Arj1(S1) = ∅ ∧ Ari2(S2) ∩ Arj2(S2) = ∅ ∧
dom(Δ) ∩ Ar1(S1) = ∅ ∧ dom(Δ) ∩ Ar2(S2) = ∅ ∧
∀l ∈ dom(Δ).(S′

1l, S1l, S′
2l, S2l, Δl, Δr) ∈ ∇V ∧

∀ra ∈ r.∃(Pb, LLb) ∈ ra. (S1, S2) ∈ p̂b ∧
∀(l1, l2, τ) ∈ LLb.(S′

1l1, S1l1, S
′
2l2, S2l2, τ, Δr) ∈ ∇V

Fig. 1. Invariant Relation ∇
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n ∈ {V,K, M, S}. In the definition of F (R−, R+)S ∈ R(i−1
S) the accessibility

maps and the simple state relations mentioned in a parameter Δr are only
used on the non-primed elements s1, s2 from (s′1, s1, s

′
2, s2,Δr). As explained,

approximation will be carried out on the primed domain elements. Therefore,
we define application of a pair of functions (f, j) to a relation only for f � j with
j an isomorphism j ∈ {i, i−1, idD, idF (D,D)}. In an application (f, j)R we apply
f to the elements in the primed positions, and j to the elements of the non-
primed positions. Then we define (f, j) : R ⊂ S to mean that set theoretically
(f, j)R ⊆ S. It holds that F (R−, R+) preserves admissibility of R+. It also holds
that R−, R+, S−, S+ ∈ R(D) with (f−, idD) : S− ⊂ R− and (f+, idD) : R+ ⊂ S+

implies (F (f−, f+), idF (D,D)) : F (R−, R+) ⊂ F (S−, S+). These properties are
essential for the proof of existence of the invariant relation ∇.

Proposition 1 (Weakening). For all Δ′r′ � Δr,

– (v′1, v1, v
′
2, v2, τ, Δr) ∈ ∇V ⇒ (v′1, v1, v

′
2, v2, τ, Δ

′r′) ∈ ∇V ,
– (k′

1, k1, k
′
2, k2, (x : τ)�,Δr) ∈ ∇K ⇒ (k′

1, k1, k
′
2, k2, (x : τ)�,Δ′r′) ∈ ∇K ,

– (m′
1,m1,m

′
2,m2, T τ, Δr) ∈ ∇M ⇒ (m′

1,m1,m
′
2,m2, T τ, Δ′r′) ∈ ∇M .

Below we define a binary relation between denotations of typing judgement con-
clusions. This relation will be used as basis for proofs of contextual equivalence.
The relation is defined by reference to the 4-ary relations from ∇. For two closed
terms, two continuations, or two states the binary relation requires that their de-
notations d1, d2 are related as two pairs (d1, d1, d2, d2, (type), parameter) ∈ ∇j .
The denotations of open value-terms with n free variables belong to V

n −−◦ V,
denotations of open computation terms to V

n −−◦ M. They must give related
elements in ∇ whenever they are applied to n-tuples of ∇-related elements form
V.

Definition 7 (Relating denotations of open expressions).

– For all Γ = x1 : τ1, . . . , xn : τn and Δ; Γ � V1 : τ and Δ; Γ � V2 : τ
let v1 = [[Δ; Γ � V1 : τ ]] and v2 = [[Δ; Γ � V2 : τ ]], and define

(v1, v2, τ, Δr) ∈ ∇Γ
V

def⇐⇒
∀Δ′r′ � Δr.∀i ∈ {1, . . . , n}.∀(v′1i, v1i, v

′
2i, v2i, τi,Δ

′r′) ∈ ∇V .

(v1(v′1i), v1(v1i), v2(v′2i), v2(v2i), τ, Δ′r′) ∈ ∇V .

– For all Γ = x1 : τ1, . . . , xn : τn, Δ; Γ � M1 : Tτ and Δ; Γ � M2 : Tτ ,
let m1 = [[Δ; Γ � M1 : Tτ ]] and m2 = [[Δ; Γ � M2 : Tτ ]], and define

(m1,m2, T τ, Δr) ∈ ∇Γ
M

def⇐⇒
∀Δ′r′ � Δr.∀i ∈ {1, . . . , n}.∀(v′1i, v1i, v

′
2i, v2i, τi,Δ

′r′) ∈ ∇V .

(m1(v′1i),m1(v1i),m2(v′2i),m2(v2i), T τ, Δ′r′) ∈ ∇M .

– For all Δ;� K1 : (x : τ)� and Δ;� K2 : (x : τ)�,
let k1 = [[Δ;� K1 : (x : τ)�]] and k2 = [[Δ;� K2 : (x : τ)�]], and define

(k1, k2, (x : τ)�,Δr) ∈ ∇∅
K

def⇐⇒ (k1, k1, k2, k2, (x : τ)�,Δr) ∈ ∇K .
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– For all Σ1 : Δ, Σ2 : Δ, let S1 ∈ [[Σ1 : Δ]] and S2 ∈ [[Σ2 : Δ]], and define

(S1, S2,Δr) ∈ ∇∅
S

def⇐⇒ (S1, S1, S2, S2,Δr) ∈ ∇S .

Lemma 1.
Suppose (m1,m2, T τ, Δr) ∈ ∇Γ

M . We then have that

∀Δ′r′ � Δr.∀j ∈ {1, . . . , n}.∀(v1j , v2j , τj ,Δ
′r′) ∈ ∇∅

V .

∀(k1, k2, (x : τ)�,Δ′r′) ∈ ∇∅
K .∀(S1, S2,Δ

′r′) ∈ ∇∅
S .

(i−1(m1(v1j)))k1S1 = � ⇐⇒ (i−1(m2(v2j)))k2S2 = �.

Theorem 3 (Fundamental Theorem). For all parameters Δr it holds that

– if Δ; Γ � V : τ then ([[Δ; Γ � V : τ ]], [[Δ; Γ � V : τ ]], τ, Δr) ∈ ∇Γ
V ,

– if Δ; Γ � M : Tτ then ([[Δ; Γ � M : Tτ ]], [[Δ; Γ � M : Tτ ]], T τ, Δr) ∈ ∇Γ
M .

The Fundamental Theorem is proved in the standard way by showing that all
the typing rules preserve relatedness in ∇Γ ; weakening (Proposition 1) is used
in several proof cases.

Lemma 2.

– ∀r. ([[Δ;� val x : (x : τ)�]], [[Δ;� val x : (x : τ)�]], (x : τ)�,Δr) ∈ ∇∅
K ,

– if S ∈ [[Δ]] then (S, S,Δid∅) ∈ ∇∅
S.

The following theorem expresses that we can show two computations or two
values to be contextually equivalent by showing that they are related in ∇Γ

under a parameter Δid∅, which does not require that any hidden invariants
hold for states. The computations may themselves be able to build up local
state invariants and a proof of relatedness will often require one to express these
invariants; see the examples in the next section.

Theorem 4 (Contextual Equivalence). Let C[ ] : (Δ; Γ � γ) ⇒ (Δ;� Tτ)
be a context. If Δ; Γ � G1 : γ and Δ; Γ � G2 : γ and

([[Δ; Γ � G1 : γ]], [[Δ; Γ � G2 : γ]], γ,Δid∅) ∈ ∇Γ
j , j ∈ {V,M}

then

∀Σ : Δ. (Σ, let x ⇐ C[G1] in val x ↓⇐⇒ Σ, let x ⇐ C[G2] in val x ↓).

5 Examples

Before presenting our examples, we will first sketch how a typical proof of contex-
tual equivalence proceeds. Thus, suppose we wish to show that two computations
m1 and m2 are contextually equivalent. We then need to show that they are re-
lated in a parameter Δid∅ or, equivalently, in Δr, for any r. This requires us to
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show, for any extended parameter Δ1r1, any pair1 of continuations k1 and k2

related in Δ1r1, and any pair of states S1 and S2 related in Δ1r1, m1k1S1 and
m2k2S2 have the same termination behaviour. The latter amounts to showing
that k1(S1[. . .])v1 and k2(S2[. . .])v2 have the same termination behaviour, where
S1[. . .] and S2[. . .] are potentially updated versions of S1 and S2; and v1 and v2

are values. Since k1 and k2 are assumed related in Δ1r1, it suffices to define a
parameter Δ2r2 extending Δ1r1 and show that S1[. . .] and S2[. . .] are related
in Δ2r2 and that v1 and v2 are related in Δ2r2. Typically, the definition of the
parameter Δ2r2 essentially consists of defining one or more local parameters,
which capture the intuition for why the computations are related.

In the first example below we prove that M and N from the Introduction are
contextually equivalent. In this case, the only local parameter we have to define
is r̃3 = ((P1, LL1) ∨ (P2, LL2)), where

P1 = ({(S1, S2) | S2lp = 0}, A∅, A{lp}), LL1 = {(ly, ly0)},
P2 = ({(S1, S2) | S2lp = n �= 0}, A∅, A{lp}), LL2 = {(ly, ly1)}.

This local parameter expresses that, depending on the value of S2(lp), either the
locations (ly, ly0) or the locations (ly, ly1) contain related values.

In the first subsection below we present the proof of contextual equivalence
of M and N in detail. Formally, there are several cases to consider, but do note
that the proof follows the outline given above and is almost automatic except
for the definition of the local parameter shown above.

5.1 Example 1

Consider the programs M and N from the Introduction.
We want to show that M and N are related in any parameter Δr, that is

∀Δr. ([[∅;� M : σ]], [[∅;� N : σ]], σ, Δr) ∈ ∇∅
V . Here σ = (τ → Tτ ′) → T (σ1 × σ2),

and σ1 = (τ → Tτ ′) → Tunit and σ2 = unit → (τ → Tτ ′). As M and N are values of
function type, their denotations have the forms in�dM and in�dN . We need to show
∀Δ1r1 � Δr.∀(v′

1, v1, v
′
2, v2, τ → Tτ ′, Δ1r1) ∈ ∇V . (dMv′

1, dMv1, dNv′
2, dNv2, T (σ1 ×

σ2), Δ
1r1) ∈ ∇M .

It suffices to show that ∀Δ2r2 � Δ1r1.∀(k′
1, k1, k

′
2, k2, (x : σ1 × σ2)

�, Δ2r2) ∈ ∇K .
∀(S′

1, S1, S
′
2, S2, Δ

2r2) ∈ ∇S it holds that (dMv′
1)k

′
1S

′
1 = 
 =⇒ (dNv2)k2S2 = 
 and

(dNv′
2)k

′
2S

′
2 = 
 =⇒ (dMv1)k1S1 = 
.

Now,(dMv1)k1S1 = k1(S1[ly �→ v1])([[∅; y � recf1M ]](y �→ ly), [[∅; y � recf2M ]](y �→ ly)),

where ly is a location that is fresh wrt. the store S1 in combination with the parameter
Δ2r2, i.e.,

ly /∈ dom(Δ2) ∪ Ar21(S1). (1)

The value of (dMv′
1)k

′
1S

′
1 is similar.

Moreover,

(dNv2)k2S2 = k2 (S2[lp �→ inZ0, ly0 �→ v2, ly1 �→ v2])
([[∅; p, y0, y1 � recf1N ]](p �→ lp, y0 �→ ly0, y1 �→ ly1),
[[∅; p, y0, y1 � recf2N ]](p �→ lp, y0 �→ ly0, y1 �→ ly1)),

1 Formally, we consider 4-tuples.
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where lp, ly0, ly1 are locations that are fresh wrt. the store S2 in combination with the
parameter Δ2r2, i.e

lp, ly0, ly1 /∈ dom(Δ2) ∪ Ar22(S2). (2)

The value of (dNv′
2)k

′
2S

′
2 is similar.

Since the continuations are related in the parameter Δ2r2 it suffices to show that,
if S′

1 �= ⊥∨S′
2 �= ⊥ then we can give an extended parameter Δ3r3 �Δ2r2 such that the

updated states and the values (pairs of (set,get)) are related in the extended parameter
Δ3r3.

We let Δ3r3 = Δ2(r2 ∪ {r̃3}), where r̃3 = ((P1, LL1) ∨ (P2, LL2)), and

P1 = ({(S1, S2) | S2lp = 0}, A∅, A{lp}), LL1 = {(ly, ly0, τ → Tτ ′)},
P2 = ({(S1, S2) | S2lp = n �= 0}, A∅, A{lp}), LL2 = {(ly, ly1, τ → Tτ ′)}.

Recall ∀S. A∅(S) = ∅ ∧ ∀S. A{lp}(S) = {lp}.
Then it holds that the accessibility maps associated with the local parameter r̃3, are
given by ∀S.Ar̃3

1
(S) = {ly} and ∀S.Ar̃3

2
(S) = {lp, ly0, ly1}.

We now verify that

(S′
1[ly �→ v′

1], S1[ly �→ v1], S
′
2[lp �→ inZ0, ly0 �→ v′

2, ly1 �→ v′
2],

S2[lp �→ inZ0, ly0 �→ v2, ly1 �→ v2], Δ
3r3) ∈ ∇S .

(3)

By (1) and (2), all locations viewed by the local parameter r̃3 are disjoint from
dom(Δ2) and from all local areas viewed by r2. The stores have only been changed
in locations viewed by r̃3. Since values related in a parameter are also related in any
extending parameter (weakening) every requirement from Δ2r2 still holds. Finally,
since S2[lp �→ inZ0, ly0 �→ v2, ly1 �→ v2](lp) = 0 and the values stored in locations ly
and ly0 in the updated stores, namely v′

1, v1, v
′
2, v2, are related in Δ1r1 and then by

weakening also in Δ3r3, the first disjunct of r̃3 is satisfied, and hence (3) holds.
It remains to show
A: ([[∅; y � recf1M ]](y �→ ly), [[∅; y � recf1M ]](y �→ ly), [[∅; p, y0, y1 � f1N ]](p �→

lp, y0 �→ ly0, y1 �→ ly1), [[∅; p, y0, y1 � recf1N ]](p �→ lp, y0 �→ ly0, y1 �→ ly1), (τ → Tτ ′) →
Tunit, Δ3r3) ∈ ∇V and

B: ([[∅; y � recf2M ]](y �→ ly), [[∅; y � recf2M ]](y �→ ly), [[∅; p, y0, y1 � recf2N ]](p �→
lp, y0 �→ ly0, y1 �→ ly1)[[∅; p, y0, y1 � recf2N ]](p �→ lp, y0 �→ ly0, y1 �→ ly1), (τ → Tτ ′) →
Tunit, Δ3r3) ∈ ∇V

Now let Δ4r4 � Δ3r3, (w′
1, w1, w

′
2, w2, τ → Tτ ′, Δ4r4) ∈ ∇V , and

let Δ5r5 � Δ4r4, (K′
1, K1, K

′
2, K2, (x : τ → Tτ ′)�Δ5r5) ∈ ∇K , (S′

1, S1, S
′
2, S2, Δ

5r5) ∈
∇S , (c′1, c1, c

′
2, c2, (x : unit)�, Δ5r5) ∈ ∇K

We have denotations [[∅; y � recf1M ]](y �→ ly) = in�dM1, [[∅; p, y0, y1 � recf1N ]](p �→
lp, y0 �→ ly0, y1 �→ ly1) = in�dN1, [[∅; y � recf2M ]](y �→ ly) = in�dM2, [[∅; p, y0, y1 �
recf2N ]](p �→ lp, y0 �→ ly0, y1 �→ ly1) = in�dN2.

A: Now we want to show relatedness of the setters. As before if w′
1 = w′

2 = ⊥ or
S′

1 = S′
2 = ⊥ we are done. Otherwise we reason as follows.

Observe that (dM1w1)c1S1 = c1(S1[ly �→ w1])in1∗ and similarly (dM1w1)c
′
1S

′
1 =

c′1(S
′
1[ly �→ w′

1])in1∗. Also, (dN1w2)c2S2 = c2(S2[lp �→ inZ0, ly0 �→ w2])in1∗, if S2lP �=
0, and (dN1w2)c2S2 = c2(S2[lp �→ inZ1, ly1 �→ w2])in1∗, if S2lP = 0. Similarly for the
approximation (dN1w

′
2)c

′
2S

′
2.
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Since the states are related in Δ5r5 which is an extension of Δ3r3 we know that
the content of S2lp is inZn for some n. We know that the continuations c′1, c1, c

′
2, c2

are related in Δ5r5. (in1∗, in1∗, in1∗, in1∗, unit, Δ5r5) since they are related in any
parameter. So if we can show that the updated states are related in Δ5r5 we are done.

The states S′
1, S1, S

′
2, S2 are related in Δ5r5. All changes are only within the store

areas belonging to r̃3 and the changes preserve the invariant for r̃3, hence the updated
states are still related in Δ5r5. We conclude that the setters are related in ∇3r3.

B: Now we want to show relatedness of the getters. As before, if the denotations are
applied to related unit type values where the approximations are ⊥ or if S′

1 = S′
2 = ⊥

we are done. Otherwise we reason as follows. Note that (dM2in1∗)K1S1 = K1S1(S1ly)
and similarly (dM2in1∗)K′

1S
′
1 = K′

1S
′
1(S

′
1ly). Since the states are not ⊥ and are related

in Δ5r5 which is an extension of Δ3r3 we know that the content of S2lp is inZn for
some n. We have that (dN2in1∗)K2S2 = K2S2(S2ly0), if n = 0, and (dN2in1∗)K2S2 =
K2S2(S2ly1), if n �= 0. Similarly for the approximation (dN2in1∗)K′

2S
′
2.

We know that the continuations K′
1, K1, K

′
2, K2 and the states S′

1S1, S
′
2, S2 are

related in Δ5r5. So if we can show that the retrieved values are related in Δ5r5 we are
done.

Since the states S′
1S1, S

′
2, S2 are related in Δ5r5 they satisfy the invariant of r̃3. So

the content of S2lp is inZn for some n. If n = 0 then S′
1ly, S1ly, S′

2ly0, S2ly0 are related
in Δ5rr, and if n �= 0 then S′

1ly, S1ly, S′
2ly1, S2ly1 are related in Δ5rr, again by the

requirement from r̃3. This is what we need for the retrieved values to be related. We
conclude that the getters are related in ∇3r3.

Then we can conclude that ([[M ]], [[N ]], σ, Δr) ∈ ∇∅
V , and as Δr was arbitrary that

they are related in any parameter. Hence the programs M and N are contextually

equivalent.

5.2 Example 2

Consider the computation terms M ′ and N ′ from the Introduction. They both have a
free variable g of function type. We want to show that M ′ and N ′ are related in any
parameter Δr.

We need to show ∀Δ1r1 � Δr.∀(g′
1, g1, g

′
2, g2, σ, Δ1r1) ∈ ∇V .

∀Δ2r2 � Δ1r1.∀(k′
1, k1, k

′
2, k2, (x : σ1)

�, Δ2r2 ∈ ∇K).∀(S′
1, S1, S

′
2, S2, Δ

2r2) ∈ ∇S .
[[∅; g : σ � M ′ : Tσ1]](g �→ g′

1)k
′
1S

′
1 = 
 =⇒ [[∅; g : σ � N ′ : Tσ1]](g �→ g2)k2S2 = 
 and

[[∅; g : σ � N ′ : Tσ1]](g �→ g′
2)k

′
2S

′
2 = 
 =⇒ [[∅; g : σ � M ′ : Tσ1]](g �→ g1)k1S1 = 
.

Here σ = σ1 → Tunit, and σ1 = unit → Tunit.

For the proof of this we define a local parameter r̃3 = (P 3, ∅) for P 3 = ({(Sa, Sb)|
Sblx = inZn > 0)}, A∅, A{lx}), where lx is fresh for dom(Δ2)∪Ar22(S2). Then we have

a parameter Δ3r3 where Δ3 = Δ2 and r3 = r2 ∪ {r̃3} which we use in the proof.

6 Conclusion

We have presented a local relational proof method for establishing contextual
equivalence of expressions in a language with recursive types and general refer-
ences, building on earlier work of Benton and Leperchey [7]. The proof of exis-
tence of the logical relation is fairly intricate because of the interplay between

28



recursive types and local parameters for reasoning about higher-order store.
However, the method is easy to use on examples: the only non-trivial steps are
to guess the right local parameters — but since the local parameters express
the intuitive reason for contextual equivalence, the non-trivial steps are really
fairly straightforward. It is possible to extend our method to a language also
with impredicative polymorphism; we will report on that on another occasion.
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Relational Parametricity for Recursive Types and
References of Closed Types

Lars Birkedal
Nina Bohr

Abstract

We present a relationally parametric model of a language with impredicative polymorphism, general recursive
types and general references of closed types. The model provides a local relational reasoning method for reasoning
about parametricity (representation independence). Our development builds on the work of Bohr and Birkedal who,
based on earlier work by Benton and Leperchey, devised a nominal semantics and a local relational reasoning method
for reasoning about contextual equivalence for a language with recursive types and general references. Here we extend
the ideas to a language with impredicative polymorphism for which we devise a relationally parametric model.

1 Introduction

Relational parametricity was proposed by Reynolds to reason about polymorphic programs, in particular,
to show equivalence of polymorphic programs and to show representation independence for abstract data
types.

The theory of relational parametricity was originally proposed in the setting of the second-order
lambda calculus. That setting is by now fairly well-understood, see, e.g., (45; 10) But, of course, we
would like to use relational parametricity for real programs with recursion and other effects. There has
been a lot of research towards this goal — the efforts can be grouped roughly into two categories: equa-
tional type theories with effects and programming languages with effects.

Work in former category was initiated by Plotkin (44), who suggested a second-order linear type
theory to combine polymorphism with recursion. That approach was further investigated in (11). One of
the remarkable features of this calculus is that it allows one to encode a wide range of data types, including
recursive types, with the desired universal properties following from parametricity. Hasegawa studied the
combination of polymorphism and another effect, namely control operators (19). Recently, this line of
work was extended by Møgelberg and Simpson (36), who proposed a general polymorphic type theory
for effects, as captured by computational monads. The general framework has been specialized to control
effects in (37).

Work in the latter category focuses on programming languages defined using an operational semantics,
specifying evaluation order, etc., and was initiated by Wadler (58). Relational parametricity is concerned
with program equivalence which is here typically defined as contextual equivalence: two program expres-
sions are equivalent if they have the same observable behaviour when placed in any program context C. It
is generally quite hard to show directly that two program expressions are contextually equivalent because
of the universal quantification over all contexts. Thus there has been an extensive research effort to find
reasoning methods that are easier to use for establishing contextual equivalence (see, e.g., (40) for a fairly
recent overview), and the work on parametricity for programming languages with effects has been closely
related to the research on reasoning methods for contextual equivalence. Relationally parametric models
have been developed for languages with recursion and inductive / coinductive types (38; 21) and, recently,
also for langauges with recursive types (34; 3; 15).

The two categories of work are of course related in that the type theories can be used to give semantics
to programming languages. This has, e.g., been done by Møgelberg (35), who showed how to give a
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parametric model of the programming language FPC extended with polymorphism (i.e., a language with
recursion, recursive types and polymorphism). Using a model of the type theory, adequacy wrt. the
operational semantics of the programming language was proved, allowing Mogelberg to prove results
about contextual equivalence using the reasoning principles of the type theory.

Thus most of the earlier work towards parametricity for languages with effects has focused on recur-
sion (recursive functions and recursive types). Here we provide what appears to be the first relationally
parametric model of a programming langauge with impredicative polymorphism, recursive types and gen-
eral references of closed type. The challenge is not just to give any old model, but to give a reasonably
useful one, which allows to prove representation independence results for programs that use local state.
To achieve that, we leverage recent work on reasoning about contextual equivalence for programming
languages with references. For such langauges, it is not enough to restrict attention to fewer contexts,
since one also needs to reason about equivalence under related stores. To address this challenge, meth-
ods based on logical relations and bisimulations have been proposed, see, e.g., (42; 7; 55). Recently,
the bisimulation approach has been simplified and extended to work for untyped languages with general
references (28; 27). For effectiveness of the reasoning methods, we seek local reasoning methods, which
only require that we consider the accessible part of a store and which works in the presence of a separated
(non-interfering) invariant that is preserved by the context. In (7), Benton and Leperchey developed a re-
lational reasoning method for a language with simple references that does allow for local reasoning. Their
approach is inspired by related work on separation logic (47; 46). In particular, an important feature of
the state relations of Benton and Leperchey is that they depend on only part of the store: that allows us to
reason that related states are still related if we update them in parts on which the relation does not depend.
In (13) we extended the work of Benton and Leperchey to relational reasoning about contextual equiva-
lence for a language with general recursive types and general references (but without polymorphism). We
arrived at a useful reasoning method, which, in particular, could be used to verify examples of (28).

Here we extend our earlier work in (13) to provide a relationally parametric model for a language with
recursive types and general references. For technical reasons, we restrict reference types τ ref somewhat,
by requiring that τ must be a closed type.

2 Language

The language we consider is a call-by-value, monadically-typed λ-calculus with recursion, general recur-
sive types, polymorphic types, and general dynamically allocated references. Types are either value types
τ or computation types Tτ . We use both τ ’s and σ’s to range over value types. Values of any closed value
type can be stored in the store. For τ ref to be a well formed type we require that τ is closed. TypeVar
denotes the set of type variables, ValueType denotes the set of all value types, ComputationType denotes
the set of all computation types.

τ ::= α | 1 | int | τ × τ | τ + τ | τ ref | τ → Tτ |
μα.τ | ∀α.Tτ

γ ::= τ | Tτ

We assume infinite sets of variables, ranged over by x, type variables, ranged over by α, and locations,
ranged over by l. We let Loc denote the set of locations. Type variable contexts, Ξ, are finite sequences
of distinct type variables, Ξ = α1, . . . , αn. Typing contexts, Γ, are finite maps from variables to value
types. Store types Δ are finite maps from locations to closed value types. Terms G are either values V or
computations M :

V ::= x | n | l | () | (V, V ′) | iniV | rec f(x : τ) = M |
fold V | Λα. M

M ::= V V ′ | let x ⇐ M in M ′ | val V | πiV | ref V | !V |
V := V ′ | case V of in1x1 ⇒ M1; in2x2 ⇒ M2 |
V = V ′ | V + V ′ | iszero V | unfold V | V τ

G ::= M | V.
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Continuations K take the following form:

K ::= val x | let y ⇐ M in K

The typing judgments take the form

Δ; Ξ; Γ � V : τ Δ; Ξ; Γ � M : Tτ Δ; Ξ � K : (x : τ)�

ContinuationType denotes the set of all continuation types.
The typing rules for values and terms are as in (7) extended with rules for recursive and polymorphic

types, except that the only restriction for references is that the type must be closed. This restriction gives
limitations to the storings that polymorfic values can perform. Here we just include the following five
selected rules:

Δ;Ξ; Γ � V : τ

Δ; Ξ; Γ � refV : T (τ ref )
(− � τ : type)

Δ;Ξ; Γ � V : τ [μα.τ/α]

Δ; Ξ; Γ � fold V : μα.τ

Δ;Ξ; Γ � V : μα.τ

Δ;Ξ; Γ � unfold V : T (τ [μα.τ/α])

Δ; Ξ, α; Γ � M : Tτ Ξ � Γ

Δ; Ξ; Γ � Λα. M : ∀α.Tτ

Δ;Ξ; Γ � V : ∀α.Tτ Ξ � σ

Δ; Ξ; Γ � V σ : Tτ [σ/α]

Stores Σ are finite maps from locations to closed values. A store Σ has store type Δ, written Σ : Δ, if,
for all l in the domain of Δ, Δ; ;� Σ(l) : Δ(l).

The operational semantics is defined via a termination judgment Σ, let x ⇐ M in K ↓, where M is
closed and K is a continuation term in x. Typed continuation terms are defined by:

Δ;Ξ � val x : (x : τ)�

Δ;Ξ; x : τ � M : Tτ ′ Δ;Ξ � K : (y : τ ′)�

Δ;Ξ � let y ⇐ M in K : (x : τ)�

The defining rules for the termination judgment Σ, let x ⇐ M in K ↓ are standard given that the language
is call-by-value, with left-to-right evaluation order. We just include one rule as an example:

Σ, let x ⇐ val V in K ↓
Σ, let x ⇐ unfold(fold V ) in K ↓

A context is a computation term with a hole, and we write C[.] : (Δ; Ξ; Γ � γ) ⇒ (Δ; ;� Tτ) to
mean that whenever Δ; Ξ; Γ � G : γ then Δ; ;� C[G] : Tτ .

The definition of contextual equivalence is standard and much as in (7).

Definition 1
If Δ; Ξ; Γ � Gi : γ, for i = 1, 2 then G1 and G2 are contextually equivalent, written

Δ; Ξ; Γ � G1 =ctx G2,

if, for all types τ , for all contexts C[.] : (Δ; Ξ; Γ � γ) ⇒ (Δ; ;� Tτ) and for all stores Σ : Δ,

Σ, let x ⇐ C[G1] in val x ↓⇐⇒ Σ, let x ⇐ C[G2] in val x ↓ .
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3 Denotational Semantics

We define a denotational semantics of the language from the previous section and show that the semantics
is adequate. The denotational semantics is defined using FM-domains (52). The semantics and the
adequacy proof, in particular the existence proof of the logical relation used to prove adequacy, builds on
Shinwell’s work on semantics of recursive types in FM-domains (52). Our approach is slightly different
from that of Shinwell since we make use of universal domains to model impredicative polymorphism and
the fact that any type of value can be stored in the store, but technically it is not that big a difference.

We begin by calling to mind some basic facts about FM-domains; see (52) for more details. Fix
a countable set of atoms, which in our case will be the locations, Loc. A permutation is a bijective
function π ∈ (Loc → Loc) such that the set {l | π(l) �= l} is finite. An FM-set X is a set equipped
with a permutation action: an operation π • − : perms(Loc) × X → X that preserves composition
and identity, and such that each element x ∈ X is finitely supported: there is a finite set L ⊂ Loc
such that whenever π fixes each element of L, the action of π fixes x: π • x = x. There is a smallest
such set, which we write supp(x). A morphism of FM-sets is a function f : D → D′ between the
underlying sets that is equivariant: ∀x.π • (fx) = f(π • x). An FM-cpo is an FM-set with an equivariant
partial order relation � and least upper bounds of all finitely-supported ω-chains. A morphism of FM-
cpos is a morphism of their underlying FM-sets that is monotone and preserves lubs of finitely-supported
chains. We only require the existence and preservation of lubs of finitely-supported chains, so an FM-
cpo may not be a cpo in the usual sense. The sets Z , N , etc., are discrete FM-cpos with the trivial
action. The set of locations, Loc, is a discrete FM-cpo with the action π • l = π(l). The category of
FM-cpos is bicartesian closed: we write 1 and × for the finite products, D ⇒ D′ for the internal hom and
0,+ for the coproducts. The action on products is pointwise, and on functions is given by conjugation:
π • f = λx.π • (f(π−1 • x)). The category is not well-pointed: morphisms 1 → D correspond to
elements of 1 ⇒ D with empty support. The lift monad, (−)⊥, is defined as usual with the obvious
action. The Kleisli category FM−Cppo⊥ is the category of pointed FM-cpos (FM-cppos) and strict
continuous maps, which is symmetric monoidal closed, with smash product ⊗ and strict function space
�. If D is a pointed FM-cpo then fix : (D ⇒ D) � D is defined by the lub of an ascending chain in
the usual way. We write O for the discrete FM-cpo with elements ⊥ and �, ordered by ⊥ � �.

As detailed in (52), one may solve recursive domain equations in FM−Cppo⊥. For the denotational
semantics, we use a minimal invariant recursive domain V satisfying:

V ∼= F (V, V )
F (V, V ) = 1⊥ ⊕ Z⊥ ⊕ Loc⊥ ⊕ (V ⊗ V ) ⊕

(V ⊕ V ) ⊕ (V � TV )⊥ ⊕ (TV )⊥ ⊕ V ,

where
TV = (KV ) � (S � O)
KV = S � (V � O)

S = Loc⊥ � V .

Formally, V is obtained as the minimal invariant solution to a locally FM-continuous functor F :
(FM−Cppo⊥)op×FM−Cppo⊥ → FM−Cppo⊥. We write i for the isomorphism i : F (V ,V ) ∼= V .
The injections into the sum are denoted as follows:

in1 : 1⊥ � F (V ,V )
in int : Z⊥ � F (V ,V )
in ref : Loc⊥ � F (V ,V )
in× : (V ⊗ V ) � F (V ,V )
in+ : (V ⊕ V ) � F (V ,V )
in→ : (V � TV )⊥ � F (V ,V )
in∀ : (TV )⊥ � F (V ,V )
inμ : V � F (V ,V ),
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but we will often omit the isomorphism i and the injections into the sum writing, e.g., simply (v1, v2) for
an element of V.

Types, Ξ � τ are interpreted by [[Ξ � τ ]] = V , computation types Ξ � Tτ are interpreted by
[[Ξ � Tτ ]] = TV , continuation types Ξ � (x : τ)� are interpreted by [[Ξ � (x : τ)�]] = KV , and
store types Δ are interpreted by [[Δ]] = S . Type environments in context Ξ | Γ = x1 : τ1, . . . , xn : τn are
interpreted by

⊗
i∈{1,...,n} V .

Typing judgments are interpreted as follows:

• [[Δ; Ξ; Γ � V : τ ]] ∈ ([[Ξ � Γ]] � [[Ξ � τ ]])
• [[Δ; Ξ; Γ � M : Tτ ]] ∈ ([[Ξ | Γ]] � [[Ξ � Tτ ]])
• [[Δ; Ξ � K : (x : τ)�]] ∈ KV

The actual definition of the interpretations is quite standard, except for allocation which makes use of the
properties of FM-cpo’s:

[[Δ; Ξ; Γ � refV : T (τ ref )]] ρ = λk.λS.
k(S([l �→ [[Δ; Ξ; Γ � V : τ ]] ρ])l)

for some/any l /∈ supp(λl′.k(S[l′ �→ [[Δ; Ξ; Γ � V : τ ]] ρ])l′)

The typing rule for refV requires that τ is closed. The definition is much as in (7). The use of FM-cpo’s
ensures that it is a good definition. As in (7), we use the monad T to combine state with continuations to
get a good control over what the new location has to be fresh for.

We only include a couple of additional cases of the semantic definition, namely the one for unfold, for
continuations, and for type abstraction and type application:

[[Δ; Ξ; Γ � unfold V : T (τ [μα.τ/α])]] ρ = λk.λS.
case [[Δ; Ξ; Γ � V : μα.τ ]] ρ of i(inμ(d)) then kSd; else⊥,

[[Δ; Ξ;� K : (x : τ)�]] = λS.λd.
[[Δ; Ξ;x : τ � K : Tτ ′]]{x �→ d}(λS′.(λd′.�)⊥)⊥S

[[Δ; Ξ; Γ � Λα.M : ∀α. Tτ ]] ρ = in∀�[[Δ; Ξ, α; Γ � M : Tτ ]] ρ 
[[Δ; Ξ; Γ � V (τ ′) : Tτ [τ ′/α]]] ρ =
case [[Δ; Ξ; Γ � V : ∀α.Tτ ]] ρ of in∀�d then d; else⊥,

Theorem 2 (Soundness and Adequacy)
If Δ; ;� M : Tτ , Δ;� K : (x : τ)�, Σ : Δ and S ∈ [[Σ : Δ]] then Σ, let x ⇐ M in K ↓ iff

[[Δ; ;� M : Tτ ]] ∗ [[Δ;� K : (x : τ)�]] S = �.

Soundness is proved by induction and to show adequacy one defines a formal approximation relation
between the denotational and the operational semantics. The existence proof of the relation is non-trivial
because of the recursive types, but follows from a fairly straightforward adaptation of Shinwell’s existence
proof in (52) (Shinwell shows adequacy for a language with recursive types, but without references and
impredicative polymorphism).

Corollary 3
[[Δ; Ξ; Γ � G1 : γ]] = [[Δ; Ξ; Γ � G2 : γ]] implies Δ; Ξ; Γ � G1 =ctx G2.

4 A Parameterized Logical Relation

In this section we define a parameterized logical relation on V , which we can use to prove contextual
equivalence. The relation is parameterized both on interpretations of the free type variables as needed
for parametricity and on parameters that accomodate local reasoning about contextual equivalence in the
presence of general references. The latter kind of parameters are introduced in the next subsection, they
are essentially as in (13).
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4.1 Accessibility maps, simple state relations and parameters

Intuitively, the parameters express properties of two related states by expressing requirements of disjoint
areas of states. There is a “visible” area and a finite number of “hidden invariants.” In the logical relation,
computations are related under a parameter if they have corresponding termination behaviour under the
assumption that they are executed in states satisfying the properties expressed by the parameter.

Definition 4
A function A : S → Pfin(Loc) from S to the set of finite subsets of Loc is an accessibility map if

1. A is continuous, and

2. ∀S1, S2 ∈ S . (∀l ∈ A(S1). S1l = S2l) ⇒ A(S1) = A(S2).

We let A∅ denote the accessibility map defined by ∀S.A∅(S) = ∅, and we let A{l1,...,lk} denote the
accessibility map defined by ∀S.A{l1,...,lk}(S) = {l1, . . . , lk}.

Definition 5
A simple state relation P is a triple (p̂, Ap1, Ap2) satisfying that Ap1 and Ap2 are accessibility maps and

p̂ is an admissible relation on S satisfying, for all states S1, S2, S
′
1, S

′
2 ∈ S ,

(∀l1 ∈ Ap1(S1).S1l1 = S′
1l1 ∧ ∀l2 ∈ Ap2(S2).S2l2 = S′

2l2
)

⇒ (
(S1, S2) ∈ p̂ ⇔ (S′

1, S
′
2) ∈ p̂

)
.

Note that a simple state relation is essentially a relation on states for which it can be decided whether
a pair of states belong to the relation only on the basis of some parts of the states, defined by a pair of
accessibility maps.

We denote the “always true” simple state relation (S × S , A∅, A∅) by T .

We now define the notion of a local parameter, which we will later use to express hidden invariants
of two related states. Intuitively, a local parameter has its own private areas of the states. These areas
are used for testing conditions and for storing related values. The testing condition is a disjunction of
simple state relations, where to each disjunct there is an associated list of pairs of locations from the two
related states (it is possible that the location list is empty). At least one condition must be satisfied and
the corresponding list of locations hold related values.

Definition 6
A local parameter is a finite non-empty set of pairs

r = {(P1, LL1), .., (Pm, LLm)}, where each Pi is a simple state relation Pi = (p̂i, Api1, Api2) and each

LLi is a finite, possibly empty, set of location pairs and closed value types

LLi = { (li11, li12, τi1), . . . , (lini1, lini2, τni) }, (ni ≥ 0).

We often write a local parameter as r = ((P1, LL1) � . . . � (Pm, LLm)). For a location list LL, we
write L1 resp. L2 for the set of locations that occur as first resp. second components in the location list
LL. For a local parameter r, there are associated accessibility maps Ar1 and Ar2 given by ∀S. Ar1(S) =⋃

i Api1(S) ∪ L1 and ∀S. Ar2(S) =
⋃

i Api2(S) ∪ L2.
We denote the “always true” local parameter {(T, ∅)} also simply by T . It has the associated accessi-

bility maps A∅, A∅.
We have included the LL-list to be used for storing related values which may later be updated by

exported updating functions. The updated values may require more invariants to hold for the stores in
order to have equivalent behaviour. This interpretation of the local parameter is expressed in the definition
of our invariant family of relations below.
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Definition 7
A basic parameter is a pair Δr, where Δ is a store type, and r = {r1, .., rn} a finite set of local parameters

such that T ∈ r.

bPar denotes the set of basic parameters.

For a basic parameter Δr we associate accessibility maps Ar1 and Ar2, given by ∀S. Ar1(S) =⋃
Ari1(S) and ∀S. Ar2(S) =

⋃
Ari2(S).

For each store type Δ we have a special basic parameter Δ{T}.

Definition 8
For basic parameters Δ′r′ and Δr define (Δ′r′) � (Δr)

def⇐⇒ Δ′ ⊇ Δ and r′ ⊇ r.

The ordering relation � is reflexive, transitive and antisymmetric. For all basic parameters Δr it
holds that there are only finitely many basic parameters Δ0r0 such that Δr � Δ0r0. For convenience we
sometimes write Δr � Δ′r′ for Δ′r′ � Δr.

4.2 Parameterized relations and contextual equivalence

For D ∈ FMcpo⊥ we define the set of parameters as:

Par(D) = {Δr(d1, d2) | d1, d2 ∈ D,Δr basic parameter}

AdmRel(D) denotes the binary admissible relations on D ∈ FMcpo⊥.

ParAdmRel(D):
We define a set of parameterized admissible relations on D ∈ FMcpo⊥ denoted ParAdmRel(D). El-
ements are functions R : bPar → D2 → AdmRel(D) such that ∀Δr. ∀d1, d2. R(Δr)(d1, d2) is an
admissible relation on D. We use the notation (d′1, d

′
2, d1, d2) ∈ R(Δr) when (d′1, d

′
2) ∈ R(Δr)(d1, d2).

bParAdmRel(D):
We define a set of parameterized admissible relations on D ∈ FMcpo⊥ denoted bParAdmRel(D). El-
ements are functions R : bPar → D2 → AdmRel(D) satisfying the properties below. For notational
convenience we let
bParAdmRel = bParAdmRel(F (V ,V )).

admissibility ∀Δr. ∀d1, d2.
R(Δr)(d1, d2) is an admissible relation on D.

parameter weakening ∀Δr. ∀Δ′r′. ∀d′1, d
′
2, d1, d2.

(d′1, d
′
2, d1, d2) ∈ R(Δr) ∧ Δ′r′ � Δr ⇒ (d′1, d

′
2, d1, d2) ∈ R(Δ′r′)

approximation ∀Δr. ∀d′1, d
′
2, d1, d2.

(d′1, d
′
2, d1, d2) ∈ R(Δr) ⇒ (d′1 � d1 ∧ d′2 � d2)

definedness ∀Δr. ∀d′1, d
′
2, d1, d2.

(d′1, d
′
2, d1, d2) ∈ R(Δr) ⇒ (d′1 = d′2 = ⊥) ∨ (d1 �= ⊥ ∧ d2 �= ⊥)

downwards closure ∀Δr. ∀d′′1 , d′′2 , d′
1, d

′
2, d1, d2.

d′′1 � d′1 ∧ d′′2 � d′2 ∧ (d′1, d
′
2, d1, d2) ∈ R(Δr) ⇒ (d′′1 , d′′2 , d1, d2) ∈ R(Δr)
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Let D ∈ FMcpo⊥.
Let HD : ValueType → Π{α1, . . . , αn} ∈ Pfin(TypeVar) →

(bParAdmRel(F (V ,V )))n → ParAdmRel(D).

We define some properties HD may have (it is admissible by definition):

Admissibility ∀(τ).∀(Ξ�R).∀Δr.∀d1, d2.

(⊥,⊥, d1, d2) ∈ HD(τ)(Ξ�R)(Δr) and

∀i. (di
1 � di+1

1 ) ∧ (di
2 � di+1

2 ) ∧ (di
1, d

i
2, d1, d2) ∈ HD(τ)(Ξ�R)(Δr) =⇒

(
⊔

di
1,

⊔
di
2, d1, d2) ∈ HD(τ)(Ξ�R)(Δr)

Approximation ∀(τ).∀(Ξ�R).∀Δr.∀d′1, d
′
2, d1, d2.

(d′1, d
′
2, d1, d2) ∈ HD(τ)(Ξ�R)(Δr) =⇒ (d′1 � d1 ∧ d′2 � d2)

Downwards closure ∀(τ).∀(Ξ�R).∀Δr.∀d′′1 , d′′
2 , d′1, d

′
2, d1, d2.

(d′′1 � d′1 ∧ d′′2 � d′2 ∧ (d′1, d
′
2, d1, d2) ∈ HD(τ)(Ξ�R)(Δr) =⇒

(d′′1 , d′′
2 , d1, d2) ∈ HD(τ)(Ξ�R)(Δr)

Definedness ∀(τ).∀(Ξ�R).∀Δr.∀d′1, d
′
2, d1, d2.

(d′1, d
′
2, d1, d2) ∈ HD(τ)(Ξ�R)(Δr) =⇒ (d′1 = d′2 = ⊥ ∨ (d1 �= ⊥ ∧ d2 �= ⊥))

Ξ-strengthening ∀Ξ � τ. ∀(Ξ�R). ∀(Ξ′ �R′) ⊇ (Ξ�R). ∀(Δr).

(d′1, d
′
2, d1, d2) ∈ HD(τ)(Ξ′ �R′)(Δr) ⇒ (d′1, d

′
2, d1, d2) ∈ HD(τ)(Ξ�R)(Δr)

Ξ-weakening ∀(Ξ�R). ∀(Ξ′ �R′) ⊇ (Ξ�R). ∀(Δr).

(d′1, d
′
2, d1, d2) ∈ HD(τ)(Ξ�R)(Δr) ⇒ (d′1, d

′
2, d1, d2) ∈ HD(τ)(Ξ′ �R′)(Δr)

Parameter weakening ∀(τ).∀(Ξ�R).∀Δr(d1, d2). ∀Δ′r′ � Δr.

H(τ)(Ξ�R)(Δr(d1, d2)) ⊆ H(τ)(Ξ�R)(Δ′r′(d1, d2))

We define:

Definition 9

LV ⊆ ValueType → Π{α1, . . . , αn} ∈ Pfin(TypeVar) →
(bParAdmRel)n → ParAdmRel(V )

)

LF (V ,V ) ⊆ ValueType → Π{α1, . . . , αn} ∈ Pfin(TypeVar) →
(bParAdmRel)n → ParAdmRel(F (V ,V ))

)

For D ∈ {V , F (V ,V )} by definition LD is the subset with the properties admissibility, downwards
closure, Ξ-strengthening, Ξ-weakening and parameter weakening , and with the pointwise ordering. If

R,S ∈ LD, then

R ≤ S ⇐⇒(∀(τ). ∀(Ξ�R). ∀Δr. ∀v′1, v
′
2, v1, v2 ∈ D.

(v′1, v
′
2, v1, v2) ∈ R(τ)(Ξ�R)(Δr) ⇒ (v′1, v

′
2, v1, v2) ∈ S(τ)(Ξ�R)(Δr)

)
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Comment: The relation we are aiming at will also by definition have the properties approximation and
(for values) definedness.

Let S ⊆ LD. Then
⋂

S ∈ ValueType → Π{α1, . . . , αn} ∈ Pfin(TypeVar) → (bParAdmRel)n →
bPar → D2 → Rel(D) such that

(v′1, v
′
2) ∈ ⋂

S(τ)(Ξ�R)(Δr(v1, v2)) ⇐⇒ (∀S ∈ S. (v′1, v
′
2) ∈ S(τ)(Ξ�R)(Δr(v1, v2)).

Lemma 10
LD is a complete lattice. If S is a set of relations in LD, then

⋂
S is a relation in LD, D ∈ {V , F (V ,V )}.

We need to prove, that
⋂

S has the properties admissibility, downwards closure, Ξ-strengthening, Ξ-
weakening and parameter weakening.

Admissibility. Any chain in (
⋂

S)(τ)(Ξ�R)(Δr(v1, v2)) is a chain in each S(τ)(Ξ�R)(Δr(v1, v2))
where S ∈ ⋂

S and each of these is admissibile.

Downwards closure. Assume v′′1 � v′1 ∧ v′′2 � v′2 ∧ (v′1, v
′
2) ∈ (

⋂
S)(τ)(Ξ�R)(Δr(v1, v2)). Then

∀S ∈ S. (v′1, v
′
2) ∈ S(τ)(Ξ�R) (Δr(v1, v2)). Each S is downwards closed, so ∀S ∈ (

⋂
S). (v′′1 , v′′

2 ) ∈
S(τ)(Ξ�R) (Δr(v1, v2)). It follows that (v′′1 , v′′

2 ) ∈ (
⋂

S)(τ)(Ξ�R)(Δr(v1, v2)).

Ξ-strengthening. Assume Ξ � τ and (Ξ′ �R′) ⊇ (Ξ�R) and (d′1, d
′
2, d1, d2) ∈ (

⋂
S)(τ)(Ξ′ �R′)(Δr).

Then ∀S ∈ S. (d′1, d
′
2, d1, d2) ∈ S(τ)(Ξ′ �R′)(Δr) and since each S has Ξ-strengthening then ∀S ∈

S. (d′1, d
′
2, d1, d2) ∈ S(τ)(Ξ�R)(Δr). So (d′1, d

′
2, d1, d2) ∈ (

⋂
S)(τ)(Ξ�R)(Δr).

Ξ-weakening. Assume (Ξ′ �R′) ⊇ (Ξ�R) and (d′1, d
′
2, d1, d2) ∈ (

⋂
S)(τ)(Ξ�R)(Δr). Then ∀S ∈

S. (d′1, d
′
2, d1, d2) ∈ S(τ)(Ξ�R)(Δr) and since each S has Ξ-weakening then ∀S ∈ S. (d′1, d

′
2, d1, d2) ∈

S(τ)(Ξ′ �R′)(Δr). So (d′1, d
′
2, d1, d2) ∈ (

⋂
S)(τ)(Ξ′ �R′)(Δr).

Parameter weakening. Assume (v′1, v
′
2) ∈ (

⋂
S)(τ)(Ξ�R)(Δr(v1, v2)) so (∀S ∈ S. (v′1, v

′
2) ∈

S(τ)(Ξ�R) (Δr(v1, v2)). Let Δ′r′ � Δr. Since each S is parameter weakened, then (∀S ∈ S. (v′1, v
′
2) ∈

S(τ)(Ξ�R)(Δ′r′(v1, v2)). Hence (v′1, v
′
2) ∈ ⋂

S(τ)(Ξ�R)(Δ′r′(v1, v2)).

We now define monotone functions

ΨS : Lop
V × LV → ParAdmRel(S )

ΨK : Lop
V × LV → ContinuationType → Π{α1 . . . αn} →

bParAdmReln → ParAdmRel(KV )
ΨT : Lop

V × LV → ComputationType → Π{α1 . . . αn}
→ bParAdmReln → ParAdmRel(TV )

Ψ : Lop
V × LV → LF (V ,V )

The functions are defined in the order shown above. The function ΨS is defined without referring to any
of the other functions. The definition of the function ΨK makes use of ΨS . The definition of the function
ΨT makes use of ΨS and ΨK . The function Ψ(R,S) ∈ LF (V ,V ) is defined by case analysis over the
structure of its argument τ (we do not use induction over τ ) and makes use of the definition of the function
ΨT . Here we make use of the fact that LV and LF (V ,V ) are complete lattices of functions. Technically
it is an important idea since it makes it easy for us to deal with nested recursive types.

The actual definitions of the above functions are given in Figure 1.
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Theorem 11
ΨS , ΨK , ΨT , Ψ are well-defined.

We will also show that ∀R ∈ Lop,S ∈ L (with the natural definition of the involved properties)

ΨS(R,S) has the properties admissibility and downwards closure. (But not parameter weakening).

ΨK(R,S) has the properties admissibility, downwards closure, Ξ-strengthening, Ξ-weakening and
parameter weakening.

ΨT (R,S) has the properties admissibility, downwards closure, Ξ-strengthening, Ξ-weakening and
parameter weakening.

Lemma 12
The generated relations are downwards closed.

∀R ∈ Lop
V ,S ∈ LV . ∀Ξ. ∀�R. ∀Δr.

∀s′′1 , s′′2 , s′1, s
′
2, s1, s2, k

′′
1 , k′′

2 , k′
1, k

′
2, k1, k2,

m′′
1 ,m′′

2 ,m′
1,m

′
2,m1,m2, v

′′
1 , v′′

2 , v′
1, v

′
2, v1, v2.

S : (s′1, s
′
2, s1, s2) ∈ ΨS(R,S)(Δr) ∧ s′′1 � s′1 ∧ s′′2 � s′1 ⇒

(s′′1 , s′′2 , s1, s2) ∈ ΨS(R,S)(Δr)

KV : (k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr) ∧ k′′

1 � k′
1 ∧ k′′

2 � k′
1 ⇒

(k′′
1 , k′′

2 , k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr)

TV : (m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ�R)(Δr) ∧ m′′

1 � m′
1 ∧ m′′

2 � m′
1 ⇒

(m′′
1 ,m′′

2 ,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ�R)(Δr)

V : (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ)(Ξ�R)(Δr) ∧ v′′1 � v′1 ∧ v′′2 � v′1 ⇒

(v′′1 , v′′
2 , v1, v2) ∈ Ψ(R,S)(τ)(Ξ�R)(Δr)

Proof:

• For ΨS the lemma follows from the property for S ∈ L. All requirements of disjointness and
membership in simple state relations are only on s1, s2. Requirements of relatedness of stored
values are in S ∈ L and S is downwards closed.

• For ΨK and ΨT the lemma follows from weaker termination properties under applications.

• For Ψ the proof is by case analysis over the constructor in the argument τ
αj : follows from downwards closure of Rj ∈ bParAdmRel. unit, int, τ ref : immidiate from the
definition.
(τ1 + τ2),(τ1 × τ2),(μα.τ ): Follows from the property for S ∈ L.
τ → Tτ ′ and ∀α.Tτ : follows downwards closure of R,S ∈ L and ΨT preserves this property.

�

Lemma 13
The generated relations are admissible

∀R ∈ Lop
V ,S ∈ LV . ∀(Ξ�R). ∀Δr.

∀S1, S2, k1, k2,m1,m2, v1, v2.

S : (⊥,⊥, S1, S2) ∈ ΨS(R,S)(Δr)∧(∀i ∈ ω. Si
1 � Si+1

1 ∧ Si
2 � Si+1

2 ∧ (Si
1, S

i
2, S1, S2) ∈ ΨS(R,S)(Δr) ⇒

(
⊔

Si
1,

⊔
Si

2, S1, S2) ∈ ΨS(R,S)(Δr)

KV : (⊥,⊥, k1, k2) ∈ ΨK(R,S)(τ)(Ξ�R)(Δr)∧(∀i ∈ ω. ki
1 � ki+1

1 ∧ ki
2 � ki+1

2 ∧ (ki
1, k

i
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr) ⇒

(
⊔

ki
1,

⊔
ki
2, k1, k2) ∈ ΨS(R,S)(τ�)(Ξ�R)(Δr)
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TV : (⊥,⊥,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ�R)(Δr)∧(∀i ∈ ω. mi
1 � mi+1

1 ∧ mi
2 � mi+1

2 ∧ (mi
1,m

i
2,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ�R)(Δr) ⇒

(
⊔

mi
1,

⊔
mi

2,m1,m2) ∈ ΨS(R,S)(Tτ)(Ξ�R)(Δr)

V : (⊥,⊥, v1, v2) ∈ ΨT (R,S)(τ)(Ξ�R)(Δr)∧(∀i ∈ ω. vi
1 � vi+1

1 ∧ vi
2 � vi+1

2 ∧ (vi
1, v

i
2, v1, v2) ∈ Ψ(R,S)(τ)(Ξ�R)(Δr) ⇒

(
⊔

vi
1,

⊔
vi
2, v1, v2) ∈ ΨS(R,S)(τ)(Ξ�R)(Δr)

Proof: (⊥,⊥) is always in the relations, this is immidiate from the definition. Proof for chains which
are not constantly ⊥,⊥:

1. Assume ∀i ∈ ω. (Si
1, S

i
2, S1, S2) ∈ ΨS(R,S)(Δr), and this is a chain. Then ∀i. Si

1 � S1 and
∀i. Si

2 � S2. This implies
⊔

Si
1 � S1 and

⊔
Si

2 � S2. Requirements of disjointness of areas given
by accessibility maps and membership in state relations are only on S1, S2, so they are still fulfilled,
and the same LL’s will be required to hold related values. By assumption for each such LL it holds
that ∀i ∈ ω. ∀(l1, l2,− � τ) ∈ LL. (Si

1l1, S
i
2l2, S1l1, S2l2) ∈ S(τ)()(Δr). Since S is admissible

then also (
⊔

i(S
i
1l1),

⊔
i(S

i
2l2), S1l1, S2l2) = ((

⊔
i Si

1)l1, (
⊔

i Si
2)l2, S1l1, S2l2) ∈ S(τ)()(Δr).

Similarly for (l �→ − � τ) ∈ Δ we see that ((
⊔

i Si
1)l, (

⊔
i Si

2)l, S1l, S2l) ∈ S(τ)()(Δr). We
conclude that (

⊔
i Si

1,
⊔

i Si
2, S1, S2) ∈ ΨS(R,S)(Δr).

2. Assume a chain (ki
1, k

i
2, k1, k2 ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr). Then ∀i. ki

1 � k1 ∧ ki
2 � k2, so⊔

ki
1 � k1 ∧ ⊔

ki
2 � k2. Let Δ′r′ � Δr, (S′

1, S
′
2, S1, S2) ∈ ΨS(S,R)(Δ′r′) and (v′1, v

′
2, v1, v2) ∈

R(τ)(Ξ�R)(Δ′r′). ki
1S

′
1v

′
1 is a chain in O . If the chain is constantly ⊥ then

⊔
ki
1S

′
1v

′
1 = ⊥ and the

implication (
⊔

ki
1S

′
1v

′
1 = � ⇒ k2S2v2 = �) holds trivially. Else ∃j ∈ ω. ∀i ≥ j. kiS′

1v
′
1 =

�. Then also
⊔

kiS′
1v

′
1 = � ∧ k2S2v2 = �. The other direction is similar. We conclude

(
⊔

ki
1,

⊔
ki
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr).

3. The proof is similar to the previous for 2), so we omit it.

4. The proof is by case analysis of the constructor of the argument τ .

• Assume a chain (vi
1, v

i
2, v1, v2) ∈ Ψ(R,S)(αj)(Ξ�R)(Δr). Then (in the non bottom cases)

αj ∈ Ξ and ∀i. vi
1 � v1 ∧ vi

2 � v2. Then also
⊔

vi
1 � v1 and

⊔
vi
2 � v2. Also ∀i ∈

ω. (vi
1, v

i
2, v1, v2) ∈ Rj(Δr) and since Rj is admissible then also (

⊔
i vi

1,
⊔

i vi
2, v1, v2) ∈

Rj(Δr). So (
⊔

i vi
1,

⊔
i vi

2, v1, v2) ∈ Ψ(R,S)(αj)(Ξ�R)(Δr).
• Chains with type-argument unit, int or τ ref will be constant from some point onwards.

• For chains with type argument τ1 + τ2, τ1 × τ2 and μα. τ admissibility follows from admissi-
bility of relations in L and S ∈ L.

• Assume a chain (vi
1, v

i
2, v1, v2) ∈ Ψ(R,S)(τ → Tτ ′)(Ξ�R) (Δr). Then ∀i. (vi

1 � v1 ∧ vi
2 �

v2 ∧ ∃di
1, d

i
2, d1, d2 : V � TV . ((vi

1 = ⊥ ∧ di
1 = ⊥) ∨ vi

1 = in→�di
1 ) ∧ ((vi

2 = ⊥ ∧ di
2 =

⊥) ∨ vi
2 = in→�di

2 ) ∧ v1 = in→�d1 ∧ v2 = in→�d2 ∧ ∀Δ′r′ � Δr. ∀v′11, v
′
22, v11, v22 :

V . (v′11, v
′
22, v11, v22) ∈ R(τ)(Ξ�R)(Δ′r′) ⇒ (di

1v
′
11, di

2v
′
22, d1v11, d2v22) ∈ (ΨT (R,S)

(Tτ ′)(Ξ�R)(Δ′r′). As
⊔

(in→�di ) = in→�⊔ di and
⊔

(div) = (
⊔

di)v and by 3) then
∀Δ′r′ � Δr. (v′11, v

′
22, v11, v22) ∈ R(τ)(Ξ�R)(Δ′r′) ⇒ (

⊔
di
1v

′
11,

⊔
di
2v

′
22, d1v11, d2v22) ∈

(ΨT (R,S)(Tτ ′) (Ξ�R)(Δ′r′).
So (

⊔
vi
1,

⊔
vi
2, v1, v2) ∈ Ψ(R,S)(τ → Tτ ′)(Ξ�R) (Δr).

• Assume a chain (vi
1, v

i
2, v1, v2) ∈ Ψ(R,S)(∀α.Tτ)(Ξ�R)(Δr). Then ∀i. vi

1 � v1 and ∀i. vi
2 �

v2. This implies
⊔

vi
1 � v1 and

⊔
vi
2 � v2. It holds that ∀i. ∃di

1, d
i
2 : TV . (vi

1 = di
1 =

⊥ ∨ vi
1 = in∀�di

1 ) ∧ (vi
2 = di

2 = ⊥ ∨ vi
2 = in∀�di

2 ) ∧ ∃d1, d2 : TV . v1 = in∀�d1 ∧ v2 =
in∀�d2 ∧ ∀i. ∀Rα : bParAdmRel. (di

1, d
i
2, d1, d2) ∈ ΨT (R,S)(Tτ)(Ξα �RRα)(Δr). This

is a chain, and then by 3) also ∀Rα : bParAdmRel. (
⊔

di
1,

⊔
di
2, d1, d2) ∈ ΨT (R,S)(τ)(Ξα

�R Rα)(Δr). As in∀�
⊔

di
1 =

⊔
in∀�di

1 and
⊔

(⊥ − chain) = ⊥ and possibly using down-
wards closure we have (

⊔
vi
1,

⊔
v,
2v1, v2) ∈ Ψ(R,S)(∀α.Tτ)(Ξ�R)(Δr).
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Lemma 14
The generated relations have parameter weakening.

∀R ∈ Lop
V ,S ∈ LV .

∀(Ξ�R). ∀Δr. ∀Δ′r′ � Δr.
∀k′

1, k
′
2, k1, k2,m

′
1,m

′
2,m1,m2, v

′
1, v

′
2, v1, v2.

KV : (k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr) ⇒

(k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δ′r′)

TV : (m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ�R)(Δr) ⇒

(m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ�R)(Δ′r′)

V : (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ)(Ξ�R)(Δr) ⇒

(v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ)(Ξ�R)(Δ′r′)

Proof: For KV and TV the lemma follows from transitivity Δ′′r′′�Δ′r′ and Δ′r′�Δr ⇒ Δ′′r′′�Δr.

For V the proof is by case analysis over the constructor of the argument τ

• αj : Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(αj)(Ξ�R)(Δr) and v′1 �= ⊥ ∨ v′2 �= ⊥. Then αj ∈

Ξ and (v′1, v
′
2, v1, v2) ∈ Rj(Δr). Since Rj ∈ bParAdmRel is parameter weakened then also

(v′1, v
′
2, v1, v2) ∈ Rj(Δ′r′). So (v′1, v

′
2, v1, v2) ∈ Ψ(R,S)(αj)(Ξ�R)(Δ′r′)

• unit, int: immidiate from the definition

• τ ref : Follows from Δ′r′ � Δr ⇒ Δ′ ⊇ Δ.

• τ1 + τ2, τ1 × τ2, μα.τ : Follows from parameter weakening for relations in L.

• τ → Tτ ′: Follows from transitivity Δ′′r′′ � Δ′r′ ∧ Δ′r′ � Δr ⇒ Δ′′r′′ � Δr.

• ∀α.Tτ : Follows from the lemma for TV . Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(∀α.Tτ)(Ξ�R)(Δr).

This implies (v1 = v2 = ⊥) ∨ Ξ � ∀α.Tτ ∧ α /∈ Ξ ∧ (v′1 � v1 ∧ v′2 � v2 ∧ ∃d′1, d
′
2 : TV . ((v′1 =

⊥∧d′1 = ⊥)∨v′1 = in∀�d′1 )∧((v′2 = ⊥∧d′2 = ⊥)∨v′2 = in∀�d′2 )∧∃d1, d2 : TV . v1 = in∀�d1 ∧
v2 = in∀�d2 ∧ ∀Rα : bParAdmRel. (d′1, d

′
2, d1, d2) ∈ ΨT (R,S)(Tτ)(Ξα �RRα)(Δr). The

(⊥,⊥) case is immidiate. Else by the lemma for TV it holds that (d′1, d
′
2, d1, d2) ∈ ΨT (R,S)(Tτ)

(Ξα �RRα)(Δ′r′). So (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(∀α.Tτ)(Ξ�R)(Δ′r′).

�

Lemma 15
The generated relations have Ξ-weakening and Ξ-strengthening.

∀R ∈ Lop
V ,S ∈ LV .

∀τ. ∀(Ξ�R). ∀(Ξ′ �R′) ⊇ (Ξ�R). ∀Δr.
∀k′

1, k
′
2, k1, k2,m

′
1,m

′
2m1,m2, v

′
1, v

′
2, v1, v2.

KV : 1) (k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr) ⇒

(k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ′ �R′)(Δr)

2) Ξ � τ ∧ (k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ′ �R′)(Δr) ⇒

(k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr)
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TV : 1) (m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ�R)(Δr) ⇒

(m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ′ �R′)(Δr)

2) Ξ � τ ∧ (m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ′ �R′)(Δr) ⇒

(m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ�R)(Δr)

V : 1) (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ)(Ξ�R)(Δr) ⇒

(v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ)(Ξ′ �R′)(Δr)

2) Ξ � τ ∧ (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ)(Ξ′ �R′)(Δr) ⇒

(v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ)(Ξ�R)(Δr)

Proof:

KV : 1K) Assume (k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr) and (Ξ′ �R′) ⊇ (Ξ�R). To show (k′

1, k
′
2, k1,

k2) ∈ ΨK(R,S)(τ�) (Ξ′ �R′)(Δr). Let Δ0r0�Δr and let (S′
1, S

′
2, S1, S2) ∈ ΨS(S,R)(Δ0r0) and

(v′1, v
′
2, v1, v2) ∈ R(τ)(Ξ′ �R′)(Δ0r0). By the definition of the action of F the assumption implies

that either k′
1 = k′

2 = ⊥ or Ξ � τ . The first case is trivial. In the second case, since R ∈ LV it has
Ξ-strengthening, so (v′1, v

′
2, v1, v2) ∈ R(τ)(Ξ�R)(Δ0r0). By the assumptions on the k’s we then get

the required termination approximation.
2K) Assume (k′

1, k
′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ′ �R′)(Δr) ∧ Ξ � τ and (Ξ′ �R′) ⊇ (Ξ�R). To

show (k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr). Let Δ0r0 � Δr and let (S′

1, S
′
2, S1, S2) ∈

ΨS(S,R)(Δ0r0) and (v′1, v
′
2, v1, v2) ∈ R(τ)(Ξ�R) (Δ0r0). The case k′

1 = k′
2 = ⊥ is trivial. Else

since R ∈ LV it has Ξ-weakening, so (v′1, v
′
2, v1, v2) ∈ R(τ)(Ξ′ �R′)(Δ0r0). By the assumptions

on the k’s we then get the required termination approximation.

TV : 1M ) Assume (m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ�R)(Δr) and (Ξ′ �R′) ⊇ (Ξ�R). To show (m′

1,

m′
2,m1, m2) ∈ ΨT (R,S) (Tτ)(Ξ′ �R′)(Δr). Let Δ0r0 � Δr and let (S′

1, S
′
2, S1, S2) ∈ ΨS(S,R)

(Δ0r0) and (k′
1, k

′
2, k1, k2) ∈ ΨK(S,R)(τ�)(Ξ′ �R′) (Δ0r0). By the definition of the action of F

the assumption implies that either m′
1 = m′

2 = ⊥ or Ξ � τ . The first case is trivial. In the second
case, since S,R ∈ LV so by the previous 2K) it holds that (k′

1, k
′
2, k1, k2) ∈ ΨK(S,R)(τ�)(Ξ�R)

(Δ0r0). By the assumptions on the m’s we then get the required termination approximation.

2M ) Assume (m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(Tτ�)(Ξ′ �R′) (Δr) ∧ Ξ � τ and (Ξ′ �R′) ⊇ (Ξ�R). To

show (m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(τ�)(Ξ�R)(Δr). Let Δ0r0 � Δr and let (S′

1, S
′
2, S1, S2) ∈

ΨS(S,R)(Δ0r0) and (k′
1, k

′
2, k1, k2) ∈ ΨK(S,R) (τ�)(Ξ�R)(Δ0r0). The case m′

1 = m′
2 = ⊥ is

trivial. Else since R ∈ LV by the previous 1K) it holds that (k′
1, k

′
2, k1, k2)∈ ΨK(S,R)(τ�)(Ξ′ �R′)

(Δ0r0). By the assumptions on the m’s we then get the required termination approximation.

V : 1V ) Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ)(Ξ�R)(Δr) and (Ξ′ �R′) ⊇ (Ξ�R). To show (v′

1, v
′
2, v1,

v2) ∈ Ψ(R,S) (Tτ)(Ξ′ �R′) (Δr).
2V ) Assume (v′1, v

′
2, v1, v2) ∈ Ψ(R,S)(τ)(Ξ′ �R′)(Δr) and Ξ � τ and (Ξ′ �R′) ⊇ (Ξ�R). To show

(v′1, v
′
2, v1, v2) ∈ Ψ(R,S) (Tτ)(Ξ�R)(Δr).

The proof is by cases over the structure of the argument τ . In all cases v′1 = v′2 = ⊥ is trivial. Else:

(αj): In both directions it follows from the assumptions that αj ∈ Ξ ⊆ Ξ′ and as (Ξ′ �R′) ⊇ (Ξ�R) in
both cases it is required that (v′1, v

′
2, v1, v2) ∈ Rj(Δr).

(unit),(int): both directions are immidiate from the definition.
(τ ref): Follows from that the argument Δr is the same. In both directions it follows from the
assumption that τ is closed.

(τ1+τ2),(τ1×τ2),(μα.τ ): Follows from S ∈ LV as so S has Ξ-weakening and Ξ-strengthening. We
show the μα.τ case, the others are similar. 1) Assume (v′1, v

′
2, v1, v2) ∈ Ψ(R,S)(μα.τ)(Ξ�R)(Δr).
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So ∃d′1, d
′
2, d1, d2 ∈ V . ((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = inμ(d′1)) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 =

inμ(d′2)) ∧ v1 = inμ(d1) �= ⊥ ∧ v2 = inμ(d2) �= ⊥ ∧ (d′1, d
′
2, d1, d2) ∈ S(τ [μα.τ/α])(Ξ�R)(Δr).

Since Ξ � μα.τ iff Ξ � τ [μα.τ/α] and S has Ξ-wakening then (d′
1, d

′
2, d1, d2) ∈ S(τ [μα.τ/α])

(Ξ′ �R′)(Δr). So (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(μα.τ)(Ξ′ �R′)(Δr).

2) Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(μα.τ)(Ξ′ �R′)(Δr) and Ξ � μα.τ . So ∃d′1, d

′
2, d1, d2 ∈

V . ((v′1 = ⊥∧d′1 = ⊥)∨v′1 = inμ(d′1))∧((v′2 = ⊥∧d′2 = ⊥)∨v′2 = inμ(d′2))∧v1 = inμ(d1) �=
⊥ ∧ v2 = inμ(d2) �= ⊥ ∧ (d′1, d

′
2, d1, d2) ∈ S(τ [μα.τ/α])(Ξ′ �R′)(Δr). Since Ξ � μα.τ implies

Ξ � τ [μα.τ/α] and S has Ξ-strengthening then (d′1, d
′
2, d1, d2) ∈ S(τ [μα.τ/α])(Ξ�R)(Δr). So

(v′1, v
′
2, v1, v2) ∈ Ψ(R,S) (μα.τ)(Ξ�R)(Δr).

(∀α.Tτ ): Follows from 1M ) and 2M ) above, we may use α conversion. 1) Assume (v′1, v
′
2, v1, v2) ∈

Ψ(R,S) (∀α.Tτ)(Ξ�R) (Δr). We may additionally assume α /∈ Ξ′ else we α-convert ∀α.Tτ . By
assumption so ∃d′1, d

′
2, d1, d2 ∈ TV . ((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in∀�d′1 ) ∧ ((v′2 = ⊥ ∧ d′2 =

⊥) ∨ v′2 = in∀�d′2 ) ∧ v1 = in∀�d1 ∧ v2 = in∀�d2 ∧ ∀Rα ∈ bParAdmRel. (d′1, d
′
2, d1, d2) ∈

ΨT (R,S)(Tτ)(Ξα �RRα) (Δr). Since Ξ � ∀α.Tτ implies Ξ, α � Tτ and by assumption α /∈ Ξ′ ⊇
Ξ and using 1M ) we see ∀Rα ∈ bParAdmRel. (d′1, d

′
2, d1, d2) ∈ ΨT (R,S)(Tτ)(Ξ′α �R′Rα). So

(v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(∀α.Tτ)(Ξ′ �R′) (Δr).

2) Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(∀α.Tτ)(Ξ′ �R′) (Δr) and Ξ � ∀α.Tτ . So α /∈ Ξ′ ⊇ Ξ

and ∃d′1, d
′
2, d1, d2 ∈ TV . ((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in∀�d′1 ) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨

v′2 = in∀�d′2 ) ∧ v1 = in∀�d1 ∧ v2 = in∀�d2 ∧ ∀Rα ∈ bParAdmRel. (d′1, d
′
2, d1, d2) ∈

ΨT (R,S)(Tτ)(Ξ′α �R′Rα) (Δr). Since Ξ � ∀α.Tτ implies Ξ, α � Tτ and by 2M ) it holds that
∀Rα ∈ bParAdmRel. (d′1, d

′
2, d1, d2) ∈ ΨT (R,S)(Tτ)(Ξα �RRα) (Δr). So (v′1, v

′
2, v1, v2) ∈

Ψ(R,S)(∀α.Tτ)(Ξ�R) (Δr).

(τ → Tτ ′): Follows from Follows from R ∈ LV as so R has Ξ-weakening and Ξ-strengthening
together with 1M ) and 2M ). 1) Assume (v′1, v

′
2, v1, v2) ∈ Ψ(R,S)(τ → Tτ ′)(Ξ�R) (Δr). By

assumption so Ξ � τ → Tτ ′ and ∃d′1, d
′
2, d1, d2 ∈ (V � TV ). ((v′

1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 =
in→�d′1 ) ∧ ((v′2 = ⊥∧ d′2 = ⊥) ∨ v′2 = in→�d′2 ) ∧ v1 = in→�d1 ∧ v2 = in→�d2 ∧ ∀Δ0r0 �

Δr. ∀(w′
1, w

′
2, w1, w2) ∈ R(τ)(Ξ�R)(Δ0r0). (d′1w

′
1, d′2w

′
2, d1w1, d2w2) ∈ ΨM (R,S)(Tτ ′)(Ξ�R)

(Δ0r0). We must show ∀Δ0r0 � Δr. ∀(w′
1, w

′
2, w1, w2) ∈ R(τ)(Ξ′ �R′) (Δ0r0). (d′1w

′
1, d

′
2w

′
2,

d1w1, d2w2) ∈ ΨM (R,S)(Tτ ′)(Ξ′ �R′) (Δ0r0). Let (w′
1, w

′
2, w1, w2) ∈ R(τ)(Ξ′ �R′)(Δ0r0). Since

Ξ � τ and R has Ξ-strengthening then (w′
1, w

′
2, w1, w2) ∈ R(τ)(Ξ�R)(Δ0r0). So it follows from

the assumption that (d′1w
′
1, d′2w

′
2, d1w1, d2w2) ∈ ΨM (R,S) (Tτ ′)(Ξ�R)(Δ0r0). By 1M ) then also

(d′1w
′
1, d′2w

′
2, d1w1, d2w2) ∈ ΨM (R,S) (Tτ ′)(Ξ′ �R′)(Δ0r0). So (v′1, v

′
2, v1, v2) ∈ Ψ(R,S)(τ →

Tτ ′)(Ξ′ �R′) (Δr).
2) Assume (v′1, v

′
2, v1, v2) ∈ Ψ(R,S)(τ → Tτ ′)(Ξ′ �R′)(Δr) and Ξ � τ → Tτ ′. So ∃d′1, d

′
2, d1, d2

∈ (V � TV ). ((v′1 = ⊥∧d′1 = ⊥)∨v′1 = in→�d′1 )∧((v′2 = ⊥∧d′2 = ⊥)∨v′2 = in→�d′2 )∧v1 =
in→�d1 ∧ v2 = in→�d2 ∧ ∀Δ0r0 � Δr. ∀(w′

1, w
′
2, w1, w2) ∈ R(τ)(Ξ′ �R′)(Δ0r0). (d′1w

′
1, d′2w

′
2,

d1w1, d2w2) ∈ ΨM (R,S)(Tτ ′)(Ξ′ �R′)(Δ0r0). We must show ∀Δ0r0 � Δr. ∀(w′
1, w

′
2, w1, w2) ∈

R(τ)(Ξ�R)(Δ0r0). (d′1w
′
1, d′2w

′
2, d1w1, d2w2) ∈ ΨM (R,S)(Tτ ′)(Ξ�R)(Δ0r0). Let (w′

1, w
′
2, w1,

w2) ∈ R(τ)(Ξ�R)(Δ0r0). Since R has Ξ-weakening then (w′
1, w

′
2, w1, w2) ∈ R(τ)(Ξ′ �R′)(Δ0r0).

So it follows from the assumption that (d′1w
′
1, d

′
2w

′
2, d1w1, d2w2) ∈ ΨM (R,S)(Tτ ′)(Ξ′ �R′)(Δ0r0).

By 2M ) since Ξ � Tτ ′ then also (d′1w
′
1, d′2w

′
2, d1w1, d2w2) ∈ ΨM (R,S)(Tτ ′)(Ξ�R)(Δ0r0). So

(v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ → Tτ ′)(Ξ�R) (Δr).

�
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Definition 16
• Let D,E ∈ {V , F (V ,V )}, R ∈ LD, S ∈ LE , f : D � E, g : D ∼= E, f � g. Define

(f, g) : R ⊂ S def⇐⇒ ∀τ. ∀(Ξ�R). ∀(Δr). ∀v′1, v
′
2, v1, v2 ∈ D.

(v′1, v
′
2, v1, v2) ∈ R(τ)(Ξ�R)(Δr) ⇒ (fv′1, fv′2, gv1, gv2) ∈ S(τ)(Ξ�R)(Δr).

• Let D ∈ {V , F (V ,V )}, R,S ∈ LD, f : D � D, f � idD. Define

f : R ⊂ S def⇐⇒ (f, idD) : R ⊂ S
We also define ∀f, g : V � V .

- ∀S ∈ S . (ΨS(f, g))S = λl.g(Sl)

- ∀k ∈ KV . (ΨK(f, g))k = λs.λv.k(ΨS(g, f)s)(fv)

- ∀m ∈ TV . (ΨT (f, g))m = λk.λs.m(ΨK(g, f)k)(ΨS(g, f)s)

Lemma 17
∀R,R′,S,S ′ ∈ LV .∀f, g : V � V , f, g � idV it holds that

If f : R′ ⊂ R and g : S ⊂ S ′ then

1. ∀Δr. ∀S′
1, S

′
2, S1, S2.

(S′
1, S

′
2, S1, S2) ∈ ΨS(R,S)(Δr) ⇒

(ΨS(f, g)S′
1, ΨS(f, g)S′

2, S1, S2) ∈ ΨS(R′,S ′)(Δr).

2. ∀τ�. ∀(Ξ�R). ∀Δr. ∀k′
1, k

′
2, k1, k2.

(k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr) ⇒

(ΨK(f, g)k′
1, ΨK(f, g)k′

2, k1, k2) ∈ ΨK(R′,S ′)(τ�)(Ξ�R)(Δr).

3. ∀Tτ. ∀(Ξ�R). ∀Δr. ∀m′
1,m

′
2,m1,m2.

(m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ�R)(Δr) ⇒

(ΨT (f, g)m′
1, ΨT (f, g)m′

2,m1,m2) ∈ ΨT (R′,S ′)(Tτ)(Ξ�R)(Δr).

4. F (f, g) : Ψ(R,S) ⊂ Ψ(R′,S ′)

Corollary 18
Monotonicity of Ψ follows from the lemma, with f = g = idV .

Proof: We prove 1,2,3,4 in this order. Assume f : R′ ⊂ R and g : S ⊂ S ′. So f � idV , g � idV and
then ∀S ∈ S . ΨS(f, g)S � S, ∀k ∈ KV . ΨK(f, g)k � k, ∀m ∈ TV . ΨT (f, g)m � m.

1. Assume (S′
1, S

′
2, S1, S2) ∈ ΨS(R,S)(Δr). To show

(ΨS(f, g)S′
1, ΨS(f, g)S′

2, S1, S2) ∈ ΨS(R′,S ′)(Δr). If S′
1 = S′

2 = ⊥ then ΨS(f, g)S′
1 =

ΨS(f, g)S′
2 = ⊥ and we are done. Else it holds that S1 �= ⊥ ∧ S2 �= ⊥, and we reason as follows.

We must show (λl.g(S′
1l), λl.g(S′

2l), S1, S2) ∈ ΨS(R′,S ′)(Δr). S1, S2 have not been changed.
Requirements of disjointness of areas given by accessibility maps and membership of state relations
are only on S1, S2, so these properties are preserved. Since by assumption g : S ⊂ S ′ and ∀l ∈
dom(Δ). (S′

1l, S
′
2l, S1l, S2l) ∈ S(Δ(l))()(Δr) then ∀l ∈ dom(Δ). (g(S′

1l), g(S′
2l), S1l, S2l) ∈

S ′(Δ(l))()(Δr). Since all requirements of membership in state relations are preserved, the LL’s
required to hold related values will be the same. For each such LL, since by assumption g :
S ⊂ S ′ and ∀(l1, l2, τ) ∈ LL. (S′

1l1, S
′
2l2, S1l1, S2l2) ∈ S(τ)()(Δr) then also ∀(l1, l2, τ) ∈

LL. (g(S′
1l1), g(S′

2l2), S1l1, S2l2) ∈ S ′(τ)()(Δr). So we can conclude

(ΨS(f, g)S′
1, ΨS(f, g)S′

2, S1, S2) ∈ ΨS(R′,S ′)(Δr).
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2. Assume (k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ�R)(Δr). To show (ΨK(f, g)k′

1, ΨK(f, g)k′
2, k1, k2) ∈

ΨK(R′, S ′)(τ�) (Ξ�R)(Δr). If k′
1 = k′

2 = ⊥ then ΨK(f, g)k′
1 = ΨK(f, g)k′

2 = ⊥ and
we are done. Else we must show (λs.λv.k′

1(ΨS(g, f)s)(fv), λs.λv.k′
2(ΨS(g, f)s)(fv), k1, k2)

∈ ΨK(R′,S ′)(τ�) (Ξ�R)(Δr). Let Δ′r′ � Δr and assume (S′
1, S

′
2, S1, S2) ∈ ΨS(S ′,R′)(Δ′r′)

and (v′1, v
′
2, v1, v2) ∈ R′(τ)(Ξ�R)(Δ′r′). Since by assumption f : R′ ⊂ R, g : S ⊂ S ′ and by

1) it follows that (ΨS(g, f)S′
1, ΨS(g, f)S′

2, S1, S2) ∈ ΨS(S,R)(Δ′r′) and (fv′1, fv′2, v1, v2) ∈
R(τ)(Ξ�R)(Δ′r′). Then it follows from the assumptions that
(ΨK(f, g)k′

1)S
′
1v

′
1 = k′

1(ΨS(g, f)S′
1)(fv′1) = � =⇒ k2S2v2 = � and

(ΨK(f, g)k′
2)S

′
2v

′
2 = k′

2(ΨS(g, f)S′
2)(fv′2) = � =⇒ k1S1v1 = �.

We conclude ((ΨK(f, g)k′
1), (ΨK(f, g)S′

2), k1, k2) ∈ ΨK(R′,S ′)(τ�)(Ξ�R)(Δr).

3. Assume (m′
1,m

′
2,m1,m2) ∈ ΨT (R,S)(Tτ)(Ξ�R)(Δr). To show (ΨT (f, g)m′

1, ΨT (f, g)m′
2,m1,

m2) ∈ ΨT (R′,S ′)(Tτ) (Ξ�R)(Δr). If m′
1 = m′

2 = ⊥ then ΨT (f, g)m′
1 = ΨT (f, g)m′

2 = ⊥ and
we are done. Else we must show (λk.λs.m′

1(ΨK(g, f)k)(ΨS(g, f)s),
λs.λv.m′

2(ΨK(g, f)k)(ΨS(g, f)s),m1,m2) ∈ ΨT (R′,S ′)(Tτ) (Ξ�R)(Δr). Let Δ′r′ � Δr and
assume (k′

1, k
′
2, k1, k2) ∈ ΨK(S ′,R′)(τ�)(Ξ�R)(Δ′r′) and (S′

1, S
′
2, S1, S2) ∈ ΨS(S ′,R′)(Δ′r′).

Since by assumption f : R′ ⊂ R, g : S ⊂ S ′ and by 1) and 2) it follows that (ΨK(g, f)k′
1,

ΨK(g, f)k′
2, k1, k2) ∈ ΨK(S,R)(τ�)(Ξ�R)(Δ′r′) and (ΨS(g, f)S′

1, ΨS(g, f)S′
2, S1, S2) ∈ ΨS(S,

R)(Δ′r′). Then it follows from the assumptions that
(ΨT (f, g)m′

1)k
′
1S

′
1 = m′

1(ΨK(g, f)k′
1)(ΨS(g, f)S′

1) = � =⇒ m2k2S2 = � and
(ΨT (f, g)m′

2)k
′
2S

′
2 = m′

2(ΨK(g, f)k′
2)(ΨS(g, f)S′

2) = � =⇒ m1k1S1 = �.
We conclude ((ΨT (f, g)m′

1), (ΨT (f, g)m′
2),m1, m2) ∈ ΨT (R′,S ′)(Tτ)(Ξ�R)(Δr).

4. The proof is by case analysis over the structure of the argument τ .

• Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(αi)(Ξ�R)(Δr). To show (F (f, g)v′

1, F (f, g)v′
2, v1, v2) ∈

Ψ(R′,S ′) (αi)(Ξ�R) (Δr). If v′1 = v′2 = ⊥ then F (f, g)(v′1) = F (f, g)(v′2) = ⊥ and we are
done. Else it holds that αi ∈ Ξ and v′1 � v1 �= ⊥∧v′2 � v2 �= ⊥∧(v′1, v

′
2, v1, v2) ∈ Ri(Δr) (in-

dependant of R,S). To show F (f, g)v′1 � v1∧F (f, g)v′2 � v2∧(F (f, g)v′
1, F (f, g)v′

2, v1, v2) ∈
Ri(Δr). This follows from assumptions: since f, g � idV then F (f, g) � idF (V ,V ), and Ri

is downwards closed.
• Assume (v′1, v

′
2, v1, v2) ∈ Ψ(R,S)(1)(Ξ�R)(Δr). This implies (v′

1 = v′2 = ⊥) ∨ v′1 � v1 =
in1(∗)∧ v′2 � v2 = in1(∗), independant of R,S. F (f, g)⊥ = ⊥ and F (f, g)in1(∗) = in1(∗).
So we conclude (F (f, g)v′

1, F (f, g)v′
2, v1, v2) ∈ Ψ(R′,S ′)(1)(Ξ�R)(Δr).

• Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(int)(Ξ�R)(Δr). This implies (v′1 = v′2 = ⊥) ∨ ∃n :

Z . v′1 � v1 = in int(n) ∧ v′2 � v2 = in int(n), independant of R,S. F (f, g)⊥ = ⊥ and
F (f, g)in int(n) = in int(n). So we conclude (F (f, g)v′

1, F (f, g)v′2, v1, v2) ∈ Ψ(R′,S ′)(int)
(Ξ�R)(Δr).

• Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ ref )(Ξ�R)(Δr). This implies (v′1 = v′2 = ⊥) ∨ − � τ ∧

∃l : Loc. v′1 � v1 = in ref (l)∧ v′2 � v2 = in ref (l)∧ l ∈ dom(Δ)∧Δ(l) = τ), independant of
R,S. F (f, g)⊥ = ⊥ and F (f, g)in ref (l) = in ref (l). So we conclude (F (f, g)v′

1, F (f, g)v′2,
v1, v2) ∈ Ψ(R′,S ′)(τ ref )(Ξ�R)(Δr).

• Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ1 + τ2)(Ξ�R)(Δr). This implies (v′1 = v′2 = ⊥) ∨

Ξ � τ1 + τ2 ∧ v′1 � v1 �= ⊥ ∧ v′2 � v2 �= ⊥ ∧ ∃d′1, d
′
2 : V , d1, d2 : V↓. ((v′1 =

⊥ ∧ d′1 = ⊥) ∨ (v′1 = in+(ini(d′1) �= ⊥) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ (v′2 = in+(ini(d′2) �=
⊥) ∧ v1 = in+(ini(d1)) ∧ v2 = in+(ini(d2)) ∧ (d′1, d

′
2, d1, d2) ∈ S(τi)(Ξ�R)(Δr) ∧ i ∈

{1, 2}). Since g : S ⊂ S ′ then (gd′1, gd′2, d1, d2) ∈ S ′(τi)(Ξ�R)(Δr). F (f, g)⊥ = ⊥ and
F (f, g)in+(ini(d′1)) = in+(ini(gd′1)) and F (f, g) in+(ini(d′2)) = in+(ini(gd′2)). We con-
clude (F (f, g)v′

1, F (f, g)v′
2, v1, v2) ∈ Ψ(R′,S ′)(τ1 + τ2)(Ξ�R)(Δr).

• Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ1 × τ2)(Ξ�R)(Δr). The proof is similar to the proof for

τ1 + τ2 so we omit it.
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• Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(τ → Tτ ′)(Ξ�R)(Δr). To prove (F (f, g)v′1, F (f, g)v′

2,

v1, v2) ∈ Ψ(R′,S ′)(τ → Tτ ′)(Ξ�R)(Δr). If v′1 = v′2 = ⊥ this follows by strictness of
F (f, g). Else it follows from the assumption that (Ξ � τ → Tτ ′) ∧ v′1 � v1 �= ⊥ ∧ v′2 � v2 �=
⊥ ∧ ∃d′1, d

′
2, d1, d2 : V � TV . ((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in→�d′1 ) ∧ ((v′2 = ⊥ ∧ d′2 =

⊥) ∨ v′2 = in→�d′2 ) ∧ v1 = in→�d1 ∧ v2 = in→�d2 ∧ ∀Δ′r′ � Δr. ∀v′11, v
′
22, v11, v22 :

V . (v′11, v
′
22, v11, v22) ∈ R(τ)(Ξ�R)(Δ′r′) ⇒ (d′1v

′
11, d′2v

′
22, d1v11, d2v22) ∈ ΨT (R,S)(Tτ ′)

(Ξ�R)(Δ′r′). F (f, g)v′
1 � v1 ∧F (f, g)v′

2 � v2 follows from F (f, g) � idF (V ,V ) ∧ v′1 � v1 ∧
v′2 � v2. F (f, g)v′

1 � in→�λv.ΨT (f, g)(d′1(fv)) ∧F (f, g)v′
2 � in→�λv.ΨT (f, g)(d′2(fv)) .

Let Δ′r′ � Δr and suppose (v′11, v
′
22, v11, v22) ∈ R′(τ) (Ξ�R)(Δ′r′). Since f : R′ ⊂ R

then (fv′11, fv′22, v11, v22) ∈ R(τ)(Ξ�R)(Δ′r′). Then by assumptions (d′1(fv′11), d′2(fv′22),
d1(v11), d2(v22)) ∈ ΨT (R,S)(Tτ ′)(Ξ�R)(Δ′r′). From 3) follows ((ΨT (f, g) (d′1(fv′11))),
(ΨT (f, g)(d′2 (fv′22))), d1v11, d2v22) ∈ ΨT (R′, S ′)(Tτ ′)(Ξ�R)(Δ′r′).
So (F (f, g)v′

1, F (f, g)v′
2, v1, v2) ∈ Ψ(R′,S ′)(τ → Tτ ′)(Ξ�R)(Δr).

• Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(μα.τ)(Ξ�R)(Δr). This implies (v′1 = v′2 = ⊥) ∨ Ξ �

μα.τ ∧ v′1 � v1 �= ⊥ ∧ v′2 � v2 �= ⊥ ∧ ∃d′1, d
′
2 : V , d1, d2 : V↓. ((v′1 = ⊥ ∧ d′1 =

⊥) ∨ (v′1 = inμ(d′1) �= ⊥) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ (v′2 = inμ(d′2) �= ⊥) ∧ v1 =
inμ(d1) ∧ v2 = inμ(d2) ∧ (d′1, d

′
2, d1, d2) ∈ S(τ [μα.τ/α])(Ξ�R)(Δr). Since g : S ⊂ S ′

then (gd′1, gd′2, d1, d2) ∈ S ′(τ [μα.τ/α])(Ξ�R)(Δr). F (f, g)⊥ = ⊥ and F (f, g)inμ(d′1) =
inμ(gd′1) and F (f, g)inμ(d′2) = inμ(gd′2). We conclude
(F (f, g)v′1, F (f, g)v′2, v1, v2) ∈ Ψ(R′,S ′)(μα.τ)(Ξ�R)(Δr).

• Assume (v′1, v
′
2, v1, v2) ∈ Ψ(R,S)(∀α. Tτ)(Ξ�R)(Δr).

To prove (F (f, g)v′
1, F (f, g)v′

2, v1, v2) ∈ Ψ(R′,S ′) (∀α. Tτ) (Ξ�R)(Δr). If v′1 = v′2 = ⊥
this follows by strictness of F (f, g). Else it follows from the assumption that Ξ � ∀α.Tτ ∧α /∈
Ξ∧v′1 � v1 �= ⊥∧v′2 � v2 �= ⊥∧∃d′1, d

′
2, d1, d2 : TV . ((v′1 = ⊥∧d′1 = ⊥)∨v′1 = in∀�d′1 )∧

((v′2 = ⊥∧d′2 = ⊥)∨v′2 = in∀�d′2 )∧v1 = in∀�d1 ∧v2 = in∀�d2 ∧∀Rα. (d′1, d
′
2, d1, d2) ∈

(ΨT (R,S)(Tτ)(Ξα�RRα)(Δr). By 3) then ∀Rα. (ΨT (f, g)d′1, ΨT (f, g)d′2, d1, d2) ∈ ΨT (R′,
S ′)(Tτ)(Ξα �RRα)(Δr).

(
v′1 = ⊥ ⇒ F (f, g)v′

1 = ⊥ ∧ v′1 = in∀�d′1 ⇒ F (f, g)v′1 =
in∀�λk.λs.(d′1)(ΨK(g, f)k)(ΨS(g, f)s) = in∀�ΨT (f, g)(d′1) 

) ∧ (
v′2 = ⊥ ⇒ F (f, g)v′2 =

⊥ ∧ v′2 = in∀�d′2 ⇒ F (f, g)v′2 = in∀�ΨT (f, g)(d′2) 
)
. We let m′

1 = ΨT (f, g)(d′1)
and m′

2 = ΨT (f, g)(d′2). So we have ∃m′
1,m

′
2, d1, d2 : TV . ((F (f, g)v′1 = ⊥ ∧ m′

1 =
⊥) ∨ F (f, g)v′1 = in∀�m′

1 ) ∧ ((F (f, g)v′2 = ⊥∧ m′
2 = ⊥) ∨ F (f, g)v′2 = in∀�m′

2 ) ∧ v1 =
in∀�d1 ∧ v2 = in∀�d2 ∧ ∀Rα. (m′

1,m
′
2,m1,m2) ∈ ΨT (R′,S ′)(Tτ)(Ξα�RRα)(Δr). We

conclude (F (f, g)v′1, F (f, g)v′2, v1, v2) ∈ Ψ(R′,S ′)(∀α. Tτ)(Ξ�R)(Δr).

�

Let A ∈ LF (V ,V ), we define (i−1)∗A to be the largest relation B ∈ LV such that (i−1, i−1) : B ⊂ A.
Then R = (i−1)∗Ψ(R,R) ⇐⇒ (

(i, i) : Ψ(R,R) ⊂ R∧ (i−1, i−1) : R ⊂ Ψ(R,R)
)
.

We now proceed by defining
Ψ§ : Lop

V × LV → Lop
V × LV

by
Ψ§(R,S) = ((i−1)∗Ψ(S,R), (i−1)∗Ψ(R,S)).

Since Ψ§ is monotone it has a least fixed point which is also the least prefixed point

(∇−,∇+) = Ψ§(∇−,∇+)

satisfying
∇− = (i−1)∗Ψ(∇+,∇−) ∇+ = (i−1)∗Ψ(∇−,∇+)
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We have by definition
Ψ§(∇+,∇−) = ((i−1)∗Ψ(∇−,∇+), (i−1)∗Ψ(∇+,∇−)).
And so Ψ§(∇+,∇−) = (∇+,∇−). Since (∇−,∇+) is the least (pre)fixed point it follows, as with Pitts,
that

∇+ ≤ ∇−.

We now want to show that ∇− ≤ ∇+, that is, that

idV ∈ Φ = { e | e : ∇− ⊂ ∇+}

Recall e : ∇− ⊂ ∇+ ⇔ (e, idV ) : ∇− ⊂ ∇+ ⇔
∀τ ∈ ValueType.∀(Ξ�R) ∈ (TypeVarn × bParAdmReln).∀Δr.∀(v′1, v

′
2, v1, v2).

(v′1, v
′
2, v1, v2) ∈ ∇−(τ)(Ξ�R)(Δr) ⇒ (ev′1, ev

′
2, v1, v2) ∈ ∇+(τ)(Ξ�R)(Δr).

Since the ordering on functions is pointwise and ∇+ is admissible, so it holds that if ei is a chain s.t.
∀i. ei : ∇− ⊂ ∇+ then also

⊔
ei : ∇− ⊂ ∇+. We have that ⊥ ∈ Φ. By the minimal invariant property

of V it holds that idV =
⊔

δn(⊥), where δ(e) = i ◦ Ψ(e, e) ◦ i−1. Hence it suffices to show that Φ is
closed under δ : (V � V ) → (V � V )

Assume e : ∇− ⊂ ∇+. Then by lemma 17 it holds that Ψ(e, e) : Ψ(∇+,∇−) ⊂ Ψ(∇−,∇+). We
also have from the definition and the fixed point property, that ∇− = (i−1)∗Ψ(∇+,∇−) and ∇+ =
(i−1)∗Ψ(∇−,∇+). This gives (i−1, i−1) : ∇− ⊂ Ψ(∇+,∇−) and (i−1, i−1) : ∇+ ⊂ Ψ(∇−,∇+).
Now ∀Ξ � τ, �R, Δr(v1, v2)it holds that if (v′1, v

′
2) ∈ Ψ(∇−,∇+)(τ)(Ξ�R) (Δr(v1, v2)) then (i−1 ◦

i)v′1, (i
−1◦i)v′2) ∈ Ψ(∇−,∇+)(τ)(Ξ�R) (Δr((i−1◦i)v1, (i−1◦i)v2)). So (i(v′1), i(v

′
2)) ∈ ((i−1)∗Ψ(∇−,

∇+)(τ)(Ξ�R) (Δr(i(v1), i(v2)))), that is (i(v′1), i(v
′
2)) ∈ (∇+(τ) (Ξ�R)(Δr(i(v1), i(v2)))), i.e. (i, i) :

Ψ(∇−,∇+) ⊂ ∇+.
Assuming e : ∇− ⊂ ∇+, that is (e, idV ) : ∇− ⊂ ∇+, and combining (i−1, i−1) : ∇− ⊂

Ψ(∇+,∇−) and Ψ(e, e) : Ψ(∇+,∇−) ⊂ Ψ(∇−,∇+) and (i, i) : Ψ(∇−,∇+) ⊂ ∇+ we have
δ(e) : ∇− ⊂ ∇+. And then it follows that idV : ∇− ⊂ ∇+. So ∇− = ∇+.
Let ∇ = ∇− = ∇+.

Finally, [[τ ]]t is defined to be ∇(τ).

Lemma 19

∀Ξ, α /∈ Ξ. ∀�R ∈ bParAdmRel|Ξ|.
∀(Ξ, α � τ). ∀Ξ � σ. ∀Δr.

[[τ ]]t(Ξα �R ([[σ]]t(Ξ �R))(Δr) =

[[τ [σ/α]]]t(Ξ �R)(Δr).

Comment: Recall that we require for α1 . . . αk � τ ′ ref that τ ′ is closed. Therefore it does not hold
that Ξ � τ [σ/α] is a derivable typing judgement implies that Ξ, α � τ is derivable. In the lemma we
require Ξ, α � τ and so this will not give any problems.

Note the use of fixed point induction in the proof below to establish a property of our recursively
defined relation.

48



(S′
1, S

′
2, S1, S2) ∈ ΨS(R,S)(Δr) ⇐⇒ ∃r1, . . . rn. r = {r1, . . . rn} ∧(

S′
1 = S′

2 = ⊥) ∨ (
S′

1 � S1 �= ⊥ ∧ S′
2 � S2 �= ⊥∧

∀i �= j, i, j ∈ {1, . . . , n}. Ari1(S1) ∩ Arj1(S1) = ∅ ∧ Ari2(S2) ∩ Arj2(S2) = ∅∧
dom(Δ) ∩ Ar1(S1) = ∅ ∧ dom(Δ) ∩ Ar2(S2) = ∅∧
∀l ∈ dom(Δ). (S′

1l, S
′
2l, S1l, S2l) ∈ (S(Δ(l))()(Δr) ∧

∀ra ∈ r. ∃(Pb, LLb) ∈ ra. (S1, S2) ∈ p̂b ∧ ∀(l1, l2, τ) ∈ LLb. (S′
1l1, S

′
2l2, S1l1, S2l2) ∈ S(τ)()(Δr)

)

(k′
1, k

′
2, k1, k2) ∈ ΨK(R,S)(τ�)(Ξ
R)(Δr) ⇐⇒

(k′
1 = k′

2 = ⊥) ∨ (Ξ � τ ∧ k′
1 � k1 ∧ k′

2 � k2∧
∀Δ′r′ � Δr. ∀S′

1, S
′
2, S1, S2. ∀v′

1, v
′
2, v1, v2.(

(S′
1, S

′
2, S1, S2) ∈ ΨS(S,R)(Δ′r′) ∧ (v′

1, v
′
2, v1, v2) ∈ R(τ)(Ξ
R)(Δ′r′)

) ⇒(
(k′

1S
′
1v

′
1 = 
 ⇒ k2S2v2 = 
) ∧ (k′

2S
′
2v

′
2 = 
 ⇒ k1S1v1 = 
)

)

(m′
1, m

′
2, m1, m2) ∈ ΨT (R,S)(Tτ)(Ξ
R)(Δr) ⇐⇒

(m′
1 = m′

2 = ⊥) ∨ (Ξ � τ ∧ m′
1 � m1 ∧ m′

2 � m2∧
∀Δ′r′ � Δr. ∀k′

1, k
′
2, k1, k2. ∀S′

1, S
′
2, S1, S2.(

(k′
1, k

′
2, k1, k2) ∈ ΨK(S,R)(τ�)(Ξ
R)(Δ′r′) ∧ (S′

1, S
′
2, S1, S2) ∈ ΨS(S,R)(Δ′r′)

) ⇒(
(m′

1k
′
1S

′
1 = 
 ⇒ m2k2S2 = 
) ∧ (m′

2k
′
2S

′
2 = 
 ⇒ m1k1S1 = 
)

)

(v′
1, v

′
2, v1, v2) ∈ Ψ(R,S)(αi)(Ξ
R)(Δr) ⇐⇒ (v′

1 = v′
2 = ⊥) ∨ (αi ∈ Ξ ∧ (v′

1, v
′
2, v1, v2) ∈ Ri(Δr)

(v′
1, v

′
2, v1, v2) ∈ Ψ(R,S)(1)(Ξ
R)(Δr) ⇐⇒ (v′

1 = v′
2 = ⊥) ∨ (v′

1 � v1 = in1�∗� ∧ v′
2 � v2 = in1�∗�)

(v′
1, v

′
2, v1, v2) ∈ Ψ(R,S)(int)(Ξ
R)(Δr) ⇐⇒ (v′

1 = v′
2 = ⊥) ∨ (∃n : Z . v′

1 � v1 = in int�n� ∧ v′
2 � v2 = in int�n�)

(v′
1, v

′
2, v1, v2) ∈ Ψ(R,S)(τ ref )(Ξ
R)(Δr) ⇐⇒

(v′
1 = v′

2 = ⊥) ∨ (− � τ : type ∧ ∃ l : Loc. v′
1 � v1 = in ref �l� ∧ v′

2 � v2 = in ref �l� ∧ l ∈ dom(Δ) ∧ Δ(l) = τ)

(v′
1, v

′
2, v1, v2) ∈ Ψ(R,S)(τ1 + τ2)(Ξ
R)(Δr) ⇐⇒

(v′
1 = v′

2 = ⊥) ∨ (Ξ � τ1 + τ2 ∧ v′
1 � v1 �= ⊥ ∧ v′

2 � v2 �= ⊥ ∧
∃d′

1, d
′
2 ∈ V . ((v′

1 = ⊥ ∧ d′
1 = ⊥) ∨ v′

1 = in+(ini(d
′
1)) �= ⊥) ∧ ((v′

2 = ⊥ ∧ d′
2 = ⊥) ∨ v′

2 = in+(ini(d
′
2)) �= ⊥)∧

∃d1, d2 : V ↓ . v1 = in+(ini(d1)) ∧ v2 = in+(ini(d2))∧
(d′

1, d
′
2, d1, d2) ∈ (S(τi)(Ξ
R)(Δr) ∧ i ∈ {1, 2})

(v′
1, v

′
2, v1, v2) ∈ Ψ(R,S)(τ1 × τ2)(Ξ
R)(Δr) ⇐⇒

(v′
1 = v′

2 = ⊥) ∨ (Ξ � τ1 × τ2 ∧ v′
1 � v1 �= ⊥ ∧ v′

2 � v2 �= ⊥∧
∃d′

11, d
′
12, d

′
21, d

′
22 : V .

((v′
1 = ⊥ ∧ (d′

11 = ⊥ ∨ d′
12 = ⊥)) ∨ v′

1 = in×((d′
11, d

′
12)) �= ⊥)∧

((v′
2 = ⊥ ∧ (d′

21 = ⊥ ∨ d′
22 = ⊥)) ∨ v′

2 = in×((d′
21, d

′
22)) �= ⊥)∧

∃d11, d12, d21, d22 : V ↓ . v1 = in×((d11, d12)) ∧ v2 = in×((d21, d22))∧
(d′

11, d
′
21, d11, d21) ∈ (S(τ1)(Ξ
R)(Δr) ∧ (d′

12, d
′
22, d12, d22) ∈ (S(τ2)(Ξ
R)(Δr)

(v′
1, v

′
2, v1, v2) ∈ Ψ(R,S)(μα. τ)(Ξ
R)(Δr) ⇐⇒

(v′
1 = v′

2 = ⊥) ∨ (Ξ � μα. τ ∧ v′
1 � v1 �= ⊥ ∧ v′

2 � v2 �= ⊥ ∧
∃d′

1, d
′
2 : V . (v′

1 = d′
1 = ⊥ ∨ v′

1 = inμ(d′
1) �= ⊥) ∧ (v′

2 = d′
2 = ⊥ ∨ v′

2 = inμ(d′
2) �= ⊥)∧

∃d1, d2 : V ↓ . v1 = inμ(d1) ∧ v2 = inμ(d2)∧
(d′

1, d
′
2, d1, d2) ∈ S(τ [μα. τ/α])(Ξ
R)(Δr)

(v′
1, v

′
2, v1, v2) ∈ Ψ(R,S)(τ → Tτ ′)(Ξ
R)(Δr) ⇐⇒

(v′
1 = v′

2 = ⊥) ∨ (Ξ � τ → Tτ ′ ∧ v′
1 � v1 �= ⊥ ∧ v′

2 � v2 �= ⊥ ∧
∃d′

1, d
′
2, d1, d2 : V � TV . v1 = in→�d1� ∧ v2 = in→�d2�∧

((v′
1 = ⊥ ∧ d′

1 = ⊥) ∨ v′
1 = in→�d′

1�) ∧ ((v′
2 = ⊥ ∧ d′

2 = ⊥) ∨ v′
2 = in→�d′

2�)∧
∀Δ′r′ � Δr. ∀v′

11, v
′
22, v11, v22 : V .

(v′
11, v

′
22, v11, v22) ∈ R(τ)(Ξ
R)(Δ′r′) ⇒ (d′

1v
′
11, d

′
2v

′
22, d1v11, d2v22) ∈ ΨT (R,S)(Tτ ′)(Ξ
R)(Δ′r′)

(v′
1, v

′
2, v1, v2) ∈ Ψ(R,S)(∀α. Tτ)(Ξ
R)(Δr) ⇐⇒

(v′
1 = v′

2 = ⊥) ∨ (Ξ � ∀α.τ ∧ α /∈ Ξ ∧ v′
1 � v1 �= ⊥ ∧ v′

2 � v2 �= ⊥ ∧
∃d′

1, d
′
2, d1, d2 : TV . v1 = in∀�d1� ∧ v2 = in∀�d2�∧

((v′
1 = ⊥ ∧ d′

1 = ⊥) ∨ v′
1 = in∀�d′

1�) ∧ ((v′
2 = ⊥ ∧ d′

2 = ⊥) ∨ v′
2 = in∀�d′

2�)∧
∀Rα : bParAdmRel. (d′

1, d
′
2, d1, d2) ∈ ΨT (R,S)(Tτ)(Ξα 
RRα)(Δr)

Figure 1: Functions used in proof of existence of typed interpretation
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(S′
1, S

′
2, S1, S2) ∈ ∇S(Δr) ⇐⇒ ∃r1, . . . rn. r = {r1, . . . rn} ∧(

S′
1 = S′

2 = ⊥) ∨ (
S′

1 � S1 �= ⊥ ∧ S′
2 � S2 �= ⊥∧

∀i �= j, i, j ∈ {1, . . . , n}. Ari1(S1) ∩ Arj1(S1) = ∅ ∧ Ari2(S2) ∩ Arj2(S2) = ∅∧
dom(Δ) ∩ Ar1(S1) = ∅ ∧ dom(Δ) ∩ Ar2(S2) = ∅∧
∀l ∈ dom(Δ). (S′

1l, S
′
2l, S1l, S2l) ∈ [[Δ(l)]]t()(Δr) ∧

∀ra ∈ r. ∃(Pb, LLb) ∈ ra. (S1, S2) ∈ p̂b ∧ ∀(l1, l2, τ) ∈ LLb. (S′
1l1, S2l2, S1l1, S2l2) ∈ [[τ ]]t()(Δr)

)

(k′
1, k

′
2, k1, k2) ∈ [[τ�]]

K
(Ξ
R)(Δr) ⇐⇒

(k′
1 = k′

2 = ⊥) ∨ (Ξ � τ ∧ k′
1 � k1 ∧ k′

2 � k2∧
∀Δ1r1 � Δr. ∀S′

1, S
′
2, S1, S2. ∀v′

1, v
′
2, v1, v2.(

(S′
1, S

′
2, S1, S2) ∈ ∇S(Δ1r1) ∧ (v′

1, v
′
2, v1, v2) ∈ [[τ ]]t(Ξ
R)(Δ1r1) ⇒

(k′
1S

′
1v

′
1 = 
 ⇒ k2S2v2 = 
) ∧ (k′

2S
′
2v

′
2 = 
 ⇒ k1S1v1 = 
))

(m′
1, m

′
2, m1, m2) ∈ [[Tτ ]]T (Ξ
R)(Δr) ⇐⇒

(m′
1 = m′

2 = ⊥) ∨ (Ξ � τ ∧ m′
1 � m1 ∧ m′

2 � m2∧
∀Δ1r1 � Δr. ∀k′

1, k
′
2, k1, k2. ∀S′

1, S
′
2, S1, S2.(

(k′
1, k

′
2, k1, k2) ∈ [[τ�]]

K
(Ξ
R)(Δ1r1) ∧ (S′

1, S
′
2, S1, S2) ∈ ∇S(Δ1r1)

) ⇒
(m′

1k
′
1S

′
1 = 
 ⇒ m2k2S2 = 
) ∧ (m′

2k
′
2S

′
2 = 
 ⇒ m1k1S1 = 
)

(v′
1, v

′
2, v1, v2) ∈ [[αi]]

t(Ξ
R)(Δr) ⇐⇒ (v′
1 = v′

2 = ⊥) ∨ (αi ∈ Ξ ∧ (v′
1, v

′
2, v1, v2) ∈ Ri(Δr)

(v′
1, v

′
2, v1, v2) ∈ [[1]]t(Ξ
R)(Δr) ⇐⇒ (v′

1 = v′
2 = ⊥) ∨ (v′

1 � v1 = in1�∗� ∧ v′
2 � v2 = in1�∗�)

(v′
1, v

′
2, v1, v2) ∈ [[int]]t(Ξ
R)(Δr) ⇐⇒ (v′

1 = v′
2 = ⊥) ∨ (∃n : Z . v′

1 � v1 = in int�n� ∧ v′
2 � v2 = in int�n�)

(v′
1, v

′
2, v1, v2) ∈ [[τ ref ]]t(Ξ
R)(Δr) ⇐⇒

(v′
1 = v′

2 = ⊥) ∨ (− � τ : type ∧ ∃ l : Loc. v′
1 � v1 = in ref �l� ∧ v′

2 � v2 = in ref �l� ∧ l ∈ dom(Δ) ∧ Δ(l) = τ)

(v′
1, v

′
2, v1, v2) ∈ [[τ1 + τ2]]

t(Ξ
R)(Δr) ⇐⇒
(v′

1 = v′
2 = ⊥) ∨ (Ξ � τ1 + τ2 ∧ v′

1 � v1 �= ⊥ ∧ v′
2 � v2 �= ⊥∧

∃d′
1, d

′
2 ∈ V . ((v′

1 = d′
1 = ⊥) ∨ v′

1 = in+(ini(d
′
1)) �= ⊥) ∧ ((v′

2 = d′
2 = ⊥) ∨ v′

2 = in+(ini(d
′
2)) �= ⊥)∧

∃d1, d2 : V ↓ . v1 = in+(ini(d1)) ∧ v2 = in+(ini(d2))∧
(d′

1, d
′
2, d1, d2) ∈ [[τi]]

t(Ξ
R)(Δr) ∧ i ∈ {1, 2})
(v′

1, v
′
2, v1, v2) ∈ [[τ1 × τ2]]

t(Ξ
R)(Δr) ⇐⇒
(v′

1 = v′
2 = ⊥) ∨ (Ξ � τ1 × τ2 ∧ v′

1 � v1 �= ⊥ ∧ v′
2 � v2 �= ⊥∧

∃d′
11, d

′
12, d

′
21, d

′
22 : V .

((v′
1 = ⊥ ∧ (d′

11 = ⊥ ∨ d′
12 = ⊥)) ∨ v′

1 = in×((d′
11, d

′
12)) �= ⊥)∧

((v′
2 = ⊥ ∧ (d′

21 = ⊥ ∨ d′
22 = ⊥)) ∨ v′

2 = in×((d′
21, d

′
22)) �= ⊥)∧

∃d11, d12, d21, d22 : V ↓ . v1 = in×((d11, d12)) ∧ v2 = in×((d21, d22))∧
(d′

11, d
′
21, d11, d21) ∈ [[τ1]]

t(Ξ
R)(Δr) ∧ (d′
12, d

′
22, d12, d22) ∈ [[τ2]]

t(Ξ
R)(Δr)

(v′
1, v

′
2, v1, v2) ∈ [[μα. τ ]]t(Ξ
R)(Δr) ⇐⇒

(v′
1 = v′

2 = ⊥) ∨ (Ξ � μα. τ ∧ v′
1 � v1 �= ⊥ ∧ v′

2 � v2 �= ⊥ ∧
∃d′

1, d
′
2 : V . (v′

1 = d′
1 = ⊥ ∨ v′

1 = inμ(d′
1) �= ⊥) ∧ (v′

2 = d′
2 = ⊥ ∨ v′

2 = inμ(d′
2) �= ⊥)∧

∃d1, d2 : V ↓ . v1 = inμ(d1) ∧ v2 = inμ(d2)∧
(d′

1, d
′
2, d1, d2) ∈ [[τ [μα. τ/α]]]t(Ξ
R)(Δr)

(v′
1, v

′
2, v1, v2) ∈ [[τ → Tτ ′]]t(Ξ
R)(Δr) ⇐⇒

(v′
1 = v′

2 = ⊥) ∨ (Ξ � τ → Tτ ′ ∧ v′
1 � v1 �= ⊥ ∧ v′

2 � v2 �= ⊥ ∧
∃d′

1, d
′
2, d1, d2 : V � TV . v1 = in→�d1� ∧ v2 = in→�d2�∧

((v′
1 = ⊥ ∧ d′

1 = ⊥) ∨ v′
1 = in→�d′

1�) ∧ ((v′
2 = ⊥ ∧ d′

2 = ⊥) ∨ v′
2 = in→�d′

2�)∧
∀Δ1r1 � Δr. ∀v′

11, v
′
22, v11, v22 : V .

(v′
11, v

′
22, v11, v22) ∈ [[τ ]]t(Ξ
R)(Δ1r1) ⇒ (d′

1v
′
11, d

′
2v

′
22, d1v11, d2v22) ∈ [[Tτ ′]]T (Ξ
R)(Δ1r1)

(v′
1, v

′
2, v1, v2) ∈ [[Ξ � ∀α. Tτ ]]t(Ξ
R)(Δr) ⇐⇒

(v′
1 = v′

2 = ⊥) ∨ (Ξ � ∀α. Tτ ∧ α /∈ Ξ ∧ v′
1 � v1 �= ⊥ ∧ v′

2 � v2 �= ⊥ ∧
∃d′

1, d
′
2 : TV . ((v′

1 = ⊥ ∧ d′
1 = ⊥) ∨ v′

1 = in∀�d′
1�) ∧ ((v′

2 = ⊥ ∧ d′
2 = ⊥) ∨ v′

2 = in∀�d′
2�)∧

∃d1, d2 : TV . v1 = in∀�d1� ∧ v2 = in∀�d2�∧
∀Rα : bParAdmRel. (d′

1, d
′
2, d1, d2) ∈ [[Tτ ]]T (Ξ, α 
RRα)(Δr)

Figure 2: Interpretation of Types
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Proof: It suffices to show that idV is in the set

E = { e : V � V | ∀Ξ, α /∈ Ξ.

∀Ξ � σ. ∀�R ∈ bParAdmRel|Ξ|. ∀Ξ, α � τ. ∀Δr.
∀(v′1, v

′
2, v1, v2), (w′

1, w
′
2, w1, w2).

(v′1, v
′
2, v1, v2) ∈ [[τ ]]t(Ξα �R([[σ]]t(Ξ�R))(Δr) ⇒
(ev′1, ev

′
2, v1, v2) ∈ [[τ [σ/α]]]t(Ξ�R)(Δr)

∧
(w′

1, w
′
2, w1, w2) ∈ [[τ [σ/α]]]t(Ξ�R)(Δr) ⇒

(ew′
1, ew

′
2, w1, w2) ∈ [[τ ]]t(Ξα �R ([[σ]]t(Ξ�R))(Δr)}

We prove that by fixed-point induction. Clearly, ⊥V is in E as the relations involved are admissible.
Hence it suffices to show that E is closed under δ : (V � V ) → (V � V ), whose least fixed point by
minimal invariance is idV . This is done by case analysis over the structure of τ and makes use of the fact
that (i, i) : Ψ(∇,∇) ⊂ ∇ and (i−1, i−1) : ∇ ⊂ Ψ(∇,∇). Recall the notation ∇(τ) = [[τ ]]t. Let

G = { g : F (V ,V ) � F (V ,V ) | ∀Ξ, α /∈ Ξ.

∀Ξ � σ. ∀�R ∈ bParAdmRel|Ξ|. ∀Ξ, α � τ. ∀Δr.
∀(v′1, v

′
2, v1, v2), (w′

1, w
′
2, w1, w2).

(v′1, v
′
2, v1, v2) ∈ Ψ(∇,∇)(τ)(Ξα �R([[σ]]t(Ξ�R))(Δr) ⇒

(gv′1, gv′2, v1, v2) ∈ Ψ(∇,∇)(τ [σ/α])(Ξ�R)(Δr)
∧
(w′

1, w
′
2, w1, w2) ∈ Ψ(∇,∇)(τ [σ/α])(Ξ�R)(Δr) ⇒

(gw′
1, gw′

2, w1, w2) ∈ Ψ(∇,∇)(τ)(Ξα �R ([[σ]]t(Ξ�R))(Δr)}

So it suffices to show that e ∈ E ⇒ F (e, e) ∈ G. We also show that the relations are carried over by
ΨS , ΨK , ΨM . �

Assume e ∈ E. To show δ(e) ∈ E or F (e, e) ∈ G.
It holds that e � idV ⇒ ΨS(e, e) � idS ∧ ΨK(e, e) � idKV ∧ ΨT (e, e) � idTV ∧ F (e, e) �
idF (V ,V ) ∧ δ(e) � idV .

If v′1 = v′2 = ⊥ then δ(e)v′1 = δ(e)v′2 = ⊥.

We often omit the isomorphism i, i−1 in the proof below.
S) Assume (S′

1, S
′
2, S1, S2) ∈ ΨS(∇,∇)(Δr).

To show (ΨS(e, e)S′
1, ΨS(e, e)S′

2, S1, S2) ∈ ΨS(∇,∇)(Δr).
This follows by downwards closure of ΨS(∇,∇).

1K) Assume (k′
1, k

′
2, k1, k2) ∈ ΨK(∇,∇)(τ�)(Ξα �R([[σ]]t(Ξ�R))(Δr).

To show (ΨK(e, e)k′
1, ΨK(e, e)k′

2, k1, k2) ∈ ΨK(∇,∇)(τ [σ/α]�)(Ξ�R)(Δr). If k′
1 = k′

2 = ⊥
then ΨK(e, e)k′

1 = ΨK(e, e)k′
2 = ⊥ and we are done. Else we reason as follows. We must show

((λs.λv.k′
1(ΨS(e, e)s)(ev)), (λs.λv.k′

2(ΨS(e, e)s)(ev)), k1, k2) ∈ ΨK(∇,∇)(τ [σ/α]�)(Ξ�R)(Δr). Let
Δ1r1�Δr. Assume (S′

1, S
′
2, S1, S2) ∈ ΨS(∇,∇)(Δ1r1) and (v′1, v

′
2, v1, v2) ∈ ([[τ [σ/α]]]t(Ξ�R)(Δ1r1).

Since by assumption e ∈ E and by S) it follows that ((ΨS(e, e)S′
1), (ΨS(e, e)S′

2), S1, S2) ∈ ΨS(∇,∇)
(Δ1r1) and (ev′1, ev

′
2, v1, v2) ∈ ([[τ ]]t(Ξα �R([[σ]]t(Ξ�R))(Δ1r1). Then it follows from the assumptions

that
(ΨK(e, e)k′

1)S
′
1v

′
1 = k′

1(ΨS(e, e)S′
1)(ev

′
1) = � =⇒ k2S2v2 = � and

(ΨK(e, e)k′
2)S

′
2v

′
2 = k′

2(ΨS(e, e)S′
2)(ev

′
2) = � =⇒ k1S1v1 = �.

We conclude (ΨK(e, e)k′
1, (ΨK(e, e)k′

2), k1, k2) ∈ ΨK(∇,∇)(τ [σ/α]�)(Ξ�R)(Δr).
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2K) Assume (k′
1, k

′
2, k1, k2) ∈ Ψ(∇,∇)(τ [σ/α]�)(Ξ�R)(Δr), α /∈ Ξ ∧ Ξ � σ. To show (ΨK(e, e)k′

1,

ΨK(e, e)k′
2, k1, k2) ∈ ΨK(∇,∇)(τ�)(Ξα �R([[σ]]t(Ξ�R))(Δr). If k′

1 = k′
2 = ⊥ then ΨK(e, e)k′

1 =
ΨK(e, e)k′

2 = ⊥ and we are done. Else we reason as follows. We must show ((λs.λv.k′
1(ΨS(e, e)s)(ev)),

(λs.λv.k′
2(ΨS(e, e)s)(ev)), k1, k2, ) ∈ ΨK(∇,∇)(τ�)(Ξα �R([[σ]]t(Ξ�R))(Δr).

Let Δ1r1 � Δr and assume (S′
1, S

′
2S1, S2) ∈ ∇S(Δ1r1) and (v′1, v

′
2, v1, v2) ∈ ([[τ ]]t(Ξα �R([[σ]]t(Ξ�R)

)(Δ1r1). Since by assumption e ∈ E and by S) it follows that (ΨS(e, e)S′
1, ΨS(e, e)S′

2, S1, S2) ∈
(∇S(Δ1r1) and (ev′1, ev

′
2, v1, v2) ∈ ([[τ [σ/α]]]t(Ξ�R)(Δ1r1). Then it follows from the assumptions

on k′
1, k

′
2, k1, k2 that k′

1(ΨS(e, e)S′
1)(ev

′
1) = � ⇒ k2s2w2 = � and k′

2(ΨS(e, e)S′
2)(ev

′
2) = � ⇒

k1s1w1 = �. We conclude ((ΨK(e, e)k′
1), (ΨK(e, e)k′

2), k1, k2) ∈ ([[τ�]]K(Ξα �R([[σ]]t(Ξ�R))(Δr).

1M ) Assume (m′
1,m

′
2,m1,m2) ∈ ([[Tτ ]]T (Ξα �R([[σ]]t(Ξ�R)))(Δr).

To show ((ΨT (e, e)m′
1), (ΨT (e, e)m′

2), m1, m2) ∈ ([[Tτ [σ/α]]]T (Ξ�R)(Δr). If m′
1 = m′

2 = ⊥
then ΨT (e, e)m′

1 = ΨT (e, e)m′
2 = ⊥ and we are done. Else we reason as follows. We must show

((λk.λs.m′
1(ΨK(e, e)k)(ΨS(e, e)s)), (λs.λv.m′

2(ΨK(e, e)k)(ΨS(e, e)s), m1, m2) ∈ ([[Tτ [σ/α]]]T

(Ξ�R)(Δr)). Let Δ1r1 �Δr Assume (S′
1, S

′
2, S1, S2) ∈ (∇S(Δ1r1) and (k′

1, k
′
2, k1, k2) ∈ ([[τ [σ/α]�]]K

(Ξ�R)(Δ1r1). Since by assumption e ∈ E and by S) and 2K) it follows that (ΨS(e, e)S′
1, ΨS(e, e)S′

2,

S1, S2) ∈ (∇S(Δ1r1) and (ΨK(e, e)k′
1, ΨK(e, e)k′

2, k1, k2) ∈ [[τ�]]K(Ξα �R([[σ]]t(Ξ�R)))(Δ1r1). Then
it follows from the assumptions on m′

1,m
′
2,m1,m2 that

(ΨT (e, e)m′
1)S

′
1v

′
1 = m′

1(ΨK(e, e)k′
1)(ΨS(e, e)S′

1) = � =⇒ k2S2v2 = � and
(ΨT (e, e)m′

2)S
′
2v

′
2 = m′

2(ΨK(e, e)k′
2)(ΨS(e, e)S′

1) = � =⇒ k1S1v1 = �.
We conclude ((ΨT (e, e)m′

1), (ΨT (e, e)m′
2),m1,m2)([[Tτ [σ/α]]]T (Ξ�R)(Δr).

2M ) Assume (m′
1, m′

2, m1, m2) ∈ ([[Tτ [σ/α]]]T (Ξ�R)(Δr) ∧ α /∈ Ξ ∧ Ξ � σ. To show ((ΨT (e, e)m′
1),

(ΨT (e, e)m′
2), m1,m2) ∈ ([[Tτ ]]T (Ξα �R([[σ]]t(Ξ�R)))(Δr). If m′

1 = m′
2 = ⊥ then ΨT (e, e)m′

1 =
ΨT (e, e)m′

2 = ⊥ and we are done. Else we reason as follows. We must show
((λk.λS.m′

1(ΨK(e, e)k)(ΨS(e, e)s)), (λk.λs.m′
2(ΨK(e, e)k)(ΨS(e, e)s)), m1, m2) ∈ ([[Tτ ]]T (Ξα

�R([[σ]]t(Ξ�R)))(Δr). Let Δ1r1�Δr, and assume (k′
1, k

′
2, k1, k2) ∈ ([[τ�]]K(Ξα �R�R′([[σ]]t(Ξ�R)))(Δ1r1)

and (S′
1, S

′
2, S1, S2) ∈ (∇S(Δ1r1).

Since by assumption e ∈ E and by S) and 1K) it follows that ((ΨS(e, e)S′
1), (ΨS(e, e)S′

2), S1, S2) ∈
(∇S(Δ1r1) and ((ΨK(e, e)k′

1), (ΨK(e, e)k′
2), k1, k2) ∈ ([[τ [σ/α]�]]K (Ξ�R)(Δ1r1). Then it follows

from the assumptions on m′
1,m

′
2,m1,m2 that m′

1(ΨK(e, e)k′
1)(ΨS(e, e)S′

1) = � ⇒ k2s2w2 = � and
m′

2(ΨK(e, e)k′
2)(ΨS(e, e)S′

2) = � ⇒ k1s1w1 = �.
We conclude ((ΨT (e, e)m′

1), (ΨT (e, e)m′
2),m1,m2) ∈ ([[Tτ ]]T (Ξα �R([[σ]]t(Ξ�R))(Δr).

V) The v′1 = v′2 = ⊥ cases are imidiate. Assume in all cases in the following proof that (v′1 �= ⊥ ∨ v′2 �=
⊥).
• Assume (v′1, v

′
2, v1, v2) ∈ ([[αi]]

t(Ξα �R([[σ]]t(Ξ�R))(Δr) ∧ αi �= α. Then αi[σ/α] = αi and (v′1, v
′
2,

v1, v2) ∈ (Ri(Δr). By downwards closure of Ri it follows that (F (e, e)v′1, F (e, e)v′2, v1, v2) ∈ Ri(Δr).
So (F (e, e)v′1, F (e, e)v′2, v1, v2) ∈ ([[αi]]

t(Ξ�R)(Δr) and (F (e, e)v′
1, F (e, e)v′2, v1, v2) ∈ ([[αi[σ/α]]]t

(Ξ�R)(Δr).

Assume (v′1, v
′
2, v1, v2) ∈ ([[αi[σ/α]]]t(Ξ�R)(Δr) ∧ α /∈ Ξ ∧ αi �= α. Then αi[σ/α] = αi and

(v′1, v
′
2, v1, v2) ∈ (Ri(Δr). By downwards closure of Ri it follows that (F (e, e)v′1, F (e, e)v′2, v1, v2) ∈

(Ri(Δr). So (F (e, e)v′1, F (e, e)v′2, v1, v2) ∈ ([[αi]]
t(Ξα �R ([[Ξ � σ]]t(�R))(Δr).

Assume (v′1, v
′
2, v1, v2) ∈ ([[α]]t(Ξα �R ([[σ]]t(Ξ�R))(Δr). Then (v′1, v

′
2, v1, v2) ∈ ([[σ]]t(Ξ�R)(Δr).

To show (F (e, e)v′1, F (e, e)v′2, v1, v2) ∈ ([[α[σ/α]]]t(Ξ�R)(Δr), that is (F (e, e)v′
1, F (e, e)v′2, v1, v2) ∈

([[σ]]t(Ξ�R)(Δr). This follows by downwards closure.
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Assume α /∈ Ξ and (v′1, v
′
2, v1, v2) ∈ ([[α[σ/α]]]t(Ξ�R)(Δr), that is (v′1, v

′
2, v1, v2) ∈ ([[σ]]t(Ξ�R)(Δr).

To show (F (e, e)v′1, F (e, e)v′2, v1, v2) ∈ ([[α]]t(Ξα �R ([[σ]]t(Ξ�R)))(Δr). This holds when (F (e, e)v′
1,

F (e, e)v′2, v1, v2) ∈ ([[σ]]t(Ξ�R)(Δr). This follows by downwards closure.

• Assume (v′
1, v

′
2, v1, v2) ∈ [[τ → Tτ ′]]t(Ξα �R([[σ]]t(Ξ�R)))(Δr). This implies α /∈ Ξ and v′1 � v1∧v′2 �

v2 ∧ ∃d′1, d
′
2, d1, d2 : V � TV . ((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in→�d′1 ) ∧ ((v′2 = ⊥ ∧ d′2 =

⊥) ∨ v′2 = in→�d′2 ) ∧ v1 = in→�d1 ∧ v2 = in→�d2 ∧ ∀Δ1r1 � Δr. ∀w′
11, w

′
22, w11, w22 :

V . (w′
11, w

′
22, w11, w22) ∈ [[τ ]]t(Ξα �R([[σ]]t(Ξ�R)))(Δ1r1) ⇒ (d′1w

′
11, d

′
2w

′
22, d1w11, d2w22) ∈ ([[Tτ ′]]T

(Ξα �R([[σ]]t(Ξ�R)))(Δ1r1). To prove (F (e, e)v′1, F (e, e)v′2, v1, v2) ∈ [[(τ → Tτ ′)[σ/α]]]t (Ξ�R)(Δr).
F (e, e)v′1 � v′1 � v1 ∧ F (e, e)v′2 � v′2 � v2 follows from F (e, e) � idF (V ,V ) ∧ v′1 � v1 ∧ v′2 �
v2. F (e, e)�d′1 = in→�λw.ΨT (e, e)(d′1(ew)) and F (e, e)�d′2 = in→�λw.ΨT (e, e)(d′2(ew)) and
F (e, e)⊥ = ⊥. Let Δ1r1 � Δr and suppose (w′

11, w′
22, w11, w22) ∈ ([[τ [σ/α]]]t (Ξ�R)(Δ1r1). By

assumptions on e then (ew′
11, ew

′
22, w11, w22) ∈ ([[τ ]]t(Ξα �R([[σ]]t(Ξ�R)))(Δ1r1). And so by assump-

tions on v′1, v
′
2, v1, v2 it holds that (d′1w

′
11, d′2w

′
22, d1w11, d2w22) ∈ ([[Tτ ′]]T (Ξα �R([[σ]]t(Ξ�R)))(Δ1r1).

By assumptions on e together with 1M ) then (ΨT (e, e)(d′1w
′
11), ΨT (e, e)(d′2w

′
22), d1w11, d2w22) ∈

([[τ ′[σ/α]]]T (Ξ�R) (Δ1r1). We conclude (F (e, e)v′1, F (e, e)v′2, v1, v2) ∈ [[(τ → Tτ ′)[σ/α]]]t (Ξ�R)(Δr).

Assume (v′1, v
′
2, v1, v2) ∈ [[(τ → Tτ ′)[σ/α]]]t(Ξ�R)(Δr), α /∈ Ξ and Ξ � σ. This implies v′1 �

v1 ∧ v′2 � v2 ∧ ∃d′1, d
′
2, d1, d2 : V � TV . ((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in→�d′1 ) ∧ ((v′2 =

⊥∧ d′2 = ⊥)∨ v′2 = in→�d′2 )∧ v1 = in→�d1 ∧ v2 = in→�d2 ∧ ∀Δ1r1 � Δr. ∀w′
11, w

′
22, w11, w22 :

V . (w′
11, w

′
22, w11, w22) ∈ ([[τ [σ/α]]]t(Ξ�R)(Δ1r1) ⇒ (d′1w

′
11, d

′
2w

′
22, d1w11, d2w22) ∈ ([[Tτ ′[σ/α]]]T

(Ξ�R)(Δ1r1). To prove (F (e, e)v′1, F (e, e)v′
2, v1, v2) ∈ [[τ → Tτ ′]]t)(Ξα �R([[σ]]t(Ξ�R)))(Δr).

F (e, e)v′1 � v′1 � v1 ∧ F (e, e)v′2 � v′2 � v2 follows from F (e, e) � idF (V ,V ) ∧ v′1 � v1 ∧ v′2 � v2.
F (e, e)v′1 � in→�λw.ΨT (e, e)(d′1(ew)) ∧ F (f, g)v′2 � in→�λw.ΨT (e, e)(d′2(ew)) . Let Δ1r1 �

Δr and suppose (w′
11, w′

22, w11, w22) ∈ ([[τ ]]t(Ξα �R([[σ]]t(Ξ�R)))(Δ1r1). By assumptions on e then
(ew′

11, ew
′
22, w11, w22) ∈ ([[τ [σ/α]]]t(Ξ�R)(Δ1r1). And so by assumptions on v′1, v

′
2, v1, v2 it holds that

(d′1w
′
11, d

′
2w

′
22, d1w11, d2w22) ∈ ([[Tτ ′[σ/α]]]T (Ξ�R)(Δ1r1). By assumptions on e together with 2M )

then (ΨT (e, e)(d′1w
′
11), ΨT (e, e)(d′2w

′
22), d1w11, d2w22) ∈ ([[Tτ ′]]T (Ξ, α �R([[σ]]t(Ξ�R)))(Δ1r1). We

conclude (F (e, e)v′1, F (e, e)v′2, v1, v2) ∈ [[(τ → Tτ ′)]]t)(Ξα �R ([[σ]]t(Ξ�R)))(Δr).

• Assume (v′1, v
′
2, v1, v2) ∈ [[∀β. Tτ ]]t(Ξα �R([[σ]]t(Ξ�R)))(Δr). This implies α /∈ Ξ, β /∈ (Ξ, α) and

v′1 � v1 ∧ v′2 � v2 ∧ ∃d′1, d
′
2, d1, d2 : TV . ((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in∀�d′1 ) ∧ ((v′2 = ⊥ ∧ d′2 =

⊥) ∨ v′2 = in∀�d′2 ) ∧ v1 = in∀�d1 ∧ v2 = in∀�d2 ∧ ∀Rβ : bParAdmRel. (d′1, d
′
2, d1, d2) ∈

([[Tτ ]]T (Ξαβ �R([[σ]]t(Ξ�R))Rβ)(Δr). To prove (F (e, e)v′1, F (e, e)v′2, v1, v2) ∈ [[∀β. Tτ [σ/α]]]t)(Ξ�R)
(Δr). F (e, e)v′1 � v′1 � v1∧F (e, e)v′2 � v′2 � v2 follows from F (e, e) � idF (V ,V )∧v′1 � v1∧v′2 � v2.
v′1 = ⊥ ⇒ F (e, e)v′1 = ⊥∧v′1 = in∀�d′1 ⇒ F (e, e)v′1 = in∀�ΨT (e, e)(d′1) ∧v′2 = ⊥ ⇒ F (e, e)v′2 =
⊥ ∧ v′2 = in∀�d′2 ⇒ F (e, e)v′2 = in∀�ΨT (e, e)(d′2) . By assumptions on (v′1, v

′
2, v1, v2) and e and

by 2M ) ∀Rβ . (ΨT (e, e)(d′1), ΨT (e, e)(d′2), d1, d2) ∈ ([[Tτ [σ/α]]]T (Ξβ �RRβ)(Δr). So we conclude
(F (e, e)v′1, F (e, e)v′

2, v1, v2) ∈ [[∀β. Tτ [σ/α]]]t)(Ξ�R)(Δr).

Assume (v′1, v
′
2, v1, v2) ∈ [[∀β. Tτ [σ/α]]]t(Ξ�R)(Δr), α /∈ Ξ. This implies v′1 � v1 ∧ v′2 � v2 ∧

∃d′1, d
′
2, d1, d2 : TV . ((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in∀�d′1 ) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = in∀�d′2 ) ∧

v1 = in∀�d1 ∧ v2 = in∀�d2 ∧ ∀Rβ : bParAdmRel. (d′1, d
′
2, d1, d2 ∈ ([[Tτ [σ/α]]]T (Ξβ �RRβ)(Δr).

To prove (F (e, e)v′1, F (e, e)v′2, v1, v2) ∈ [[∀β. Tτ ]]t)(Ξ, α �R ([[σ]]t(Ξ�R)))(Δr). F (e, e)v′
1 � v′1 �

v1 ∧ F (e, e)v′2 � v′2 � v2 follows from F (e, e) � idF (V ,V ) ∧ v′1 � v1 ∧ v′2 � v2. v′1 = ⊥ ⇒
F (e, e)v′1 = ⊥ ∧ v′1 = in∀�d′1 ) ⇒ F (e, e)v′1 = in∀�ΨT (e, e)(d′1) ∧ v′2 = ⊥ ⇒ F (e, e)v′2 =
⊥ ∧ v′2 = in∀�d′2 ) ⇒ F (e, e)v′2 = in∀�ΨT (e, e)(d′2) . By assumptions on (v′1, v

′
2, v1, v2) and e and by

1M ) ∀Rβ . (ΨT (e, e)(d′1), ΨT (e, e)(d′2), d1, d2) ∈ ([[Tτ ]]T (Ξαβ �R([[σ]]t(Ξ�R))Rβ)(Δr). So we conclude
(F (e, e)v′1, F (e, e)v′

2, v1, v2) ∈ [[∀β. Tτ ]]t)(Ξα �R([[σ]]t(Ξ �R)))(Δr).
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• Assume (v′1, v
′
2, v1, v2) ∈ [[μβ. τ ]]t(Ξα �R([[σ]]t(Ξ�R)))(Δr). We may assume β /∈ (Ξ, α). The as-

sumption implies α /∈ Ξ and v′1 � v1 ∧ v′2 � v2 ∧ ∃d′1, d
′
2, d1, d2 : V . ((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 =

inμ(d′1) �= ⊥) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = inμ(d′2) �= ⊥) ∧ v1 = inμ(d1) �= ⊥ ∧ v2 = inμ(d2) �=
⊥ ∧ (d′1, d

′
2, d1, d2) ∈ ([[τ [μβ.τ/β]]]t(Ξα �R([[σ]]t(Ξ�R)))(Δr). To prove (F (e, e)v′

1, F (e, e)v′2, v1, v2) ∈
[[(μβ. τ)[σ/α]]]t)(Ξ�R)(Δr). F (e, e)v′1 � v′1 � v1 ∧ F (e, e)v′2 � v′2 � v2 follows from F (e, e) �
idF (V ,V ) ∧ v′1 � v1 ∧ v′2 � v2. v′1 = ⊥ ⇒ F (e, e)v′1 = ⊥ ∧ v′1 = inμ(d′1)) ⇒ F (e, e)v′1 =
inμ(ed′1) ∧ v′2 = ⊥ ⇒ F (e, e)v′2 = ⊥ ∧ v′2 = inμ(d′2)) ⇒ F (e, e)v′2 = inμ(ed′2). By assump-
tions on (v′1, v

′
2, v1, v2) and e so (ed′1, ed

′
2, d1, d2) ∈ ([[(τ [μβ.τ/β])[σ/α]]]t(Ξ�R)(Δr). As α �= β

so (τ [μβ.τ/β])[σ/α] = (τ [σ/α])[μβ.τ [σ/α]/β]) and (μβ.τ)[σ/α] = μβ.(τ [σ/α]) So we conclude
(F (e, e)v′

1, F (e, e)v′2, v1, v2) ∈ [[(μβ.τ)[σ/α]]]t)(Ξ�R)(Δr).

• Assume (v′1, v
′
2, v1, v2) ∈ [[(μβ.τ)[σ/α]]]t(Ξ�R)(Δr), α /∈ Ξ. Then Ξ � (μβ.τ)[σ/α]. We may

assume β /∈ (Ξ, α) and so (μβ.τ)[σ/α] = μβ.(τ [σ/α]) as Ξ � σ. The assumption implies v′
1 �

v1 ∧ v′2 � v2 ∧ ∃d′1, d
′
2, d1, d2 : V . ((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = inμ(d′1) �= ⊥) ∧ ((v′2 =

⊥ ∧ d′2 = ⊥) ∨ v′2 = inμ(d′2) �= ⊥) ∧ v1 = inμ(d1) �= ⊥ ∧ v2 = inμ(d2) �= ⊥ ∧ (d′1, d
′
2, d1, d2) ∈

([[(τ [σ/α])[μβ.(τ [σ/α])/β]]]t(Ξ�R)(Δr). To prove (F (e, e)v′
1, F (e, e)v′2, v1, v2) ∈ [[μβ.τ ]]t)(Ξα �R([[σ]]t

(Ξ�R)))(Δr). F (e, e)v′
1 � v′1 � v1 ∧ F (e, e)v′2 � v′2 � v2 follows from F (e, e) � idF (V ,V ) ∧ v′1 �

v1 ∧ v′2 � v2. v′1 = ⊥ ⇒ F (e, e)v′1 = ⊥ ∧ v′1 = inμ(d′1)) ⇒ F (e, e)v′1 = inμ(ed′1) ∧ v′2 = ⊥ ⇒
F (e, e)v′2 = ⊥ ∧ v′2 = inμ(d′2) ⇒ F (e, e)v′2 = inμ(ed′2). As α �= β then (τ [σ/α])[μβ.(τ [σ/α])/β] =
(τ [μβ.τ)/β])[σ/α] and so by assumptions on (v′

1, v
′
2, v1, v2) and e then (ed′1, ed

′
2, d1, d2) ∈ ([[τ [μβ.τ/β]]]t

(Ξα �R([[σ]]t(Ξ�R))Rβ)(Δr). So we conclude (F (e, e)v′
1, F (e, e)v′2, v1, v2) ∈ [[μβ.τ ]]t)(Ξα �R([[σ]]t(Ξ

�R)))(Δr).

• The cases for + and × types hold similarly by assumptions on e.

• Assume (v′1, v
′
2, v1, v2) ∈ [[τ ref ]]t(Ξα �R([[σ]]t(Ξ�R)))(Δr). This implies either v′

1 = v′2 = ⊥ or
∃l ∈ dom(Δ). v′1 � v1 = inL(l) ∧ v′2 � v2 = inL(l) ∧ Δ(l) = τ ∧ − � τ : type. To prove
(F (e, e)v′1, F (e, e)v′

2, v1, v2)∈ [[τ ref [σ/α]]]t(Ξ�R)(Δr), that is since τ is closed (F (e, e)v′
1, F (e, e)v′2, v1,

v2) ∈ [[τ ref ]]t(Ξ�R) (Δr). F (e, e)v′
1 � v′1 � v1 = inL(l) ∧ F (e, e)v′2 � v′2 � v2 = inL(l) follows from

F (e, e) � idF (V ,V ) ∧ v′1 � v1 = inL(l) ∧ v′2 � v2 = inL(l). So we conclude (F (e, e)v′1, F (e, e)v′2, v1,

v2) ∈ [[τ ref [σ/α]]]t)(Ξ�R)(Δr).
The other direction holds similarly from τ closed and downwards closure.

• Also the cases for 1 and int hold by downwards closure.

Definition 20 (Related environments)
We extend the relational interpretation of types to environments. For environment Ξ � Γ, with Γ = x1 :
τ1, . . . , xn : τn, n ≥ 1, let ρ′1, ρ

′
2, ρ1, ρ2 ∈ ⊗

i∈{1,...,n} V . Then

(ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δr) iff

∀i ∈ {1 . . . n}. ∃(v′1i, v
′
2i, v1i, v2i) ∈ [[Γ(xi)]]

t(Ξ�R)(Δr) and

ρ′1 =
⊗

v′1i, ρ′2 =
⊗

v′2i, ρ1 =
⊗

v1i, ρ2 =
⊗

v2i

For Γ = {} define (ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δr) iff

ρ′1 = ρ′2 = ρ1 = ρ2 = �∗ 

It follows from the definition that
(ρ′1, ρ

′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δr) ⇒

((ρ′1 = ρ′2 = ⊥) ∨ ρ′1 � ρ1 �= ⊥ ∧ ρ′2 � ρ2 �= ⊥)).
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Definition 21 (Relating denotations of open expressions)
• For all Ξ = α1, . . . , αk, for all Γ = x1 : τ1, . . . , xn : τn and Δ; Ξ; Γ � V1 : τ and Δ; Ξ; Γ � V2 : τ ,

for all Δr, let v1 = [[Δ; Ξ; Γ � V1 : τ ]] and v2 = [[Δ; Ξ; Γ � V2 : τ ]], and define

(v1, v2) ∈ ([[τ ]]tΞΓ)(Δr)
def⇐⇒

∀Δ′r′ � Δr. ∀�R : bParAdmRelk. ∀ρ′1, ρ
′
2, ρ1, ρ2.

(ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δ′r′) ⇒

((v1ρ
′
1), (v2ρ

′
2), (v1ρ1), (v2ρ2)) ∈ [[τ ]]t(Ξ�R)(Δ′r′)

• For all Ξ = α1, . . . , αk, for all Γ = x1 : τ1, . . . , xn : τn and Δ; Ξ; Γ � M1 : Tτ and Δ; Ξ; Γ �
M2 : Tτ , for all Δr, let m1 = [[Δ; Ξ; Γ � M1 : Tτ ]] and m2 = [[Δ; Ξ; Γ � M2 : Tτ ]], and define

(m1,m2) ∈ ([[Tτ ]]tΞΓ)(Δr)
def⇐⇒

∀Δ′r′ � Δr. ∀�R : bParAdmRelk. ∀ρ′1, ρ
′
2, ρ1, ρ2.

(ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δ′r′) ⇒

((v1ρ
′
1), (v2ρ

′
2), (v1ρ1), (v2ρ2)) ∈ [[Tτ ]]T (Ξ�R)(Δ′r′)

Lemma 22
The typing rules preserve relatedness in ([[·]]t· ·)(· r), for all r.

For typing rules with no premisses it holds that

if
Δ; Ξ; Γ � G : γ

and d = [[Δ; Ξ; Γ � G : γ]]

then ∀r. (d, d) ∈ ([[γ]]tΞΓ)(Δr).

For typing rules with j premisses it holds that

if
Δ; Ξ1; Γ1 � G11 : γ1 . . . . . . Δ; Ξj ; Γj � Gj1 : γj

Δ; Ξ′; Γ′ � G′
1 : γ′ and

Δ; Ξ1; Γ1 � G12 : γ1 . . . . . .Δ; Ξj ; Γj � Gj2 : γj

Δ; Ξ′; Γ′ � G′
2 : γ′ and

for the well typed terms

d11 = [[Δ; Ξ1; Γ1 � G11 : γ1]], d12 = [[Δ; Ξ1; Γ1 � G12 : γ1]], . . . ,
dj1 = [[Δ; Ξj ; Γj � Gj1 : γj ]], dj2 = [[Δ; Ξj ; Γj � Gj2 : γj ]]. And d′1 = [[Δ; Ξ′; Γ′ � G′

1 : γ′]], d′2 =
[[Δ; Ξ′; Γ′ � G′

2 : γ′]].

And ∀i ∈ 1 . . . j. (di1, di2) ∈ ([[γi]]
t
ΞiΓi

)(Δr).

then it holds that (d′1, d
′
2) ∈ ([[γ′]]tΞ′Γ′)(Δr).

Proof: The proof is by induction over the typing relation and parameter weakening is used in several
proof cases.

•
Δ; Ξ; Γ � xj : τj

Let v = [[Δ; Ξ; Γ � xj : τj ]]
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Let Δr be a basic parameter. To prove (v, v) ∈ ([[τj ]]
t
ΞΓ)(Δr). Let �R ∈ bParAdmRelk and let

Δ′r′ � Δr.
Assume ∀i ∈ {1 . . . n}. (v′1i, v

′
2i, v1i, v2i) ∈ [[Γ(xi)]]

t(Ξ�R)(Δ′r′) and ρ′1 =
⊗

v′1i, ρ′2 =
⊗

v′2i,

ρ1 =
⊗

v1i, ρ2 =
⊗

v2i. It then holds that (ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δ′r′) and ρ′1 = ρ′2 =

⊥ ∨ (ρ1 �= ⊥ ∧ ρ2 �= ⊥). We need to show (v1ρ
′
1, v2ρ

′
2, v1ρ1, v2ρ2) ∈ [[τj ]]

t(Ξ�R)(Δ′r′). ρ′1 =
ρ′2 = ⊥ ⇒ v1ρ

′
1 = v2ρ

′
2 = ⊥ and we are done. (ρ1 �= ⊥ ∧ ρ2 �= ⊥) ⇒ (

(v1ρ1 = πj(ρ1) =
vj1) ∧ (v2ρ2 = πj(ρ2) = vj2) ∧ (v′1ρ

′
1 ∈ {⊥, v′

j1}) ∧ (v′2ρ
′
2 ∈ {⊥, v′

j2})
)
. By downwards closure

and assumption (v′1j , v
′
2j , v1j , v2j) ∈ [[Γ(xj)]]

t(Ξ�R)(Δ′r′) it holds that (v1ρ
′
1, v2ρ

′
2, v1ρ1, v2ρ2) ∈

[[τj ]]
t(Ξ�R)(Δ′r′). So we have (v, v) ∈ [[τj ]]

t
ΞΓ)(Δr).

• Δ; Ξ; Γ � V : τ

Δ; Ξ; Γ � val V : Tτ

Let v1 = [[Δ; Ξ; Γ � V1 : τ ]] and v2 = [[Δ; Ξ; Γ � V2 : τ ]]. Assume (v1, v2) ∈ [[τ ]]tΞΓ(Δr).
Let m1 = [[Δ; Ξ; Γ � val V1 : Tτ ]] and m2 = [[Δ; Ξ; Γ � val V2 : Tτ ]]. To show, (m1,m2) ∈
[[Tτ ]]TΞΓ(Δr).

This requires ∀�R. ∀Δ′r′ � Δr. ∀ρ′1, ρ
′
2, ρ1, ρ2.

(ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δ′r′) ⇒ (m1(ρ′1),m2(ρ′2),m1(ρ1),m2(ρ2)) ∈ [[Tτ ]]t(Ξ�R)(Δ′r′).

If ρ′1 = ρ′2 = ⊥ this holds, else ρ1 �= ⊥ ∧ ρ2 �= ⊥. ρ′1 = ⊥ ⇒ v1ρ
′
1 = ⊥ ∧ m1ρ

′
1 = ⊥ and

ρ′2 = ⊥ ⇒ v2ρ
′
2 = ⊥ ∧ m2ρ

′
2 = ⊥.

Let Δ′′r′′�Δ′r′ and suppose (k′
1, k

′
2, k1, k2) ∈ [[τ�]]K(Ξ�R)(Δ′′r′′) and (s′1, s

′
2, s1, s2) ∈ ∇S(Δ′′r′′).

(m1ρ1)k1s1 = k1s1(v1ρ1), (m1ρ
′
1)k

′
1s

′
1 = k′

1s
′
1(v1ρ

′
1),

(m2ρ2)k2s2 = k2s2(v2ρ2), (m2ρ
′
2)k

′
2s

′
2 = k′

2s
′
2(v2ρ

′
2).

The continuations and states are related under the basic parameter Δ′′r′′ by assumption, the values
are also related under Δ′′r′′ by assumption and parameter weakening. Hence we get the required
termination approximation, so (m1(ρ′1),m2(ρ′2),m1(ρ1),m2(ρ2)) ∈ [[Tτ ]]T (Ξ�R)(Δ′r′).
We conclude (m1,m2) ∈ [[Tτ ]]TΞΓ(Δr).

• Δ; Ξ; Γ � V : τ ref

Δ; Ξ; Γ � !V : Tτ

Δ; Ξ; Γ � V : τ ref implies − � τ . Let
v1 = [[Δ; Ξ; Γ � V1 : τ ref ]] and v2 = [[Δ; Ξ; Γ � V2 : τ ref ]]. Assume (v1, v2) ∈ [[τ ref ]]tΞΓ(Δr).

Let m1 = [[Δ; Ξ; Γ �!V1 : Tτ ]] and m2 = [[Δ; Ξ; Γ �!V2 : Tτ ]]. To show, (m1,m2) ∈ [[Tτ ]]TΞΓ(Δr).

This requires ∀�R. ∀Δ′r′ � Δr. ∀ρ′1, ρ
′
2, ρ1, ρ2.

(ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δ′r′) ⇒ (m1(ρ′1),m2(ρ′2),m1(ρ1),m2(ρ2)) ∈ [[Tτ ]]t(Ξ�R)(Δ′r′).

If ρ′1 = ρ′2 = ⊥ this holds, else ρ1 �= ⊥ ∧ ρ2 �= ⊥, and the assumption implies ∃l : τ ∈ Δ′. v1ρ1 =
v2ρ2 = in ref l, v1ρ

′
1, v2ρ

′
2 ∈ {⊥, in ref l} and it holds that τ is closed. Let Δ′′r′′ �Δ′r′ and suppose

(k′
1, k

′
2, k1, k2) ∈ [[τ�]]K(Ξ�R)(Δ′′r′′) and (s′1, s

′
2, s1, s2) ∈ ∇S(Δ′′r′′).

(m1ρ1)k1s1 = k1s1(s1l), (m1ρ
′
1)k

′
1s

′
1 � k′

1s
′
1(s

′
1l),

(m2ρ2)k2s2 = k2s2(s2l), (m2ρ
′
2)k

′
2s

′
2 � k′

2s
′
2(s

′
2l).

The continuations and states are related under the basic parameter Δ′′r′′ by assumption. As l : τ ∈
Δ′ ⊆ Δ′′ then also (s′1l, s

′
2l, s1l, s2l) ∈ [[τ ]]t()(Δ′′r′′) and by Ξ-weakening so (s′1l, s

′
2l, s1l, s2l) ∈

[[τ ]]t(Ξ�R)(Δ′′r′′). Hence we get the required termination approximation, so (m1(ρ′1),m2(ρ′2),
m1(ρ1),m2(ρ2)) ∈ [[Tτ ]]T (Ξ�R) (Δ′r′). We conclude (m1,m2) ∈ [[Tτ ]]TΞΓ(Δr).

• Δ; Ξ; Γ � Va : τ ref Δ; Ξ; Γ � Vb : τ

Δ; Ξ; Γ � Va := Vb : T1
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Let va1 = [[Δ; Ξ; Γ � Va1 : τ ref ]] and va2 = [[Δ; Ξ; Γ � Va2 : τ ref ]].
Let vb1 = [[Δ; Ξ; Γ � Vb1 : τ ]] and vb2 = [[Δ; Ξ; Γ � Vb2 : τ ]].
Assume (va1, va2) ∈ [[τ ref ]]tΞΓ(Δr), and (vb1, vb2) ∈ [[τ ]]tΞΓ(Δr).
Let m1 = [[Δ; Ξ; Γ � Va1 := Vb1 : T1]] and m2 = [[Δ; Ξ; Γ � Va2 := Vb2 : T1]].
To show, (m1,m2) ∈ [[T1]]tΞΓ(Δr).
This requires ∀�R. ∀Δ′r′ � Δr. ∀ρ′1, ρ

′
2, ρ1, ρ2.

(ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δ′r′) ⇒ (m1(ρ′1),m2(ρ′2),m1(ρ1),m2(ρ2)) ∈ [[T1]]t(Ξ�R)(Δ′r′).

If ρ′1 = ρ′2 = ⊥ this holds, else ρ1 �= ⊥ ∧ ρ2 �= ⊥, and the assumption implies − � τ and
∃l : τ ∈ Δ′. va1ρ1 = va2ρ2 = in ref l, va1ρ

′
1, va2ρ

′
2 ∈ {⊥, in ref l}

Let Δ′′r′′�Δ′r′ and suppose (k′
1, k

′
2, k1, k2) ∈ [[1�]]K(Ξ�R) (Δ′′r′′) and (s′1, s

′
2, s1, s2) ∈ ∇S(Δ′′r′′).

(m1ρ1)k1s1 = k1(s1[l �→ vb1ρ1])in1∗, (m2ρ2)k2s2 = k2(s2[l �→ vb2ρ2])in1∗,
(m1ρ

′
1)k

′
1s

′
1 � k′

1(s
′
1[l �→ vb1ρ

′
1])in1∗, (m2ρ

′
2)k

′
2s

′
2 � k′

2(s
′
2[l �→ vb2ρ

′
2])in1∗.

The continuations and the original states are related under the basic parameter Δ′′r′′ by assumption.
It follows from the assumptions that the values stored are related (vb1ρ

′
1, vb2ρ

′
2, vb1ρ1, vb2ρ2) ∈

[[τ ]]t(Ξ�R)(Δ′r′). Since τ is closed then by the Ξ-strengthening property and parameter weakening
for ∇ also (vb1ρ

′
1, vb2ρ

′
2, vb1ρ1, vb2ρ2) ∈ [[τ ]]t()(Δ′′r′′). As l : τ ∈ Δ′′ ⊇ Δ′ then the updated states

are still related under Δ′′r′′. The in1∗ values are related under any parameter. Hence we get the
required termination approximation, so (m1(ρ′1),m2(ρ′2),m1(ρ1),m2(ρ2)) ∈ [[T1]]t(Ξ�R)(Δ′r′).
We conclude (m1,m2) ∈ [[T1]]tΞΓ(Δr).

• Δ; Ξ, α; Γ � M : Tτ Ξ � Γ
Δ; Ξ; Γ � Λα. M : ∀α.Tτ

Let m1 = [[Δ; Ξ, α; Γ � M1 : Tτ ]] and m2 = [[Δ; Ξ, α; Γ � M2 : Tτ ]].
Let v1 = [[Δ; Ξ; Γ � Λα. M1 : ∀α.Tτ ]] and v2 = [[Δ; Ξ; Γ � Λα. M2 : ∀α.Tτ ]].
Assume (m1,m2) ∈ [[Tτ ]]tΞαΓ(Δr) and assume Ξ � Γ.

The assumption implies ∀�R,Rα. ∀Δ′r′�Δr. (ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξα �R′Rα)(Δ′r′) ⇒ (m1(ρ′1),

m2(ρ′2),m1(ρ1),m2(ρ2)) ∈ [[Tτ ]]T (Ξ, α �RRα)(Δ′r′). When ρ �= ⊥ then v1ρ = in∀�m1ρ and
v2ρ = in∀�m2ρ . To show (v1, v2) ∈ ([[∀α.Tτ ]]tΞΓ)(Δr).
This requires ∀�R. ∀Δ′r′ � Δr. ∀ρ′1, ρ

′
2, ρ1, ρ2.

(ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δ′r′) ⇒ (v1(ρ′1), v2(ρ′2), v1(ρ1), v2(ρ2)) ∈ [[∀α.Tτ ]]t(Ξ�R)(Δ′r′).

This again requires ((v1(ρ′1)) = (v2(ρ′2)) = ⊥) ∨ (
Ξ � ∀α.Tτ ∧ α /∈ Ξ ∧ (v1(ρ′1) � v1(ρ1) �=

⊥ ∧ v2(ρ′2) � v2(ρ2) �= ⊥ ∧ (∃d′1, d1, d
′
2, d2 : TV . ((v1(ρ′1) = ⊥ ∧ d′1 = ⊥) ∨ v1(ρ′1)) =

in∀�d′1 ) ∧ (v1(ρ1) = in∀�d1 ) ∧ ((v2(ρ′2) = ⊥ ∧ d′2 = ⊥) ∨ v2(ρ′2)) = in∀�d′2 ) ∧ (v2(ρ2) =
in∀�d2 ) ∧ ∀Rα ∈ bParAdmRel. (d′1, d

′
2, d1, d2) ∈ [[Tτ ]]T (Ξα �RRα)(Δ′r′).

This follows from the assumptions. Then we can conclude (v1, v2) ∈ [[∀α.Tτ ]]tΞΓ(Δr).

• Δ; Ξ; Γ � V : ∀α.Tτ Ξ � σ

Δ; Ξ; Γ � V σ : Tτ [σ/α])

Let v1 = [[Δ; Ξ; Γ � V1 : ∀α.Tτ ]] and v2 = [[Δ; Ξ; Γ � V2 : ∀α.Tτ ]].
Let m1 = [[Δ; Ξ; Γ � V1σ : Tτ [σ/α])]] and m2 = [[Δ; Ξ; Γ � V2σ : Tτ [σ/α])]].
Assume (v1, v2) ∈ [[∀α.Tτ ]]tΞΓ(Δr) and assume Ξ � σ.

To show (m1,m2) ∈ [[Tτ [σ/α])]]TΞΓ)(Δr). This requires ∀�R. ∀Δ′r′ � Δr. (ρ′1, ρ
′
2, ρ1, ρ2) ∈

[[Γ]]t(Ξ�R)(Δ′r′) ⇒ (m1(ρ′1),m2(ρ′2),m1(ρ1),m2(ρ)) ∈ [[Tτ [σ/α]]]t(Ξ�R)(Δ′r′).

The assumption (v1, v2) ∈ [[∀α.Tτ ]]tΞΓ(Δr) implies ∀�R. ∀Δ′r′ � Δr. (ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)

(Δ′r′) ⇒ (v1(ρ′1), v2(ρ′2), v1(ρ1), v2(ρ2)) ∈ [[∀α.Tτ ]]t(Ξ�R)(Δ′r′). This again implies (v1(ρ′1) =
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v2(ρ′2) = ⊥) ∨ α /∈ Ξ ∧ (
(v1(ρ′1) � v1(ρ1) �= ⊥) ∧ (v2(ρ′2) � v2(ρ2) �= ⊥) ∧ ∃d′1, d1, d

′
2, d2 :

TV . ((v1(ρ′1) = ⊥ ∧ d′1 = ⊥)∨ v1(ρ′1) = in∀�d′1 ) ∧ ((v2(ρ′2) = ⊥ ∧ d′2 = ⊥) ∨ v2(ρ′2)) =
in∀�d′2 ) ∧ v1(ρ1) = in∀�d1 ∧ v2(ρ2) = in∀�d2 ∧ ∀Rα ∈ bParAdmRel. (d′1, d

′
2, d1, d2) ∈

[[Tτ ]]T (�RRα)(Δ′r′)
)
.

Also by definition of the denotational semantics
(v1(ρ′1) = ⊥ ⇒ m1(ρ′1) = ⊥ = d′1) ∧ v1(ρ′1) = in∀�d′1 ⇒ m1(ρ′1) = d′1,
(v2(ρ′2) = ⊥ ⇒ m2(ρ′2) = ⊥ = d′2) ∧ v2(ρ′2) = in∀�d′2 ⇒ m2(ρ′2) = d′2,
(v1(ρ1) = ⊥ ⇒ m1(ρ1) = ⊥ ∧ v1(ρ1) = in∀�d1 ⇒ m1(ρ1) = d1,
(v2(ρ′2) = ⊥ ⇒ m2(ρ′2) = ⊥ ∧ v2(ρ′2) = in∀�d′2 ⇒ m2(ρ′2) = d′2.
If (⊥ = (v1(ρ′1)) = (v2(ρ′2)) = (m1(ρ′1)) = (m2(ρ′2))) we are done. Else by assumption
∀Rα ∈ bParAdmRel. (d′1, d

′
2, d1, d2) ∈ [[Tτ ]]T (Ξα �RRα)(Δ′r′). We choose Rα as [[σ]]t(Ξ�R),

so by assumptions it holds that (d′1, d
′
2, d1, d2) ∈ [[Tτ ]]T (Ξα �R([[σ]]t(Ξ�R))(Δ′r′). By lemma 19

this implies (d′1, d
′
2, d1, d2) ∈ [[Tτ [σ/α′]]]T (Ξ�R)(Δ′r′). So (m1(ρ′1),m2(ρ′2),m1(ρ1),m2(ρ2) ∈

[[Tτ [σ/α]]]T (Ξ�R)(Δ′r′). We conclude (m1,m2) ∈ [[Tτ [σ/α]]]TΞΓ(Δr).

• Δ; Ξ; Γ � V : τ

Δ; Ξ; Γ � refV : T (τ ref )
(− � τ )

Let v1 = [[Δ; Ξ; Γ � V1 : τ ]] and v2 = [[Δ; Ξ; Γ � V2 : τ ]]. Assume (v1, v2) ∈ [[τ ]]tΞΓ)(Δr) and
− � τ .
Let m1 = [[Δ; Ξ; Γ � refV1 : T (τ ref )]] and m2 = [[Δ; Ξ; Γ � refV2 : T (τ ref )]].
To show: (m1,m2) ∈ [[T (τ ref )]]TΞΓ(Δr).
(m1,m2) ∈ [[T (τ ref )]]TΞΓ(Δr) requires ∀�R. ∀Δ′r′ � Δr. (ρ′1, ρ

′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δ′r′) ⇒

(m1(ρ′1), m2(ρ′2),m1(ρ1),m2(ρ2)) ∈ [[Tτ ]]T (Ξ�R)(Δ′r′). This again requires (m1(ρ′1)) � (m1(ρ1))∧
(m2(ρ′2)) � (m2(ρ2)) ∧ ∀Δ′′r′′ � Δ′r′. ∀k′

1, k1, k
′
2, k2. ∀S′

1, S1, S
′
2, S2.(

(k′
1, k

′
2, k1, k2) ∈ [[τ�]]K(Ξ�R)(Δ′′r′′) ∧ (S′

1, S
′
2, S1, S2) ∈ ∇S(Δ′′r′′) ⇒(

((m1(ρ′1))k
′
1S

′
1 = � ⇒ (m2(ρ2))k2S2 = �) ∧

((m2(ρ′2))k
′
2S

′
2 = � ⇒ (m1(ρ1))k1S1 = �)

)
.

(m1(ρ′1)) � (m1(ρ1)) ∧ (m2(ρ′2)) � (m2(ρ2)) follows from assuptions on ρ′1, ρ1, ρ
′
2, ρ2. For the

remaining proof, assume (k′
1, k

′
2, k1, k2) ∈ [[τ�]]K(Ξ�R)(Δ′′r′′) ∧ (S′

1, S
′
2, S1, S2) ∈ ∇S(Δ′′r′′).

By the denotational semantics and the theory of FM-domains
(m1(ρ′1))k

′
1S

′
1 = k′

1(S
′
1[l �→ (v1(ρ′1))])(in ref l) (m1(ρ1))k1S1 = k1(S1[l �→ (v1(ρ1))])(in ref l)

(m2(ρ′2))k
′
2S

′
2 = k′

2(S
′
2[l �→ (v2(ρ′2))])(in ref l) (m2(ρ2))k2S2 = k2(S2[l �→ (v2(ρ2))])(in ref l) for

l /∈ supp(λl′.k1(S1[l �→ (v1(ρ1))])(in ref l
′)) ∪ supp(λl′.k2(S2[l �→ (v2(ρ2))])(in ref l

′)) ∪
dom(Δ′′) ∪ Ar′′1(S1) ∪Ar′′2(S2). We define an extended parameter Δ3r′′ = (Δ′′ " l �→ τ)r′′

�Δ′′r′′. By assumption (v1(ρ′1), v2(ρ′2), v1(ρ1), v2(ρ1)) ∈ [[τ ]]t(Ξ�R)(Δ′r′) and − � τ . So
(in ref l, in ref l, in ref l, in ref l) ∈ [[τ ref ]]t(Ξ�R)(Δ3r′′), and by Ξ-strengthening and parameter weak-
ening (v1(ρ′1), v2(ρ′2), v1(ρ1), v2(ρ1)) ∈ [[τ ]]t()(Δ3r′′). The original states were related under
Δ′′r′′. The domain of Δ′′ as well as the areas wiewed by accessibility maps have not been changed,
so by parameter weakening (S′

1[l �→ (v1(ρ′1))], S
′
2[l �→ (v2(ρ′2))], S1[l �→ (v1(ρ1))], S2[l �→

(v2(ρ2))]) ∈ ∇S(Δ3r′′). So we have continuations related under Δ′′r′′ applied to states and values
related under the extended parameter Δ3r′′, and then we get the required termination approxima-
tion. So (m1(ρ′1),m2(ρ′2), m1(ρ1),m2(ρ2)) ∈ [[Tτ ]]T (Ξ�R)(Δ′r′). We conclude (m1,m2) ∈
[[T (τ ref )]]TΞΓ(Δr).

• Δ; Ξ; Γ � Ma : Tτa Δ; Ξ; Γ, x : τa � Mb : Tτb

Δ; Ξ; Γ � let x ⇐ Ma in Mb : Tτb

Let m1a = [[Δ; Ξ; Γ � M1a : Tτa]], m2a = [[Δ; Ξ; Γ � M2a : Tτa]].
Let m1b = [[Δ; Ξ; Γ, x : τa � M1b : Tτb]], m2b = [[Δ; Ξ; Γ, x : τa � M2b : Tτb]].
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Assume (m1a,m2a) ∈ ([[Tτa]]TΞΓ)(Δr) and (m1b,m2b) ∈ ([[Tτb]]
T
ΞΓ,x:τa

)(Δr). Then

∀�R. ∀Δ′r′ � Δr. ∀(ρ′1, ρ
′
2, ρ1, ρ2) ∈ ([[Γ]]t(Ξ�R)(Δ′r′). (m1a(ρ′1),m2a(ρ′2),m1a(ρ1),m2a(ρ2)) ∈

([[Tτa]]T (Ξ�R)(Δ′r′), and further ∀(v′1x, v′
2x, v1x, v2x) ∈ [[τa]]t(Ξ�R)(Δ′r′). (m1b(ρ′1⊗v′1x),m2b(ρ′2⊗

v′2x),m1b(ρ1 ⊗ v1x),m2b(ρ2 ⊗ v2x)) ∈ [[Tτb]]
T (Ξ�R)(Δ′r′).

Let m1 = [[Δ; Ξ; Γ � let x ⇐ M1a in M1b : Tτb]] and let m2 = [[Δ; Ξ; Γ � let x ⇐ M2a in M2b : Tτb]].
We need to show (m1,m2) ∈ [[Tτb]]

T
ΞΓ(Δr) that is ∀�R. ∀Δ′r′�Δr. ∀ρ′1, ρ

′
2, ρ1, ρ2.

(
(ρ′1, ρ

′
2, ρ1, ρ2) ∈

[[Γ]]t(Ξ�R)(Δ′r′) ⇒ (m1(ρ′1),m2(ρ′2),m1(ρ1), m2(ρ2)) ∈ [[Tτb]]
T (Ξ�R)(Δ′r′)

)

m1(ρ′1) = λk.λS. (m1a(ρ′1))(λS0.λdx.((m1b(ρ′1 ⊗ dx))kS0)S,
m2(ρ′2) = λk.λS. (m2a(ρ′2))(λS0.λdx.((m2b(ρ′2 ⊗ dx))kS0)S,
m1(ρ1) = λk.λS. (m1a(ρ1))(λS0.λdx.((m1b(ρ1 ⊗ dx))kS0)S,
m2(ρ2) = λk.λS. (m2a(ρ2))(λS0.λdx.((m2b(ρ2 ⊗ dx))kS0)S.

Let �R, Δ′r′ � Δr be given and assume (ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δ′r′). Let Δ′′r′′ � Δ′r′ and

assume (k′
1, k

′
2, k1, k2) ∈ [[τ�

b ]]K(Ξ�R)(Δ′′r′′) and (S′
1, S

′
2, S1, S2) ∈ ∇S(Δ′′r′′).

(m1(ρ′1))k
′
1S

′
1 = (m1a(ρ′1))(λS0.λdx.((m1b(ρ′1 ⊗ dx))k′

1S0)S′
1,

(m1(ρ1))k1S1 = (m1a(ρ1))(λS0.λdx.((m1b(ρ1 ⊗ dx))k1S0)S1,
(m2(ρ′2))k

′
2S

′
2 = (m2a(ρ′2))(λS0.λdx.((m2b(ρ′2 ⊗ dx))k′

2S0)S′
2,

(m2(ρ2))k2S2 = (m2a(ρ2))(λS0.λdx.((m2b(ρ2 ⊗ dx))k2S0)S2.

By assupmtion (m1a(ρ′1),m2a(ρ′2),m1a(ρ1),m2a(ρ2)) ∈ [[Tτa]]T (Ξ�R)(Δ′r′) and (S′
1, S

′
2, S1, S2) ∈

∇S(Δ′′ r′′). So, to prove the required termination-approximations we want to show that
(λS0.λdx. ((m1b(ρ′1 ⊗ dx)) k′

1S0), λS0.λdx. ((m1b(ρ1 ⊗ dx))k1S0),
λS0.λdx. ((m2b(ρ2 ⊗ dx))k2S0), λS0.λdx. ((m2b(ρ′2 ⊗ dx))k′

2S0)) ∈ [[τ�
a ]]K(Ξ�R)(Δ′′r′′).

Let Δ3r3�Δ′′r′′ and assume (S′
10, S

′
20, S10, S20) ∈ ∇S(Δ3r3) and (d′1, d

′
2, d1, d2) ∈ [[τa]]t(Ξ�R)(Δ3r3).

(λS0.λdx.(m1b(ρ′1 ⊗ dx))k′
1S0)S′

10d
′
1 = (m1b(ρ′1 ⊗ d′1))k

′
1S

′
10,

(λS0.λdx.(m2b(ρ′2 ⊗ dx))k′
2S0)S′

20d
′
2 = (m2b(ρ′2 ⊗ d′2))k

′
2S

′
20,

(λS0.λdx.(m1b(ρ1 ⊗ dx))k1S0)S10d1 = (m1b(ρ1 ⊗ d1))k1S10,
(λS0.λd0.(m2b(ρ2 ⊗ dx))k2S0)S20d2 = (m2b(ρ2 ⊗ d2))k2S20.
By assumptions on d’s and ρ’s and parameter weakening on ρ’s it holds that ((ρ′1 ⊗ d′1), (ρ

′
2 ⊗

d′2), (ρ1 ⊗ d1), (ρ2 ⊗ d2)) ∈ [[Γ, x : τa]]t(Ξ�R)(Δ3r3). By assumptions on mb’s then (m1b(ρ′1 ⊗
d′1),m2b(ρ′2⊗d′2),m1b(ρ1⊗d1),m2b(ρ2⊗d2)) ∈ [[Tτb]]

T (Ξ�R)(Δ3r3). Since also (S′
10, S

′
20, S10, S20) ∈

∇S(Δ3r3) and by weakening (k′
1, k

′
2, k1, k2) ∈ [[τ�

b ]]K(Ξ�R)(Δ3r3) then we get the required termi-
nation approximation. We can conclude that (m1,m2) ∈ [[Tτb]]

T
ΞΓ(Δr).

• Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M : Tτ ′

Δ; Ξ; Γ � rec f(x : τ) = M : τ → Tτ ′

Let m1 = [[Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M1 : Tτ ′]], and
let m2 = [[Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M2 : Tτ ′]],
Assume (m1,m2) ∈ [[Tτ ′]]TΞΓ0

(Δr), where Γ0 = Γ ∪ { f : τ → Tτ ′, x : τ }.
Let v1 = [[Δ; Ξ; Γ � rec f(x : τ) = M1 : τ → Tτ ′]] and
let v2 = [[Δ; Ξ; Γ � rec f(x : τ) = M2 : τ → Tτ ′]]. To prove: (v1, v2) ∈ [[τ → Tτ ′]]tΞΓ(Δr). This
requires ∀�R. ∀Δ′r′ � Δr. ∀(ρ′1, ρ

′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δ′r′). (v1(ρ′1), v2(ρ′2), v1(ρ1), v2(ρ2)) ∈

[[(τ → Tτ ′)]]t(Ξ�R)(Δ′r′) = [[τ → Tτ ′]]t(Ξ�R)(Δ′r′).
If ρ′1 = ρ′2 = ⊥ then v1(ρ′1) = v2(ρ′2) = ⊥. When ρ �= ⊥ we have
[[Δ; Ξ; Γ � rec f(x : τ) = M : τ → Tτ ′ ]] ρ =
i◦in→�fix(λf ′ ∈ (V � TV ).(λx′ ∈ V . [[Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M : Tτ ′]](ρ⊗f �→ i◦in→�f ′�⊗
x �→ x′)))� = i ◦ in→�⊔n∈ω gn 
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where gn ∈ (V � TV ), g0 = ⊥V�TV and

gn+1 = λx0 ∈ V . [[Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M : Tτ ′]](ρ ⊗ f �→ i ◦ in→�gn ⊗ x �→ x0).
so we have that when ρ′1 �= ⊥ ∨ ρ′2 �= ⊥ then

v1(ρ1) = i ◦ in→�⊔n∈ω g1
n , v2(ρ2) = i ◦ in→�⊔n∈ω g2

n .

v1(ρ′1) � i ◦ in→�⊔n∈ω g1′
n  , v2(ρ′2) � i ◦ in→�⊔n∈ω g2′

n  where

g1
0 = g2

0 = g1′
0 = g2′

0 = ⊥V�M and

g1
n+1 = λx0.m1(ρ1 ⊗ i ◦ in→�g1

n ⊗ x0), g2
n+1 = λx0.m1(ρ2 ⊗ i ◦ in→�g2

n ⊗ x0),

g1′
n+1 = λx0.m1(ρ′1 ⊗ i ◦ in→�g1′

n  ⊗ x0), g2′
n+1 = λx0.m1(ρ′2 ⊗ i ◦ in→�g2′

n  ⊗ x0)
It holds that⊔

n∈ω g1
n = (λx′ ∈ V .m1(ρ1 ⊗ i ◦ in→�(⊔n∈ω g1

n) ⊗ x′)) and⊔
n∈ω g2

n = (λx′ ∈ V.m2(ρ2 ⊗ i ◦ in��(⊔n∈ω g2
n) ⊗ x′)).

We have g1′
0 � g1

0 � ⊔
g1

n ∧ g2′
0 � g2

0 � ⊔
g2

n and from the definition and the assumptions
ρ′1 � ρ1 ∧ ρ′2 � ρ2 then by induction ∀n.g1′

n � g1
n � ⊔

g1
n ∧ g2′

n � g2
n � ⊔

g2
n.

Also ∀d1, d2. ⊥V�M(d1) = ⊥V�M(d2) = ⊥M. Since ∀Δr.∀�R. ∀d1, d2 ∈ V . (⊥,⊥,
⊔

g1
n(d1),⊔

g1
n(d2)) ∈ [[Tτ ′]]T (Ξ�R)(Δr), so (i ◦ in→�g1

0 , i ◦ in→�g2
0 , v1(ρ1), v2(ρ2)) ∈ [[τ → Tτ ′]]t(Ξ�R)

(Δ′r′). We will show by induction on n that

∀n ∈ ω. (i ◦ in→�g1′
n  , i ◦ in→�g2′

n  | v1(ρ1), v2(ρ2)) ∈ [[τ → Tτ ′]]t(Ξ�R)(Δ′r′).
Assume (i ◦ in→�g1′

n  , i ◦ in→�g2′
n  | v1(ρ1), v2(ρ2)) ∈ [[τ → Tτ ′]]t(Ξ�R)(Δ′r′).

We have v1(ρ1) = i ◦ in→�⊔n∈ω g1
n and v2(ρ2) = i ◦ in→�⊔n∈ω g2

n .

To show that (i ◦ in→�g1′
n+1 , i ◦ in→�g2′

n+1 | v1(ρ1), v2(ρ2)) ∈ [[τ → Tτ ′]]t(Ξ�R)(Δ′r′) we must

have ∀Δ′′r′′ � Δ′r′.∀(d′1, d
′
2, d1, d2) ∈ [[τ ]]t(Ξ�R)(Δ′′r′′). (λx0.m1(ρ′1 ⊗ i ◦ in→�g1′

n  ⊗ x0)d′1,
λx0.m2(ρ2′⊗i◦in→�g2′

n  ⊗x0)d′2,
⊔

g1
n(d1),

⊔
g2

n(d2)) ∈ [[Tτ ′]]T (Ξ�R) (Δ′′r′′). That is (m1(ρ′1⊗
i ◦ in��g1′

n  ⊗ d′1), m2(ρ′2 ⊗ i ◦ in��g2′
n  ⊗ d′2),m1(ρ1 ⊗ i ◦ in��(⊔n∈ω g1

n) ⊗ d1,m2(ρ2 ⊗
i ◦ in��(⊔n∈ω g2

n) ⊗ d2, T τ ′, p′′) ∈ ∇M

Since by assumption (m1,m2) ∈ [[Tτ ′]]TΞΓ0
(Δr) and we have (i ◦ in→�g1′

n  , i ◦ in→�g2′
n  , i ◦

in→�⊔n∈ω g1
n , i ◦ in→�⊔n∈ω g2

n ) ∈ [[τ → Tτ ′]]t(Ξ�R)(Δ′r′) and (d′1, d
′
2, d1, d2) ∈ [[τ ]]t (Ξ�R)

(Δ′′r′′) it holds that (m1(ρ′1 ⊗ i ◦ in→�g1′
n  ⊗ d′1), m2(ρ′2 ⊗ i ◦ in→�g2′

n  ⊗ d′2), m1(ρ1 ⊗
i ◦ in→�⊔n∈ω g1

n ⊗ d1), m2(ρ2 ⊗ i ◦ in→�⊔n∈ω g2
n ⊗ d2)) ∈ [[Tτ ′]]T (Ξ�R)(Δ′′r′′). So (i ◦

in→�g1′
n+1 , i◦in→�g2′

n+1 , i◦in→�⊔n∈ω g1
n , i◦in→�⊔n∈ω g2

n ) = (i◦in→�g1′
n+1 , i◦in→�g2′

n+1 ,
v1(ρ1), v2(ρ2)) ∈ [[τ → Tτ ′]]t(Ξ�R)(Δ′r′).
We have shown that ∀n ∈ ω. (i◦in��g1′

n  , i◦in��g2′
n  , v1(ρ1), v2(ρ2)) ∈ [[τ → Tτ ′]]t(Ξ�R)(Δ′r′).

Then since ∇V is admissible also (
⊔

i ◦ in��g1′
n  ,⊔ i ◦ in��g2′

n  , v1(ρ1), v2(ρ2)) ∈ [[τ → Tτ ′]]t

(Ξ�R)(Δ′r′). So (v1(ρ′1), v2(ρ′2), v1(ρ1), v2(ρ2)) ∈ [[τ → Tτ ′]]t(Ξ�R)(Δ′r′),
hence (v1, v2) ∈ [[τ → Tτ ′]]tΞΓ(Δr).

• Δ; Ξ; Γ � Va : τ → Tτ ′ Δ; Ξ; Γ � Vb : τ

Δ; Ξ; Γ � VaVb : Tτ ′

Let v1a = [[Δ; Ξ; Γ � V1a : τ → Tτ ′]], v2a = [[Δ; Ξ; Γ � V2a : τ → Tτ ′]].
Let v1b = [[Δ; Ξ; Γ � V1b : τ ]], v2b = [[Δ; Ξ; Γ � V2b : τ ]].
Assume (v1a, v2a) ∈ [[τ → Tτ ′]]tΞΓ(Δr) and (v1b, v2b) ∈ [[τ ]]tΞΓ(Δr).
Let m1 = [[Δ; Ξ; Γ � V1aV1b : Tτ ′]] and m2 = [[Δ; Ξ; Γ � V2aV2b : Tτ ′]].

We aim to show (m1,m2) ∈ [[Tτ ′]]TΞΓ(Δr). Let �R ∈ bParAdmReln, Δ′r′ � Δr and assume
(ρ′1, ρ

′
2, ρ1, ρ2)∈ [[Γ]]t(Ξ�R)(Δ′r′). We want to show (m1(ρ′1),m2(ρ′2),m1(ρ1), m2(ρ2)) ∈ ([[Tτ ′]]T

(Ξ�R)(Δ′r′). The assumption (v1a, v2a) ∈ [[τ → Tτ ′]]tΞΓ(Δr) implies either (v1a(ρ′1) = v2a(ρ′2) =
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⊥) or ∃f ′
1, f

′
2, f1, f2.((v1a(ρ′1)) = ⊥∧f ′

1 = ⊥)∨ (v1a(ρ′1)) = in→�f ′
1 ) ∧ ((v2a(ρ′2)) = ⊥∧f ′

2 =
⊥) ∨ (v2a(ρ′2)) = in→�f ′

2 ∧ (v1a(ρ1)) = in→�f1 ∧ (v2a(ρ2)) = in→�f2 ∧ ∀Δ′′r′′ �

Δ′r′.∀(d′1, d
′
2, d1, d2) ∈ [[τ ]]t(Ξ�R)(Δ′′r′′). ((f ′

1d
′
1, f

′
2d

′
2, f1d1, f2d2) ∈ [[Tτ ′]]T (Ξ�R)(Δ′′r′′).

In the first case m1(ρ′1) = m2(ρ′2) = ⊥, and so (m1(ρ′1),m2(ρ′2), (m1(ρ1),m2(ρ2)) ∈ [[Tτ ′]]T (Ξ�R)
(Δ′r′). In the second case we have m1(ρ′1) = f ′

1(v1b(ρ′1)), m2(ρ′2) = f ′
2(v2b(ρ′2)), m1(ρ1) =

f1(v1b(ρ1)), m2(ρ2) = f2(v0b(ρ2)) and it follows from the assumption (v1b, v2b) ∈ [[τ ]]tΞγ(Δr)
that (v1b(ρ′1), v2b(ρ′2), v1b(ρ1), v2b(ρ2)) ∈ [[τ ]]t(Ξ�R)(Δ′r′). And so (f ′

1(v1b(ρ′1)), f
′
2(v2b(ρ′2)),

f1(v1b(ρ1)), f2(v2b(ρ2))) ∈ [[Tτ ′]]T (Ξ�R)(Δ′r′). That is (m1(ρ′1),m2(ρ′2),m1(ρ1),m2(ρ2)) ∈
[[Tτ ′]]T (Ξ�R)(Δ′r′). We conclude (m1,m2) ∈ [[Tτ ′]]TΞΓ(Δr).

•
Δ; Ξ; Γ � l : τ ref

(Δl : τ )

Let v = [[Δ; Ξ; Γ � l : τ ref ]], and assume Δl : τ .

To show: (v, v) ∈ [[τ ref ]]tΞΓ(Δr), this requires ∀�R. ∀Δ′r′ � Δr. ∀ρ′1, ρ
′
2, ρ1, ρ2.

(ρ′1, ρ
′
2, ρ1, ρ2) ∈ [[Γ]]t(Ξ�R)(Δ′r′) ⇒ (v1(ρ′1), v2(ρ′2), v1(ρ1), v2(ρ2)) ∈ [[τ ref ]]t(Ξ�R)(Δ′r′).

Δl : τ implies that τ is closed.
If ρ′1 = ρ′2 = ⊥ ⇒ (v1(ρ′1)) = (v2(ρ′2)) = ⊥ and we are done. Else ρ′1 � ρ1 �= ⊥ ∧ ρ′2 �
ρ2 �= ⊥, then v1(ρ′1)) � (v1(ρ1)) ∧ v2(ρ′2)) � (v2(ρ2)) ∧ v1(ρ1) = v2(ρ2) = in ref l. Then since
Δ′r′ � Δr so Δ′l : τ and it holds that (v1(ρ′1), v2(ρ′2), v1(ρ1), v2(ρ2)) ∈ [[τ ref ]]t(Ξ�R)(Δ′r′). So
(v, v) ∈ [[τ ref ]]tΞΓ(Δr).

�

Theorem 23 (Fundamental Theorem)
For all parameters Δr it holds that

• if Δ; Ξ; Γ � V : τ then

([[Δ; Ξ; Γ � V : τ ]], [[Δ; Ξ; Γ � V : τ ]]) ∈ [[τ ]]tΞΓ(Δr),
• if Δ; Ξ; Γ � M : Tτ then

([[Δ; Ξ; Γ � M : Tτ ]], [[Δ; Ξ; Γ � M : Tτ ]]) ∈ [[Tτ ]]TΞΓ(Δr).

The Fundamental Theorem follows from Lemma 22.

Lemma 24
For all Δr and k = [[Δ; � val x : (x : τ)�]], we have that (k, k, k, k) ∈ [[τ�]]K()(Δr). Moreover, if

S ∈ [[Δ � Σ]] then (S, S, S, S) ∈ ∇S(ΔT ).

Proof:

• Let k = [[Δ; � val x : (x : τ)�]]K , then k =
λS.λd. [[Δ; ;x : τ � val x : Tτ ]]{x �→ d}(λS′.(λd′.�)⊥)⊥S =
λS.λd.(λS′.(λd′.�)⊥)⊥Sd

Let Δr be a basic parameter. Let Δ′r′�Δr. Assume (s′1, s
′
2, s1, s2) ∈ ∇S(Δ′r′) and (v′

1, v
′
2, v1, v2) ∈

[[τ ]]t()(Δ′r′). We need to prove
ks′1v

′
1 = � ⇒ ks2v2 = � and ks′2v

′
2 = � ⇒ ks1v1 = �.

It holds that ks′1v
′
1 � ks1v1 and ks′2v

′
2 � ks2v2. It follows from the assumptions that s′1 = s′2 =

⊥ ∨ (s1 �= ⊥ ∧ s2 �= ⊥) and v′1 = v′2 = ⊥ ∨ (v1 �= ⊥ ∧ v2 �= ⊥)
If s′1 = s′2 = ⊥ or v′1 = v′2 = ⊥ then ks′1v

′
1 = ks′2v

′
2 = ⊥ and the implications holds trivilally.

If this is not the case then it holds that s1 �= ⊥ ∧ s2 �= ⊥ ∧ v1 �= ⊥ ∧ v1 �= ⊥. So ks1v1 =
(λS.λd.(λS′.(λd′.�)⊥)⊥Sd)s1v1 = � ∧ ks2v2 = (λS.λd.(λS′.(λd′.�)⊥)⊥Sd)s2v2 = �. Again

the implications holds. So we conclude (k, k, k, k) ∈ [[τ�]]K()(Δr).
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• Let Δ � Σ be a typing judgement for a store Σ. Let S ∈ [[Δ � Σ]] = {S′ | ∀(l : τ) ∈ Δ. S′l =
[[Δ; ;� Σl : τ ]]}. We want to show (S, S, S, S) ∈ ∇S(ΔT ). This requires S = ⊥ or S �= ⊥ ∧ ∀(l :
τ) ∈ Δ. (Sl, Sl, Sl, Sl) ∈ [[τ ]]t()(ΔT ). This follows by fundamental lemma from the assumptions
Sl = [[Δ; ;� Σl : τ ]].

�
The following theorem expresses that we can show two computations or two values to be contextually
equivalent by showing that their denotations are related under a parameter ΔT , which does not require
that any hidden invariants hold for states. The computations may themselves be able to build up local
state invariants and a proof of relatedness will often require one to express these invariants.

Theorem 25 (Contextual Equivalence)
Let C[ ] : (Δ; Ξ; Γ � γ) ⇒ (Δ; ;� Tτ) be a context. If Δ; Ξ; Γ � G1 : γ and Δ; Ξ; Γ � G2 : γ and

([[Δ; Ξ; Γ � G1 : γ]], [[Δ; Ξ; Γ � G2 : γ]]) ∈ [[γ]]tΞΓ(ΔT )

then, for all Σ : Δ,

Σ, let x ⇐ C[G1] in val x ↓⇐⇒ Σ, let x ⇐ C[G2] in val x ↓ .

Proof: Let C[ ] : (Δ; Ξ; Γ � γ) ⇒ (Δ; ;� Tτ) be a context, and assume ([[Δ; Ξ; Γ � G1 : γ]],
[[Δ; Ξ; Γ � G2 : γ]]) ∈ [[γ]]tΞΓ(ΔT ). By induction over the structure of C[ ] and by lemma 22 it holds
that ([[Δ; ;� C[G1] : Tτ ]], [[Δ; ;� C[G2] : Tτ ]]) ∈ [[Tτ ]]T{}(ΔT ). Let k = [[Δ; � val x : (x : τ)�]]. By

lemma 24 (k, k, k, k) ∈ [[τ�]]K()(ΔT ) and ∀S ∈ [[Δ � Σ]] . (S, S, S, S) ∈ ∇S(ΔT ). So
[[Δ; ;� C[G1] : Tτ ]] [[Δ; � val x : (x : τ)�]] S = � ⇔ [[Δ; ;� C[G2] : Tτ ]] [[Δ; � val x : (x : τ)�]] S =
�. The lemma then follows by soundness and adequacy of the denotational semantics. �

5 Example

In the following example we consider a polymorphically typed client c, which uses an abstract stack of
integers. The client is polymorphic in the type representing the stack and thus we expect that the client
produces the same result for two different, but related, implementations of a stack. And, indeed, we are
able to prove so using our proof method established in the previous section. In one case, the client is given
a stack, which is implemented using ML-style lists and in the other case, the client is given a stack, which
is implemented using mutable lists.

c : ∀α.T (
(
(1 → Tα) × (int × α → Tα) × (α → T (1 + (int × α)))

) → T (1 + int)) = ∀α.T (τ →
T (1 + int))

c = Λα.val rec f(empty, push, pop) =
(

let s0 ⇐ empty() in
let s1 ⇐ push(1, s0) in
let x ⇐ pop(s1) in
case x of in1x1 ⇒ val in1(); in2x2 ⇒ in2(π1x2)

)

α1 = μβ.1 + (int × β)
α2 =

(
μβ.1 + (int × β ref)

)
ref

e1 = rec E1(a : 1) = val (fold in1())
e2 = rec E2(a : 1) = let z ⇐ val (fold in1()) in ref z
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push1 = rec Push1(x : int × α) = val (fold in2x)
push2 = rec Push2(x : int × α) = ref (fold in2x)

pop1 = rec Pop1(x : α) = let z ⇐ unfold x in z
pop2 = rec Pop2(x : α) = let y ⇐!x in letz ⇐ unfold y in z

p1 = let x ⇐ c(α1) in x(empty1, push1, pop1) p1 : T (1 + int)
p2 = let x ⇐ c(α2) in x(empty2, push2, pop2) p2 : T (1 + int)

We define some local parameters: For each l ∈ L define local parameter rl : (S2l = inμin⊕in1in1∗), A∅, A{l}.
For each l, l′ with l �= l′ ∈ L for each n ∈ Z define rll′n : (S2l = inμin⊕in2in⊗(inZn, inLl′)), A∅, A{l}.

Further define R̂ ∈ bParAdmRel: (d′1, d
′
2, d1, d2) ∈ R̂(Δr) ⇐⇒

d′1 = d′2 = ⊥ ∨(
d′1 � d1 ∧ d′2 � d2 ∧(∃l. rl ∈ r ∧ (d1, d2) = (inμin⊕in1in1∗, inLl) ∨

∃l0, l1 with l0 �= l1 and ∃n1 ∈ Z ∧ r ⊇ {rl0 , rl1l0n1} ∧
(d1, d2) = (inμin⊕in2in⊗(inZnk, inμin⊕in1in1∗)), inLl1) ∨

∃k > 1 ∧ ∃l0 . . . lk ∈ L pairwise different ∧∃n1 . . . nk ∈ Z ∧ r ⊇ {rl0 , rl1l0n1 , rl2l1n2 . . . rlklk−1nk
} ∧

(d1, d2) = (inμin⊕in2in⊗(inZnk, inμin⊕in2in⊗(inZnk−1, . . . . . . inμin⊕in1in1∗) . . .), inLlk)
))

(*) It follows from the definition of R̂ that if (d′1, d
′
2, d1, d2) ∈ R̂(Δ0r0) and d1 �= inμin⊕in1in1∗

then ∃l0 . . . lk ∈ L pairwise different s.t. d2 = inLlk ∧ ∃n1 . . . nk ∈ Z ∧ r ⊇ {rl0 , rl1l0n1 , rl2l0n2

. . . rlklk−1nk
} and then (inμin⊕in2in⊗(inZnj , inμin⊕ . . . . . . inμin⊕in1in1∗) . . .), inLlj) ∈ R̂(Δ0r0)

for all j ∈ 1 . . . k, and
((inμin⊕in1in1∗, inLl0) ∈ R̂(Δ0r0).

To show: ([[; ;� p1]], [[; ;� p2]]) ∈ [[T (1 + int)]]t∅∅(Δ∅T )
Let Δ′r′ � Δ∅T and assume (k′

1, k
′
2, k1, k2) ∈ [[(1 + int)�]]t()(Δ′r′) and (s′1, s

′
2, s1, s2) ∈ ∇S(Δ′r′).

[[; ;� p1]] k1s1 = [[; ;� c(α1)]](λS0λd0. [[;α; x � x(empty1, push1, pop1)]]{x �→ d0}k1S
0)s1 =

[[;α;� val rec f ]](λS0λd0. [[;α; x � x(empty1, push1, pop1)]]{x �→ d0}k1S
0)s1

[[; ;� p2]] k2s2 = [[; ;� c(α2)]](λS0λd0. [[;α; x � x(empty2, push2, pop2)]]{x �→ d0}k2S
0)s2 =

[[;α;� val rec f ]](λS0λd0. [[;α; x � x(empty2, push2, pop2)]]{x �→ d0}k2S
0)s2

By assumption (s′1, s
′
2, s1, s2) ∈ ∇S(Δ′r′) and by fundamental lemma

([[;α;� val rec f ]], [[;α;� val rec f ]]) ∈ [[τ → T (1 + int)]]tα∅(Δ∅r′), and it follows that
∀R ∈ bParAdmRel. ([[;α;� val rec f ]], [[;α;� val rec f ]], [[;α;� val rec f ]], [[;α;� val rec f ]]) ∈
[[τ → T (1 + int)]]t(αR)(Δ′r′).
So also for R = R̂, and we get the required termination approximation if
((λS0λd0. [[;α; x � x(empty1, push1, pop1)]]{x �→ d0}k1S

0),
(λS0λd0. [[;α; x � x(empty2, push2, pop2)]]{x �→ d0}k2S

0),
(λS0λd0. [[;α; x � x(empty1, push1, pop1)]]{x �→ d0}k1S

0),
(λS0λd0. [[;α; x � x(empty2, push2, pop2)]]{x �→ d0}k2S

0)) ∈ [[(τ → T (1 + int))�]]t(α R̂)(Δ′r′).

To show this let Δ2r2 � Δ′r′ and assume (S′
1, S

′
2, S1, S2) ∈ ∇S(Δ2r2) and

(d′1, d
′
2, d1, d2) ∈ [[τ → T (1 + int)]]t (α R̂)(Δ2r2). Then d′1 = d′2 = ⊥ or ∃g′1, g

′
2, g1, g2. ((d′1 =

⊥ ∧ g′1 = ⊥) ∨ d′1 = in��g′1 ) ∧((d′2 = ⊥ ∧ g′2 = ⊥) ∨d′2 = in��g′2 ) ∧ (d1 = in��g′1 ) ∧
(d2 = in��d2 )∧ ∀Δ3r3 � Δ2r2. ∀(v′1, v

′
2, v1, v2) ∈ [[τ ]]t(α R̂)(Δ3r3). (g′1v

′
1, g

′
2v

′
2, g1v1, g2v2) ∈

[[T (1 + int)]]t(α R̂)(Δ3r3)
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(λS0λd0. [[;α; x � x(empty1, push1, pop1)]]{x �→ d0}k1S
0)S1d1 =

[[;α; x � x(empty1, push1, pop1)]]{x �→ d1}k1S1 = g1([[;α;� (empty1, push1, pop1)]])k1S1

(λS0λd0. [[;α; x � x(empty2, push2, pop2)]]{x �→ d0}k1S
0)S2d2 =

[[;α; x � x(empty2, push2, pop2)]]{x �→ d2}k2S2 = g2([[;α;� (empty2, push2, pop2)]])k2S2.
So by parameter weakening for the continuations it suffices to show that
([[;α;� (empty1, push1, pop1)]], [[;α;� (empty2, push2, pop2)]],
[[;α;� (empty1, push1, pop1)]], [[;α;� (empty2, push2, pop2)]]) ∈ [[τ ]]t(αR̂)(Δ2r2). This requires that
we can show that it holds that each of empty′s, push′s and pop′s are related under (αR̂)(Δ2r2).

empty′s: Let (Δ3r3)�(Δ2r2) and assume (K ′
1,K

′
2,K1,K2) ∈ [[α]]t(αR̂)(Δ3r3) and (S′

1, S
′
2, S1, S2) ∈

∇S(Δ3r3).
[[;α;� empty1]](in1∗)K1S1 = K1S1(inμin⊕in1(in1∗))
[[;α;� empty2]](in1∗)K2S2 = K2(S2[l �→ inμin⊕in1in1∗])(inLl) where l is fresh.
Let Δ4r4 = Δ3(r3 ∪ {rl}). Since by assumption (S′

1, S
′
2, S1, S2) ∈ ∇S(Δ3r3) and l is fresh then

(S′
1, S

′
2[l �→ inμin⊕in1in1∗], S1, S2[l �→ inμin⊕in1in1∗]) ∈ ∇S(Δ4r4).

Also (inμin⊕in1in1∗, inLl, inμin⊕in1in1∗, inLl) ∈ [[α]]t(αR̂)(Δ4r4). So we have related contin-
uations applied to states and values related in an extension, so (empty1, empty2, empty1, empty2) ∈
[[1 → Tα]]t(αR̂)(Δ2r2).

push′s: Let (Δ4r4) � (Δ3r3) � (Δ2r2) and assume (K ′
1,K

′
2,K1,K2) ∈ [[α]]t(αR̂)(Δ4r4) and

(S′
1, S

′
2, S1, S2) ∈ ∇S(Δ4r4). Assume (V ′

1 , V ′
2 , V1, V2) ∈ [[int × α]]t(αR̂)(Δ3r3).

It must hold that V ′
1 = V ′

2 = ⊥ or ∃n, d′1, d
′
2, d1, d2. V ′

1 � (inZn, d′1) � V1 = (inZn, d1) �= ⊥ ∧ V ′
2 �

(inZn, d′2) � V2 = (inZn, d2) �= ⊥ ∧ (d′1, d
′
2, d1, d2) ∈ [[α]]t(αR̂)(Δ3r3). Further by the definition of

R̂ it holds that if V ′
1 �= ⊥ ∨ V ′

2 �= ⊥ then ∃k ≥ 0, l0 . . . lk, n1 . . . nk. r3 ⊇ {rl0 , rl1l0n1 . . . rlkl0nk
} and

if k = 0 then d1 = inμin⊕in1in1∗ and d2 = inLl0, if k > 0 then d1 = inμin⊕in2in⊗(inZnk, inμ . . .)
and d2 = inLlk.
[[;α;� push1]] V1K1S1 = K1S1(inμin⊕in2in⊗V1).
[[;α;� push2]] V2K2S2 = K2S2[l′ �→ inμin⊕in2V2](inLl′) where l′ is fresh.
Let Δ5r5 = Δ4(r4 ∪ rl′lkn). Then since l′ is fresh and by assumptions on the V ′s and by definition of R̂

it holds that (inμin⊕in2in⊗V1, inLl′, inμin⊕in2in⊗V1, inLl′) ∈ R̂(Δ5r5), and also the updated states
are related (S′

1, S
′
2[l

′ �→ inμin⊕in2V2], S1, S2[l′ �→ inμin⊕in2V2]) ∈ ∇S(Δ5r5). So we have related
continuations applied to states and values related in an extension, so (push1, push2, push1, push2) ∈
[[(int × α) → Tα]]t(αR̂)(Δ2r2).

pop′s: Let (Δ4r4) � (Δ3r3) � (Δ2r2) and assume (K ′
1,K

′
2,K1,K2) ∈ [[α]]t(αR̂)(Δ4r4) and

(S′
1, S

′
2, S1, S2) ∈ ∇S(Δ4r4). Assume (V ′

1 , V ′
2 , V1, V2) ∈ [[α]]t(αR̂)(Δ3r3).

It must hold that V ′
1 = V ′

2 = ⊥ or ∃k ≥ 0, l0 . . . lk, n1 . . . nk. r3 ⊇ {rl0 , rl1l0n1 . . . rlkl0nk
} and

if k = 0 then V ′
1 � V1 = inμin⊕in1in1∗ and d′2 � d2 = inLl0, if k > 0 then V ′

1 � V1 =
inμin⊕in2in⊗(inZnk, inμ . . .) and V ′

1 � V2 = inLlk.

If k = 0 then [[;α;� pop1]] V1K1S1 = K1S1(in⊕in1in1∗) and since the states are related in Δ4r4�Δ3r3

then S2l0 = inμin⊕in1in1∗ and [[;α;� pop2]] V2K2S2 = K2S2(in⊕in1in1∗). By the definition of ∇ it
holds that (in⊕in1in1∗, in⊕in1in1∗, in⊕in1in1∗, in⊕in1in1∗) ∈ [[1 + (int × α)]]t(αR̂)(Δ4r4).

If k = 1 then [[;α;� pop1]] V1K1S1 = K1S1in⊕in2in⊗(inZnk, inμin⊕in1in1∗) and since the states
are related in Δ4r4 � Δ3r3 then S2l0 = inμin⊕in2in⊗(inZnk, inLl0) and
[[;α;� pop2]] V2K2S2 = K2S2(in⊕in2in⊗(inZnk, inLl0)).
As rl0 ∈ r4 so (inμin⊕in1in1∗, inLl0, inμin⊕in1in1∗, inLl0) ∈ [[α]]t(αR̂)(Δ4r4).

If k > 1 then V1 = inμin⊕in⊗(inZnk, d1) and [[;α;� pop1]] V1K1S1 = K1S1in⊕in2in⊗(inZnk, d1)
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since the states are related in Δ4r4 � Δ3r3 then S2lk = inμin⊕in2in⊗(inZnk, inLlk−1) and
[[;α;� pop2]] V2K2S2 = K2S2(in⊕in2in⊗(inZnk, inLlk−1)). By the definition of r̂ and since r4 ⊇
{rl0 , rl1l0n1 . . . rlkl0nk

} then by (*) (d1, inLlk−1, d1, inLlk−1) ∈ [[α]]t(αR̂))(Δ4r4).

In all cases we get related continuations applied to related states and related values, so we get the required
termination approximation.
We conclude ([[; ;� p1]], [[; ;� p2]]) ∈ [[T (1 + int)]]t∅∅(Δ∅T ).

6 Conclusion and Future Work

We have given what appears to be the first relationally parametric model of a langauge with recursive
and polymorphic types and references to values of closed type. We are currently working on lifting the
restriction that reference types have to be closed.
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Relational Reasoning for Contextual Equivalence

Nina Bohr

Abstract. We device a proof method for showing contextual equivalences of programs in a
monadically typed language with recursive types, impredicative polymorphism and general
references. This method extends the proof method presented at APLAS 06 (Nina Bohr and
Lars Birkedal: Relational Reasoning for Recursive Types and References [13] ). The definition
of parameters has been refined so that we can use our method to prove more programs equiv-
alent. The refined parameters make it possible to express that two programs are temporarily
at inequal steps but will later come back to equality, or that two programs both diverge but
not at the same ’step of computations’. It is also possible to express that programs make
irreversible changes within hidden areas as the “Awkward Example” from Pitts and Stark
[39]. We think that a closer comparison between this method and the bisimulaition based
method devised by Kuotavas and Wand [28] will show that our method makes proofs quite
accessible. We have added polymorphic types, but we do not treat relational parametricity
here. In the previous paper (Relational Parametricity for Recursive Types and References of
Closed Types) we discuss relational parametricity.

1 Introduction

In our paper from APLAS 2006 [13] we presented a proof method for contextual equivalence,
which could be used to prove equivalence of several interesting programs. We want however to
make the method more helpful in proving program equivalences. To that end we define several
extensions in this report. Most of the extensions require a more refined definition of parameters.
However, in actual examples we find that the definition of the local parameters we use in proofs,
express in a natural way the intuition of why we believe the programs to be equivalent. So proofs
of contextual equivalence of programs become a reasonable straightforward test of hypotheses of
equivalences. When the local parameters are defined, the rest of the proof is almost automatic. So
the complications in the definition of the format for parameters arise from the attempt to make
the method reasonably easy to use on program examples.

To motivate the definitions in the following sections, we will first informally discuss some prop-
erties of a pair of programs together with example programs. We come back to the examples again
in the Example Sections 7 and 10, where we will formally define the parameters we use. We hope
that this informal presentation will make the definitions more accessible for the reader. Hongseok
Yang proposed several example programs, which we gratefully acknowledge. In the informal pre-
sentation below, we assume that the reader is familiar with the definition of parameters in the
article [13] which this report extends.

1.1 Irreversible change of states

First, we want to handle irreversible changes of local state. A program may have the possibility
of changing state in a local area in an irreversible way, and the equivalence of two programs may
require that we use the knowledge that the state cannot be changed back again. Recall the Awkward
Example from Pitts and Stark [39]:

M : let a ⇐ ref 0 in
val

(
rec fM (g : unit → Tτ) : Tint =
let x ⇐ a := 1 in let y ⇐ g() in !a)

)

N : val (rec fN (g : unit → Tτ) : Tint =
let z ⇐ g() in val 1)
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M and N are closed computations. N is the computation that gives a function fN . fN takes
as input a function g, applies g() and if this terminates then fN always returns 1. M allocates a
new local location la and assigns 0 to it. Then it computes a function fM , which takes as input a
function g, then updates la to 1 and applies g(). If this terminates then fM reads la and returns
the result.

By informal reasoning, we expect the two computations to be equivalent because the only way
the location la can be accessed is by application of the function fM , so once la has been set to
1 it can never be set to any other value. Pitts and Stark use computation induction to prove
these programs contextually equivalent and they conjecture that a Kripke style relation will make
the programs accessible for a proof of equivalence. They suggest (in their setup) “r1 ⊃ r2 where
r1 = {(s, ())|s(l) = 0 or 1} and r2 = {()|s(l) = 1}”. Such a local parameter is expressible in our
setup and makes it possible to prove the programs equivalent (we have though preferred a local
parameter that is a little different). We obtain this by defining what we call local extensions of a
local parameter. Together with the definition of a local parameter, we now also include a precision of
which local extensions the parameter has. We always require that related computations are related
at any later time expressed by a parameter larger in the parameter ordering, and local extensions
give larger parameters. Let in an informal notation a local parameter with local extension be
p = (q0 ≺ q1) = ( (s1(l) = 0) with extension (s1(l) = 1) ). Computations related under parameter
p are required to behave related under each of the set of states in p = ( (s1(l) = 0) ≺ (s1(l) = 1) )
and the set of states in (s1(l) = 1). States related under p must have s1(l) = 0 but it is also required,
that the stored related values are related under p so as described also under p’s local extension.
Computations related under p may change the value stored in S1(l) from 0 to 1 and so extend
the parameter. At a later time the parameter may have been locally extended to q1 : (s1(l) = 1).
Now states related under q1 must have s1(l) = 1, and computations related under q1 must behave
related under the set of states in {(s1, s2)|s1(l) = 1}.

We aim at defining parameters, order on parameters and relatedness under parameters in such a
way that computations related under a parameter will also be related under any bigger parameter.
A bigger parameter is meant to describe a later step in computations. If related functions are
stored and later retrieved we expect them to be related in the new contexts. We also want the
parameters to be able to express such irreversible change of states which equivalent programs may
perform in local areas. So, together with the definition of a local parameter, we now also include
a precision of which local extensions the parameter has. A local extension uses at most the same
local areas of two states as the local parameter it extends. A local parameter together with its local
extensions has the form of a tree. Irreversible changes of states to local extensions corresponds to
stepping down to a subtree. So for these example programs the local parameter is a two-node tree
(q0 ≺ q1). The root-node says that location la in the M -side must hold 0. The sub-tree-node says
that la must hold 1. With such a local parameter we can prove the programs equivalent, see the
Example Section 7.1 for details.

It is necessary to define which local extensions are legal together with the local parameter. The
reason for this is, that when we define a local parameter and prove programs equivalent under the
parameter, then we must show that all exported functions preserve the parameter and we require
the “parameter weakening property” i.e. that all bigger parameters will also be preserved. Usually
this will not be the case for any arbitrary local strengthening of the parameter. In proofs we often
need to do case analysis, and show that in all cases of extensions down a “local parameter tree”
we get the required termination behavior.

Connected to the question of which computations we relate is the snapback-problem. We show
in the Example Section 7.6 that at most types the “snapback”-function is not in our relation.

1.2 Knowing the initial steps of continuations

The parameters from [13] as well as the parameters with local extensions from above are preserved
by each pair of related computations and pair of related continuations independently. We will now
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discuss extended parameters, for which we can use knowledge of initial parts of the continuations
our computations are applied to.

When we develop a proof of equivalence of two programs we will often reach a step, where we
apply a computation m which is part of the initial program to a continuation, in which the initial
steps are generated from the original program. In such situations m may change states in ways
which are so to say set back to an appropriate form by the known initial steps in the computation.
An example of such a situation is given here.

M : let w ⇐ ref 0 in
g(rec fM (u : unit) =

(
w := 1)

)
;

val (rec getM (u : unit) =
(
!w

)
, rec setM (n : int) =

(
w := n

)
)

N : let x ⇐ ref 0 in //flag: inside program N
let y ⇐ ref 0 in //flag: argument function fN has not been applied inside program N
let v ⇐ ref 0 in

g(rec fN (u : unit) =
(
if (!x = 0) then (y := 1) else (v := 1)

)
;

if (!y �= 0) then (v := 1);
x := 1;
val (rec getN (u : unit) =

(
!v

)
, rec setN (n : int) =

(
v := n

)
)

M and N are open computations with a free variable g of type ((unit → Tunit) → Tτ).
M first allocates a new location lw and stores 0 in lw. Then g is applied to a function fM . If g

applies fM then fM ’s only action is to update lw to hold 1. If g(fM ) terminates then M returns a
getter and a setter for lw.

N is a little more complicated. N first allocates three new locations lx, ly, lv each with the value
0. Then g is applied to a function fN . If g applies fN then fN will read the value stored in lx. If
the value in lx is 0 then fN will update lv to hold 0 and ly to hold 1. If the value in lx is not 0
then fN will update lv to hold 1. If g(fN ) terminates then N will read the value stored in ly and
if it differs from 0 then lv will be set to 1. Then lx will be set to 1. Finally N returns a getter and
a setter for lv.

We expect M and N to be contextually equivalent by reasoning as follows. Inside M and N
the functions g (expected to be equivalent) may store and/or apply their argument functions fM

and fN . When g is applied inside M and N , then the only way g can access lw and lx, ly and
lv respectively is by application of the argument functions fM and fN . The reason is that these
locations are locally allocated and at this time the getters and setters for lw and lvhave not been
exported. Function fN only reads lx, so g cannot change the value stored in location lx. lx is
updated to hold 1 just before computation N finishes. Hence lx can be used as a flag for being
inside N or after N has finished. ly can only be changed by fN and this will only happen if fN

is applied inside of N , hence the value of ly can be used as a flag telling if fN has been applied
inside N . Since g’s are expected to be equivalent, we expect them to have similar application and
storing actions for the arguments fM and fN if g(fM ) and g(fN ) terminates. Assume fM and fN

are applied one or more times inside g(fM ) and g(fN ). fM will update lw to hold 1, and fN will
update ly to hold 1 but leave lv with the value 0. So just after g(fM ) and g(fN ) terminate then
lw and lv do not hold related values. However, this is remedied by N in the next step, where the
value in ly is read to be 1 and so lv updated to 1. Now lw and lv hold the same value. N will set
lx to 1. If g has stored fM and fN then they may be called in the future after N has finished, and
then fM and fN will always update lw and lv with the same value because lx will always hold 1.
Setters and getters also keep the values stored in lw and lv identical. Suppose the g’s store fM and
fN but do not apply them. After g(fM ) and g(fN ) terminate lw and lv will both hold 0 and ly also
be untouched. Now N will read the value in ly to 0 and leave lv untouched. We see, that under
execution of the programs M and N the values in lw and lv may possibly have different values
temporarily.
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Look at the denotations for M and N and assume that they are given related functions gM , gN

and applied to related continuations kM , kN and related states SM , SN .1 In an attempt to prove
M and N equivalent, we will reach a point

(*) [[M ]](g �→ gM )kMSM = gM ([[fM ]][w �→ lw])(λSλd.[[val (getM , setN )]][w �→ lw]kMS)SM [lw �→ 0]

[[N ]](g �→ gN )kNSN = gN ([[fN ]][x �→ lx, y �→ ly, w �→ lw])(λSλd.[[if (!y �= 0) then (v := 1); (x :=
1); val (getN , setN )]][x �→ lx, y �→ ly, w �→ lw]kNS)SN [lx �→ 0, ly �→ 0, lv �→ 0]

where we (when we follow our usual way of proving equivalences) would like to be able to say
that: We apply related computations to related functions, so this gives us related computations.
These computations are then applied to related continuations and related stores. In the end we
want (also) to say that setters and getters are related, this is the case if lw and lv can always be
expected to hold the same value. But this property is not preserved by fM and fN unless lx holds
1, which is not initially the case.

In our informal reasoning for why we expect M and N to be equivalent, we benefitted from
two observations: That the functions fM , fN preserved two different invariants, namely either “lx
holds 0 and values stored in lw and ly are equal” or “lx holds 1 and values stored in lw and lv
are equal”. Then knowing that the initial steps of the continuations which g(fM ) and g(fN ) are
applied to would use the first invariant to establish the other invariant necessary for the set, get
functions to be related, we could see that in the end things would match up.

In this report, we extend parameters from [13] to be able to benefit from knowing the initial
steps of the continuations we apply to, and to allow us to employ that computations may preserve
more than one invariant. The extended parameters will make it possible to make formal statements
expressing:

Computations related under a parameter that tells that they will preserve each of a set of
invariants will have similar termination behavior whenever they are applied to
states fulfilling one of the invariants and where all stored values preserve each of the set of
invariants, together with continuations that give similar termination behavior, when they are
executed in stores fulfilling this one invariant .

So, with these extended parameters, related continuations informally speaking “knows how to
bring the situations back to equivalence, if it has temporarily leaped away in a well defined way”.
For continuations to behave well in this sense, they must know the invariants we are considering.
For this reason the extended parameters require two different order relations on parameters: The �

order is used for parameters with additional invariants, which are preserved by each of computations
and continuations separately, so an invariant that continuations do not know about, does not matter
for their related performance. The � order is used, when we add sets of invariants, and expect
computations to be applied to continuations, that will ensure termination equivalence, knowing
the invariants hold.

In the example above the parameter says that either A : (S1lw = S2ly ∈ {0, 1} ∧ S2lv =
0 ∧ S2lx = 0) or B : (S1lw = S2lv ∧ S2lx = 1). It is a property of our relation together with
the parameter definition that related computations cannot change which invariant A,B the stores
satisfy. In (*), the states we apply the computations gM (fM ) and gN (fN ) to fulfill A, and the
continuations we apply to can be shown to give similar termination when applied to states that
fulfill A. This proof benefits from the fact that the initial part of the continuations change the
states, so that B will be fulfilled. See example 7.2 for details.

1.3 Exporting hidden locations to visible

Sometimes two programs may require some locations to be local in the beginning of execution,
but may later on export these locations so they become visible to the outside. We have included
1 Our relations will be 4-tuples, but for simplicity we here look at pairs
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a more refined treatment of local vs. visible state in the new definitions. The following example
(cf. Example Section 7.3) is a variation of the previous example. The only difference is that in this
example the computations M and N finally export the locations lw, lv to visible. In the previous
example the computations M and N exported setter and getter functions to lw, lv.

M : let w ⇐ ref 0 in
let z ⇐ g(rec fM (a : unit) = (w := 1)) in

val w

N : let x ⇐ ref 0 in
let y ⇐ ref 0 in
let v ⇐ ref 0 in
let z0 ⇐ g(recfN (a : unit) = (if (!x = 0) then (v := 0; y := 1) else (v := 1)) in

let z1 ⇐ if (!y �= 0) then (v := 1) in
let z2 ⇐ x := 1 in
val v

Informally the reason for M and N to be equivalent is that when lw, lv are finally exported,
they will always hold the same value in states S1, S2, and S2lx �→ 1. The computations gM (fM )
and gN (fN ) may store fM and fN . Because it will hold in all future that S2lx �→ 1, so all future
applications of fM , fN will update S1lw and S2lv to hold the same value 1. It is necessary for the
equivalence-proof, that lw, lv are local initially. We want to be able to use the fact that lw, ly can
be simultaneously updated in the proof, that g(fM ) and g(fN ) relate.

In this report we refine the parameters from [13] to allow the possibility of export of hidden
locations in certain situations.

1.4 Divergence at different steps

We here consider a special case of the previous, where we know that the initial part of continuations
brings two programs back to be correlated. It might be the case that two programs both eventually
diverge, but not in the same ’step’. The initial part of the continuation may be responsible for
ensuring divergence of a program, when certain conditions are present in the state.

M : g(rec fM (a : unit) = diverge)

N : let x ⇐ ref 0 in //flag: inside program N
let y ⇐ ref 0 in //flag: argument function fN has not been applied inside program N

let z ⇐ g(rec fN (a : unit) =
(
if (!x = 0) then (y := 1) else(diverge)

)
in

if (!y �= 0) then (diverge) else (x := 1; y := 1)

The programs M and N are open computations with one free variable g of function type (unit →
Tunit) → Tτ . M applies g to a function fM . If fM is applied the computation will diverge. N first
allocates two new locations lx, ly and stores 0 in both (as in the previous example these locations
function as flags). Then g is applied to a function fN . fN reads the value in locations lx, if it is
0 then fN updates ly to hold 1 else fN diverges. If g(fN ) terminates, then N reads the value in
location ly. If the value is not 0 then N diverges, else N updates lx and ly both to hold 1.

We expect M and N to be contextually equivalent for the following reasons. If g(fM ) applies
fM then the application of fM will not terminate, and hence g(fM ) and M will also not terminate.
In the other side fN preserves the invariant, that lx holds 0. If g(fN ) in N applies fN then lx holds
0 and the application of fN will set ly to 1 and terminate. fN may be applied several times in
g(fN ) and g(fN ) may terminate. But application of fN will have caused ly to be set to 1 and then
afterwards N will diverge.

Suppose g(fM ) does not cause fM to be applied but stores fM and then terminates. We expect
g’s to be related and so expect that also fN is stored but not applied, and g(fN ) terminates. g
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can only access ly by application of fN so the value 0 stored in ly will be the same, and then N
will finish by updating ly to 1 and lx to 1. lx cannot be changed after this. If fM and fN are later
retrieved from the store, then they will both diverge.

The situation here is somewhat similar to the previous example, but here we may have diver-
gence in different steps, where before we had values that were differently related. To handle this we
have refined our definition of parameters so that it is possible to express that one side has diverged
and so the other side is required to eventually diverge. If we attempt a proof of equivalence for this
example, then we assume M and N are given related functions g1, g2, and the computations are
applied to related continuations k1, k2 and related stores S1, S2, and we get to

(**) [[M ]](g1)k1S1 = g1[[fM ]]k1S1

[[N ]](g2)k2S2 = g2[[fN ]][x �→ lx, y �→ ly](λSλd.([[if (!y �= 0) then (diverge) else (x := 1, y :=
1)]][x �→ lx, y �→ ly])k1S)S1[lx �→ 0, ly �→ 0]

With the refined parameters we can express formally that fM and fN are related for both of

A:((S2lx = 0 ∧ S2ly = 0) ≺ (left hand side has diverged ∧S2lx = 0 ∧ S2ly �= 0))

B:(S2lx �= 0).

The updated states fulfill A. The continuations can be shown to give similar termination be-
havior when applied to states that fulfill A. The proof benefits from the fact that the initial part
of the continuation ensures that either both sides have diverged or the states have been changed
so that B is fulfilled. See example 10.1 for details.

When we attempt a proof of contextual equivalence, then we always will start out with an
attempt to prove that two programs are related under a parameter, which only requires that
visible locations hold related values and does not have any hidden invariants. This is a reason why
local parameters which can express that one side has diverged can be used in proofs, we use them
in sub-proofs. When we can derive, that one side (potentially) diverges, then we use them to show
that the other side also (potentially) diverges.

1.5 Polymorphism

Aside from the refinement of parameters and order on parameters mentioned, we have also added
impredicative polymorphism to the language. This is done in a simple way, where we do not give
a relationally parametric interpretation. Two related values of polymorphic type are required to
behave equivalent whenever they are applied to identical types. Values of polymorphic types may
make full use of the store. A relational interpretation is discussed in the previous paper, which
extends the APLAS paper without the refined parameters but with relational parametricity. We
believe however, that it is possible to unite the refined parameters with a relational interpretation.

1.6 Outline of contents

In the following Section 2 we introduce the language and the operational semantics which will
be given by a termination judgement. In Section 3 we prove the existence of a recursive domain
in FM-Cpo4

⊥ in which we define the denotational semantics. This is then shown to be sound and
adequate. From Section 4 and in the following sections we present our main new contributions, the
new parameters and the relations which we use in proofs of contextual equivalences. The relations
are defined on top of the denotational semantics. To express explicit divergence adds some extra
complication to the format for parameters and also extra cases to consider in equivalence proofs. We
have chosen to define two logical relations, both of which can be used for equivalence proofs. The
first without format for explicit divergence, the second with an extension which handles divergence.
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Each relation requires a separate proof of existence. In Section 4 we introduce the first of the logical
relations we will use for proofs of contextual equivalence. In Section 5 we give the formal definition
of the parameters we use in our first relation. In Section 6 we define the action of the domain
constructing functor on relations and prove the existence of a minimal invariant 4-ary relation
∇. There is a pairwise domain theoretical approximation similarly as in the paper [13] so for an
element (d′1, d

′
2 ‖ d1, d2, (type), p) then d′1 � d1 and d′2 � d2 and we may think of d1, d2 as a kind

of parameters. As in [13] the definition of the relation as 4-ary makes it possible to carry out an
existence proof in the line of Pitts [40] and at the same time let the parameters give very specific
properties of states. Based on the 4-ary relation we extract a binary relation between denotations
of open terms, this is then shown to imply contextual equivalence at simple parameters with no
hidden invariants. In the following Section 7 we then present proofs of equivalence for a number of
examples. In Section 8 we present the extension to the definition of the parameters which handles
explicit divergence. Section 9 holds the definition of the new relation and prove its existence. As
before it gives the basis for a binary relation, which is proven to imply contextual equivalence
at simple parameters. Then the Example Section 10 gives a proof of equivalence for the example
program we have seen in the introduction. In Section 11 we conclude.

2 Language

2.1 Types, terms and stores

The language we consider is a call-by-value, monadically-typed λ-calculus with recursion, general
recursive types, impredicative polymorphism and general dynamically allocated references. Types
are either value types τ or computation types Tτ . Closed values of any closed value type can be
stored in the store. The language is as in [13] extended with polymorhism.

Types

We have a countable infinite set of type variables ranged over by α.

Value types τ, σ ::= α | unit | int | τ × τ | τ + τ | τ ref | τ → Tτ | μα.τ | ∀α.Tτ

Computation types Tτ

Value and Computation types γ ::= τ | Tτ

ftv(γ) denotes the free type variables in γ.

Type contexts and well-formed types

A type context Ξ is a finite (possibly empty) set of type variables Ξ = α1 . . . αm.

A value type τ or computation type Tτ is well-formed from a type context Ξ if Ξ � τ : type can
be generated by the following rules.
A value type τ or computation type Tτ is well-formed and closed if − � τ : type can be generated
by the following rules when Ξ is the empty type context.

Ξ � unit : type Ξ � int : type Ξ, α � α : type

Ξ � τ : type

Ξ � τ ref : type

Ξ � τ1 : type Ξ � τ2 : type

Ξ � τ1 + τ2 : type

Ξ � τ1 : type Ξ � τ2 : type

Ξ � τ1 × τ2 : type

Ξ � τ1 : type Ξ � τ2 : type

Ξ � τ1 → Tτ2 : type
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Ξ,α � τ : type

Ξ � μα.τ : type

Ξ, α � τ : type

Ξ � ∀α.Tτ : type

Terms

We have a countable infinite set of term variables ranged over by x.

Locations L is the countable infinite set of locations li.

Values V ::= x | n | l | () | (V, V ′) | in1V | in2V | rec f(x : τ) = M | fold V | Λα.M

Computations M ::= V V ′ | let x ⇐ M in M ′ | val V | π1V | π2V | ref V | !V | V := V ′ |
case V of in1x1 ⇒ M1; in2x2 ⇒ M2 | V = V ′ | V + V ′ | iszero V | unfold V | V τ

Phrases G ::= M | V

fv(G) denotes the free term variables in G.

Contexts A context Γ is a finite (empty) set of typed term variables Γ ::= x1 : τ1, . . . , xn : τn

A context Γ is well-formed from a type context Ξ iff ∀xi : τi ∈ Γ. Ξ � τi : type. Notation Ξ � Γ .

Continuation terms in x

val x ∈ Contx

fv(M) ⊆ {x} K ∈ Conty
let y ⇐ M in K ∈ Contx

Stores

A store type is a finite function from locations to closed value types and store is a finite function
from locations to closed values.

Store-type Δ ∈ (L ⇀fin {closed Value types})

Store Σ ∈ (L ⇀fin {closed Values})

2.2 Typing Rules

Typing rules for terms

A typing judgement Δ; Ξ; Γ � G : τ or Δ; Ξ; Γ � G : Tτ is well-formed if Ξ � Γ , fv(G) ⊆ dom(Γ )
and Ξ � τ : type. All typing judgements in typing rules must be well-formed.

In any store type Δ all types are closed. So the (loc)-rule requires that τ is closed. The (alloc)-
rule allows that τ is open and it is possible by the (id)-rule to type x : τ ref for open τ .

(id)
Δ; Ξ; Γ, x : τ, Γ ′ � x : τ

(unit)
Δ; Ξ; Γ � () : unit

(int)
Δ; Ξ; Γ � n : int

(loc)
Δ; Ξ; Γ � l : τ ref

(Δl = τ) (val) Δ; Ξ; Γ � V : τ

Δ; Ξ; Γ � val V : Tτ
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(deref) Δ; Ξ; Γ � V : τ ref

Δ; Ξ; Γ � !V : Tτ
(alloc) Δ; Ξ; Γ � V : τ

Δ; Ξ; Γ � refV : T (τ ref)

(assign) Δ; Ξ; Γ � V1 : τ ref Δ; Ξ; Γ � V2 : τ

Δ; Ξ; Γ � V1 := V2 : Tunit
(eq) Δ; Ξ; Γ � V1 : τ1 ref Δ; Ξ; Γ � V2 : τ2 ref

Δ; Ξ; Γ � V1 = V2 : T (unit + unit)

(+ intro) Δ; Ξ; Γ � V : τi

Δ; Ξ; Γ � iniV : τ1 + τ2

(i ∈ {1, 2})

(+ elim) Δ; Ξ; Γ � V : τ1 + τ2 Δ; Ξ; Γ, x1 : τ1 � M1 : Tτ ′ Δ; Ξ; Γ, x2 : τ2 � M2 : Tτ ′

Δ; Ξ; Γ � case V of in1x1 ⇐ M1; in2x2 ⇐ M2 : Tτ ′

(× intro) Δ; Ξ; Γ � V1 : τ1 Δ; Ξ; Γ � V2 : τ2

Δ; Ξ; Γ � (V1, V2) : τ1 × τ2

(× elim) Δ; Ξ; Γ � V : τ1 × τ2

Δ; Ξ; Γ � πiV : Tτi

(i ∈ {1, 2})

(rec) Δ; Ξ; Γ, x : τ, f : τ → Tτ ′ � M : Tτ ′

Δ; Ξ; Γ � rec f(x : τ) = M : τ → Tτ ′ (app) Δ; Ξ; Γ � V1 : τ → Tτ ′ Δ; Ξ; Γ � V2 : τ

Δ; Ξ; Γ � V1V2 : Tτ ′

(let) Δ; Ξ; Γ � M1 : Tτ1 Δ; Ξ; Γ, x : τ1 � M2 : Tτ2

Δ; Ξ; Γ � let x ⇐ M1 in M2 : Tτ2

(arith) Δ; Ξ; Γ � V1 : int Δ; Ξ; Γ � V2 : int

Δ; Ξ; Γ � V1 + V2 : Tint
(iszero) Δ; Ξ; Γ � V : int

Δ; Ξ; Γ � iszero V : T (unit + unit)

(fold) Δ; Ξ; Γ � V : τ [μα.τ/α]
Δ; Ξ; Γ � fold V : μα.τ

(unfold) Δ; Ξ; Γ � V : μα.τ

Δ; Ξ; Γ � unfold V : T (τ [μα.τ/α])

(Λ) Δ; Ξ,α; Γ � M : Tτ Ξ � Γ

Δ; Ξ; Γ � Λα.M : ∀α.Tτ
(Λapp) Δ; Ξ; Γ � V : ∀α.Tτ Ξ � τ ′ : type

Δ; Ξ; Γ � V τ ′ : T (τ [τ ′/α])

Typing rules for continuations

� τ : type

Δ � val x : (x : τ)�
Δ; ;x : τ � M : Tτ ′ Δ � K : (y : τ ′)�

Δ � let y ⇐ M in K : (x : τ)�

Typing for stores

Σ : Δ holds iff ∀l ∈ dom(Δ). Δ; ;� Σl : Δl

2.3 Judgement of termination

Termination judgements have the form: Σ, let x ⇐ M in K ↓
where M is closed and K ∈ Contx.

Σ, let x ⇐ val V in val x ↓
Σ, let y ⇐ M [V/x] in K ↓

Σ, let x ⇐ val V in (let y ⇐ M in K) ↓
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Σ, let y ⇐ M1 in (let x ⇐ M2 in K) ↓
Σ, let x ⇐ (let y ⇐ M1 in M2) in K ↓

Σ, let x ⇐ M [V/y, (rec f(y : τ) = M)/f ] in K ↓
Σ, let x ⇐ ((rec f(y : τ) = M)V ) in K) ↓

Σ, let x ⇐ val V1 in K ↓
Σ, let x ⇐ π1(V1, V2) in K ↓

Σ, let x ⇐ val V2 in K ↓
Σ, let x ⇐ π2(V1, V2) in K ↓

Σ, let x ⇐ M1[V/x1] in K ↓
Σ, let x ⇐ case in1V of in1x1 ⇒ M1; in2x2 ⇒ M2 in K ↓

Σ, let x ⇐ M2[V/x2] in K ↓
Σ, let x ⇐ case in2V of in1x1 ⇒ M1; in2x2 ⇒ M2 in K ↓

Σ, let x ⇐ val n in K ↓
Σ, let x ⇐ n1 + n2 in K ↓ (n = n1 + n2)

Σ, let x ⇐ val true in K ↓
Σ, let x ⇐ iszero 0 in K ↓

Σ, let x ⇐ val false in K ↓
Σ, let x ⇐ iszero n in K ↓ (n �= 0)

Σ, let x ⇐ val true in K ↓
Σ, let x ⇐ l = l in K ↓

Σ, let x ⇐ val false in K ↓
Σ, let x ⇐ l = l′ in K ↓ (l �= l′)

Σ[l �→ V ], let x ⇐ val () in K ↓
Σ, let x ⇐ l := V in K ↓

Σ(l) = V Σ, let x ⇐ val V in K ↓
Σ, let x ⇐ !l in K ↓

Σ[l �→ V ], let x ⇐ val l in K ↓
Σ, let x ⇐ ref V in K ↓ (l /∈ locs(Σ) ∪ locs(K) ∪ locs(V ))

Σ, let x ⇐ val V in K ↓
Σ, let x ⇐ unfold(fold V ) in K ↓

Σ, let x ⇐ M in K ↓
Σ, let x ⇐ (Λα.M)τ in K ↓

Permutations are bijective functions π ∈ (L → L).

Action of permutations on syntactic terms, continuations and stores

– The action of a permutation π on a term or continuation E with occurring locations l1, .., ln is
given as: π • E = E[(π(l1))/l1, .., (π(ln))/ln] with simultaneous substitution.

– The action of a permutation on a store Σ is given by (π • Σ)(l) = π • (Σ(π−1 • l)).
– The action of a permutation on a store-type Δ is given by

dom(π • Δ) = π • (dom(Δ)) and (π • Δ)(l) = Δ(π−1 • l).

It holds that: If V is a value term then π • V is a value term, if M is a computation term then
π•M is a computation term, if K is a continuation term then π•K is a continuation term. For any
term or continuation E, for all permutations π1 and π2 it holds that π2 • (π1 • E) = (π2 ◦ π1) • E.
For all stores Σ, for all permutations π1 and π2 it holds that π2 • (π1 •Σ) = (π2 ◦ π1) •Σ. For any
store-type Δ, for all permutations π1 and π2 it holds that π2 • (π1 • Δ) = (π2 ◦ π1) • Δ.
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Welltypedness is preserved under permutations:
– If Σ : Δ then (π • Σ) : (π • Δ)
– If Δ; Ξ; Γ � M : Tτ then (π • Δ); Ξ; Γ � (π • M) : Tτ
– If Δ; Ξ; Γ � V : τ then (π • Δ); Ξ; Γ � (π • V ) : τ
– If Δ � K : (x : τ)� then (π • Δ) � (π • K) : (x : τ)�

Lemma 1. For any permutation π on the set of locations, it holds that
Σ, let x ⇐ M in K ↓⇐⇒ (π • Σ), (π • (let x ⇐ M in K)) ↓

Proof by induction over judgement of termination.

Corollary 1. If l1, l2 /∈ locs(Σ) ∪ locs(K) ∪ locs(V ) then
Σ[l1 �→ V ], let x ⇐ val l1 in K ↓⇐⇒ Σ[l2 �→ V ], let x ⇐ val l2 in K ↓

Proof, apply the permutation (l1l2)

Contextual equivalence

Typed Contexts C[.] : (Δ; Ξ; Γ � γ) ⇒ (Δ; ;� Tτ)
means that whenever Δ; Ξ; Γ � G : γ then Δ; ;� C[G] : Tτ .

Definition 1. Contextual equivalence
If Δ; Ξ; Γ � G1 : γ and Δ; Ξ; Γ � G2 : γ then

Δ; Ξ; Γ � G1 =ctx G2 means

∀τ.∀C[.] : (Δ; Ξ; Γ � γ) ⇒ (Δ; ;� Tτ).∀Σ : Δ.
Σ, let x ⇐ C[G1] in val x ↓ ⇐⇒ Σ, let x ⇐ C[G2] in val x ↓

3 Denotational Semantics

3.1 FM-Domains

L is the countable infinite set of locations (atoms). Permutations are bijective functions π ∈ (L →
L). We extend the action of permutations to L⊥ such that ∀π. π(⊥) = ⊥. L⊥ with flat order ∈
FM-Cpo⊥. FM-Cpo⊥ is a category with pointed FM-cpos as objects and strict equivariant (empty
supported) FM-continous functions as morphisms. The FM-Cpo (D � D′) consists of the strict
finitely supported FM-continuous functions from D to D′ with pointwise ordering.

Definition 2. We define a functor F : (FM-Cpoop
⊥ )4 × (FM-Cpo⊥)4 −→ (FM-Cpo⊥)4

For D− = (V −,K−,M−, S−), D+ = (V +,K+,M+, S+) ∈ (FM-Cpo⊥)4 define F (D−, D+)

where

F (D−, D+)V = 11⊥ ⊕ Z⊥ ⊕ L⊥ ⊕ (V + ⊕ V +) ⊕ (V + ⊗ V +) ⊕ (V − � M+)⊥ ⊕ V + ⊕ M+
⊥

F (D−, D+)K = (S− � (V − � O))

F (D−, D+)M = (K− � (S− � O))

F (D−, D+)S = (L⊥ � V +)

11⊥ = {∗}⊥ with trivial action of permutations. 11⊥ ∈ FM-Cpo⊥
Z⊥ = The flat domain of natural numbers with trivial action of permutations. Z⊥ ∈ FM-Cpo⊥
O = {�,⊥} where ⊥ � �, with trivial action of permutations. O ∈ FM-Cpo⊥
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Proposition 1. There exists an invariant domain which is unique up to isomorphism D =
(V, K, M, S) ∈ FM-Cpo4

⊥ and isomorphism i : F (D, D) ∼= D such that (i, D) has the mini-
mal invariant property: idD is the least fixed point of δ : (D � D) → (D � D) defined by

δ(f)
def
= i ◦ F (f, f) ◦ i−1.

We refer to Mark Shinwell’s Ph.D.Thesis [52] chapter 4 as background for the proof of existens
of the recursive domain D.

Definition 3. LFC-functor.
A locally FM-continuous functor G : FM-Cpo⊥ −→ FM-Cpo⊥ is a monotone functor which is
FM-continuous (preserves least upper bounds of overall finitely supported chains) such that for all
permutations π and functions f : D → D′ it holds that π(F (f)) = F (π(f)).

A mixed varians LCF-functor G : (FM-CPOop
⊥ )4×(FM-CPO⊥)4 −→ (FM-CPO⊥)4 is contravariant

in its left argument and covariant in its right argument.

The following operations determine LCF-functors ([52]p.49):

Lifting (+)⊥
Smash product (+) ⊗ (+)
Coalesced sum (+) ⊕ (+)
Strict function space (−) � (+)

Corollary 2. The functor F as defined above is a mixed varians LCF-functor.

Proposition 2. (adapted from M.Shinwell [52] p.51)
Let G : (FM-CPOop

⊥ )4 × (FM-CPO4
⊥) −→ FM-CPO⊥ be a mixed varians LFC-functor. Then there

exists a solution (j,D) satisfying the minimal invariant property with j : G(D,D) ∼= D which is
unique up to isomorphism.

Proposition 1 stating the existence of the recursive domain D = (V, K, M, S) with i : F (D, D) ∼= D

follows from proposition 2. It holds that

V ∼= F (D, D)V = 11⊥ ⊕ Z⊥ ⊕ L⊥ ⊕ (V ⊕ V) ⊕ (V ⊗ V) ⊕ (V � M)⊥ ⊕ V ⊕ M⊥
K ∼= F (D, D)K = (S � (V � O))
M ∼= F (D, D)M = (K � (S � O))
S ∼= F (D, D)S = (L⊥ � V)

3.2 Denotations

We have the following injections into F (D, D)V : in11, inZ, inL, in⊕, in⊗, in�, inμ, in∀.

Denotations of types

[[unit]] = V [[int]] = V [[σref ]] = V [[τ + τ ′]] = V

[[τ × τ ′]] = V [[τ � Tτ ′]] = V [[μα.τ ]] = V [[∀α.Tτ ]] = V

[[(x : τ)�]] = K ∼= (S � (V � O))

[[Tτ ]] = M ∼= (K � (S � O))

[[Δ]] = S ∼= (L⊥ � V)
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Denotations of contexts

Γ = x1 : τ1, . . . , xn : τn, n ≥ 0
[[Γ ]] = V ⊗ . . . ⊗ V = V

n where V
0 = 11⊥

Denotations of well typed continuations, values, computations and stores

Denotations are given only to well typed continuations, values, computations and stores.
Notice the denotations are defined without reference to the actual types. The denotations are
defined by cases over syntactic constructors for terms.
Recall: i = (iV , iK , iM , iS) : F (D, D) ∼= D

Environments ρ are elements of [[Γ ]] = V
n.

The empty environment is written {}, this stand for the non-bottom element in V
0.

Values,Computations: Denotations for values and computations [[Δ; Ξ; Γ � G : γ ]] ∈ ([[Γ ]] � [[γ]])

Continuations: Denotations for continuations : [[Δ � K : (x : τ)� ]] ∈ K

[[Δ � K : (x : τ)� ]] = iK(λS ∈ S.λd ∈ V.
i−1
M ([[Δ; ; x : τ � K : Tτ ′]]{x �→ d})iK((λS′ ∈ S.(λd′ ∈ V. �)⊥)⊥)S)

Stores: Denotations of typing judgements for stores:
[[Σ : Δ]] = {S ∈ S | S �= ⊥ ∧ ∀l ∈ dom(Δ).(i−1S)(l) = [[Δ; ;� Σ(l) : Δ(l)]]{} }

Denotations of typing judgements in environments

By strictness it holds that (ρ = ⊥) ⇒ [[Δ; Ξ; Γ � G : γ ]]ρ = ⊥,
when ρ �= ⊥ the denotations are given by the following rules:

Denotations are only given to well typed terms.

Values

– [[Δ; Ξ; Γ, x : τ, Γ ′ � x : τ ]]ρ = ρ(x)

– [[Δ; Ξ; Γ � () : unit ]]ρ = iV ◦ in11∗

– [[Δ; Ξ; Γ � n : int ]]ρ = iV ◦ inZn

– [[Δ; Ξ; Γ � l : τ ref ]]ρ = iV ◦ inLl

– [[Δ; Ξ; Γ � in1V1 : τ1 + τ2 ]]ρ = iV ◦ in⊕(in1[[Δ; Ξ; Γ � V1 : τ1 ]]ρ)
[[Δ; Ξ; Γ � in2V2 : τ1 + τ2 ]]ρ = iV ◦ in⊕(in2[[Δ; Ξ; Γ � V2 : τ2 ]]ρ)

– [[Δ; Ξ; Γ � (V1, V2) : τ1 × τ2 ]]ρ = iV ◦ in⊗([[Δ; Ξ; Γ � V1 : τ1 ]]ρ, [[Δ; Ξ; Γ � V2 : τ2 ]]ρ)

– [[Δ; Ξ; Γ � rec f(x : τ) = M : τ → Tτ ′ ]]ρ = i ◦ in��fix(λf ′ ∈ (V � M).
(λx′ ∈ V.[[Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M : Tτ ′]](ρ ⊗ f �→ i ◦ in��f ′ ⊗ x �→ x′))) =

i ◦ in��⊔n∈ω gn 
where
gn ∈ (V � M), g0 = ⊥V�M and
gn+1 = λx0 ∈ V.[[Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M : Tτ ′]](ρ ⊗ f �→ i ◦ in��gn ⊗ x �→ x0).
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– [[Δ; Ξ; Γ � fold V : μα.τ ]]ρ = iV ◦ inμ([[Δ; Ξ; Γ � V : τ [μα.τ/α] ]]ρ)

– [[Δ; Ξ; Γ � Λα.M : ∀α.Tτ ]]ρ = iV ◦ in∀�[[Δ; Ξ,α; Γ � M : Tτ ]]ρ 

Computations

– [[Δ; Ξ; Γ � val V : Tτ ]]ρ = iM (λk ∈ K.λS ∈ S. (i−1
K k)S([[Δ; Ξ; Γ � V : τ ]]ρ))

– [[Δ; Ξ; Γ � V1V2 : Tτ ′ ]]ρ =
case [[Δ; Ξ; Γ � V1 : τ → Tτ ′ ]]ρ of iV ◦ in��d1 then (d1[[Δ; Ξ; Γ � V2 : τ ]]ρ); else ⊥

– [[Δ; Ξ; Γ � let x ⇐ M1 in M2 : Tτ2 ]]ρ = iM (λk.λS.
i−1
M ([[Δ; Ξ; Γ � M1 : Tτ1 ]]ρ)iK(λS′.λd′.i−1

M ([[Δ; Ξ; Γ, x : τ1 � M2 : Tτ2 ]]ρ[x �→ d′])kS′)S)

– [[Δ; Ξ; Γ � π1V : Tτ1 ]]ρ = iM (λk.λS.
case [[Δ; Ξ; Γ � V : τ1 × τ2 ]]ρ of iV ◦ in⊗(d1, d2) then (i−1

K k)S(d1); else ⊥)
[[Δ; Ξ; Γ � π2V ]]ρ = iM (λk.λS.
case [[Δ; Ξ; Γ � V : τ1 × τ2 ]]ρ of iV ◦ in⊗(d1, d2) then (i−1

K k)S(d2); else ⊥)

– [[Δ; Ξ; Γ � !V : Tτ ]]ρ = iM (λk.λS.
case [[Δ; Ξ; Γ � V : τ ref ]]ρ of iV ◦ inLl then (i−1

K k)S(((i−1
S S)l)); else ⊥)

– [[Δ; Ξ; Γ � refV : Tτ ref ]]ρ = iM (λk.λS.
(i−1

K k)(iS((i−1
S S)[l �→ [[Δ; Ξ; Γ � V : τ ]]ρ]))(iV ◦ inLl))

for some/any l /∈ supp(λl′.(i−1
K k)(iS((i−1

S S)[l′ �→ [[Δ; Ξ; Γ � V : τ ]]ρ]))(iV ◦ inLl′))

– [[Δ; Ξ; Γ � V1 := V2 ]]ρ = iM (λk.λS.
case [[Δ; Ξ; Γ � V1 : τ ref ]]ρ of iV ◦inLl then (i−1

K k)(iS((i−1
S S)[l �→ [[Δ; Ξ; Γ � V2 : τ ]]ρ]))(iV ◦

in11∗); else⊥)

– [[Δ; Ξ; Γ � case V of in1x1 ⇒ M1; in2x2 ⇒ M2 : Tτ ′ ]]ρ = iM (λk.λS.
case [[Δ; Ξ; Γ � V : τ1 + τ2 ]]ρ
of iV ◦ in⊕(in1d1) then i−1

M ([[Δ; Ξ; Γ, x1 : τ1 � M1 : Tτ ′ ]]ρ[x1 �→ d1])kS;
of iV ◦ in⊕(in2d2) then i−1

M ([[Δ; Ξ; Γ, x2 : τ2 � M2 : Tτ ′ ]]ρ[x2 �→ d2])kS; else ⊥)

– [[Δ; Ξ; Γ � V1 = V2 : Tunit ]]ρ = iM (λk.λS.
case [[Δ; Ξ; Γ � V1 : τ ref ]]ρ of iV ◦ inLl1 and [[Δ; Ξ; Γ � V2 : τ ref ]]ρ of iV ◦ inLl2 then
(if l1 = l2 then (i−1

K k)S(iV ◦ in⊕ ◦ in1(iV (in1∗))) else (i−1
K k)S(iV ◦ in⊕ ◦ in2(iV (in1∗))));

else ⊥)

– [[Δ; Ξ; Γ � V1 + V2 : Tint ]]ρ = iM (λk.λS.
case [[Δ; Ξ; Γ � V1 : int ]]ρ of iV ◦ inZn1 and [[Δ; Ξ; Γ � V2 : int ]]ρ of iV ◦ inZn2

then (i−1
K k)S(iV ◦ inZn) where n = n1 + n2;

else ⊥)

– [[Δ; Ξ; Γ � iszeroV : Tunit ]]ρ = iM (λk.λS.
case [[Δ; Ξ; Γ � V : int ]]ρ of iV ◦ inZn then
(if n = 0 then (i−1

K k)S(iV ◦ in⊕ ◦ in1(iV (in1∗)) else (i−1
K k)S(iV ◦ in⊕ ◦ in2(iV (in1∗))));

else⊥)
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– [[Δ; Ξ; Γ � unfold V : T (τ [μα.τ/α]) ]]ρ = iM (λk.λS.
case [[Δ; Ξ; Γ � V : μα.τ ]]ρ of iV ◦ inμ(d) then (i−1

K k)Sd; else⊥)

– [[Δ; Ξ; Γ � V τ ′ : T (τ [τ ′/α])]]ρ =
case [[Δ; Ξ; Γ � V : ∀α.τ ]]ρ of iV ◦ in∀�dm then dm; else⊥)

Soundness and Adequacy

First we note some properties af the denotational semantics.

Lemma 2. If Δ; ;� V : τ then [[Δ; ;� V : τ ]]{} �= ⊥

Proof by induction over the structure of V .
(the domains (V � M) and M are lifted in the sum V ).

Lemma 3.

1. The denotational semantics is well defined (the denotations exist and are unique, especially
interesting for the fresh l case).

Proof by induction over term structure. The proof use FM-theory to show that the denotation
of ref V is independent of which fresh location is chosen.

2. Δ � K : (x : τ ref)� and Δ; ;� V : τ and S ∈ [[Σ : Δ]] and l /∈ (locs(Σ) ∪ locs(K) ∪ locs(V ))
implies l /∈ supp

(
λl′.[[Δ � K : (x : τ ref)�]](S[l′ �→ [[Δ; ;� V : τ ]]{}]) l′

)

3. Substitution. If Δ; Ξ; Γ � V : τ and Δ; Ξ; Γ, x : τ � G : γ and [[Δ; Ξ; Γ � V : τ ]]ρ �= ⊥ then
[[Δ; Ξ; Γ � G[V/x] : γ ]]ρ = [[Δ; Ξ; Γ, x : τ � G : γ ]]ρ[x �→ [[Δ; Ξ; Γ � V : τ ]]ρ]

Proof by induction over the structure of G. We assume Δ; Ξ; Γ � V : τ and Δ; Ξ; Γ, x : τ �
G : γ and ρ �= ⊥.

4. Compositionality. If C[·] : (Δ; Ξ; Γ � γ) ⇒ (Δ; ;� Tτ) and Δ; Ξ; Γ � G1 : γ, Δ; Ξ; Γ � G2 : γ
and [[Δ; Ξ; Γ � G1 : γ ]] = [[Δ; Ξ; Γ � G2 : γ ]] then [[Δ; ;� C[G1] : Tτ ]] = [[Δ;� C[G2] : τ ]]

Proof by induction over the structure of C[ ].

5. Type variables. If Δ; Ξ,α; Γ � G : γ and Ξ � Γ then ∀− � τ ′ : type. ([[Δ; Ξ,α; Γ � G : γ]] =
[[Δ; Ξ; Γ � G : γ[τ ′/α]]]).

6. Terms and continuations. If Δ � K : (y : τ ′)� and Δ; ; x : τ � M : Tτ ′, then
[[Δ � let y ⇐ M in K : (x : τ)�]] = i−1

K (λSλd.[[Δ; ; x : τ � M : Tτ ′]]{x �→ d})[[Δ � K : (y :
τ ′)�]]S

Proof: [[Δ � let y ⇐ M in K : (x : τ)�]] =
λS.λd.[[Δ; ; x : τ � let y ⇐ M in K : Tτ ′′]]{x �→ d}((λS′.(λd′.�)⊥)⊥)S =
λS.λd.(λk2.λS2.[[Δ; ; x : τ � M : Tτ ′ ]]{x �→ d}(λS3.λd3.[[Δ; ; y : τ ′ � K : Tτ ′′]]{y �→
d3}k2S3)S2)((λS′.(λd′.�)⊥)⊥)S =
λS.λd.([[Δ; ; x : τ � M : Tτ ′ ]]{x �→ d}(λS3.λd3.[[Δ; ; y : τ ′ � K : Tτ ′′ ]]{y �→
d3}((λS′.(λd′.�)⊥)⊥)S3)S) =
λS.λd.[[Δ; ; x : τ � M : Tτ ′ ]]{x �→ d}[[Δ � K : (y : τ ′)�]]S
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Soundness

Lemma 4. Soundness

If Δ; ;� M : Tτ , Δ � K : (x : τ)�, Σ : Δ and S ∈ [[Σ : Δ]] then

Σ, let x ⇐ M in K ↓ implies i−1
M ([[Δ; ;� M : Tτ ]]{})[[Δ � K : (x : τ)�]]S = �

Proof by induction over termination judgements. The proof uses the previous lemmas.
The proof is in the appendix.

Adequacy
We want to show:

If Δ; ;� M : Tτ , Δ � K : (x : τ)�, Σ : Δ and S ∈ [[Σ : Δ]] then

i−1
M ([[Δ; ;� M ]]{})[[Δ � K : (x : τ)�]]S = � implies Σ, let x ⇐ M in K ↓

To prove adequacy, we will use a logical relation R which relates elements in the invariant domain
D and typing judgements of values, continuations, computations and states. For the definition
of the relation, we first define a relational structure R on FM-Cpo4

⊥ and then lift our domain-
constructing functor F : (FM-Cpoop

⊥ )4 × (FM-Cpo⊥)4 → (FM-Cpo⊥)4 to an admissible action on
relations from R. We prove the existence of the relation in the line of A.Pitts[40] and M.Shinwell[52].
The relation R ∈ R(D) will then be the invariant R-relation for F such that i : F (R, R) ⊂ R and
i−1 : R ⊂ F (R, R).

Define:
tv = {Δ; ;� v : τ | Δ; ;� v : τ is a derivable typing judgement for a value term v }
tk = {Δ � k : (x : τ)� | Δ � k : (x : τ)� is a derivable typing judgement for a continuation term k }
tc = {Δ; ;� M : Tτ | Δ; ;� M : Tτ is a derivable typing judgement for a computation term M }
ts = {Σ : Δ | Σ : Δ is a derivable typing judgement for a store Σ }

Definition 4. The relational structure R on FM-Cpo4
⊥

A relational structure R on FM-Cpo4
⊥: For each domain D = (D1, D2, D3, D4) ∈ FM-Cpo4

⊥ let
R(D1) = all subsets of D1 × tv which contain {⊥} × tv
R(D2) = all subsets of D2 × tk which contain {⊥} × tk
R(D3) = all subsets of D3 × tc which contain {⊥} × tc
R(D4) = all subsets of D4 × ts which contain {⊥} × ts
Define R(D) to be R(D1) × R(D2) × R(D3) × R(D4).

Definition 5.
For D ∈ FM-Cpo4

⊥, f = (f1, f2, f3, f4) : D � D′, R ∈ R(D),
r = ((d1,Δ1; ;� V : τ1), (d2,Δ2 � K : (x : τ2)�), (d3,Δ3; ;� M : Tτ3), (d4, Σ : Δ4)) ∈ R let
fr = ((f1d1,Δ1; ;� V : τ1), (f2d2,Δ2 � K : (x : τ2)�), (f3d3,Δ3; ;� M : Tτ3), (f4d4, Σ : Δ4))

For D,D′ ∈ FM-Cpo4
⊥, f : D � D′, R ∈ R(D), R′ ∈ R(D′)

Define : f : R ⊂ R′ iff r ∈ R =⇒ fr ∈ R′

Definition 6. A relation R ∈ R(D) is admissible iff for all D′, S ∈ R(D′)the set { f | f : S ⊂ R }
contains ⊥ and is closed under least upper bounds of countable FM-chains.

Lemma 5. R has inverse images.
For all f : D � E and S ∈ R(E) exists a relation f∗S ∈ R(D) such that

∀g : D′ � D,R ∈ R(D′). g : R ⊂ f∗S ⇔ (f ◦ g) : R ⊂ S
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For f : D � E, S ∈ R(E) define
f∗S = { r = ((d1,Δ; ;� V : τ), (d2,Δ � K : (x : τ)�), (d3,Δ; ;� M : Tτ), (d4, Σ : Δ)) |

(d1, d2, d3, d4) ∈ D and fr ∈ S }

f∗S ∈ R(D) and fulfills the inverse image requirement. Since S ∈ R it contains (⊥ × tv) × (⊥ ×
tk) × (⊥ × tc) × (⊥ × ts) and by strictness of f the same is true of f∗S.

Let g : D′ � D, R ∈ R(D′). Assume that g : R ⊂ f∗S, then by definition r ∈ R ⇒ gr ∈ f∗S,
and again by definition gr ∈ f∗S ⇒ fgr ∈ S, hence r ∈ R ⇒ (f ◦ g)r ∈ S that is (f ◦ g) : R ⊂ S.
The other direction, assume (f ◦g) : R ⊂ S, then by definition r ∈ R ⇒ fgr ∈ S. Since g : D′ � D
we know that the domain-element part of gr ∈ D, and then by definition fgr ∈ S ⇒ gr ∈ f∗S,
hence g : R ⊂ f∗S.

Lemma 6. R has intersections.
Let S ⊆ R(D), then exists a relation ∩S ∈ R(D) satisfying r ∈ ∩S ⇔ ∀S ∈ S.r ∈ S.
If S is a set of admissible relations on D then ∩S is an admissible relation on D.

∩S is the set-theoretical intersection.

Definition 7. Relational lifting of F :
Let D− = (D−

1 , D−
2 , D−

3 , D−
4 ) ∈ FM-Cpo4

⊥ and let R− = (R−
1 , R−

2 , R−
3 , R−

4 ) ∈ R(D−).
Let D+ = (D+

1 , D+
2 , D+

3 , D+
4 ) ∈ FM-Cpo4

⊥ and let R+ = (R+
1 , R+

2 , R+
3 , R+

4 ) ∈ R(D+).

Define F (R−, R+) = F ((R−
1 , R−

2 , R−
3 , R−

4 ), (R+
1 , R+

2 , R+
3 , R+

4 )) = (RV , RK , RM , RS) where
RV = { (⊥, Δ; ;� V : τ) | (Δ; ;� V : τ) ∈ tv }

∪ { (in11∗, Δ; ;� () : unit) }
∪ { (inZn, Δ; ;� n : int) }
∪ { (inLl, Δ; ;� l : Δ(l)-ref) | l ∈ dom(Δ) }
∪ { (in⊕d, Δ; ;� V : τ1 + τ2) | d = inid

′ ∧ V = iniV
′ ∧ ∃Δ0 ⊆ Δ.(d′,Δ0; ;� V ′ : τi) ∈ R+

1 , i ∈ 1, 2 }
∪ { (in⊗d, Δ; ;� V : τ1 × τ2) | d = (d1, d2) ∧ V = (V1, V2)∧

∃Δ0 ⊆ Δ.(d1,Δ0; ;� V1 : τ1) ∈ R+
1 ∧ (d2,Δ0; ;� V2 : τ2) ∈ R+

1 }
∪ { (in�d, Δ; ;� V : τ → Tτ ′) | ∀Δ′ ⊇ Δ.∀(d′, Δ′; ;� V ′ : τ) ∈ R−

1 .(dd′, Δ′; ;� V V ′ : Tτ ′) ∈ R+
3 }

∪ { (inμd, Δ; ;� foldV : μα.τ) | ∃Δ0 ⊆ Δ.(d, Δ0; ;� V : τ [μα.τ/α]) ∈ R+
1 }

∪ { (in∀d, Δ; ;� Λα.M : ∀α.Tτ) | ∃Δ0 ⊆ Δ.∀τ ′ with � τ ′ : type. (d, Δ0; ;� M : Tτ [τ ′/α]) ∈ R+
3 }

RK = { (⊥, Δ � K : (x : τ)� }
∪ { (k, Δ � K : (x : τ)�) | ∀Δ′ ⊇ Δ.∀(s,Σ : Δ′) ∈ R−

4 .∀(v,Δ′; ;� V : τ) ∈ R−
1 .

(ksv = �) ⇒ (Σ, let x ⇐ val V in K ↓) }

RM = { (⊥, Δ; ;� M : Tτ) }
∪ { (m, Δ; ;� M : Tτ) | ∀Δ′ ⊇ Δ.∀(k, Δ′ � K : (x : τ)� ∈ R−

2 .∀(s,Σ : Δ′) ∈ R−
4 .

(mks = �) ⇒ (Σ, let x ⇐ M in K ↓) }

RS = { (⊥, Σ : Δ) }
∪ { (S, Σ : Δ) | ∀l ∈ dom(Δ).(S(l) , Δ; ;� Σ(l) : Δ(l)) ∈ R+

1 }
When R−, R+ ∈ R then F (R−, R+) ∈ R.
It is immediate from the definition that each of the four projections of F (R−, R+) include

{(⊥, typing conclusion)}).

Lemma 7. If R+ is admissible, then F (R−, R+) is admissible.

Proof Assume R+ is admissible. We want to show F (R−, R+) is admissible for all R− ∈ R(D−). It
suffices to show for each of the four projections, that it is closed under least upper bounds of finitely
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supported chains and contains {(⊥, typingjudgement)}. We have by definition F (R−, R+)1 ⊇
{ (⊥, Δ;� V : τ) }, F (R−, R+)2 ⊇ { (⊥, Δ;� K(x : τ)� }, F (R−, R+)3 ⊇ { (⊥, Δ;� M : Tτ) }
and F (R−, R+)4 ⊇ { (⊥, Σ : Δ) }.

RS : Assume a chain (Si, Σ : Δ)i∈ω in RS .
If Si is constantly ⊥ we are done. Else it holds from some point onwards that ∀l ∈
dom(Δ).(Si(l) , Δ;� Σ(l) : Δ(l)) ∈ R+

1 . (Si(l) , Δ;� Σ(l) : Δ(l))i∈ω is a chain in R+
1 .

Since R+ is admissible it holds ∀l ∈ dom(Δ) that (
⊔

i(S
i(l)) , Δ;� Σ(l) : Δ(l)) =

((
⊔

i Si)(l) , Δ;� Σ(l) : Δ(l)) ∈ R+
1 . Hence (

⊔
i Si, Σ : Δ)i∈ω in RS .

RM : Assume a chain (mi, Δ; ;� M : Tτ)i∈ω in RM .
If mi is constantly ⊥ we are done. Else it holds from some point onwards that ∀Δ′ ⊇ Δ.
∀(k, Δ′ � K : (x : τ)� ∈ R−

2 .∀(s,Σ : Δ′) ∈ R−
4 . (miks = �) ⇒ (Σ, let x ⇐ M in K ↓).

We want to show ((
⊔

i mi)ks = �) ⇒ (Σ, let x ⇐ M in K ↓).
(miks)i∈ω is a chain in O and (

⊔
i mi)ks =

⊔
i(m

iks). Assume (
⊔

i mi)ks =
⊔

i(m
iks) = �.

This implies that there exist j ∈ ω such that ∀i ≥ j.miks = �. This again implies (Σ, let x ⇐
M in K ↓).

RK : The proof is similar to the proof for RM so we omit it.

RV : Assume a chain (vi, Δ; ;� V : τ)i∈ω in RV .
If vi is constantly ⊥ we are done. Else ∃j ∈ ω.∀i ≥ j. vi �= ⊥ and the proof is by case analysis
over outermost type constructors.

(unit)(int)(loc): Chains of these types must be constant from some point onwards.

(∀): Assume a chain (in∀di, Δ; ;� Λα.M : ∀α.Tτ)i∈ω ∈ RV . Then ∀i.∃Δ0 ⊆ Δ.∀τ ′ :
type. (di, Δ0; ;� M : T (τ [τ ′/τ ])) ∈ R+

3 . There are only finitely many Δ0 ⊆ Δ and hence one
such Δ′

0 must occur infinitely often. This gives a subsequence (in∀dij , Δ; ;� Λα.M : ∀α.Tτ)ij such
that

⊔
(in∀di) =

⊔
(in∀dij) = in∀(

⊔
dij). Now since R+

3 is admissible and ∀ij. ∀τ ′ : type. (dij , Δ′
0;�

M : T (τ [τ ′/τ ])) ∈ R+
3 , then also ∀τ ′ : type. (

⊔
dij , Δ′

0; ;� M : T (τ [τ ′/τ ])) ∈ R+
3 . Then

(
⊔

(in∀di), Δ; ;� Λα.M : ∀α.Tτ) ∈ RV .

(+)(×)(μ): That least upper bounds are included follows from the admissibility of R+.

(→): Assume a chain (in�di, Δ; ;� V : τ → Tτ ′)i∈ω. Let Δ′ ⊇ Δ, (d′, Δ′; ;� V ′ : τ) ∈ R−.
We want to show that ((

⊔
di)d′, Δ′;� V V ′ : Tτ ′) ∈ R+

3 . (
⊔

di)d′ =
⊔

(did′). (did′, Δ′; ;� V V ′ :
Tτ ′)i∈ω is a chain in R+

3 , since R+ is admissible its least upper bound ((
⊔

di)d′, Δ′; ;� V V ′ :
Tτ ′) ∈ R+

3 .
�

Let f− : E− � D−, f+ : D+ � E+, then F (f−, f+) : F (D−, D+) � F (E−, E+)

Lemma 8. Let R− ∈ R(D−), S− ∈ R(E−), R+ ∈ R(D+), S+ ∈ R(E+)
assume f− : S− ⊂ R− and f+ : R+ ⊂ S+

then F (f−, f+) = h = (h1, h2, h3, h4) : F (R−, R+) ⊂ F (S−, S+)

Proof
Assume (S, Σ : Δ) ∈ F (R−, R+)4. We want to show (h4S, Σ : Δ) ∈ F (S−, S+)4.

If S = ⊥ then by strictness (h4S, Σ : Δ) = (⊥, Σ : Δ) ∈ F (S−, S+)4. Else (h4S, Σ : Δ) =
(λl.f+

1 (Sl), Σ : Δ) and we need to show that ∀l ∈ dom(Δ).(f+
1 (Sl), Δ; ;� Σ(l) : Δ(l)) ∈ S+. This

follows from the assumptions f+ : R+ ⊂ S+ and ∀ ∈ dom(Δ).Sl, Δ; ;� Σ(l) : Δ(l)) ∈ R+.
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Assume (m, Δ;� M : Tτ) ∈ F (R−, R+)3. We want to show (h3m, Δ;� M : Tτ) ∈ F (S−, S+)3.
If m = ⊥ then by strictness (h3m, Δ;� M : Tτ) = (⊥, Δ;� M : Tτ) ∈ F (S−, S+)4. Else
(h3m, Δ;� M : Tτ) = (λk.λs.m(f−

2 k)(f−
4 s), Δ;� M : Tτ) and we need to show that ∀Δ′ ⊇

Δ.∀(k, Δ′ � K : (x : τ)�) ∈ S−
2 .∀(s,Σ : Δ′) ∈ S−

4 . (m(f−
2 k)(f−

4 s) = �) ⇒ (Σ, let x ⇐ M in K ↓).
Since f− : S− ⊂ R− then (f−

2 k, Δ′ � K : (x : τ)�) ∈ R−
2 and (f−

4 s, Σ : Δ′) ∈ R−
4 . Then since

(m, Δ;� M : Tτ) ∈ F (R−, R+)3 it follows that (m(f−
2 k)(f−

4 s) = �) =⇒ (Σ, let x ⇐ M in K ↓).

By similar arguments (k, Δ � K : (x : τ)�) ∈ F (R−, R+)2 implies (h2k, Δ � K : (x : τ)�) ∈
F (S−, S+)2. We omit the proof.

Assume (v, Δ; ;� V : τ) ∈ F (R−, R+)1. We want to show (h1v, Δ; ;� V : τ) ∈ F (S−, S+)1.
If v = ⊥ then by strictness (h1v, Δ; ;� V : τ) = (⊥, Δ; ;� V : τ) ∈ F (S−, S+)1.

Else v �= ⊥ and the proof is by cases of outermost type constructors.

– Assume (v, Δ; ;� () : unit) ∈ F (R−, R+)1. Then v = in11∗ = h1v and (in11∗, Δ; ;� () : unit) ∈
F (S−, S+)1.

– Assume (v, Δ; ;� n : int) ∈ F (R−, R+)1. Then v = inZn = h1v and (inZn, Δ; ;� n : int) ∈
F (S−, S+)1.

– Assume (v, Δ; ;� l : Δ(l) ref) ∈ F (R−, R+)1. Then v = inLl = h1v and (inLl, Δ; ;� l :
Δ(l) ref) ∈ F (S−, S+)1.

– Assume (v, Δ; ;� V : τ1 + τ2) ∈ F (R−, R+)1. Then v = in⊕(inid
′) and V = iniV

′ and
(d′, Δ; ;� V ′ : τi) ∈ R+

1 .
h1v = in⊕(inif

+
1 d′) and by the assumption f+ : R+ ⊂ S+ we have that (f+d′, Δ; ;� V ′ :

τi) ∈ S+
1 . So (h1v, Δ; ;� V : τ1 + τ2) ∈ F (S−, S+)1.

– Assume (v, Δ; ;� V : τ1 × τ2) ∈ F (R−, R+)1. The proof that (h1v, Δ; ;� V : τ1 × τ2) ∈
F (S−, S+)1is similar to the proof for sum type, we omit it.

– Assume (v, Δ; ;� V : μα.τ) ∈ F (R−, R+)1. The proof that (h1v, Δ; ;� V : μα.τ) ∈
F (S−, S+)1 is similar to the proof for sum type, we omit it.

– Assume (v, Δ; ;� V : τ → Tτ ′) ∈ F (R−, R+)1. It must be the case that v = in��d , and
h1v = in��λx.f+

3 (d(f−
1 x)) .

Let Δ′ ⊇ Δ, (w, Δ′; ;� W : τ) ∈ S−
1 , we need to show ((λx.f+

3 (d(f−
1 x)))w, Δ′; ;� V W ) ∈ S+

3 .
Since f− : S− ⊂ R− then (f−

1 w, Δ′; ;� W : τ) ∈ R−
1 . By the assumption (in��d , Δ; ;�

V : τ → Tτ ′) ∈ F (R−, R+)1, then (d(f−
1 w), Δ′; ;� V W ) ∈ R+

3 . Since f+ : R+ ⊂ S+ then
((f+

3 (d(f−
1 w))), Δ′; ;� V W ) = ((λx.f+

3 (d(f−
1 x)))w, Δ′;� V W ) ∈ S+

3 .
– Assume (v, Δ; ;� Λα.M : ∀α.Tτ) ∈ F (R−, R+)1. It must be the case that v = in∀�d , and

∃Δ0 ⊆ Δ.∀τ ′ : type. (d, Δ0; ;� M : Tτ [τ ′/α]) ∈ R+
3 .

h1v = in∀�f+
3 (d) . Since f+ : R+ ⊂ S+ then ∃Δ0 ⊆ Δ.∀τ ′ : type. (f+

3 d, Δ0; ;� M :
Tτ [τ ′/α]) ∈ S+

3 . Hence (h1v, Δ; ;� Λα.M : ∀α.Tτ) ∈ F (S−, S+).

�

We now conclude that the action of F is admissible. It follows (cf.[52]p.)2 that:

Theorem 1. There exists an invariant R-relation R = (RV , RK , RM , RS) ∈ R(D) such that
i : F (R, R) ⊂ R and i−1 : R ⊂ F (R, R).

2 Later we show a full existence proof for the logical relation we define on top of the denotational semantics
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By the definition of the action of F on R-relations it holds that
RV

∼= { (⊥, Δ; ;� V : τ) }
∪ { (in11∗, Δ; ;� () : unit) }
∪ { (inZn, Δ; ;� n : int) }
∪ { (inLl, Δ; ;� l : Δ(l)-ref) }
∪ { (in+d, Δ; ;� V : τ1 + τ2) | d = inid

′ ∧ V = iniV
′ ∧ ∃Δ0 ⊆ Δ. (d′, Δ0; ;� V ′ : τi) ∈ RV , i ∈ 1, 2 }

∪ { (in×d, Δ; ;� V : τ1 × τ2) | d = (d1, d2) ∧ V = (V1, V2) ∧ ∃Δ0 ⊆ Δ. (di, Δ0; ;� Vi : τi) ∈ RV , i ∈ 1, 2 }
∪ { (in�d, Δ; ;� V : τ → Tτ ′) | ∀ closed Δ′ ⊇ Δ.∀(d′, Δ′; ;� V ′ : τ) ∈ RV .(dd′, Δ′; ;� V V ′ : Tτ ′) ∈ RM }
∪ { (inμd, Δ; ;� foldV : μα.τ) | ∃Δ0 ⊆ Δ. (d, Δ0; ;� V : τ [μα.τ/α]) ∈ RV }
∪ { (in∀d, Δ; ;� Λα.M : ∀α.Tτ) | ∃Δ0 ⊆ Δ.∀τ ′ with � τ ′ : type. (d, Δ0; ;� M : Tτ [τ ′/α]) ∈ RM }

RK
∼= { (⊥, Δ � K : (x : τ)� }
∪ { (k, Δ � K : (x : τ)�) | ∀ closed Δ′ ⊇ Δ.∀(s,Σ : Δ′) ∈ RS .∀(v, Δ′; ;� V : τ) ∈ RV .

(ksv = �) ⇒ (Σ, let x ⇐ val V in K ↓) }

RM
∼= { (⊥, Δ; ;� M : Tτ) }
∪ { (m, Δ; ;� M : Tτ) | ∀ closed Δ′ ⊇ Δ.∀(k, Δ′ � K : (x : τ)� ∈ RK .∀(s, Σ : Δ′) ∈ RS .

(mks = �) ⇒ (Σ, let x ⇐ M in K ↓) }

RS
∼= { (⊥, Σ : Δ) }
∪ { (S, Σ : Δ) | ∀l ∈ dom(Δ). (S(l) , Δ; ;� Σ(l) : Δ(l)) ∈ RV }

Lemma 9. Weakening

1. If (m, Δ; ;� M : Tτ) ∈ RM then ∀ Δ′ ⊇ Δ. (m, Δ′; ;� M : τ) ∈ RM .

2. If (k, Δ � K : (x : τ)�) ∈ RK then ∀ Δ′ ⊇ Δ. (k, Δ′ � K : (x : τ)�) ∈ RK .

3. If (v, Δ; ;� V : τ) ∈ RV then ∀ Δ′ ⊇ Δ. (v, Δ′; ;� V : τ) ∈ RV .

Proof First note that we are relating to derivable typing judgments when Δ′ ⊇ Δ.

1. Assume (m, Δ; ;� M : Tτ) ∈ R3 and let Δ′ ⊇ Δ. If m = ⊥ also (m, Δ′; ;� M : Tτ) ∈ R3.
Else let Δ′′ ⊇ Δ′, (k, Δ′′ � K : (x : τ)� ∈ RK , (s,Σ : Δ′′) ∈ RS . Assume mks = �. Since
(m, Δ; ;� M : Tτ) ∈ RM and Δ′′ ⊇ Δ this implies (Σ, let x ⇐ M in K ↓).
We conclude (m, Δ′; ;� M : Tτ) ∈ RM

2. The proof is similar as for (1) so we omit it.
3. Assume (v, Δ; ;� V : τ) ∈ RV and let Δ′ ⊇ Δ. If v = ⊥ also (v, Δ′; ;� V : τ) ∈ RV . Else the

proof is by cases of type constructors.

(unit) and (int) are immediate from the definition.

(σ ref): When Δ′ ⊇ Δ and l : σ ∈ Δ then l : σ ∈ Δ′.Hence (v, Δ; ;� V : σ ref) ∈ RV implies
(v, Δ′; ;� V : σ ref) ∈ RV .

(+)(×)(μ)(∀): Follows by transitivity of ⊆ for stores (Δ0 ⊆ Δ ⊆ Δ′).

(→): Follows by transitivity of ⊆ for stores (Δ′′ ⊇ Δ′ ⊆ Δ).

�

Lemma 10. ∀Δ.∀− � τ. ((λS.(λd.�)⊥)⊥, Δ � val x : (x : τ)) ∈ RK .

Let (s, Σ : Δ) ∈ RS and (v, Δ; ;� V : τ) ∈ RV and assume (λS.(λd.�)⊥)⊥sv = � then s �= ⊥
and v �= ⊥. Σ, let x ⇐ val V in val x ↓ is well-formed and hence terminates.
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Definition 8. Extension of relation to open terms, RΞΓ = (RΞΓ�V , RK , RΞΓ�M , RS)
For Ξ = α1, . . . , αm and Γ = x1 : τ1, . . . , xn : τn with Γ well typed by Ξ define:

RΞΓ�V = { (f, Δ; Ξ; Γ � V : τ) |
f ∈ (Vn � V) ∧ Δ; Ξ; Γ � V : τ ∧

∀ closed value types σ1 . . . σm. ∀Δ′ ⊇ Δ.
∀(d1, Δ′; ;� V1 : τ1[σj/αj ]) ∈ RV . . . (dn, Δ′; ;� Vn : τn[σj/αj ]) with ρ = d1 ⊗ . . . ⊗ dn

(f(ρ), Δ′; ;� V [Vi/xi] : τ [σj/αj ]) ∈ RV }

RΞΓ�M = { (f, Δ; Ξ; Γ � M : Tτ) |
f ∈ (Vn � M) ∧ Δ; Ξ; Γ � M : Tτ ∧

∀ closed value types σ1 . . . σm. ∀ ⊇ Δ.
∀(d1, Δ′; ;� V1 : τ1[σj/αj ]) ∈ RV . . . (dn, Δ′; ;� Vn : τn[σj/αj ]) with ρ = d1 ⊗ . . . ⊗ dn

(f(ρ), Δ′; ;� M [Vi/xi] : τ [σj/αj ]) ∈ RM }

Lemma 11. If (m, Δ; ; x : τ1 � M : Tτ2) ∈ Rx:τ1�M and (k, Δ � K : (y : τ2)�) ∈ RK then
(λS′.λd′. m(x �→ d′)kS′), Δ � let y ⇐ M in K : (x : τ1)�) ∈ RK .

Proof Let Δ′ ⊇ Δ, (S, Σ : Δ′) ∈ RS , (w, Δ′; ;� W : τ1) ∈ RV .
Assume (λS′.λd′. m(x �→ d′)kS′)Sw = m(x �→ w)kS = �. We want to show that this implies
Σ, let x ⇐ val W in (let y ⇐ M in K) ↓.

By assumption (m(x �→ w), Δ; ;� M [W/x] : Tτ2) ∈ RM . So it follows that Σ, let y ⇐
M [W/x] in K ↓. By judgments of termination then Σ, let x ⇐ val W in (let y ⇐ M in K) ↓ �

Lemma 12. Typing rules preserve the RΓ relation of a term and its denotation.

Proof is in the appendix.

Theorem 2. Fundamental theorem
If Δ; Ξ; Γ � V : τ then ([[Δ; Ξ; Γ � V ]] , Δ; Ξ; Γ � V : τ) ∈ RΞΓ�V

If Δ � K : (x : τ)� then ([[Δ � K : (x : τ)�]] , Δ � K : (x : τ)�) ∈ RK

If Δ; Ξ; Γ � M : Tτ then ([[Δ; Ξ; Γ � M ]] , Δ; Ξ; Γ � M : Tτ) ∈ RΞΓ�M

If Σ : Δ then (S , Σ : Δ) ∈ RS whenever S ∈ [[Σ : Δ]]

Proof

1. Proof of fundamental theorem for values and computations by induction on typing derivation
using the previous lemma 12.

2. For continuations the proof is by induction over the construction of the continuation term.
The base case is ∀Δ.∀− � τ. ([[Δ � val x : (x : τ)�]], Δ � val x : (x : τ)�) ∈ RK . Since
[[Δ � val x : (x : τ)�]] = λS.λd.[[Δ; ; x : τ � val x : Tτ ]](x �→ d)((λS0.(λd0.�)⊥)⊥)S =
λS.λd.((λS0.(λd0.�)⊥)⊥)Sd = ((λS0.(λd0.�)⊥)⊥), then this follows from lemma 10.
For the inductive case assume ([[Δ � K : (y : τ ′)]], Δ � K : (y : τ ′)) ∈ RK . To show
for Δ; ; x : τ � M : Tτ ′ that ([[Δ � let y ⇐ M in K]], Δ � let y ⇐ M in K : (x :
τ)�) ∈ RK . Let Δ′ ⊇ Δ and (s, Σ : Δ′) ∈ RS and (v, Δ′; ;� V : τ) ∈ RV and assume
[[Δ � let y ⇐ M in K]]sv = �. We need to show that Σ, let x ⇐ val V in (let y ⇐
M in K) ↓. By judgement of termination it suffices to show Σ, let y ⇐ M [V/x] in K ↓.
By 1) it holds that ([[Δ′; , x : τ � M : Tτ ′]](x �→ v), Δ′; ;� M [V/x] : Tτ ′) ∈ RM . And then
since [[Δ � let y ⇐ M in K]]sv = [[Δ; ; x : τ � M : Tτ ′]](x �→ v)([[Δ � K : (y : τ ′)�]])s then
Σ, let y ⇐ M [V/x] in K ↓ follows.

3. For states if follows from typing rules for states together with fundamental lemma for values.

�
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Corollary 3. Adequacy

If Δ; ;� M : Tτ , Δ � K : (x : τ)�, Σ : Δ and S ∈ [[Σ : Δ]] then

[[Δ; ;� M : Tτ ]]{}[[Δ � K : (x : τ)�]]S = � implies Σ, let x ⇐ M in K ↓
Proof By fundamental theorem ([[Δ; ;� M : Tτ ]], Δ; ;� M : Tτ) ∈ RM and ([[Δ � K : (x :
τ)�]], Δ � K : (x : τ)�) ∈ RK and (S, [[Σ : Δ]]) ∈ RS , then by the definition of ∈ RM adequacy
follows.

�

By soundness and adequacy of the denotational semantics we derive:

Proposition 3. Contextual equivalence.
For all Δ; Ξ; Γ � G1 : γ and Δ; Ξ; Γ � G2 : γ it holds that

if [[Δ; Ξ; Γ � G1 : γ]] = [[Δ; Ξ; Γ � G2 : γ]] then G1 =ctx G2.

Proof Assume Δ; Ξ; Γ � G1 : γ and Δ; Ξ; Γ � G2 : γ and Σ : Δ and [[Δ; Ξ; Γ � G1 : γ]] =
[[Δ; Ξ; Γ � G2 : γ]]. Let s ∈ [[Σ : Δ]] and let C[ ] : Δ; Ξ; Γ � γ ⇒ Δ; ;� Tτ be a context.

Further assume Σ, let x ⇐ C[G1] in val x ↓. By soundness this implies [[Δ; ;� C[G1] :
Tτ ]]{}[[Δ � val x : (x : τ)�]]S = �. By compositionallity of the denotational semantics [[Δ; ;�
C[G1] : Tτ ]]{} = [[Δ; ;� C[G2] : Tτ ]]{}. So [[Δ; ;� C[G2] : Tτ ]]{}[[Δ � val x : (x : τ)�]]S = �. By
adequacy then Σ, let x ⇐ C[G2] in val x ↓.

The other direction is similar. �

So simple equivalences can be proven only on the basis of the denotational semantics. We want
however to be able to prove more programs contextual equivalent, that we can do in this way. In
the remaining part of this report, we define relations between denotations, which makes it possible
to prove more intricate equivalences. It is essential for the relations we define, that they are based
on a denotational semantics which is sound and adequate.
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4 Logical relations for contextual equivalence

We now aim at defining an invariant parameterized relation on D and F (D, D), which we can use
to prove contextual equivalence for more programs. Since our denotations belong to a recursive
domain we cannot prove the existence of our relation by induction, the existence of the relation
requires a separate proof. In this presentation we have chosen to define two logical relations,
where one extends the other. The last extension specifically handles explicit divergence, where two
programs may diverge at different ’steps’(c.f. Introduction). The reason we have chosen to define
two relations is that the definition of the full parameters may seem quite complicated, and by
separating we hope to make the definitions easier to comprehend and use. Equivalence proof for
programs which do not require the full definition of parameters are essentially the same in both
relations. The full definition though sometimes requires considering extra cases, which will turn
out to be all right from assumptions. So the equivalence proofs can be expressed simpler in the
first relation for programs, which do not need the full definition.

For each relation we first define the parameters, which we index our relation by. Then in the
following section we will define a parameterized logical relation, on which we will base our proof
method for contextual equivalence. Then finally there will be sections with examples of equivalence
proofs.

Informally explained the parameters give properties of two related states. Computations related
under a parameter have corresponding termination behavior under the assumption that they are
applied to states which hold the properties stated in the parameter and continuations which “behave
well” for the parameter. The parameters express requirements on disjoint areas of store; there is
a finite visible area and a finite number of hidden invariants. As explained in the introduction, we
have tried to refine the definition of parameters from [13], so that it is possible via parameters,
to express in more detail why we expect two programs to be equivalent. When we have defined
such parameters that express our intuition and maybe also how they will later be restricted, then
the certification of equivalence can be an almost automatic analysis. The equivalence proof may
though seem rather lengthly as there are often many ’turns of the handle’ unfolding definitions
of denotations and of relatedness and other essentially straightforward steps. In the introduction
we presented informally the use of parameters in some proofs of contextual equivalence. We will
also define order relations on parameters. Informally a bigger parameter describes the states at a
later time of computations when more visible locations have been allocated and/or more hidden
invariants have been build up.

5 Parameters for a parameterized logical relation

Before we can define parameters we need some preliminary definitions. It is possible to define
actions of permutations on all constructs in a straightforward way, so that relatedness is preserved
under permutations. However, for proof of contextual equivalence, this is not necessary. FM-theory
gives that termination properties are independent of permutations, when permutations are applied
also to contexts and stores. So if we can prove that two programs have identical termination
properties in all relevant contexts, then this will hold also under permutations.

First we define accessibility maps, almost as Benton and Leperchey [7] and the previous papers
in this thesis. Accessibility maps ease statements and proofs of disjointness properties between
different areas of states which are required to fulfill different invariants. Recall for the following
definitions F (D, D)S = (L⊥ � V).

Definition 9. Accessibility map
An accessibility map is a continuous function A : F (D, D)S → Pfin(L) such that:

– ∀S1, S2 ∈ F (D, D)S . (∀l ∈ A(S1). S1l = S2l) ⇒ A(S1) = A(S2)
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For any finite set X ∈ P(L) there is a constant accessibility map AX , where it holds that
∀S.AX(S) = X. A special accessibility map is A∅, with ∀S. A∅(S) = ∅.

When we want to express a local invariant required for a pair of states, and this invariant can
be decided only on the basis of the areas of the states viewed by a pair of accessibility maps, then
we use a finitary state relation. If we want to express a requirement only on one state, we can use
a finitary state predicate.

Definition 10. Finitary state relations.

1. The set of finitary state relations: Let A1, A2 be accessibility maps.
P ⊆ F (D, D)S

2 is an (A1, A2)-state-relation iff
∀(S1, S2), (S′

1, S
′
2) ∈ F (D, D)S

2
.

∀l1 ∈ A1(S1).S1l1 = S′
1l1 ∧ ∀l2 ∈ A2(S2).S2l2 = S′

2l2 ⇒
(S1, S2) ∈ P ⇔ (S′

1, S
′
2) ∈ P

2. The set of finitary state predicates: Let A be an accessibility map.
P ⊆ F (D, D)S is an A-state-predicate iff

∀S, S′ ∈ F (D, D)S .
∀l ∈ A(S).Sl = S′l ⇒

S ∈ P ⇔ S′ ∈ P

A special finitary state relation is the (A∅, A∅)-state-relation T = F (D, D)2S . It holds for all
(S1, S2) that (S1, S2) belong to T .

Whether a pair of states belong to a finitary state relation can be decided on the basis of only
the parts of the states, which can be viewed by the (finite) accessibility maps. Given two states we
can directly decide if they belong to the finitary state relation, it is independent of the “current
step in the computations”. In the same way it can be decided whether a state belongs to a finitary
state predicate directly on the basis of the part of the state viewed by the accessibility map.

We will now define local parameters, which we will later use to express hidden invariants of
two related states together with sets of visible locations in each side. The use will be defined
precisely, when we define our parameterized relation. The intuition is that a local parameter has
its own private area of the store in each side, together with finite sets of visible locations. The
private areas are used for hidden invariants for testing conditions and for storing related values.
An example:

A local parameter may require for a pair of states (S1, S2) that:
i) The location la is visible in left hand side, and the location lb is visible in right hand side. And,

at any time, for the local parameter to hold, it is required that the values stored in S1la and
S2lb are values of type τ related at the actual time (expressed by a parameter).

ii) The location lx is local in left hand side, and the locations lp, ly, lz are local in right hand side.
iii) The value stored in S1lp is an integer value.
iv) If S1lp = 0 then the values stored in (S1lx, S2ly) are values of type σ related at the actual time.

If S1lp �= 0 then the values stored in (S1lx, S2lz) are values of type σ related at the actual time.

When analyzing computations applied to continuations it is important to have a clear hold
on the distribution of responsibilities of changes in hidden areas between the computation and
the continuation. In simple situations properties are preserved by both the computations and the
continuations separately. Ordinary parameters express such invariants. The example above and the
parameters in [13] are ordinary parameters in this sense.

It is possible that computations make irreversible changes to states as we have seen in the
’Awkward example’ in the introduction. To cover such situations we will define local extensions as
part of a local parameter definition. We notice, that a requirement that relates fewer states does
not in a simple way tell us how computation relations are. This is due to that related computations
are expected to preserve invariants when they write but at the same time can rely on invariants
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when they read, and reading and writing drags in opposite directions. Consider an example, we
have one location l and q0 says that in the state l holds either 0 or 1, q1 says that l must hold 1.
Among computations which only read l, then computations which are requiring to read (0 or 1)
will be satisfied with reading a 1, but computations which are requiring to read a 1 will not be
satisfied with reading (0 or 1). Among computations which only writes l, then computations which
write a 1 will also write (0 or 1), but computations which writes (0 or 1) will not preserve that
l holds a 1. This is why we only require that an extension does not use more area of states and
has the same or more visible locations. Additionally it is part of the definition of our relation, that
relatedness requires that all future extensions will be preserved.

As explained in the introduction, we have here tried to refine the parameters, so that they can
express more refined distribution of responsibilities between computations and continuations. Such
refined parameters are called specialized parameters. These will be used in parts of proofs, where
we have some knowledge of which continuation a computation will be applied to (for an example
see section 7.2). We hope that we will also see the benefit of the specialized parameters, when we
compare our proof method with proof methods based on bisimulations [28].

A specialized parameter may be thought of as a kind of conjunction of parameter-instantiations.
We use the modified conjunction sign ∧̄ in the parameters; it is not a real logical conjunction, but
meant to give intuitive meaning. Values and computations will be related under such a specialized
∧̄ parameter, if they preserve each parameter-instantiation separately. Continuations will be related
under a ∧̄ parameter together with a choice of one conjunct-clause. Assuming that the continuations
are applied to states which have the properties given by the chosen ∧̄ instantiation in hidden areas
and where all stored values preserve each ∧̄ instantiation separately, then the related continuations
will have similar termination properties. For instance we can use this, when we know that the
initial part of the continuations modify the hidden areas in such a way that a specific ∧̄-clause
choice is established, and this ∧̄-clause is necessary for relatedness of some later exported functions
(c.f. example 7.2). So, the idea is that computations must preserve each ∧̄-clause of a specialized
local parameter separately. Computations cannot change stores between ∧̄-clauses. Specialized
local parameters for computations do not express, which of the ∧̄ requirements, they expect. For
continuations it is different. A specialized local parameter for continuations expresses which ∧̄-
clause the continuations expect the stores to fulfill. Continuations may then change stores such
that another ∧̄-clause is fulfilled at the later step. Because the stored values are expected to
preserve each ∧̄-clause, the continuations may in this way ensure that future computation will give
equivalent termination.

We differentiate accordingly between vm-parameters for values and computations, k-parameters
for continuations and s-parameters for states. In a sense then k-parameters are instantiations of
vm-parameters and s-parameters are instantiations of k-parameters. And going in the opposite di-
rection k-parameters are erasures of s-parameters, and vm-parameters are erasures of k-parameters.
This will be explained in detail below. In the simple situations where each of computation and con-
tinuation preserves an invariant which ensures termination-approximation only one k-instantiation
of a vm-parameter is possible. These are the ordinary parameters. For ordinary parameters a k-
parameter can be identified with its erasure. We use specialized parameters in more complicated
situations where computations must be applied to continuations, which so to say brings the combi-
nation back to a situation, where termination approximation is ensured. To cover these situations
adds some extra complexity to the definition of local parameters.

In proofs of contextual equivalence, the starting point will be to show two computations or
values related under a simple ordinary parameter that only expresses which visible locations are
known, but does not have any hidden invariants. When the proof develops we will often want to
show relatedness of subexpressions under more complicated parameters using knowledge about the
initial steps of further execution. In the introduction we have shown some examples, where we will
use specialized parameters in a proof of contextual equivalence.

We now first give some extra preliminary definitions. Notice how these definitions relate to the
situations mentioned in the introduction and above.
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Definition 11. A match of finite store types Z.
A match of finite store types is a finite set Z = {(l11, l12, τ1) . . . (ln1, ln2, τn)} where each τi is

closed and it holds that ∀i �= j ∈ 1 . . . n. li1 �= lj1 ∧ li2 �= lj2. A match of finite store types Z
defines two store types Z1 and Z2 given by first/second components of Z together with the type,
and a bijection between their domains. It holds that dom(Z1) and dom(Z2) has the same finite
cardinality.

A match of finite store types will be used to describe related visible areas of a pair of states.
Because we use FM-domains it would be sufficient to use the same location names in both sides.
We have chosen the above definition because it makes it easier to express proofs of contextual
equivalence in situations where some initially hidden locations are later exported, and where these
locations are not always the same but it depends on some other properties which locations will be
exported.

In the definitions below we use ’disjunct signs’ ∨̄ and ’conjunct signs’ ∧̄, these are not logical
operators. The notation is meant to enhance intuition. Precise interpretation of the local parameters
comes with the definition of the parameterized relation. Informally the idea is that functions and
computations may change states from one ∨̄-clause to another ∨̄-clause within the same ∧̄-clause,
but will preserve each ∧̄-clause separately. Continuations may change states between ∧̄-clauses as
well as between ∨̄-clauses. Ordinary parameters do not have any ∧̄’s and so continuations as well
as computations can only change states between ∨̄-clauses.

Here first is a brief description of parameters for values and computations:

A parameter consists of a number of local parameters, where relatedness of a pair of states will
require that each local parameter holds its own area of store in each side.

A local parameter is set of local-parameter-components. Relatedness of a pair of computa-
tions will require that each component gives an invariant for states that is preserved if the
computations are executed in states that hold the invariant. (∧̄ is used between components).

A local-parameter-component is a tree of local-parameter-nodes, we can think of the root as
the actual local-parameter-component, and the tree as defining possible irreversible changes of
states (made by related computations) within the area owned by the local parameter.

A local-parameter-node is a set of local-parameter-parts, related computations may change
states back and forth between the parts of a node. (∨̄ is used between parts).

A local-parameter-part defines some specific requirements for relatedness of a pair of states.
The requirements can be decided on the basis of finite local areas of states, possibly together
with knowing the current “time” of computation as expressed by a parameter.

We will also define two orderings � and � between parameters. These orderings will be based
on set inclusion (number of local parameters), local extensions & (corresponding to irreversible
changes of states by computations) and forgetting of components.

5.1 Parameters, ordinary and specialized

We will now define general parameters which will be either ordinary or specialized. Ordinary
parameters are used, when we relate computations where we don’t know any specific properties
of the continuations, they will be applied to. Specialized parameters are used, when we know
the initial steps of the continuations, they are applied to. We use specialized parameters, if we
know that states initially belong in one local-parameter-component and the initial steps of the
continuations change states to another local-parameter-component.

92



Definition 12. Local-parameter-part Q
Given accessibility maps A1 and A2.
Then Q is an (A1, A2)-local-parameter-part with associated sets LQ

1 , LQ
2 if

Q = (P,LL) and P is an (A1, A2)-state-relation and LL =
{ (l11, l12, τ1), . . . , (lk1, lk2, τk) } is a finite set of location pairs and closed value types, k ≥ 0.
LQ

1 = π1(LL) and LQ
2 = π2(LL).

The informal understanding of (P,LL) for a pair of states (S1, S2) is that (S1, S2) ∈ P and LL
hold related values.

Definition 13. Local-parameter-node q
Let I be a finite index set.
q = ({Qi|i ∈ I}, Aq

1, A
q
2, Z

q) = ([Q1∨̄ . . . ∨̄Qk], Aq
1, A

q
2, Z

q), is a local-parameter-node iff

– Aq
1, A

q
2 are accessibility maps.

– Each Qi is an (Aq
1, A

q
2)-local-parameter-part

– Zq is a match of finite store types.
–

⋃
i LQi

1 ∩ π1(Zq) = ∅ ∧ ⋃
i LQi

2 ∩ π2(Zq) = ∅
To the local-parameter-node q = ({Qi|i ∈ I}, Aq

1, A
q
2, Z

q) are associated the accessibility maps
Åq

1, Å
q
2 where

∀S. Åq
1(S) = Aqk

1 (S) ∪ π1Z
q ∪ ⋃

i∈I LQi

1 and
År

2(S) = Aqk

2 (S) ∪ π2Z
q ∪ ⋃

i∈I LQi

2 .
År

1, Å
r
2 are the most inclusive accessibility maps associated with the local-parameter-node, encompass

locations meant to be visible as well as hidden.

To the local-parameter-node q are associated fixed finite, sets of locations Lq
1 =

⋃
i LQi

1 and Lq
2 =⋃

i LQi

2 .

We order local-parameter-nodes such that a bigger parameter has the same or more visible
locations and a bigger parameter always “owns” the same or smaller parts of the stores.

Definition 14. ≥ order on local-parameter-nodes
Let d, e be local-parameter-nodes, and d = ({Qd

i |i ∈ Id}, Ad
1, A

d
2, Z

d), e = ({Qe
i |i ∈ Ie}, Ae

1, A
e
2, Z

e)
e ≥ d iff

– Ze ⊇ Zd and
– ∀(S1, S2). Åd

1(S1) ⊇ Åe
1(S1) ∧ Åd

2(S2) ⊇ Åe
2(S2).

Definition 15. Local-parameter-component q̂

A local-parameter-component q̂ is a finite tree where each node qi is a local-parameter-node and it
holds that

– ∀q1, q2 ∈ q. if q1 is an ancestor of q2 then q2 ≥ q1

To the local-parameter-component q̂ with root-node q0 is associated the match of finite store types
Zq = Zq0 .

To the local-parameter-component q̂ with root node q0 are associated the accessibility maps Åq
1 = Åq0

1

and Åq
2 = Åq0

2 .
Åq

1, Å
q
2 are the most inclusive accessibility maps associated with the local-parameter-component (all

locations possibly “owned” by subtrees are included c.f. order on tree-nodes).
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To the local-parameter-component q̂ are associated fixed finite, sets of locations W q
1 and W q

2 .
W q

1 =
⋃

qj∈q̂

(
π1(Zqj ∪ L

qj

1 )
)

and W q
2 =

⋃
qj∈q̂

(
π2(Zqj ∪ L

qj

2 )
)

where for qj = ((Pi, LLi)|i ∈ I}, Aqj

1 , A
qj

2 , Zqj ) we let L
qj

1 = ∪iL
Qi

1 , L
qj

2 = ∪iL
Qi

2 .

For notational convenience when not otherwise indicated we let the root node of q̂ be named q.

Intuitively the fixed sets W q
1 ,W q

2 give locations (visible as well as hidden) that we know can
be associated with q without knowing any specific state.

Intuitively we identify a local-parameter-component with its root. The rest of the tree is there
to tell us how a local parameter may be locally extended.

Definition 16. & relation on local-parameter-components.
Let q̂′ and q̂ be local-parameter-components.

q̂′ & q̂ iff q̂′ ∈ subtrees(q̂)

We now define local parameters. A local parameter for values and computations is a finite set of
local-parameter-components. A local parameter for continuations and a local parameter for states
will “belong” to one of the components. The idea is that the values and computations preserve
each component in states, but continuations may change states between components.

Definition 17. Local parameters

(vm) A local vm-parameter has the form r = {q̂1 . . . q̂n} = (q̂1∧̄ . . . ∧̄q̂n) where
- ∀i ∈ 1 . . . n. q̂i is a local parameter component
- n ≥ 1

(k) If r = (q̂1∧̄ . . . ∧̄q̂n) is a local vm-parameter, then ∀j ∈ 1 . . . n. (r|q̂j) is a local k-parameter.
q̂j is a choice of ∧̄-clause.

(s) If (r|q̂) is a local k-parameter, and root(q̂) = ({Qi|i ∈ I}, Aq
1, A

q
2, Z

q) = ([Q1∨̄ . . . ∨̄Qk], Aq
1, A

q
2, Z

q),
then for each i ∈ I (r|q̂|Qi) is a local s-parameter. Qi is a choice of ∨̄-clause.

A local parameter where n = 1 is ordinary, so (q̂) is an ordinary vm-parameter, (q̂|q̂) is an ordinary
k-parameter and for all i ∈ I (q̂|q̂|Qi) is an ordinary s-parameter.

To the local parameter r = {q̂1 . . . q̂n} is associated the match of finite store types

Z∩r =
⋂

k∈1..n Zqk .

Z∩r gives the locations visible for every ∧̄-clause in the local parameter r

To the local parameter r are associated the fixed finite sets of locations W r
1 =

⋃
i∈1..n W qi

1 and
W r

2 =
⋃

i∈1..n W qi

2 .

To the local parameters r = {q̂1 . . . q̂n} are associated the accessibility maps År
1, Å

r
2 where

∀S. År
1(S) =

⋃
k∈1..n Åqk

1 (S) and År
2(S) =

⋃
k∈1..n Åqk

2 (S)

År
1, Å

r
2 are the most inclusive accessibility maps associated with the local parameter, encompass all

locations that may be associated with r, locations meant to be visible as well as hidden.

We sometimes use {(l11, l12, τ1) . . . (ln1, ln2, τn)} or T{(l11,l12,τ1)...(ln1,ln2,τn)} as shorthand for the
(ordinary) local parameter {((T, ∅LL), A∅, A∅, {(l11, l12, τ1) . . . (ln1, ln2, τn)})}. Such a parameter is
used when we just add n visible locations in both sides. Visible locations will be expected to hold
related values.
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Definition 18. & order on local-parameters
Let r′ = {q̂′1 . . . q̂′n}, r = {q̂1 . . . q̂n} be local vm-parameters (same n)

r′ & r iff ∀j ∈ 1 . . . n. q̂′j & q̂j. (q̂′j is a subtree of q̂j)

Let rk′ = (r′|q̂′i), rk = (r|q̂j) be local k-parameters with r′ = {q̂′1 . . . q̂′n}, r = {q̂1 . . . q̂n}
rk′ & rk iff r′ & r and i = j.

Definition 19. Parameters

(vm) A vm-parameter p is a finite set p = {r1 . . . rn} where
- Each ri ∈ p is a local vm-parameter
- ∀i �= j ∈ 1 . . . n. W ri

1 ∩ W
rj

1 = ∅ ∧ W ri
2 ∩ W

rj

2 = ∅
- ∃S1, S2 �= ⊥.∀i, j ∈ 1 . . . n, i �= j.Åri

1 (S1) ∩ Årj
1 (S1) = ∅ ∧ Åri

2 (S2) ∩ Årj
2 (S2) = ∅

(k) If p = {r1 . . . rn} is a vm-parameter and for each j ∈ 1 . . . n (rj |q̂j) is a local k-parameter, then
(pk) = {(r1|q̂1) . . . (rn|q̂n)} is a k-parameter.
A k-parameter is a vm-parameter together with choices of one ∧̄-clause for each local vm-
parameter.

(s) If (pk) = {(r1|q̂1) . . . (rn|q̂n)} is a k-parameter and
for each j ∈ 1 . . . n (rj |q̂j |Qj) is a local s-parameter
then (pks) = {(r1|q̂1|Q1) . . . (rn|q̂n|Qn)} is an s-parameter.
An s-parameter is a k-parameter together with choices of one ∨̄-clause for each local k-
parameter.

(pk) is the k-erasure of (pks), and p is the vm-erasure of (pks) and of (pk).

(pks) is an s-instantiation of (pk) and of p. (pk) is a k-instantiation of p.

To the vm-parameter p are associated

– Accessibility maps Åp
1, Åp

2 where ∀S. Åp
1(S) =

⋃
Åri

1 (S) ∧ Åp
2(S) =

⋃
Åri

2 (S).

To the k-parameter (pk) and to the s-parameter (pks) are associated

– Accessibility maps A(pk)
1 = A(pks)

1 , A(pk)
2 = A(pks)

2 , where
∀S. A(pk)

1 (S) =
⋃

j(A
qj

1 (S) ∪ L
qj

1 ) ∧ A(pk)
2 (S) =

⋃
j(A

qj

2 (S) ∪ L
qj

2 ), j ∈ 1 . . . n.

To the vm-parameter p is associated

– a match of finite store types Zp =
⊎

j Z∩rj , where j ∈ 1 . . . n.

To the k-parameter (pk) and to the s-parameter (pks) is associated

– A match of finite store types Z(pk) = Z(pks) =
⊎

j Zqj , where j ∈ 1 . . . n.

A parameter is ordinary iff all its local parameters are ordinary.
A parameter or a local parameter which is not ordinary is said to be specialized.
Any parameter and any local parameter is either ordinary or specialized.

All types that occur in parameters are closed.

pvm is the set of vm-parameters. ovm is the set of ordinary vm-parameters.
pk is the set of k-parameters. ok is the set of ordinary k-parameters.
ps is the set of s-parameters. os is the set of ordinary s-parameters.

svm is the set of specialized vm-parameters. pvm \ ovm = svm.
sk is the set of specialized k-parameters. pk \ ok = sk.
ss is the set of specialized s-parameters. ps \ os = ss.
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Definition 20. Notation for sets of instantiations pK, pS

– If p ∈ pvm then pK denotes the set of k-instantiations of p
and pS denotes the set of s-instantiations of p.

– If p ∈ pk then pS denotes the set of s-instantiations of p.

Definition 21. Notation for erasures pk, pvm

– If p ∈ ps then pk denotes the (unique) k-erasure of p
and pvm denotes the (unique) vm-erasure of p.

– If p ∈ pk then pvm denotes the vm-erasure of p.

Definition 22. & relation on parameters.
Let p′ = {r′1 . . . r′n} and p = {r1 . . . rn} be vm-parameters.

p′ & p iff ∀i ∈ 1 . . . n. r′i & ri

Let pk′ = {(r′1|q̂′1) . . . (r′n|q̂′n)} and pk = {(r1|q̂1) . . . (rn|q̂n)} be k-parameters.

pk′ & pk iff ∀i ∈ 1 . . . n. (r′i|q̂′i) & (ri|q̂i)

When we remove some but not all ∧̄-clauses from a local parameter then we get another
local parameter. In this way we can derive parameters from parameters. As explained the idea
is that related computations must preserve each ∧̄ instantiation. In our relation we will require
that relatedness for values and computations is preserved when we go to a parameter derived by
removal of ∧̄-clauses.

Definition 23. Parameters derived from parameters

– Let p ∈ pvm, p = {r1, . . . , rn} = {{q̂11 . . . q̂1k1}, . . . , {q̂n1 . . . q̂nkn}}.
Let ∀i ∈ 1 . . . n. ri ⊇ r′i �= ∅.
Then p′ = {r′1, . . . , r′n} is a parameter derived from p.
So p′ is derived from p by removal of ∧̄-clauses.

sub(p) denotes the set of parameters derived from p.

– Let p′ = {r′1, . . . , r′n} be derived from p = {r1, . . . , rn} ∈ pvm such that ∀i ∈ 1 . . . n either(
r′i = ri

)
or

(
r′i = {q̂} where q̂ ∈ ri

)
.

Then p′ is a parameter 1-derived from p.
So in p′ some local parameters in p are replaced by exactly one of their conjuncts.

sub1(p) denotes the set of parameters 1-derived from p.

– Let p′ = {r′1, . . . , r′n} be derived from p = {r1, . . . , rn} ∈ pvm such that ∀i ∈ 1 . . . n. r′i = {q̂}
where q̂ ∈ ri.
Then p′ is an ordinary parameter, and p′ is a parameter o-derived from p.
ord(p) denotes the set of ordinary parameters o-derived from p.

A derived parameter is a parameter: Disjointness properties are preserved. It is possible that
locations move from hidden to visible.

p ∈ sub(p), p ∈ sub1(p), p ∈ subo1(p) and ord(p) ⊆ subo1(p) ⊆ sub1(p) ⊆ sub(p)

We will see below, that if values are related under a parameter p, then they are also related under
each parameter derived from p and hence also each parameter 1-derived, o1-derived or o-derived
from p. In proofs of contextual equivalence this will sometimes be beneficial.

96



Definition 24. Orders � and � on parameters

� : The relation � on vm-parameters and k-parameters is defined as the reflexive transitive closure
of the relations & and ⊇ord (local extension and adding ordinary local parameters), where

Let p′ ∈ pvm and p ∈ pvm i.e. both are vm-parameters. Then
p′ ⊇ord p

def⇐⇒ p = {r1, . . . rn} ,p′ = {r1, . . . , rn, rn+1, . . . rn+m} and ∀i ∈ n+1 . . . n+m. ri

is ordinary. (m ≥ 0)
Let pk′ and pk both be k-parameters. Then

pk′ ⊇ord pk
def⇐⇒ pk′vm ⊇ord pkvm (their erasures are ⊇ord ordered) and pk′ ⊇ pk

�: The relation � on vm-parameters is defined as the reflexive transitive closure of the relations
&, ⊇ and ≥∧̄ (local extension, adding local parameters and removal of ∧̄-clauses), where

Let p′ ∈ pvm and p ∈ pvm i.e. both are vm-parameters. Then
p′ ≥∧̄ p

def⇐⇒ p′ ∈ sub(p)

Lemma 13. � and � are order relations.

Lemma 14.
Assume r′�r, then either both r′ and r are ordinary parameters or both r′ and r are specialized

parameters with the relation & on all the non-ordinary constituents.

Lemma 15.
For p′, p ∈ pvm it holds that p′ � p ⇒ p′ � p (but not the other direction).

The next lemma explains though, that it is often possible via a series of �-extensions to come
back to a � -extension. This can be useful in equivalence proofs.

Lemma 16.

– If p′ ∈ svm and p ∈ ovm and p′ � p, then ∀p′o ∈ ord(p′). p′o � p.
– If p′ � p ∈ pvm, p′ = {r1 . . . rn, rn+1 . . . rm}, p = {r1 . . . rn}, and p′′ is 1-derived from p′ such

that ∀j ∈ (n+1) . . .m. rj is replaced by one of its conjuncts q̂j,
then p′′ is a parameter o-derived from p′, and it holds that p′′ � p.

Lemma 17. If p′ � p or p′ � p then Zp′ ⊇ Zp

We are now ready to define our parameterized relation.
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6 Parameterized relation

Recall the informal ideas of the parameters. The parameters express properties of related states.
Related values and computations will preserve each ∧̄-clause separately. This is expressed via

reference to the set of parameters that �-extend p. Related functions take values related in a �-
extended parameter to related computations. Related computations take continuations and states
related under corresponding instantiations of a �-extended parameter to termination approxima-
tion.

Continuations related under a specialized parameter ’knows’ how to bring the situation back
to normal for this specialization, it behaves well (give termination approximation) when applied
to states and values related under an only �-extended parameter.

Since our denotations belong to a recursive domain, the existence of our parameterized logical
relation again involves a separate proof. The proof requires that the relations are preserved under
approximations. On the other hand we want the parameters to express invariants for hidden local
areas of related states, and such properties of states may not be preserved under approximations.
Therefore our relations are really given by 4-tuples, which we think of as two pairs: the 4-tuples
have the form (d′1, d

′
2 || d1, d2), where d′1 � d1 and d′2 � d2 and d1, d2 are a kind of parameters.

We can now let the approximation be carried out over the primed domain elements d′1, d
′
2, and

preserve the invariant on the non-primed elements d1, d2. Correspondingly, relatedness of compu-
tations is stated as a two-sided termination approximation when applied to related continuations
and states (probably under an extended parameter). Termination of application of an approxi-
mated computation m′

1 to an approximated continuation k′
1 and an approximated state S′

1 implies
termination in the other side of the non-approximated elements, m′

1k
′
1S

′
1 = � =⇒ m2k2S2 = �

and also m′
2k

′
2S

′
2 = � =⇒ m1k1S1 = �. Thus we combine in the definition of the relation domain-

theoretical-approximation in one side and termination-approximation to the other side. With this
separation of domain theoretical approximation from the local properties that the parameters ex-
press, we can prove that the relation exists. We can then extract a binary relation, defined via
reference to the 4-ary relation, such that the binary relation implies contextual equivalence.

6.1 Relational Structure on FMcpo4
⊥

Definition 25. Relational structure on FM-cpo4
⊥

Let D = (DV , DK , DM , DS) ∈ FM-cpo4
⊥.

The set of relations on D is defined as:

R(D) = R̂V × R̂K × R̂M × R̂S

where
R̂V = all subsets of D2

V × D2
V × {τ |τ closed value type} × pvm which

include {(⊥,⊥)} × D2
V × {τ |τ closed value type} × pvm

R̂K = all subsets of D2
K × D2

K × {(x : τ)�|(x : τ)� continuation type} × pk which
include {(⊥,⊥)} × D2

K × {(x : τ)�|(x : τ)� continuation type} × pk

R̂M = all subsets of D2
M × D2

M × {Tτ |Tτ closed computation type} × pvm which
include {(⊥,⊥)} × D2

M × {Tτ |Tτ closed computation type} × pvm

R̂S = all subsets of D2
S × D2

S × ps which
include {(⊥,⊥)} × D2

S × ps
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For an element in one of the four projection relations we use the notation (d′1, d
′
2 ‖ d1, d2, (type), p),

where we think of d1, d2, (type), p as a kind of combined parameter.

Definition 26. Application of a pair of morphisms to a relation.

For D,E ∈ FM-cpo4
⊥ for f = (fv, fk, fm, fs) : D � E and g = (gv, gk, gm, gs) : D � E, and

relation R = (RV , RK , RM , RS) ∈ R(D), define

(fv, gv)RV = {(fvv′1, fvv′2 ‖ gvv1, gvv2, τ1, p1) | (v′1, v
′
2 ‖ v1, v2, τ1, p1) ∈ RV }

(fk, gk)RK = {(fkk′
1, fkk′

2 ‖ gkk1, gkk2, (x : τ2)�, p2) | (k′
1, k

′
2 ‖ k1, k2, (x : τ2)�, p2) ∈ RK}

(fm, gm)RM = {(fmm′
1, fmm′

2 ‖ gmm1, gmm2, T τ3, p3) | (m′
1,m

′
2 ‖ m1,m2, T τ3, p3) ∈ RM}

(fS , gS)RS = {(fss
′
1, fss

′
2 ‖ gss1, gss2, p4)) | (s′1, s

′
2 ‖ s1, s2, p4) ∈ RS}

and define (f, g)R = ((fv, gv)RV , (fk, gk)RK , (fm, gm)RM , (fs, gs)RS)

Definition 27. (f, g) : R ⊂ S
For f = (fv, fk, fm, fs) : D � E, g = (gv, gk, gm, gs) : D ∼= E with f � g
and relations R ∈ R(D), S ∈ R(E) define

(f, g) : R ⊂ S
def⇐⇒ (f, g)R ⊆ S

where on the left hand side : ⊂ is being defined, and on the right hand side ⊆ is set theoretical
inclusion.

Lemma 18.

– ∀R ∈ R(D). (idD, idD) : R ⊂ R

– ∀R ∈ R(D).∀S ∈ R(D′).∀g : D ∼= D′ (⊥, g) : R ⊂ S

– (f, g) : R ⊂ S and (f ′, g′) : S ⊂ T ⇒ (f ′ ◦ f, g′ ◦ g) : R ⊂ T

– (idD, idD) : R ⊂ R′ and (idD, idD) : R′ ⊂ R ⇒ R = R′.

Definition 28. Downwards closed relation
A relation (RV , RK , RM , RS) ∈ R(D) is downwards closed if,

for each j ∈ {V,K,M,S}.
d′′1 � d′1 ∧ d′′2 � d′2 ∧ (d′1, d

′
2 ‖ d1, d2, (type), p) ∈ Rj ⇒ (d′′1 , d′′2 ‖ d1, d2, (type), p) ∈ Rj

Definition 29. Admissible relation.
A relation R = (RV , RK , RM , RS) ∈ R(D) is admissible if

∀S ∈ R(D) the set {f | (f, idD) : S ⊂ R } ⊆ (E � D) contains ⊥ and is closed under least
upper bounds of countable finitely supported chains. Radm(D) denotes the set of admissible
relations on D.

Definition 30. Parameter-weakened relation (Weakening)
A relation (RV , RK , RM , RS) ∈ R(D) is parameter-weakened if,
∀p1, p0 ∈ pvm, ∀(pk1), (pk0) ∈ pk it holds that

- p1 � p0 ∧ (v′1, v
′
2 ‖ v1, v2, τ, p0) ∈ RV ⇒ (v′1, v

′
2 ‖ v1, v2, τ, p1) ∈ RV

- (pk1) � (pk0) ∧ (k′
1, k

′
2 ‖ k1, k2, (x : τ)�, (pk0)) ∈ RK ⇒ (k′

1, k
′
2 ‖ k1, k2, (x : τ)�, (pk1)) ∈ RK

- p1 � p0 ∧ (m′
1,m

′
2 ‖ m1,m2, T τ, p0) ∈ RM ⇒ (m′

1,m
′
2 ‖ m1,m2, T τ, p1) ∈ RM

These properties may co-exist.

Definition 31. adm+relation
A relation R ∈ R(D) is an adm+relation if it is
admissible, downwards closed and parameter-weakened.
We let Radm+(D) denote the set of adm+relations over D
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6.2 Lifting F to an adm+ action on relations

We aim to show that there exists a relational lifting of the functor F s.t.
∀R− ∈ R(D), R+ ∈ R(D).F (R−, R+) ∈ R(F (D, D)) and an adm+ relation
∇ = (∇V ,∇K ,∇M ,∇S) ∈ Radm+(D) satisfying the equations in definition 32 and
(i, i) : F (∇,∇) ⊂ ∇ ∧ (i−1, i−1) : ∇ ⊂ F (∇,∇).

Definition 32. adm+action of F on relations.
Let R− ∈ R(D), R+ ∈ R(D)

Define F (R−, R+) ∈ R(F (D, D)),
F (R−, R+) = (F (R−, R+)V , F (R−, R+)K , F (R−, R+)M , F (R−, R+)S) where

F (R−, R+)V = {(⊥, ⊥ ‖ v1, v2, τ, p) | p ∈ pvm the set of all vm-parameters } ∪

{(v′1, v′2 ‖ v1, v2, τ, p) | p ∈ pvm ∧
v′1 � v1 �= ⊥ ∧ v′2 � v2 �= ⊥ ∧
(v′1, v′2 ‖ v1, v2, τ, p) ∈ F̃ (R−, R+)V }

where

F̃ (R−, R+)V = {(v′1, v′2 ‖ in11�∗ , in11�∗ , unit, p) } ∪
{(v′1, v′2 ‖ inZ�n , inZ�n , int, p) | n ∈ Z } ∪
{(v′1, v′2 ‖ inL�l1 , inL�l2 , τ ref, p) | (l1, l2, τ) ∈ Zp } ∪

{(v′1, v′2 ‖ in⊕inid1, in⊕inid2, τ1 + τ2, p) | d1, d2 ∈ V↓ ∧ ∃d′1, d
′
2 ∈ V.

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in⊕inid
′
1 �= ⊥) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = in⊕inid

′
2 �= ⊥)∧

(d′1, d′2 ‖ d1, d2, τi, p) ∈ R+
V , i ∈ {1, 2} } ∪

{(v′
1, v′2 ‖ in⊗(d1a, d1b), in⊗(d2a, d2b), τa × τb, p) | d1a, d1b, d2a, d2b ∈ V↓ ∧
∃d′1a, d′1b, d

′
2a, d′

2b ∈ V.
(d′1a, d′2a ‖ d1a, d2a, τa, p) ∈ R+

V ∧ (d′1b, d′2b ‖ d1b, d2b, τb, p) ∈ R+
V ∧

((v′1 = ⊥ ∧ (d′1a = ⊥ ∨ d′1b = ⊥)) ∨ (v′1 = in⊗(d′1a, d′1b) �= ⊥)) ∧
((v′2 = ⊥ ∧ (d′2a = ⊥ ∨ d′2b = ⊥)) ∨ (v′2 = in⊗(d′2a, d′2b) �= ⊥))} ∪

{(v′1, v′2 ‖ inμd1, inμd2, μα.τ, p) | d1, d2 ∈ V↓ ∧ ∃d′1, d
′
2 ∈ V.

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = inμd′1 �= ⊥) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = inμd′2 �= ⊥)∧
(d′1, d′2 ‖ d1, d2, τ [μα.τ/α], p) ∈ R+

V } ∪

{(v′1, v′2 ‖ in∀�d1 , in∀�d2 , ∀α.Tτ, p) | d1, d2 ∈ M ∧ ∃d′1, d
′
2 ∈ M.

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ (v′1 = in∀�d′1 �= ⊥ ∧ d′1 ' ⊥)) ∧
((v′2 = ⊥ ∧ d′2 = ⊥) ∨ (v′2 = in∀�d′2 �= ⊥ ∧ d′2 ' ⊥)) ∧
∀σ with � σ : type. (d′1, d′2 ‖ d1, d2, T τ [σ/α], p) ∈ R+

M } ∪

{(v′1, v′2 ‖ in��d1 , in��d2 , τ → Tτ ′, p) | d1, d2 ∈ (V � M) ∧ ∃d′1, d
′
2 ∈ (V � M).

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ (v′1 = in��d′1 �= ⊥ ∧ d′1 ' ⊥)) ∧
((v′2 = ⊥ ∧ d′2 = ⊥) ∨ (v′2 = in��d′2 �= ⊥ ∧ d′2 ' ⊥)) ∧
∀p′ � p,∀(w′

1, w′
2 ‖ w1, w2, τ, p′) ∈ R−

V . ( d′1w
′
1, d′2w

′
2 ‖ d1w1, d1w2, T τ ′, p′) ∈ R+

M }

Recall � on vm-parameters is defined as the reflexive transitive closure of the relations &, ⊇ and ≥∧̄,
(which are local extension, superset and removal of ∧̄-clauses).
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F (R−, R+)K = {(k′
1, k′

2 ‖ k1, k2, (x : τ)�, (pk)) | (pk) ∈ pk ∧
k′
1 � k1 ∧ k′

2 � k2 ∧ ∀(pk′) � (pk).
(that is (pk) extended only with ordinary local k-parameters or local extensions)

∀(pks′) ∈ (pk′)S (the set of s-instantiations of p′ i.e. choices of ∨̄-clauses),
∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ R−

S . ∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ R−
V .

(k′
1s

′
1v

′
1 = � ⇒ k2s2v2 = �) ∧

(k′
2s

′
2v

′
2 = � ⇒ k1s1v1 = �) }

F (R−, R+)M = {(m′
1, m′

2 ‖ m1, m2, T τ, p) | p ∈ pvm ∧
m′

1 � m1 ∧ m′
2 � m2 ∧

∀p′ � p.∀(pk′) ∈ p′K (the set of k-instantiations of p′ i.e.
choices of a ∧̄-clause in each local parameter).

∀(pks′) ∈ (pk′)S (the set of s-instantiations of (pk′) i.e.
choices of ∨̄-clause from each chosen ∧̄-clause in (pk′) ),

∀(k′
1, k′

2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−
K . ∀(S′

1, S′
2 ‖ S1, S2, (pks′)) ∈ R−

S .
(m′

1k
′
1S

′
1 = � ⇒ m2k2S2 = �) ∧

(m′
2k

′
2S

′
2 = � ⇒ m1k1S1 = �) }

F (R−, R+)S = {(⊥, ⊥ ‖ S1, S2, (pks)) | (pks) ∈ ps the set of all s-parameters } ∪

{(S′
1, S′

2 ‖ S1, S2, (pks) | (pks) = {(r1|q̂1|Q1), . . . , (rn|q̂n|Qn)} ∈ ps

(q̂i is a choice of ∧̄-clause in ri, and Qi is a choice of ∨̄-clause in qi) ∧

S′
1 � S1 �= ⊥ ∧ S′

2 � S2 �= ⊥ ∧

A(pks)
1 (S1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)

2 (S2) ∩ π2(Z(pks)) = ∅
(in each side are the visible locations in Z(pks) disjoint from the known hidden locations) ∧

∀i �= j. Åri
1 (S1) ∩ Årj

1 (S1) = ∅ ∧ Åri
2 (S2) ∩ Årj

2 (S2) = ∅
(Åri

1 , Åri
2 accessibility maps are the most inclusive for the local parameter ri.

In each side is every location, visible, hidden or reserved, belonging to a local parameter
outside the areas owned by any different local parameter) ∧

∀(l1, l2, τ) ∈ Z(pks).(S′
1(l1), S′

2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ R+
V

(All visible locations hold related values) ∧

if Qi = (Pi, LLi) then (S1, S2) ∈ Pi ∧
∀(l1, l2, τ) ∈ LLi. (S′

1(l1), S′
2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ R+

V

(The states belong to all simple state relations in the chosen ∨̄-clauses.
Corresponding LL location-sets hold related values) }

It follows from the definition that

– For all (v′1, v′2 ‖ v1, v2, τ, p) ∈ F (R−, R+)V it holds that (v′1 = v′2 = ⊥) or (v1 �= ⊥∧v2 �= ⊥).
– For all (s′1, s′2 ‖ s1, s2, p) ∈ F (R−, R+)S it holds that (s′1 = s′2 = ⊥) or (s1 �= ⊥ ∧ s2 �= ⊥).
– ∀R−, R+.∀(x : τ)�.∀p ∈ pk.∀k1, k2 ∈ F (D, D)K . (⊥,⊥ ‖ k1, k2, (x : τ)�, p) ∈ F (R−, R+)K

– ∀R−, R+.∀Tτ.∀p ∈ pvm.∀m1,m2 ∈ F (D, D)M . (⊥,⊥ ‖ m1,m2, T τ, p) ∈ F (R−, R+)M

101



First we will show that when F acts on adm+relations, then we get an adm+relation. So we need
to show that the action of F preserves downwards closure, admissibility and parameter weakening.

Lemma 19. The action of F preserves downwards closure.

For all R+, R− ∈ R(D).
If R+ is downwards closed, then F (R−, R+) is downwards closed.

Lemma 20. The action of F on adm+relations preserves admissibility.

For all R+, R− ∈ R(D). If R+ is adm+, then F (R−, R+) is admissible.

Lemma 21. The action of F preserves parameter weakening.

For all R+, R− ∈ R(D).
If R+ is parameter weakened, then F (R−, R+) is parameter weakened.

Proofs of the above three lemmas are in the appendix.

As the action of F on relations on D preserves downwards closure, admissibility and parameter
weakening it follows that

Corollary 4. The action of F preserves adm+.

For all R+, R− ∈ R(D).
If R+ ∈ Radm+(D), then F (R−, R+) ∈ Radm+(D).

Lemma 22. The action of F on functions D � D preserves the relation ( , id) : ⊂ .
∀R+, S+, R−, S− ∈ R(D). ∀f+, f− : D � D.

If (f−, idD) : S− ⊂ R− and (f+, idD) : R+ ⊂ S+ then
(F (f−, f+), F (idD, idD)) = (F (f−, f+), idF (D,D)) : F (R−, R+) ⊂ F (S−, S+).

Corollary 5. Monotonicity.
∀R+, S+, R−, S− ∈ R(D). If S− ⊂ R− and R+ ⊂ S+ then F (R−, R+) ⊂ F (S−, S+).

The corollary follows from the lemma with f+ = f− = idD.

Proof of lemma 22
We show here the proof for F (D, D)S , where we see that we benefit from expressing our relations
as ’four-tuples’. The rest of the proof is in the appendix.

Let R+, S+, R−, S− ∈ R(D), and
let f+, f− : D � D. f− = (f−

v , f−
k , f−

m, f−
s ), f+ = (f+

v , f+
k , f+

m, f+
s ).

Assume (f−, idD) : S− ⊂ R− and (f+, idD) : R+ ⊂ S+.
We aim to show (F (f−, f+), F (idD, idD)) : F (R−, R+) ⊂ F (S−, S+).

(f−, idD) : S− ⊂ R− ∧ (f+, idD) : R+ ⊂ S+ implies f− � idD ∧ f+ � idD.
By the functorial properties of F we then have F (f−, f+) � F (idD, idD) = idF (D,D).

Let F (f−, f+) = h = (hv, hk, hm, hs) and let for now idF = idF (D,D).
We need to show that s ∈ F (R−, R+) ⇒ ((h, idF )s) ∈ F (S−, S+).
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• F (D, D)S

Assume (s′1, s
′
2 ‖ s1, s2, (pks)) ∈ F (R−, R+)S , (pks) = {(r1|q1|Q1), . . . , (rn|qn|Qn)} ∈ ps. We

aim to show (hss
′
1, hss

′
2 ‖ idss1, idss2, (pks)) ∈ F (S−, S+).

If s′1 = ⊥ = s′2 then since hs is strict so (hss
′
1, hss

′
2 ‖ idss1, idss2, p) = (⊥,⊥ ‖ s1, s2, (pks)) ∈

F (S−, S+)S .
Else (hss

′
1, hss

′
2 ‖ idss1, idss2, (pks)) = (λl.f+

v (s′1l), λl.f+
v (s′2l) ‖ s1, s2, (pks)) and

(s′1, s
′
2 ‖ s1, s2, p) ∈ F (R−, R+)S so

(a) s′1 � s1 �= ⊥ ∧ s′2 � s2 �= ⊥
(b) A(pks)

1 (s1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)
2 (s2) ∩ π2(Z(pks)) = ∅ ∧

∀i �= j. Åri
1 (s1) ∩ Årj

1 (s1) = ∅ ∧ Åri
2 (s2) ∩ Årj

2 (s2) = ∅
(c) ∀(l1, l2, τ) ∈ Z(pks).(s′1(l1), s′2(l2) ‖ s1(l1), s2(l2), τ, (pks)vm) ∈ R+

V

(d) ∀i ∈ 1..n. if Qi = (Pi, LLi) then (s1, s2) ∈ Pi

(e) if Qi = (Pi, LLi) then ∀(l1, l2, τ) ∈ LLi. (s′1(l1), s′2(l2) ‖ s1(l1), s2(l2), τ, (pks)vm) ∈ R+
V

and we need to show that if hs(s′1) �= ⊥ ∨ hs(s′2) �= ⊥ then
1. hs(s′1) � s1 �= ⊥ ∧ hs(s′2) � s2 �= ⊥
2. A(pks)

1 (s1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)
2 (s2) ∩ π2(Z(pks)) = ∅ ∧

∀i �= j. Åri
1 (s1) ∩ Årj

1 (s1) = ∅ ∧ Åri
2 (s2) ∩ Årj

2 (s2) = ∅
3. ∀(l1, l2, τ) ∈ Z(pks).((hss

′
1)(l1), (hss

′
2)(l2) ‖ s1(l1), s2(l2), τ, (pks)vm) =

(f+
v (s′1l1), f

+
v (s′2l2) ‖ s1(l1), s2(l2), τ, (pks)vm) ∈ S+

V

4. ∀i ∈ 1..n. if Qi = (Pi, LLi) then (s1, s2) ∈ Pi

5. if Qi = (Pi, LLi) then ∀(l1, l2, τ) ∈ LLi. ((hss
′
1)(l1), (hss

′
2)(l2) ‖ s1(l1), s2(l2), τ, (pks)vm) =

(f+
v (s′1l1), f

+
v (s′2l2) ‖ s1(l1), s2(l2), τ, (pks)vm) ∈ S+

V

1. Follows from (a) together with h � id.
2. Follows from (b) directly.
3. Follows from (c) together with the assumption (f+, idD) : R+ ⊂ S+.
4. Follows from (d) directly.
5. Follows from (e) together with (f+, idD) : R+ ⊂ S+.

We conclude that (hss
′
1, hss

′
2 ‖ idss1, idss2, (pks)) ∈ F (S−, S+)S .

�

Theorem 3. There exists an adm+ relation ∇ = (∇V ,∇K ,∇M ,∇S) ∈ Radm+(D)
satisfying the equations in definition 32 and
(i, i) : F (∇,∇) ⊂ ∇ ∧ (i−1, i−1) : ∇ ⊂ F (∇,∇).

We now aim to prove theorem 3.
We have a partial order on the set of relations on a domain D ∈ {D, F (D, D)} by

R ⊂ R′ def⇐⇒ (idD, idD) : R ⊂ R′.
This inherits as a partial order on the set Radm+(D).

Lemma 23. 1. If S is a set of relations on D ∈ {D, F (D, D)} (S ⊆ R(D)), then there exist a
relation

⋂S ∈ R(D) given by the set theoretical intersection, such that
∀(g, j).∀R. ((g, j) : R ⊂ ⋂S) ⇔ (∀S ∈ S. (g, j) : R ⊂ S).

2. This inherits to adm+relations: If S is a set of adm+relations on D (S ⊆ Radm+(D)), then
there exist an adm+relation

⋂S ∈ Radm+(D) such that
∀(g, j).∀R. ((g, j) : R ⊂ ⋂S) ⇔ (∀S ∈ S. (g, j) : R ⊂ S).

Proof of lemma 23. Let S be a set of adm+relations on D ∈ FM-cpo4
⊥ and let ∩S be the set

theoretical intersection. We need to prove
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– ∩S ∈ Radm+(D):
∩S ∈ R(D) follows from the definition of the relational structure. Admissibility of ∩S follows
from admissibility of each S ∈ S. Downwards closure of ∩S follows from downwards closure of
each S ∈ S. Parameter weakening of ∩S follows from parameter weakening of each S ∈ S.

– ∀(g, j).∀R. ((g, j) : R ⊂ ⋂S) ⇔ (∀S ∈ S. (g, j) : R ⊂ S):
⇒: Assume (g, j) : R ⊂ ⋂S. Then ∀r ∈ R.(g, j)r ∈ ⋂S). So ∀S ∈ S,∀r ∈ R.(g, j)r ∈ S).
Hence ∀S ∈ S. (g, j) : R ⊂ S).
⇐: Assume ∀S ∈ S. (g, j) : R ⊂ S. Then ∀S ∈ S.∀r ∈ R. (g, j)r ∈ S. So ∀r ∈ R. (g, j)r ∈ ⋂S.
Hence (g, j) : R ⊂ ⋂S.

�

Corollary 6.
For D ∈ {D, F (D, D)} it holds that the partially ordered set (Radm+(D) , ⊂) is a complete lattice.

Definition 33. The relation ((f, j)∗S)
For D,E ∈ FM-cpo4

⊥, D = (D1, D2, D3, D4), j : D ∼= E,
f : D � E, f � j, S ∈ R(E)

define (f, j)∗S =
{s = ((v′1, v

′
2 ‖ v1, v2, τ1, p1), (k′

1, k
′
2 ‖ k1, k2, (x : τ2)�, p2), (m′

1,m
′
2 ‖ m1,m2, T τ3, p3), (s′1, s

′
2 ‖ s1, s2, p4)) |

v′1, v
′
2, v1, v2 ∈ D1 ∧ k′

1, k
′
2, k1, k2 ∈ D2 ∧ m′

1,m
′
2,m1,m2 ∈ D3 ∧ s′1, s

′
2, s1, s2 ∈ D4 ∧

(f, j)s ∈ S }

Lemma 24. When (f, j)∗S is defined as above, then

1. (f, j)∗S ∈ R(D).
2. If S is adm+, then (f, j)∗S is adm+.
3. ∀D′, j′, f ′, R with j′ : D′ ∼= D, f ′ : D′ � D, f ′ � j′, R ∈ R(D′).

(f ′, j′) : R ⊂ ((f, j)∗S) ⇔ (f ◦ f ′, j ◦ j′) : R ⊂ S

Proof

1. The domain parts are in the required domains, and for each of the four Di, for any
(⊥,⊥ ‖ d1, d2, (type), p) it holds that (fi, ji)(⊥,⊥ ‖ d1, d2, (type), p) = (⊥,⊥ ‖ jid1, jid2, (type), p)
∈ S.

2. When S is adm+ it is by definition admissible , downwards closed and parameter-weakened.
And we need to show that then also (f, j)∗S is admissible , downwards closed and parameter-
weakened.

Assume S is admissible. Assume a chain ri in (f, j)∗S ∈ R(D). Then the least upper bound
of the domain parts in ri belong to D. Also (f, j)(ri) is a chain in S, and since S is admissible
its least upper bound

⊔
(f, j)(ri) is in S. Then

⊔
ri ∈ (f, j)∗S by continuity of f, j.

Assume S is parameter weakened. Assume an element s = ((v′1, v
′
2 ‖ v1, v2, τ1, p1), (k′

1, k
′
2 ‖ k1, k2,

(x : τ2)�, p2), (m′
1,m

′
2 ‖ m1,m2, T τ3, p3), (s′1, s

′
2 ‖ s1, s2, p4)) ∈ (f, j)∗S, and assume p′1 �

p1, p′2�p2, p′3 � p3. We then have (f, j)s = (fvv′1, fvv′2 ‖ jvv1, jvv2, τ1, p1), (fkk′
1, fkk′

2 ‖ jkk1, jkk2,
(x : τ2)�, p2), (fmm′

1, fmm′
2 ‖ jmm1, jmm2, T τ3, p3), (fss

′
1, fss

′
2 ‖ jss1, jss2, p4)) ∈ S. Since S

is parameter weakened then (fvv′1, fvv′2 ‖ jvv1, jvv2, τ1, p
′
1), (fkk′

1, fkk′
2 ‖ jkk1, jkk2,

(x : τ2)�, p′2), (fmm′
1, fmm′

2 ‖ jmm1, jmm2, T τ3, p
′
3), (fss

′
1, fss

′
2 ‖ jss1, jss2, p4)) ∈ S. And then

((v′1, v
′
2 ‖ v1, v2, τ1, p

′
1), (k

′
1, k

′
2 ‖ k1, k2, (x : τ2)�, p′2), (m

′
1,m

′
2 ‖ m1,m2, T τ3, p

′
3), (s

′
1, s

′
2 ‖ s1, s2, p4))

∈ (f, j)∗S. So (f, j)∗S is parameter weakened.
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Assume S is downwards closed. Assume an element s = ((v′1, v
′
2 ‖ v1, v2, τ1, p1), (k′

1, k
′
2 ‖ k1, k2,

(x : τ2)�, p2), (m′
1,m

′
2 ‖ m1,m2, T τ3, p3), (s′1, s

′
2 ‖ s1, s2, p4)) ∈ (f, j)∗S, and assume v′′1 �

v′1, v
′′
2 � v′2, k

′′
1 � k′

1, k
′′
2 � k′

2,m
′′
1 � m′

1,m
′′
2 � m′

2, s
′′
1 � s′1, s

′′
2 � s′2. We then have

(f, j)s = (fvv′1, fvv′2 ‖ jvv1, jvv2, τ1, p1), (fkk′
1, fkk′

2 ‖ jkk1, jkk2,
(x : τ2)�, p2), (fmm′

1, fmm′
2 ‖ jmm1, jmm2, T τ3, p3), (fss

′
1, fss

′
2 ‖ jss1, jss2, p4)) ∈ S. Since S is

downwards closed and f is monotone then (fvv′′1 , fvv′′2 ‖ jvv1, jvv2, τ1, p
′
1), (fkk′′

1 , fkk′′
2 ‖ jkk1, jkk2,

(x : τ2)�, p′2), (fmm′′
1 , fmm′′

2 ‖ jmm1, jmm2, T τ3, p
′
3), (fss

′′
1 , fss

′′
2 ‖ jss1, jss2, p4)) ∈ S. And then

((v′′1 , v′′
2 ‖ v1, v2, τ1, p

′
1), (k

′′
1 , k′′

2 ‖ k1, k2, (x : τ2)�, p′2), (m
′′
1 ,m′′

2 ‖ m1,m2, T τ3, p
′
3), (s

′′
1 , s′′2 ‖ s1, s2, p4))

∈ (f, j)∗S. So (f, j)∗S is downwards closed.

3. a) If j, j′ are isomorphisms and compose then (j ◦ j′) is an isomorphism. Since f � j, f ′ � j′,
then also f ◦ f � j ◦ j′.
b) ⇒: Assume (f ′, j′) : R ⊂ ((f, j)∗S). This implies s ∈ R ⇒ (f ′, j′)(s) ∈ ((f, j)∗S). By the
definition of ((f, j)∗S) then (f, j)((f ′, j′)(s)) = (f ◦ f ′, j ◦ j′)(s) ∈ S. Together with a) then
(f ◦ f ′, j ◦ j′) : R ⊂ S.
⇐: Assume (f ◦f ′, j◦j′) : R ⊂ S. This implies s ∈ R ⇒ (f ◦f ′, j◦j′)(s) = (f, j)((f ′, j′)(s)) ∈ S.
Since f ′ : D′ � D and j′ : D′ ∼= D we have that the domain parts of (f ′, j′)(s) are in the
required domains for (f, j)∗S so (f ′, j′)(s) ∈ ((f, j)∗S) by the difinition of ((f, j)∗S). Hence
(f ′, j′) : R ⊆ ((f, j)∗S).

�

Lemma 25. (i, i) : F (R,R) ⊂ R and (i−1, i−1) : R ⊂ F (R,R) ⇐⇒ R = (i−1, i−1)∗F (R,R)

Proof
⇐: Assume R = (i−1, i−1)∗F (R,R)

i) t ∈ R = (i−1, i−1)∗F (R,R) ⇒ (i−1, i−1)t ∈ F (R,R) by the definition of (i−1, i−1)∗F (R,R). But
this implies (i−1, i−1) : R ⊂ F (R,R) by the definition of ( , ) : ⊂ .
ii) t ∈ F (R,R) ⇒ (i−1, i−1)((i, i)(t)) ∈ F (R,R) but this implies (i, i)(t) ∈ (i−1, i−1)∗F (R,R) since
we know that the domain-element parts of (i, i)(t) belong to the required domains. Then using the
assumption we have (i, i)t ∈ R. We conclude (i, i) : F (R,R) ⊂ R.

⇒: Assume (i, i) : F (R,R) ⊂ R and (i−1, i−1) : R ⊂ F (R,R)
i) t0 ∈ R ⇒ (i−1, i−1)t0 ∈ F (R,R), so t0 ∈ (i−1, i−1)∗F (R,R)
ii) t1 ∈ (i−1, i−1)∗F (R,R) ⇒ (i−1, i−1)(t1) ∈ F (R,R) ⇒ (i, i)((i−1, i−1)(t1)) ∈ R, so t1 ∈ R
We conclude R = (i−1, i−1)∗F (R,R).
�

We want to prove the existence of a relation R ∈ Radm+(D) such that

(i, i) : F (R,R) ⊂ R ∧ (i−1, i−1) : R ⊂ F (R,R),

by the lemma 25 this is the same as looking for a relation

R = (i−1, i−1)∗F (R,R).

We notice that R ∈ Radm+(D), R = (i−1, i−1)∗F (R,R) iff
R is a fixed point of Φ : Radm+(D) → Radm+(D) where Φ(R) = (i−1, i−1)∗F (R,R).
Therefore we want to show that Φ has as a fixed point.

(i−1, i−1)∗ is monotone: Radm+(F (D, D)) → Radm+(D) with the ⊂ ordering on relations.
S0 ⊂ S1 ⇒ (i−1, i−1)∗S0 ⊂ (i−1, i−1)∗S1. Apparent from the definition of (i−1, i−1)∗S.
But F : Radm+(D) → Radm+(F (D, D)) is not monotone, hence Φ is not monotone. We separate
negative and positive occurrences, define

Ψ(R−, R+)
def
= (i−1, i−1)∗F (R−, R+).
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Ψ is monotone: Rop
adm+(D) × Radm+(D) → Radm+(D) with the ⊂ ordering on relations.

If S− ⊂ R− ∧ R+ ⊂ S+ then F (R−, R+) ⊂ F (S−, S+). Then also Ψ(R−, R+) =
(i−1, i−1)∗F (R−, R+) ⊂ (i−1, i−1)∗F (S−, S+) = Ψ(S−, S+).

We now look for a fixed point of Ψ . Define

Ψ §(R−, R+) = (Ψ(R+, R−), Ψ(R−, R+)).

Then Ψ § is a monotone operator on the complete lattice Radm+(D)op×Radm+(D). By the Knaster-
Tarski fixed point theorem the least fixed point (∇−,∇+) of Ψ § exists, it is also the least prefixed
point, and it holds that Ψ §(∇−,∇+) = (∇−,∇+), i.e. (by the definition of Ψ §) Ψ(∇+,∇−) = ∇−

and Ψ(∇−,∇+) = ∇+.

We want to show that ∇− = ∇+ or equivalently ∇− ⊂ ∇+ and ∇+ ⊂ ∇−.

We have Ψ §(∇+,∇−) = (Ψ(∇−,∇+), Ψ(∇+,∇−)) = (∇+,∇−). Since (∇−,∇+) is the least
prefixed point it then follows that ∇+ ⊂ ∇−. It remains to show ∇− ⊂ ∇+. We have
∇− ⊂ ∇+⇔(idD, idD) : ∇− ⊂ ∇+. We know that ∇+ is admissible so {e | (e, idD) : ∇− ⊂ ∇+ }
contains ⊥ and is closed under least upper bounds of chains. By the minimal invariant prop-
erty of D we know that idD is the least fixed point of δ : (D � D) → (D � D) defined by
δ(e) = i ◦ F (e, e) ◦ i−1, so it suffices to show that { e | (e, idD) : ∇− ⊂ ∇+ } is closed under δ.

Assume (e, idD) : ∇− ⊂ ∇+ then by lemma 22 it holds that (F (e, e), F (idD, idD)) =
(F (e, e), idF (D,D)) : F (∇+,∇−) ⊂ F (∇−,∇+). We also have (by definition of Ψ) that
∇− = Ψ(∇+,∇−) = (i−1, i−1)∗F (∇+,∇−) and ∇+ = Ψ(∇−,∇+) = (i−1, i−1)∗F (∇−,∇+).

∇− = (i−1, i−1)∗F (∇+,∇−) implies (i−1, i−1) : ∇− ⊂ F (∇+,∇−).
∇+ = (i−1, i−1)∗F (∇−,∇+) implies (i−1, i−1) : ∇+ ⊂ F (∇−,∇+).

It also holds that when s ∈ F (∇−,∇+) so (i−1, i−1)((i, i)(s)) ∈ F (∇−,∇+), and since domain parts
of (i, i)(s) belong to the required domains then this implies (i, i)(s) ∈ (i−1, i−1)∗F (∇−,∇+) = ∇+.
So it holds that

(i−1, i−1) : ∇− ⊂ F (∇+,∇−)
(e, idD) : ∇− ⊂ ∇+ ⇒ (F (e, e), idF (D,D)) : F (∇+,∇−) ⊂ F (∇−,∇+)

(i, i) : F (∇−,∇+) ⊂ ∇+

By compositionallity of ( , ) : ⊂ it holds that
if (e, idD) : ∇− ⊂ ∇+ then (δ(e), idD) = (i ◦ F (e, e) ◦ i−1, idD) : ∇− ⊂ ∇+.
{e | (e, idD) : ∇− ⊂ ∇+ } contains ⊥ and is closed under least upper bounds of chains. As
(⊥, idD) : ∇− ⊂ ∇+ then (δn(⊥)) is a chain in {e | (e, idD) : ∇− ⊂ ∇+ }. So (

⊔
δn(⊥), idD) =

(idD, idD) : ∇− ⊂ ∇+ hence ∇− ⊂ ∇+.

Since ∇− ⊂ ∇+ and ∇+ ⊂ ∇− we can conclude ∇− = ∇+ call this relation ∇.

Then (i, i) : F (∇,∇) ⊆ ∇ and (i−1, i−1) : ∇ ⊂ F (∇,∇).
∇ ∈ Radm+(D) is the invariant relation.

Here we prove the properties “parameter weakening” and “downwards closure” for the relation
∇ along the lines of Pitt’s proof of admissibility in [40]. Admissibility is necessary for the proof of
existence of an invariant relation to come through. Parameter weakening and downwards closure
are just properties we want. In the paper [13] we added existence quantors (over finite sets) to
the definition of the action of our domain constructing functor on relations. We could then prove
parameter weakening for the invariant relation. Here we get the property without the existence
quantors in the definition of the relation. For parameter weakening to be provable here, it must be
the case that it is preserved under intersections so that we have a complete lattice (Radm+(D)op ×
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Radm+(D) , ⊂) and can use Knaster-Tarski’s fixed point theorem. Second, we must be able to show
that the property is preserved by the action of F . To ensure this we require the property explicitly
(or let it be easily provable from the definition) on base-value-related, function-type-related, ∀-
type-related, computations and continuations. Generally we hope that the four-tuple construction
will make more properties expressible and then provable in this way.

6.3 Properties of the invariant relation ∇ = (∇V , ∇K , ∇M , ∇S) ∈ Radm+(D)

∇ is admissible , downwards closed and parameter-weakened, and we have
(i, i) : F (∇,∇) ⊂ ∇ ∧ (i−1, i−1) : ∇ ⊂ F (∇,∇).

Let F (∇,∇) = (F (∇,∇)V , F (∇,∇)K , F (∇,∇)M , F (∇,∇)S), then further by definition of the
action of F on relations it holds that:

F (∇,∇)V = {(⊥, ⊥ ‖ v1, v2, τ, p) | p ∈ pvm the set of all vm-parameters, v1, v2 ∈ F (D, D)V } ∪

{(v′1, v′2 ‖ v1, v2, τ, p) | p ∈ pvm ∧ v′1, v
′
2, v1, v2 ∈ F (D, D)V ∧

v′1 � v1 �= ⊥ ∧ v′2 � v2 �= ⊥ ∧
(v′1, v′2 ‖ v1, v2, τ, p) ∈ ( }

where

( = {(v′1, v′2 ‖ in11�∗ , in11�∗ , unit, p) } ∪

{(v′1, v′2 ‖ inZ�n , inZ�n , int, p) | n ∈ Z } ∪

{(v′1, v′2 ‖ inL�l1 , inL�l2 , τ ref, p) | (l1, l2, τ) ∈ Zp } ∪

{(v′1, v′2 ‖ in⊕inid1, in⊕inid2, τ1 + τ2, p) | d1, d2 ∈ (DV )↓ ∧ ∃d′1, d
′
2 ∈ DV .

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in⊕inid
′
1 �= ⊥) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = in⊕inid

′
2 �= ⊥)∧

(d′1, d′2 ‖ d1, d2, τi, p) ∈ ∇V , i ∈ {1, 2} } ∪

{(v′1, v′2 ‖ in⊗(d1a, d1b), in⊗(d2a, d2b), τa × τb, p) | d1a, d1b, d2a, d2b ∈ (DV )↓ ∧
∃d′1a, d′1b, d

′
2a, d′2b ∈ DV .

(d′1a, d′2a ‖ d1a, d2a, τa, p) ∈ ∇V ∧ (d′1b, d′2b ‖ d1b, d2b, τb, p) ∈ ∇V ∧
((v′1 = ⊥ ∧ (d′1a = ⊥ ∨ d′1b = ⊥)) ∨ (v′1 = in⊗(d′1a, d′1b) �= ⊥)) ∧
((v′2 = ⊥ ∧ (d′2a = ⊥ ∨ d′2b = ⊥)) ∨ (v′2 = in⊗(d′2a, d′2b) �= ⊥))} ∪

{(v′1, v′2 ‖ inμd1, inμd2, μα.τ, p) | d1, d2 ∈ (DV )↓ ∧ ∃d′1, d
′
2 ∈ DV .

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = inμd′1 �= ⊥) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = inμd′2 �= ⊥)∧
(d′1, d′2 ‖ d1, d2, τ [μα.τ/α], p) ∈ ∇V } ∪

{(v′1, v′2 ‖ in∀�d1 , in∀�d2 , ∀α.Tτ, p) | d1, d2 ∈ DM ∧ ∃d′1, d
′
2 ∈ DM .

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ (v′1 = in∀�d′1 �= ⊥ ∧ d′1 ' ⊥)) ∧
((v′2 = ⊥ ∧ d′2 = ⊥) ∨ (v′2 = in∀�d′2 �= ⊥ ∧ d′2 ' ⊥)) ∧
∀σ with � σ : type. (d′1, d′2 ‖ d1, d2, T τ [σ/α], p) ∈ ∇M } ∪

{(v′1, v′2 ‖ in��d1 , in��d2 , τ → Tτ ′, p) | d1, d2 ∈ (DV � DM ) ∧ ∃d′1, d
′
2 ∈ (DV � DM ).

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ (v′1 = in��d′1 �= ⊥ ∧ d′1 ' ⊥)) ∧
((v′2 = ⊥ ∧ d′2 = ⊥) ∨ (v′2 = in��d′2 �= ⊥ ∧ d′2 ' ⊥)) ∧
∀p′ � p,∀(w′

1, w′
2 ‖ w1, w2, τ, p′) ∈ ∇V . ( d′1w

′
1, d′2w

′
2 ‖ d1w1, d1w2, T τ ′, p′) ∈ ∇M }

Recall � on vm-parameters is defined as the reflexive transitive closure of the relations &, ⊇ and ≥∧̄,
(which are local extension, superset and removal of ∧̄-clauses).
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F (∇,∇)K = {(k′
1, k′

2 ‖ k1, k2, (x : τ)�, (pk)) | (pk) ∈ pk ∧
k′
1 � k1 ∧ k′

2 � k2 ∧ ∀(pk′) � (pk).
(that is (pk) extended only with ordinary local k-parameters or local extensions)

∀(pks′) ∈ (pk′)S (the set of s-instantiations of p′ i.e. choices of ∨̄-clauses),
∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ ∇S . ∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ ∇V .

(k′
1s

′
1v

′
1 = � ⇒ k2s2v2 = �) ∧

(k′
2s

′
2v

′
2 = � ⇒ k1s1v1 = �) }

F (∇,∇)M = {(m′
1, m′

2 ‖ m1, m2, T τ, p) | p ∈ pvm ∧
m′

1 � m1 ∧ m′
2 � m2 ∧

∀p′ � p.∀(pk′) ∈ p′K (the set of k-instantiations of p′ i.e.
choices of a ∧̄-clause in each local parameter).

∀(pks′) ∈ (pk′)S (the set of s-instantiations of (pk′) i.e.
choices of ∨̄-clause from each chosen ∧̄-clause in (pk′) ),

∀(k′
1, k′

2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ ∇K . ∀(S′
1, S′

2 ‖ S1, S2, (pks′)) ∈ ∇S .
(m′

1k
′
1S

′
1 = � ⇒ m2k2S2 = �) ∧

(m′
2k

′
2S

′
2 = � ⇒ m1k1S1 = �) }

F (∇,∇)S = {(⊥, ⊥ ‖ S1, S2, (pks)) | (pks) ∈ ps the set of all s-parameters } ∪

{(S′
1, S′

2 ‖ S1, S2, (pks) | (pks) = {(r1|q1|Q1), . . . , (rn|qn|Qn)} ∈ ps

(qi is a choice of ∧̄-clause in ri, and Qi is a choice of ∨̄-clause in qi) ∧

S′
1 � S1 �= ⊥ ∧ S′

2 � S2 �= ⊥ ∧

A(pks)
1 (S1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)

2 (S2) ∩ π2(Z(pks)) = ∅
(in each side are the visible locations in Z(pks) disjoint from the known hidden locations) ∧

∀i �= j. Åri
1 (S1) ∩ Årj

1 (S1) = ∅ ∧ Åri
2 (S2) ∩ Årj

2 (S2) = ∅
(Åri

1 , Åri
2 accessibility maps are the most inclusive for the local parameter ri.

In each side is every location, visible, hidden or reserved, belonging to a local parameter
outside the areas owned by any different local parameter) ∧

∀(l1, l2, τ) ∈ Z(pks).(S′
1(l1), S′

2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ ∇V

(All visible locations hold related values) ∧

∀i ∈ 1..n. if Qi = (Pi, LLi) then (S1, S2) ∈ Pi ∧
∀(l1, l2, τ) ∈ LLi. (S′

1(l1), S′
2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ ∇V

(The states belong to all simple state relations in the chosen ∨̄-clauses.
Corresponding LL location-sets hold related values) }

– For all (v′1, v′2 ‖ v1, v2, τ, p) ∈ F (∇,∇)V it holds that (v′1 = v′2 = ⊥) or (v1 �= ⊥ ∧ v2 �= ⊥).
– For all (s′1, s′2 ‖ s1, s2, p) ∈ F (∇,∇)S it holds that (s′1 = s′2 = ⊥) or (s1 �= ⊥ ∧ s2 �= ⊥).
– ∀(x : τ)�.∀p ∈ pk.∀k1, k2 ∈ F (D, D)K . (⊥,⊥ ‖ k1, k2, (x : τ)�, p) ∈ F (∇,∇)K

– ∀Tτ.∀p ∈ pvm.∀m1,m2 ∈ F (D, D)M . (⊥,⊥ ‖ m1,m2, T τ, p) ∈ F (∇,∇)M

There are certain properties of values, computations and states which have to do with pa-
rameters derived from other parameters by removal of ∧̄-clauses. Such parameters are � related,
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and the parameter weakening property gives that relatedness of values and computations will be
preserved under � extensions. We have no general parameter weakening property for states, but
a special limited weakening concerned with removal of con-clauses. The next lemma says that if
states s′1, s

′
2, s1, s2 are related under an s-parameter pks and pks′ is an s-parameter derived from

pks by removal of some ∧̄-clauses but such that those instantiated in pks are not touched, then
s′1, s

′
2, s1, s2 will also be related under pks′.

Lemma 26. Let p = {ri} be a vm-parameter, and let pks = {(ri|qi|Qi)} ∈ pS.
Assume (s′1, s

′
2 ‖ s1, s2, pks) ∈ ∇S.

If ∀i.ri ⊇ r′i �= ∅ and pks′ = {(r′i|qi|Qi)},
then p′ = (pks′)vm = {r′i} and (s′1, s

′
2 ‖ s1, s2, pks′) ∈ ∇S.

Proof By definition of � it holds that p′ = (pks′)vm = {r′i} � p.
The approximation properties s′1 � s1 and s′2 � s2 are not changed. By assumption

(a) A(pks)
1 (s1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)

2 (s2) ∩ π2(Z(pks)) = ∅ and
(b) ∀i �= j. Åri

1 (s1) ∩ Årj
1 (s1) = ∅ ∧ Åri

2 (s2) ∩ Årj
2 (s2) = ∅ and

(c) ∀i ∈ 1..n. if Qi = (Pi, LLi) then (s1, s2) ∈ Pi ∧
∀(l1, l2, τ) ∈ LLi. (s′1(l1), s′2(l2) ‖ s1(l1), Ss2(l2), τ, (pks)vm) ∈ ∇V and

(d) ∀(l1, l2, τ) ∈ Z(pks).(s′1(l1), s′2(l2) ‖ s1(l1), s2(l2), τ, (pks)vm) ∈ ∇V

We need to prove

1. A(pks′)
1 (s1) ∩ π1(Z(pks′)) = ∅ ∧ A(pks′)

2 (s2) ∩ π2(Z(pks′)) = ∅ and
2. ∀i �= j. Åri′

1 (s1) ∩ Årj′
1 (s1) = ∅ ∧ Åri′

2 (s2) ∩ Årj′
2 (s2) = ∅ and

3. ∀i ∈ 1..n. if Qi = (Pi, LLi) then (s1, s2) ∈ Pi ∧
∀(l1, l2, τ) ∈ LLi. (s′1(l1), s′2(l2) ‖ s1(l1), Ss2(l2), τ, (pks′)vm) ∈ ∇V and

4. ∀(l1, l2, τ) ∈ Z(pks′).(s′1(l1), s′2(l2) ‖ s1(l1), s2(l2), τ, (pks′)vm) ∈ ∇V

1. follows from (a). Z(pks′) =
⊎

Zqi is defined on the basis of the instantiated qi’s in (pks′). These
are the same as in (pks), so Z(pks′) = Z(pks). Also A(pks′)

1 ,A(pks′)
2 ,A(pks)

1 ,A(pks)
2 are defined on

the basis of the instantiated qi’s.
2. follows from (b) together with ∀i. r′i ⊆ ri ⇒ (Åri′

1 (s1) ⊆ Åri
1 (s1) ∧ Åri′

2 (s2) ⊆ Åri
2 (s2)).

3. There are no changes to finitary state relations, so also the LL’s will be the same. As (pks′)vm �
(pks)vm then by weakening for values and (c) all values stored in LL’s are still related.

4. follows from (d) and Z(pks′) = Z(pks) and (pks′)vm � (pks)vm together with parameter weak-
ening for stored values.

�

6.4 Relating denotations of open terms

We will now define a parameterized binary relation ∇ΞΓ between denotations of open expressions.
The relation is defined by reference to the relation ∇. The binary relation will be shown to imply
contextual equivalence at (ordinary) parameters, which only give a set of visible locations and no
hidden invariants.

Definition 34. The relation ∇ΞΓ

∇ΞΓ
V For Ξ = α1 . . . αm, Γ = x1 : τ1, . . . , xn : τn and Δ; Ξ; Γ � V1 : τ and Δ; Ξ; Γ � V2 : τ

Let p be an ordinary vm-parameter with associated Zp such that Zp
1 = Zp

2 = Δ,
let v1 = [[Δ; Ξ; Γ � V1]] and v2 = [[Δ; Ξ; Γ � V2]], define
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(v1, v2, τ, p) ∈ ∇ΞΓ
V

def⇐⇒

∀σj with � σj : type, j = 1, ..,m. ∀ p′ � p.

∀(v′11, v
′
21 ‖ v11, v21, τ1[σj/αj ], p′) ∈ ∇V , . . . , (v′1n, v′

2n ‖ v1n, v2n, τn[σj/αj ], p′) ∈ ∇V , with
ρ′1 = v′11 ⊗ . . . ⊗ v′1n ∈ [[Γ ]], ρ1 = v11 ⊗ . . . ⊗ v1n ∈ [[Γ ]],
ρ′2 = v′21 ⊗ . . . ⊗ v′2n ∈ [[Γ ]], ρ2 = v21 ⊗ . . . ⊗ v2n ∈ [[Γ ]].

it holds that (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), τ [σj/αj ], p′) ∈ ∇V .

∇ΞΓ
M For Ξ = α1 . . . αm, Γ = x1 : τ1, . . . , xn : τn and Δ; Ξ; Γ � M1 : Tτ and Δ; Ξ; Γ � M2 : Tτ

Let p be an ordinary vm-parameter with associated Zp such that Zp
1 = Zp

2 = Δ,
let m1 = [[Δ; Ξ; Γ � M1]] and m2 = [[Δ; Ξ; Γ � M2]], define

(m1,m2, T τ, p) ∈ ∇ΞΓ
M

def⇐⇒

∀σj with � σj : type, j = 1, ..,m. ∀p′ � p.

∀(v′11, v
′
21 ‖ v11, v21, τ1[σj/αj ], p′) ∈ ∇V , . . . , (v′1n, v′

2n ‖ v1n, v2n, τn[σj/αj ], p′) ∈ ∇V , with
ρ′1 = v′11 ⊗ . . . ⊗ v′1n ∈ [[Γ ]], ρ1 = v11 ⊗ . . . ⊗ v1n ∈ [[Γ ]],
ρ′2 = v′21 ⊗ . . . ⊗ v′2n ∈ [[Γ ]], ρ2 = v21 ⊗ . . . ⊗ v2n ∈ [[Γ ]].

it holds that (m1(ρ′1i),m2(ρ′2i) ‖ m1(ρ1i),m2(ρ2i), T τ [σj/αj ], p′) ∈ ∇M .

Proposition 4. Typing rules preserve ∇ΞΓ relation of denotations.
For typing rules with no premisses it holds that for all p ∈ ovm with Zp

1 = Zp
2 = Δ

if
Δ; Ξ; Γ � V : τ

and v = [[Δ; Ξ; Γ � V : τ ]] then (v, v, τ, p) ∈ ∇ΞΓ
V

For typing rules with j premisses it holds that for all p ∈ ovm with Zp
1 = Zp

2 = Δ

if Δ; Ξ1; Γ1 � G11 : γ1 . . . . . . Δ; Ξj ; Γj � Gj1 : γj

Δ; Ξ; Γ � G′
1 : γ′ and by the same typing rule

Δ; Ξ1; Γ1 � G12 : γ1 . . . . . . Δ; Ξj ; Γj � Gj2 : γj

Δ; Ξ; Γ � G′
2 : γ′ and for the well typed terms

d11 = [[Δ; Ξ1; Γ1 � G11 : γ1]], d12 = [[Δ; Ξ1; Γ1 � G12 : γ1]], . . . ,
dj1 = [[Δ; Ξj ; Γj � Gj1 : γj ]], dj2 = [[Δ; Ξj ; Γj � Gj2 : γj ]], and
∀i ∈ 1 . . . j, (di1, di2, γi, p) ∈ ∇ΞiΓi

X (where in each case X is the relevant X ∈ V,M).
And d′1 = [[Δ; Ξ; Γ ′ � G′

1 : γ′]], d′2 = [[Δ; Ξ; Γ ′ � G′
2 : γ′]].

then it holds that (d′1, d
′
2, γ

′, p) ∈ ∇ΞΓ
X

Proof
To shorten formulations in the proof we let here arbitrarily p ∈ ovm be a parameter such that
Zp = {(l1, l1, σ̂1) . . . (ln, ln, σ̂n)} where Δ = Zp

1 = Zp
2 .

For Ξ = α1 . . . αm, Γ = x1 : τ1, . . . , xn : τn with Ξ � Γ and
arbitrary σ1 . . . σm with � σk : type,

arbitrary p′ � p, arbitrary (v′1i, v
′
2i ‖ v1i, v2i, τi[σk/αk], p′) ∈ ∇V , i = 1, .., n.
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Let ρ′1 = v′11 ⊗ . . . ⊗ v′1n ∈ [[Γ ]]. Let ρ1 = v11 ⊗ . . . ⊗ v1n ∈ [[Γ ]].
Let ρ′2 = v′21 ⊗ . . . ⊗ v′2n ∈ [[Γ ]]. Let ρ2 = v21 ⊗ . . . ⊗ v′2n ∈ [[Γ ]].

As ∀i. v′1i � v1i ∧ v′2i � v2i and
(
(v′1i = v′2i = ⊥) ∨ (v1i �= ⊥ ∧ v2i �= ⊥)

)
, then it holds that

ρ′1 � ρ1 ∧ ρ′2 � ρ2

(ρ′1 = ρ′2 = ⊥) ∨ (ρ1 �= ⊥ ∧ ρ2 �= ⊥)
(ρ1 = ⊥ ∨ ρ2 = ⊥) ⇒ (ρ′1 = ⊥ ∧ ρ′2 = ⊥)
(ρ′1 �= ⊥ ∨ ρ′2 �= ⊥) ⇒ (ρ1 �= ⊥ ∧ ρ2 �= ⊥).

We now show for each typing rule that relatedness of denotations is preserved. As the σ types, the
parameter extension p′ and the ρ environments are arbitrary, this covers all cases

id:
Δ; Ξ; x1 : τ1 . . . xj : τj . . . xn : τn � xj : τj

Let Γ = x1 : τ1 . . . xj : τj . . . xn : τn.
There are no assumptions, so we need to prove that it holds
([[Δ; Ξ; Γ � xj : τj ]], [[Δ; Ξ; Γ � xj : τj ]], τ, p) ∈ ∇ΞΓ

V that is
([[Δ; Ξ; Γ � xj : τj ]](ρ′1i), [[Δ; Ξ; Γ � xj : τj ]](ρ′2i)) ‖
[[Δ; Ξ; Γ � xj : τj ]](ρ1i), [[Δ; Ξ; Γ � xj : τj ]](ρ2i)), τ [σk/αk], p′) ∈ ∇V .

If ρ′1 = ⊥ ∧ ρ′2 = ⊥ then for any j ∈ {1, .., n},
([[Δ; Ξ; Γ � xj : τj ]](ρ′1), [[Δ; Ξ; Γ � xj : τj ]](ρ′2)),
[[Δ; Ξ; Γ � xj : τj ]](ρ1), [[Δ; Ξ; Γ � xj : τj ]](ρ2)) =
(⊥,⊥, [[Δ; Ξ; Γ � xj : τj ]](ρ1), [[Δ; Ξ; Γ � xj : τj ]](ρ2)) and
(⊥,⊥ ‖ [[Δ; Ξ; Γ � xj : τj ]](ρ1), [[Δ; Ξ; Γ � xj : τj ]](ρ2), τj [σk/αk], p′) ∈ ∇V ,

If ρ′1 �= ⊥ ∨ ρ′2 �= ⊥ and ρ1 �= ⊥ ∧ ρ2 �= ⊥ then for j ∈ {1, .., n},
([[Δ; Ξ; Γ � xj : τj ]](ρ′1), [[Δ; Ξ; Γ � xj : τj ]](ρ′2),
[[Δ; Ξ; Γ � xj : τj ]](ρ1), [[Δ; Ξ; Γ � xj : τj ]](ρ2)) =
(d′1j , d

′
2j , v1j , v2j), where d′1j ∈ {⊥, v′

1j} ∧ d′2j ∈ {⊥, v′
2j} and as

(v′1j , v
′
2j ‖ v1j , v2j , τj [σk/αk], p′) ∈ ∇V

so by downwards closure (d′1j , d
′
2j ‖ v1j , v2j , τj [σk/αk], p′) ∈ ∇V .

Hence ([[Δ; Γ � xj : τj ]], [[Δ; Γ � xj : τj ]], τj , p) ∈ ∇ΞΓ
V .

loc:
Δ; Ξ; Γ � l : σ ref

(l : σ ∈ Δ)

Δ; Ξ; Γ � l : σ ref requires l : σ ∈ Δ.

We need to prove that it holds ([[Δ; Ξ; Γ � l : σref ]], [[Δ; Ξ; Γ � l : σref ]], σref, p) ∈ ∇ΞΓ
V . The

requirement (l : σ ∈ Δ) means that σ is closed and so σ[σj/αj ] = σ. So we want to prove that
([[Δ; Ξ; Γ � l : σref ]](ρ′1), [[Δ; Ξ; Γ � l : σref ]](ρ′2) ‖
[[Δ; Ξ; Γ � l : σref ]](ρ1), [[Δ; Ξ; Γ � l : σref ]](ρ2)), σref, p′) ∈ ∇V .

If ρ′1 = ⊥ ∧ ρ′2 = ⊥ then
([[Δ; Ξ; Γ � l : σref ]](ρ′1), [[Δ; Ξ; Γ � l : σref ]](ρ′2),
[[Δ; Ξ; Γ � l : σref ]](ρ1), [[Δ; Ξ; Γ � l : σref ]](ρ2)) =
(⊥,⊥, [[Δ; Ξ; Γ � l : σref ]](ρ1), [[Δ; Ξ; Γ � l : σref ]](ρ2)) and
(⊥,⊥ ‖ [[Δ; Ξ; Γ � l : σref ]](ρ1), [[Δ; Ξ; Γ � l : σref ]](ρ2), σ[σj/αj ]ref, p′) ∈ ∇V ,

If ρ′1 �= ⊥ ∨ ρ′2 �= ⊥ and ρ1 �= ⊥ ∧ ρ2 �= ⊥ then
([[Δ; Ξ; Γ � l : σref ]](ρ′1), [[Δ; Ξ; Γ � l : σref ]](ρ′2),
[[Δ; Ξ; Γ � l : σref ]](ρ1), [[Δ; Ξ; Γ � l : σref ]](ρ2)) =
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(d′1, d
′
2, i(inLl), i(inLl)) where d′1, d

′
2 ∈ {⊥, i(inLl)}

Since p′ � p then Zp′ ⊇ Zp so (l, l, σ) ∈ Zp ⇒ (l, l, σ) ∈ Zp′
so

(d′1, d
′
2 ‖ i(inLl), i(inLl), σ[σj/αj ] ref, p′) ∈ ∇V

Hence ([[Δ; Γ � l : σref ]], [[Δ; Γ � l : σref ]], σref, p) ∈ ∇ΞΓ
V .

val: Δ; Ξ; Γ � V : τ

Δ; Ξ; Γ � val V : Tτ

Let v1 = [[Δ; Ξ; Γ � V1 : τ ]] and v2 = [[Δ; Ξ; Γ � V2 : τ ]]. Assume (v1, v2, τ, p) ∈ ∇ΞΓ
V .

This assumption implies (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), τ [σj/αj ], p′) ∈ ∇V

Let m1 = [[Δ; Ξ; Γ � val V1 : Tτ ]] and m2 = [[Δ; Ξ; Γ � val V2 : Tτ ]].
We need to show (m1,m2, T τ, p) ∈ ∇ΞΓ

M , that is we want to show
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [σj/αj ], p′) ∈ ∇M , or
(i−1(m1(ρ′1)), i

−1(m2(ρ′2)) ‖ i−1(m1(ρ1)), i−1(m2(ρ2)), T τ [σj/αj ], p′) ∈ F (∇,∇)M .

i−1(m1(ρ′1)) = λk.λS.i−1(k)S(v1(ρ′1)), i−1(m2(ρ′2)) = λk.λS.i−1(k)S(v2(ρ′2)),
i−1(m1(ρ1)) = λk.λS.i−1(k)S(v1(ρ1)), i−1(m2(ρ2)) = λk.λS.i−1(k)S(v2(ρ2)).

If v1(ρ′1) = v2(ρ′2) = ⊥ then m1(ρ′1) and m2(ρ′2) will both be the constant ⊥ function in M,
and hence (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [σj/αj ], p′) ∈ ∇M .

Else, let p′′ � p′, (pk′′) ∈ p′′K, (pks′′) ∈ pk′′S and let (k′
1, k

′
2 ‖ k1, k2, (x : τ [σj/αj ])�, (pk′′)) ∈

∇K , (S′
1, S

′
2 ‖ S1, S2, (pks′′)) ∈ ∇S . We need to show

m1(ρ′1))k
′
1S

′
1 = � ⇒ (m2(ρ2))k2S2 = � and m2(ρ′2))k

′
2S

′
2 = � ⇒ (m1(ρ1))k1S1 = �

By assumption and weakening (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), τ [σj/αj ], p′′) ∈ ∇V .
i−1(m1(ρ′1))k

′
1S

′
1 = i−1(k′

1)S
′
1v1(ρ′1), i−1(m2(ρ′2))k

′
2S

′
2 = i−1(k′

2)S
′
2v2(ρ′2),

i−1(m1(ρ1))k1S1 = i−1(k1)S1v1(ρ1), i−1(m2(ρ2))k2S2 = i−1(k2)S2v2(ρ2).

So it follows that since k’s, S’s and v’s are correspondingly related so
(m1(ρ′1))k

′
1S

′
1 = k′

1S
′
1(v1(ρ′1)) = � ⇒ k2S2(v2(ρ2)) = (m2(ρ2))k2S2 = � ∧

(m2(ρ′2))k
′
2S

′
2 = k′

2S
′
2(v2(ρ′2)) = � ⇒ k1S1(v1(ρ1)) = (m1(ρ1))k1S1 = �

Hence (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [σj/αj ], p′) ∈ ∇M .
We conclude (m1,m2, T τ [σj/αj ], p) ∈ ∇Γ

M .

deref: Δ; Ξ; Γ � V : τ ref

Δ; Ξ; Γ � !V : Tτ

Let v1 = [[Δ; Ξ; Γ � V1 : τ ref ]] and v2 = [[Δ; Ξ; Γ � V2 : τ ref ]].
Assume (v1, v2, τ ref, p) ∈ ∇ΞΓ

V , so (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), τ [σj/αj ] ref, p′) ∈ ∇V .
This implies that either v1(ρ′1) = v2(ρ′2) = ⊥ or ∃(l1, l2, τ [σj/αj ]) ∈ Zp′

.
v1(ρ′1) ∈ {⊥, i(inLl1)}, v1(ρ1) = i(inLl1), v2(ρ′2) ∈ {⊥, i(inLl2)}, v2(ρ2) = i(inLl2).

Let m1 = [[Δ; Ξ; Γ � !V1]] and m2 = [[Δ; Ξ; Γ � !V2]].
We need to show (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [σj/αj ], p′) ∈ ∇M .
If v1(ρ′1) = v2(ρ′2) = ⊥ then m1(ρ′1) = m2(ρ′2) = ⊥ and
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ′2), v2(ρ2), T τ [σj/αj ], p′) ∈ ∇M . Else,
i−1(m1(ρ′1)) ∈ {⊥, λk.λS.(i−1k)S(Sl1)}, i−1(m1(ρ1)) = λk.λS.(i−1k)S(Sl1),
i−1(m2(ρ′2)) ∈ {⊥, λk.λS.(i−1k)S(Sl2)}, i−1(m2(ρ2)) = λk.λS.(i−1k)S(Sl2).

Let p′′ � p′, (pk′′) ∈ p′′K, (pks′′) ∈ (pk′′)S, (k′
1, k

′
2 ‖ k1, k2, (x : τ [σj/αj ])�, (pk′′)) ∈

∇K , (S′
1, S

′
2 ‖ S1, S2, (pks′′)) ∈ ∇S .
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Since (l1, l2, τ [σj/αj ]) ∈ Zp′
also (l1, l2, τ [σj/αj ]) ∈ Zp′′

, then (S′
1, S

′
2 ‖ S1, S2, (pks′′)) ∈ ∇S ⇒

(S′
1 = ⊥ ∧ S′

2 = ⊥) ∨ (S′
1l1, S

′
2l2 ‖ S1l1, S2l2, τ [σj/αj ], p′′) ∈ ∇V .

If (S′
1 = ⊥ ∧ S′

2 = ⊥) then (m1(ρ′1))k
′
1S

′
1 = (m2(ρ′2))k

′
2S

′
2 = ⊥.

Else it follows that since continuations states and values are correspondingly related
(m1(ρ′1))k

′
1S

′
1 � k′

1S
′
1(S

′
1l1) = � ⇒ k2S2(S2l2) = (m2(ρ2))k2S2 = � ∧

(m2(ρ′2))k
′
2S

′
2 � k′

2S
′
2(S

′
2l2) = � ⇒ k1S1(S1l1) = (m1(ρ1))k1S1 = �

Hence (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [σj/αj ], p′) ∈ ∇M .
We conclude (m1,m2, T τ, p) ∈ ∇ΞΓ

M .

alloc: Δ; Ξ; Γ � V : τ

Δ; Ξ; Γ � ref V : T (τ ref)

Let v1 = [[Δ; Ξ; Γ � V1 : τ ]] and v2 = [[Δ; Ξ; Γ � V2 : τ ]]. Assume (v1, v2, τ, p) ∈ ∇ΞΓ
V .

Let m1 = [[Δ; Ξ; Γ � ref V1 : T (τ ref)]] and m2 = [[Δ; Ξ; Γ � ref V2 : T (τ ref)]].
We need to show (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (τ [σj/αj ] ref), p′) ∈ ∇M .

If (m1(ρ′1)) = ⊥∧ (m2(ρ′2)) = ⊥ then (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (τ [σj/αj ] ref), p′) ∈
∇M . Else ρ′1 = ⊥ ⇒ (m1(ρ′1)) = ⊥, ρ1 = ⊥ ⇒ (m1(ρ1)) = ⊥, ρ′2 = ⊥ ⇒ (m1(ρ′2)) = ⊥,
ρ2 = ⊥ ⇒ (m1(ρ2)) = ⊥.

ρ′1 �= ⊥ ⇒ i−1(m1(ρ′1)) = λk.λS.(i−1k)(S[l′1 �→ (v1(ρ′1))])(i ◦ inLl′1)
for some/any l′1 /∈ supp(λl′.(i−1k)(S[l′ �→ (v1(ρ′1))](i ◦ inLl′)).

ρ1 �= ⊥ ⇒ i−1(m1(ρ1)) = i−1(m1(ρ1)) = λk.λS.(i−1k)(S[l1 �→ (v1(ρ1))])(i ◦ inLl1)
for some/any l1 /∈ supp(λl′.(i−1k)(S[l′ �→ (v1(ρ1))](i ◦ inLl′)).

ρ′2 �= ⊥ ⇒ i−1(m2(ρ′2)) = i−1(m2(ρ′2)) = λk.λS.(i−1k)(S[l′2 �→ (v2(ρ′2))])(i ◦ inLl′2)
for some/any l′2 /∈ supp(λl′.(i−1k)(S[l′ �→ (v2(ρ′2))](i ◦ inLl′)).

ρ2 �= ⊥ ⇒ i−1(m2(ρ2)) = i−1(m2(ρ2)) = λk.λS.(i−1k)(S[l2 �→ (v2(ρ2))])(i ◦ inLl2)
for some/any l2 /∈ supp(λl′.(i−1k)(S[l′ �→ (v2(ρ2))](i ◦ inLl′)).

Let arbitrarily p′′ � p′, (pk′′) ∈ p′′K, (pks′′) ∈ pk′′S, (k′
1, k

′
2 ‖ k1, k2, (x : τ [σj/αj ] ref)�, (pk′′)) ∈

∇K , (S′
1, S

′
2 ‖ S1, S2, (pks′′)) ∈ ∇S .

If ρ′1 = ρ′2 = ⊥ or S′
1 = S′

2 = ⊥ then (m1(ρ′1))k
′
1S

′
1 = (m1(ρ′2))k

′
2S

′
2 = ⊥. Else

Let l0 /∈ (Åp′′2(S1) ∪ Åp′′2(S2) ∪
supp(λl′.(i−1k)(S[l′ �→ (v1(ρ′1))(i ◦ inLl′)) ∪ supp(λl′.(i−1k)(S[l′ �→ (v1(ρ1))(i ◦ inLl′)) ∪
supp(λl′.(i−1k)(S[l′ �→ (v2(ρ′2))(i ◦ inLl′))) ∪ supp(λl′.(i−1k)(S[l′ �→ (v2(ρ2))(i ◦ inLl′))).
Then
i−1(m1(ρ′1))k

′
1S

′
1 � (i−1k′

1)(S
′
1[l0 �→ (v1(ρ′1))])(i ◦ inLl0),

i−1(m1(ρ1))k1S1 = (i−1k1)(S1[l0 �→ (v1(ρ1))])(i ◦ inLl0),
i−1(m2(ρ′2))k

′
2S

′
2 � (i−1k′

2)(S
′
2[l0 �→ (v2(ρ′2))])(i ◦ inLl0),

i−1(m2(ρ2))k2S2 = (i−1k2)(S2[l0 �→ (v2(ρ2))])(i ◦ inLl0).

We define a parameter (pks3) that extends (pks′′) by adding (l0, l0, τ [σj/αj ]) to the visible
locations. Let r = ((T, ∅LL), A∅, A∅, {(l0, l0, τ [σj/αj ])}).
Let (pks3) = (pks′′) " {(r|r|(T, ∅LL))} so (pk3) = (pks3)k = (pk)′′ " {(r|r)}, p3 = (pks3)vm =
p′′ " {r} and p3 � p′′, (pk3) � (pk′′).
Then Zpks3

= Zpk3
= Zpks′′ " {(l0, l0, τ [σj/αj ])}, Zp3

= Zp′′ " {(l0, l0, τ [σj/αj ])}

It holds that (i◦ inLl0, i◦ inLl0, i◦ inLl0, i◦ inLl0, τ [σj/αj ] ref, p3) ∈ ∇V . To prove the required
termination approximation we want to show
(S′

1[l0 �→ v1(ρ′1)], S
′
2[l0 �→ v2(ρ′2)] ‖ S1[l0 �→ v1(ρ1)], S2[l0 �→ v2(ρ2)], p3) ∈ ∇S .
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By assumption (S′
1, S

′
2 ‖ S1, S2, (pks′′)) ∈ ∇S . The states have only been changed outside the

areas for the most consuming accessibility maps Åp′′1, Åp′′2 involved in p′′. Hence the updated
states (S1[l0 �→ (v1(ρ1))], S2[l0 �→ (v2(ρ2))]) still belong to the same simple state predicates
and relations involved in p′′. The associated location lists hold values related in p′′ by weakening
these are also related in p3 � p′′. Zpks3

= Zpks′′ " {(l0, l0, τ)}. Since the original states were
related and by weakening the locations in Zpks′′

hold values related in p3. By assumption and
weakening also (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), τ [σj/αj ], p3) ∈ ∇V .

In more detail we have that
(pks3) = {(r1|q̂1|Q1), . . . , (rn|q̂n|Qn), (rn+1|q̂n+1|Qn+1)} where rn+1 = r with trivial instanti-
ations, and so relatedness of the updated states in pks3 requires
1. S′

1[l0 �→ v1(ρ′1)] � S1[l0 �→ v1(ρ1)] �= ⊥ ∧ S′
2[l0 �→ v2(ρ′2)] � S2[l0 �→ v2(ρ2)] �= ⊥

2. Apks3

1 (S1[l0 �→ v1(ρ1)]) ∩ π1(Zpks3
) = ∅ ∧ Apks3

2 (S2[l0 �→ v2(ρ2)]) ∩ π2(Zpks3
) = ∅

3. ∀i �= j ∈ 1 . . . n+1. Åri
1 (S1[l0 �→ v1(ρ1)]) ∩ Årj

1 (S1[l0 �→ v1(ρ1)]) = ∅ ∧ Åri
2 (S2[l0 �→

v2(ρ2)]) ∩ Årj
2 (S2[l0 �→ v2(ρ2)]) = ∅

4. ∀(l1, l2, σ) ∈ Zpks3
.(S′

1[l0 �→ v1(ρ′1)](l1), S′
2[l0 �→ v2(ρ′2)](l2) ‖ S1[l0 �→ v1(ρ1)](l1), S2[l0 �→

v2(ρ2)](l2), σ, p3) ∈ ∇V

5. ∀i ∈ 1..n+1. if Qiji = (Pi, LLi) then (S1[l0 �→ v1(ρ1)], S2[l0 �→ v2(ρ2)]) ∈ Pi ∧
∀(l1, l2, σ) ∈ LLi. (S′

1[l0 �→ v1(ρ′1)](l1), S′
2[l0 �→ v2(ρ′2)](l2) ‖ S1[l0 �→ v1(ρ1)](l1), S2[l0 �→

v2(ρ2)](l2), σ, p3) ∈ ∇V

1. Follows from: assumptions S′
1 � S1 �= ⊥ ∧ S′

2 � S2 �= ⊥ and ρ′1 � ρ1 ∧ ρ′2 � ρ2

2. Follows from: r = ((T, ∅LL), A∅, A∅, {(l0, l0, τ)}), so
π1(Zpks3

) = π1(Zpks′′
) " {l0}, Apks3

1 (S1[l0 �→ v1(ρ1)]) = Apks′′
1 (S1), l0 /∈ Apks′′

1 (S1) and
π2(Zpks3

) = π2(Zpks′′
) " {l0}, Apks3

2 (S2[l0 �→ v2(ρ2)]) = Apks′′
2 (S2), l0 /∈ Apks′′

2 (S2)

3. Follows from: Å
rn+1
1 (S1[l0 �→ v1(ρ1)]) = Å

rn+1
2 (S2[l0 �→ v2(ρ2)]) = {l0} and

∀i �= j ∈ 1 . . . n. Åri
1 (S1) ∩ Årj

1 (S1) = ∅ ∧ Åri
2 (S2) ∩ Årj

2 (S2) = ∅ and
∀i ∈ 1 . . . n. Åri

1 (S1[l0 �→ v1(ρ1)]) = Åri
1 (S1), l0 /∈ Åri

1 (S1) ∧ Åri
2 (S2[l0 �→ v2(ρ2)]) =

Åri
2 (S2), l0 /∈ Åri

2 (S2)

4. Follows from: Zpks3
= Zpks′′"{(l0, l0, τ [σj/αj ])}, ∀(l1, l2, σ) ∈ Zpks′′

.(S′
1(l1), S′

2(l2) ‖ S1(l1), S2(l2),
σ, p′′) ∈ ∇V , weakening and the assumption (v1, v2, τ, p) ∈ ∇ΞΓ

V .

5. Follows from: Simple state relations and predicates only depend on the areas given by the
accessibility maps and Qn+1 = (T, ∅LL) and ∀i ∈ 1..n. l0 /∈ Aqi

1 (S1), l0 /∈ Aqi

2 (S2) and if
Qi = (Pi, LLi) then (S1, S2) ∈ Pi ∧ ∀(l1, l2, σ) ∈ LLi. (S′

1(l1), S
′
2(l2) ‖ S1(l1), S2(l2), σ, pvm) ∈

∇V .
We have
(S′

1[l0 �→ (v1(ρ′1))]), S1[l0 �→ (v1(ρ1))]), S′
2[l0 �→ (v2(ρ′2))]), S2[l0 �→ (v2(ρ2))]), pks3) ∈ ∇S .

It then follows that (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (τ [σj/αj ] ref), p′) ∈ ∇M and so
(m1,m2, T (τ ref), p) ∈ ∇ΞΓ

M .

assign: Δ; Ξ; Γ � Va : τ ref Δ; Ξ; Γ � Vb : τ

Δ; Ξ; Γ � Va := Vb : Tunit

Let v1a = [[Δ; Ξ; Γ � V1a : τ ref ]], v2a = [[Δ; Ξ; Γ � V2a : τ ref ]],
v1b = [[Δ; Ξ; Γ � V1b : τ ]], v2b = [[Δ; Ξ; Γ � V2b : τ ]].
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Assume (v1a, v2a, τ ref, p) ∈ ∇ΞΓ
V and (v1b, v2b, τ, p) ∈ ∇ΞΓ

V . So
(v1a(ρ′1), v2a(ρ′2) ‖ v1a(ρ1), v2a(ρ2), τ [σj/αj ] ref, p′) ∈ ∇V and
(v1b(ρ′1), v2b(ρ′2) ‖ v1b(ρ1), v2b(ρ2), τ [σj/αj ], p′) ∈ ∇V .

The assumption implies that either v1a(ρ′1) = v2a(ρ′2) = ⊥ or ∃(l1, l2, τ [σj/αj ]) ∈ Zp′
.

i−1(v1a(ρ′1)) � i−1(v1a(ρ1)) = inLl1, i−1(v2a(ρ′2)) � i−1(v2a(ρ2)) = inLl2.
Let m1 = [[Δ; Ξ; Γ � V1a := V1b : Tunit]] and m2 = [[Δ; Ξ; Γ � V2a := V2b : Tunit]].
If v1a(ρ′1) = v2a(ρ′2) = ⊥ then m1(ρ′1) = m2(ρ′2) = ⊥ and we have
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), Tunit, p′) ∈ ∇M .
Else
i−1(m1(ρ′1)) � λk.λS.(i−1k)(S[l1 �→ (v1b(ρ′1))])i(in11∗),
i−1(m1(ρ1)) = λk.λS.(i−1k)(S[l1 �→ (v1b(ρ1))])i(in11∗),
i−1(m2(ρ′2)) � λk.λS.(i−1k)(S[l2 �→ (v2b(ρ′2))])i(in11∗),
i−1(m2(ρ2)) = λk.λS.(i−1k)(S[l2 �→ (v2b(ρ2))])i(in11∗).

We want to show (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), Tunit, p′) ∈ ∇M .
Let p′′ � p′, (pk′′) ∈ p′′K, (pks′′) ∈ (pk′′)S.
(k′

1, k
′
2 ‖ k1, k2, (x : unit), (pk′′)) ∈ ∇K , (S′

1, S
′
2 ‖ S1, S2, (pks′′)) ∈ ∇S . We will show

(m1(ρ′1))k
′
1S

′
1 � (k′

1)(S
′
1[l1 �→ (v1b(ρ′1))])i(in11∗) = � ⇒

(m2(ρ2))k2S2 = (k2)(S2[l2 �→ (v2b(ρ2))])i(in11∗) = � ∧
(m2(ρ′2))k

′
2S

′
2 � (k′

2)(S
′
2[l2 �→ (v2b(ρ′2))])i(in11∗) = � ⇒

(m1(ρ1))k1S1 = (k1)(S1[l1 �→ (v1b(ρ1))])i(in11∗) = �

By assumption (v1b(ρ′1), v2b(ρ′2) ‖ v1b(ρ1), v2b(ρ2), τ [σj/αj ], p′) ∈ ∇V then by parameter weak-
ening also (v1b(ρ′1), v2b(ρ′2) ‖ v1b(ρ1), v2b(ρ2), τ [σj/αj ], p′′) ∈ ∇V .
Since p′′ � p′ then Zp′′ ⊇ Zp′

. So (l1, l2, τ [σj/αj ]) ∈ Zp′
implies (l1, l2, τ [σj/αj ]) ∈ Zp′′

.
And since (S′

1, S
′
2 ‖ S1, S2, (pks′′)) ∈ ∇S then ∀(la, lb, σ) ∈ Z(pks′′). (S′

1[l1 �→ (v1b(ρ′1))]la,
S′

2[l1 �→ (v2b(ρ′2))]lb ‖ S1[l1 �→ (v1b(ρ1))]la, S2[l1 �→ (v2b(ρ2))]lb, σ, p′′) ∈ ∇V .
The states S1, S2 have only been changed outside the areas for the accessibility maps involved in
the hidden areas of local parameters in p′′. Hence the updated states S1[l1 �→ (v1b(ρ1))], S2[l2 �→
(v2b(ρ2))] still belong to the same simple state relations involved there. The associated location
lists hold values related in p′′.
Ap′′

1 (S1) ∩ Zp′′
1 = ∅ ∧ l1 ∈ π1(Zp′′

) ⇒ Ap′′
1 (S1) = Ap′′

1 (S1[l1 �→ (v1b(ρ1))]), and
Ap′′

2 (S2) ∩ π2(Zp′′
) = ∅ ∧ l2 ∈ π2(Zp′′

) ⇒ Ap′′
2 (S2) = Ap′′

2 (S2[l2 �→ (v2b(ρ2))]). Also ∀l ∈
Ap′′

1 (S1). (S1)l = (S1[l1 �→ (v1b(ρ1))])l and ∀l ∈ Ap′′
2 (S2). (S2)l = (S2[l2 �→ (v2b(ρ2))])l.

(l1, l2, τ [σj/αj ]) ∈ Zp′ ⊆ Zp′′ .

So (S′
1[l1 �→ (v1b(ρ′1))], S

′
2[l2 �→ (v2b(ρ′2))] ‖ S1[l1 �→ (v1b(ρ1))], S2[l2 �→ (v2b(ρ2))], p′′) ∈ ∇S .

Also (i(in11∗), i(in11∗), i(in11∗), i(in11∗), unit, p′′) ∈ ∇V .
Now continuations, updated states and (in11∗)-values are correspondingly related, so we get
the required termination properties. Then (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), Tunit, p′) ∈ ∇M .
We conclude (m1,m2, Tunit, p) ∈ ∇ΞΓ

M .

rec: Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M : Tτ ′

Δ; Ξ; Γ � rec f(x : τ) = M : τ → Tτ ′

Let m1 = [[Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M1 : Tτ ′]], and
let m2 = [[Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M2 : Tτ ′]],
Assume (m1,m2, T τ ′, p) ∈ ∇ΞΓ0

M , where Γ0 = Γ ∪ { f : τ → Tτ ′, x : τ }.

Let v1 = [[Δ; Ξ; Γ � rec f(x : τ) = M1 : τ → Tτ ′]] and
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let v2 = [[Δ; Ξ; Γ � rec f(x : τ) = M2 : τ → Tτ ′]].
We aim to prove (v1, v2, τ → Tτ ′, p) ∈ ∇ΞΓ

V , that is
(v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), (τ → Tτ ′)[σj/αj ], p′) =
(v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), (τ [σj/αj ]) → (Tτ ′[σj/αj ]), p′) ∈ ∇V .

If ρ′1 = ρ′2 = ⊥ then v1(ρ′1) = v2(ρ′2) = ⊥.
When ρ �= ⊥ we have [[Δ; Ξ; Γ � rec f(x : τ) = M : τ → Tτ ′ ]]ρ =
i◦in��fix(λf ′ ∈ (V � M).(λx′ ∈ V.[[Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M : Tτ ′]](ρ⊗f �→ i◦in��f ′�⊗x �→
x′)))� = i ◦ in��⊔n∈ω gn 
where
gn ∈ (V � M), g0 = ⊥V�M and
gn+1 = λx0 ∈ V.[[Δ; Ξ; Γ, f : τ → Tτ ′, x : τ � M : Tτ ′]](ρ ⊗ f �→ i ◦ in��gn ⊗ x �→ x0).
so we have that when ρ′1 �= ⊥ ∨ ρ′2 �= ⊥ then
v1(ρ1) = i ◦ in��⊔n∈ω g1

n , v2(ρ2) = i ◦ in��⊔n∈ω g2
n .

v1(ρ′1) � i ◦ in��⊔n∈ω g1′
n  , v2(ρ′2) � i ◦ in��⊔n∈ω g2′

n  
where
g1
0 = g2

0 = g1′
0 = g2′

0 = ⊥V�M and
g1

n+1 = λx0.m1(ρ1 ⊗ i ◦ in��g1
n ⊗ x0),

g2
n+1 = λx0.m1(ρ2 ⊗ i ◦ in��g2

n ⊗ x0),
g1′

n+1 = λx0.m1(ρ′1 ⊗ i ◦ in��g1′
n  ⊗ x0),

g2′
n+1 = λx0.m1(ρ′2 ⊗ i ◦ in��g2′

n  ⊗ x0)
It holds that⊔

n∈ω g1
n = (λx′ ∈ V.m1(ρ1 ⊗ i ◦ in��(⊔n∈ω g1

n) ⊗ x′)) and⊔
n∈ω g2

n = (λx′ ∈ V.m2(ρ2 ⊗ i ◦ in��(⊔n∈ω g2
n) ⊗ x′))

We have g1′
0 � g1

0 � ⊔
g1

n ∧ g2′
0 � g2

0 � ⊔
g2

n and from the definition and the assumptions
ρ′1 � ρ1 ∧ ρ′2 � ρ2 then by induction ∀n.g1′

n � g1
n � ⊔

g1
n ∧ g2′

n � g2
n � ⊔

g2
n.

Also ∀d1, d2. ⊥V�M(d1) = ⊥V�M(d2) = ⊥M.
Since ∀q ∈ pvm.∀d1, d2 ∈ V. (⊥,⊥ ‖ ⊔

g1
n(d1),

⊔
g1

n(d2), T τ ′[σj/αj ], q) ∈ F (∇,∇)M

so (i ◦ in��g1
0 , i ◦ in��g2

0 ‖ v1(ρ1), v2(ρ2), (τ → Tτ ′)[σj/αj ], p) ∈ F (∇,∇)V , and also for p′

We will show by induction on n that
∀n ∈ ω. (i ◦ in��g1′

n  , i ◦ in��g2′
n  ‖ v1(ρ1), v2(ρ2), (τ → Tτ ′)[σj/αj ], p′) ∈ F (∇,∇)V .

Assume (i ◦ in��g1′
n  , i ◦ in��g2′

n  ‖ v1(ρ1), v2(ρ2), (τ → Tτ ′)[σj/αj ], p′) ∈ F (∇,∇)V .
Recall (i ◦ in��g1′

n  , i ◦ in��g2′
n  ‖ v1(ρ1), v2(ρ2), (τ → Tτ ′)[σj/αj ], p′) =

(i ◦ in��g1′
n  , i ◦ in��g2′

n  ‖ i ◦ in��⊔n∈ω g1
n , i ◦ in��⊔n∈ω g2

n , (τ → Tτ ′)[σj/αj ], p′).

To show that (i ◦ in��g1′
n+1 , i ◦ in��g2′

n+1 ‖ v1(ρ1), v2(ρ2), (τ → Tτ ′)[σj/αj ], p′) ∈ F (∇,∇)V

we must have ∀p′′ � p′.∀(d′1, d
′
2 ‖ d1, d2, τ [σj/αj ], p′′) ∈ ∇V .

(λx0.m1(ρ′1⊗i◦in��g1′
n  ⊗x0)d′1, λx0.m2(ρ2′⊗i◦in��g2′

n  ⊗x0)d′2 ‖ ⊔
g1

n(d1),
⊔

g2
n(d2), T τ ′[σj/αj ], p′′) =

(m1(ρ′1⊗i◦in��g1′
n  ⊗d′1), m2(ρ′2⊗i◦in��g2′

n  ⊗d′2) ‖ m1(ρ1⊗i◦in��(⊔n∈ω g1
n) ⊗d1,m2(ρ2⊗

i ◦ in��(⊔n∈ω g2
n) ⊗ d2, T τ ′[σj/αj ], p′′) ∈ ∇M

Since by assumption (m1,m2, T τ ′[σj/αj ], p) ∈ ∇ΞΓ0
M and we have

(i ◦ in��g1′
n  , i ◦ in��g2′

n  ‖ i ◦ in��⊔n∈ω g1
n , i ◦ in��⊔n∈ω g2

n , (τ → Tτ ′)[σj/αj ], p′) ∈ ∇V

and (d′1, d
′
2 ‖ d1, d2, τ [σj/αj ], p′′) ∈ ∇V it holds that

(m1(ρ′1⊗i◦in��g1′
n  ⊗d′1), m2(ρ′2⊗i◦in��g2′

n  ⊗d′2) ‖ m1(ρ1⊗i◦in��⊔n∈ω g1
n ⊗d1), m2(ρ2⊗

i ◦ in��⊔n∈ω g2
n ⊗ d2), T τ ′[σj/αj ], p′′) ∈ ∇M . So
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(i ◦ in��g1′
n+1 , i ◦ in��g2′

n+1 ‖ i ◦ in��⊔n∈ω g1
n , i ◦ in��⊔n∈ω g2

n , (τ → Tτ ′)[σj/αj ], p′) =
(i ◦ in��g1′

n+1 , i ◦ in��g2′
n+1 ‖ v1(ρ1), v2(ρ2), (τ → Tτ ′)[σj/αj ], p′) ∈ F (∇,∇)V .

We have shown that ∀n ∈ ω. (i◦ in��g1′
n  , i◦ in��g2′

n  ‖ v1(ρ1), v2(ρ2), (τ → Tτ ′)[σj/αj ], p′) ∈
∇V . Then since ∇V is admissible also (

⊔
i ◦ in��g1′

n  ,⊔ i ◦ in��g2′
n  ‖ v1(ρ1), v2(ρ2), (τ →

Tτ ′)[σj/αj ], p′) ∈ ∇V . So (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), (τ → Tτ ′)[σj/αj ], p′) ∈ ∇V ,
hence (v1, v2, τ → Tτ ′, p) ∈ ∇ΞΓ

V .

app: Δ; Ξ; Γ � Va : τ → Tτ ′ Δ; Ξ; Γ � Vb : τ

Δ; Ξ; Γ � VaVb : Tτ ′

Let v1a = [[Δ; Ξ; Γ � V1a : τ → Tτ ′]], v2a = [[Δ; Ξ; Γ � V2a : τ → Tτ ′]], v1b = [[Δ; Ξ; Γ � V1b :
τ ]], v2b = [[Δ; Ξ; Γ � V2b : τ ]].
Assume (v1a, v2a, τ � Tτ ′, p) ∈ ∇ΞΓ

V and (v1b, v2b, τ, p) ∈ ∇ΞΓ
V .

Let m1 = [[Δ; Γ � V1aV1b]] and m2 = [[Δ; Γ � V2aV2b]]. We aim to show (m1,m2, T τ ′, p) ∈ ∇ΞΓ
M ,

that is (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ ′[σj/αj ], p′) ∈ ∇M .

The assumption (v1a, v2a, τ � Tτ ′, p) ∈ ∇ΞΓ
V implies either v1a(ρ′1) = v2a(ρ′2) = ⊥ or

∃f ′
1, f1, f

′
2, f2.

i−1(v1a(ρ1)) = in��f1 ∧ (i−1(v1a(ρ′1)) = ⊥ ∧ f ′
1 = ⊥) ∨ i−1(v1a(ρ′1)) = in��f ′

1 ∧
i−1(v2a(ρ2)) = in��f2 ∧ (i−1(v2a(ρ′2)) = ⊥ ∧ f ′

2 = ⊥) ∨ i−1(v2a(ρ′2)) = in��f ′
2 ∧

∀p′′ � p′.∀(d′1, d
′
2 ‖ d1, d2, τ [σj/αj ], p′′) ∈ ∇V .(f ′

1d
′
1, f

′
2d

′
2 ‖ f1d1, f2d2, T τ ′[σj/αj ], p′′) ∈ ∇M .

In the first case m1(ρ′1) = m2(ρ′2) = ⊥, and (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ ′[σj/αj ], p) ∈
∇M . In the second case we get that since (v1b(ρ′1), v2b(ρ′2) ‖ v1b(ρ1), v2b(ρ2), τ [σj/αj ], p′) ∈ ∇V

then (f ′
1(v1b(ρ′1)), f

′
2(v2b(ρ′2)) ‖ f1(v1b(ρ1)), f2(v2b(ρ2)), T τ ′[σj/αj ], p′) ∈ ∇M . And we have

m1(ρ′1) = f ′
1(v1b(ρ′1)), m2(ρ′2) = f ′

2(v2b(ρ′2)), m1(ρ1) = f1(v1b(ρ1)), m2(ρ2) = f2(v0b(ρ2)) so
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ ′[σj/αj ], p) ∈ ∇M .
We conclude (m1,m2, T τ ′, p) ∈ ∇ΞΓ

M

let: Δ; Ξ; Γ � Ma : Tτa Δ; Ξ; Γ, x : τa � Mb : Tτb

Δ; Ξ; Γ � let x ⇐ Ma in Mb : Tτb

Let m1a = [[Δ; Ξ; Γ � M1a : Tτa]], m2a = [[Δ; Ξ; Γ � M2a : Tτa]], m1b = [[Δ; Ξ; Γ, x : τa �
M1b : Tτb]], m2b = [[Δ; Ξ; Γ, x : τa � M2b : Tτb]].
Assume (m1a,m2a, T τa, p) ∈ ∇ΞΓ

M , and assume (m1b,m2b, T τb, p) ∈ ∇Ξ(Γ,x:τa)
M ,

then (m1a(ρ′1),m2a(ρ′2) ‖ m1a(ρ1),m2a(ρ2), T τa[σj/αj ], p′) ∈ ∇M , and
for any (v′1x, v′

2x ‖ v1x, v2x, τa[σj/αj ], p′) ∈ ∇V it holds that
(m1b(ρ′1 ⊗ v′1x),m2b(ρ′2 ⊗ v′2x) ‖ m1b(ρ1 ⊗ v1x),m2b(ρ2 ⊗ v2x), T τb[σj/αj ], p′) ∈ ∇M .

Let m1 = [[Δ; Ξ; Γ � let x ⇐ M1a in M1b : Tτb]] and
let m2 = [[Δ; Ξ; Γ � let x ⇐ M2a in M2b : Tτb]].
We need to show (m1,m2, T τb, p) ∈ ∇ΞΓ

M that is (in all cases)
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τb[σj/αj ], p′) ∈ ∇M .
If ρ′1 = ρ′2 = ⊥ then m1(ρ′1) = m2(ρ′2) = ⊥ and we are done. Else we have
i−1(m1(ρ′1)) = λk.λS. (i−1(m1a(ρ′1)))(λS0.λdx.( i−1(m1b(ρ′1 ⊗ dx))kS0)S,
i−1(m1(ρ1)) = λk.λS. (i−1(m1a(ρ1)))(λS0.λdx.( i−1(m1b(ρ1 ⊗ dx))kS0)S,
i−1(m2(ρ′2)) = λk.λS. (i−1(m2a(ρ′2)))(λS0.λdx.( i−1(m2b(ρ′2 ⊗ dx))kS0)S,
i−1(m2(ρ2)) = λk.λS. (i−1(m2a(ρ2)))(λS0.λdx.( i−1(m2b(ρ2 ⊗ dx))kS0)S.

Let p′′ � p′, (pk′′) ∈ p′′K, (pks′′) ∈ pk′′S, (k′
1, k

′
2 ‖ k1, k2, (x : τb[σj/αj ])�, (pk′′)) ∈

∇K , (S′
1, S

′
2 ‖ S1, S2, (pks′′)) ∈ ∇S .
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(i−1(m1(ρ′1)))k
′
1S

′
1 = (i−1(m1a(ρ′1)))(λS0.λdx.( i−1(m1b(ρ′1 ⊗ dx))k′

1S0)S′
1,

(i−1(m1(ρ1)))k1S1 = (i−1(m1a(ρ1)))(λS0.λdx.( i−1(m1b(ρ1 ⊗ dx))k1S0)S1,
(i−1(m2(ρ′2)))k

′
2S

′
2 = (i−1(m2a(ρ′2)))(λS0.λdx.( i−1(m2b(ρ′2 ⊗ dx))k′

2S0)S′
2,

(i−1(m2(ρ2)))k2S2 = (i−1(m2a(ρ2)))(λS0.λdx.( i−1(m2b(ρ2 ⊗ dx))k2S0)S2.

By assupmtion (m1a(ρ′1),m2a(ρ′2) ‖ m1a(ρ1),m2a(ρ2), T τa[σj/αj ], p′) ∈ ∇M and
(S′

1, S
′
2 ‖ S1, S2, (pks′′)) ∈ ∇S . If (m1a(ρ′1) = m2a(ρ′2) = ⊥ or S′

1 = S′
2 = ⊥ we get the required

termination approximation. Else we want to show that
((λS0.λdx. (i−1(m1b(ρ′1 ⊗ dx))k′

1S0), (λS0.λdx. (i−1(m2b(ρ′2 ⊗ dx))k′
2S0) ‖

(λS0.λdx. (i−1(m1b(ρ1⊗dx))k1S0), (λS0.λdx. (i−1(m2b(ρ2⊗dx))k2S0), (x : τa[σj/αj ])�, (pk′′)) ∈
F (∇,∇)K .

Let (pk3) � (pk′′), (pks3) ∈ (pk3)S, p3 = (pk3)vm so p3 � p′′.
Let (S′

10, S
′
20 ‖ S10, S20, (pks3)) ∈ ∇S , (d′1, d

′
2 ‖ d1, d2, τa[σj/αj ], p3) ∈ ∇V .

(λS0.λdx.(i−1(m1b(ρ′1 ⊗ dx))k′
1S0))S′

10d
′
1 = (i−1(m1b(ρ′1 ⊗ d′1)))k

′
1S

′
10,

(λS0.λdx. (i−1(m1b(ρ1 ⊗ dx))k1S0)S10d1 = (i−1(m1b(ρ1 ⊗ d1)))k1S10,
(λS0.λdx. (i−1(m2b(ρ′2 ⊗ dx))k′

2S0)S′
20d

′
2 = (i−1(m2b(ρ′2 ⊗ d′2)))k

′
2S

′
20,

(λS0.λd0. (i−1(m2b(ρ2 ⊗ dx))k2S0)S20d2 = (i−1(m2b(ρ2 ⊗ d2)))k2S20.

We have p3 � p′′ � p′ � p. So p3 � p. (d′1, d
′
2 ‖ d1, d2, τa[σj/αj ], p3) ∈ ∇V ,

∀i.(v′1i, v
′
2i ‖ v1i, v2i, τi[σj/αj ], p′) ∈ ∇V , it follows by weakening that ∀i.(v′1i, v

′
2i ‖ v1i, v2i, τi[σj/αj ], p3) ∈

∇V . Also (m1b,m2b, T τb[σj/αj ], p) ∈ ∇Ξ(Γ,x:τa)
M .

Then ((m1b(ρ′1 ⊗ d′1)), (m2b(ρ′2 ⊗ d′2)) ‖ (m1b(ρ1 ⊗ d1)), (m2b(ρ2 ⊗ d2)), T τb[σj/αj ], p3) ∈ ∇M .
By assumption (k′

1, k
′
2 ‖ k1, k2, (x : τb[σj/αj ])�, (pk′′)) ∈ ∇K . Since (pk3) � (pk′′) then by

parameter weakening (k′
1, k

′
2 ‖ k1, k2, (x : τb[σj/αj ])�, (pk3)) ∈ ∇K .

Since also (S′
10, S

′
20 ‖ S10, S20, (pks3)) ∈ ∇S we can conclude that

(m1,m2, T τb, p) ∈ ∇ΞΓ
M .

fold : Δ; Ξ; Γ � V : τ [μα.τ(α)/α]
Δ; Ξ; Γ � fold V : μα.τ

Let v10 = [[Δ; Γ � V1]] and v20 = [[Δ; Γ � V2]].
Assume (v10, v20, τ [μα.τ/α], p) ∈ ∇ΞΓ

V .

The assumption implies (v10(ρ′1), v20(ρ′2) ‖ v10(ρ1), v20(ρ2), τ [μα.τ/α][σj/αj ], p′) ∈ ∇V .
α is not free in τ [μα.τ/α]. If α /∈ Ξ then let i ∈ {1 . . . k}, if α = αm ∈ Ξ let i ∈ {1 . . . k} \ {m}.
So τ [μα.τ/α][σj/αj ] = (τ [σi/αi])[μα.(τ [σi/αi])/α] and μα.(τ [σi/αi]) = (μα.τ)[σj/αj ], and
(v10(ρ′1), v20(ρ′2) ‖ v10(ρ1), v20(ρ2), (τ [σi/αi])[μα.(τ [σi/αi])/α], p′) ∈ ∇V .
Then either v10(ρ′1) = v20(ρ′2) = ⊥ or v10(ρ′1) � v10(ρ1) ∈ (V)↓ ∧ v20(ρ′2) � v20(ρ2) ∈ (V)↓.

Let v1 = [[Δ; Ξ; Γ � fold V1 : μα.τ ]] and v2 = [[Δ; Ξ; Γ � fold V2 : μα.τ ]].
If v10(ρ′1) = v20(ρ′2) = ⊥ then v1(ρ′1) = v2(ρ′2) = ⊥ and so
(v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), (μα.τ)[σj/αj ], p′) ∈ ∇V . Else i−1(v1(ρ′1)) = inμ(v10(ρ′1)),
i−1(v2(ρ′2)) = inμ(v20(ρ′2)), i−1(v1(ρ1)) = inμ(v10(ρ1)), i−1(v2(ρ2)) = inμ(v20(ρ2)). By
assumption (v10(ρ′1), v20(ρ′2) ‖ v10(ρ1), v20(ρ2), (τ [σi/αi])[μα.(τ [σi/αi])/α], p′) ∈ ∇V then
(v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), μα.τ [σi/αi], p′) = (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), (μα.τ)[σj/αj ], p′) ∈
∇V . We see (v1, v2, μα.τ, p) ∈ ∇ΞΓ

V .
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unfold: Δ; Ξ; Γ � V : μα.τ

Δ; Ξ; Γ � unfold V : T (τ [μα.τ/α])

Let v1 = [[Δ; Γ � V1 : μα.τ ]] and v2 = [[Δ; Γ � V2 : μα.τ ]]. Assume (v1, v2, μα.τ, p) ∈ ∇ΞΓ
V .

Let m1 = [[Δ; Γ � unfold V1 : T (τ [μα.τ/α])]] and m2 = [[Δ; Γ � unfold V2 : T (τ [μα.τ/α])]].
We need to show (m1,m2, T (τ [μα.τ/α]), p) ∈ ∇ΞΓ

M

The assumption (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), (μα.τ)[σj/αj ], p′) ∈ ∇V implies
either v1(ρ′1) = v2(ρ′2) = ⊥ or ∃d′1, d

′
2, d1, d2.

(i−1(v1(ρ1)) = inμd1 �= ⊥) ∧ ((i−1(v1(ρ′1)) = d′1 = ⊥ ∨ (i−1(v1(ρ′1)) = inμd′1 �= ⊥) ∧
(i−1(v2(ρ2)) = inμd2 �= ⊥) ∧ ((i−1(v2(ρ′2)) = d′2 = ⊥ ∨ (i−1(v2(ρ′2)) = inμd′2 �= ⊥) ∧
(d′1, d

′
2 ‖ d1, d2, τ [μα.τ/α][σj/αj ], p′) ∈ ∇V . By weakening also ∀p′′ � p′.(d′1, d

′
2 ‖ d1, d2,

τ [μα.τ/α][σj/αj ], p′′) ∈ ∇V . If v1(ρ′1) = v2(ρ′2) = ⊥ then m1(ρ′1) = m2(ρ′2) = ⊥ and then
also (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [μα.τ/α][σj/αj ], p′) ∈ ∇M . Else
i−1(m1(ρ′1)) = λk.λS.i−1(k)S(d′1), i−1(m2(ρ′2)) = λk.λS.i−1(k)S(d′2),
i−1(m1(ρ1)) = λk.λS.i−1(k)S(d1), i−1(m2(ρ2)) = λk.λS.i−1(k)S(d2).
Applied to continuations and states related under a parameter �-extending p′ this gives appli-
cation of related continuations to states and values related under the same parameter as the
continuations. Then also (m1(ρ′1),m2(ρ′2), ‖ m1(ρ1),m2(ρ2), T (τ [μα.τ/α][σj/αj ]), p′) ∈ ∇M .
We conclude (m1,m2, T (τ [μα.τ/α]), p) ∈ ∇ΞΓ

M .

Λ: Δ; Ξ,α; Γ � M : Tτ Ξ � Γ

Δ; Ξ; Γ � Λα.M : ∀α.Tτ

Assume α is not a free type variable in Γ .
Let m1 = [[Δ; Ξ,α; Γ � M1 : Tτ ]] and m2 = [[Δ; Ξ,α; Γ � M2 : Tτ ]].
Assume (m1,m2, T τ, p) ∈ ∇ΞαΓ

M , then ∀σ with � σ : type it holds that
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ1), T τ [σj/αj , σ/α], p′) ∈ ∇M .

Let v1 = [[Δ; Ξ; Γ � Λα.M1 : ∀α.Tτ ]] and v2 = [[Δ; Ξ; Γ � Λα.M2 : ∀α.Tτ ]].
We want to show (v1, v2,∀α.Tτ, p) ∈ ∇ΞΓ

V or (in all cases)
(v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2),∀α.Tτ [σj/αj ], p′) ∈ ∇V .

We have ρ′1 = ρ′2 = ⊥ ⇒ v1(ρ′1) = v2(ρ′2) = ⊥. Else v1(ρ′1) � in∀�m1(ρ′1) , v2(ρ′2) �
in∀�m2(ρ′2) , v1(ρ1) = in∀�m1(ρ1) , v2(ρ2) = in∀�m1(ρ2) .
By the definition of ∇ we want to show ∀σ with � σ : type it holds that
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ1), T τ [σj/αj , σ/α], p′) ∈ ∇M .
This follows from the assumptions.

Λapp: Δ; Ξ; Γ � V : ∀α.Tτ Ξ � τ ′ : type

Δ; Ξ; Γ � V τ ′ : T (τ [τ ′/α])

Assume Ξ � τ ′ : type and let v1 = [[Δ; Ξ; Γ � V1 : ∀α.Tτ ]] and v2 = [[Δ; Ξ; Γ � V2 : ∀α.Tτ ]].
Assume (v1, v2,∀α.Tτ, p) ∈ ∇ΞΓ

V so (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), (∀α.Tτ)[σj/αj ], p′) ∈ ∇V .
Now if α does not occur among αj then let αi be the same as αj and σi be the same as σj ,
if αk = α then let αi stand for αj\αk and let similarly σi stand for σj\σk then (∀α.Tτ)[σj/αj ] =
∀α.Tτ [σi/αi]. By the definition of ∇V either v1(ρ′1) = v2(ρ′2) = ⊥, or ∃d′1, d

′
2, d1, d2.

(v1(ρ1) = in∀�d1 ) ∧ ((v1(ρ′1) = ⊥ ∧ d′1 = ⊥) ∨ ((v1(ρ′1) = in∀�d′1 )) ∧
(v2(ρ2) = in∀�d2 ) ∧ ((v2(ρ′2) = ⊥ ∧ d′2 = ⊥) ∨ ((v2(ρ′2) = in∀�d′2 )) and
∀σ with � σ : type it holds that
(d′1, d

′
2 ‖ d1, d2, (Tτ [σi/αi])[σ/α], p′) = (d′1, d

′
2 ‖ d1, d2, (Tτ [σi/αi, σ/α], p′) ∈ ∇M , as τ ′[σj/αj ]

is closed so (d′1, d
′
2 ‖ d1, d2, (Tτ [σi/αi, (τ ′[σj/αj ])/α], p′) ∈ ∇M .

Let m1 = [[Δ; Ξ; Γ � V1τ
′ : T (τ [τ ′/α])]] and m2 = [[Δ; Ξ; Γ � V2τ

′ : T (τ [τ ′/α])]].
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We want to show (m1,m2, T τ [τ ′/α], p) ∈ ∇ΞΓ
M or

(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (τ [τ ′/α])[σj/αj ], p′) =
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [σi/αi, (τ ′[σj/αj ])/α], p′) ∈ ∇M .

If v1(ρ′1) = v2(ρ′2) = ⊥ then m1(ρ′1) = m2(ρ′2) = ⊥, and
(⊥,⊥ ‖ m1(ρ1),m2(ρ2), T (τ [τ ′/α])[σj/αj ], p′) ∈ ∇M . Else it follows from the assumptions.
We conclude (m1,m2, T τ [τ ′/α], p) ∈ ∇ΞΓ

M .

�

For store type Δ let idΔ be the match of finite store types {(l, l, τ)|l : τ ∈ Δ}.
Theorem 4. Fundamental Theorem
For all ordinary parameters p with Zp = idΔ.

If Δ; Ξ; Γ � V : τ then ([[Δ; Ξ; Γ � V : τ ]], [[Δ; Ξ; Γ � V : τ ]], τ, p) ∈ ∇ΞΓ
V

If Δ; Ξ; Γ � M : Tτ then ([[Δ; Ξ; Γ � M : Tτ ]], [[Δ; Ξ; Γ � M : Tτ ]], T τ, p) ∈ ∇ΞΓ
M

Proof by induction over typing derivations using proposition 4.
Base cases, by proposition 4 it holds that

When Δ; Ξ; Γ � xj : τj then ([[Δ; Ξ; Γ � xj : τj ]], [[Δ; Ξ; Γ � xj : τj ]], p) ∈ ∇ΞΓ
V

When Δ; Ξ; Γ � () : unit then ([[Δ; Ξ; Γ � () : unit]], [[Δ; Ξ; Γ � () : unit]]), unit, p) ∈ ∇ΞΓ
V

When Δ; Ξ; Γ � n : int then ([[Δ; Ξ; Γ � n : int]], [[Δ; Ξ; Γ � n : int]], int, p) ∈ ∇ΞΓ
V

When Δ; Ξ; Γ � l : τ ref then ([[Δ; Ξ; Γ � l : τ ref ]], [[Δ; Ξ; Γ � l : τ ref ]], τ ref, p) ∈ ∇ΞΓ
V

The theorem holds for all base cases, then again using proposition 4 it holds for all typing judgments
of value terms and computation terms.

�

The next lemma has to do with four-tuples which are really two pairs.

Lemma 27.
Let p ∈ ovm

(m1,m2, T τ, p) ∈ ∇∅∅
M ⇒

∀p′ � p.∀(pk′) ∈ p′K.∀(pks′) ∈ (pk′)S.
∀(k1, k2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ ∇K .∀(S1, S2 ‖ S1, S2, (pks′)) ∈ ∇S .

(i−1m1)k1S1 = � ⇐⇒ (i−1m2)k2S2 = �.

Proof

(m1,m2, T τ, p) ∈ ∇∅∅
M ⇒

(m1,m2 ‖ m1,m2, T τ, p) ∈ ∇M ⇒
(i−1(m1), i−1(m2) ‖ i−1(m1), i−1(m2), T τ, p) ∈ F (∇,∇)M .

It follows from the definition of F (∇,∇)M that ∀p′ � p.∀(pk′) ∈ p′K.∀(pks′) ∈ (pk′)S.
∀(k1, k2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ ∇K .∀(S1, S2 ‖ S1, S2, (pks′)) ∈ ∇S .

(i−1(m1))k1S1 = � ⇒ (i−1(m2))k2S2 = � and
(i−1(m1))k1S1 = � ⇐ (i−1(m2))k2S2 = �

�

Let TΔ be the vm-parameter {(T,A∅, A∅, idΔ)}.
Let TK

Δ be the parameter {((T,A∅, A∅, idΔ)|(T,A∅, A∅, idΔ))}.
Let TS

Δ be the parameter {((T,A∅, A∅, idΔ)|(T,A∅, A∅, idΔ)|T )}.
Since there is only one possible instantiation TΔ ∈ ovm, TK

Δ ∈ ok and TS
Δ ∈ os.
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Lemma 28.

1. ∀ � τ : type. ∀(pk) ∈ ok with Zpk = idΔ. ([[Δ � val x : (x : τ)�]], [[Δ � val x : (x : τ)�]] ‖
[[Δ � val x : (x : τ)�]], [[Δ � val x : (x : τ)�]], (x : τ)�, (pk)) ∈ ∇K

2. ∀Σ : Δ. ∀S ∈ [[Σ : Δ]]. (S, S ‖ S, S, TS
Δ) ∈ ∇S

Proof (We have omitted the isomorphisms i, i−1).

1. Assume � τ : type.
[[Δ � val x : (x : τ)�]] =
λS.λd.[[Δ; ; x : τ � val x : Tτ ]][x �→ d]((λS′.(λd′.�)⊥)⊥)S =
λS.λd.(λk0.λS0.k0S0[[Δ; ; x : τ � x : τ ]][x �→ d])((λS′.(λd′.�)⊥)⊥)S =
λS.λd.(λk0.λS0.k0S0d)((λS′.(λd′.�)⊥)⊥)S =
λS.λd.((λS′.(λd′.�)⊥)⊥)Sd.

Let (pk′)�(pk), (pks′) ∈ (pk′)S, (S′
1, S

′
2 ‖ S1, S2, (pks′)) ∈ ∇S , (v′1, v

′
2 ‖ v1, v2, τ, (pk′)vm) ∈ ∇V .

By definition of ∇ it holds that either (v′1 = v′2 = ⊥) or (v1 �= ⊥ ∧ v2 �= ⊥) and either
(S′

1 = S′
2 = ⊥) or (S1 �= ⊥ ∧ S2 �= ⊥)

[[Δ � val x : (x : τ)�]]S′
1v

′
1 = ((λS′.(λd′.�)⊥)⊥)S′

1v
′
1

[[Δ � val x : (x : τ)�]]S1v1 = ((λS′.(λd′.�)⊥)⊥)S1v1

[[Δ � val x : (x : τ)�]]S′
2v

′
2 = ((λS′.(λd′.�)⊥)⊥)S′

2v
′
2

[[Δ � val x : (x : τ)�]]S2v2 = ((λS′.(λd′.�)⊥)⊥)S2v2

We need to show
((λS′.(λd′.�)⊥)⊥)S′

1v
′
1 = � ⇒ ((λS′.(λd′.�)⊥)⊥)S2v2 = � and

((λS′.(λd′.�)⊥)⊥)S′
2v

′
2 = � ⇒ ((λS′.(λd′.�)⊥)⊥)S1v1 = �.

Assume ((λS′.(λd′.�)⊥)⊥)S′
1v

′
1 = �. Then v′1 �= ⊥ and S′

1 �= ⊥. v′1 �= ⊥ ⇒ (v1 �= ⊥ ∧ v2 �= ⊥),
and S′

1 �= ⊥ ⇒ (S1 �= ⊥ ∧ S2 �= ⊥). This implies that ((λS′.(λd′.�)⊥)⊥)S2v2 = �.
The other direction is proved similarly.

2. We show S ∈ [[Σ : Δ]] implies (S, S ‖ S, S, TS
Δ) ∈ ∇S .

It holds that S � S �= ⊥ and ∀l ∈ dom(Δ). Sl = [[Δ; ;� Σ(l) : Δ(l)]].
Then, by the previous theorem 4, ∀l ∈ dom(Δ).(Sl, Sl, Sl, Sl,Δl, TΔ) ∈ ∇V .
It holds that dom(Δ) ∩ A∅(S) = ∅. Also (S, S) ∈ T .

�

Theorem 5. Contextual equivalence
For all Δ, Ξ, γ, τ , for all value- or computation terms G1, G2,
for all contexts C[ ] : (Δ; Ξ; Γ � γ) ⇒ (Δ; ;� Tτ) (let j ∈ V,M)

If Δ; Ξ; Γ � G1 : γ and Δ; Ξ; Γ � G2 : γ and
([[Δ; Ξ; Γ � G1 : γ]], [[Δ; Ξ; Γ � G2 : γ]], γ, TΔ) ∈ ∇ΞΓ

j then

∀Σ : Δ. (Σ, let x ⇐ C[G1] in val x ↓⇐⇒ Σ, let x ⇐ C[G2] in val x ↓)
Proof

By induction over the structure of C[ ] and using that typing rules preserve relatedness in
∇ΞΓ and fundamental theorem 4 it holds that

([[Δ; Ξ; Γ � G1 : γ]], [[Δ; Ξ; Γ � G2 : γ]], γ, TΔ) ∈ ∇ΞΓ
j =⇒

([[Δ; ;� C[G1] : Tτ ]], [[Δ; ;� C[G2] : Tτ ]], T τ, TΔ) ∈ ∇∅∅
M .

By the previous lemma 28 when τ is closed
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([[Δ � val x : (x :τ)�]], [[Δ � val x : (x :τ)�]] ‖ [[Δ � val x : (x :τ)�]], [[Δ � val x : (x :τ)�]],
(x :τ)�, TΔ) ∈ ∇K

and
∀S ∈ [[Σ : Δ]]. (S, S ‖ S, S, TΔ) ∈ ∇S .

By lemma 27 it then holds that
∀S ∈ [[Σ : Δ]]

(i−1[[Δ;� C[M1]]]{})[[Δ;� val x : (x)�]]S = � ⇐⇒
(i−1[[Δ;� C[M2]]]{})[[Δ;� val x : (x)�]]S = �.

By soundness and adequacy of the denotational semantics this implies
Σ, let x ⇐ C[M1] in val x ↓⇐⇒ Σ, let x ⇐ C[M2] in val x ↓.

�

7 Examples

In this section we give examples of proofs of program equivalences. Some of the examples were
discussed informally in the introduction. Here we often omit the isomorphisms i, i−1 and injection
functions. We abbreviate some let constructions by ; and sometimes we also simplify notation
in other ways. When we have shown that some proof cases go through almost trivially, then we
sometimes later omit similar cases.

7.1 Example. The Awkward Example

This example is taken from Pitts and Stark [39], it was discussed informally in the introduction.
The two programs M and N are closed computations.

M: let a ⇐ ref 0 in
val

(
rec fM (g : unit → Tτ) : Tint =
let x ⇐ a := 1 in let y ⇐ g() in !a)

)

N: val (rec fN (g : unit → Tτ) : Tint = let z ⇐ g() in val 1)

We want to show that

([[;� M : Tσ]], [[;� N : Tσ]], T ((unit → Tτ) → Tint)), T∅) ∈ ∇∅∅
M , that is

([[M ]], [[N ]] ‖ [[M ]], [[N ]], Tσ, T∅) ∈ ∇M .

Let p1 � T∅, (pk1) ∈ p1K
, (pks1) ∈ pk1S. Assume (k′

1, k
′
2 ‖ k1, k2, (x : σ)�, (pk1)) ∈ ∇K ,

(s′1, s
′
2 ‖ s1, s2, (pks1)) ∈ ∇S . The case s′1 = s′2 = ⊥ is trivial, else

[[;� M ]] k′
1 s′1 = k′

1 (s′1[la �→ 0]) ([[; a � recfM ]]{a �→ la}) where la is a fresh location.
[[;� M ]] k1 s1 = k1 (s1[la �→ 0]) ([[; a � recfM ]]{a �→ la}) where la is a fresh location.
[[;� N ]] k′

2 s′2 = k′
2 s′2 ([[;� recfN ]]).

[[;� N ]] k2 s2 = k2 s2 ([[;� recfN ]]).

By assumption (k′
1, k

′
2 ‖ k1, k2, (x : σ)�, (pk1)) ∈ ∇K , so we now want to show that there exists

(pk)2 � (pk1) and (pks2) ∈ (pk2)S such that
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([[; a � recfM ]]{a �→ la}, [[;� recfN ]] ‖ [[; a � recfM ]]{a �→ la}, [[;� recfN ]], σ, (pk2)vm) ∈ ∇V and
(s′1[la �→ 0], s′2 ‖ s1[la �→ 0], s2, (pks2)) ∈ ∇S .

Define local parameter r = 〈qa ≺ 〈qb〉〉 where
qa = ({(S1, S2)|S1la = 0}, Ala, A∅, ∅Z ) and qb = ({(S1, S2)|S1la = 1 }, Ala, A∅, ∅Z).

Let p2 = p1 ∪ {r} then p2 � p1. Let (pk2) = (pk1) ∪ {(r|r)} then (pk2) ∈ p2K and (pk2) � (pk1),
and let (pks2) = (pks1) ∪ {(r|r|{(S1, S2)|S1la = 0})} then (pks2) ∈ pk2S and (pks2) � (pks1).

By assumption (s′1, s
′
2 ‖ s1, s2, (pks1)) ∈ ∇S . Since la is fresh and by parameter weakening it

follows that (s′1[la �→ 0], s′2 ‖ s1[la �→ 0], s2, (pks2)) ∈ ∇S .

We need to show
([[; a � recfM ]]{a �→ la}, [[;� recfN ]] ‖ [[; a � recfM ]]{a �→ la}, [[;� recfN ]], σ, p2) ∈ ∇V . For this let
p4 � p3 � p2, (pk4) ∈ p4K

, (pks4) ∈ pk4S and assume (g′1, g
′
2 ‖ g1, g2, unit → Tτ, p3) ∈ ∇V ,

(K ′
1,K

′
2 ‖ K1,K2, (x : τ)�, (pk4)) ∈ ∇K and (S′

1, S
′
2 ‖ S1, S2, (pks4)) ∈ ∇S .

As before, the cases g′1 = g′2 = ⊥, K ′
1 = K ′

2 = ⊥ or S′
1 = S′

2 = ⊥ are trivial, we will not always
mentions such cases. Also we will sometimes omit writing ”either ⊥ or . . . ” or � on the primed
places. This will be in cases were we want to prove termination approximation, and when such is
proved for some cases then it is always also present for lower results.

[[; a � recfM ]]{a �→ la}g′1K ′
1S

′
1 � (g′1(in11∗))(λS′.λd′.[[; a �!a]]{a �→ la}K ′

1S
′)(S′

1[la �→ inZ1]),
[[; a � recfM ]]{a �→ la}g1K1S1 = (g1(in11∗))(λS′.λd′.[[; a �!a]]{a �→ la}K1S

′)(S1[la �→ inZ1]),
[[;� recfN ]]{}g′2K ′

2S
′
2 � (g′2(in11∗))(λS′.λd′.[[;� val 1]]{}K ′

2S
′)S′

2,
[[;� recfN ]]{}g2K2S2 = (g2(in11∗))(λS′.λd′.[[;� val 1]]{}K2S

′)S2.

Since (g′1, g
′
2 ‖ g1, g2, unit → Tτ, p3) ∈ ∇V by assumption, then

(g′1(in11∗)), g′2(in11∗)) ‖ g1(in11∗)), g2(in11∗)), T τ, p3) ∈ ∇M .

So we want to show that these computations are applied to continuations and states related in a
parameter �-extended form p3.

Because p4 � p3 it holds that either r ∈ p4 or the local extension 〈qb〉 ∈ p4.
If 〈qb〉 ∈ p4 then let q5 = q4, (pk5) = (pk4) and (pks5) = (pks4).
If r ∈ p4 then let p5 = p4 \ {r} ∪ {〈qb〉}, (pk5) = (pk4) \ {(r|r)} ∪ {(〈qb〉|〈qb〉)} and
(pks5) = (pks4) \ {(r|r|{(S1, S2)|S2la = 0})} ∪ {(〈qb〉|〈qb〉|{(S1, S2)|S2la = 1})}.
In both cases p5 � p4, and it holds that 〈qb〉 ∈ p5.

By assumption (S′
1, S

′
2 ‖ S1, S2, (pks4)) ∈ ∇S . If 〈qb〉 ∈ p4 then (pks5) = (pks4), S1la = 1 and

S1[la �→ inZ1] = S1 so (S′
1[la �→ inZ1], S′

2 ‖ S1[la �→ inZ1], S2, (pks5)) ∈ ∇S . If r ∈ p4 then
(pks5) = (pks4) \ {(r|r|{(S1, S2)|S2la = 0})} ∪ {(〈qb〉|〈qb〉|{(S1, S2)|S2la = 1})} and so by
parameter weakening for the stored values (S′

1[la �→ inZ1], S′
2 ‖ S1[la �→ inZ1], S2, (pks5)) ∈ ∇S .

We need to show that the continuations are related under the parameter (pk5).

Let (pk6) � (pk5), (pks6) ∈ (pk5)S, p6 = (pk6)vm.
Assume (S̄′

1, S̄
′
2 ‖ S̄1, S̄2, (pks6)) ∈ ∇S and (d′1, d1, d

′
2, d2, τ, p

6) ∈ ∇V .

(λS′.λd′.[[∅; a �!a]]{a �→ la}K1S
′)S̄1d1 =

if (d1 = ⊥ ∨ S̄1 = ⊥) then ⊥ else K1S̄1(S̄1la) =
if (d1 = ⊥ ∨ S̄1 = ⊥) then ⊥ else K1S̄1(inZ1).

(λS′.λd′.[[∅; a �!a]]{a �→ la}K ′
1S

′)S̄′
1d

′
1 =
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if (d′1 = ⊥ ∨ S̄′
1 = ⊥) then ⊥ else K ′

1S̄
′
1(S̄

′
1la) =

if (d′1 = ⊥ ∨ S̄′
1 = ⊥) then ⊥ else K ′

1S̄
′
1(v

′
1) where v′1 � inZ1.

(λS′.λd′.[[∅;� val 1]]{}K2S
′)S̄2d2 =

if (d2 = ⊥ ∨ S̄2 = ⊥) then ⊥ else K2S̄2(inZ1).
(λS′.λd′.[[∅;� val 1]]{}K ′

2S
′)S̄′

2d
′
2 =

if (d2 = ⊥ ∨ S̄2 = ⊥) then ⊥ else K ′
2S̄

′
2(inZ1).

By assumption (K ′
1,K

′
2 ‖ K1,K2, (x : τ), (pk4)) ∈ ∇K and (S̄′

1, S̄
′
2 ‖ S̄1, S̄2, (pks6)) ∈ ∇S . Also

(v′1, inZ1 ‖ inZ1, inZ1, int, p6) ∈ ∇V . By assumption and definition p6 � p5 � p4. So we get the
desired termination properties to conclude, that
((λS′.λd′.[[∅; a �!a]]{a �→ la}K ′

1S
′), (λS′.λd′.[[∅;� val 1]]{}K ′

2S
′) ‖

(λS′.λd′.[[∅; a �!a]]{a �→ la}K1S
′), (λS′.λd′.[[∅;� val ]]{}K2S

′), (x : τ)�, (pk5)) ∈ ∇K .
Then we can futher conclude that
([[; a � recfM ]]{a �→ la}, [[;� recfN ]] ‖ [[; a � recfM ]]{a �→ la}, [[;� recfN ]], σ, p2) ∈ ∇V .
And then finally we have ([[;� M : Tσ]], [[;� N : Tσ]], T ((unit → Tτ) → Tint)), T∅) ∈ ∇∅∅

M .

7.2 Example. Knowing the initial steps of continuations

The programs M and N below are open computations with one free variable g of function type
σ = (unit → Tunit) → Tτ . The programs were presented in the Introduction.

M : let w ⇐ ref 0 in
g(rec fM (u : unit) =

(
w := 1)

)
;

val
(
(rec getM (u : unit) = (!w)) , (rec setM (n : int) = (w := n))

)

N : let x ⇐ ref 0 in //flag: inside program N
let y ⇐ ref 0 in //flag: argument function fN has not been applied inside program N
let v ⇐ ref 0 in

g(rec fN (u : unit) =
(
if (!x = 0) then (y := 1) else (v := 1)

)
;

if (!y �= 0) then (v := 1);
x := 1;
val

(
(rec getN (u : unit) = (!v)) , (rec setN (n : int) = (v := n))

)

We want to show that the denotations of M and N are related in the vm-parameter
p = T∅ ∈ ovm, that is

([[; g � M ]], [[; g � N ]], T τ, p) ∈ ∇∅{g:σ}
M

Let p1 � T∅, (g′1, g
′
2 ‖ g1, g2, ((unit → Tunit) → Tτ), p1) ∈ ∇V , so we want to prove that

([[; ; g � M ]](g �→ g′1), [[; ; g � N ]](g �→ g′2) ‖ [[; ; g � M ]](g �→ g1), [[; ; g � N ]](g �→ g2), T τ, p1) ∈ ∇M .
If g′1 = g′2 = ⊥ we are done. Else let p2 � p1, (pk2) ∈ p2K

, (pks2) ∈ (pk2)S,
(K ′

1,K
′
2 ‖ K1,K2, (z : τ)�, (pk2)) ∈ ∇K , (S′

1, S
′
2 ‖ S1, S2, (pks2)) ∈ ∇S .

Again if K ′
1 = K ′

2 = ⊥ or S′
1 = S′

2 = ⊥ we are done. Else

[[M ]]g1K1S1 =
(g1[[w � rec fM (u : unit) = (w := 1))]](w �→ lw))

(λS0.λd0.[[w � val (rec getM , rec setM )]](w �→ lw)K1S
0)

S1[lw �→ 0],
where lw is fresh.

[[M ]]g′1K
′
1S

′
1 similar, we use the same location name lw.
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[[N ]]g2K2S2 =
(g2[[x, y, v � rec fN (u : unit) = if (!x = 0) then (y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv))

(λS0λd0.[[x, y, v � if (!y �= 0) then (v := 1);
(x := 1); val (rec getN , rec setN )]](x �→ lx, y �→ ly, v �→ lv)K2S

0)
S2[lx �→ 0, ly �→ 0, lv �→ 0],

where lx, ly, lv are fresh.

[[N ]]g′2K
′
2S

′
2 similar; we use the same location names.

Define local parameter with empty match of store type ∅Z and constant accessibility maps

r3 = (
(
(S2lx �= 0 ∧ ∃n ∈ Z. S1lw = S2lv = n, ∅LL), ∅Z , Alw , Alv,ly

)∧̄(
(S2lx = 0 ∧ S2lv = 0 ∧ S1lw = S2ly ∈ {0, 1}, ∅LL), ∅Z , Alw , Alv,ly

)

By freshness of lw and lx, ly, lv we have a vm-parameter p3 = {r3} ∪ p2, and p3 � p2 � p1.

First we want to show that we apply the related g-functions to related arguments. For this show
([[w � rec fM (u : unit) = (w := 1))]](w �→ lw),
[[x, y, v � rec fN (u : unit). if (!x = 0) then (y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv) ‖
[[w � recf(u : unit) = (w := 1))]](w �→ lw),
[[x, y, v � rec fN (u : unit). if (!x = 0) then (v := 0; y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv),
unit → Tunit, p3) ∈ ∇V .

Let p4
ab � p3. We will see that the proof comes through by assumptions about relatedness of

continuations. Therefore we only need to differentiate two cases.
Let (pk4

a) ∈ p4K either with r3 ∧̄-instantiation (S2lx �= 0 ∧ S1lw = S1lv) or with r3 extended by
removal of ∧̄ clauses such that only (S2lx �= 0 ∧ S1lw = S1lv) is present in p4

ab. And let
(pks4

a) ∈ pk4
a
S.

Let (pk4
b ) ∈ p4K either with r3∧̄-inst (S2lx = 0 ∧ S2lv = 0 ∧ S1lw = S2ly ∈ {0, 1}) or with r3

extended by removal of ∧̄ clauses such that only (S2lx = 0 ∧ S2lv = 0 ∧ S1lw = S2ly ∈ {0, 1}) is
present in p4

ab. And let (pks4
b) ∈ pk4

b
S.

Assume
(k′

a1, k
′
a2 ‖ ka1, ka2, (x : unit)�, (pk4

a)) ∈ ∇K , (s′a1, s
′
a2 ‖ sa1, sa2, (pks4

a)) ∈ ∇S ,
(k′

b1, k
′
b2 ‖ kb1, kb2, (x : unit)�, (pk4

b )) ∈ ∇K , (s′b1, s
′
b2 ‖ sb1, sb2, (pks4

b)) ∈ ∇S .

Again if k′
a1 = k′

a2 = ⊥ or s′a1 = s′a2 = ⊥ we are done in the first case, if if k′
b1 = k′

b2 = ⊥ or
s′b1 = s′b2 = ⊥ we are done in the second case. Else

[[w � rec fM (u : unit) = (w := 1))]](w �→ lw) ∗ ka1sa1 = ka1(sa1[lw �→ 1])∗

[[x, y, v � rec fN (u : unit) if (!x = 0) then (y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv) ∗ ka2sa2 =
ka2(sa2[lv �→ 1])∗

In each side the primed case is similar (or ⊥).

By assumption, in this case, the continuations and the original states are related with
requirement (S2lx �= 0 ∧ S1lw = S1lv). The states have only been changed in lw, lv. In the
updated states lw, lv hold the same integer value, so the updated states are still related. Also the
∗ values are related. So we apply related continuations to values and states related under
instantiations of the same parameter. Hence we get the required termination behaviours.
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[[w � rec fM (u : unit) = (w := 1))]](w �→ lw) ∗ kb1sb1 = kb1(sb1[lw �→ 1])∗

[[x, y, v � rec fN (u : unit) if (!x = 0) then (y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv) ∗ kb2sb2 =
kb2(sb2[ly �→ 1])∗

By assumption, in this case, the continuations and the original states are related with
requirement (S2lx = 0 ∧ S2lv = 0 ∧ S1lw = S2ly ∈ {0, 1}). The states have only been changed in
lw, ly. In the updated states lw, ly hold the same value 1, so the updated states are still related.
Also the ∗ values are related. So we apply related continuations to states and values related
under instantiations of the same parameter. Hence we get the required termination behaviours.

We conclude that the functions are related
([[w � rec fM (u : unit) = (w := 1))]](w �→ lw),
[[x, y, v � rec fN (u : unit). if (!x = 0) then (y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv) ‖
[[w � recf(u : unit) = (w := 1))]](w �→ lw),
[[x, y, v � rec fN (u : unit). if (!x = 0) then (v := 0; y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv),
unit → Tunit, p3) ∈ ∇V .

Since p3 � p1 and by assumption (g′1, g
′
2 ‖ g1, g2, σ, p1) ∈ ∇V then

g′1([[w � rec fM (u : unit) = (w := 1))]](w �→ lw)),
g′2([[x, y, v � rec fN (u : unit). if (!x = 0) then (y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv)) ‖
g1([[w � rec fM (u : unit) = (w := 1))]](w �→ lw)),
g2([[x, y, v � rec fN (u : unit). if (!x = 0) then (y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv)),
T τ, p3) ∈ ∇M

So we need to prove that these related computations are applied to continuations and states
related in instantiations of a parameter �-extending p3 in:

[[M ]]g1K1S1 =
(g1[[w � rec fM (u : unit) = (w := 1))]](w �→ lw))

(λS0.λd0.[[w � val (rec getM , rec setM )]](w �→ lw)K1S
0)

S1[lw �→ 0],
[[M ]]g′1K

′
1S

′
1 similar.

[[N ]]g2K2S2 =
(g2[[x, y, v � rec fN (u : unit) = if (!x = 0) then (y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv))

(λS0λd0.[[x, y, v � if (!y �= 0) then (v := 1);
(x := 1); val (rec getN , rec setN )]](x �→ lx, y �→ ly, v �→ lv)K2S

0)
S2[lx �→ 0, ly �→ 0, lv �→ 0],

[[N ]]g′2K
′
2S

′
2 similar.

Let (pk3) ∈ p3K
, (pk3) � (pk2) with r3 ∧̄-instantiation

(S2lx = 0 ∧ S2lv = 0 ∧ S1lw = S2ly ∈ {0, 1}) and let (pks3) ∈ pk3S.

By assumption (S′
1, S

′
2 ‖ S1, S2, (pks2)) ∈ ∇S , then by weakening for the stored values, it holds

that (S′
1[lw �→ 0], S′

2[lx �→ 0, ly �→ 0, lv �→ 0] ‖ S1[lw �→ 0], S2[lx �→ 0, ly �→ 0, lv �→ 0], (pks3)) ∈ ∇S .

It remains to prove that the continuations are apropriately related
(λS0.λd0.[[w � val (rec getM , rec setM )]](w �→ lw)K ′

1S
0)

(λS0λd0.[[x, y, v � if (!y �= 0) then (v := 1);
(x := 1); val (rec getN , rec setN )]](x �→ lx, y �→ ly, v �→ lv)K ′

2S
0) ‖
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(λS0.λd0.[[w � val (rec getM , rec setM )]](w �→ lw)K1S
0),

(λS0λd0.[[x, y, v � if (!y �= 0) then (v := 1);
(x := 1); val (rec getN , rec setN )]](x �→ lx, y �→ ly, v �→ lv)K2S

0), (x : τ), (pk3)) ∈ ∇K .

Let
(pk4)�(pk3), (pks4) ∈ (pk4)S, (S4

1
′
, S4

2
′ ‖ S4

1 , S4
2 , (pks4)) ∈ ∇S , (v4

1
′
, v4

2
′ ‖ v4

1 , v4
2 , τ, (pk4)vm) ∈ ∇V .

Again the ⊥ cases trivially give termination approximation. Else

(λS0.λd0.[[w � val (rec getM , rec setM )]](w �→ lw)K1S
0)(S4

1)(v4
1) =

K1(S4
1)([[w � rec (getM , rec setM )]](w �→ lw))

(λS0.λd0.[[w � val (rec getM , rec setM )]](w �→ lw)K1S
0)(S4

1
′)(v4

1
′) =

K1(S4
1
′)([[w � rec (getM , rec setM )]](w �→ lw))

(λS0λd0.[[x, y, v � if (!y �= 0) then (v := 1); (x := 1);
val (rec getN , rec setN )]](x �→ lx, y �→ ly, v �→ lv)K2S

0)(S4
2)(v4

2) =

– K2S
4
2 [lx �→ 1]([[v � rec (getN , rec setN )]](v �→ lv)) if S4

2 ly = 0
– K2S

4
2 [lv �→ 1, lx �→ 1]([[v � rec (getN , rec setN )]](v �→ lv)) if S4

2 ly = n �= 0
– else ⊥

(λS0λd0.[[x, y, v � if (!y �= 0) then (v := 1); (x := 1);
val (rec getN , rec setN )]](x �→ lx, y �→ ly, v �→ lv)K2S

0)(S4
2
′)(v4

2
′) =

– K2S
4
2
′[lx �→ 1]([[v � rec (getN , rec setN )]](v �→ lv)) if S4

2
′
ly = 0

– K2S
4
2
′[lv �→ 1, lx �→ 1]([[v � rec (getN , rec setN )]](v �→ lv)) if S4

2
′
ly = n �= 0

– else ⊥
By approximation properties for ∇ it holds that S4

2
′
ly � S4

2 ly, this may give some extra ⊥’s in
the last case.

If we can prove that we get related continuations applied to states and values related in a �

extended parameter, then we can conclude that we have the required termination approximation.
It is enough to show that we at the primed places get something below in the � order. So it is
enough to consider the cases where S4

2
′
ly = S4

2 ly.

By assumption (K ′
1,K

′
2 ‖ K1,K2, (z : τ)�, (pk2)) ∈ ∇K .

Define r̂3 by removal of one of the ∧̄ clauses in r3,
r̂3 = (

(
(S2lx �= 0 ∧ S1lw = S2lv, ∅LL), ∅Z , Alw , Alv,ly

)
. Then r̂3 has only one trivial instantiation

for continuations as well as for states, and r̂3 is an ordinary local parameter. r̂3 use the same
locations as r3.
Define p̂3 = {r̂3} ∪ p2, then p̂3 � p2. Also p̂3 ∈ sub(p3) and so p̂3 � p3.
Define (p̂k3) as (pk2) with only the trivial instantiation of r̂3 added, then (p̂k3) � (pk2) and
(p̂k3) ∈ p̂K

3 . Define (p̂ks3) as (pks2) with only the trivial instantiation of r̂3 added, then
(p̂ks3) ∈ (p̂k3)S and (p̂ks3) ∈ (p̂3)S.

By assumption (S4
1
′
, S4

2
′ ‖ S4

1 , S4
2 , (pks4)) ∈ ∇S , where(pk4) � (pk3) and (pk3) has the

r3 ∧̄-instantiation (S2lx = 0 ∧ S2lv = 0 ∧ S1lw = S2ly ∈ {0, 1}). Then S4
2 ly = 0 implies that

S4
1 lw = 0, and in this case then S4

2 [lx �→ 1](lv) = 0 = S4
1 lw. Also S4

2 ly �= 0 implies that
S4

1 lw = 1 ∧ S4
2 lv = 0, in this case then S4

2 [lv �→ 1, lx �→ 1](lv) = 1 = S4
1 lw.
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Let p̂4, (p̂k4) and (p̂ks4) be defined as p4, (pk4) and (pks4) with the only change that the
instantiations of r3 is replaced by r̂3 with trivial instantiations. Then p̂4 � p̂3 and since p̂3 � p2 so
p̂4 � p2. Also p̂4 ∈ sub(p4) and so p̂4 � p4. The only change in the updated states above in both
cases are within the area owned by r3 and the updates fulfill the new instantiation. Also
disjointness properties required for state-relatedness are preserved. Since p̂4 � p4 it holds that the
stored related values are still related. So the updated states from above are related in ∇S under
the parameter (p̂ks4).

It remains to show that the pairs of setters and getters exported by M and N are related under
the parameter p̂4. This requires that each of setter-values and getter-values are related. Recall
that for values related at int type we require that ∃n ∈ Z.v′1 ∈ {⊥, n} ∧ v1 = n ∧ v′2 ∈ {⊥, n}∧
v2 = n.

Let p̂5 � p̂4, (p̂k5) ∈ p̂5
K

, (p̂ks5) ∈ ˆpk5
S
. Assume (k̂′

1, k̂
′
2 ‖ k̂1, k̂2, (int)�, p̂k5),

(ŝ′1, ŝ
′
2 ‖ ŝ1, ŝ2, p̂ks5) and (v′1, v

′
2 ‖ v1, v2, int, p̂5)

Getters:
[[rec getM (u : unit) =!w]](w �→ lw) ∗ k̂1ŝ1 = k̂1(ŝ1)(ŝ1lw).
[[rec getM (u : unit) =!w]](w �→ lw) ∗ k̂′

1ŝ
′
1 � k̂′

1(ŝ
′
1)(ŝ

′
1lw).

[[rec getN (u : unit) =!v]](v �→ lv) ∗ k̂2ŝ2 = k̂2(ŝ2)(ŝ2lv).
[[rec getN (u : unit) =!v]](v �→ lv) ∗ k̂′

2ŝ
′
2 � k̂′

2(ŝ
′
2)(ŝ

′
2lv).

Since states are assumed related by the requirements of r̂3 it holds that ∃n ∈ Z. ŝ1lw = ŝ2lv = n.
By apporixmation properties for states ŝ′1lw ∈ {⊥, n} ∧ ŝ′2lv ∈ {⊥, n}. So we have continuations
applied to states and values correspondingly related. We conclude that the getters are related.
Setters:
The assumption (v′1, v

′
2 ‖ v1, v2, int, p̂5) implies that either v′1 = v′2 = ⊥ or

∃n ∈ Z. v′1 � v1 = n ∧ v′2 � v2 = n. The ⊥ case is immediate. Else
[[rec setM (n : int) = w := n]](w �→ lw)(v1)k̂1ŝ1 = k̂1(ŝ1[lw �→ v1])∗.
[[rec setM (n : int) = w := n]](w �→ lw)(v′1)k̂

′
1ŝ

′
1 � k̂′

1(ŝ
′
1[lw �→ v′1])∗.

[[rec getN (n : int) = v := n]](v �→ lv)(v2)k̂2ŝ2 = k̂2(ŝ2[lv �→ v2])∗.
[[rec getN (n : int) = v := n]](v �→ lv)(v′2)k̂

′
2ŝ

′
2 � k̂′

2(ŝ
′
2[lv �→ v′2])∗.

The states have only been updated within the area owned by r̂3 and the invariant is preserved
because the integer values v1, v2 must be identical. Also approximation requirement for states are
preserved. Values *’s are related in any parameter. So we have continuations applied to states
and values correspondingly related. We conclude that the setters are related.

We conclude that
(λS0.λd0.[[w � val (rec getM , rec setM )]](w �→ lw)K ′

1S
0)

(λS0λd0.[[x, y, v � if (!y �= 0) then (v := 1); (x := 1);
val (rec getN , rec setN )]](x �→ lx, y �→ ly, v �→ lv)K ′

2S
0) ‖

(λS0.λd0.[[w � val (rec getM , rec setM )]](w �→ lw)K1S
0),

(λS0λd0.[[x, y, v � if (!y �= 0) then (v := 1); (x := 1);
val (rec getN , rec setN )]](x �→ lx, y �→ ly, v �→ lv)K2S

0), (x : τ), (pk3)) ∈ ∇K .

And then we can conclude ([[M ]], [[N ]], T (int ref), T ) ∈ ∇{g:σ}
V .
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7.3 Example. Export of locations from local area to visible.

The programs M and N below are open computations with one free variable g of function type.
The programs were presented in the Introduction.

M:
let w ⇐ ref 0 in

let z ⇐ g(rec f (a:unit)= (w:= 1)) in
val w

N:
let x ⇐ ref 0 in
let y ⇐ ref 0 in
let v ⇐ ref 0 in

let z0 ⇐ g(rec f (a:unit)= (if (!x:= 0) then (v:=0; y:= 1) else (v:=1)) in
let z1 ⇐ if (!y �= 0) then (v := 1) in
let z2 ⇐ (x := 1) in

val v

We want to show the denotations of the two open computations are related in the ordinary
parameter T∅, i.e. that ([[M ]], [[N ]], T (int ref), T∅) ∈ ∇∅,{g:σ}

M , where σ = (unit → Tunit) → Tτ

Let p1 � T∅, (g′1, g
′
2 ‖ g1, g2, σ, p1) ∈ ∇V .

Let p2 � p1, (pk2) ∈ p2K
, (pks2) ∈ (pk2)S,

(K ′
1,K

′
2 ‖ K1,K2, (z : τ)�, (pk2)) ∈ ∇K , (S′

1, S
′
2 ‖ S1, S2, (pks2)) ∈ ∇S .

[[M ]]g1K1S1 =
(g1[[w � rec f(a : unit) = (w := 1))]](w �→ lw))

(λS0.λd0.[[w � val w]](w �→ lw)K1S
0)

S1[lw �→ 0],
where lw is fresh.

[[N ]]g2K2S2 =
(g2[[x, y, v � rec f(a : unit) = if (!x = 0) then (y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv))

(λS0λd0.[[x, y, v � let z1 ⇐ if (!y �= 0) then (v := 1) in
let z2 ⇐ (x := 1) in val v]](x �→ lx, y �→ ly, v �→ lv)K2S

0)
S2[lx �→ 0, ly �→ 0, lv �→ 0],

where lx, ly, lv are fresh.

Define local vm-parameter r3 =
(
[S2lx �= 0, ∅

LL
], A∅, A{lx,ly}, {(lw, lv, int)})∧̄(

[S2lx = 0 ∧ S2lv =
0 ∧ S1lw = S2ly ∈ {0, 1}], A{lw}, A{lx,ly,lv}, ∅Z

)
.

By freshness of lw and lx, ly, lv we have a vm-parameter p3 = {r3} ∪ p2, and p3 � p2 � p1

First we want to show that
([[w � rec f(a : unit) = (w := 1))]](w �→ lw),
[[x, y, v � rec f(a : unit) = if (!x = 0) then (v := 0; y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv) ‖
[[w � rec f(a : unit) = (w := 1))]](w �→ lw),
[[x, y, v � rec f(a : unit) = if (!x = 0) then (v := 0; y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv),
unit → Tunit, p3) ∈ ∇V .

Let p4 � p3
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Let (pk4
a) ∈ p4K either s.t. r3 ∈ p4 with ∧̄-instantiation

([S2lx �= 0, ∅
LL

], {(lw, lv, int)}, A∅, A{lx,ly}) or s.t. p4 extends p3 by removal of ∧̄-clause and only
([S2lx �= 0, ∅

LL
], {(lw, lv, int)}, A∅, A{lx,ly}) ∈ P 4 and so also in the k-instantiation.

Let (pks4
a) ∈ pk4

a
S.

Let (pk4
b ) ∈ p4K either s.t. r3 ∈ p4 with ∧̄-instantiation

([S2lx = 0∧S2lv = 0∧S1lw = S2ly ∈ {0, 1}], ∅
Z
, A{lw}, A{lx,ly,lv}) or s.t. p4 extends p3 by removal

of ∧̄-clause and only ([S2lx = 0 ∧ S2lv = 0 ∧ S1lw = S2ly ∈ {0, 1}], ∅
Z
, A{lw}, A{lx,ly,lv}) ∈ P 4 and

so also in the k-instantiation.
Let (pks4

b) ∈ pk4
b
S.

Assume
(k′

a1, k
′
a2 ‖ ka1, ka2, (x : unit)�, (pk4

a)) ∈ ∇K , (s′a1, s
′
a2 ‖ sa1, sa2, (pks4

a)) ∈ ∇S ,
(k′

b1, k
′
b2 ‖ kb1, kb2, (x : unit)�, (pk4

b )) ∈ ∇K , (s′b1, s
′
b2 ‖ sb1, sb2, (pks4

b)) ∈ ∇S .

[[w � rec f(a : unit) = (w := 1))]](w �→ lw) ∗ ka1sa1 = ka1(sa1[lw �→ 1])∗

[[x, y, v � rec f(a : unit) if (!x = 0) then (v := 0; y := 1) else
(v := 1)]](x �→ lx, y �→ ly, v �→ lv) ∗ ka2sa2 =
ka2(sa2[lv �→ 1])∗

By assumption the continuations and the original states are related with ordinary instantiation
([S2lx �= 0, ∅

LL
], {(lw, lv, int)}, A∅, A{lx,ly}) where (lw, lv, int) belong to the visible location areas.

The states have only been changed in lw, lv. In the updated states lw, lv hold related integer
values, so the updated states are still related. Also the ∗ values are related. Hence we get the
required termination behaviours.

[[w � rec f(a : unit) = (w := 1))]](w �→ lw) ∗ kb1sb1 = kb1(sb1[lw �→ 1])∗

[[x, y, v � rec f(a : unit) = if (!x = 0) then (v := 0; y := 1) else
(v := 1)]](x �→ lx, y �→ ly, v �→ lv) ∗ kb2sb2 =
kb2(sb2[lv �→ 0, ly �→ 1])∗

By assumption the continuations are related with instantiation
([S2lx = 0∧ S2lv = 0∧ S1lw = S2ly ∈ {0, 1}], ∅

Z
, A{lw}, A{lx,ly,lv}). The original states are related,

the states have only been changed in lw, ly, lv. The updated states are still related with
instantiation (S2lx = 0 ∧ S2lv = 0 ∧ S1lw = S2ly ∈ {0, 1}). Also the ∗ values are related. Hence we
get the required termination behaviours.

We conclude that ([[w � recf(a : unit) = (w := 1))]](w �→ lw),
[[x, y, v � λa. if (!x = 0) then (v := 0; y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv) ‖
[[w � recf(a : unit) = (w := 1))]](w �→ lw),
[[x, y, v � λa. if (!x = 0) then (v := 0; y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv),
unit → Tunit, p3) ∈ ∇V

Since p3 � p1 and by assumption (g′1, g
′
2 ‖ g1, g2, σ, p1) ∈ ∇V then

g′1([[w � recf(a : unit) = (w := 1))]](w �→ lw),
g′2[[x, y, v � recf(a : unit) = if (!x = 0) then (v := 0; y := 1) else
(v := 1)]](x �→ lx, y �→ ly, v �→ lv) ‖
g1[[w � recf(a : unit) = (w := 1))]](w �→ lw),
g2[[x, y, v � recf(a : unit) = if (!x = 0) then (v := 0; y := 1) else (v := 1)]](x �→ lx, y �→ ly, v �→ lv),
T τ, p3) ∈ ∇M

130



So we need to prove that these related computations are applied to continuations and states
related in instantiations of a parameter �-extending p3 in:

[[M ]]g1K1S1 =
(g1[[w � rec f(a : unit) = (w := 1))]](w �→ lw))
(λS0.λd0.[[w � val w]](w �→ lw)K1S) S1[lw �→ 0]

[[N ]]g2K2S2 =
(g2[[x, y, v � rec f(a : unit) = if (!x = 0) then (v := 0; y := 1) else
(v := 1)]](x �→ lx, y �→ ly, v �→ lv)) (λS0λd0.[[x, y, v � let z1 ⇐ if (!y �= 0) then (v := 1) in

let z2 ⇐ (x := 1) in val v]](x �→ lx, y �→ ly, v �→ lv)K2S
0)

S2[lx �→ 0, ly �→ 0, lv �→ 0]

Let (pk3) ∈ p3K
, (pk3) ⊇ (pk2) with r3 instantiation (S2lx = 0 ∧ S2lv = 0∧ S1lw = S2ly ∈ {0, 1}).

Let (pks3) ∈ pk3S
, (pks3) ⊇ (pks2) (then (pks3) has the r3 instantiation

(S2lx = 0 ∧ S2lv = 0 ∧ S1lw = S2ly ∈ {0, 1})).

By assumption (S′
1, S

′
2 ‖ S1, S2, (pks2)) ∈ ∇S , then by weakening for the stored values, it holds

that (S′
1[lw �→ 0], S1[lw �→ 0], S′

2[lx �→ 0, ly �→ 0, lv �→ 0], S2[lx �→ 0, ly �→ 0, lv �→ 0], (pks3)) ∈ ∇S

It remains to prove that
(λS0.λd0.[[w � val w]](w �→ lw)K ′

1S
0)

(λS0λd0.[[x, y, v � let z1 ⇐ if (!y �= 0) then (v := 1) in
let z2 ⇐ (x := 1) in val v]](x �→ lx, y �→ ly, v �→ lv)K ′

2S
0) ‖

(λS0.λd0.[[w � val w]](w �→ lw)K1S
0),

(λS0λd0.[[x, y, v � let z1 ⇐ if (!y �= 0) then (v := 1) in
let z2 ⇐ (x := 1) in val v]](x �→ lx, y �→ ly, v �→ lv)K2S

0), (x : τ), (pk3)) ∈ ∇K .

Let
(pk4)�(pk3), (pks4) ∈ (pk4)S, (S4

1
′
, S4

2
′ ‖ S4

1 , S4
2 , (pks4)) ∈ ∇S , (v4

1
′
, v4

2
′ ‖ v4

1 , v4
2 , τ, (pk4)vm) ∈ ∇V .

(λS0.λd0.[[w � val w]](w �→ lw)K1S
0)S4

1v4
1 = [[w � val w]](w �→ lw)K1S

4
1 = K1S

4
1 lw

(λS0λd0.[[x, y, v � let z1 ⇐ if (!y �= 0) then (v := 1) in
let z2 ⇐ (x := 1) in val v]](x �→ lx, y �→ ly, v �→ lv)K2S

0)S4
2v4

2 =
[[x, y, v � let z1 ⇐ if (!y �= 0) then (v := 1) in let z2 ⇐ (x := 1) in val v]](x �→ lx, y �→ ly, v �→ lv)
K2S

4
2 =

– K2S
4
2 [lx �→ 1]lv if S4

2 ly = 0
– K2S

4
2 [lv �→ 1, lx �→ 1]lv if S4

2 ly = n �= 0
– else ⊥

Since the original states were assumed related it holds that S4
2 ly ∈ {0, 1}.

Let p4
1 ∈ sub((pk4)vm) be (pk4)vm where r3 is replaced by the ordinary local parameter

r31 = ([S2lx �= 0], A∅, A{lx,ly}{(lw, lv, int)}), then p4
1 � p2. Let (pks4

1) ∈ p4
1
S be (pks4) with the r3

instantiations replaced by (r31|r31|(S2lx �= 0)). Then (pks4
1)

vm = p4
1.

Recall (K ′
1,K

′
2 ‖ K1,K2, (x : τ), p2) ∈ ∇K . We will prove that (lw, lv ‖ lw, lv, int ref, p4

1) ∈ ∇V ,
and that in both cases the updated states are related under (pks4

1). The required termination
properties then follow by assumption and from p4

1 � p2.
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By assumption (S4
1
′
, S4

2
′ ‖ S4

1 , S4
2 , (pks4)) ∈ ∇S . By definition of the parameters

Z(pks4
1) = Z(pks4) ∪ {(lw, lv, int)}. If S4

2 ly = 0 then also S4
1 lw = 0, S4

2 lv = 0 and S4
2 [lx �→ 1]lv = 0.

If S4
2 ly �= 0 then also S4

1 lw = 1 and S4
2 [lv �→ 1, lx �→ 1]lv = 1. So in both cases the updated states

hold related integer values at locations lw, lv.
By weakening the stored values related in (pks4)vm are related in any parameter �-extending
((pks4)vm) and hence in (pks4

1). So we have that visible as well as hidden values required to be
related are still related. Disjointness properties are also fulfilled. So the updated states are related
under (pks4

1).

We conclude that
(λS0.λd0.[[w � val w]](w �→ lw)K ′

1S
0),

(λS0λd0.[[x, y, v � let z1 ⇐ if (!y �= 0) then (v := 1) in
let z2 ⇐ (x := 1) in val v]](x �→ lx, y �→ ly, v �→ lv)K ′

2S
0) ‖

(λS0.λd0.[[w � val w]](w �→ lw)K1S
0),

(λS0λd0.[[x, y, v � let z1 ⇐ if (!y �= 0) then (v := 1) in
let z2 ⇐ (x := 1) in val v]](x �→ lx, y �→ ly, v �→ lv)K2S

0), (x : τ)�, (pk3)) ∈ ∇K

And then we can conclude ([[M ]], [[N ]], T (int ref), T ) ∈ ∇{g:σ}
V .

7.4 Example. Allocation with reservation.

M:
val (recfM (n : int) = ref n)

N:
let flag ⇐ ref 0 in
let cell ⇐ ref 0 in
val recfN (n : int)=( if (!flag = 0) then (flag := 1; cell := n; val cell) else (ref n))

M,N are closed computations. We want to show ([[M ]], [[N ]], T (int → T (int ref)), T∅) ∈ ∇∅∅
M .

Let p � T∅, (pk) ∈ pK, (pks) ∈ (pk)S. Assume
(k′

1, k
′
2 ‖ k1, k2, (x : int ref), (pk)) ∈ ∇K , (s′1, s

′
2 ‖ s1, s2, (pks)) ∈ ∇S .

[[M ]]k1s1 = k1s1[[rec fM ]].

[[N ]]k2s2 = k2(s2[lf �→ 0, lc �→ 0])([[rec fN ]](flag �→ lf , cell �→ lc))
where lf , lc are fresh.

So we want to find a parameter �-extending (pk) such that updated states and denotations of
functions are related therein.

Define local parameter r = 〈q0 ≺ 〈q1〉〉
q0 = ((S2lf = 0), A∅, A{lf ,lc}, ∅Z) and q1 = ((S2lf �= 0), A∅, A{lf}, ∅Z)

Let p1 = p ∪ {r}, then p1 � p.

We need to show that the functions are related in p1.
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Case a):
Let p2

a � p1 such that {r} has been locally extended from q0 to q1. This means q1 ∈ p2
a, r /∈ p2

a.
(pk2

a) ∈ p2
a
K

, (pks2
a) ∈ (pk2

a)S. Assume
(K ′

1,K
′
2 ‖ K1,K2, (x : int ref), (pk2

a)) ∈ ∇K , (S′
1, S

′
2 ‖ S1, S2, (pks2

a)) ∈ ∇S .

([[recfM ]]n)K1S1 = K1S1[l1 �→ n]l1 where l1 is fresh for K1, S1 and any location viewed by the
parameter.

([[recfN ]]n)K2S2 = K2S2[l2 �→ n]l2 where l2 is fresh for K2, S2 and any location viewed by the
parameter.

So now we want to show that the updated states are related in a �-extension of (pk2
a) and that

the location values are related in the erasure of the same parameter.

Let p3
a = p2

a ∪ T(l1,l2,int), then p3
a � p2

a. Let (pk3
a) ∈ (p3

a)K, (pk3
a) � (pk2

a). By assumption the
continuations are related in (pk2

a). The updated states are related
(S′

1[l1 �→ n], S′
2[l2 �→ n] ‖ S1[l1 �→ n], S2[l2 �→ n], pks3

a) and the location values
(l1, l2 ‖ l1, l2, int ref, p3

a). So we get the required termination approximation.

Case b):
Let p2

b � p1 such that {r} has not been locally extended, so r ∈ p2
b . Let

(pk2
b ) ∈ p2

b
K

, (pks2
b) ∈ (pk2

b )S. Assume
(K ′

1,K
′
2 ‖ k1,K2, (x : int ref), (pk2

b )) ∈ ∇K , (S′
1, S

′
2 ‖ S1, S2, (pks2

b)) ∈ ∇S .

([[recfM ]]n)K1S1 = K1S1[l1 �→ n]l1 where l1 is fresh for K1, S1 and any location viewed by the
parameter.

([[recfN ]]n)K2S2 = K2S2[lf �→ 1, lc �→ n]lc

As the continuations are assumed related, then we now want to show that the updated states are
related in a parameter �-extending pk2

b and that the location values l1, lc are related in the
erasure of the same parameter.

Let p3
b = ((p2

b \ r) ∪ q1) ∪ T(l1,lc,int), then p3
b � p2

b . This follows from lc cannot appear in Zp2
b . Also

it is a requirement that all stored related values are related also in (p2
b \ r) ∪ q1 and her again lc

cannot appear in Z(p2
b\r)∪q1 .

Let (pk3
b ) ∈ (p3

b)
K, (pk3

b ) � (pk2
b ) and let (pks3

b) ∈ (pk3
b )S, (pks3

b) � (pks2
b). By assumption the

continuations are related in (pk2
b ). The updated states are related

(S′
1[l1 �→ n], S′

2[lf �→ 1, lc �→ n] ‖ S1[l1 �→ n], S2[lf �→ 1, lc �→ n], pks3
b) and the location values

(l1, lc ‖ l1, lc, int ref, p3
b). So we get the required termination approximation.

7.5 Example. Setter getter generator with ∀ type.

M = Λα. val
(
rec f (g: α): T ((α → Tunit) × (unit → Tα)) =

let y ⇐ ref g in
let set ⇐ val (rec f1M (g1 : α) : Tunit = y := g1) in
let get ⇐ val (rec f2M (x : unit) : Tα = !y) in

(set,get)
)
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N = Λα. val
(
rec f (g: α): T ((α → Tunit) × (unit → Tα)) =

let y0 ⇐ ref g in
let y1 ⇐ ref g in
let p ⇐ ref 0 in
let set ⇐ val (rec f1N (g1 : α) : Tunit =

if iszero(!p) then
(p := 1; y1 := g1)

else
(p := 0; y0 := g1)) in

let get ⇐ val (rec f2N (x : unit) : Tα =
if iszero(!p) then !y0 else !y1) in

(set,get)
)

M and N are closed values of polymorphic type M,N:∀α.T (α → ((α → Tunit), (unit → Tα))). To
shorten notation we let ∀α.Tτ = ∀α.T (α → ((α → Tunit), (unit → Tα))).

We want to show ([[; ;� M ]]{}, [[; ;� N ]]{},∀α.Tτ, T∅) ∈ ∇∅,∅
V that is

([[M ]], [[N ]] ‖ [[M ]], [[N ]],∀α.Tτ, T∅) ∈ ∇V .

[[; ;� M ]]{} = in∀�[[;α;� val rec fM ]]{} and [[; ;� N ]]{} = in∀�[[;α;� val rec fN ]]{} 
so we need to show, ∀− � σ : type. ([[;α;� val rec fM ]], [[;α;� val rec fN ]] ‖ [[;α;�
val rec fM ]], [[;α;� val rec fN ]], σ → T (σ → Tunit, unit → Tσ), T∅) ∈ ∇M .

Let − � σ be any closed type, and shorten τ ′ = σ → T (σ → Tunit, unit → Tσ). Let
p � T∅, (pk) ∈ pK, (pks) ∈ (pk)S and assume (k′

1, k
′
2 ‖ k1, k2, (x : τ ′)�, (pk)) ∈ ∇K and

(s′1, s
′
2 ‖ s1, s2, (pks)) ∈ ∇S .

[[;α;� val rec fM ]]{}k1s1 = k1s1[[;α;� rec fM ]]{}

[[;α;� val rec fN ]]{}k2s2 = k2s2[[;α;� rec fN ]]{}

Now we want to prove ([[; α;� rec fM ]]{}, [[;α;� rec fN ]]{} ‖ [[;α;� rec fM ]]{}, [[;α;�
rec fN ]]{}, σ → T (σ → Tunit, unit → Tσ), p) ∈ ∇V .
The denotations have the right format so we can let [[;α;� rec fM ]]{} = in��dM and let
[[;α;� rec fN ]]{} = in��dN . Now let p1 � p and assume (v′1, v

′
2 ‖ v1, v2, σ, p1) ∈ ∇. Then next

we aim to prove (dmv′1, dNv′2 ‖ dMv1, dNv2, T (σ → Tunit, unit → Tσ), p1) ∈ ∇M .
Let p2 � p1, (pk2) ∈ (p2)K, (pks2) ∈ (pk2)S and assume
(K ′

1,K
′
2 ‖ K1,K2, (x : (σ → Tunit, unit → Tσ))�, (pk2)) ∈ ∇K and

(S′
1, S

′
2 ‖ S1, S2, (pks2)) ∈ ∇S .

(dMv1)K1S1 = K1(S1[ly �→ v1])(vsetM , vgetM )
(dNv2)K2S2 = K2(S2[ly0 �→ v1, ly1 �→ v1, lp �→ 0])(vsetN , vgetN )
where ly, ly0, ly1, lp are fresh.
Now we want to find a local parameter we can add to �-extend, such that updated states and
function values are related therein.
Let r = ((S2lp = 0, (ly, ly0, σ))∨̄(S2lp �= 0, (ly, ly0, σ)), A{ly}, A{ly0,ly1,lp}, ∅Z and let p3 = p2 ∪ {r}.
Let (pks3) be (pks2) ∪ {(r|r|(S2lp �= 0, (ly, ly0, σ)))}. Since the locations are fresh and by
parameter weakening for the stored values it holds that (S′

1[ly �→ v′1], S
′
2[ly0 �→ v′1, ly1 �→ v′1, lp �→

0] ‖ S1[ly �→ v1], S2[ly0 �→ v1, ly1 �→ v1, lp �→ 0], (pks3)) ∈ ∇S .
It remains to show that setters and getters are related in p3.
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Setters: Let p5 � p4 � p3, (pk5) ∈ (p5)K, (pks5) ∈ (pk5)S and assume
(w′

1, w
′
2 ‖ w1, w2, σ, p4) ∈ ∇V , (κ′

1, κ
′
2 ‖ κ1, κ2, (x : unit)�, (pk5)) ∈ ∇K and

(ς ′1, ς
′
2 ‖ ς1, ς2, (pks5)) ∈ ∇S .

dsetMw1κ1ς1 = κ1(ς1[ly �→ w1]∗)
dsetNw2κ2ς2 = κ2(ς2[lp �→ 1, ly1 �→ w2]∗) if ς2lp = 0.
dsetNw2κ2ς2 = κ2(ς2[lp �→ 0, ly0 �→ w2]∗) if ς2lp �= 0.
If the original states were related in an instantiation of r to (S2lp = 0, (ly, ly0, σ) then the
updated states are related in an instantiation of r to (S2lp �= 0, (ly, ly1, σ) and vice versa. Also ∗
values are related. Since the continuations were related by assumption we get the desired
termination behaviour. So we conlude that (dsetM , dsetN ‖ dsetM , dsetN , σ → Tunit, p3) ∈ ∇V .

Getters: Let p5 � p4 � p3, (pk5) ∈ (p5)K, (pks5) ∈ (pk5)S and assume
(w′

1, w
′
2 ‖ w1, w2, unit, p4) ∈ ∇V , (κ′

1, κ
′
2 ‖ κ1, κ2, (x : σ)�, (pk5)) ∈ ∇K and

(ς ′1, ς
′
2 ‖ ς1, ς2, (pks5)) ∈ ∇S .

dsetMw1κ1ς1 = κ1ς1(ς1ly)
dsetNw2κ2ς2 = κ2ς2(ς2ly0) if ς2lp = 0.
dsetNw2κ2ς2 = κ2ς2(ς2ly1) if ς2lp �= 0.
If the states were related in an instantiation of r to (S2lp = 0, (ly, ly0, σ) then the retrived values
are related in p5, and the same holds if the states were related in an instantiation of r to
(S2lp �= 0, (ly, ly1, σ). Since the continuations and the states were related by assumption we get
the desired termination behaviour. So we conlude that
(dgetM , dgetN ‖ dgetM , dgetN , unit → Tσ, p3) ∈ ∇V .
Then we can further conclude (dMv′1, dNv′2 ‖ dMv1, dNv2, T (σ → Tunit, unit → Tσ), p1) ∈ ∇M

and then also ([[;α;� rec fM ]]{}, [[;α;� rec fN ]]{} ‖ [[;α;� rec fM ]]{}, [[;α;� rec fN ]]{}, σ →
T (σ → Tunit, unit → Tσ), p) ∈ ∇V . As σ was any arbitrary closed type we can now finally
conclude ([[; ;� M ]]{}, [[; ;� N ]]{},∀α.Tτ, T∅) ∈ ∇∅,∅

V that is
([[M ]], [[N ]] ‖ [[M ]], [[N ]],∀α.Tτ, T∅) ∈ ∇V .

7.6 Non-example. Snapback is not in the relation at most types

We define
snapback = in��λf ∈ V.(λK ∈ K.λS ∈ S.if

(
exists f̂ .f = in��f̂ ) then

(
(f̂∗)(λŝ.λd.KSd)S

)
else ⊥) .

snapback is not the denotation of any term, but it is an element in V.

At most types of the form (unit → Tτ) → Tτ snapback is not related to itself at the parameters
TΔ. We will show a counter example, and then look at the general principle behind. So we give
examples of related functions, related continuations and related states such that when snapback
is applied to the them termination properties differ.

We now aim to show
(snapback, snapback, (unit → T (unit → Tunit)) → T (unit → Tunit), TΔ) /∈ ∇V .
Let g = in��λv ∈ V.λk ∈ K.λs ∈ S.ks(in��λv′λk′.λs′.k′s′in11�∗  ) .

For all n ∈ Z let gn = in��λv ∈ V.(λk ∈ K.λs ∈ S.k(s[l �→ n])(in��λv′.λk′.λs′. if s′l =
n then (k′s′in11�∗  ) else ⊥)) , where l /∈ dom(Δ) ∪ supp(k) ∪ supp(s).
It holds that
(g, gn ‖ g, gn, unit → T (unit → Tunit), TΔ) ∈ ∇V .

To see this, let q2 � q1 � TΔ, (qk2) ∈ qK
2 , (qks2) ∈ (qk2)S and assume

(V ′
1 , V ′

2 ‖ V1, V2, unit, q1) ∈ ∇V , (K ′
1,K

′
2 ‖ K1,K2, (x : unit → Tunit), (qk2)) ∈ ∇K and

(S′
1, S

′
2 ‖ S1, S2, (qks2)) ∈ ∇S . The ⊥ cases at primed elements are trivial.
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gV1K1S1 = K1S1(in��λv′λk′.λs′.k′s′in11�∗  )
gnV2K2S2 = K2(S2[l �→ n])(in��λv′.λk′.λs′. if s′l = n then (k′s′in11�∗  ) else ⊥), where
l /∈ dom(Δ) ∪ supp(K2) ∪ supp(S2).

Define local parameter rn = ({(s1, s2)|s2l = n}, ∅LL), A∅, A{l}, ∅Z . Let qn3 = q2 ∪ {rn},
(qksn3) = (qks2) ∪ {(rn|rn|({(s1, s2)|s2l = n})} then qn3 ∈ pvm, qn3 � q2, (qksn3) � (qks2).
Since the original states were related in (qks2) and l is fresh, then the updated states are related
in (qksn3). So it remains to show that the function-values are related in qn3.

Let q5 � q4 � qn3, (qk5) ∈ qK
5 , (qks5) ∈ (qk5)S and assume (V ′

1 , V ′
2 ‖ V1, V2, unit, q4) ∈ ∇V ,

(K ′
1,K

′
2 ‖ K1,K2, (x : unit → Tunit), (qk5)) ∈ ∇K and (S′

1, S
′
2 ‖ S1, S2, (qks5)) ∈ ∇S . The ⊥

cases at primed elements are trivial. Else, since the states are related in a parameter extending
(qksn3) it must be the case that S2l = n so we get related continuations applied to related states
and related values:
(in��λv′λk′.λs′.k′s′in11�∗  )V1K1S1 = K1S1in11�∗ 
(in��λv′.λk′.λs′. if s′l = 1 then (k′s′in11�∗  ) else ⊥)V2K2S2 = K2S2in11�∗ 
so we conclude that the function-values are related under qn3 and then we can conclude that
(g, gn ‖ g, gn, unit → T (unit → Tunit), TΔ) ∈ ∇V for each n.

Let (s′1, s
′
2 ‖ s1, s2, TΔ) ∈ ∇S where s′1 �= ⊥, and let

k = λs.λd.(if d = in��d′ then
(
d′(in1�∗ )(λs′.(λd′.(�)⊥)⊥)s

)
else ⊥). Then

(k, k ‖ k, k, (x : unit → Tunit)�, TΔ) ∈ ∇K . To see this let (pk) � TΔ, (pks) ∈ (pk)S, p = (pk)vm

and assume (S′
1, S

′
2 ‖ S1, S2, (pks)) ∈ ∇S and (h′

1, h
′
2 ‖ h1, h2, unit → Tunit, p) ∈ ∇V . The ⊥

cases are triviel. Else this requires there are d′1, d
′
2, d1, d2 such that h′

1 � h1 = in��d1 and
h′

2 � h2 = in��d2 where (h′
1 = ⊥ ∧ d′1 = ⊥) or h′

1 = in��d′1 and (h′
2 = ⊥ ∧ d′2 = ⊥) or

h′
1 = in��d′2 . Then kS′

1V
′
1 = d′1(in1�∗ )(λs′.(λd′.(�)⊥)⊥)S′

1,
kS1V1 = d1(in1�∗ )(λs′.(λd′.(�)⊥)⊥)S1 and kS′

2V
′
2 = d′2(in1�∗ )(λs′.(λd′.(�)⊥)⊥)S′

2

kS2V2 = d2(in1�∗ )(λs′.(λd′.(�)⊥)⊥)S2. Here
(d′1(in1�∗ ), d′

2(in1�∗ ) ‖ d1(in1�∗ ), d2(in1�∗ ), Tunit, p) ∈ ∇M by assumption about related h′s.
We have seen the (λs′.(λd′.(�)⊥)⊥) are related in all ordinary parameters. The states were
related by assumption. So we conclude (k, k ‖ k, k, (x : unit → Tunit)�, TΔ) ∈ ∇K .

Let l /∈ dom(Δ) ∪ supp(k) ∪ s2. Chose n such that inZ�n is different from s2l. We now apply
snapback to related values, related continuations and related states, and we see that this does not
give the required termination approximation.

(snapback(g))ks′1 = (g∗)(λŝ.λd.ks′1d)s′1 = (λŝ.λd.ks′1d)(s′1)(in��λv′λk′.λs′.k′s′in11�∗  ) =
ks′1(in��λv′λk′.λs′.k′s′in11�∗  ) = (λv′λk′.λs′.k′s′in11�∗ )(in1�∗ )(λs′.(λd′.(�)⊥)⊥)s′1 = �.

(snapback(gn))ks2 = (gn∗)(λŝ.λd.ks2d)s2 =
(λŝ.λd.ks2d)(s2[l �→ n])(in��λv′.λk′.λs′. if s′l = n then (k′s′in11�∗  ) else ⊥) =
ks2(in��λv′.λk′.λs′. if s′l = n then (k′s′in11�∗ ) else ⊥ ) =
(λv′.λk′.λs′. if s′l = n then (k′s′in11�∗ ) else ⊥)(in1�∗ )(λs′.(λd′.(�)⊥)⊥)s2 = ⊥
where we have used that s2l �= n.

We conclude (snapback, snapback, (unit → T (unit → Tunit)) → T (unit → Tunit), TΔ) /∈ ∇V

The types unit and int and types build up only from those have the special property that
relatedness in ∇ does not depend on the vm-parameters. The counterexamples use that new
locations can be allocated and stored values expected to have certain properties, but snapback
will erase this.
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8 Parameterized logical relation with further extended parameters

We will now define an extended version of the relation we have used to prove equivalences in the
previous section. The extension is designed to (additionally) handle explicit divergence. We do
much of the same development again. First we define the new parameters, which are extended
versions of the ones we have met so far. Then we define a new admissible action of the domain
construction functor F on relations, and prove that the new relation exists. As before we extract a
binary relation on which we base proofs of contextual equivalences. Finally we analyse the example
from the introduction 1.4. We have chosen to use the same name ∇ again for the new relation,
and also for sets of parameters we reuse the names. That should not give any problems, since the
following development stand alone, so there is no doubt about what names refer to. In the following
sections many definitions and proofs from before are repeated in versions with only differences at
certain places following the new parameter definition.

8.1 Parameters further extended

Ordinary parameters in the new set up are exactly as ordinary parameters before. Ordinary pa-
rameters are almost as the parameters from [13] with local extensions added. As before ordinary
parameter are preserved by each of related computations and related continuations separately. To
the parameters from the previous section we now add a way to express, that one side has already
diverged. This is essentially the only difference, but we need to define how it is handled. Espe-
cially we give a new version of the parameterized relation. We also again define order relations on
parameters.

8.2 Parameters and specialized parameters

As said ordinary parameters are exactly as before. We will now define general parameters which
will be either ordinary or specialized. Ordinary parameters are used, when we relate computations
where we don’t know any specific properties of the continuations, they will be applied to. Specialized
parameters are used, when we know the initial steps of the continuations, they are applied to. We
use specialized parameters, if we know that states initially belong in one local-parameter-component
and the initial steps of the continuations change states to another local-parameter-component. We
also use specialized parameters in situations, where both sides eventually diverge, but not at the
same step of execution. First we define a new version of local-parameter-parts.

Definition 35. Local-parameter-part Q
Given accessibility maps A1 and A2.
Then Q is an (A1, A2)-local-parameter-part with associated sets LQ

1 , LQ
2 if one of the following

holds:

1. Q = (P,LL) and P is an (A1, A2)-state-relation and LL =
{ (l11, l12, τ1), . . . , (lk1, lk2, τk) } is a finite set of location pairs and closed value types, k ≥ 0.
LQ

1 = π1(LL) and LQ
2 = π2(LL).

2. Q = (P,⊥) and P is an A1-state-predicate. LQ
1 = LQ

2 = ∅.
3. Q = (⊥, P ) and P is an A2-state-predicate. LQ

1 = LQ
2 = ∅.

Recall that in ordinary parameters all local-parameter-parts must have the form (P,LL).

The informal understanding of (P,LL) for a pair of states (S1, S2) is that (S1, S2) ∈ P and LL
hold related values. The informal understanding of (P,⊥) and (⊥, P ) for a state S is that S ∈ P
and the other side of what we aim to prove equivalent has already diverged.
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Definition 36. Local-parameter-node q
Let I be a finite index set.
q = ({Qi|i ∈ I}, Aq

1, A
q
2, Z

q) = ([Q1∨̄ . . . ∨̄Qk], Aq
1, A

q
2, Z

q), is a local-parameter-node iff

– Aq
1, A

q
2 are accessibility maps.

– Each Qi is an (Aq
1, A

q
2)-local-parameter-part

– Either all Qi have the form (P,LL) or all Qi have the form (P,⊥) or all Qi have the form
(⊥, P ).

– Zq is a match of finite store types.
–

⋃
i LQi

1 ∩ π1(Zq) = ∅ ∧ ⋃
i LQi

2 ∩ π2(Zq) = ∅
To the local-parameter-node q = ({Qi|i ∈ I}, Aq

1, A
q
2, Z

q) are associated the accessibility maps
Åq

1, Å
q
2 where

∀S. Åq
1(S) = Aqk

1 (S) ∪ π1Z
q ∪ ⋃

i∈I LQi

1 and
År

2(S) = Aqk

2 (S) ∪ π2Z
q ∪ ⋃

i∈I LQi

2 .
År

1, Å
r
2 are the most inclusive accessibility maps associated with the local-parameter-node, encompass

locations meant to be visible as well as hidden.

To the local-parameter-node q are associated fixed finite sets of locations Lq
1 =

⋃
i LQi

1 and
Lq

2 =
⋃

i LQi

2 .

Definition 37. ≥ order on local-parameter-nodes
Let d, e be local-parameter-nodes, and d = ({Qd

i |i ∈ Id}, Ad
1, A

d
2, Z

d), e = ({Qe
i |i ∈ Ie}, Ae

1, A
e
2, Z

e)
e ≥ d iff

– Ze ⊇ Zd and
– If the Qd’s have the form (⊥, P ) then the Qe’s have the form (⊥, P ), and
– if the Qd’s have the form (P,⊥) then the Qe’s have the form (P,⊥) and
– ∀(S1, S2). Åd

1(S1) ⊇ Åe
1(S1) ∧ Åd

2(S2) ⊇ Åe
2(S2).

Definition 38. Local-parameter-component q̂

A local-parameter-component q̂ is a finite tree, where each node qi is a local-parameter-node and it
holds that

– ∀q1, q2 ∈ q. if q1 is an ancestor of q2 then q2 ≥ q1

To the local-parameter-component q̂ with root-node q0 is associated the match of finite store types
Zq = Zq0 .

To the local-parameter-component q̂ with root node q0 are associated the accessibility maps Åq
1 = Åq0

1

and Åq
2 = Åq0

2 .
Åq

1, Å
q
2 are the most inclusive accessibility maps associated with the local-parameter-coponent (all

locations possibly “owned” by subtrees are included c.f. order on tree-nodes).

To the local-parameter-component q̂ are associated fixed finite sets of locations W q
1 and W q

2 .
W q

1 =
⋃

qj∈q̂

(
π1(Zqj ∪ L

qj

1 )
)

and W q
2 =

⋃
qj∈q̂

(
π2(Zqj ∪ L

qj

2 )
)

where for qj = ((Pi, LLi)|i ∈ I}, Aqj

1 , A
qj

2 , Zqj ) we let L
qj

1 = ∪iL
Qi

1 , L
qj

2 = ∪iL
Qi

2 .

For notational convenience when not otherwise indicated we let the root node of q̂ be named q.

Intuitively the fixed sets W q
1 ,W q

2 give locations (visible as well as hidden) that we know can
be associated with q without knowing any state.

Intuitively we identify a local-parameter-component with its root. The rest of the tree is there
to tell us how a local parameter may be locally extended.
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Definition 39. & relation on local-parameter-components.
Let q̂′ and q̂ be local-parameter-components.

q̂′ & q̂ iff q̂′ ∈ subtrees(q̂)

We now define local parameters. As before a local parameter for values and computations is a
finite set of local-parameter-components. A local parameter for continuations and a local parameter
for states will “belong” to one of the components. The idea is that the values and computations
preserve each component in states, but continuations may change states between components.

Definition 40. Local parameters

(vm) A local vm-parameter has the form r = {q̂1 . . . q̂n} = (q̂1∧̄ . . . ∧̄q̂n) where
- ∀i ∈ 1 . . . n. q̂i is a local parameter component
- n ≥ 1

(k) If r = (q̂1∧̄ . . . ∧̄q̂n) is a local vm-parameter, then ∀j ∈ 1 . . . n. (r|q̂j) is a local k-parameter.
q̂j is a choiche of ∧̄-clause.

(s) If (r|q̂) is a local k-parameter, and root(q̂) = ({Qi|i ∈ I}, Aq
1, A

q
2, Z

q) = ([Q1∨̄ . . . ∨̄Qj∨̄ . . .], Aq
1, A

q
2, Z

q),
then for each i ∈ I (r|q̂|Qi) is a local s-parameter. Qi is a choice of ∨̄-clause.

A local parameter where n = 1 and all local parameter parts are ordinary is an ordinary local
parameter. So if all parts in q̂ have the form (P,LL) then (q̂) is an ordinary vm-parameter, (q̂|q̂)
is an ordinary k-parameter and for all i ∈ I (q̂|q̂|Qi) is an ordinary s-parameter.

To the local parameter r = {q̂1 . . . q̂n} is associated the match of finite store types

Z∩r =
⋂

k∈1..n Zqk .

Z∩r gives the locations visible for every ∧̄-clause in the local parameter r

To the local parameter r are associated the fixed finite sets of locations W r
1 =

⋃
i∈1..n W qi

1 and
W r

2 =
⋃

i∈1..n W qi

2 .

To the local parameters r = {q̂1 . . . q̂n} are associated the accessibility maps År
1, Å

r
2 where

∀S. År
1(S) =

⋃
k∈1..n Åqk

1 (S) and År
2(S) =

⋃
k∈1..n Åqk

2 (S)

År
1, Å

r
2 are the most inclusive accessibility maps associated with the local parameter, encompass all

locations that may be associated with r, locations meant to be visible as well as hidden.

Recall, an ordinary local vm-parameter must have exactly one conjunct {q} so n = 1. Further it
must hold that all local-parameter-parts have the form (P,LL).

We sometimes use {(l11, l12, τ1) . . . (ln1, ln2, τn)} or T{(l11,l12,τ1)...(ln1,ln2,τn)} as shorthand for the
(ordinary) local parameter {((T, ∅LL), A∅, A∅, {(l11, l12, τ1) . . . (ln1, ln2, τn)})}. Such a parameter is
used when we just add n visible locations in both sides. Visible locations will be expected to hold
related values.

Definition 41. & order on local-parameters
Let r′ = {q̂′1 . . . q̂′n}, r = {q̂1 . . . q̂n} be local vm-parameters

r′ & r iff ∀j ∈ 1 . . . n. q̂′j & q̂j. (q̂′j is a subtree of q̂j)

Let rk′ = (r′|q̂′i), rk = (r|q̂j) be local k-parameters with r′ = {q̂′1 . . . q̂′n}, r = {q̂1 . . . q̂n}
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rk′ & rk iff r′ & r and i = j.

Definition 42. Parameters

(vm) A vm-parameter p is a finite set p = {r1 . . . rn} where
- Each ri ∈ p is a local vm-parameter
- ∀i �= j ∈ 1 . . . n. W ri

1 ∩ W
rj

1 = ∅ ∧ W ri
2 ∩ W

rj

2 = ∅
- ∃S1, S2 �= ⊥.∀i �= j ∈ 1 . . . n.Åri

1 (S1) ∩ Årj
1 (S1) = ∅ ∧ Åri

2 (S2) ∩ Årj
2 (S2) = ∅

(k) If p = {r1 . . . rn} is a vm-parameter and for each j ∈ 1 . . . n (rj |q̂j) is a local k-parameter, then
(pk) = {(r1|q̂1) . . . (rn|q̂n)} is a k-parameter.
A k-parameter is a vm-parameter together with choices of one ∧̄-clause for each local vm-
parameter.

(s) If (pk) = {(r1|q̂1) . . . (rn|q̂n)} is a k-parameter and
for each j ∈ 1 . . . n (rj |q̂j |Qj) is a local s-parameter and
(∃k. Qk has the form (P,⊥) =⇒ no Qi has the form (⊥, P )) and
(∃k. Qk has the form (⊥, P ) =⇒ no Qi has the form (P,⊥))
then (pks) = {(r1|q̂1|Q1) . . . (rn|q̂n|Qn)} is a s-parameter.
An s-parameter is a k-parameter together with choices of one ∨̄-clause for each local k-
parameter.

(pk) is the k-erasure of (pks), and p is the vm-erasure of (pks) and of (pk).

(pks) is an s-instantiation of (pk) and of p. (pk) is a k-instantiation of p.

To the vm-parameter p are associated

– Accessibility maps Åp
1, Åp

2 where ∀S. Åp
1(S) =

⋃
Åri

1 (S) ∧ Åp
2(S) =

⋃
Åri

2 (S).

To the k-parameter (pk) and to the s-parameter (pks) are associated

– Accessibility maps A(pk)
1 = A(pks)

1 , A(pk)
2 = A(pks)

2 , where
∀S. A(pk)

1 (S) =
⋃

j(A
qj

1 (S) ∪ L
qj

1 ) ∧ A(pk)
2 (S) =

⋃
j(A

qj

2 (S) ∪ L
qj

2 ), j ∈ 1 . . . n.

To the vm-parameter p is associated

– a match of finite store types Zp =
⊎

j Z∩rj , where j ∈ 1 . . . n.

To the k-parameter (pk) and to the s-parameter (pks) is associated

– A match of finite store types Z(pk) = Z(pks) =
⊎

j Zqj , where j ∈ 1 . . . n.

A parameter is ordinary iff all its local parameters are ordinary.
A parameter or a local parameter which is not ordinary is said to be specialized.
Any parameter and any local parameter is either ordinary or specialized.

pvm is the set of vm-parameters. ovm is the set of ordinary vm-parameters.
pk is the set of k-parameters. ok is the set of ordinary k-parameters.
ps is the set of s-parameters. os is the set of ordinary s-parameters.

svm is the set of specialized vm-parameters. pvm \ ovm = svm.
sk is the set of specialized k-parameters. pk \ ok = sk.
ss is the set of specialized s-parameters. ps \ os = ss.

ssP⊥ denotes the set of s-parameters which has a (P,⊥) instantiation.
ss⊥P denotes the set of s-parameters which has a (⊥, P ) instantiation.
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Definition 43. Notation for sets of instantiations pK, pS

– If p ∈ pvm then pK denotes the set of k-instantiations of p and pS denotes the set of s-
instantiations of p.

– If p ∈ pk then pS denotes the set of s-instantiations of p.

Definition 44. Notation for erasures pk, pvm

– If p ∈ ps then pk denotes the k-erasure of p and pvm denotes the vm-erasure of p.
– If p ∈ pk then pvm denotes the vm-erasure of p.

Definition 45. & relation on parameters.
Let p′ = {r′1 . . . r′n} and p = {r1 . . . rn} be vm-parameters.

p′ & p iff ∀i ∈ 1 . . . n. r′i & ri

Let pk′ = {(r′1|q̂′1) . . . (r′n|q̂′n)} and pk = {(r1|q̂1) . . . (rn|q̂n)} be k-parameters.

pk′ & pk iff ∀i ∈ 1 . . . n. (r′i|q̂′i) & (ri|q̂i)

When we remove some but not all ∧̄-clauses from a local parameter then we get another local
parameter. Again in the new relation we will require that relatedness for values and computations
is preserved when we go to a parameter derived by removal of ∧̄-clauses.

Definition 46. Parameters derived from parameters

– Let p ∈ pvm, p = {r1, . . . , rn} = {{q11 . . . q1k1}, . . . , {qn1 . . . qnkn}}.
Let ∀i ∈ 1 . . . n. ri ⊇ r′i �= ∅.
Then p′ = {r′1, . . . , r′n} is a parameter derived from p.
So p′ is derived from p by removal of ∧̄-clauses.

sub(p) denotes the set of parameters derived from p.

– Let p′ = {r′1, . . . , r′n} be derived from p = {r1, . . . , rn} ∈ pvm such that ∀i ∈ 1 . . . n.
(
r′i = {q̂}

where q̂ ∈ ri and q is an ordinary local parameter
)
.

Then p′ is an ordinary parameter, and p′ is a parameter o-derived from p.
ord(p) denotes the set of ordinary parameters derived from p.

Lemma 29. A derived parameter is a parameter: the disjointness properties are preserved.
It is possible that locations move from hidden to visible.

Order on parameters are defined as before:

Definition 47. Orders � and � on parameters

� : The relation � on vm-parameters and k-parameters is defined as the reflexive transitive closure
of the relations & and ⊇ord (local extension and adding ordinary local parameters).

�: The relation � on vm-parameters is defined as the reflexive transitive closure of the relations
&, ⊇ and ≥∧̄ (local extension, adding local parameters and removal of ∧̄-clauses).

We still have the following lemmas

Lemma 30.
Assume r′�r, then either both r′ and r are ordinary parameters or both r′ and r are specialized

parameters with the relation & on all the non-ordinary constituents.

Lemma 31.
For p′, p ∈ pvm it holds that p′ � p ⇒ p′ � p (but not the other direction).
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Lemma 32.

– If p′ ∈ svm and p ∈ ovm and p′ � p, then ∀p′o ∈ ord(p′). p′o � p.

– If p′ � p ∈ pvm, p′ = {r1 . . . rn, rn+1 . . . rm}, p = {r1 . . . rn}, and p′′ is derived from p′ such
that ∀j ∈ (n+1) . . .m. rj is replaced by one of its conjuncts qj where qj is an ordinary local
parameter, then p′′ � p.

Lemma 33. If p′ � p or p′ � p then Zp′ ⊇ Zp

Now we will define a relation parameterized by the new parameters.

9 Parameterized relation with new extended parameters

The relation is parameterized with the new parameters. In the definition of the relation the defi-
nition for values has the same formulations as before (but the parameter definitions are new). For
states we now add, that for local instantiations to (P,⊥) the left hand side non primed s1 ∈ P and
similar for (⊥, P ). The primary difference is in the definition of relatedness for computations and
continuations. Here we now differentiate three cases of the states they are applied to. If none of the
instantiations in the state parameter has a (P,⊥) or a (⊥, P ) then as before we require two sided
termination approximation. If an instantiation in the state parameter is a (P,⊥) then we instead
require that the primed application in left hand side will always give ⊥, and similarly for (⊥, P ).
The existence of the new relation again requires a separate proof.

9.1 Relational Structure on FMcpo4
⊥

The relational structure is formulated as before, but now with the new definition of parameters.

Definition 48. Relational structure on FM-cpo4
⊥

Let D = (DV , DK , DM , DS) ∈ FM-cpo4
⊥.

The set of relations on D is defined as:

R(D) = R̂V × R̂K × R̂M × R̂S

where
R̂V = all subsets of D2

V × D2
V × {τ |τ closed value type} × pvm which

include {(⊥,⊥)} × D2
V × {τ |τ closed value type} × pvm

R̂K = all subsets of D2
K × D2

K × {(x : τ)�|(x : τ)� continuation type} × pk which
include {(⊥,⊥)} × D2

K × {(x : τ)�|(x : τ)� continuation type} × pk

R̂M = all subsets of D2
M × D2

M × {Tτ |Tτ closed computation type} × pvm which
include {(⊥,⊥)} × D2

M × {Tτ |Tτ closed computation type} × pvm

R̂S = all subsets of D2
S × D2

S × ps which
include {(⊥,⊥)} × D2

S × ps

Application of a pair of morphisms to a relation is defined as before. Recall also the definition
of (f, g) : R ⊂ S. For f = (fv, fk, fm, fs) : D � E, g = (gv, gk, gm, gs) : D ∼= E with f � g and

relations R ∈ R(D), S ∈ R(E) we have (f, g) : R ⊂ S
def⇐⇒ (f, g)R ⊆ S. As before

– ∀R ∈ R(D). (idD, idD) : R ⊂ R
– ∀R ∈ R(D).∀S ∈ R(D′).∀g : D ∼= D′ (⊥, g) : R ⊂ S
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– (f, g) : R ⊂ S and (f ′, g′) : S ⊂ T ⇒ (f ′ ◦ f, g′ ◦ g) : R ⊂ T
– (idD, idD) : R ⊂ R′ and (idD, idD) : R′ ⊂ R ⇒ R = R′.

Admissiblity and downwards closure for relations is defined as before. Also parameter weakening
is defined as before, but now with the new parameters. We present the definition again:

A relation (RV , RK , RM , RS) ∈ R(D) is parameter-weakened if,
∀p1, p0 ∈ pvm, ∀(pk1), (pk0) ∈ pk it holds that

- p1 � p0 ∧ (v′1, v
′
2 ‖ v1, v2, τ, p0) ∈ RV ⇒ (v′1, v

′
2 ‖ v1, v2, τ, p1) ∈ RV

- (pk1) � (pk0) ∧ (k′
1, k

′
2 ‖ k1, k2, (x : τ)�, (pk0)) ∈ RK ⇒ (k′

1, k
′
2 ‖ k1, k2, (x : τ)�, (pk1)) ∈ RK

- p1 � p0 ∧ (m′
1,m

′
2 ‖ m1,m2, T τ, p0) ∈ RM ⇒ (m′

1,m
′
2 ‖ m1,m2, T τ, p1) ∈ RM

Definition 49. adm+relation
A relation R ∈ R(D) is an adm+relation if it is
admissible, downwards closed and parameter-weakened.
We let Radm+(D) denote the set of adm+relations over D

We aim to show that there exists a new relational lifting of the functor F s.t. ∀R− ∈ R(D), R+ ∈
R(D).F (R−, R+) ∈ R(F (D, D)) and a new adm+ relation ∇ = (∇V ,∇K ,∇M ,∇S) ∈ Radm+(D)
satisfying the equations in definition 50 and (i, i) : F (∇,∇) ⊂ ∇ ∧ (i−1, i−1) : ∇ ⊂ F (∇,∇).

We define a new action of F on relations with the new parameters. We have added new re-
quirements in the definition of relatedness for continuations and computations, where (P,⊥) and
(⊥, P ) instantiations in the states they are applied to is handled separately. For states and such
state parameter instantiations we naturally require that the state in the respective side belong to
P . Aside for these changes, the definitions are formulated as in the earlier sections.

Definition 50. adm+action of F on relations.
Let R− ∈ R(D), R+ ∈ R(D)

Define F (R−, R+) ∈ R(F (D, D)),
F (R−, R+) = (F (R−, R+)V , F (R−, R+)K , F (R−, R+)M , F (R−, R+)S) where

F (R−, R+)V = {(⊥, ⊥ ‖ v1, v2, τ, p) | p ∈ pvm the set of all vm-parameters } ∪

{(v′1, v′2 ‖ v1, v2, τ, p) | p ∈ pvm ∧
v′1 � v1 �= ⊥ ∧ v′2 � v2 �= ⊥ ∧
(v′1, v′2 ‖ v1, v2, τ, p) ∈ F̃ (R−, R+)V }

where
F̃ (R−, R+)V = {(v′1, v′2 ‖ in11�∗ , in11�∗ , unit, p) } ∪

{(v′1, v′2 ‖ inZ�n , inZ�n , int, p) | n ∈ Z } ∪
{(v′1, v′2 ‖ inL�l1 , inL�l2 , τ ref, p) | (l1, l2, τ) ∈ Zp } ∪
{(v′1, v′2 ‖ in⊕inid1, in⊕inid2, τ1 + τ2, p) | d1, d2 ∈ V↓ ∧ ∃d′1, d

′
2 ∈ V.

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in⊕inid
′
1 �= ⊥) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = in⊕inid

′
2 �= ⊥)∧

(d′1, d′2 ‖ d1, d2, τi, p) ∈ R+
V , i ∈ {1, 2} } ∪

{(v′1, v′2 ‖ in⊗(d1a, d1b), in⊗(d2a, d2b), τa × τb, p) | d1a, d1b, d2a, d2b ∈ V↓ ∧
∃d′1a, d′1b, d

′
2a, d′2b ∈ V.

(d′1a, d′2a ‖ d1a, d2a, τa, p) ∈ R+
V ∧ (d′1b, d′2b ‖ d1b, d2b, τb, p) ∈ R+

V ∧
((v′1 = ⊥ ∧ (d′1a = ⊥ ∨ d′1b = ⊥)) ∨ (v′1 = in⊗(d′1a, d′

1b) �= ⊥)) ∧
((v′2 = ⊥ ∧ (d′2a = ⊥ ∨ d′2b = ⊥)) ∨ (v′2 = in⊗(d′2a, d′

2b) �= ⊥))} ∪
{(v′1, v′2 ‖ inμd1, inμd2, μα.τ, p) | d1, d2 ∈ V↓ ∧ ∃d′1, d

′
2 ∈ V.

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = inμd′1 �= ⊥) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = inμd′2 �= ⊥)∧
(d′1, d′2 ‖ d1, d2, τ [μα.τ/α], p) ∈ R+

V } ∪
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{(v′1, v′2 ‖ in∀�d1 , in∀�d2 , ∀α.Tτ, p) | d1, d2 ∈ M ∧ ∃d′1, d
′
2 ∈ M.

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ (v′1 = in∀�d′1 �= ⊥ ∧ d′1 ' ⊥)) ∧
((v′2 = ⊥ ∧ d′2 = ⊥) ∨ (v′2 = in∀�d′2 �= ⊥ ∧ d′2 ' ⊥)) ∧
∀σ with � σ : type. (d′1, d′2 ‖ d1, d2, T τ [σ/α], p) ∈ R+

M } ∪
{(v′1, v′2 ‖ in��d1 , in��d2 , τ → Tτ ′, p) | d1, d2 ∈ (V � M) ∧ ∃d′1, d

′
2 ∈ (V � M).

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ (v′1 = in��d′1 �= ⊥ ∧ d′1 ' ⊥)) ∧
((v′2 = ⊥ ∧ d′2 = ⊥) ∨ (v′2 = in��d′2 �= ⊥ ∧ d′2 ' ⊥)) ∧
∀p′ � p,∀(w′

1, w′
2 ‖ w1, w2, τ, p′) ∈ R−

V . ( d′1w
′
1, d′2w

′
2 ‖ d1w1, d1w2, T τ ′, p′) ∈ R+

M }
Recall � on vm-parameters is defined as the reflexive transitive closure of the relations &, ⊇ and ≥∧̄,
(which are local extension, supset and removal of ∧̄-clauses).

F (R−, R+)K = {(k′
1, k′

2 ‖ k1, k2, (x : τ)�, (pk)) | (pk) ∈ pk ∧
k′
1 � k1 ∧ k′

2 � k2 ∧ ∀(pk′) � (pk).
(that is (pk) extended only with ordinary local k-parameters or local extensions)

∀(pks′) ∈ (pk′)S (the set of s-instantiations of p′ i.e. choices of ∨̄-clauses),
(pks′) /∈ (ssP⊥ ∪ ss⊥P ). (i.e. no chosen ∨̄-clause in the s-instantiation is a (⊥, P ) or (P,⊥))

∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ R−
S . ∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ R−

V .
(k′

1s
′
1v

′
1 = � ⇒ k2s2v2 = �) ∧

(k′
2s

′
2v

′
2 = � ⇒ k1s1v1 = �), ∧

∀(pks′) ∈ (pk′)S, (pks′) ∈ ssP⊥. (i.e. a chosen ∨̄-clause in the s-instantiation is a (P,⊥))
∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ R−

S .
∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ R−

V .
k′
1s

′
1v

′
1 = ⊥, ∧,

∀(pks′) ∈ (pk′)S, (pks′) ∈ ss⊥P . (i.e. a chosen ∨̄-clause in the s-instantiation is a (⊥, P ))
∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ R−

S .
∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ R−

V .
k′
2s

′
2v

′
2 = ⊥ },

F (R−, R+)M = {(m′
1, m′

2 ‖ m1, m2, T τ, p) | p ∈ pvm ∧
m′

1 � m1 ∧ m′
2 � m2 ∧

∀p′ � p.∀(pk′) ∈ p′K (the set of k-instantiations of p′ i.e.
choices of a ∧̄-clause in each local parameter).

∀(pks′) ∈ (pk′)S (the set of s-instantiations of (pk′) i.e.
choices of ∨̄-clause from each chosen ∧̄-clause in (pk′) ),
(pks′) /∈ (ssP⊥ ∪ ss⊥P ). (i.e. no chosen ∨̄-clause is a (⊥, P ) or (P,⊥))

∀(k′
1, k′

2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−
K . ∀(S′

1, S′
2 ‖ S1, S2, (pks′)) ∈ R−

S .
(m′

1k
′
1S

′
1 = � ⇒ m2k2S2 = �) ∧

(m′
2k

′
2S

′
2 = � ⇒ m1k1S1 = �) ∧

∀(pks′) ∈ (pk′)S, (pks′) ∈ ssP⊥. (i.e. a chosen ∨̄-clause is a (P,⊥))
∀(k′

1, k′
2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−

K .
∀(S′

1, S′
2 ‖ S1, S2, (pks′)) ∈ R−

S .
m′

1k
′
1S

′
1 = ⊥) ∧

∀(pks′) ∈ (pk′)S, (pks′) ∈ ss⊥P . (i.e. a chosen ∨̄-clause is a (⊥, P ))
∀(k′

1, k′
2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−

K .
∀(S′

1, S′
2 ‖ S1, S2, (pks′)) ∈ R−

S .
m′

2k
′
2S

′
2 = ⊥ }
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F (R−, R+)S = {(⊥, ⊥ ‖ S1, S2, (pks)) | (pks) ∈ ps the set of all s-parameters } ∪

{(S′
1, S′

2 ‖ S1, S2, (pks) | (pks) = {(r1|q1|Q1), . . . , (rn|qn|Qn)} ∈ ps

(qi is a choice of ∧̄-clause in ri, and Qi is a choice of ∨̄-clause in qi) ∧

S′
1 � S1 �= ⊥ ∧ S′

2 � S2 �= ⊥ ∧

A(pks)
1 (S1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)

2 (S2) ∩ π2(Z(pks)) = ∅
(in each side are the visible locations in Z(pks) disjoint from the known hidden locations
given by the accessibility maps A(pks)

1 ,A(pks)
2 ) ∧

∀i �= j. Åri
1 (S1) ∩ Årj

1 (S1) = ∅ ∧ Åri
2 (S2) ∩ Årj

2 (S2) = ∅
(Åri

1 , Åri
2 accessibility maps are the most inclusive for the local parameter ri.

In each side is every location, visible, hidden or reserved, belonging to a local parameter
outside the areas owned by any different local parameter) ∧

∀(l1, l2, τ) ∈ Z(pks).(S′
1(l1), S′

2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ R+
V

(All visible locations hold related values) ∧

∀i ∈ 1..n. if Qi = (Pi,⊥) then S1 ∈ Pi, if Qi = (⊥, Pi) then S2 ∈ Pi,
if Qi = (Pi, LLi) then (S1, S2) ∈ Pi ∧

∀(l1, l2, τ) ∈ LLi. (S′
1(l1), S′

2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ R+
V

(The states belong to all simple state relations and predicates in the chosen ∨̄-clauses.
Corresponding LL location-sets hold related values) }

It holds that

– For all (v′1, v′2 ‖ v1, v2, τ, p) ∈ F (R−, R+)V it holds that (v′1 = v′2 = ⊥) or (v1 �= ⊥∧v2 �= ⊥).
– For all (s′1, s′2 ‖ s1, s2, pks) ∈ F (R−, R+)S it holds that (s′1 = s′2 = ⊥) or (s1 �= ⊥∧ s2 �= ⊥).
– ∀k1, k2 ∈ K.∀(x : τ)�.∀pk ∈ pk it holds that (⊥,⊥ ‖ k1, k2, (x : τ)�, pk) ∈ F (R−, R+)K .
– ∀m1,m2 ∈ M.∀Tτ.∀p ∈ pvm it holds that (⊥,⊥ ‖ m1,m2, T τ, p) ∈ F (R−, R+)M .

We need to show that the action of F with the new definitions preserves admissibility, downwards
closure and parameter weakening.

Lemma 34. The action of F preserves downwards closure.

For all R+, R− ∈ R(D).
If R+ is downwards closed, then F (R−, R+) is downwards closed.

Proof

– F (R−, R+)K : Follows from k′′ � k′ ⇒ ∀s, v. k′′sv � k′sv, (independant of R+). This is enough
also with the new definition of ∇.

– F (R−, R+)M : Follows from m′′ � m′ ⇒ ∀k, s. m′′ks � m′ks, (independant of R+). This is
enough also with the new definition of ∇.

– F (R−, R+)V : The proof is as the proof we have seen before, so it is omittet.
– F (R−, R+)S : follows from downwards closure of R+

V . Assume (s′1, s
′
2 ‖ s1, s2, p) ∈ F (R−, R+)S ,

and s′1 �= ⊥ ∨ s′2 �= ⊥. Let s′′1 � s′1 ∧ s′′2 � s′2. Then ∀l. s′′1 l � s′1l ∧ s′′2 l � s′2l. We want to
show (s′′1 , s′′2 ‖ s1, s2, p) ∈ F (R−, R+)S . The requirements concerning disjointness as well as
requirements about belongings to finitary state relations and finitary state predicates are only
stated on s1, s2 and hence follow from the assumptions. Requirements concerning that stored
values are related follow from assumptions together with downwards closure of R+

V .
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Lemma 35. The action of F on relations preserves admissibility.

For all R+, R− ∈ R(D). If R+ is admissible, then F (R−, R+) is admissible.

Proof
Assume R+ is admissible, we want to show F (R−, R+) is admissible for all R− ∈ R(D). By
definition each of the four projections of F (R−, R+) includes (⊥,⊥ ‖ (type), d1, d2, p) for all
(type), d1, d2, p. To show that F (R−, R+) is admissible it suffices to show for each of the four
projections, that it is closed under least upper bounds of finitely supported chains of the form
(di

1, d
i
2 ‖ (type), d1, d2, p)i∈ω where type, d1, d2, p are constant.

• F (R−, R+)S =
{(⊥, ⊥ ‖ S1, S2, (pks)) | (pks) ∈ ps the set of all s-parameters } ∪
{(S′

1, S′
2 ‖ S1, S2, (pks) | (pks) = {(r1|q1|Q1), . . . , (rn|qn|Qn)} ∈ ps ∧

S′
1 � S1 �= ⊥ ∧ S′

2 � S2 �= ⊥ ∧
A(pks)

1 (S1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)
2 (S2) ∩ π2(Z(pks)) = ∅ ∧

∀i �= j. Åri
1 (S1) ∩ Årj

1 (S1) = ∅ ∧ Åri
2 (S2) ∩ Årj

2 (S2) = ∅ ∧
∀(l1, l2, τ) ∈ Z(pks).(S′

1(l1), S′
2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ R+

V ∧
∀i ∈ 1..n. if Qi = (Pi,⊥) then S1 ∈ Pi, if Qi = (⊥, Pi) then S2 ∈ Pi,
if Qi = (Pi, LLi) then (S1, S2) ∈ Pi ∧

∀(l1, l2, τ) ∈ LLi. (S′
1(l1), S′

2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ R+
V }

Assume a finitely supported chain (Si
1, S

i
2 ‖ S1, S2, p)i∈ω in F (R−, R+)S , we will show its least

upper bound is in F (R−, R+)S . If the chain is constantly (⊥,⊥, ‖ S1, S2, p) we are done.
Else it holds that S1 �= ⊥ ∧ S2 �= ⊥ and ∀i. Si

1 � S1 ∧ Si
2 � S2. Then it holds that⊔

Si
1 � S1 ∧ ⊔

Si
2 � S2.

A(pks)
1 (S1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)

2 (S2) ∩ π2(Z(pks)) = ∅ and
∀k �= j. Årk

1 (S1) ∩ Årj
1 (S1) = ∅ ∧ Årk

2 (S2) ∩ Årj
2 (S2) = ∅ as in each step.

When (Si
1, S

i
2 ‖ S1, S2, p)i∈ω is a chain, then ∀l. (Si

1l)i∈ω is a chain and (Si
2l)i∈ω is a chain.

Since R+
V is admissible and ∀i.∀(l1, l2, τ) ∈ Z(pks).(Si

1l1 Si
2l2 ‖ S1l1, S2l2, τ, (pks)vm) ∈ R+

V and
these are chains in R+

V , then also ∀(l1, l2, τ) ∈ Z(pks).
⊔

((Si
1)l1, (S

i
2)l2 ‖ S1l1, S2l2, τ, (pks)vm) =

((
⊔

Si
1)l1, (

⊔
Si

2)l2 ‖ S1l1, S2l2, τ, (pks)vm) ∈ R+
V .

∀k ∈ 1..n. if Qk = (Pk,⊥) then S1 ∈ Pk, if Qk = (⊥, Pk) then S2 ∈ Pk,
if Qk = (Pk, LLk) then (S1, S2) ∈ Pk holds as in each step.
Since ∀i. ∀k ∈ 1..n. if Qk = (Pk, LLk) then ∀(l1, l2, τ) ∈ LLk. (Si

1(l1), Si
2(l2) ‖ S1(l1), S2(l2), τ,

(pks)vm) ∈ R+
V and these are chains in the admissible relation R+

V , then also ∀k ∈ 1..n. if
Qk = (Pk, LLk) then ∀(l1, l2, τ) ∈ LLk. ((

⊔
Si

1)l1, (
⊔

Si
2)l2 ‖ S1l1, S2l2, τ, (pks)vm) ∈ R+

V .
We conclude that F (R−, R+)S is closed under least upper bounds of chains.

• F (R−, R+)M =
{(⊥, ⊥ ‖ m1, m2, T τ, p) | p ∈ pvm the set of all vm-parameters } ∪
{(m′

1, m′
2 ‖ m1, m2, T τ, p) | p ∈ pvm ∧

m′
1 � m1 ∧ m′

2 � m2 ∧
∀p′ � p.∀(pk′) ∈ p′K.
∀(pks′) ∈ (pk′)S, (pks′) /∈ (ssP⊥ ∪ ss⊥P ). (i.e. no chosen ∨̄-clause is a (⊥, P ) or (P,⊥))

∀(k′
1, k′

2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−
K . ∀(S′

1, S′
2 ‖ S1, S2, (pks′)) ∈ R−

S .
(m′

1k
′
1S

′
1 = � ⇒ m2k2S2 = �) ∧

(m′
2k

′
2S

′
2 = � ⇒ m1k1S1 = �) ∧
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∀(pks′) ∈ (pk′)S, (pks′) ∈ ssP⊥. (i.e. a chosen ∨̄-clause is a (P,⊥))
∀(k′

1, k′
2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−

K . ∀(S′
1, S′

2 ‖ S1, S2, (pks′)) ∈ R−
S .

m′
1k

′
1S

′
1 = ⊥) ∧

∀(pks′) ∈ (pk′)S, (pks′) ∈ ss⊥P . (i.e. a chosen ∨̄-clause is a (⊥, P ))
∀(k′

1, k′
2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−

K . ∀(S′
1, S′

2 ‖ S1, S2, (pks′)) ∈ R−
S .

m′
2k

′
2S

′
2 = ⊥ }

Assume a finitely supported chain (mi
1,m

i
2 ‖ m1,m2, T τ, p)i∈ω in F (R−, R+)M , we will show

its least upper bound is in F (R−, R+)M . If the chain is constant (⊥,⊥ ‖ m1, m2, T τ, p) we
are done. Else, since ∀i. mi

1 � m1 ∧ mi
2 � m2, then also

⊔
mi

1 � m1 ∧ ⊔
mi

2 � m2.

Assume p′ � p, (pk′) ∈ p′k, (k′
1, k

′
2 ‖ k1, k2, (x : τ)�, (pk)′) ∈ R−

K .
Assume (pks′) ∈ (pk′)s, (pks′) /∈ (ssP⊥ ∪ ss⊥P ) and (S′

1, S
′
2 ‖ S1, S2, (pks′)) ∈ R−

S .
Since mi

1 and mi
2 are chains, then also mi

1k
′
1S

′
1 and mi

2k
′
2S

′
2 are chains in O. If ∀i.mi

1k
′
1S

′
1 = ⊥

then also (
⊔

mi
1)k

′
1S

′
1 = ⊥ and the implication (

⊔
mi

1)k
′
1S

′
1 = � ⇒ m2k2S2 = � holds trivially.

Else it must be the case that ∃j.∀i ≥ j. mi
1k

′
1S

′
1 = �. This implies both that m2k2S2 = � and

(
⊔

mi
1)k

′
1S

′
1 = �, so the implication (

⊔
mi

1)k
′
1S

′
1 = � ⇒ m2k2S2 = � holds. The proof that

(
⊔

mi
2)k

′
2S

′
2 = � ⇒ m1k1S1 = � holds is similar.

Assume (pks′) ∈ (pk′)s, (pks′) ∈ ssP⊥ and (S′
1, S′

2 ‖ S1, S2, (pks′)) ∈ R−
S , then in each step

mi
1k

′
1S

′
1 = ⊥. And so also

⊔
i(m

i
1k

′
1S

′
1) =

⊔
i(m

i
1)k

′
1S

′
1 = ⊥.

Assume (pks′) ∈ (pk′)s, (pks′) ∈ ss⊥P and (S′
1, S′

2 ‖ S1, S2, (pks′)) ∈ R−
S , then in each step

mi
2k

′
2S

′
2 = ⊥. And so also

⊔
i(m

i
2k

′
2S

′
2) =

⊔
i(m

i
2)k

′
2S

′
2 = ⊥.

We conclude that F (R−, R+)M is closed under lubs of chains.

• F (R−, R+)K =
{(⊥, ⊥ ‖ k1, k2, (x : τ)�, (pk)) | (pk) ∈ pk the set of all k-parameters } ∪
{(k′

1, k′
2 ‖ k1, k2, (x : τ)�, (pk)) | (pk) ∈ pk ∧

k′
1 � k1 ∧ k′

2 � k2 ∧ ∀(pk′) � (pk).
(that is (pk) extended only with ordinary local k-parameters or local extensions)

∀(pks′) ∈ (pk′)S (the set of s-instantiations of p′ i.e. choices of ∨̄-clauses),
(pks′) /∈ (ssP⊥ ∪ ss⊥P ). (i.e. no chosen ∨̄-clause in the s-instantiation is a (⊥, P ) or (P,⊥))

∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ R−
S . ∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ R−

V .
(k′

1s
′
1v

′
1 = � ⇒ k2s2v2 = �) ∧

(k′
2s

′
2v

′
2 = � ⇒ k1s1v1 = �), ∧

∀(pks′) ∈ (pk′)S, (pks′) ∈ ssP⊥. (i.e. a chosen ∨̄-clause in the s-instantiation is a (P,⊥))
∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ R−

S . ∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ R−
V .

k′
1s

′
1v

′
1 = ⊥, ∧,

∀(pks′) ∈ (pk′)S, (pks′) ∈ ss⊥P . (i.e. a chosen ∨̄-clause in the s-instantiation is a (⊥, P ))
∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ R−

S . ∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ R−
V .

k′
2s

′
2v

′
2 = ⊥ },

Assume a finitely supported chain (ki
1, k

i
2 ‖ k1, k2, (x : τ)�, (pk))i∈ω in F (R−, R+)K , we will

show its least upper bound is in F (R−, R+)K . If the chain is constant (⊥,⊥ ‖ k1, k2, (x :
τ)�, (pk)) we are done. Else, since ∀i. ki

1 � k1 ∧ ki
2 � k2, then also

⊔
ki
1 � k1 ∧ ⊔

ki
2 � k2.

Assume (pk′) � (pk), (v′1, v
′
2 ‖ v1, v2, τ, (pk′)vm) ∈ R−

V .
Assume (pks′) ∈ (pk′)S, (pks′) /∈ (ssP⊥ ∪ ss⊥P ) and (S′

1, S′
2 ‖ S1, S2, (pks′)) ∈ R−

S .
Since ki

1 and ki
2 are chains, then also ki

1S
′
1v

′
1 and ki

2S
′
2v

′
2 are chains in O. If ∀i.ki

1S
′
1v

′
1 = ⊥

then also (
⊔

ki
1)S

′
1v

′
1 = ⊥ and the implication (

⊔
ki
1)S

′
1v

′
1 = � ⇒ k2S2v2 = � holds trivially.

Else it must be the case that ∃j.∀i ≥ j. ki
1S

′
1v

′
1 = �. This implies both that k2S2v2 = � and

(
⊔

ki
1)S

′
1v

′
1 = �, so the implication (

⊔
ki
1)S

′
1v

′
1 = � ⇒ k2S2v2 = � holds. The proof that

(
⊔

ki
2)S

′
2v

′
2 = � ⇒ k1S1v1 = � holds is similar.

Assume (pks′) ∈ (pk′)S, (pks′) ∈ ssP⊥ and (S′
1, S′

2 ‖ S1, S2, (pks′)) ∈ R−
S , then in each

step ki
1S

′
1v

′
1 = ⊥. So also

⊔
i ki

1S
′
1v

′
1 = ⊥. Assume (pks′) ∈ (pk′)S, (pks′) ∈ ss⊥P and

(S′
1, S′

2 ‖ S1, S2, (pks′)) ∈ R−
S , then in each step ki

2S
′
2v

′
2 = ⊥. So also

⊔
i ki

2S
′
2v

′
2 = ⊥.
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We conclude that F (R−, R+)K is closed under lubs of chains.

• F (R−, R+)V : The proof is as the proof we have seen before, so it is omitted.

We conclude that if R+ is admissible, so is F (R−, R+) for any relation R−.
�

Lemma 36. The action of F preserves parameter weakening.

For all R+, R− ∈ R(D).
If R+ is parameter weakened, then F (R−, R+) is parameter weakened.

Proof

– F (R−, R+)K : Let (pk1), (pk0) ∈ pk, (pk1) � (pk0).
For all k1, k2, all (x : τ)� continuation type, all p vm-parameter it holds that (⊥,⊥ ‖ k1, k2, (x :
τ)�, p) ∈ F (R−, R+)K .
Assume (k′

1, k
′
2) �= (⊥,⊥) and (k′

1, k
′
2 ‖ k1, k2, (x : τ)�, (pk0)) ∈ F (R−, R+)K . We want to show

(k′
1, k

′
2 ‖ k1, k2, (x : τ)�, (pk1)) ∈ F (R−, R+)K . This follows from (pk′

1)�(pk1) and (pk1)�(pk0)
implies (pk′

1) � (pk0), (independant of R+).

– F (R−, R+)M : Let p1, p0 ∈ pvm, p1 � p0.
For all m1,m2, all Tτ computation type, all p vm-parameter it holds that (⊥,⊥ ‖ m1,m2, T τ, p) ∈
F (R−, R+)M .
Assume (m′

1,m
′
2) �= (⊥,⊥) and (m′

1,m
′
2 ‖ m1,m2, T τ, p0) ∈ F (R−, R+)M . We want to show

(m′
1,m

′
2 ‖ m1,m2, T τ, p1) ∈ F (R−, R+)M . This follows from p′1 � p1 and p1 � p0 implies

p′1 � p0, (independant of R+).

– F (R−, R+)V : The proof is as we have seen before, so we omit it.

We conclude that the action of F on relations on D preserves parameter weakening. �

As the action of F on relations on D preserves admissibility, downwards closure and parameter
weakening it follows that

Lemma 37. The action of F preserves adm+.

For all R+, R− ∈ R(D).
If R+ ∈ Radm+(D), then F (R−, R+) ∈ Radm+(D).

Lemma 38. The action of F on functions preserves the relation ( , id) : ⊂ .

∀R+, S+, R−, S− ∈ R(D). ∀f+, f− : D � D.

If (f−, idD) : S− ⊂ R− and (f+, idD) : R+ ⊂ S+ then
(F (f−, f+), F (idD, idD)) = (F (f−, f+), idF (D,D)) : F (R−, R+) ⊂ F (S−, S+).

Corollary 7. Monotonicity.
∀R+, S+, R−, S− ∈ R(D). If S− ⊂ R− and R+ ⊂ S+ then F (R−, R+) ⊂ F (S−, S+).

The corollary follows from the lemma with f+ = f− = idD.

Proof of lemma 38
Let R+, S+, R−, S− ∈ R(D), and
let f+, f− : D � D. f− = (f−

v , f−
k , f−

m, f−
s ), f+ = (f+

v , f+
k , f+

m, f+
s ).
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Assume (f−, idD) : S− ⊂ R− and (f+, idD) : R+ ⊂ S+.
We aim to show (F (f−, f+), idF (D,D)) : F (R−, R+) ⊂ F (S−, S+).

(f−, idD) : S− ⊂ R− ∧ (f+, idD) : R+ ⊂ S+ implies f− � idD ∧ f+ � idD.
By the functorial properties of F we then have F (f−, f+) � F (idD, idD) = idF (D,D).

Let F (f−, f+) = h = (hv, hk, hm, hs) and let for now idF = idF (D,D).
We need to show that s ∈ F (R−, R+) ⇒ ((h, idF )s) ∈ F (S−, S+).

• F (D, D)S

Assume (s′1, s
′
2 ‖ s1, s2, (pks)) ∈ F (R−, R+)S , (pks) = {(r1|q1|Q1), . . . , (rn|qn|Qn)} ∈ ps. We

aim to show (hss
′
1, hss

′
2 ‖ idss1, idss2, (pks)) ∈ F (S−, S+).

If s′1 = ⊥ = s′2 then since hs is strict so (hss
′
1, hss

′
2 ‖ idss1, idss2, p) = (⊥,⊥ ‖ s1, s2, (pks)) ∈

F (S−, S+)S .
Else (hss

′
1, hss

′
2 ‖ idss1, idss2, (pks)) = (λl.f+

v (s′1l), λl.f+
v (s′2l) ‖ s1, s2, (pks)) and

(s′1, s
′
2 ‖ s1, s2, p) ∈ F (R−, R+)S so

(a) s′1 � s1 �= ⊥ ∧ s′2 � s2 �= ⊥
(b) A(pks)

1 (s1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)
2 (s2) ∩ π2(Z(pks)) = ∅ ∧

∀i �= j. Åri
1 (s1) ∩ Årj

1 (s1) = ∅ ∧ Åri
2 (s2) ∩ Årj

2 (s2) = ∅
(c) ∀(l1, l2, τ) ∈ Z(pks).(s′1(l1), s′2(l2) ‖ s1(l1), s2(l2), τ, (pks)vm) ∈ R+

V

(d) ∀i ∈ 1..n. if Qi = (Pi,⊥) then s1 ∈ Pi, if Qi = (⊥, Pi) then s2 ∈ Pi if Qi = (Pi, LLi) then
(s1, s2) ∈ Pi

(e) if Qi = (Pi, LLi) then ∀(l1, l2, τ) ∈ LLi. (s′1(l1), s′2(l2) ‖ s1(l1), s2(l2), τ, (pks)vm) ∈ R+
V

and we need to show that if hs(s′1) �= ⊥ ∨ hs(s′2) �= ⊥ then
1. hs(s′1) � s1 �= ⊥ ∧ hs(s′2) � s2 �= ⊥
2. A(pks)

1 (s1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)
2 (s2) ∩ π2(Z(pks)) = ∅ ∧

∀i �= j. Åri
1 (s1) ∩ Årj

1 (s1) = ∅ ∧ Åri
2 (s2) ∩ Årj

2 (s2) = ∅
3. ∀(l1, l2, τ) ∈ Z(pks).((hss

′
1)(l1), (hss

′
2)(l2) ‖ s1(l1), s2(l2), τ, (pks)vm) =

(f+
v (s′1l1), f

+
v (s′2l2) ‖ s1(l1), s2(l2), τ, (pks)vm) ∈ S+

V

4. ∀i ∈ 1..n. if Qi = (Pi,⊥) then s1 ∈ Pi, if Qi = (⊥, Pi) then s2 ∈ Pi if Qi = (Pi, LLi) then
(s1, s2) ∈ Pi

5. if Qi = (Pi, LLi) then ∀(l1, l2, τ) ∈ LLi. ((hss
′
1)(l1), (hss

′
2)(l2) ‖ s1(l1), s2(l2), τ, (pks)vm) =

(f+
v (s′1l1), f

+
v (s′2l2) ‖ s1(l1), s2(l2), τ, (pks)vm) ∈ S+

V

1. Follows from (a) together with h � id.
2. Follows from (b) directly.
3. Follows from (c) together with the assumption (f+, idD) : R+ ⊂ S+.
4. Follows from (d) directly.
5. Follows from (e) together with (f+, idD) : R+ ⊂ S+.

We conclude that (hss
′
1, hss

′
2 ‖ idss1, idss2, (pks)) ∈ F (S−, S+)S .

• F (D, D)M

Assume (m′
1,m

′
2 ‖ m1,m2, T τ, p) ∈ F (R−, R+)M .

We aim to show (hmm′
1, hmm′

2 ‖ id3m1, id3m2, T τ, p) =
(λk.λS.m′

1(f
−
k k)(f−

s S), λk.λS.m′
2(f

−
k k)(f−

s S) ‖ m1, m2, T τ, p) ∈ F (S−, S+)M .

If m′
1 = ⊥ = m′

2 then since hm is strict , so (hmm′
1, hmm′

2 ‖ id3m1, id3m2, T τ, p) =
(⊥,⊥ ‖ m1,m2, T τ, p) ∈ F (S−, S+)M .
Else, let p′ � p, (pk′) ∈ p′K, (k′

1, k
′
2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ S−

K ,
Let (pks′) ∈ (pk′)S, (s′1, s

′
2 ‖ s1, s2, (pks′)) ∈ S−

S .
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Assume (pks′) /∈ (ssP⊥ ∪ ss⊥P ). We want to show
(hmm′

1)k
′
1s

′
1 = � ⇒ m2k2s2 = � and (hmm′

2)k
′
2s

′
2 = � ⇒ m1k1s1 = �, or equivalently

m′
1(f

−
k k′

1)(f
−
s s′1) = � ⇒ m2k2s2 = � and m′

2(f
−
k k′

2)(f
−
s s′2) = � ⇒ m1k1s1 = �.

Since (f−, idD) : S− ⊂ R− it holds that (f−
k k′

1, f
−
k k′

2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−
K and

(f−
s s′1, f

−
s s′2 ‖ s1, s2, (pks′)) ∈ R−

S . Then since (m′
1,m

′
2 ‖ m1,m2, T τ, p) ∈ F (R−, R+) we have

that m′
1(f

−
k k′

1)(f
−
s s′1) = � ⇒ m2k2s2 and m′

2(f
−
k k′

2)(f
−
s s′2) = � ⇒ m1k1s1.

Assume (pks′) ∈ ssP⊥. We want to show (hmm′
1)k

′
1s

′
1 = m′

1(f
−
k k′

1)(f
−
s s′1) = ⊥. Since

(f−, idD) : S− ⊂ R− it holds that (f−
k k′

1, f
−
k k′

2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−
K and

(f−
s s′1, f

−
s s′2 ‖ s1, s2, (pks′)) ∈ R−

S . Then since (m′
1,m

′
2 ‖ m1,m2, T τ, p) ∈ F (R−, R+) we

have that m′
1(f

−
k k′

1)(f
−
s s′1) = ⊥.

Assume (pks′) ∈ ss⊥P We want to show (hmm′
2)k

′
2s

′
2 = m′

2(f
−
k k′

2)(f
−
s s′2) = ⊥. Since

(f−, idD) : S− ⊂ R− it holds that (f−
k k′

1, f
−
k k′

2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−
K and

(f−
s s′1, f

−
s s′2 ‖ s1, s2, (pks′)) ∈ R−

S . Then since (m′
1,m

′
2 ‖ m1,m2, T τ, p) ∈ F (R−, R+) we

have that m′
2(f

−
k k′

2)(f
−
s s′2) = ⊥

We also need to show
hm(m′

1) = λk.λS.m′
1(f

−
k k)(f−

s S) � m1 ∧ hm(m′
2) = λk.λS.m′

2(f
−
k k)(f−

s S) � m2. This follows
from m′

1 � m1 ∧ m′
2 � m2 and f− � idD.

We conclude (hmm′
1, hmm′

2 ‖ id3m1, id3m2, T τ, p) ∈ F (S−, S+)M .

• F (D, D)K

Assume (k′
1, k

′
2 ‖ k1, k2, (x : τ)�, (pk)) ∈ F (R−, R+)K .

We aim to show (hkk′
1, hkk′

2 ‖ id2k1, id2k2, (x : τ)�, (pk)) =
(λS.λv.k′

1(f
−
s S)(f−

v v), λS.λv.k′
2(f

−
s S)(f−

v v) ‖ k1, k2, (x : τ)�, (pk)) ∈ F (S−, S+)K .
This follows by similar arguments as for (m′

1,m
′
2 ‖ m1,m2, T τ, p) above, so we omit the proof.

• F (D, D)V

Assume (v′1, v
′
2 ‖ v1, v2, τ, p) ∈ F (R−, R+)V .

As before by strictness of hv, if (⊥,⊥ ‖ v1, v2, τ, p) ∈ F (R−, R+) then (hv⊥, hv⊥ ‖ v1, v2, τ, p) =
(⊥,⊥ ‖ v1, v2, τ, p) ∈ F (S−, S+).

Else v′1 � v1 �= ⊥ ∧ v′2 � v2 �= ⊥ and v′1, v
′
2, v1, v2 fulfill the type constructor determined

properties required for (v′1, v′2 ‖ v1, v2, τ, p) ∈ F̃ (R−, R+)V . And we need to show that if
hv(v′1) �= ⊥ ∨ hv(v′2) �= ⊥ then hv(v′1) � v1 ∧ hv(v′2) � v2 and hv(v′1), hv(v′2), v1, v2 fulfill
the type determined properties required for F̃ (S−, S+)V . We have hv(v′1) � v1 �= ⊥ ∧ hv(v′2) �
v2 �= ⊥ follows from the similar property in the assumption and hv � idD.

For the rest we argue by cases of type constructors.
◦ Assume (v′1, v

′
2 ‖ v1, v2, unit, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥)

then hvv′1 = v′1 � v1 = in11�∗ and hvv′2 = v′2 � v2 = in11�∗ , and
(hvv′1, hvv′2 ‖ v1, v2, unit, p) ∈ F (S−, S+).

◦ Assume (v′1, v
′
2 ‖ v1, v2, int, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥)

then ∃n such that hvv′1 = v′1 � v1 = inZn and hvv′2 = v′2 � v2 = inZn, and we have
(hvv′1, hvv′2 ‖ v1, v2, int, p) ∈ F (S−, S+).

◦ Assume (v′1, v
′
2 ‖ v1, v2, σref, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥)

then ∃l1, l2 such that hvv′1 = v′1 � v1 = inLl1, hvv′2 = v′2 � v2 = inLl2, (l1, l2, σ) ∈ Zp, and
we have (hvv′1, hvv′2 ‖ v1, v2, σref, p) ∈ F (S−, S+).

◦ Assume (v′1, v
′
2 ‖ v1, v2, τa + τb, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥) then

∃d′1, d
′
2 ∈ V, d1, d2 ∈ V↓. v1 = in⊕inid1 �= ⊥ ∧ v2 = in⊕inid2 �= ⊥ ∧

(v′1 = d′1 = ⊥ ∨ v′1 = in⊕inid
′
1 �= ⊥) ∧ (v′2 = d′2 = ⊥ ∨ v′2 = in⊕inid

′
2 �= ⊥) ∧

(d′1, d
′
2 ‖ d1, d2, τi, p) ∈ R+

V .
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(v′1 = d′1 = ⊥ ⇒ hvv′1 = f+
v d′1 = ⊥) ∧ ((v′1 = in⊕inid

′
1∧f+

v d′1 = ⊥) ⇒ hvv′1 = f+
v d′1 = ⊥)∧

((v′1 = in⊕inid
′
1 ∧ f+

v d′1 �= ⊥) ⇒ hvv′1 = in⊕inif
+
v d′1 �= ⊥ and

(v′2 = d′2 = ⊥ ⇒ hvv′2 = f+
v d′2 = ⊥) ∧ ((v′2 = in⊕inid

′
2∧f+

v d′2 = ⊥) ⇒ hvv′2 = f+
v d′2 = ⊥)∧

((v′2 = in⊕inid
′
2 ∧ f+

v d′2 �= ⊥) ⇒ hvv′2 = in⊕inif
+
v d′2 �= ⊥.

Since (f+, idD) : R+ ⊂ S+ and (d′1, d
′
2 ‖ d1, d2, τi, p) ∈ R+

V it follows that
(f+

v d′1, f
+
v d′2 ‖ d1, d2, τi, p) ∈ S+

V . It holds that (hvv′1 = ⊥ = f+
v d′1 ∨ hvv′1 = in⊕inif

+
v d′1 �=

⊥) and (hvv′2 = ⊥ = f+
v d′2 ∨ hvv′2 = in⊕inif

+
v d′2 �= ⊥).

So (hvv′1, hvv′2 ‖ v1, v2, τa + τb, p) ∈ F (S−, S+)

◦ Assume (v′1, v
′
2 ‖ v1, v2, τa × τb, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥). By similar

arguments as for sum-typed it follows that (hvv′1, hvv′2 ‖ v1, v2, τa × τb, p) ∈ F (S−, S+).

◦ Assume (v′1, v
′
2 ‖ v1, v2, μα.τ, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥) then ∃d′1, d

′
2 ∈

V, d1, d2 ∈ V↓. (v′1 = d′1 = ⊥ ∨ v′1 = inμd′1 �= ⊥) ∧ (v′2 = d′2 = ⊥ ∨ v′2 = inμd′2 �= ⊥) ∧ v1 =
inμd1 �= ⊥ ∧ v2 = inμd2 �= ⊥ and (d′1, d

′
2 ‖ d1, d2, τ [μα.τ/α], p) ∈ R+

V .
(v′1 = d′1 = ⊥ ⇒ hvv′1 = ⊥) ∧ (v′1 = inμd′1 ⇒ hvv′1 = inμf+

v d′1 ' ⊥) and (v′2 = d′2 = ⊥ ⇒
hvv′2 = ⊥) ∧ (v′2 = inμd′2 ⇒ hvv′2 = inμf+

v d′2 ' ⊥).
Since (f+, idD) : R+ ⊂ S+ and (d′1, d

′
2 ‖ d1, d2, τ [μα.τ/α], p) ∈ R+

V it follows that
(f+

v d′1, f
+
v d′2 ‖ d1, d2, τ [μα.τ/α], p) ∈ S+

V .
Then (hvv′1, hvv′2 ‖ v1, v2, μα.τ, p) ∈ F (S−, S+)

◦ Assume (v′1, v
′
2 ‖ v1, v2,∀α.Tτ, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥) then

∃m′
1,m1,m

′
2,m2 ∈ D+

M . v1 = in∀�m1 ∧ v2 = in∀�m2 ∧
((v′1 = ⊥ ∧ m′

1 = ⊥) ∨ (v′1 = in∀�m′
1 ) ∧ ((v′2 = ⊥ ∧ m′

2 = ⊥) ∨ (v′2 = in∀�m′
2 ) ∧

∀σ with � σ : type. (m′
1,m

′
2 ‖ m1,m2, T τ [σ/α], p) ∈ R+

M .
(v′1 = ⊥ ∧ m′

1 = ⊥) ⇒ (hvv′1 = ⊥ ∧ f+
mm′

1 = ⊥) and v′1 = in∀�m′
1 ⇒ hvv′1 = in∀�f+

mm′
1 ,

(v′2 = ⊥ ∧ m′
2 = ⊥) ⇒ (hvv′2 = ⊥ ∧ f+

mm′
2 = ⊥) and v′2 = in∀�m′

2 ⇒ hvv′2 = in∀�f+
mm′

2 .
Since (f+, idD) : R+ ⊂ S+ we have ∀σ with � σ : type. (f+

mm′
1, f

+
mm′

2 ‖ m1,m2, T τ [σ/α], p) ∈
S+

3 . Hence (hvv′1, hvv′2 ‖ v1, v2,∀α.Tτ, p) ∈ F (S−, S+).

◦ Assume (v′1, v
′
2 ‖ v1, v2, τ → Tτ ′, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥)

then ∃d′1, d
′
2, d1, d2 ∈ (V � M). v1 = in��d1 ∧ v2 = in��d2 ∧

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in��d′1 ) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = in��d′2 ) ∧
∀p′ � p,∀(ŵ′

1 , ŵ′
2 ‖ ŵ1, ŵ2, τ, p′) ∈ R−

V . (d′1ŵ
′
1, d′2ŵ

′
2 ‖ d1ŵ1, d2ŵ2, T τ ′, p′) ∈ R+

M .

We need to show (hvv′1, hvv′2 ‖ v1, v2, τ → Tτ ′, p) ∈ F (S−, S+).
((v′1 = ⊥ ∧ d′1 = ⊥) ⇒ (hvv′1 = ⊥ ∧ (λw.f+

m(d′1(f
−
v w))) = ⊥) ∧

(v′1 = in��d′1 ) ⇒ hvv′1 = in��(λw.f+
m(d′1(f

−
v w))) ) ∧

((v′2 = ⊥ ∧ d′2 = ⊥) ⇒ (hvv′2 = ⊥ ∧ (λw.f+
m(d′2(f

−
v w))) = ⊥) ∧

(v′2 = in��d′2 ) ⇒ hvv′2 = in��(λw.f+
m(d′2(f

−
v w))) ).

Let p′ � p, (w′
1, w

′
2 ‖ w1, w2, τ, p

′) ∈ S−
V .

Since (f−, idD) : S− ⊂ R− we have that (f−
v w′

1, f
−
v w′

2 ‖ w1, w2, τ, p
′) ∈ R−

V , and then
(d′1(f

−
v w′

1), d
′
2(f

−
v w′

2) ‖ d1w1, d2w2, T τ ′, p′) ∈ R+
M .

Since (f+, idD) : R+ ⊂ S+ then (f+
m(d′1(f

−
v w′

1)), f+
m(d′2(f

−
v w′

2)) ‖ d1w1, d2w2, T τ ′, p′) ∈
S+

M . So (hvv′1, hvv′2 ‖ v1, v2, τ → Tτ ′, p) ∈ F (S−, S+).

We conclude that in all cases (hvv′1, hvv′2 ‖ v1, v2, τ, p) ∈ F (S−, S+)M .

Then we conclude that the action of F (−, +) on functions in D � D preserves ( , id) : ⊂ .
�

Theorem 6. There exists an adm+ relation ∇ = (∇V ,∇K ,∇M ,∇S) ∈ Radm+(D)
satisfying the equations in definition 50 and
(i, i) : F (∇,∇) ⊂ ∇ ∧ (i−1, i−1) : ∇ ⊂ F (∇,∇).

With the previous lemmas 37 and 38 in hand the proof of the existence of the minimal invariant
relation ∇ (theorem 6) is done in the same way as we did before. Proof omitted.
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9.2 Properties of the invariant relation ∇ = (∇V , ∇K , ∇M , ∇S) ∈ Radm+(D)

∇ is admissible , downwards closed and parameter-weakened, and we have
(i, i) : F (∇,∇) ⊂ ∇ ∧ (i−1, i−1) : ∇ ⊂ F (∇,∇).

Let F (∇,∇) = (F (∇,∇)V , F (∇,∇)K , F (∇,∇)M , F (∇,∇)S), then further by definition of the
action of F on relations it holds that:

F (R−, R+)V = {(⊥, ⊥ ‖ v1, v2, τ, p) | p ∈ pvm the set of all vm-parameters, v1, v2 ∈ F (D, D)V } ∪

{(v′1, v′2 ‖ v1, v2, τ, p) | p ∈ pvm ∧ v′1, v
′
2, v1, v2 ∈ F (D, D)V ∧

v′1 � v1 �= ⊥ ∧ v′2 � v2 �= ⊥ ∧
(v′1, v′2 ‖ v1, v2, τ, p) ∈ ( }

where

( = {(v′1, v′2 ‖ in11�∗ , in11�∗ , unit, p) } ∪
{(v′1, v′2 ‖ inZ�n , inZ�n , int, p) | n ∈ Z } ∪
{(v′1, v′2 ‖ inL�l1 , inL�l2 , τ ref, p) | (l1, l2, τ) ∈ Zp } ∪

{(v′1, v′2 ‖ in⊕inid1, in⊕inid2, τ1 + τ2, p) | d1, d2 ∈ (DV )↓ ∧ ∃d′1, d
′
2 ∈ DV .

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in⊕inid
′
1 �= ⊥) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = in⊕inid

′
2 �= ⊥)∧

(d′1, d′2 ‖ d1, d2, τi, p) ∈ ∇V , i ∈ {1, 2} } ∪

{(v′1, v′2 ‖ in⊗(d1a, d1b), in⊗(d2a, d2b), τa × τb, p) | d1a, d1b, d2a, d2b ∈ (DV )↓ ∧
∃d′1a, d′

1b, d
′
2a, d′2b ∈ DV .

(d′1a, d′2a ‖ d1a, d2a, τa, p) ∈ ∇V ∧ (d′1b, d′2b ‖ d1b, d2b, τb, p) ∈ ∇V ∧
((v′1 = ⊥ ∧ (d′1a = ⊥ ∨ d′1b = ⊥)) ∨ (v′1 = in⊗(d′1a, d′1b) �= ⊥)) ∧
((v′2 = ⊥ ∧ (d′2a = ⊥ ∨ d′2b = ⊥)) ∨ (v′2 = in⊗(d′2a, d′2b) �= ⊥))} ∪

{(v′1, v′2 ‖ inμd1, inμd2, μα.τ, p) | d1, d2 ∈ (DV )↓ ∧ ∃d′1, d
′
2 ∈ DV .

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = inμd′1 �= ⊥) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = inμd′2 �= ⊥)∧
(d′1, d′2 ‖ d1, d2, τ [μα.τ/α], p) ∈ ∇V } ∪

{(v′1, v′2 ‖ in∀�d1 , in∀�d2 , ∀α.Tτ, p) | d1, d2 ∈ DM ∧ ∃d′1, d
′
2 ∈ DM .

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ (v′1 = in∀�d′1 �= ⊥ ∧ d′1 ' ⊥)) ∧
((v′2 = ⊥ ∧ d′2 = ⊥) ∨ (v′2 = in∀�d′2 �= ⊥ ∧ d′2 ' ⊥)) ∧
∀σ with � σ : type. (d′1, d′2 ‖ d1, d2, T τ [σ/α], p) ∈ ∇M } ∪

{(v′1, v′2 ‖ in��d1 , in��d2 , τ → Tτ ′, p) | d1, d2 ∈ (DV � DM ) ∧ ∃d′1, d
′
2 ∈ (DV � DM ).

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ (v′1 = in��d′1 �= ⊥ ∧ d′1 ' ⊥)) ∧
((v′2 = ⊥ ∧ d′2 = ⊥) ∨ (v′2 = in��d′2 �= ⊥ ∧ d′2 ' ⊥)) ∧
∀p′ � p,∀(w′

1, w′
2 ‖ w1, w2, τ, p′) ∈ ∇V . ( d′1w

′
1, d′2w

′
2 ‖ d1w1, d1w2, T τ ′, p′) ∈ ∇M }

F (∇,∇)K = {(k′
1, k′

2 ‖ k1, k2, (x : τ)�, (pk)) | (pk) ∈ pk ∧
k′
1 � k1 ∧ k′

2 � k2 ∧ ∀(pk′) � (pk).
(that is (pk) extended only with ordinary local k-parameters or local extensions)

∀(pks′) ∈ (pk′)S (the set of s-instantiations of p′ i.e. choices of ∨̄-clauses),
(pks′) /∈ (ssP⊥ ∪ ss⊥P ). (i.e. no chosen ∨̄-clause in the s-instantiation is a (⊥, P ) or (P,⊥))

∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ ∇S . ∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ ∇V .
(k′

1s
′
1v

′
1 = � ⇒ k2s2v2 = �) ∧

(k′
2s

′
2v

′
2 = � ⇒ k1s1v1 = �), ∧
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∀(pks′) ∈ (pk′)S, (pks′) ∈ ssP⊥. (i.e. a chosen ∨̄-clause in the s-instantiation is a (P,⊥))
∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ ∇S . ∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ ∇V .

k′
1s

′
1v

′
1 = ⊥, ∧,

∀(pks′) ∈ (pk′)S, (pks′) ∈ ss⊥P . (i.e. a chosen ∨̄-clause in the s-instantiation is a (⊥, P ))
∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ ∇S . ∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ ∇V .

k′
2s

′
2v

′
2 = ⊥ },

F (∇,∇)M = {(m′
1, m′

2 ‖ m1, m2, T τ, p) | p ∈ pvm ∧
m′

1 � m1 ∧ m′
2 � m2 ∧

∀p′ � p.∀(pk′) ∈ p′K (the set of k-instantiations of p′ i.e.
choices of a ∧̄-clause in each local parameter).

∀(pks′) ∈ (pk′)S (the set of s-instantiations of (pk′) i.e.
choices of ∨̄-clause from each chosen ∧̄-clause in (pk′) ),
(pks′) /∈ (ssP⊥ ∪ ss⊥P ). (i.e. no chosen ∨̄-clause is a (⊥, P ) or (P,⊥))

∀(k′
1, k′

2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ ∇K . ∀(S′
1, S′

2 ‖ S1, S2, (pks′)) ∈ ∇S .
(m′

1k
′
1S

′
1 = � ⇒ m2k2S2 = �) ∧

(m′
2k

′
2S

′
2 = � ⇒ m1k1S1 = �) ∧

∀(pks′) ∈ (pk′)S, (pks′) ∈ ssP⊥. (i.e. a chosen ∨̄-clause is a (P,⊥))
∀(k′

1, k′
2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ ∇K . ∀(S′

1, S′
2 ‖ S1, S2, (pks′)) ∈ ∇S .

m′
1k

′
1S

′
1 = ⊥) ∧

∀(pks′) ∈ (pk′)S, (pks′) ∈ ss⊥P . (i.e. a chosen ∨̄-clause is a (⊥, P ))
∀(k′

1, k′
2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ ∇K . ∀(S′

1, S′
2 ‖ S1, S2, (pks′)) ∈ ∇S .

m′
2k

′
2S

′
2 = ⊥ }

F (∇,∇)S = {(⊥, ⊥ ‖ S1, S2, (pks)) | (pks) ∈ ps the set of all s-parameters } ∪
{(S′

1, S′
2 ‖ S1, S2, (pks) | (pks) = {(r1|q1|Q1), . . . , (rn|qn|Qn)} ∈ ps

(qi is a choice of ∧̄-clause in ri, and Qi is a choice of ∨̄-clause in qi) ∧

S′
1 � S1 �= ⊥ ∧ S′

2 � S2 �= ⊥ ∧

A(pks)
1 (S1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)

2 (S2) ∩ π2(Z(pks)) = ∅
(in each side are the visible locations in Z(pks) disjoint from the known hidden locations
given by the accessibility maps A(pks)

1 ,A(pks)
2 ) ∧

∀i �= j. Åri
1 (S1) ∩ Årj

1 (S1) = ∅ ∧ Åri
2 (S2) ∩ Årj

2 (S2) = ∅
(Åri

1 , Åri
2 accessibility maps are the most inclusive for the local parameter ri.

In each side is every location, visible, hidden or reserved, belonging to a local parameter
outside the areas owned by any different local parameter) ∧

∀(l1, l2, τ) ∈ Z(pks).(S′
1(l1), S′

2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ ∇V

(All visible locations hold related values) ∧

∀i ∈ 1..n. if Qi = (Pi,⊥) then S1 ∈ Pi, if Qi = (⊥, Pi) then S2 ∈ Pi,
if Qi = (Pi, LLi) then (S1, S2) ∈ Pi ∧

∀(l1, l2, τ) ∈ LLi. (S′
1(l1), S′

2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ ∇V

(The states belong to all simple state relations and predicates in the chosen ∨̄-clauses.
Corresponding LL location-sets hold related values) }
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– For all (v′1, v′2 ‖ v1, v2, τ, p) ∈ ∇V it holds that (v′1 = v′2 = ⊥) or (v1 �= ⊥ ∧ v2 �= ⊥).
– For all (s′1, s′2 ‖ s1, s2, τ, p) ∈ ∇V it holds that (s′1 = s′2 = ⊥) or (s1 �= ⊥ ∧ s2 �= ⊥).
– ∀k1, k2 ∈ K.∀(x : τ)�.∀pk ∈ pk.(⊥,⊥ ‖ k1, k2, (x : τ)�, pk) ∈ ∇K .
– ∀m1,m2 ∈ M.∀Tτ.∀p ∈ pvm.(⊥,⊥ ‖ m1,m2, T τ, p) ∈ ∇M .

Again we have a special limited parameter weakening for states concerned with removal of
∧̄-clauses. If states s′1, s

′
2, s1, s2 are related under an s-parameter pks and pks′ is a s-parameter

derived from pks by removal of some ∧̄-clauses but such that those instantiated in pks are not
touched, then s′1, s

′
2, s1, s2 will also be related under pks′.

Lemma 39. Let p = {ri} be a vm-parameter, and let pks = {(ri|qi|Qi)} ∈ pS.
Assume (s′1, s

′
2 ‖ s1, s2, pks) ∈ ∇S.

If ∀i.ri ⊇ r′i and pks′ = {(r′i|qi|Qi)},
then p′ = (pks′)vm = {r′i} and (s′1, s

′
2 ‖ s1, s2, pks′) ∈ ∇S.

Proof By definition of � it holds that p′ = (pks′)vm = {r′i} � p.
The approximation properties s′1 � s1 and s′2 � s2 are not changed. By assumption

(a) A(pks)
1 (s1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)

2 (s2) ∩ π2(Z(pks)) = ∅ and
(b) ∀i �= j. Åri

1 (s1) ∩ Årj
1 (s1) = ∅ ∧ Åri

2 (s2) ∩ Årj
2 (s2) = ∅ and

(c) ∀i ∈ 1..n. if Qi = (Pi,⊥) then s1 ∈ Pi, if Qi = (⊥, Pi) then s2 ∈ Pi,
if Qi = (Pi, LLi) then (s1, s2) ∈ Pi ∧
∀(l1, l2, τ) ∈ LLi. (s′1(l1), s′2(l2) ‖ s1(l1), Ss2(l2), τ, (pks)vm) ∈ ∇V and

(d) ∀(l1, l2, τ) ∈ Z(pks).(s′1(l1), s′2(l2) ‖ s1(l1), s2(l2), τ, (pks)vm) ∈ ∇V

We need to prove

1. A(pks′)
1 (s1) ∩ π1(Z(pks′)) = ∅ ∧ A(pks′)

2 (s2) ∩ π2(Z(pks′)) = ∅ and
2. ∀i �= j. Åri′

1 (s1) ∩ Årj′
1 (s1) = ∅ ∧ Åri′

2 (s2) ∩ Årj′
2 (s2) = ∅ and

3. ∀i ∈ 1..n. if Qi = (Pi,⊥) then s1 ∈ Pi, if Qi = (⊥, Pi) then s2 ∈ Pi,
if Qi = (Pi, LLi) then (s1, s2) ∈ Pi ∧
∀(l1, l2, τ) ∈ LLi. (s′1(l1), s′2(l2) ‖ s1(l1), Ss2(l2), τ, (pks′)vm) ∈ ∇V and

4. ∀(l1, l2, τ) ∈ Z(pks′).(s′1(l1), s′2(l2) ‖ s1(l1), s2(l2), τ, (pks′)vm) ∈ ∇V

1. follows from (a). Z(pks′) =
⊎

Zqi is defined on the basis of the instantiated qi’s in (pks′). These
are the same as in (pks), so Z(pks′) = Z(pks). Also A(pks′)

1 ,A(pks′)
2 ,A(pks)

1 ,A(pks)
2 are defined on

the basis of the instantiated qi’s.
2. follows from (b) together with ∀i. r′i ⊆ ri ⇒ (Åri′

1 (s1) ⊆ Åri
1 (s1) ∧ Åri′

2 (s2) ⊆ Åri
2 (s2)).

3. There are no changes to finitary state predicates and finitary state relations, so also the LL’s
will be the same. As (pks′)vm � (pks)vm then by weakening for values and (c) all values stored
in LL’s are still related.

4. follows from (d) and Z(pks′) = Z(pks) and (pks′)vm � (pks)vm together with parameter weak-
ening for stored values.

�

9.3 Relating denotations of open terms

We define a parameterized binary relation ∇ΞΓ between denotations of open expressions formally
as it was before, but now it is based on the new relation ∇.

Definition 51. The relation ∇ΞΓ

Let p ∈ ovm with associated Zp and with Zp
1 = Zp

2 = Δ

154



∇ΞΓ
V For Ξ = α1 . . . αm, Γ = x1 : τ1, . . . , xn : τn and Δ; Ξ; Γ � V1 : τ and Δ; Ξ; Γ � V2 : τ

let v1 = [[Δ; Ξ; Γ � V1]] and v2 = [[Δ; Ξ; Γ � V2]], define

(v1, v2, τ, p) ∈ ∇ΞΓ
V

def⇐⇒

∀σj with � σj : type, j = 1, ..,m. ∀p′ � p.

∀(v′11, v
′
21 ‖ v11, v21, τ1[σj/αj ], p′) ∈ ∇V , . . . , (v′1n, v′

2n ‖ v1n, v2n, τn[σj/αj ], p′) ∈ ∇V , with
ρ′1 = v′11 ⊗ . . . ⊗ v′1n ∈ [[Γ ]], ρ1 = v11 ⊗ . . . ⊗ v1n ∈ [[Γ ]],
ρ′2 = v′21 ⊗ . . . ⊗ v′2n ∈ [[Γ ]], ρ2 = v21 ⊗ . . . ⊗ v2n ∈ [[Γ ]].

it holds that (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), τ [σj/αj ], p′) ∈ ∇V .

∇ΞΓ
M For Ξ = α1 . . . αm, Γ = x1 : τ1, . . . , xn : τn and Δ; Ξ; Γ � M1 : Tτ and Δ; Ξ; Γ � M2 : Tτ

let m1 = [[Δ; Ξ; Γ � M1]] and m2 = [[Δ; Ξ; Γ � M2]], define

(m1,m2, T τ, p) ∈ ∇ΞΓ
M

def⇐⇒

∀σj with � σj : type, j = 1, ..,m. ∀p′ � p.

∀(v′11, v
′
21 ‖ v11, v21, τ1[σj/αj ], p′) ∈ ∇V , . . . , (v′1n, v′

2n ‖ v1n, v2n, τn[σj/αj ], p′) ∈ ∇V , with
ρ′1 = v′11 ⊗ . . . ⊗ v′1n ∈ [[Γ ]], ρ1 = v11 ⊗ . . . ⊗ v1n ∈ [[Γ ]],
ρ′2 = v′21 ⊗ . . . ⊗ v′2n ∈ [[Γ ]], ρ2 = v21 ⊗ . . . ⊗ v2n ∈ [[Γ ]].

it holds that (m1(ρ′1i),m2(ρ′2i) ‖ m1(ρ1i),m2(ρ2i), T τ [σj/αj ], p′) ∈ ∇M .

Proposition 5. Typing rules preserve ∇ΞΓ relation of denotations. for all p ∈ ovm.

For typing rules with no premisses it holds that for all p ∈ ovm with Zp
1 = Zp

2 = Δ

if
Δ; Ξ; Γ � V : τ

and v = [[Δ; Ξ; Γ � V : τ ]] then (v, v, τ, p) ∈ ∇ΞΓ
V

For typing rules with j premisses it holds that for all p ∈ ovm with Zp
1 = Zp

2 = Δ

if Δ; Ξ1; Γ1 � G11 : γ1 . . . . . . Δ; Ξj ; Γj � Gj1 : γj

Δ; Ξ; Γ � G1 : γ
and by the same typing rule

Δ; Ξ1; Γ1 � G12 : γ1 . . . . . . Δ; Ξj ; Γj � Gj2 : γj

Δ; Ξ; Γ � G2 : γ
and for the well typed terms

d11 = [[Δ; Ξ1; Γ1 � G11 : γ1]], d12 = [[Δ; Ξ1; Γ1 � G12 : γ1]], . . . ,
dj1 = [[Δ; Ξj ; Γj � Gj1 : γj ]], dj2 = [[Δ; Ξj ; Γj � Gj2 : γj ]], and
∀i ∈ 1 . . . j, (di1, di2, γi, p) ∈ ∇ΞiΓi

X (where in each case X is the relevant X ∈ {V,M}).
And d1 = [[Δ; Ξ; Γ � G1 : γ]], d2 = [[Δ; Ξ; Γ � G2 : γ′]].

then it holds that (d1, d2, γ, p) ∈ ∇ΞΓ
X

Proof
Let p ∈ ovm be a parameter such that Zp = {(l1, l1, σ1) . . . (ln, ln, σn)} where Δ = Zp

1 = Zp
2 .

For Ξ = α1 . . . αm, Γ = x1 : τ1, . . . , xn : τn with Ξ � Γ and
arbitrary σ1 . . . σm with � σk : type,

arbitrary p′ � p, arbitrary (v′1i, v
′
2i ‖ v1i, v2i, τi[σk/αk], p′) ∈ ∇V , i = 1, .., n.
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Let ρ′1 = v′11 ⊗ . . . ⊗ v′1n ∈ [[Γ ]]. Let ρ1 = v11 ⊗ . . . ⊗ v1n ∈ [[Γ ]].
Let ρ′2 = v′21 ⊗ . . . ⊗ v′2n ∈ [[Γ ]]. Let ρ2 = v21 ⊗ . . . ⊗ v′2n ∈ [[Γ ]].

As ∀i. v′1i � v1i ∧ v′2i � v2i and
(
(v′1i = v′2i = ⊥) ∨ (v1i �= ⊥ ∧ v2i �= ⊥)

)
, then it holds that

ρ′1 � ρ1 ∧ ρ′2 � ρ2

(ρ′1 = ρ′2 = ⊥) ∨ (ρ1 �= ⊥ ∧ ρ2 �= ⊥)
(ρ1 = ⊥ ∨ ρ2 = ⊥) ⇒ (ρ′1 = ⊥ ∧ ρ′2 = ⊥)
(ρ′1 �= ⊥ ∨ ρ′2 �= ⊥) ⇒ (ρ1 �= ⊥ ∧ ρ2 �= ⊥).

We will now show for each typing rule that relatedness of denotations is preserved. Most of the
proofs are very much like the ones we have seen before. No rule will need a new local param-
eter, which is not ordinary. The new extended parameters have a special treatment for state-
instantiations to (P,⊥) and (⊥, P ). In proofs the required termination behavior comes through by
assumption about relatedness of the continuations and states we apply to. Here we present proofs
for selected rules. The isomorphism i is sometimes omitted.

val: Δ; Ξ; Γ � V : τ

Δ; Ξ; Γ � val V : Tτ

Let v1 = [[Δ; Ξ; Γ � V1 : τ ]] and v2 = [[Δ; Ξ; Γ � V2 : τ ]]. Assume (v1, v2, τ, p) ∈ ∇ΞΓ
V .

This assumption implies (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), τ [σj/αj ], p′) ∈ ∇V

Let m1 = [[Δ; Ξ; Γ � val V1 : Tτ ]] and m2 = [[Δ; Ξ; Γ � val V2 : Tτ ]].
We need to show (m1,m2, T τ, p) ∈ ∇ΞΓ

M , that is we want to show
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [σj/αj ], p′) ∈ ∇M , or
(i−1(m1(ρ′1)), i

−1(m2(ρ′2)) ‖ i−1(m1(ρ1)), i−1(m2(ρ2)), T τ [σj/αj ], p′) ∈ F (∇,∇)M .

i−1(m1(ρ′1)) = λk.λS.i−1(k)S(v1(ρ′1)), i−1(m2(ρ′2)) = λk.λS.i−1(k)S(v2(ρ′2)),
i−1(m1(ρ1)) = λk.λS.i−1(k)S(v1(ρ1)), i−1(m2(ρ2)) = λk.λS.i−1(k)S(v2(ρ2)).

If v1(ρ′1) = v2(ρ′2) = ⊥ then m1(ρ′1) and m2(ρ′2) will both be the constant ⊥ function in M,
and hence (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [σj/αj ], p′) ∈ ∇M .

Else, let p′′ � p′, (pk′′) ∈ p′′K, (pks′′) ∈ pk′′S and let (k′
1, k

′
2 ‖ k1, k2, (x : τ [σj/αj ])�, (pk′′)) ∈

∇K , (S′
1, S

′
2 ‖ S1, S2, (pks′′)) ∈ ∇S .

We need to show
(pks′′) ∈ ps \ (ssP⊥ ∪ ss⊥P ) =⇒

(m1(ρ′1))k
′
1S

′
1 = � ⇒ (m2(ρ2))k2S2 = � ∧ (m2(ρ′2))k

′
2S

′
2 = � ⇒ (m1(ρ1))k1S1 = �

(pks′′) ∈ ssP⊥ =⇒ (m1(ρ′1))k
′
1S

′
1 = ⊥

(pks′′) ∈ ss⊥P =⇒ (m2(ρ′2))k
′
2S

′
2 = ⊥

By assumption and weakening (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), τ [σj/αj ], p′′) ∈ ∇V .
i−1(m1(ρ′1))k

′
1S

′
1 = i−1(k′

1)S
′
1v1(ρ′1), i−1(m2(ρ′2))k

′
2S

′
2 = i−1(k′

2)S
′
2v2(ρ′2),

i−1(m1(ρ1))k1S1 = i−1(k1)S1v1(ρ1), i−1(m2(ρ2))k2S2 = i−1(k2)S2v2(ρ2).

So it follows that since k’s, S’s and v’s are correspondingly related so
(pks′′) ∈ ps \ (ssP⊥ ∪ ss⊥P ) =⇒

(m1(ρ′1))k
′
1S

′
1 = (k′

1)S
′
1v1(ρ′1) = � ⇒ (k2)S2v2(ρ2) = (m2(ρ2))k2S2 = � ∧

(m2(ρ′2))k
′
2S

′
2 = (k′

2)S
′
2v2(ρ′2) = � ⇒ (k1)S1v1(ρ1) = (m1(ρ1))k1S1 = �

(pks′′) ∈ ssP⊥ =⇒ (k′
1)S

′
1v1(ρ′1) = (m1(ρ′1))k

′
1S

′
1 = ⊥

(pks′′) ∈ ss⊥P =⇒ (k′
2)S

′
2v2(ρ′2) = (m2(ρ′2))k

′
2S

′
2 = ⊥

Hence (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [σj/αj ], p′) ∈ ∇M .
We conclude (m1,m2, T τ, p) ∈ ∇Γ

M .
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deref: Δ; Ξ; Γ � V : τ ref

Δ; Ξ; Γ � !V : Tτ

Let v1 = [[Δ; Ξ; Γ � V1 : τ ref ]] and v2 = [[Δ; Ξ; Γ � V2 : τ ref ]].
Assume (v1, v2, τ ref, p) ∈ ∇ΞΓ

V . So (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), τ [σj/αj ] ref, p′) ∈ ∇V

This implies that either v1(ρ′1) = v2(ρ′2) = ⊥ or ∃(l1, l2, τ [σj/αj ]) ∈ Zp′
. v1(ρ′1) � v1(ρ1) =

i(inLl1) ∧ v2(ρ′2) � v2(ρ2) = i(inLl2).

Let m1 = [[Δ; Ξ; Γ � !V1]] and m2 = [[Δ; Ξ; Γ � !V2]].
We need to show (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [σj/αj ], p′) ∈ ∇M .
If v1(ρ′1) = v2(ρ′2) = ⊥ then m1(ρ′1) = m2(ρ′2) = ⊥ and
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ′2), v2(ρ2), T τ [σj/αj ], p′) ∈ ∇M . Else,
i−1(m1(ρ′1)) � λk.λS.(i−1k)S(Sl1), i−1(m1(ρ1)) = λk.λS.(i−1k)S(Sl1),
i−1(m2(ρ′2)) � λk.λS.(i−1k)S(Sl2), i−1(m2(ρ2)) = λk.λS.(i−1k)S(Sl2).

Let p′′ � p′, (pk′′) ∈ p′′K, (pks′′) ∈ (pk′′)S, (k′
1, k

′
2 ‖ k1, k2, (x : τ [σj/αj ])�, (pk′′)) ∈ ∇K ,

(S′
1, S

′
2 ‖ S1, S2, (pks′′)) ∈ ∇S .

If S′
1 = S′

2 = ⊥ we get required termination properties trivially. Else since (l1, l2, τ [σj/αj ]) ∈
Zp′

also (l1, l2, τ [σj/αj ]) ∈ Zp′′
, then (S′

1, S
′
2 ‖ S1, S2, (pks′′)) ∈ ∇S ⇒ (S′

1l1, S
′
2l2 ‖ S1l1, S2l2, τ, p

′′) ∈
∇V . So continuations states and values are correspondingly related. It follows that
(pks′′) ∈ ps \ (ssP⊥ ∪ ss⊥P ) =⇒

(m1(ρ′1))k
′
1S

′
1 � (k′

1)S
′
1(S

′
1l1) = � ⇒ (k2)S2v2(S2l2) = (m2(ρ2))k2S2 = � ∧

(m2(ρ′2))k
′
2S

′
2 � (k′

2)S
′
2(S

′
2l2) = � ⇒ (k1)S1(S1l1) = (m1(ρ1))k1S1 = �

(pks′′) ∈ ssP⊥ =⇒ (k′
1)S

′
1(S

′
1l1) = (m1(ρ′1))k

′
1S

′
1 = ⊥.

(pks′′) ∈ ss⊥P =⇒ (k′
2)S

′
2(S

′
2l2) = (m2(ρ′2))k

′
2S

′
2 = ⊥

Hence (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ [σj/αj ], p′) ∈ ∇M .
We conclude (m1,m2, T τ, p) ∈ ∇ΞΓ

M .

alloc: Δ; Ξ; Γ � V : τ

Δ; Ξ; Γ � ref V : T (τ ref)

Let v1 = [[Δ; Ξ; Γ � V1 : τ ]] and v2 = [[Δ; Ξ; Γ � V2 : τ ]]. Assume (v1, v2, τ, p) ∈ ∇ΞΓ
V .

Let m1 = [[Δ; Ξ; Γ � ref V1 : T (τ ref)]] and m2 = [[Δ; Ξ; Γ � ref V2 : T (τ ref)]].
We need to show (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (τ [σj/αj ] ref), p′) ∈ ∇M .

If (m1(ρ′1)) = ⊥∧ (m2(ρ′2)) = ⊥ then (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (τ [σj/αj ] ref), p′) ∈
∇M . Else ρ′1 = ⊥ ⇒ (m1(ρ′1)) = ⊥, ρ1 = ⊥ ⇒ (m1(ρ1)) = ⊥, ρ′2 = ⊥ ⇒ (m1(ρ′2)) = ⊥,
ρ2 = ⊥ ⇒ (m1(ρ2)) = ⊥.

ρ′1 �= ⊥ ⇒ i−1(m1(ρ′1)) = λk.λS.(i−1k)(S[l′1 �→ (v1(ρ′1))])(i ◦ inLl′1)
for some/any l′1 /∈ supp(λl′.(i−1k)(S[l′ �→ (v1(ρ′1))](i ◦ inLl′)).

ρ1 �= ⊥ ⇒ i−1(m1(ρ1)) = i−1(m1(ρ1)) = λk.λS.(i−1k)(S[l1 �→ (v1(ρ1))])(i ◦ inLl1)
for some/any l1 /∈ supp(λl′.(i−1k)(S[l′ �→ (v1(ρ1))](i ◦ inLl′)).

ρ′2 �= ⊥ ⇒ i−1(m2(ρ′2)) = i−1(m2(ρ′2)) = λk.λS.(i−1k)(S[l′2 �→ (v2(ρ′2))])(i ◦ inLl′2)
for some/any l′2 /∈ supp(λl′.(i−1k)(S[l′ �→ (v2(ρ′2))](i ◦ inLl′)).

ρ2 �= ⊥ ⇒ i−1(m2(ρ2)) = i−1(m2(ρ2)) = λk.λS.(i−1k)(S[l2 �→ (v2(ρ2))])(i ◦ inLl2)
for some/any l2 /∈ supp(λl′.(i−1k)(S[l′ �→ (v2(ρ2))](i ◦ inLl′)).

Let arbitrarily p′′ � p′, (pk′′) ∈ p′′K, (pks′′) ∈ pk′′S, (k′
1, k

′
2 ‖ k1, k2, (x : τ [σj/αj ] ref)�, (pk′′)) ∈

∇K , (S′
1, S

′
2 ‖ S1, S2, (pks′′)) ∈ ∇S .

If ρ′1 = ρ′2 = ⊥ or S′
1 = S′

2 = ⊥ then (m1(ρ′1))k
′
1S

′
1 = (m1(ρ′2))k

′
2S

′
2 = ⊥. Else
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Let l0 /∈ (Åp′′
1 (S1) ∪ Åp′′

2 (S2) ∪
supp(λl′.(i−1k)(S[l′ �→ (v1(ρ′1))(i ◦ inLl′)) ∪ supp(λl′.(i−1k)(S[l′ �→ (v1(ρ1))(i ◦ inLl′)) ∪
supp(λl′.(i−1k)(S[l′ �→ (v2(ρ′2))(i ◦ inLl′))) ∪ supp(λl′.(i−1k)(S[l′ �→ (v2(ρ2))(i ◦ inLl′))).
Then
i−1(m1(ρ′1))k

′
1S

′
1 � (i−1k′

1)(S
′
1[l0 �→ (v1(ρ′1))])(i ◦ inLl0),

i−1(m1(ρ1))k1S1 = (i−1k1)(S1[l0 �→ (v1(ρ1))])(i ◦ inLl0),
i−1(m2(ρ′2))k

′
2S

′
2 � (i−1k′

2)(S
′
2[l0 �→ (v2(ρ′2))])(i ◦ inLl0),

i−1(m2(ρ2))k2S2 = (i−1k2)(S2[l0 �→ (v2(ρ2))])(i ◦ inLl0).
We need to show that
(pks′′) ∈ ps \ (ssP⊥ ∪ ss⊥P ) =⇒

(m1(ρ′1))k
′
1S

′
1 = � ⇒ (m2(ρ2))k2S2 = � ∧ (m2(ρ′2))k

′
2S

′
2 = � ⇒ (m1(ρ1))k1S1 = �

(pks′′) ∈ ssP⊥ =⇒ (m1(ρ′1))k
′
1S

′
1 = ⊥

(pks′′) ∈ ss⊥P =⇒ (m2(ρ′2))k
′
2S

′
2 = ⊥

We define a parameter (pks3) that extends (pks′′) by adding (l0, l0, τ [σj/αj ]) to the visible
locations. Let r = ((T, ∅LL), A∅, A∅, {(l0, l0, τ [σj/αj ])}).
Let (pks3) = (pks′′) " {(r|r|(T, ∅LL))} so (pk3) = (pks3)k = (pk)′′ " {(r|r)}, p3 = (pks3)vm =
p′′ " {r} and p3 � p′′, (pk3) � (pk′′).
Then Zpks3

= Zpk3
= Zpks′′ " {(l0, l0, τ [σj/αj ])}, Zp3

= Zp′′ " {(l0, l0, τ [σj/αj ])}

It holds that
(i ◦ inLl0, i ◦ inLl0, i ◦ inLl0, i ◦ inLl0, τ [σj/αj ] ref, p3) ∈ ∇V and
(pks3) ∈ ps \ (ssP⊥ ∪ ss⊥P ) ⇔ (pks′′) ∈ ps \ (ssP⊥ ∪ ss⊥P )
(pks3) ∈ ssP⊥ ⇔ (pks′′) ∈ ssP⊥,
(pks3) ∈ ss⊥P ⇔ (pks′′) ∈ ss⊥P .
To prove the required termination approximation we want to show
(S′

1[l0 �→ v1(ρ′1)], S
′
2[l0 �→ v2(ρ′2)] ‖ S1[l0 �→ v1(ρ1)], S2[l0 �→ v2(ρ2)], (pks3)) ∈ ∇S .

By assumption (S′
1, S

′
2 ‖ S1, S2, (pks′′)) ∈ ∇S . The states have only been changed outside the

areas for the most consuming accessibility maps Åp′′
1 , Åp′′

2 involved in p′′. Hence the updated
states (S1[l0 �→ (v1(ρ1))], S2[l0 �→ (v2(ρ2))]) still belong to the same simple state predicates
and relations involved in p′′. The associated location lists hold values related in p′′ by weakening
these are also related in p3 � p′′. Zpks3

= Zpks′′ " {(l0, l0, τ)}. Since the original states were
related and by weakening the locations in Zpks′′

hold values related in p3. By assumption and
weakening also (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), τ [σj/αj ], p3) ∈ ∇V .

In more detail we have that
(pks3) = {(r1|q̂1|Q1), . . . , (rn|q̂n|Qn), (rn+1|q̂n+1|Qn+1)} where rn+1 = r with trivial instanti-
ations, and so relatedness of the updated states in pks3 requires
1. S′

1[l0 �→ v1(ρ′1)] � S1[l0 �→ v1(ρ1)] �= ⊥ ∧ S′
2[l0 �→ v2(ρ′2)] � S2[l0 �→ v2(ρ2)] �= ⊥

2. Apks3

1 (S1[l0 �→ v1(ρ1)]) ∩ π1(Zpks3
) = ∅ ∧ Apks3

2 (S2[l0 �→ v2(ρ2)]) ∩ π2(Zpks3
) = ∅

3. ∀i �= j ∈ 1 . . . n+1. Åri
1 (S1[l0 �→ v1(ρ1)]) ∩ Årj

1 (S1[l0 �→ v1(ρ1)]) = ∅ ∧ Åri
2 (S2[l0 �→

v2(ρ2)]) ∩ Årj
2 (S2[l0 �→ v2(ρ2)]) = ∅

4. ∀(l1, l2, σ) ∈ Zpks3
.(S′

1[l0 �→ v1(ρ′1)](l1), S′
2[l0 �→ v2(ρ′2)](l2) ‖ S1[l0 �→ v1(ρ1)](l1), S2[l0 �→

v2(ρ2)](l2), σ, p3) ∈ ∇V

5. ∀i ∈ 1..n+1. if Qiji
= (Pi, LLi) then (S1[l0 �→ v1(ρ1)], S2[l0 �→ v2(ρ2)]) ∈ Pi ∧

∀(l1, l2, σ) ∈ LLi. (S′
1[l0 �→ v1(ρ′1)](l1), S′

2[l0 �→ v2(ρ′2)](l2) ‖ S1[l0 �→ v1(ρ1)](l1), S2[l0 �→
v2(ρ2)](l2), σ, p3) ∈ ∇V
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1. Follows from: assumptions S′
1 � S1 �= ⊥ ∧ S′

2 � S2 �= ⊥ and ρ′1 � ρ1 ∧ ρ′2 � ρ2

2. Follows from: r = ((T, ∅LL), A∅, A∅, {(l0, l0, τ)}), so
π1(Zpks3

) = π1(Zpks′′
) " {l0}, Apks3

1 (S1[l0 �→ v1(ρ1)]) = Apks′′
1 (S1), l0 /∈ Apks′′

1 (S1) and
π2(Zpks3

) = π2(Zpks′′
) " {l0}, Apks3

2 (S2[l0 �→ v2(ρ2)]) = Apks′′
2 (S2), l0 /∈ Apks′′

2 (S2)

3. Follows from: Å
rn+1
1 (S1[l0 �→ v1(ρ1)]) = Å

rn+1
2 (S2[l0 �→ v2(ρ2)]) = {l0} and

∀i �= j ∈ 1 . . . n. Åri
1 (S1) ∩ Årj

1 (S1) = ∅ ∧ Åri
2 (S2) ∩ Årj

2 (S2) = ∅ and
∀i ∈ 1 . . . n. Åri

1 (S1[l0 �→ v1(ρ1)]) = Åri
1 (S1), l0 /∈ Åri

1 (S1) ∧ Åri
2 (S2[l0 �→ v2(ρ2)]) =

Åri
2 (S2), l0 /∈ Åri

2 (S2)

4. Follows from: Zpks3
= Zpks′′"{(l0, l0, τ [σj/αj ])}, ∀(l1, l2, σ) ∈ Zpks′′

.(S′
1(l1), S′

2(l2) ‖ S1(l1), S2(l2),
σ, p′′) ∈ ∇V , weakening and the assumption (v1, v2, τ, p) ∈ ∇ΞΓ

V .

5. Follows from: Simple state relations and predicates only depend on the areas given by the
accessibility maps and Qn+1 = (T, ∅LL) and ∀i ∈ 1..n. l0 /∈ Aqi

1 (S1), l0 /∈ Aqi

2 (S2) and if
Qi = (Pi, LLi) then (S1, S2) ∈ Pi ∧ ∀(l1, l2, σ) ∈ LLi. (S′

1(l1), S
′
2(l2) ‖ S1(l1), S2(l2), σ, pvm) ∈

∇V .
We have
(S′

1[l0 �→ (v1(ρ′1))]), S1[l0 �→ (v1(ρ1))]), S′
2[l0 �→ (v2(ρ′2))]), S2[l0 �→ (v2(ρ2))]), pks3) ∈ ∇S .

So we have (pk′′) related continuations applied to (pks3) related states and p3 related values.
We saw that this is a � extension and (pks3) ∈ psPLL ⇔ (pks′′) ∈ psPLL, (pks3) ∈ ssP⊥ ⇔
(pks′′) ∈ ssP⊥, (pks3) ∈ ss⊥P ⇔ (pks′′) ∈ ss⊥P . So we get the required termination properties.
i−1(m1(ρ′1))k

′
1S

′
1 � (i−1k′

1)(S
′
1[l0 �→ (v1(ρ′1))])(i ◦ inLl0),

i−1(m1(ρ1))k1S1 = (i−1k1)(S1[l0 �→ (v1(ρ1))])(i ◦ inLl0),
i−1(m2(ρ′2))k

′
2S

′
2 � (i−1k′

2)(S
′
2[l0 �→ (v2(ρ′2))])(i ◦ inLl0),

i−1(m2(ρ2))k2S2 = (i−1k2)(S2[l0 �→ (v2(ρ2))])(i ◦ inLl0).
Hence (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (τ [σj/αj ] ref), p′) ∈ ∇M and so
(m1,m2, T (τ ref), p) ∈ ∇ΞΓ

M .

let: Δ; Ξ; Γ � Ma : Tτa Δ; Ξ; Γ, x : τa � Mb : Tτb

Δ; Ξ; Γ � let x ⇐ Ma in Mb : Tτb

Let m1a = [[Δ; Ξ; Γ � M1a : Tτa]], m2a = [[Δ; Ξ; Γ � M2a : Tτa]], m1b = [[Δ; Ξ; Γ, x : τa �
M1b : Tτb]], m2b = [[Δ; Ξ; Γ, x : τa � M2b : Tτb]].
Assume (m1a,m2a, T τa, p) ∈ ∇ΞΓ

M , and assume (m1b,m2b, T τb, p) ∈ ∇Ξ(Γ,x:τa)
M ,

then (m1a(ρ′1),m2a(ρ′2) ‖ m1a(ρ1),m2a(ρ2), T τa[σj/αj ], p′) ∈ ∇M , and
for any (v′1x, v′

2x ‖ v1x, v2x, τa[σj/αj ], p′) ∈ ∇V it holds that
(m1b(ρ′1 ⊗ v′1x),m2b(ρ′2 ⊗ v′2x) ‖ m1b(ρ1 ⊗ v1x),m2b(ρ2 ⊗ v2x), T τb[σj/αj ], p′) ∈ ∇M .

Let m1 = [[Δ; Ξ; Γ � let x ⇐ M1a in M1b : Tτb]] and
let m2 = [[Δ; Ξ; Γ � let x ⇐ M2a in M2b : Tτb]].
We need to show (m1,m2, T τb, p) ∈ ∇ΞΓ

M that is
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τb[σj/αj ], p′) ∈ ∇M .
If ρ′1 = ρ′2 = ⊥ then m1(ρ′1) = m2(ρ′2) = ⊥ and we are done. Else we have
i−1(m1(ρ′1)) = λk.λS. (i−1(m1a(ρ′1)))(λS0.λdx.( i−1(m1b(ρ′1 ⊗ dx))kS0)S,
i−1(m1(ρ1)) = λk.λS. (i−1(m1a(ρ1)))(λS0.λdx.( i−1(m1b(ρ1 ⊗ dx))kS0)S,
i−1(m2(ρ′2)) = λk.λS. (i−1(m2a(ρ′2)))(λS0.λdx.( i−1(m2b(ρ′2 ⊗ dx))kS0)S,
i−1(m2(ρ2)) = λk.λS. (i−1(m2a(ρ2)))(λS0.λdx.( i−1(m2b(ρ2 ⊗ dx))kS0)S.

159



Let p′′ � p′, (pk′′) ∈ p′′k, (pks′′) ∈ pk′′s, (k′
1, k

′
2 ‖ k1, k2, (x : τb[σj/αj ])�, (pk′′)) ∈

∇K , (S′
1, S

′
2 ‖ S1, S2, (pks′′)) ∈ ∇S .

(i−1(m1(ρ′1)))k
′
1S

′
1 = (i−1(m1a(ρ′1)))(λS0.λdx.( i−1(m1b(ρ′1 ⊗ dx))k′

1S0)S′
1,

(i−1(m1(ρ1)))k1S1 = (i−1(m1a(ρ1)))(λS0.λdx.( i−1(m1b(ρ1 ⊗ dx))k1S0)S1,
(i−1(m2(ρ′2)))k

′
2S

′
2 = (i−1(m2a(ρ′2)))(λS0.λdx.( i−1(m2b(ρ′2 ⊗ dx))k′

2S0)S′
2,

(i−1(m2(ρ2)))k2S2 = (i−1(m2a(ρ2)))(λS0.λdx.( i−1(m2b(ρ2 ⊗ dx))k2S0)S2.

By assupmtion (m1a(ρ′1),m2a(ρ′2) ‖ m1a(ρ1),m2a(ρ2), T τa[σj/αj ], p′) ∈ ∇M and the states are
not changed (S′

1, S
′
2 ‖ S1, S2, (pks′′)) ∈ ∇S .

So the state parameter is the same and so to prove the required termination-approximations
we want to show that the continuations are related under (pk′′)
((λS0.λdx. (i−1(m1b(ρ′1 ⊗ dx))k′

1S0), (λS0.λdx. (i−1(m2b(ρ′2 ⊗ dx))k′
2S0) ‖

(λS0.λdx. (i−1(m1b(ρ1⊗dx))k1S0), (λS0.λdx. (i−1(m2b(ρ2⊗dx))k2S0), (x : τa[σj/αj ])�, (pk′′)) ∈
F (∇,∇)K .

Let (pk3) � (pk′′), (pks3) ∈ (pk3)S, p3 = (pk3)vm so p3 � p′′.
Let (S′

10, S
′
20 ‖ S10, S20, (pks3)) ∈ ∇S , (d′1, d

′
2 ‖ d1, d2, τa[σj/αj ], p3) ∈ ∇V .

(λS0.λdx.(i−1(m1b(ρ′1 ⊗ dx))k′
1S0))S′

10d
′
1 = (i−1(m1b(ρ′1 ⊗ d′1)))k

′
1S

′
10,

(λS0.λdx. (i−1(m1b(ρ1 ⊗ dx))k1S0)S10d1 = (i−1(m1b(ρ1 ⊗ d1)))k1S10,
(λS0.λdx. (i−1(m2b(ρ′2 ⊗ dx))k′

2S0)S′
20d

′
2 = (i−1(m2b(ρ′2 ⊗ d′2)))k

′
2S

′
20,

(λS0.λd0. (i−1(m2b(ρ2 ⊗ dx))k2S0)S20d2 = (i−1(m2b(ρ2 ⊗ d2)))k2S20.

We have p3 � p′′ � p′ � p. So p3 � p. (d′1, d
′
2 ‖ d1, d2, τa[σj/αj ], p3) ∈ ∇V ,

In the ρ′s we have ∀i.(v′1i, v
′
2i ‖ v1i, v2i, τi[σj/αj ], p′) ∈ ∇V , it follows by weakening that

∀i.(v′1i, v
′
2i ‖ v1i, v2i, τi[σj/αj ], p3) ∈ ∇V . Also (m1b,m2b, T τb[σj/αj ], p) ∈ ∇Ξ(Γ,x:τa)

M .

Then ((m1b(ρ′1 ⊗ d′1)), (m2b(ρ′2 ⊗ d′2)) ‖ (m1b(ρ1 ⊗ d1)), (m2b(ρ2 ⊗ d2)), T τb[σj/αj ], p3) ∈ ∇M .
By assumption (k′

1, k
′
2 ‖ k1, k2, (x : τb[σj/αj ])�, (pk′′)) ∈ ∇K . Since (pk3) � (pk′′) then by

parameter weakening (k′
1, k

′
2 ‖ k1, k2, (x : τb[σj/αj ])�, (pk3)) ∈ ∇K .

Since also (S′
10, S

′
20 ‖ S10, S20, (pks3)) ∈ ∇S we can conclude that we get the required termi-

nation properties. So the continuations are related and hence
(m1,m2, T τb, p) ∈ ∇ΞΓ

M .

�

For store type Δ let idΔ be the match of finite store types {(l, l, τ)|l : τ ∈ Δ}.
Theorem 7. Fundamental Theorem
For all ordinary parameters p with Zp = idΔ.

If Δ; Ξ; Γ � V : τ then ([[Δ; Ξ; Γ � V : τ ]], [[Δ; Ξ; Γ � V : τ ]], τ, p) ∈ ∇ΞΓ
V

If Δ; Ξ; Γ � M : Tτ then ([[Δ; Ξ; Γ � M : Tτ ]], [[Δ; Ξ; Γ � M : Tτ ]], T τ, p) ∈ ∇ΞΓ
M

Proof by induction over typing derivations using proposition 5.

The next lemma has to do with four-tuples which are really two pairs.

Lemma 40.
Let p ∈ ovm

(m1,m2, T τ, p) ∈ ∇∅∅
M ⇒

∀p′ � p.∀(pk′) ∈ p′K.∀(pks′) ∈ (pk′)S.
∀(k1, k2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ ∇K .∀(S1, S2 ‖ S1, S2, (pks′)) ∈ ∇S .

(i−1m1)k1S1 = � ⇐⇒ (i−1m2)k2S2 = �.

160



Proof

Recall that for any ordinary parameter all parameter parts have the form (P,LL), and (p′ �

p ∧ p ∈ ovm) =⇒ (p′ ∈ ovm ∧ p′ � p).
(m1,m2, T τ, p) ∈ ∇∅∅

M ⇒
(m1,m2 ‖ m1,m2, T τ, p) ∈ ∇M ⇒
(i−1(m1), i−1(m2) ‖ i−1(m1), i−1(m2), T τ, p) ∈ F (∇,∇)M .

It follows from the definition of F (∇,∇)M that ∀p′ � p.∀(pk′) ∈ p′K.∀(pks′) ∈ (pk′)S.
∀(k1, k2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ ∇K .∀(S1, S2 ‖ S1, S2, (pks′)) ∈ ∇S .

(i−1(m1))k1S1 = � ⇒ (i−1(m2))k2S2 = � and
(i−1(m1))k1S1 = � ⇐ (i−1(m2))k2S2 = �

�

Recall TΔ is the vm-parameter {(T,A∅, A∅, idΔ)} and TK
Δ , TS

Δ the trivial instantiations.

Lemma 41.

1. ∀ � τ : type. ∀(pk) ∈ ok with Zpk = idΔ. ([[Δ � val x : (x : τ)�]], [[Δ � val x : (x : τ)�]] ‖
[[Δ � val x : (x : τ)�]], [[Δ � val x : (x : τ)�]], (x : τ)�, (pk)) ∈ ∇K

2. ∀Σ : Δ. ∀S ∈ [[Σ : Δ]]. (S, S ‖ S, S, TS
Δ) ∈ ∇S

Proof (We have omitted the isomorphisms i, i−1).

1. Assume � τ : type.
[[Δ � val x : (x : τ)�]] =
λS.λd.[[Δ; ; x : τ � val x : Tτ ]][x �→ d]((λS′.(λd′.�)⊥)⊥)S =
λS.λd.(λk0.λS0.k0S0[[Δ; ; x : τ � x : τ ]][x �→ d])((λS′.(λd′.�)⊥)⊥)S =
λS.λd.(λk0.λS0.k0S0d)((λS′.(λd′.�)⊥)⊥)S =
λS.λd.((λS′.(λd′.�)⊥)⊥)Sd.

Let (pk′)�(pk), (pks′) ∈ (pk′)S, (S′
1, S

′
2 ‖ S1, S2, (pks′)) ∈ ∇S , (v′1, v

′
2 ‖ v1, v2, τ, (pk′)vm) ∈ ∇V .

By definition of ∇ it holds that either (v′1 = v′2 = ⊥) or (v1 �= ⊥ ∧ v2 �= ⊥) and either
(S′

1 = S′
2 = ⊥) or (S1 �= ⊥ ∧ S2 �= ⊥)

[[Δ � val x : (x : τ)�]]S′
1v

′
1 = ((λS′.(λd′.�)⊥)⊥)S′

1v
′
1

[[Δ � val x : (x : τ)�]]S1v1 = ((λS′.(λd′.�)⊥)⊥)S1v1

[[Δ � val x : (x : τ)�]]S′
2v

′
2 = ((λS′.(λd′.�)⊥)⊥)S′

2v
′
2

[[Δ � val x : (x : τ)�]]S2v2 = ((λS′.(λd′.�)⊥)⊥)S2v2

We have (pk′) � (pk) ∈ okimplies (pk′) ∈ ok. So we need to show
((λS′.(λd′.�)⊥)⊥)S′

1v
′
1 = � ⇒ ((λS′.(λd′.�)⊥)⊥)S2v2 = � and

((λS′.(λd′.�)⊥)⊥)S′
2v

′
2 = � ⇒ ((λS′.(λd′.�)⊥)⊥)S1v1 = �.

Assume ((λS′.(λd′.�)⊥)⊥)S′
1v

′
1 = �. Then v′1 �= ⊥ and S′

1 �= ⊥. v′1 �= ⊥ ⇒ (v1 �= ⊥ ∧ v2 �= ⊥),
and S′

1 �= ⊥ ⇒ (S1 �= ⊥ ∧ S2 �= ⊥). This implies that ((λS′.(λd′.�)⊥)⊥)S2v2 = �.
The other direction is proved similarly.

2. We show S ∈ [[Σ : Δ]] implies (S, S ‖ S, S, TS
Δ) ∈ ∇S .

It holds that S � S �= ⊥ and ∀l ∈ dom(Δ). Sl = [[Δ; ;� Σ(l) : Δ(l)]].
Then, by the previous theorem 7, ∀l ∈ dom(Δ).(Sl, Sl, Sl, Sl,Δl, TΔ) ∈ ∇V .
It holds that dom(Δ) ∩ A∅(S) = ∅. Also (S, S) ∈ T .

�

Theorem 8. Contextual equivalence
For all Δ, Ξ, γ, τ , for all value- or computation terms G1, G2,
for all contexts C[ ] : (Δ; Ξ; Γ � γ) ⇒ (Δ; ;� Tτ) (let j ∈ V,M)
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If Δ; Ξ; Γ � G1 : γ and Δ; Ξ; Γ � G2 : γ and
([[Δ; Ξ; Γ � G1 : γ]], [[Δ; Ξ; Γ � G2 : γ]], γ, TΔ) ∈ ∇ΞΓ

j then

∀Σ : Δ. (Σ, let x ⇐ C[G1] in val x ↓⇐⇒ Σ, let x ⇐ C[G2] in val x ↓)

Proof

By induction over the structure of C[ ] and using that typing rules preserve relatedness in
∇ΞΓ and fundamental theorem 7 it holds that

([[Δ; Ξ; Γ � G1 : γ]], [[Δ; Ξ; Γ � G2 : γ]], γ, TΔ) ∈ ∇ΞΓ
j =⇒

([[Δ; ;� C[G1] : Tτ ]], [[Δ; ;� C[G2] : Tτ ]], T τ, TΔ) ∈ ∇∅∅
M .

This by definition of relatedness in ∇∅∅
M implies

([[Δ; ;� C[G1] :Tτ ]], [[Δ; ;� C[G2] :Tτ ]] ‖ [[Δ; ;� C[G1] :Tτ ]], [[Δ; ;� C[G2] :Tτ ]], T τ, TΔ) ∈ ∇M .

By the previous lemma 41
([[Δ � val x : (x :τ)�]], [[Δ � val x : (x :τ)�]] ‖ [[Δ � val x : (x :τ)�]], [[Δ � val x : (x :τ)�]],
(x :τ)�, TΔ) ∈ ∇K

and
∀S ∈ [[Σ : Δ]]. (S, S ‖ S, S, TΔ) ∈ ∇S .

By the definition of ∇ and since TΔ is ordinary then it holds that
∀S ∈ [[Σ : Δ]]

(i−1[[Δ;� C[M1]]]{})[[Δ;� val x : (x)�]]S = � ⇐⇒
(i−1[[Δ;� C[M2]]]{})[[Δ;� val x : (x)�]]S = �.

By soundness and adequacy of the denotational semantics this implies
Σ, let x ⇐ C[M1] in val x ↓⇐⇒ Σ, let x ⇐ C[M2] in val x ↓.

�

10 Example using full definition of parameters

10.1 Example. Divergence at different steps

The programs M and N below are open computations with one free variable g of function type
(unit → Tunit) → Tτ . The programs were presented in the introduction. In the following we
sometimes omit injections functions and for instance write ∗ for in1�∗ .

M: g (rec fM (a:unit)= fM ())

N: let x ⇐ ref 0 in
let y ⇐ ref 0 in

let z ⇐ g (rec fN (a:unit)= if (!x = 0) then (y := 1) else fN ()) in
if (!y �= 0) then 〈(rec f(a:unit)= f()) ()〉 else (x := 1; y := 1)

We want to show that the denotations of M and N are related in the vm-parameter
p = T∅ ∈ ovm, that is

([[; ; g � M ]], [[; ; g � N ]], T τ, p) ∈ ∇∅g
M
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Let p1 � p, (ĝ′1, ĝ
′
2 ‖ ĝ1, ĝ2, ((unit → Tunit) → Tτ), p1) ∈ ∇V , so we want to prove that

([[; ; g � M ]](g �→ ĝ′1), [[; ; g � N ]](g �→ ĝ′2) ‖ [[; ; g � M ]](g �→ ĝ1), [[; ; g � N ]](g �→ ĝ2), T τ, p1) ∈ ∇M .
Let p2 � p1, (pk2) ∈ pK

2 , (pks2) ∈ (pk2)S,
(k′

1, k
′
2 ‖ k1, k2, (z : unit)�, (pk2)) ∈ ∇K , (S′

1, S
′
2 ‖ S1, S2, (pks2)) ∈ ∇S .

If ĝ′1 = ĝ′2 = ⊥ then [[M ]]ĝ′1 = [[N ]]ĝ′2 = ⊥ and we are done, else exists g′1, g
′
2, g1, g2 ∈ (V � M)

such that ĝ1 = in��g1 , ĝ2 = in��g2 and (ĝ′1 = ⊥ ∧ g′1 = ⊥) ∨ ĝ′1 = in��g′1 and
(ĝ′2 = ⊥ ∧ g′2 = ⊥) ∨ ĝ′2 = in��g′2 . Then
[[M ]]ĝ1k1S1 =

(
g1([[; ;� recfM (a : unit) = fM ()]])

)
k1S1.

[[M ]]ĝ′1k
′
1S

′
1 =

(
g′1([[; ;� recfM (a : unit) = fM ()]])

)
k′
1S

′
1.

[[N ]]ĝ2k2S2 =
(
g2([[; ;x, y � recfN (a : unit) = if (!x = 0) then (y := 1) else fN ()]](x �→ lx, y �→

ly))
)

(λS0λd0.[[x, y � if (!y �= 0) thenfN () else (x := 1; y := 1)]](x �→ lx, y �→ ly)k2S
0)

S2[lx �→ 0, ly �→ 0]
[[N ]]ĝ′2k

′
2S

′
2 =

(
g′2([[; ;x, y � recfN (a : unit) = if (!x = 0) then (y := 1) else fN ()]](x �→ lx, y �→

ly))
)

(λS0λd0.[[x, y � if (!y �= 0) thenfN () else (x := 1; y := 1)]](x �→ lx, y �→ ly)k′
2S

0)
S′

2[lx �→ 0, ly �→ 0]

where lx, ly are fresh.

Define local parameter r3 with constant accessibility maps and empty match of finite store types
∅Z . r3 = (qo∧̄(qs ≺ qb)) where qo = ((∃n.S2lx = n �= 0), ∅Z , A∅, A{lx,ly}) and (qs ≺ qb) =
(
(
((S2lx = 0∧ S2ly = 0), ∅Z , A∅, A{lx,ly}) ≺ ((⊥, 〈S2lx = 0∧ ∃m.S2ly = m �= 0〉)), ∅Z , A∅, A{lx,ly})

Let p3 = p2 ∪ {r3}. Then p3 � p2.

First we want to show that the g’s are applied to functions related in p3. We show that the
functions give related computations when applied to related arguments. To show,
([[; ;� recfM (a : unit) = fM ()]],
[[; ;x, y � recfN (a : unit) = if (!x = 0) then (y := 1) else fN ()]](x �→ lx, y �→ ly) ‖
[[; ;� recfM (a : unit) = fM ()]],
[[; ;x, y � recfN (a : unit) = if (!x = 0) then (y := 1) else fN ()]](x �→ lx, y �→ ly),
unit → Tunit, p3) ∈ ∇V .

Let p4 � p3. (v′1, v
′
2 ‖ v1, v2, unit, p4) ∈ ∇V . This requires that either (v′1 = v′2 = ⊥) or

(v1 = v2 = ∗ ∧ v′1, v
′
2 ∈ {⊥, ∗}).

By denotations of function values we get
[[; ;� recfM (a : unit) = fM ()]] = in��λa.λk.λS.⊥O = in��λa.⊥M and
[[x, y � recfN (a : unit) = if (!x = 0) then (y := 1) else fN ()]](x �→ lx, y �→ ly) =
in��λa.λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥ .

We then want to show
(λk.λS.⊥, λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥ ‖
λk.λS.⊥, λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥, Tunit, p4) ∈ ∇M .

Let p5 � p4, then because r3 has two ∧̄-clauses and one with a local extension there are these
possibilities for the local parameter associated with the area for p3: r3 ∈ p5, (qo∧̄qb) ∈ p5, qo ∈ p5,
(qs ≺ qb) ∈ p5 or qb ∈ p5. We will consider the different possibilities and different possibilities of
instantiations. We see here that there are a number of cases, but the example will also show that
things come through by assumptions on continuations. A more tricky situation is later when we
need to show that continuations which are partly build up by our original programs are related.
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Let (pk5) ∈ pK
5 , (pks5) ∈ (pk5)S. Assume

(K ′
1,K

′
2 ‖ K1,K2, (z : unit)�, (pk)5) ∈ ∇K , (s′1, s

′
2 ‖ s1, s2, (pks5)) ∈ ∇S .

We will consider the different possible cases, some of them together.
If K ′

1 = K ′
2 = ⊥ or s′1 = s′2 = ⊥ then

(λk.λS.⊥)K ′
1s

′
1 = (λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥)K ′

2s
′
2 = ⊥ and we are done.

So assume K ′
1 �= ⊥ ∨ K ′

2 �= ⊥ and s′1 �= ⊥ ∨ s′2 �= ⊥.

For all cases we have
(λk.λS.⊥)K ′

1s
′
1 = (λk.λS.⊥)K1s1 = ⊥. So we want to prove that in the other side the primed

application gives ⊥.

If the original states were related in ssP⊥ then we now have what we want, so assume that
(pks5) /∈ ssP⊥.

Cases:
1) qo ∈ p5 or r3 ∈ p5 with k-instantiation to qo or (qo∧̄qb) ∈ p5 with k-instantiation to qo. Only
one possible instantiation for states so (S2lx = n �= 0) and then S′

2lx ∈ {n,⊥}:
(λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥)K2s2 = ⊥
(λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥)K ′

2s
′
2 = ⊥

2) (qb) ∈ p5 or (qo∧̄qb) ∈ p5 with k-instantiation to qb. Then states are related in
(⊥, 〈S2lx = 0 ∧ S2ly = m �= 0〉) and then s′2lx ∈ {0,⊥} and s′2ly ∈ {m,⊥}:
If s′2 = ⊥ or s′2lx = ⊥ then (λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥)K ′

2s
′
2 = ⊥,

If s′2 �= ⊥ and s′2lx = 0 then
(λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥)K ′

2s
′
2 = K ′

2(s
′
2[ly �→ 1])∗ = ⊥

(λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥)K2s2 = K2(s2[ly �→ 1])∗
Here we have used: The updated states are related in the same instantiation as before.
K ′

1,K
′
2,K1,K2 are related by assumption. Also * values are related. So it follows that

K ′
2(s

′
2[ly �→ 1])∗ = ⊥.

3) (qs ≺ qb) ∈ p5 or r3 ∈ p5 with k-instantiation to (qs ≺ qb). Then states are related in
(S2lx = 0 ∧ S2ly = 0):
If s′2 = ⊥ or s2lx = ⊥ then (λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥)K ′

2s
′
2 = ⊥.

Else (λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥)K ′
2s

′
2 = K ′

2(s
′
2[ly �→ 1])∗ = ⊥

(λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥)K2s2 = K2(s2[ly �→ 1])∗
Here we have used: The updated states s′1, s1, s

′
2[ly �→ 1], s2[ly �→ 1] are related in the local

extension qb (follows from parameter weakening for stored values). K ′
1,K

′
2,K1,K2 are related by

assumption. Also * values are related. So it follows that K ′
2(s

′
2[ly �→ 1])∗ = ⊥.

We conclude that the functions are related
(in��λa.λk.λS.⊥ , in��λa.λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥ ‖
in��λa.λk.λS.⊥ , in��λa.λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥ ,
unit → Tunit, p3) ∈ ∇V .

By assumptions of relatedness of g’s this implies that we have related computations
(g′1(in��λ.⊥ ), g′2(in��λa.λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥ ) ‖
g1(in��λ.⊥ ), g2(in��λa.λk.λS. if (S(lx) = 0) then (k(S[ly �→ 1])∗) else ⊥ ),
Tunit, p3) ∈ ∇M .

We now want to show that these computations are applied to continuations and states related in
an extension. In this case, actually in instantiations of the same parameter.
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Let (pk3) ∈ pK
3 and (pk3) � (pk2) with the r3 k-instantiation

((S2lx = 0 ∧ S2ly = 0) ≺ (⊥, (S2lx = 0 ∧ S2ly �= 0)).
Let (pks3) ∈ (pk3)S, (pks3) ⊇ (pks2) it then has the r3 s-instantiation (S2lx = 0 ∧ S2ly = 0).

By assumption (S′
1, S

′
2 ‖ S1, S2, (pks2)) ∈ ∇S then by the definition of p3 and parameter

weakening for stored values so (S′
1, S

′
2[lx �→ 0, ly �→ 0] ‖ S1, S2[lx �→ 0, ly �→ 0], (pks3)) ∈ ∇S .

We will show that the continuations are related:
(k′

1, (λS0λd0.[[x, y � if (!y �= 0) then 〈(rec f(a)= f())()〉 else (x := 1; y := 1)]](x �→ lx, y �→ ly)k′
2S

0)||
k1, (λS0λd0.[[x, y � if (!y �= 0) then 〈(rec f(a)= f()) ()〉 else (x := 1; y := 1)]](x �→ lx, y �→ ly)k2S

0),
(x : unit)�, (pk3)) ∈ ∇K .

Relatedness of continuations require that they “behave well” for all states and values in
�-extensions, that is local extensions and additional ordinary local parameters in disjoint areas.
It is important that removal of ∧̄-clauses is not a �-extension. We look at the cases without and
with local extension.

Let (pk6) � (pk3) with r3 ∈ (pk6) and r3 k-instantiation
((S2lx = 0 ∧ S2ly = 0) ≺ (⊥, (S2lx = 0 ∧ S2ly �= 0)). Let (pks6) ∈ (pk6)S, there is only one
possible r3 instantiation (S2lx = 0 ∧ S2ly = 0). Let p6 = (pk6)vm so also p6 � p3.

Let (pkb
6) � (pk3) with (qo∧̄qb) ∈ (pkb

6) with k-instantiation (⊥, (S2lx = 0 ∧ S2ly �= 0).
Let pb

6 = (pkb
6)

vm so also pb
6 � p3. Let (pksb

6) ∈ (pkb
6)

S it has the s-instantiation
(⊥, (S2lx = 0 ∧ S2ly �= 0)).

First, let (Sa
1
′, Sa

2
′ ‖ Sa

1 , Sa
2 , (pks6)) ∈ ∇S .

We have (d′1, d
′
2 ‖ ∗, ∗, unit, p6) ∈ ∇V when d′1, d

′
2 ∈ {⊥, ∗}.

We apply the continuations to states and values and get
k1S

a
1∗

k′
1S

a
1
′d′1

(λS0λd0.[[x, y � if (!y �= 0) then 〈(rec f(a)= f())()〉 else (x := 1; y := 1)]](x �→ lx, y �→ ly)k2S
0)Sa

2∗
= k2(Sa

2 [lx �→ 1, ly �→ 1])∗
(λS0λd0.[[x, y � if (!y �= 0) then 〈(rec f(a)= f())()〉 else (x := 1; y := 1)]](x �→ lx, y �→ ly)k′

2S
0)Sa

2
′d′2

∈ {⊥, k′
2(S

a
2
′[lx �→ 1, ly �→ 1])∗}

In the following reasoning we see some of the properties of the extended parameters in use. Now
the requirement (∃n.S2lx = n �= 0) is in the conjunct qo in r3. Let
r′3 = {qo} = {((∃n.S2lx = n �= 0, ∅), Zp3, A∅, Alx,ly )} and let p′3 be p3 with r3 replaced by r′3 and
p′6 be p6 with r3 replaced by r′3 and correspondingly define (pk′

6) and (pks′6). By definition
p3 = p2 ∪ {r3} and so p′3 = p2 ∪ {r′3} and as r′3 is ordinary then p′3 � p2. We have p′6 ∈ sub(p6) so
p′6 � p6. As p6 � p3 also p′6 � p′3. So it holds that p′6 � p′3 � p2 by transitivity p′6 � p2. Using
parameter weakening for the stored values, we see that the updated states are related in the
parameter (pks′6) where r3 is replaced by r′3. Also *’s are related under p′6. By assumption
(k′

1, k1, k
′
2, k2, (z : unit)�, (pk2)) ∈ ∇K . So termination approximation is ensured.

Next, let (Sb
1
′
, Sb

2
′ ‖ Sb

1, S
b
2, (pksb

6)) ∈ ∇S

(λS0λd0.[[x, y � if (!y �= 0) then 〈(rec f(a)= f())()〉 else (x := 1; y := 1)]](x �→ lx, y �→ ly)k2S
0)Sb

2∗
= ⊥ and then also for the primed case.

We conclude that
(k′

1, (λS0λd0.[[x, y � if (!y �= 0) then 〈(rec f(a)= f())()〉 else (x := 1; y := 1)]](x �→ lx, y �→ ly)k′
2S

0)||
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k1, (λS0λd0.[[x, y � if (!y �= 0) then 〈(rec f(a)= f())()〉 else (x := 1; y := 1)]](x �→ lx, y �→ ly)k2S
0),

(x : unit)�, (pk)3) ∈ ∇K .

We can then conclude that ([[g � M ]], [[g � N ]], type, ) ∈ ∇∅g
M .

11 Conclusion

Certainty of equivalence of programs occur in many connections as an important and challeng-
ing problem. Especially in the presence of recursive types and general references the reasoning
becomes complicated. We have develop a proof method for contextual equivalence for recursive
and polymorphic types and general references. The method uses a parameterized logical relation
on top of a denotational semantics in a recursive domain. Parameters for states express proper-
ties of two states. Parameters have been specified to utilize correspondence between computations
and knowledge of the initial steps of continuations they are applied to. Behind the definition of
parameters and the orders between them lies an analysis of how computations and continuation
interact in the presence of state. We believe that the parameters often can express in a natural
way hypotheses of why two programs are expected to be equivalent. Testing a hypothesis then
become a rather automatic analysis. We hope in the future to combine the method developed here
with a relationally parametric interpretation of polymorphic types. We also intend to make careful
comparison between our proof method and methods based on sets of bisimulations.
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A Appendix

A.1 Proof of Soundness, lemma 4

Lemma 42. Soundness

If Δ; ;� M : Tτ , Δ � K : (x : τ)�, Σ : Δ and S ∈ [[Σ : Δ]] then

Σ, let x ⇐ M in K ↓ implies i−1
3 ([[Δ; ;� M ]]{})[[Δ � K : (x : τ)�]]S = �

Proof by induction over termination judgements.
(In the following we omit the isomorphism i and sometimes also injection functions)

Proof
Assume Σ : Δ and S ∈ [[Σ : Δ]]. Then S �= ⊥.
Assume in each case termination by the stated rule.

•
Σ, let x ⇐ val V in val x ↓

Assume Δ; ;� val V : Tτ . This requires Δ; ;� V : τ . By lemma 2 then [[Δ; ;� V : τ ]]{} �= ⊥.
[[Δ; ;� val V : Tτ ]]{}[[Δ � val x : (x : τ)�]]S =
[[Δ � val x : (x : τ)�]]S([[Δ; ;� V : τ ]]{}) =
[[Δ; : x : τ � val x : Tτ ]]{x �→ [[Δ; ;� V : τ ]]{}}((λS′.(λd′.�)⊥)⊥)S =
((λS′.(λd′.�)⊥)⊥)S[[Δ; ;� V : τ ]]{} = �.

• Σ, let y ⇐ M [V/x] in K ↓
Σ, let x ⇐ val V in (let y ⇐ M in K) ↓

We assume Δ; ;� val V : Tτ and Δ � let y ⇐ M in K : (x : τ)�.
This requires Δ � K : (y : τ ′)� and Δ; ;� V : τ and Δ; ; x : τ � M : Tτ ′. Then also Δ; ;�
M [V/x] : Tτ ′. So we may assume by induction [[Δ; ;� M [V/x] : Tτ ′]]{}[[Δ � K : (y : τ ′)�]]S =
�. We want to show that [[Δ; ;� val V : Tτ ]]{}[[Δ � (let y ⇐ M in K) : (x : τ)�]]S = �.
[[Δ; ;� val V : Tτ ]]{}[[Δ � (let y ⇐ M in K) : (x : τ)�]]S =
[[Δ; ;� val V : Tτ ]]{}(λS′.λd′.[[Δ; ; x : τ � let y ⇐ M in K : Tτ ′′]]{x �→ d′}((λS′.(λd′.�)⊥)⊥)S′)S =
(λS′.λd′.[[Δ; ; x : τ � let y ⇐ M in K : Tτ ′′]]{x �→ d′}((λS′.(λd′.�)⊥)⊥)S′)S[[Δ; ;� V : τ ]]{} =
[[Δ; ; x : τ � let y ⇐ M in K : Tτ ′′]]{x �→ [[Δ; ;� V : τ ]]{}}((λS′.(λd′.�)⊥)⊥)S =
[[Δ; ;� let y ⇐ M [V/x] in K : Tτ ′′]]{}((λS′.(λd′.�)⊥)⊥)S =
[[Δ; ;� M [V/x]]]{}(λS0.λd0.[[Δ; ; y : τ ′ � K : Tτ ′′]]{y �→ d0}((λS′.(λd′.�)⊥)⊥)S0)S =
[[Δ; ;� M [V/x]]]{}[[Δ � K : (y : τ ′)�]]S = �
where we have used the inductive assumption for the last equality.

• Σ, let y ⇐ M1 in (let x ⇐ M2 in K) ↓
Σ, let x ⇐ (let y ⇐ M1 in M2) in K ↓

We assume Δ; ;� (let y ⇐ M1 in M2) : Tτ and Δ � K : (x : τ)�. This requires Δ; ;� M1 : Tτ ′

and Δ; ; y : τ ′ � M2 : Tτ . Then also Δ � let x ⇐ M2 in K : (y : τ ′)�. So by induction we may
assume [[Δ; ;� M1 : Tτ ′]]{}[[Δ � let x ⇐ M2 in K : (y : τ ′)�]]S = �.
We want to show that [[Δ; ;� let y ⇐ M1 in M2 : Tτ ]]{}[[Δ � K : (x : τ)�]]S = �.
We derive this: [[Δ; ;� let y ⇐ M1 in M2 : Tτ ]]{}[[Δ � K : (x : τ)�]]S =
[[Δ; ;� M1 : Tτ ′]]{}(λS′.λd′.[[Δ; ; y : τ ′ � M2 : Tτ ]]{y �→ d′}[[Δ � K : (x : τ)�]]S′)S =
[[Δ; ;� M1 : Tτ ′]]{}[[Δ; ;� let x ⇐ M2 in K : (y : τ ′)�]]S = �
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• Σ, let x ⇐ M [V/y, (rec f(y : τ) = M)/f ] in K ↓
Σ, let x ⇐ ((rec f(y : τ) = M)V ) in K ↓

We assume Δ; ;� (rec f(y : τ) = M)V : Tτ ′ and Δ � K : (x : τ ′)�. This requires Δ; ;�
rec f(y : τ) = M : τ → Tτ ′ and Δ; ;� V : τ , and also Δ; ; f : τ → Tτ ′, y : τ � M : Tτ ′.
Then also Δ; ;� M [V/y, (rec f(y : τ) = M)/f ] : Tτ ′ and we may inductively assume [[Δ; ;�
M [V/y, (rec f(y : τ) = M)/f ] : Tτ ′]]{}[[Δ � K : (x : τ ′)�]]S = �, and also by lemma 3
[[Δ; ; y : τ, f : τ → Tτ ′ � M : Tτ ′]]{y �→ [[Δ; ;� V : τ ]]{}, f �→ [[Δ;� rec f(y : τ) = M :
Tτ ′]]{}}[[Δ � K : (x : τ ′)�]]S = �.
We want to show that [[Δ; ;� (rec f(y : τ) = M)V : Tτ ′]]{}[[Δ � K : (x : τ ′)�]]S = �.
[[Δ; ;� (rec f(y : τ) = M)V : Tτ ′]]{}[[Δ;� K : (x : τ ′)�]]KS =
([[Δ; ;� rec f(y : τ) = M : τ → Tτ ′]]{}[[Δ; ;� V : τ ]]{})[[Δ;� K : (x : τ ′)�]]S =
[[Δ; ; y : τ, f : τ → Tτ ′ � M : Tτ ′]]{y �→ [[Δ; ;� V : τ ]]{}, f �→ [[Δ; ;� rec f(y : τ) = M :
Tτ ′]]{}}[[Δ;� K : (x : τ ′)�]]S = �

• Σ, let x ⇐ val V1 in K ↓
Σ, let x ⇐ π1(V1, V2) in K ↓

Σ, let x ⇐ val V2 in K ↓
Σ, let x ⇐ π2(V1, V2) in K ↓ Similar.

We assume Δ; ;� π1(V1, V2) : Tτ1 and Δ � K : (x : τ1)�. This requires Δ; ;� (V1, V2) : τ1 × τ2,
and also Δ; ;� V1 : τ1 and then Δ; ;� val V1 : Tτ1. So by induction we assume [[Δ; ;� val V1 :
Tτ1]]{}[[Δ � K : (x : τ1)�]]S = �. Then [[Δ � K : (x : τ1)�]]S[[Δ; ;� V1 : τ1]]{} = �.
We want to show that [[Δ; ;� π1(V1, V2) : Tτ1]]{}[[Δ � K : (x : τ1)�]]S = �.
[[Δ; ;� π1(V1, V2) : Tτ1]]{}[[Δ � K : (x : τ1)�]]S = [[Δ � K : (x : τ1)�]]S[[Δ; ;� V1 : τ1]]{} = �.

• Σ, let x ⇐ M1[V/x1] in K ↓
Σ, let x ⇐ case in1V of in1x1 ⇒ M1; in2x2 ⇒ M2 in K ↓

We assume Δ; ;� case in1V of in1x1 ⇒ M1; in2x2 ⇒ M2 : Tτ ′ and Δ � K : (x : τ ′)�.
This requires Δ; ;� in1V : τ1 + τ2 and Δ; ;� V : τ1 and Δ; ; x1 : τ1 � M1 : Tτ ′ and Δ; ; x2 :
τ2 :� M2 : Tτ ′. Then Δ; ;� M1[V/x1] : Tτ ′ and by induction we assume [[Δ; ;� M1[V/x1] :
Tτ ′]]{}[[Δ � K : (x : τ ′)�]]S = �. By lemma 3 also [[Δ; ;� M1[V/x1] : Tτ ′]]{} = [[Δ; ; x1 :
τ1 � M1 : Tτ ′]]{x1 �→ [[Δ; ;� V : τ1]]{}}. We want to show that [[Δ; ;� case in1V of in1x1 ⇒
M1; in2x2 ⇒ M2 : Tτ ′]]{}[[Δ � K : (x : τ ′)�]]S = �. That is [[Δ; ; x1 : τ1 � M1 : Tτ ′]]{x1 �→
[[Δ; ; : V τ1]]{}}[[Δ � K : (x : τ ′)�]]S = �. This holds by inductive assumption.

• Σ, let x ⇐ M2[V/x2] in K ↓
Σ, let x ⇐ case in2V of in1x1 ⇒ M1; in2x2 ⇒ M2 in K ↓ Similar.

• Σ, let x ⇐ val true in K ↓
Σ, let x ⇐ l = l in K ↓

We assume Δ; ;� l = l : T (unit+unit) and Δ � K : (x : unit+unit)�. It also holds that Δ; ;�
val true : T (unit + unit), so by induction we assume [[Δ; ;� val true : T (unit + unit)]]{}[[Δ �
K : (x : unit + unit)�]]S = � and so [[Δ � K : (x : unit + unit)�]]S(in⊕in1(in11∗)) = �.
We want to show that [[Δ; ;� l = l : T (unit + unit)]]{}[[Δ � K : (x : (unit + unit))�]]S =
�. This holds [[Δ; ;� l = l : T (unit + unit)]]{}[[Δ � K : (x : (unit + unit))�]]S =
λk.λs.ks(in⊕in1(in11∗))[[Δ � K : (x : (unit + unit))�]]S = �.

• Σ, let x ⇐ val false in K ↓
Σ, let x ⇐ l = l′ in K ↓ (l �= l′)
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We assume l �= l′ and Δ; ;� l = l′ : T (unit + unit) and Δ � K.(x : unit + unit). It also
holds that Δ; ;� val false : T (unit + unit), so by induction we assume [[Δ; ;� val false :
T (unit + unit)]]{}[[Δ � K : (x : unit + unit)�]]S = �.
We want to show that [[Δ; ;� l = l′ : T (unit + unit)]]{}[[Δ � K : (x : (unit + unit))�]]S = �.
We have for l �= l′ that [[Δ; ;� l = l′ : T (unit + unit)]]{} = λk.λs.ks(in⊕in2(in11∗)) = [[Δ; ;�
val false : T (unit + unit)]]{}

• Σ[l �→ V ], let x ⇐ val() in K ↓
Σ, let x ⇐ l := V in K ↓

We assume Δ; ;� l := V : Tunit and Δ � K : (x : unit)�. This requires l ∈ dom(Δ) and
Δ; ;� l : Δ(l) ref and Δ; ;� V : Δ(l). So it holds that Σ : Δ implies Σ[l �→ V ] : Δ.

Let S′ = S[l �→ [[Δ; ;� V : τ ]]{}], first we want to show S′ ∈ [[Σ[l �→ V ] : Δ]], this requires
∀l0 ∈ dom(Δ). S′(l0) = [[Δ; ;� Σ[l �→ V ](l0) : Δ(l0)]]{}. By assumptions S ∈ [[Σ : Δ]] so
∀l0 ∈ dom(Δ). S(l0) = [[Δ; ;� Σ(l0) : Δ(l0)]]{}. Let l0 �= l then Σ[l �→ V ](l0) = Σ(l0) and
S′(l0) = S(l0). For l we get Σ[l �→ V ](l) = V and so Δ; ;� Σ[l �→ V ](l) : Δ(l). Now [[Δ; ;� l :=
V : Tunit]]{}[[Δ � K : (x : unit)�]]S = [[Δ � K : (x : unit)�]](S[l �→ [[Δ; ;� V : τ ]]{}])∗ = �.
The last equality comes by inductive assumptions.

• Σ(l) = V Σ, let x ⇐ val V in K ↓
Σ, let x ⇐ !l in K ↓

We assume Δ; ;�!l : Tτ and Δ � K : (x : τ)�. This requires Δ; ;� l : τ ref and Δl = τ .
When S ∈ [[Σ : Δ]] then it holds that Sl = [[Δ; ;� Σl : Δl]]{} that is Sl = [[Δ; ;� V : τ ]]{}
and Δ; ;� V : τ and so Δ; ;� val V : Tτ . By induction we assume [[Δ; ;� val V : Tτ ]]{}[[Δ �
K : (x : τ)�]]S = � so [[Δ � K : (x : τ)�]]S[[Δ; ;� V : τ ]]{} = �. We want to show that
[[Δ; ;�!l : Tτ ]]{}[[Δ � K : (x : τ)�]]S = �. Since S ∈ [[Σ : Δ]] then [[Δ; ;�!l : Tτ ]]{}[[Δ � K : (x :
τ)�]]S = [[Δ � K : (x : τ)�]]S(Sl) = [[Δ � K : (x : τ)�]]S[[Δ; ;� V : τ ]]{} = �.

• Σ[l �→ V ], let x ⇐ val l in K ↓
Σ, let x ⇐ ref V in K ↓ (l /∈ locs(Σ) ∪ locs(K) ∪ locs(V ))

We assume Δ; ;� ref V : Tτ ref and Δ � K : (x : τ ref)�. This requires Δ; ;� V : τ .
We want to show that [[Δ;� refV : Tτ ref ]]{}[[Δ;� K : (x : τ ref)�]]S = �.
Let l /∈ locs(Σ) ∪ locs(K) ∪ locs(V ) and let S′ = S[l �→ [[Δ; ;� V : τ ]]{}]. Then also l /∈
supp(λl′.[[Δ � K : (x : τ ref)]](S[l′ �→ [[Δ; ;� V : τ ]]{}])l′) and l /∈ dom(Δ) ⊆ locs(Σ). By
assumption S ∈ [[Σ : Δ]] so ∀l0 ∈ dom(Δ).S(l0) = [[Δ; ;� Σ(l0) : Δ(l0)]]{}. Let l0 ∈ dom(Δ)
then S′(l0) = S(l0) and Σ[l �→ V ](l0) = Σ(l0) and Δ " {l : τ})(l0) = Σ(l0). For l we have
S′(l) = [[Δ; ;� V : τ ]]{} and Σ[l �→ V ](l) = V and (Δ " {l �→ τ})(l) = τ . So it holds that
S′ ∈ [[Σ[l �→ V ] : Δ " {l : τ}]].
Then [[Δ; ;� refV : Tτ ref ]]{}[[Δ � K : (x : τ ref)�]]S =
[[Δ;� K : (x : τ ref)�]](S[l �→ [[Δ;� V : τ ]]{}])l =
[[Δ;� val l : Tτ ref ]]{}[[Δ;� K : (x : τ ref)�]]S′ = �.
Where we have used induction for the last equality.

• Σ, let x ⇐ val V in K ↓
Σ, let x ⇐ unfold(fold V ) in K ↓

We assume Δ; ;� unfold(fold V ) : T (τ [μα.τ/α]) and Δ � K : (x : τ [μα.τ/α])�. This requires
Δ; ;� foldV : μα.τ and Δ; ;� V : τ [μα.τ/α].

We want to show [[Δ; ;� unfold(fold V ) : T (τ [μα.τ/α])]]{}[[Δ � K : (x : τ [μα.τ/α])�]]S = �.
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By induction we assume [[Δ; ;� val V : T (τ [μα.τ/α])]]{}[[Δ � K : (x : τ [μα.τ/α])�]]S = �.
Then [[Δ � K : (x : τ [μα.τ/α])�]]S[[Δ;� V : τ [μα.τ/α]]]{} = �.

We use [[Δ; ;� fold V : μα.τ ]]{} = inμ([[Δ; ;� V : τ [μα.τ/α]]]{}).
[[Δ; ;� unfold(fold V ) : T (τ [μα.τ/α])]]{}[[Δ � K : (x : τ [μα.τ/α])�]]S =
[[Δ � K : (x : τ [μα.τ/α])�]]S[[Δ; ;� V : τ [μα.τ/α]]]{} = �

• Σ, let x ⇐ M in K ↓
Σ, let x ⇐ (Λα.M)τ ′ in K ↓

We assume Δ; ;� (Λα.M)τ ′ : T (τ [τ ′/α]) and Δ � K : (x : τ [τ ′/α])�. This requires Δ; ;�
Λα.M : ∀α.Tτ and � τ ′ : type. Δ; ;� Λα.M : ∀α.Tτ again requires Δ; α;� M : Tτ and so Δ; ;�
M : Tτ [τ ′/α]. We want to show [[Δ; ;� (Λα.M)τ ′ : Tτ [τ ′/α]]]{}[[Δ � K : (x : τ [τ ′/α])�]]S = �.
By induction we assume [[Δ; ;� M : Tτ [τ ′/α]]]{}[[Δ � K : (x : τ [τ ′/α])�]]S = �.
We have [[Δ; ;� Λα.M : ∀α.Tτ ]]{} = in∀�[[Δ; α;� M : Tτ ]]{} , so [[Δ; ;� (Λα.M)τ ′ :
Tτ [τ ′/α]]]{}[[Δ � K : (x : τ [τ ′/α])�]]S = [[Δ; α;� M : Tτ ]]{}[[Δ � K : (x : τ [τ ′/α])�]]S.
As when Δ; α;� M : Tτ then [[Δ;� M : Tτ [τ ′/α]]]{} = [[Δ; α;� M : Tτ ]]{} then
[[Δ; ;� Λα : M : ∀α.Tτ ]]{} = in∀�[[Δ; ;� M : Tτ [τ ′/α]]]{} . From this follows � = [[Δ; ; Γ �
M : Tτ [τ ′/α]]]{}[[Δ � K : (x : τ [τ ′/α])�]]S = [[Δ; ;� (Λα.M)τ ′ ]]{}[[Δ � K : (x : τ [τ ′/α])�]]S.

Some rules about arithmetics omitted.

�

A.2 Proof of lemma 12.
Typing rules preserve the RΓ relation of a term and its denotation

.
We often omit the isomorphism i and sometimes also injection functions into F (D, D)V .

Proof Ξ = α1, . . . , αm and Γ = x1 : τ1, . . . , xn : τn with Γ well typed by Ξ.
To shorten explanations in proofs we let arbitrarily σ1 . . . σm be closed value types, and Δ′ ⊇ Δ
and (vi, Δ′; ;� Vi : τi[σj/αj ]) ∈ RV , i ∈ 1, .., n and ρ = v1 ⊗ . . . ⊗ vn. The ρ = ⊥ cases are trivial
by strictness, so we also assume ρ �= ⊥.

(id) No premisses, so we need to show ([[Δ; Ξ; Γ � xi : τi]], Δ; Ξ; Γ � xi : τi) ∈ RΞΓ�V . This
requires that in all cases ([[Δ; Ξ; Γ � xi : τi]](ρ), Δ′; ;� xi[Vi/xi] : τi[σj/αj ]) ∈ RV .
If ρ = ⊥ then [[Δ; Ξ; Γ � xi : τi]](ρ) = ⊥ and (⊥, Δ′; ;� xi[Vi/xi] : τi[σj/αj ]) ∈ RV .
If ρ �= ⊥ then [[Δ; Ξ;� xi : τj ]](ρ) = ρ(xi) = vi, and we have (vi, Δ′; ;� Vi : τi[σj/αj ]) ∈ RV .

(unit) To show ([[Δ; Ξ; Γ � () : unit]](ρ), Δ; Ξ; Γ � () : unit) ∈ RΞΓ�V . This is (when ρ �= ⊥) that
(in1�∗ , Δ′; ;� () : unit) ∈ RV . Holds by definition.

(int) To show ([[Δ; Ξ; Γ � n : int]](ρ), Δ; Ξ; Γ � n : int) ∈ RΞΓ�V . This is that (inZ�n , Δ′; ;� n :
int) ∈ RV . Holds by definition.

(loc) To show ([[Δ; Ξ; Γ � l : Δ(l) ref ]](ρ), Δ; Ξ; Γ � l : Δ(l) ref) ∈ RΞΓ�V . This is that
(inL�l , Δ′; ;� l : Δ(l)[σj/αj ] ref) = (inL�l , Δ′; ;� l : Δ(l) ref) ∈ RV . Follows from
Δ′ ⊇ Δ.
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(+ intro) Assume ([[Δ; Ξ; Γ � V : τj ]], Δ; Ξ; Γ � V : τj) ∈ RΞΓ�V (j is 1 or 2).
To show ([[Δ; Ξ; Γ � injV : τ1 + τ2]], Δ; Ξ; Γ � injV : τ1 + τ2) ∈ RΞΓ�V .
This requires ([[Δ; Ξ; Γ � injV : τ1 + τ2]](ρ), Δ′; ;� injV [Vi/xi] : (τ1[σj/αj ] + τ2[σj/αj ])) ∈ R.
From the assumtion we get ([[Δ; Ξ; Γ � V : τj ]](ρ), Δ′; ;� V [Vi/xi] : τj [σj/αj ]) ∈ RV . Then
from the definition of R since − � τ2[σj/αj ] it holds that (in⊕inj [[Δ; Ξ; Γ � V : τj ]](ρ), Δ′; ;�
V [Vi/xi] : (τ1[σj/αj ] + τ2[σj/αj ])) ∈ RV . And we have [[Δ; Ξ; Γ � V : τ1 + τ2]](ρ) = i ◦
in⊕(inj [[Δ; Ξ; Γ � V : τj ]](ρ)).

(× intro) Assume ([[Δ; Ξ; Γ � Wj : τj ]], Δ; Ξ; Γ � Wj : τj) ∈ RΞΓ�V (for j = 1 and j = 2) so
([[Δ; Ξ; Γ � Wj : τj ]](ρ), Δ′; ;� Wj [Vi/xi] : τj [σj/αj ]) ∈ RV . Then from the definition of R

it holds that (in⊗([[Δ; Ξ; Γ � W1 : τ1]](ρ), [[Δ; Ξ; Γ � W2 : τ2]](ρ)), Δ′;� (W1,W2)[Vi/xi] :
(τ1[σj/αj ] × τ2[σj/αj ]) ∈ RV . And we have [[Δ; Ξ; Γ � (W1,W2) : τ1 + τ2]](ρ) = i ◦
in⊗([[Δ; Ξ; Γ � W1 : τ1]](ρ), [[Δ; Ξ; Γ � W2 : τ2]](ρ)).

(fold) Assume ([[Δ; Ξ; Γ � V : τ [μα.τ/α]]], Δ; Ξ; Γ � V : τ [μα.τ/α]) ∈ RΞΓ�V . We may assume
α /∈ Ξ. To show ([[Δ; Ξ; Γ � fold V : μα.τ ]], Δ; Ξ; Γ � fold V : μα.τ) ∈ RΞΓ�V or ([[Δ; Ξ; Γ �
fold V : μα.τ ]](ρ), Δ; ;� fold V [Vi/xi] : μα.τ [σj/αj ]) ∈ RV . So from the assumption we have
([[Δ; Ξ; Γ � V : τ [μα.τ/α]]](ρ), Δ′; ;� V [Vi/xi] : τ [μα.τ/α][σj/αj ]) ∈ RV , that is ([[Δ; Ξ; Γ �
V : τ [μα.τ/α]]](ρ), Δ′; ;� V [Vi/xi] : (τ [σj/αj ])[μα.(τ [σj/αj ])/α][σj/αj ]) ∈ RV . Then from
the definition of R it holds that (inμ[[Δ; Ξ; Γ � V : τ [μα.τ/α]]](ρ), Δ′;� fold V [Vi/xi] :
μα.(τ [σj/αj ])) ∈ RV . And we have [[Δ; Ξ; Γ � fold V : μα.τ ]](ρ) = i ◦ inμ([[Δ; Ξ; Γ � V :
τ [μα.τ/α]]](ρ).

(rec) Let Γ ′ = Γ, x : τ, f : τ → Tτ ′. Assume ([[Δ; Ξ; Γ ′ � M : Tτ ′]], Δ; Ξ; Γ ′ � M : Tτ ′) ∈ RΞΓ ′�M .
To show that ([[Δ; Ξ; Γ � rec f(x : τ) = M : (τ → Tτ ′)]], Δ; Ξ; Γ � rec f(x : τ) = M :
(τ → Tτ ′)) ∈ RΞΓ�M . That is ([[Δ; Ξ; Γ � rec f(x : τ) = M : (τ → Tτ ′)]](ρ), Δ′; ;� rec f(x :
τ [σj/αj ]) = M [Vi/xi] : (τ [σj/αj ] → Tτ ′[σj/αj ])) ∈ RM .
[[Δ; Ξ; Γ � rec f(x : τ) = M : (τ → Tτ ′)]](ρ) = i ◦ in��fix(λf ′ ∈ (V � M).(λx′ ∈
V.[[Δ; Ξ; Γ ′ � M : Tτ ′]](ρ⊗f �→ i◦ in��f ′ ⊗x �→ x′))) = i◦ in��⊔n∈ω gn where gn ∈ (V �
M), g0 = ⊥V�M and gn+1 = λx0 ∈ V.[[Δ; Ξ; Γ ′ � M : Tτ ′]](ρ ⊗ f �→ i ◦ in��gn ⊗ x �→ x0).
We will show by induction that for each n (i◦in��gn , Δ′; ;� rec f(x : τ [σj/αj ]) = M [Vi/xi] :
(τ [σj/αj ] → Tτ ′[σj/αj ])) ∈ RV . As

⊔
n∈ω(i ◦ in��gn ) = i ◦ in��⊔n∈ω gn it then it follows

that since R is admissible then also ([[Δ; Ξ; Γ � rec f(x : τ) = M : (τ → Tτ ′)]](ρ), Δ′; ;�
rec f(x : τ [σj/αj ]) = M [Vi/xi] : (τ [σj/αj ] → Tτ ′[σj/αj ])) ∈ RV .
Application of g0 gives ⊥M which is related to any typing judgement for a computation. Hence
(i ◦ in��g0 , Δ′; ;� rec f(x : τ [σj/αj ]) = M [Vi/xi] : (τ [σj/αj ] → Tτ ′[σj/αj ])) ∈ RV . Now
assume inductively that (i ◦ in��gn , Δ′; ;� rec f(x : τ [σj/αj ]) = M [Vi/xi] : (τ [σj/αj ] →
Tτ ′[σj/αj ])) ∈ RV . We want to show that this implies (i ◦ in��gn+1 , Δ′; ;� rec f(x :
τ [σj/αj ]) = M [Vi/xi] : (τ [σj/αj ] → Tτ ′[σj/αj ])) ∈ RV .
Let closed Δ′′ ⊇ Δ′, (v, Δ′′; ;� V : τ [σj/αj ]) ∈ RV . We want to show that (gn+1v, Δ′′; ;�
(rec f(x : τ [σj/αj ]) = M [Vi/xi])V : Tτ ′[σj/αj ]) ∈ RM .
Let closed Δ′′′ ⊇ Δ′′, (k, Δ′′′ � K : (y : τ ′)�) ∈ RK , (s, Σ : Δ′′′) ∈ Rs. Assume gn+1vks = �.
We need to show Σ, let y ⇐ (rec f(x : τ [σj/αj ]) = M [Vi/xi])V in K ↓. By judgement of termi-
nation it suffices to show Σ, let y ⇐ M [Vi/xi, V/x, (rec f(x : τ [σj/αj ]) = M [Vi/xi])/f ] in K ↓.
This follows from (gn+1v, Δ′; ;� M [Vi/xi, V/x, rec f(x : τ) = M/f ] : Tτ ′[σj/αj ]) =
([[Δ; Ξ; Γ ′ � M : Tτ ′]](ρ ⊗ f �→ i ◦ in��gn ⊗ x �→ v), Δ′; ;� M [Vi/xi, V/x, rec f(x :
τ) = M/f ] : Tτ ′[σj/αj ]) ∈ RM . This again follows from the definition of RΞΓ together
with these assumptions : ([[Δ; Ξ; Γ ′ � M : Tτ ′]], Δ; Ξ; Γ ′ � M : Tτ ′) ∈ RΞΓ ′�M and
(i ◦ in��gn , Δ′; ;� rec f(x : τ [σj/αj ]) = M [Vi/xi] : (τ [σj/αj ] → Tτ ′[σj/αj ])) ∈ RV and
(v, Δ′′; ;� V : τ [σj/αj ]) ∈ RV where we use weakening for ρ and f .
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So it holds that ∀n ∈ ω.(i ◦ in��gn , Δ′; ;� rec f(x : τ [σj/αj ]) = M [Vi/xi] : (τ [σj/αj ] →
Tτ ′[σj/αj ])) ∈ RV , and then by admissibility ([[rec f(x : τ [σj/αj ]) = M [Vi/xi] : (τ [σj/αj ] →
Tτ ′[σj/αj ])]]ρ, Δ′; ;� rec f(x : τ [σj/αj ]) = M [Vi/xi] : (τ [σj/αj ] → Tτ ′[σj/αj ])) ∈ RV . We
conclude that ([[Δ; Ξ; Γ � rec f(x : τ) = M : τ → Tτ ′]], Δ; Ξ; Γ � rec f(x : τ) = M : τ →
Tτ ′) ∈ RΞΓ�V .

(val) Assume ([[Δ; Ξ; Γ � V : τ ]], Δ; Ξ; Γ � V : τ) ∈ RΞΓ�V .
We want to show that ([[Δ; Ξ; Γ � val V : Tτ ]], Δ; Ξ; Γ � val V : Tτ) ∈ RΞΓ�M . This
requires ([[Δ; Ξ; Γ � val V : Tτ ]](ρ), Δ′; ;� val V [Vi/xi] : Tτ [σj/αj ]) ∈ RM , and this again
requires ∀ closed Δ′′ ⊇ Δ′.∀(k,Δ′′ � K : (x : τ)�) ∈ RK .∀(s,Σ : Δ′′) ∈ RS .[[Δ; Ξ; Γ � val V :
Tτ ]](ρ)ks = � ⇒ Σ, let x ⇐ val V in K ↓. Let closed Δ′′ ⊇ Δ′, (k, Δ′′ � K : (x : τ)�) ∈
RK , (s,Σ : Δ′′) ∈ RS . [[Δ; Ξ; Γ � val V : Tτ ]](ρ)ks = ks[[Δ; Ξ; Γ � V : τ ]](ρ).
We now have by assuptions, weakening and definition of relatedness for continuationstyped
that kS[[Δ; Ξ; Γ � V : τ ]](ρ) = � =⇒ Σ, let x ⇐ val V in K ↓.

(Λ) Assume ([[Δ; Ξ,α; Γ � M : Tτ ]], Δ; Ξ,α; Γ � M : Tτ) ∈ RΞαΓ�M and Ξ � Γ . Then because
Ξ � Γ it holds that α does not occur in the types τi in Γ . Also, by the assumption, for all
instantiations with closed value types σ1 . . . σm, σα and Δ′ ⊇ Δ and ρ then ([[Δ; Ξ,α; Γ � M :
Tτ ]](ρ), Δ′; ;� M [Vi/xi] : T (τ [σj/αj , σα/α]) ∈ RM .
We want to show [[Δ; Ξ; Γ � Λα.M : ∀α.Tτ ]], Δ; Ξ; Γ � Λα.M : ∀α.Tτ) ∈ RΞΓ�V . This
requires ∀σ1 . . . σm and ρ it holds that [[Δ; Ξ; Γ � Λα.M : ∀α.Tτ ]](ρ), Δ′; ;� Λα.M [Vi/xi] :
∀α.T (τ [σj/αj ])) ∈ RV .
We have that [[Δ; Ξ; Γ � Λα.M : ∀α.Tτ ]](ρ) = in∀�[[Δ; Ξ; Γ � M : Tτ ]](ρ) .
We need to show that ∃Δ0 ⊆ Δ′.∀ closed σα. ([[Δ; Ξ,α; Γ � M : Tτ ]](ρ), Δ0; ;� M [Vi/xi] :
τ [σj/αj , σα/α]) ∈ RM . With Δ0 = Δ′ this holds by assumption.

(alloc) Assume ([[Δ; Ξ; Γ � V : τ ]], Δ; Ξ; Γ � V : τ) ∈ RΞΓ�V , so ([[Δ; Ξ; Γ � V : τ ]](ρ), Δ; ;�
V [Vi/xi] : τ [σj/αj ]) ∈ RΞΓ�V .
We want to show that ([[Δ; Ξ; Γ � ref V : T (τ ref)]], Δ; Ξ; Γ � ref V : T (τ ref)) ∈ RΓ�M .
This requires ([[Δ; Ξ; Γ � ref V : T (τ ref)]](ρ), Δ; ;� ref V [Vi/xi] : T (τ [σj/αj ] ref)) ∈ RM ,
and this again requires that ∀ closed Δ′′ ⊇ Δ′.∀(k, Δ′′ � K : (x : τ [σj/αj ])�) ∈ RK .∀(s, Σ :
Δ′′) ∈ RS .[[Δ; Ξ; Γ � ref V : T (τ ref)]](ρ)ks = � ⇒ Σ, let x ⇐ ref V [Vi/xi] in K ↓.

Let closed Δ′′ ⊇ Δ′, (k,Δ′′;� K : (x : τ [σj/αj ])�) ∈ RK , (s,Σ : Δ′′) ∈ RS .
[[Δ; Ξ; Γ � ref V : T (τ ref)]](ρ)ks = k(S[l �→ [[Δ; Ξ; Γ � V : τ ]](ρ)])inLl
for some/any l /∈ supp(λl′.k(S[l′ �→ [[Δ; Ξ; Γ � V : τ ]](ρ)])inLl′). Choose l1 /∈ supp(λl′.k(S[l′ �→
[[Δ; Ξ; Γ � V : τ ]](ρ)])inLl′) ∪ dom(Δ′′) ∪ locs(Σ) ∪ locs(K) ∪ locs(V ).
We have (inLl1, ; (Δ′′ ∪ {l1 �→ τ [σj/αj ]});� l1 : τ [σj/αj ] ref) ∈ RV and by weakening for the
stored values (S[l1 �→ [[Δ; Ξ; Γ � V : τ ]](ρ)], Σ[l1 �→ V [Vi/xi]] : Δ′′ ∪ {l1 �→ τ [σj/αj ]}) ∈ RS .
Hence [[Δ; Ξ; Γ � ref V : T (τ ref)]](ρ)ks = k(S[l1 �→ [[Δ; Ξ; Γ � V : τ ]](ρ)])inLl1 = � =⇒
Σ[l1 �→ V [Vi/xi]], let x ⇐ val l1 in K ↓. By the rules for judgement of termination this implies
that Σ, let x ⇐ ref V [Vi/xi]] in K ↓.

(deref) Assume ([[Δ; Ξ; Γ � V : τ ref ]], Δ; Ξ; Γ � V : τ ref) ∈ RΞΓ�V . Then ([[Δ; Ξ; Γ � V :
τ ref ]](ρ), Δ; ;� V [Vi/xi] : τ [σj/αj ] ref) ∈ RV . So ρ �= ⊥ then exists l ∈ dom(Δ′) with
V [Vi/xi] = l and Δ′l = τ [σj/αj ]. When [[Δ; Ξ; Γ � V : τ ref ]](ρ) = inL�l .
We want to show that ([[Δ; Ξ; Γ �!V : Tτ ]], Δ; Ξ; Γ �!V : Tτ) ∈ RΓ�M , that is ([[Δ; Ξ; Γ �!V :
Tτ ]](ρ), Δ′;�!V [Vi/xi] : Tτ [σj/αj ]) ∈ RM . This again requires ∀ closed Δ′′ ⊇ Δ′.∀(k, Δ′′ �
K : (x : τ [σj/αj ])�) ∈ RK .∀(s, Σ : Δ′′) ∈ RS .[[Δ; Ξ; Γ �!V : Tτ ]](ρ)ks = � ⇒ Σ, let x ⇐
!V [Vi/xi] in K ↓.
Let Δ′′ ⊇ Δ′, (k,Δ′′;� K : (x : τ [σj/αj ])�) ∈ RK , (s,Σ : Δ′′) ∈ RS .
Either [[Δ; Ξ; Γ �!V : Tτ ]](ρ)ks = ks(sl) or else [[Δ; Γ �!V : Tτ ]](ρ) = ⊥.
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Since by assumption (s,Σ : Δ′′) ∈ RS and l ∈ dom(Δ′) ⊆ dom(Δ′′) then it holds that
(sl,Δ′′;� Σl : τ [σj/αj ]) ∈ RV . Since (k, Δ′′;� K : (x : τ [σj/αj ])�) ∈ RK it follows that
ks(sl) = � =⇒ (Σ, let x ⇐ val(Σl) in K ↓).
By judgement of termination then also (Σ, let x ⇐ !l in K ↓)

(assign) Assume ([[Δ; Ξ; Γ � Va : τ ref ]], Δ; Ξ; Γ � Va : τ ref) ∈ RΞΓ�V and ([[Δ; Ξ; Γ � Vb :
τ ]], Δ; Ξ; Γ � Vb : τ) ∈ RΞΓ�V . Then ([[Δ; Ξ; Γ � Va : τ ref ]](ρ), Δ′; ;� Va[Vi/xi] :
τ [σj/αj ] ref) ∈ RV and ([[Δ; Ξ; Γ � Vb : τ ]](ρ), Δ′; ;� Vb[Vi/xi] : τ [σj/αj ]) ∈ RV . This
again implies that when ρ �= ⊥ then exists l ∈ dom(Δ′).Va[Vi/xi] = l and Δ′l = τ [σj/αj ] and
[[Δ; Ξ; Γ � Va : τ ref ]](ρ) = inL�l .
We want to show that ([[Δ; Ξ; Γ � V1 := V2 : Tunit]], Δ; Ξ; Γ � V1 := V2 : Tunit) ∈ RΞΓ�M ,
that is ([[Δ; Ξ; Γ � V1 := V2 : Tunit]](ρ), Δ′;� (V1 := V2)[Vi/xi] : Tunit) ∈ RM .
Let Δ′′ ⊇ Δ′, (k,Δ′′;� K : (x : unit)�) ∈ RK , (s,Σ : Δ′′) ∈ RS .
Assume [[Δ; Ξ; Γ � V1 := V2 : Tunit]](ρ)ks = �. We have [[Δ; Ξ; Γ � V1 := V2 : Tunit]](ρ)ks =
k(s[l �→ [[Δ; Ξ; Γ � V2 : τ ]](ρ)in11�∗ .
Since by assumption (s,Σ : Δ′′) ∈ RS and by weakening ([[Δ; Ξ; Γ � V2 : τ ]](ρ), Δ′′;�
V2[Vi/xi] : τ [σj/αj ]) ∈ RΓ�V and l ∈ dom(Δ′) ⊆ dom(Δ′′) then it holds that (s[l �→ [[Δ; Ξ; Γ �
V2 : τ ]](ρ)], Σ[l �→ V2[Vi/xi]] : Δ′′) ∈ RS . Since (k,Δ′′;� K : (x : τ)�) ∈ RK and (in11∗,Δ′′;�
() : unit) ∈ RV it follows that
k(s[l �→ [[Δ; Γ � V2 : τ ]](ρ)])(in11�∗ ) = � =⇒ (Σ[l �→ V2[Vi/xi]], let x ⇐ val() in K ↓).
By judgement of termination then also (Σ, let x ⇐ l := V2[Vi/xi] in K ↓)

(app) Assume ([[Δ; Ξ; Γ � V1 : τ → Tτ ′]], Δ; Ξ; Γ � V1 : τ → Tτ ′) ∈ RΞΓ�V and ([[Δ; Ξ; Γ � V2 :
τ ]], Δ; Ξ; Γ � V2 : τ) ∈ RΞΓ�V , so ([[Δ; Ξ; Γ � V1 : τ → Tτ ′]](ρ), Δ′;� V1[Vi/xi] : τ [σj/αj ] →
Tτ ′[σj/αj ]) ∈ RV and ([[Δ; Ξ; Γ � V2 : τ ]](ρ), Δ′;� V2[Vi/xi] : τ [σj/αj ]) ∈ RV .
We want to show that ([[Δ; Ξ; Γ � V1V2 : Tτ ′]], Δ; Ξ; Γ � V1V2 : Tτ ′) ∈ RΞΓ�M , that is
([[Δ; Ξ; Γ � V1V2 : Tτ ′]](ρ), Δ′;� (V1V2)[Vi/xi] : Tτ ′[σj/αj ]) ∈ RM . Here (V1V2)[Vi/xi] =
(V1[Vi/xi])(V2[Vi/xi]). Let closed Δ′′ ⊇ Δ′, (k, Δ′′ � K : (y : τ ′)�) ∈ RK , (s, Σ : Δ′′) ∈ RS .
Assume [[Δ; Ξ; Γ � V1V2 : Tτ ′]](ρ)ks = �. To show Σ, let y ⇐ (V1[Vi/xi])(V2[Vi/xi]) in K ↓.
Since Δ; Ξ; Γ � V1 : τ → Tτ ′ then it must hold that there exists f,M such that V1 =
rec f(x : τ) = M and it holds that Δ; Ξ; Γ, x : τ, f : τ → Tτ ′ � M : Tτ ′. The assumption
[[Δ; Ξ; Γ � V1V2 : Tτ ′]](ρ)ks = � implies by the definition of the denotational semantics that
there exists vf , v2 s.t. [[Δ; Ξ; Γ � V1 : τ → Tτ ′]](ρ)ks = i ◦ in��vf �= ⊥ and [[Δ; Ξ; Γ � V2 :
τ ]](ρ) = v2 �= ⊥ and [[Δ; Ξ; ΓV1V2 : Tτ ′]]ρ = df (v2). By IH (i ◦ in��vf , Δ′;� V1[Vi/xi] :
τ [σj/αj ] → Tτ ′[σj/αj ]) ∈ RV and (v2, Δ′;� V2[Vi/xi] : τ [σj/αj ]) ∈ RV . By definition of RV

then (vfv2, Δ′ � (V1V2)[Vi/xi] : Tτ ′[σj/αj ]) ∈ RM and so ([[Δ; Ξ; Γ � V1V2 : Tτ ′]], Δ; Ξ; Γ �
V1V2 : Tτ ′) ∈ RΞγ�V .

(Λapp) Assume ([[Δ; Ξ; Γ � V : ∀α.Tτ ]], Δ; Ξ; Γ � V : ∀α.Tτ) ∈ RΞΓ�V .
Then ∀σ1 . . . σm,Δ′ ⊇ Δ and (vi, Δ′; ;� Vi : τi[σj/αj ]) ∈ RV with ρ =

⊗
i vi it holds that

([[Δ; Ξ; Γ � V : ∀α.Tτ ]](ρ), Δ′; ;� V [Vi/xi] : ∀α.Tτ [σj/αj ]) ∈ RV . When [[Δ; Ξ; Γ � V :
∀α.Tτ ]](ρ) �= ⊥ then exists d ∈ M. [[Δ; Ξ; Γ � V ]](ρ) = in∀�d and exists M s.t. V [Vi/xi] =
Λα.M . Also ∃Δ0 ⊆ Δ.∀τ0 with � τ0 : type. (d, Δ0; ;� M : Tτ [σj/αj , τ

0/α]) ∈ RM .

We want to show ([[Δ; Ξ; Γ � V τ ′ : Tτ [τ ′/α]]], Δ; Ξ; Γ � V τ ′ : Tτ [τ ′/α]) ∈ RΞΓ�M .
This requires ∀σ1 . . . σm,Δ′ ⊇ Δ and (vi, Δ′; ;� Vi : τi[σj/αj ]) ∈ RV with ρ =

⊗
i vi it holds

that ([[Δ; Ξ; Γ � V τ ′ : Tτ [τ ′/α]]](ρ), Δ′; ;� V [Vi/xi] : (Tτ [τ ′/α])[σj/αj ]) ∈ RM .
Now let Δ′′ ⊇ Δ′, (k, Δ′′ � K : (x : τ [τ ′/α])[σj/αj ])�) ∈ RK , (S, Σ : Δ′′) ∈ RS , and assume
[[Δ; Ξ; Γ � V τ ′ : Tτ [τ ′/α]]](ρ)kS = �. [[Δ; Ξ; Γ � V τ ′ : Tτ [τ ′/α]]](ρ)kS = kSd.
We need to show Σ, let x ⇐ Λα.M [Vi/xi]τ ′ in K ↓, by the termination rules it suffices to
show Σ, let x ⇐ M [Vi/xi] in K ↓. This follows from the assumptions.
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(unfold) Assume ([[Δ; Ξ; Γ � V : μα.τ ]], Δ; Ξ; Γ � V : μα.τ) ∈ RΞΓ�V , so ([[Δ; Ξ; Γ � V :
μα.τ ]](ρ), Δ′; ;� V [Vi/xi] : (μα.τ)[σj/αj ]) ∈ RV . By the definition of RV this can only be
the case if either [[Δ; Ξ; Γ � V : μα.τ ]](ρ) = ⊥ or else there exist d, W such that [[Δ; Ξ; Γ � V :
μα.τ ]](ρ) = inμd and V [Vi/xi] = fold W and further (d, Δ′;� W : (τ [μα.τ/α])[σj/αj ]) ∈ RV .
We want to show ([[Δ; Ξ; Γ � unfold V : T (τ [μα.τ/α]))]](ρ), Δ′;� unfold V [Vi/xi] :
T (τ [μα.τ/α])[σj/αj ]) ∈ RM . Let Δ′′ ⊇ Δ′, (k, Δ′′;� K : (x : (τ [μα.τ/α])[σj/αj ])�) ∈
RK , (S, Σ : Δ′′) ∈ RS . It holds that either [[Δ; Ξ; Γ � unfold V : T (τ [μα.τ/α]))]](ρ) = ⊥, or
else [[Δ; Ξ; Γ � V : μα.τ ]](ρ) = i1 ◦ inμd. In the first case we have (⊥, Δ′;� unfold V [Vi/xi] :
T (τ [μα.τ/α])[σj/αj ] ) ∈ RM . In the second case we want to show that [[Δ; Ξ; Γ � unfold V :
T (τ [μα.τ/α]))]](ρ)kS = � =⇒ (Σ, let x ⇐ unfold V [Vi/xi] in K ↓). By the rules for
judgements of termination it holds that Σ, let x ⇐ val W in K ↓ implies Σ, let x ⇐
unfold(fold W ) in K ↓ which is the same as Σ, let x ⇐ unfold V [Vi/xi] in K ↓. So it suffices
to show that [[Δ; Ξ; Γ � unfold V : T (τ [μα.τ/α]))]](ρ)kS = � =⇒ (Σ, let x ⇐ val W in K ↓).
[[Δ; Ξ; Γ � unfold V : T (τ [μα.τ/α]))]](ρ)kS = kSd.
Since (k, Δ′′;� K : (x : (τ [μα.τ/α])[σj/αj ])�) ∈ RK , (S, Σ : Δ′′) ∈ RS and (d, Δ′;� W :
(τ [μα.τ/α])[σj/αj ]) ∈ RV this implies Σ, let x ⇐ val W in K ↓.

(let) Assume ([[Δ; Ξ; Γ � M1 : Tτ1]], Δ; Ξ; Γ � M1 : Tτ1) ∈ RΞΓ�M and
([[Δ; Ξ; Γ, x : τ1 � M2 : Tτ2]], Δ; Ξ; Γ, x : τ1 � M2 : Tτ2) ∈ RΞΓ,x:τ1�M .
So ([[Δ; Ξ; Γ � M1 : Tτ1]](ρ), Δ′;� M1[Vi/xi] : Tτ1[σj/αj ]) ∈ RM . We want to show that
([[Δ; Ξ; Γ � let x ⇐ M1 in M2 : Tτ2]], Δ; Ξ; Γ � let x ⇐ M1 in M2 : Tτ2) ∈ RΞΓ�M , that is
([[Δ; Ξ; Γ � let x ⇐ M1 in M2 : Tτ2]](ρ), Δ′;� let x ⇐ M1[Vi/xi] in M2[Vi/xi] : Tτ2[σj/αj ]) ∈
RM . Let Δ′′ ⊇ Δ′, (k, Δ′′;� K : (y : τ2[σj/αj ])�) ∈ RK , (S, Σ : Δ′′) ∈ RS . Then we want
to show that

(
[[Δ; Ξ; Γ � let x ⇐ M1 in M2 : Tτ2]](ρ)kS = �) ⇒ (

Σ, let y ⇐ (let x ⇐
M1[Vi/xi] in M2[Vi/xi]) in K) ↓ )

. By rules for judgement of termination it suffices to show
that Σ, let x ⇐ M1[Vi/xi] in (let y ⇐ M2[Vi/xi] in K) ↓.
Assume [[Δ; Ξ; Γ � let x ⇐ M1 in M2 : Tτ2]](ρ)kS = �. Then [[Δ; Ξ; Γ � M1 : Tτ1]](ρ)
(λS0.λd0.[[Δ; Ξ; Γ, x : τ1 � M2 : Tτ2]](ρ, d0)kS0)S = �. We have that (S, Σ : Δ′′) ∈ RS and
by weakening ([[Δ; Ξ; Γ � M1 : Tτ1]](ρ), Δ′′;� M1[Vi/xi] : Tτ1[σj/αj ]) ∈ RM . So it is enough
to show (λS0.λd0.[[Δ; Ξ; Γ, x : τ1 � M2 : Tτ2]](ρ, d0)kS0), Δ′′;� (let y ⇐ M2[Vi/xi] in K) :
(x : τ1[σj/αj ]) ∈ RK . Let Δ2 ⊇ Δ′′, (s, Σ2 : Δ2) ∈ RS and (w, Δ2;� W : τ1[σj/αj ]) ∈ RV

then (λS0.λd0.[[Δ; Ξ; Γ, x : τ1 � M2 : Tτ2]](ρ, d0)kS0)sw = [[Δ; Ξ; Γ, x : τ1 � M2 : Tτ2]](ρ,w)ks.
Assume this equals �, then we want to show that Σ2, let y ⇐ M2[Vi/xi,W/x] in K ↓. This
follows using weakening from the assumption ([[Δ; Ξ; Γ, x : τ1 � M2 : Tτ2]], Δ; Ξ; Γ, x : τ1 �
M2 : Tτ2) ∈ RΞΓ,x:τ1�M .

We have omitted the proof for the rules (+ elim), (× elim), (eq), (arith) and (iszero). �

A.3 Proof of lemma 19

Lemma: The action of F preserves downwards closure.

For all R+, R− ∈ R(D).
If R+ is downwards closed, then F (R−, R+) is downwards closed.

Proof

– F (R−, R+)K : Follows from k′′ � k′ ⇒ ∀s, v. k′′sv � k′sv, (independant of R+).

– F (R−, R+)M : Follows from m′′ � m′ ⇒ ∀k, s. m′′ks � m′ks, (independant of R+).

– F (R−, R+)V : The proof is by cases of the constuctor for the type parameter:
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◦ (unit),(int),(σ ref): immidiate.

◦ (+),(×),(μ): follows from downwards closure of R+
V . We show the proof for sum types, the

other proofs are similar.
(+): Assume (v′1, v

′
2 ‖ v1, v2, τ1 + τ2, p) ∈ F (R−, R+)V , and v′1 �= ⊥ ∨ v′2 �= ⊥. Then

exists d′1, d
′
2, d1, d2 such that (d′1, d

′
2 ‖ d1, d2, τj , p) ∈ R+

V and v1 = in⊕inj(d1) �= ⊥, v2 =
in⊕inj(d2) �= ⊥ and v′1 = d′1 = ⊥∨v′1 = in⊕inj(d′1) �= ⊥, v′2 = d′2 = ⊥∨v′2 = in⊕inj(d′2) �=
⊥. Let v′′1 � v′1 ∧ v′′2 � v′2. Then it holds that v′′1 = ⊥∨∃e′′1 .v′′1 = in⊕inj(e′′1) �= ⊥∧e′′1 � d′1
and v′′2 = ⊥ ∨ ∃e′′2 .v′′1 = in⊕inj(e′′2) �= ⊥ ∧ e′′2 � d′2. Let d′′1 , d′′2 be given by if v′′1 =
⊥ then d′′1 = ⊥ ∧ if v′′1 = in⊕inj(e′′1) then d′′1 = e′′1 and if v′′2 = ⊥ then d′′2 = ⊥ ∧ if v′′2 =
in⊕inj(e′′2) then d′′2 = e′′2 . Then d′′1 � d′1 and d′′2 � d′2. By downwards closure of R+

V then
(d′′1 , d′′2 ‖ d1, d2, τj , p) ∈ R+

V . And so (v′′1 , v′′
2 ‖ v1, v2, τ1 + τ2, p) ∈ F (R−, R+)V .

◦ (∀): follows from downwards closure of R+
M . Assume (v′1, v

′
2 ‖ v1, v2,∀α.Tτ, p) ∈ F (R−, R+)V ,

and v′1 �= ⊥ ∨ v′2 �= ⊥. Then exists d′1, d
′
2, d1, d2 such that v1 = in∀�d1 and v2 = in∀�d2 

and ∀ � σ : type.(d′1, d
′
2 ‖ d1, d2, T τj [σ/α], p) ∈ R+

M . Also (v′1 = ⊥∨ d′1 = ⊥)∨ v′1 = in∀�d′1 
and (v′2 = ⊥ ∨ d′2 = ⊥) ∨ v′2 = in∀�d′2 . Let v′′1 � v′1 ∧ v′′2 � v′2. Then it holds that
v′′1 = ⊥ ∨ ∃e′′1 .v′′1 = in∀�e′′1 ∧ e′′1 � d′1 and v′′2 = ⊥ ∨ ∃e′′2 .v′′2 = in∀�e′′2 ∧ e′′2 � d′2.
Let d′′1 , d′′2 be given by if v′′1 = ⊥ then d′′1 = ⊥ ∧ if v′′1 = in∀�e′′1 then d′′1 = e′′1 and
if v′′2 = ⊥ then d′′2 = ⊥ ∧ if v′′2 = in∀�e′′2 then d′′2 = e′′2 . Then d′′1 � d′1 and d′′2 � d′2. By
downwards closure of R+

M then ∀ � σ : type.(d′′1 , d′′2 ‖ d1, d2, T τj [σ/α], p) ∈ R+
M . And so

(v′′1 , v′′
2 ‖ v1, v2,∀α.Tτ, p) ∈ F (R−, R+)V .

◦ (→): follows from downwards closure of R+
M . Assume (v′1, v

′
2 ‖ v1, v2, τ → Tτ ′, p) ∈

F (R−, R+)V , and v′1 �= ⊥ ∨ v′2 �= ⊥. Then exists d′1, d
′
2, d1, d2 such that v1 = in��d1 and

v2 = in��d2 and (v′1 = ⊥∧d′1 = ⊥)∨v′1 = in��d′1 and (v′2 = ⊥∧d′2 = ⊥)∨v′2 = in��d′2 .
Also ∀p′ � p. ∀.(w′

1, w
′
2 ‖ w1, w2, τ, p

′) ∈ R−
V .(d′1w

′
1, d

′
2w

′
2 ‖ d1w1, d2w2, T τ ′, p′) ∈ R+

M . Let
v′′1 � v′1 ∧ v′′2 � v′2. Then it holds that v′′1 = ⊥ ∨ ∃e′′1 .v′′1 = in��e′′1 ∧ e′′1 � d′1 and v′′2 =
⊥∨ ∃e′′2 .v′′2 = in��e′′2 ∧ e′′2 � d′2. Let d′′1 , d′′2 be given by if v′′1 = ⊥ then d′′1 = ⊥∧ if v′′1 =
in��e′′1 then d′′1 = e′′1 and if v′′2 = ⊥ then d′′2 = ⊥∧ if v′′2 = in��e′′2 then d′′2 = e′′2 . Then
d′′1 � d′1 and d′′2 � d′2 and so ∀u1, u2.d

′′
1u1 � d′1u1 ∧ d′′2u2 � d′2u2. By downwards closure of

R+
M then ∀p′ � p. ∀.(w′

1, w
′
2 ‖ w1, w2, τ, p

′) ∈ R−
V .(d′′1w′

1, d
′′
2w′

2 ‖ d1w1, d2w2, T τ ′, p′) ∈ R+
M .

So (v′′1 , v′′
2 ‖ v1, v2, τ → Tτ ′, p) ∈ F (R−, R+)V .

– F (R−, R+)S : follows from downwards closure of R+
V . Assume (s′1, s

′
2 ‖ s1, s2, p) ∈ F (R−, R+)S ,

and s′1 �= ⊥ ∨ s′2 �= ⊥. Let s′′1 � s′1 ∧ s′′2 � s′2. Then ∀l. s′′1 l � s′1l ∧ s′′2 l � s′2l. We want to
show (s′′1 , s′′2 ‖ s1, s2, p) ∈ F (R−, R+)S . The requirements conserning disjointness as well as
requirements about belongings to finitary state relations and finitary state predicates are only
stated on s1, s2 and hence follow from the assumptions. Requirements conserning that stored
values are related follow from assumptions together with downwards closure of R+

V .

�

A.4 Proof of lemma 20

Lemma: The action of F on adm+relations preserves admissibility.

For all R+, R− ∈ R(D). If R+ is adm+, then F (R−, R+) is admissible.

Proof Assume R+ is adm+, we want to show F (R−, R+) is admissible for all R− ∈ R(D). By
definition each of the four projections of F (R−, R+) includes (⊥,⊥ ‖ (type), d1, d2, p) for all
(type), d1, d2, p. To show that F (R−, R+) is admissible it suffices to show for each of the four
projections, that it is closed under least upper bounds of finitely supported chains of the form
(di

1, d
i
2 ‖ (type), d1, d2, p)i∈ω where type, d1, d2, p are constant.
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• F (R−, R+)S =
{(⊥, ⊥ ‖ S1, S2, (pks)) | (pks) ∈ ps the set of all s-parameters } ∪
{(S′

1, S′
2 ‖ S1, S2, (pks) | (pks) = {(r1|q1|Q1), . . . , (rn|qn|Qn)} ∈ ps ∧

S′
1 � S1 �= ⊥ ∧ S′

2 � S2 �= ⊥ ∧
A(pks)

1 (S1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)
2 (S2) ∩ π2(Z(pks)) = ∅ ∧

∀i �= j. Åri
1 (S1) ∩ Årj

1 (S1) = ∅ ∧ Åri
2 (S2) ∩ Årj

2 (S2) = ∅ ∧
∀(l1, l2, τ) ∈ Z(pks).(S′

1(l1), S′
2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ R+

V ∧
∀i ∈ 1..n. if Qi = (Pi, LLi) then (S1, S2) ∈ Pi ∧

∀(l1, l2, τ) ∈ LLi. (S′
1(l1), S′

2(l2) ‖ S1(l1), S2(l2), τ, (pks)vm) ∈ R+
V }

Assume a finitely supported chain (Si
1, S

i
2 ‖ S1, S2, p)i∈ω in F (R−, R+)S , we will show its least

upper bound is in F (R−, R+)S . If the chain is constantly (⊥,⊥, ‖ S1, S2, p) we are done.

Else it holds that S1 �= ⊥ ∧ S2 �= ⊥ and ∀i. Si
1 � S1 ∧ Si

2 � S2. Then it holds that⊔
Si

1 � S1 ∧ ⊔
Si

2 � S2.

A(pks)
1 (S1) ∩ π1(Z(pks)) = ∅ ∧ A(pks)

2 (S2) ∩ π2(Z(pks)) = ∅ and

∀k �= j. Årk
1 (S1) ∩ Årj

1 (S1) = ∅ ∧ Årk
2 (S2) ∩ Årj

2 (S2) = ∅ as in each step.

When (Si
1, S

i
2 ‖ S1, S2, p)i∈ω is a chain, then ∀l. (Si

1l)i∈ω is a chain and (Si
2l)i∈ω is a chain.

Since R+
V is admissible and ∀i.∀(l1, l2, τ) ∈ Z(pks).(Si

1l1 Si
2l2 ‖ S1l1, S2l2, τ, (pks)vm) ∈ R+

V and
these are chains in R+

V , then also ∀(l1, l2, τ) ∈ Z(pks).
⊔

((Si
1)l1, (S

i
2)l2 ‖ S1l1, S2l2, τ, (pks)vm) =

((
⊔

Si
1)l1, (

⊔
Si

2)l2 ‖ S1l1, S2l2, τ, (pks)vm) ∈ R+
V .

∀k ∈ 1..n. if Qk = (Pk, LLk) then (S1, S2) ∈ Pk holds as in each step.

Since ∀i. ∀k ∈ 1..n. if Qk = (Pk, LLk) then ∀(l1, l2, τ) ∈ LLk. (Si
1(l1), Si

2(l2) ‖ S1(l1), S2(l2), τ,
(pks)vm) ∈ R+

V and these are chains in the admissible relation R+
V , then also ∀k ∈ 1..n. if

Qk = (Pk, LLk) then ∀(l1, l2, τ) ∈ LLk. ((
⊔

Si
1)l1, (

⊔
Si

2)l2 ‖ S1l1, S2l2, τ, (pks)vm) ∈ R+
V .

We conclude that F (R−, R+)S is closed under least upper bounds of chains.

• F (R−, R+)M =
{(m′

1, m′
2 ‖ m1, m2, T τ, p) | p ∈ pvm ∧

m′
1 � m1 ∧ m′

2 � m2 ∧
∀p′ � p.∀(pk′) ∈ p′K.
∀(pks′) ∈ (pk′)S.

∀(k′
1, k′

2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−
K . ∀(S′

1, S′
2 ‖ S1, S2, (pks′)) ∈ R−

S .
(m′

1k
′
1S

′
1 = � ⇒ m2k2S2 = �) ∧

(m′
2k

′
2S

′
2 = � ⇒ m1k1S1 = �) }

Assume a finitely supported chain (mi
1,m

i
2 ‖ m1,m2, T τ, p)i∈ω in F (R−, R+)M , we will show

its least upper bound is in F (R−, R+)M . If the chain is constant (⊥,⊥ ‖ m1, m2, T τ, p) we
are done. Else, since ∀i. mi

1 � m1 ∧ mi
2 � m2, then also

⊔
mi

1 � m1 ∧ ⊔
mi

2 � m2.

Let p′ � p, (pk′) ∈ p′K, (k′
1, k

′
2 ‖ k1, k2, (x : τ)�, (pk)′) ∈ R−

K .

Let (pks′) ∈ (pk′)S and (S′
1, S

′
2 ‖ S1, S2, (pks′)) ∈ R−

S .

Since mi
1 and mi

2 are chains, then also mi
1k

′
1S

′
1 and mi

2k
′
2S

′
2 are chains in O. If ∀i.mi

1k
′
1S

′
1 = ⊥

then also (
⊔

mi
1)k

′
1S

′
1 = ⊥ and the implication (

⊔
mi

1)k
′
1S

′
1 = � ⇒ m2k2S2 = � holds trivially.

Else it must be the case that ∃j.∀i ≥ j. mi
1k

′
1S

′
1 = �. This implies both that m2k2S2 = � and

(
⊔

mi
1)k

′
1S

′
1 = �, so the implication (

⊔
mi

1)k
′
1S

′
1 = � ⇒ m2k2S2 = � holds. The proof that

(
⊔

mi
2)k

′
2S

′
2 = � ⇒ m1k1S1 = � holds is similar.

We conclude that F (R−, R+)M is closed under lubs of chains.

• F (R−, R+)K =
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{(k′
1, k′

2 ‖ k1, k2, (x : τ)�, (pk)) | (pk) ∈ pk ∧
k′
1 � k1 ∧ k′

2 � k2 ∧ ∀(pk′) � (pk).
(that is (pk) extended only with ordinary local k-parameters or local extensions)

∀(pks′) ∈ (pk′)S (the set of s-instantiations of p′ i.e. choices of ∨̄-clauses),
∀(s′1, s′2 ‖ s1, s2, (pks′)) ∈ R−

S . ∀(v′1, v′2 ‖ v1, v2, τ, (pk′)vm) ∈ R−
V .

(k′
1s

′
1v

′
1 = � ⇒ k2s2v2 = �) ∧

(k′
2s

′
2v

′
2 = � ⇒ k1s1v1 = �) }

Assume a finitely supported chain (ki
1, k

i
2 ‖ k1, k2, (x : τ)�, (pk))i∈ω in F (R−, R+)K , we will

show its least upper bound is in F (R−, R+)K . If the chain is constant (⊥,⊥ ‖ k1, k2, (x :
τ)�, (pk)) we are done. Else, since ∀i. ki

1 � k1 ∧ ki
2 � k2, then also

⊔
ki
1 � k1 ∧ ⊔

ki
2 � k2.

Let (pk′) � (pk), (v′1, v
′
2 ‖ v1, v2, τ, (pk′)vm) ∈ R−

V .
Let (pks′) ∈ (pk′)S and (S′

1, S′
2 ‖ S1, S2, (pks′)) ∈ R−

S .
Since ki

1 and ki
2 are chains, then also ki

1S
′
1v

′
1 and ki

2S
′
2v

′
2 are chains in O. If ∀i.ki

1S
′
1v

′
1 = ⊥

then also (
⊔

ki
1)S

′
1v

′
1 = ⊥ and the implication (

⊔
ki
1)S

′
1v

′
1 = � ⇒ k2S2v2 = � holds trivially.

Else it must be the case that ∃j.∀i ≥ j. ki
1S

′
1v

′
1 = �. This implies both that k2S2v2 = � and

(
⊔

ki
1)S

′
1v

′
1 = �, so the implication (

⊔
ki
1)S

′
1v

′
1 = � ⇒ k2S2v2 = � holds. The proof that

(
⊔

ki
2)S

′
2v

′
2 = � ⇒ k1S1v1 = � holds is similar.

We conclude that F (R−, R+)K is closed under lubs of chains.

• F (R−, R+)V :
Assume a chain in F (R−, R+)V . If the chain is constantly (⊥, ⊥ ‖ v1, v2, τ, p) we are done.
Else v1 �= ⊥ ∧ v2 �= ⊥ ∧ ∀i. vi

1 � v1 ∧ vi
2 � v2. If follows that

⊔
vi
1 � v1 ∧ ⊔

vi
2 � v2.

Also from some point onwards vi
1 �= ⊥ ∨ vi

2 �= ⊥ and (vi
1, vi

2 ‖ v1, v2, τ, p) ∈ F̃ (R−, R+)and
a chain will have a type parameter. The proof proceeds over cases of the type constructor for
the type parameter.
◦ Chains of type Unit, Int and references are constant from some point onwards.

◦ Chains of sum-types, product-types and recursive μ-types can be proved to be closed under
least upper bounds via the admissibility of R+

V . We show this for chains of sum-type, the
other proofs are similar.

A chain of sum-type which is not constantly (⊥, ⊥ ‖ v1, v2, τa + τb, p) must from some
point onwards (∀i ≥ j) have the form
(vi

1, vi
2 ‖ in⊕(inx(d1)), in⊕(inx(d2)), τa + τb, p), x ∈ {a, b}, where d1, d2 ∈ V↓ and ∀i ≥

j.∃di
1, di

2 ∈ V. (vi
1 = di

1 = ⊥∨vi
1 = in⊕(inx(di

1)) �= ⊥)∧(vi
2 = di

2 = ⊥∨vi
2 = in⊕(inx(di

2)) �=
⊥) ∧ (di

1 � di+1
1 ∧ di

2 � di+1
2 ) ∧ (di

1, di
2 ‖ d1, d2, τx, p) ∈ R+

V , and this is a chain in R+
V .

Then
⊔

di
1,

⊔
di
2 ∈ V. Since R+ is admissible also (

⊔
di
1,

⊔
di
2 ‖ d1, d2, τx, p) ∈ R+

V . So, as
in⊕(inx(

⊔
di)) =

⊔
in⊕(inx(di)) = then⊔

(vi
1, vi

2 ‖ in⊕(inx(d1)), in⊕(inx(d2)), τa + τb, p) ∈ F (R−, R+)V

◦ A chain of ∀-type which is not constantly (⊥, ⊥ ‖ v1, v2, ∀α.τ, p) must from some
point onwards (∀i ≥ j) have the form (vi

1, vi
2 ‖ in∀�d1 , in∀�d2 , ∀α.Tτ, p), where

d1, d2 ∈ M and ∀i ≥ j.∃di
1, di

2 ∈ M. ((vi
1 = ⊥ ∧ di

1 = ⊥) ∨ vi
1 = in∀�di

1 ) ∧ ((vi
2 =

⊥ ∧ di
2 = ⊥) ∨ vi

2 = in∀�di
2 ) ∧ (di

1 � di+1
1 ∧ di

2 � di+1
2 ) ∧ ∀σ with � σ :

type. (di
1, d

i
2 ‖ d1, d2, T τ [σ/α], p) ∈ R+

M . Then since R+ is admissible and each of these
is a chain also ∀σ with � σ : type. (

⊔
di
1,

⊔
di
2 ‖ d1, d2, T τ [σ/α], p) ∈ R+

M . So (possibly
using downwards closure)

⊔
(vi

1, vi
2 ‖ in∀�d1 , in∀�d2 , ∀α.Tτ, p) ∈ F (R−, R+)V .

◦ A chain of function type which is not constantly (⊥,⊥ ‖ v1, v2, τ → Tτ ′, p) must for all
i ≥ j have the form (vi

1, vi
2 ‖ in��d1 , in��d2 , τ → Tτ ′, p), where d1, d2 ∈ (V � M)

and ∀i ≥ j.∃di
1, di

2 ∈ (V � M). ((vi
1 = ⊥ ∧ di

1 = ⊥) ∨ vi
1 = in��di

1 ) ∧ ((vi
2 = ⊥∧ = di

2 =
⊥) ∨ vi

2 = in��di
2 ) ∧ (di

1 � di+1
1 ∧ di

2 � di+1
2 ) and ∀p′ � p.∀(v′1 , v′

2 ‖ v1, v2, τ, p′) ∈
R−

V it holds ∀i ≥ j. (di
1v

′
1, di

2v
′
2 ‖ d1v1, d2v2, T τ ′, p′) ∈ R+

M . Since R+
M is admissible
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and in each case this is a chain, then also (
⊔

(di
1v

′
1),

⊔
(di

2v
′
2) ‖ d1v1, d2v2, T τ ′, p′) =

((
⊔

di
1)v

′
1, (

⊔
di
2)v

′
2 ‖ d1v1, d2v2, T τ ′, p′) ∈ R+

M . So (possibly using downwards closure)⊔
(vi

1, vi
2 ‖ in��d1 , in��d2 , τ → Tτ ′, p) ∈ F (R−, R+)V .

We conclude that F (R−, R+)V is closed under lubs of chains.

And, so we conclude that if R+ is adm+, then F (R−, R+) is admissible for any relation R−.
�

A.5 Proof of lemma 21

Lemma: The action of F preserves parameter weakening.

For all R+, R− ∈ R(D).
If R+ is parameter weakened, then F (R−, R+) is parameter weakened.

Proof

– F (R−, R+)K : Let (pk1), (pk0) ∈ pk, (pk1) � (pk0).

For all k1, k2, all (x : τ)� continuation type, all p vm-parameter it holds that (⊥,⊥ ‖ k1, k2, (x :
τ)�, p) ∈ F (R−, R+)K .

Assume (k′
1, k

′
2) �= (⊥,⊥) and (k′

1, k
′
2 ‖ k1, k2, (x : τ)�, (pk0)) ∈ F (R−, R+)K . We want to show

(k′
1, k

′
2 ‖ k1, k2, (x : τ)�, (pk1)) ∈ F (R−, R+)K . This follows from (pk′

1)�(pk1) and (pk1)�(pk0)
implies (pk′

1) � (pk0), (independant of R+).

– F (R−, R+)M : Let p1, p0 ∈ pvm, p1 � p0.

For all m1,m2, all Tτ computation type, all p vm-parameter it holds that (⊥,⊥ ‖ m1,m2, T τ, p) ∈
F (R−, R+)M .

Assume (m′
1,m

′
2) �= (⊥,⊥) and (m′

1,m
′
2 ‖ m1,m2, T τ, p0) ∈ F (R−, R+)M . We want to show

(m′
1,m

′
2 ‖ m1,m2, T τ, p1) ∈ F (R−, R+)M . This follows from p′1 � p1 and p1 � p0 implies

p′1 � p0, (independant of R+).

– F (R−, R+)V : Let p1, p0 ∈ pvm, p1 � p0

Forall v1, v2, all τ value-type, all p vm-parameter it holds that (⊥,⊥ ‖ v1, v2, τ, p) ∈
F (R−, R+)V .

Assume (v′1, v
′
2) �= (⊥,⊥) and (v′1, v

′
2 ‖ v1, v2, τ, p0) ∈ F (R−, R+)V . The proof proceeds over

type parameter cases:
◦ (unit),(int): Immidiate.

◦ (σ ref): Follows from p1 � p0 implies Zp1 ⊇ Zp0 .

◦ (+),(×),(μ): Follows from parameter-weakening of R+
V . We show the proof for sum types,

the other proofs are similar.
(+): Assume (v′1, v

′
2 ‖ v1, v2, τa + τb, p0) ∈ F (R−, R+)V , and v′1 �= ⊥ ∨ v′2 �= ⊥. Then

∃d′1, d
′
2 ∈ V, d1, d2 ∈ V↓. v1 = in⊕injd1 ∧ v2 = in⊕injd2 ∧ (v′1 = d′1 = ⊥∨ v′1 = in⊕injd

′
1 �=

⊥) ∧ (v′2 = d′2 = ⊥ ∨ v′2 = in⊕injd
′
2 �= ⊥) ∧ (d′1, d

′
2 ‖ d1, d2, τj , p0) ∈ R+

V where j ∈ a, b.
Since R+ is parameter weakened then (d′1, d

′
2 ‖ d1, d2, τj , p1) ∈ R+

V , and so
(v′1, v

′
2 ‖ v1, v2, τ1 + τ2, p1) ∈ F (R−, R+)V .

178



◦ (∀): Follows from parameter-weakening of R+
M .

(+): Assume (v′1, v
′
2 ‖ v1, v2,∀α.Tτ, p0) ∈ F (R−, R+)V , and v′1 �= ⊥ ∨ v′2 �= ⊥. Then

∃d′1, d
′
2, d1, d2 ∈ M. v1 = in∀�d1 ∧v2 = in∀�d2 ∧((v′1 = ⊥∧d′1 = ⊥)∨v′1 = in∀�d′1 )∧((v′2 =

⊥ ∧ d′2 = ⊥) ∨ v′2 = in∀�d′2 ) ∧ ∀− � σ : type. (d′1, d
′
2 ‖ d1, d2, T τ [σ/α], p0) ∈ R+

M .
Since R+ is parameter weakened then ∀− � σ : type. (d′1, d

′
2 ‖ d1, d2, T τ [σ/α], p1) ∈ R+

M ,
and so (v′1, v

′
2 ‖ v1, v2,∀α.Tτ, p1) ∈ F (R−, R+)V .

◦ (→): Assume (v′1, v
′
2 ‖ v1, v2, τ → Tτ ′, p0) ∈ F (R−, R+)V , and v′1 �= ⊥ ∨ v′2 �= ⊥. Then

∃d′1, d
′
2, d1, d2 ∈ (V � M). v1 = in��d1 ∧ v2 = in��d2 ∧ ((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 =

in��d′1 ) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = in��d′2 ) ∧ ∀p′0 � p0. ∀.(w′
1, w

′
2 ‖ w1, w2, τ, p

′
0) ∈

R−
V . (d′1w

′
1, d

′
2w

′
2 ‖ d1w1, d2w2, T τ ′, p′0) ∈ R+

M .
We want to show (v′1, v

′
2 ‖ v1, v2, τ → Tτ ′, p1) ∈ F (R−, R+)V . This requires ∀p′1 �

p1. ∀.(w′
1, w1, w

′
2, w2, τ, p

′
1) ∈ R−

V . (d′1w
′
1, d

′
2w

′
2 ‖ d1w1, d2w2, T τ ′, p′1) ∈ R+

M . Let p′1 � p1.
We have p′1 � p1 ∧ p1 � p0 ⇒ p′1 � p0. So it follows from the assumpitions that
∀.(w′

1, w
′
2 ‖ w1, w2, τ, p

′
1) ∈ R−

V . (d′1w
′
1, d

′
2w

′
2 ‖ d1w1, d2w2, T τ ′, p′1) ∈ R+

M , and hence
(v′1, v

′
2 ‖ v1, v2, τ → Tτ ′, p1) ∈ F (R−, R+)V .

We conclude that the action of F on relations on D preserves parameter weakening. �

A.6 Proof of lemma 22

Lemma: The action of F on functions D � D preserves the relation ( , id) : ⊂ .
∀R+, S+, R−, S− ∈ R(D). ∀f+, f− : D � D.

If (f−, idD) : S− ⊂ R− and (f+, idD) : R+ ⊂ S+ then
(F (f−, f+), F (idD, idD)) = (F (f−, f+), idF (D,D)) : F (R−, R+) ⊂ F (S−, S+).

Proof of lemma.
The remaining part of the proof:
Let R+, S+, R−, S− ∈ R(D), and
let f+, f− : D � D. f− = (f−

v , f−
k , f−

m, f−
s ), f+ = (f+

v , f+
k , f+

m, f+
s ).

• F (D, D)M

Assume (m′
1,m

′
2 ‖ m1,m2, T τ, p) ∈ F (R−, R+)M .

We aim to show (hmm′
1, hmm′

2 ‖ m1,m2, T τ, p) =
(λk.λS.m′

1(f
−
k k)(f−

s S), λk.λS.m′
2(f

−
k k)(f−

s S) ‖ m1, m2, T τ, p) ∈ F (S−, S+)M .

If m′
1 = ⊥ = m′

2 then since hm is strict , so (hmm′
1, hmm′

2 ‖ m1,m2, T τ, p) = (⊥,⊥ ‖ m1,m2, T τ, p) ∈
F (S−, S+)M .
Else, let p′ � p, (pk′) ∈ p′K, (k′

1, k
′
2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ S−

K ,
Let (pks′) ∈ (pk′)S, (s′1, s

′
2 ‖ s1, s2, (pks′)) ∈ S−

S .

We want to show
(hmm′

1)k
′
1s

′
1 = � ⇒ m2k2s2 = � and (hmm′

2)k
′
2s

′
2 = � ⇒ m1k1s1 = �, or equivalently

m′
1(f

−
k k′

1)(f
−
s s′1) = � ⇒ m2k2s2 = � and m′

2(f
−
k k′

2)(f
−
s s′2) = � ⇒ m1k1s1 = �.

Since (f−, idD) : S− ⊂ R− it holds that (f−
k k′

1, f
−
k k′

2 ‖ k1, k2, (x : τ)�, (pk′)) ∈ R−
K and

(f−
s s′1, f

−
s s′2 ‖ s1, s2, (pks′)) ∈ R−

S . Then since (m′
1,m

′
2 ‖ m1,m2, T τ, p) ∈ F (R−, R+) we have

that m′
1(f

−
k k′

1)(f
−
s s′1) = � ⇒ m2k2s2 and m′

2(f
−
k k′

2)(f
−
s s′2) = � ⇒ m1k1s1.

We also need to show
hm(m′

1) = λk.λS.m′
1(f

−
k k)(f−

s S) � m1 ∧ hm(m′
2) = λk.λS.m′

2(f
−
k k)(f−

s S) � m2. This follows
from m′

1 � m1 ∧ m′
2 � m2 and f− � idD.

We conclude (hmm′
1, hmm′

2 ‖ id3m1, id3m2, T τ, p) ∈ F (S−, S+)M .
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• F (D, D)K

Assume (k′
1, k

′
2 ‖ k1, k2, (x : τ)�, (pk)) ∈ F (R−, R+)K .

We aim to show (hkk′
1, hkk′

2 ‖ id2k1, id2k2, (x : τ)�, (pk)) =
(λS.λv.k′

1(f
−
s S)(f−

v v), λS.λv.k′
2(f

−
s S)(f−

v v) ‖ k1, k2, (x : τ)�, (pk)) ∈ F (S−, S+)K .
This follows by similar arguments as for (m′

1,m
′
2 ‖ m1,m2, T τ, p) above, so we omit the proof.

• F (D, D)V

Assume (v′1, v
′
2 ‖ v1, v2, τ, p) ∈ F (R−, R+)V .

As before by strictness of hv, if (⊥,⊥ ‖ v1, v2, τ, p) ∈ F (R−, R+) then (hv⊥, hv⊥ ‖ v1, v2, τ, p) =
(⊥,⊥ ‖ v1, v2, τ, p) ∈ F (S−, S+).

Else v′1 � v1 �= ⊥ ∧ v′2 � v2 �= ⊥ and v′1, v
′
2, v1, v2 fulfill the type parameter constructor

determined properties required for (v′1, v′2 ‖ v1, v2, τ, p) ∈ F̃ (R−, R+)V . And we need to show
that if hv(v′1) �= ⊥ ∨ hv(v′2) �= ⊥ then hv(v′1) � v1 ∧ hv(v′2) � v2 and hv(v′1), hv(v′2), v1, v2

fulfill the type determined properties required for F̃ (S−, S+)V . We have hv(v′1) � v1 �=
⊥ ∧ hv(v′2) � v2 �= ⊥ follows from the similar property in the assumption and hv � idD.

For the rest we argue by type constructor cases.

◦ Assume (v′1, v
′
2 ‖ v1, v2, unit, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥)

then hvv′1 = v′1 � v1 = in11�∗ and hvv′2 = v′2 � v2 = in11�∗ , and
(hvv′1, hvv′2 ‖ v1, v2, unit, p) ∈ F (S−, S+).

◦ Assume (v′1, v
′
2 ‖ v1, v2, int, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥)

then ∃n such that hvv′1 = v′1 � v1 = inZn and hvv′2 = v′2 � v2 = inZn, and we have
(hvv′1, hvv′2 ‖ v1, v2, int, p) ∈ F (S−, S+).

◦ Assume (v′1, v
′
2 ‖ v1, v2, σref, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥)

then ∃l1, l2 such that hvv′1 = v′1 � v1 = inLl1, hvv′2 = v′2 � v2 = inLl2, (l1, l2, σ) ∈ Zp, and
we have (hvv′1, hvv′2 ‖ v1, v2, σref, p) ∈ F (S−, S+).

◦ Assume (v′1, v
′
2 ‖ v1, v2, τa + τb, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥) then

∃d′1, d
′
2 ∈ V, d1, d2 ∈ V↓. v1 = in⊕inid1 �= ⊥ ∧ v2 = in⊕inid2 �= ⊥ ∧

(v′1 = d′1 = ⊥ ∨ v′1 = in⊕inid
′
1 �= ⊥) ∧ (v′2 = d′2 = ⊥ ∨ v′2 = in⊕inid

′
2 �= ⊥) ∧

(d′1, d
′
2 ‖ d1, d2, τi, p) ∈ R+

V .
(v′1 = d′1 = ⊥ ⇒ hvv′1 = f+

v d′1 = ⊥) ∧ ((v′1 = in⊕inid
′
1∧f+

v d′1 = ⊥) ⇒ hvv′1 = f+
v d′1 = ⊥)∧

((v′1 = in⊕inid
′
1 ∧ f+

v d′1 �= ⊥) ⇒ hvv′1 = in⊕inif
+
v d′1 �= ⊥ and

(v′2 = d′2 = ⊥ ⇒ hvv′2 = f+
v d′2 = ⊥) ∧ ((v′2 = in⊕inid

′
2∧f+

v d′2 = ⊥) ⇒ hvv′2 = f+
v d′2 = ⊥)∧

((v′2 = in⊕inid
′
2 ∧ f+

v d′2 �= ⊥) ⇒ hvv′2 = in⊕inif
+
v d′2 �= ⊥.

Since (f+, idD) : R+ ⊂ S+ and (d′1, d
′
2 ‖ d1, d2, τi, p) ∈ R+

V it follows that
(f+

v d′1, f
+
v d′2 ‖ d1, d2, τi, p) ∈ S+

V . It holds that (hvv′1 = ⊥ = f+
v d′1 ∨ hvv′1 = in⊕inif

+
v d′1 �=

⊥) and (hvv′2 = ⊥ = f+
v d′2 ∨ hvv′2 = in⊕inif

+
v d′2 �= ⊥).

So (hvv′1, hvv′2 ‖ v1, v2, τa + τb, p) ∈ F (S−, S+)

◦ Assume (v′1, v
′
2 ‖ v1, v2, τa × τb, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥). By similar

arguments as for sum-typed it follows that (hvv′1, hvv′2 ‖ v1, v2, τa × τb, p) ∈ F (S−, S+).

◦ Assume (v′1, v
′
2 ‖ v1, v2, μα.τ, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥) then ∃d′1, d

′
2 ∈

V, d1, d2 ∈ V↓. (v′1 = d′1 = ⊥ ∨ v′1 = inμd′1 �= ⊥) ∧ (v′2 = d′2 = ⊥ ∨ v′2 = inμd′2 �= ⊥) ∧ v1 =
inμd1 �= ⊥ ∧ v2 = inμd2 �= ⊥ and (d′1, d

′
2 ‖ d1, d2, τ [μα.τ/α], p) ∈ R+

V .
(v′1 = d′1 = ⊥ ⇒ hvv′1 = ⊥) ∧ (v′1 = inμd′1 ⇒ hvv′1 = inμf+

v d′1 ' ⊥) and (v′2 = d′2 = ⊥ ⇒
hvv′2 = ⊥) ∧ (v′2 = inμd′2 ⇒ hvv′2 = inμf+

v d′2 ' ⊥).
Since (f+, idD) : R+ ⊂ S+ and (d′1, d

′
2 ‖ d1, d2, τ [μα.τ/α], p) ∈ R+

V it follows that
(f+

v d′1, f
+
v d′2 ‖ d1, d2, τ [μα.τ/α], p) ∈ S+

V .
Then (hvv′1, hvv′2 ‖ v1, v2, μα.τ, p) ∈ F (S−, S+)
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◦ Assume (v′1, v
′
2 ‖ v1, v2,∀α.Tτ, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥) then

∃m′
1,m1,m

′
2,m2 ∈ D+

M . v1 = in∀�m1 ∧ v2 = in∀�m2 ∧
((v′1 = ⊥ ∧ m′

1 = ⊥) ∨ (v′1 = in∀�m′
1 ) ∧ ((v′2 = ⊥ ∧ m′

2 = ⊥) ∨ (v′2 = in∀�m′
2 ) ∧

∀σ with � σ : type. (m′
1,m

′
2 ‖ m1,m2, T τ [σ/α], p) ∈ R+

M .
(v′1 = ⊥ ∧ m′

1 = ⊥) ⇒ (hvv′1 = ⊥ ∧ f+
mm′

1 = ⊥) and v′1 = in∀�m′
1 ⇒ hvv′1 = in∀�f+

mm′
1 ,

(v′2 = ⊥ ∧ m′
2 = ⊥) ⇒ (hvv′2 = ⊥ ∧ f+

mm′
2 = ⊥) and v′2 = in∀�m′

2 ⇒ hvv′2 = in∀�f+
mm′

2 .
Since (f+, idD) : R+ ⊂ S+ we have ∀σ with � σ : type. (f+

mm′
1, f

+
mm′

2 ‖ m1,m2, T τ [σ/α], p) ∈
S+

3 . Hence (hvv′1, hvv′2 ‖ v1, v2,∀α.Tτ, p) ∈ F (S−, S+).

◦ Assume (v′1, v
′
2 ‖ v1, v2, τ → Tτ ′, p) ∈ F (R−, R+) and (v′1 �= ⊥ ∨ v′2 �= ⊥)

then ∃d′1, d
′
2, d1, d2 ∈ (V � M). v1 = in��d1 ∧ v2 = in��d2 ∧

((v′1 = ⊥ ∧ d′1 = ⊥) ∨ v′1 = in��d′1 ) ∧ ((v′2 = ⊥ ∧ d′2 = ⊥) ∨ v′2 = in��d′2 ) ∧
∀p′ � p,∀(ŵ′

1 , ŵ′
2 ‖ ŵ1, ŵ2, τ, p′) ∈ R−

V . (d′1ŵ
′
1, d′2ŵ

′
2 ‖ d1ŵ1, d2ŵ2, T τ ′, p′) ∈ R+

M .

We need to show (hvv′1, hvv′2 ‖ v1, v2, τ → Tτ ′, p) ∈ F (S−, S+).
((v′1 = ⊥ ∧ d′1 = ⊥) ⇒ (hvv′1 = ⊥ ∧ (λw.f+

m(d′1(f
−
v w))) = ⊥) ∧

(v′1 = in��d′1 ) ⇒ hvv′1 = in��(λw.f+
m(d′1(f

−
v w))) ) ∧

((v′2 = ⊥ ∧ d′2 = ⊥) ⇒ (hvv′2 = ⊥ ∧ (λw.f+
m(d′2(f

−
v w))) = ⊥) ∧

(v′2 = in��d′2 ) ⇒ hvv′2 = in��(λw.f+
m(d′2(f

−
v w))) ).

Let p′ � p, (w′
1, w

′
2 ‖ w1, w2, τ, p

′) ∈ S−
V .

Since (f−, idD) : S− ⊂ R− we have that (f−
v w′

1, f
−
v w′

2 ‖ w1, w2, τ, p
′) ∈ R−

V , and then
(d′1(f

−
v w′

1), d
′
2(f

−
v w′

2) ‖ d1w1, d2w2, T τ ′, p′) ∈ R+
M .

Since (f+, idD) : R+ ⊂ S+ then (f+
m(d′1(f

−
v w′

1)), f+
m(d′2(f

−
v w′

2)) ‖ d1w1, d2w2, T τ ′, p′) ∈
S+

M . So (hvv′1, hvv′2 ‖ v1, v2, τ → Tτ ′, p) ∈ F (S−, S+).

We conclude that in all cases (hvv′1, hvv′2 ‖ v1, v2, τ, p) ∈ F (S−, S+)M .

Then we conclude that the action of F (−, +) on functions in D � D preserves ( , id) : ⊂ .
�

A.7 Proof of Proposition 4

Proposition: Typing rules preserve ∇ΞΓ relation of denotations.

unit:
Δ; Ξ; Γ � () : unit

There are no assumptions, so we need to prove that it holds ([[Δ; Ξ; Γ � () : unit]], [[Δ; Ξ; Γ �
() : unit]], unit, p) ∈ ∇ΞΓ

V that is
([[Δ; Ξ; Γ � () : unit]](ρ′1), [[Δ; Ξ; Γ � () : unit]](ρ′2) ‖
[[Δ; Ξ; Γ � () : unit]](ρ1), [[Δ; Ξ; Γ � () : unit]](ρ2)), unit, p′) ∈ ∇V .

If ρ′1 = ⊥ ∧ ρ′2 = ⊥ then
([[Δ; Ξ; Γ � () : unit]](ρ′1), [[Δ; Ξ; Γ � () : unit]](ρ′2)),
[[Δ; Ξ; Γ � () : unit]](ρ1), [[Δ; Ξ; Γ � () : unit]](ρ2)) =
(⊥,⊥, [[Δ; Ξ; Γ � () : unit]](ρ1), [[Δ; Ξ; Γ � () : unit]](ρ2)) and
(⊥,⊥ ‖ [[Δ; Ξ; Γ � () : unit]](ρ1), [[Δ; Ξ; Γ � () : unit]](ρ2), unit, p′) ∈ ∇V ,

If ρ′1 �= ⊥ ∨ ρ′2 �= ⊥ and ρ1 �= ⊥ ∧ ρ2 �= ⊥ then
([[Δ; Ξ; Γ � () : unit]](ρ′1), [[Δ; Ξ; Γ � () : unit]](ρ′2)),
[[Δ; Ξ; Γ � () : unit]](ρ1), [[Δ; Ξ; Γ � () : unit]](ρ2)) =
(d′1, d

′
2, i(in11∗), i(in11∗)) where d′1, d

′
2 ∈ {⊥, i(in11∗)}, and so

(d′1, d
′
2‖ i(in11∗), i(in11∗), unit, p′) ∈ ∇V

Hence ([[Δ; Γ � () : unit]], [[Δ; Γ � () : unit]], unit, p) ∈ ∇ΞΓ
V .
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int:
Δ; Ξ; Γ � n : int

We need to prove that it holds ([[Δ; Ξ; Γ � n : int]], [[Δ; Ξ; Γ � n : int]], int, p) ∈ ∇ΞΓ
V that is

([[Δ; Ξ; Γ � n : int]](ρ′1), [[Δ; Ξ; Γ � n : int]](ρ′2) ‖
[[Δ; Ξ; Γ � n : int]](ρ1), [[Δ; Ξ; Γ � n : int]](ρ2)), int, p′) ∈ ∇V .

If ρ′1 = ⊥ ∧ ρ′2 = ⊥ then
([[Δ; Ξ; Γ � n : int]](ρ′1), [[Δ; Ξ; Γ � n : int]](ρ′2),
[[Δ; Ξ; Γ � n : int]](ρ1), [[Δ; Ξ; Γ � n : int]](ρ2)) =
(⊥,⊥, [[Δ; Ξ; Γ � n : int]](ρ1), [[Δ; Ξ; Γ � n : int]](ρ2)) and
(⊥,⊥ ‖ [[Δ; Ξ; Γ � n : int]](ρ1), [[Δ; Ξ; Γ � n : int]](ρ2), int, p′) ∈ ∇V ,

If ρ′1 �= ⊥ ∨ ρ′2 �= ⊥ and ρ1 �= ⊥ ∧ ρ2 �= ⊥ then
([[Δ; Ξ; Γ � n : int]](ρ′1), [[Δ; Ξ; Γ � n : int]](ρ′2)),
[[Δ; Ξ; Γ � n : int]](ρ1), [[Δ; Ξ; Γ � n : int]](ρ2)) =
(d′1, d

′
2, i(inZn), i(inZn)) where d′1, d

′
2 ∈ {⊥, i(inZn)} and so

(d′1, d
′
2 ‖ i(inZn), i(inZn), int, p′) ∈ ∇V

Hence ([[Δ; Γ � n : int]], [[Δ; Γ � n : int]], unit, p) ∈ ∇ΞΓ
V .

eq: Δ; Ξ; Γ � Va : τa ref Δ; Ξ; Γ � Vb : τb ref

Δ; Ξ; Γ � Va = Vb : T (unit + unit)

Let v1a = [[Δ; Ξ; Γ � V1a : τa ref ]], v2a = [[Δ; Ξ; Γ � V2a : τa ref ]],
v1b = [[Δ; Ξ; Γ � V1b : τb ref ]], v2b = [[Δ; Ξ; Γ � V2b : τb ref ]].
Assume (v1a, v2a, τa ref, p) ∈ ∇ΞΓ

V and (v1b, v2b, τb ref, p) ∈ ∇ΞΓ
V .

The assumption implies that either v1a(ρ′1) = v2a(ρ′2) = ⊥ or ∃(l1a, l2a, τa[σj/αj ]) ∈ Zp′
.

i−1(v1a(ρ′1)) � i−1(v1a(ρ1)) = inLl1a.
i−1(v2a(ρ′2)) � i−1(v2a(ρ2)) = inLl2a.
and either v1b(ρ′1) = v2b(ρ′2) = ⊥ or ∃(l1b, l2b, τb[σj/αj ]) ∈ Zp′

.
i−1(v1a(ρ′1)) � i−1(v1a(ρ1)) = inLl1b.
i−1(v2a(ρ′2)) � i−1(v2a(ρ2)) = inLl2b.
It follows from the definition of a match of finite store types that
(l1a, l2a, τa[σj/αj ]) ∈ Zp′ ∧ (l1b, l2b, τb[σj/αj ]) ∈ Zp′

implies l1a = l1b ⇔ l2a = l2b.

Let m1 = [[Δ; Ξ; Γ � V1a = V1b : T (unit+unit)]], m2 = [[Δ; Ξ; Γ � V2a = V2b : T (unit+unit)]].
If v1a(ρ′1) = v2a(ρ′2) = ⊥ or v1b(ρ′1) = v2b(ρ′2) = ⊥ then m1(ρ′1) = m2(ρ′2) = ⊥ and then
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (unit + unit), p′) ∈ ∇M .

Else if l1a = l2a ∧ l1b = l2b then
m1(ρ′1) � λk.λS.(i−1k)S(i ◦ in⊕ ◦ in1(i(in1∗)), m1(ρ1) = λk.λS.(i−1k)S(i ◦ in⊕ ◦ in1(i(in1∗)),
m2(ρ′2) � λk.λS.(i−1k)S(i ◦ in⊕ ◦ in1(i(in1∗)), m2(ρ2) = λk.λS.(i−1k)S(i ◦ in⊕ ◦ in1(i(in1∗)).
and if
l1a �= l2a ∧ l1b �= l2b then
m1(ρ′1) � λk.λS.(i−1k)S(i ◦ in⊕ ◦ in2(i(in1∗)), m1(ρ1) = λk.λS.(i−1k)S(i ◦ in⊕ ◦ in2(i(in1∗)),
m2(ρ′2) � λk.λS.(i−1k)S(i ◦ in⊕ ◦ in2(i(in1∗)), m2(ρ2) = λk.λS.(i−1k)S(i ◦ in⊕ ◦ in2(i(in1∗)).
Application of these computations to related continuations and related states, will always give
that related continuations are applied to correspondingly related states and values. So possibly
using downwards closure
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (unit + unit), p′) ∈ ∇M .
We conclude (m1,m2, T (unit + unit), p) ∈ ∇ΞΓ

M .
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+ in: Δ; Ξ; Γ � V : τj

Δ; Ξ; Γ � injV : τ1 + τ2

(j ∈ {1, 2})

Let v10 = [[Δ; Ξ; Γ � V1 : τj ]], v20 = [[Δ; Ξ; Γ � V2 : τj ]] and j ∈ {1, 2}. Assume (v10, v20, τj , p) ∈
∇ΞΓ

V .
Let v1 = [[Δ; Ξ; Γ � injV1 : τ1 + τ2]] and v2 = [[Δ; Ξ; Γ � injV2 : τ1 + τ2]].
i−1(v1(ρ′1)) = in+inj(v10(ρ′1)), i−1(v1(ρ1)) = in+inj(v10(ρ1)),
i−1(v2(ρ′2)) = in+inj(v20(ρ′2)), i−1(v2(ρ2)) = in+inj(v20(ρ2)),
where we accept notation ⊥ = in+inj(⊥).

Since by assumption (v10(ρ′1), v20(ρ′2) ‖ v10(ρ1), v20(ρ2), τj [σj/αj ], p′) ∈ ∇V then
(v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), (τ1 + τ2)[σj/αj ], p′) ∈ ∇v hence (v1, v2, τ1 + τ2, p) ∈ ∇ΞΓ

V .

+ el: Δ; Ξ; Γ � V : τ1 + τ2 Δ; Ξ; Γ, x1 : τ1 � Ma : Tτ ′ Δ; Ξ; Γ, x2 : τ2 � Mb : Tτ ′

Δ; Ξ; Γ � case V of in1X1 ⇐ Mb; in2X2 ⇐ Mb : Tτ ′

Let v1 = [[Δ; Ξ; Γ � V1 : τ1 + τ2]], v2 = [[Δ; Ξ; Γ � V2 : τ1 + τ2]].
Assume (v1, v2, τ1 + τ2, p) ∈ ∇ΞΓ

V .
Let m1a = [[Δ; Ξ; Γ, x1 : τ1 � M1a : Tτ ′]], m2a = [[Δ; Ξ; Γ, x1 : τ1 � M2a : Tτ ′]].
Assume (m1a,m2a, T τ ′, p) ∈ ∇ΞΓ∪{x1:τ1}

M .
Let m1b = [[Δ; Ξ; Γ, x2 : τ2 � M1b : Tτ ′]], m2b = [[Δ; Ξ; Γ, x2 : τ2 � M2b : Tτ ′]].
Assume (m1b,m2b, T τ ′, p) ∈ ∇ΞΓ∪{x2:τ2}

M .

Let m1 = [[Δ; Ξ; Γ � case V1 of in1X1 ⇐ M1a; in2X2 ⇐ M1b : Tτ ′]] and
m2 = [[Δ; Ξ; Γ � case V2 of in1X1 ⇐ M2a; in2X2 ⇐ M2b : Tτ ′]].

m1(ρ′1) = λk.λS. case v1(ρ′1) of
in⊕(in1d

′
1a) then m1a(ρ′1 ⊗ d′1a)kS; in⊕(in2d

′
1b) then m1b(ρ′1 ⊗ d′1b)kS else ⊥,

m1(ρ1) = λk.λS. case v1(ρ1) of
in⊕(in1d1a) then m1a(ρ1 ⊗ d1a)kS; in⊕(in2d1b) then m1b(ρ1 ⊗ d1b)kS else ⊥,

m2(ρ′2) = λk.λS. case v2(ρ′2) of
in⊕(in1d

′
2a) then m2a(ρ′2 ⊗ d′2a)kS; in⊕(in2d

′
2b) then m2b(ρ′2 ⊗ d′2b)kS else ⊥,

m2(ρ2) = λk.λS. case v2(ρ2) of
in⊕(in1d2a) then m2a(ρ2 ⊗ d2a)kS; in⊕(in2d2b) then m2b(ρ2 ⊗ d2b)kS else ⊥.

Since by assumption (v1, v2, τ1+τ2, p) ∈ ∇ΞΓ
V then there are three possibilities. Either v1(ρ′1) =

v2(ρ′2) = ⊥ and so m1(ρ′1) = m2(ρ′2) = ⊥ and (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ ′[σj/αj ], p′) ∈
∇M .
Or ∃d′1a, d′2a, d1a, d2a. (d′1a, d′2a ‖ d1a, d2a, τ1[σj/αj ], p′) ∈ ∇V and
(v1(ρ1) = in ⊕ (in1d1a) �= ⊥) ∧ ((v1(ρ′1) = ⊥ ∧ d′1a = ⊥∨ = (v1(ρ′1)in ⊕ (in1d

′
1a �= ⊥)),

(v2(ρ2) = in ⊕ (in1d2a) �= ⊥) ∧ ((v2(ρ′2) = ⊥ ∧ d′2a = ⊥∨ = (v2(ρ′2)in ⊕ (in1d
′
2a �= ⊥)).

In this case it follows from the assumption (m1a,m2a, T τ ′, p) ∈ ∇ΞΓ∪{x1:τ1}
M possibly together

with downwards closure that
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ ′[σj/αj ], p′) ∈ ∇M .
Or ∃d′1b, d

′
2b, d1b, d2b. (d′1b, d

′
2b ‖ d1b, d2b, τ2[σj/αj ], p′) ∈ ∇V and

(v1(ρ1) = in ⊕ (in2d1b) �= ⊥) ∧ ((v1(ρ′1) = ⊥ ∧ d′1b = ⊥∨ = (v1(ρ′1)in ⊕ (in1d
′
1b �= ⊥)),

(v2(ρ2) = in ⊕ (in1d2b) �= ⊥) ∧ ((v2(ρ′2) = ⊥ ∧ d′2b = ⊥∨ = (v2(ρ′2)in ⊕ (in1d
′
2b �= ⊥)).

then it follows from the assumption (m1b,m2b, T τ ′, p) ∈ ∇ΞΓ∪{x2:τ2}
M possibly together with

downwards closure that
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τ ′[σj/αj ], p′) ∈ ∇M .
So we conclude (m1,m2, T τ ′, p) ∈ ∇ΞΓ

M .
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× in: Δ; Ξ; Γ � Va : τa Δ; Ξ; Γ � Vb : τb

Δ; Ξ; Γ � (Va, Vb) : τa × τb

Let v1a = [[Δ; Ξ; Γ � V1a : τa]], v1b = [[Δ; Ξ; Γ � V1b : τb]],
v2a = [[Δ; Ξ; Γ � V2a : τa]], v2b = [[Δ; Ξ; Γ � V2b : τb]],
Assume (v1a, v2a, τa, p) ∈ ∇ΞΓ

V and (v1b, v2b, τb, p) ∈ ∇ΞΓ
V .

Let v1 = [[Δ; Ξ; Γ � (V1a, V1b) : τa × τb]], v2 = [[Δ; Ξ; Γ � (V2a, V2b) : τa × τb]].

i−1(v1(ρ′1)) = If (v1a(ρ′1) = ⊥ ∨ v1b(ρ′1) = ⊥) then ⊥ else in⊗(v1a(ρ′1), v1b(ρ′1)),
i−1(v1(ρ1)) = If (v1a(ρ1) = ⊥ ∨ v1b(ρ1) = ⊥) then ⊥ else in⊗(v1a(ρ1), v1b(ρ1)),
i−1(v2(ρ′2)) = If (v2a(ρ′2) = ⊥ ∨ v2b(ρ′2) = ⊥) then ⊥ else in⊗(v2a(ρ′2), v2b(ρ′2)),
i−1(v2(ρ2)) = If (v2a(ρ2) = ⊥ ∨ v2b(ρ2) = ⊥) then ⊥ else in⊗(v2a(ρ2), v2b(ρ2)).

If v1a(ρ′1) = v2a(ρ′2) = ⊥ or v1b(ρ′1) = v2b(ρ′2) = ⊥ then i−1(v1(ρ′1)) = i−1(v2(ρ′2)) = ⊥.
Else, since by assupmtion (v10a(ρ′1), v20a, (ρ′2) ‖ v10a(ρ1), v20a(ρ2), τ1[σj/αj ], p′) ∈ ∇V and
(v10b(ρ′1), v20b(ρ′2) ‖ v10b(ρ1), v20b(ρ2), τ2[σj/αj ], p′) ∈ ∇V

then (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), (τ1 × τ2)[σj/αj ], p′) ∈ ∇V hence (v1, v2, τ1 × τ2, p) ∈ ∇ΞΓ
V .

× el: Δ; Ξ; Γ � V : τ1 × τ2

Δ; Ξ; Γ � πiV : Tτi

(i ∈ {1, 2})

Let v1 = [[Δ; Ξ; Γ � V1 : τ1 × τ2]], v2 = [[Δ; Ξ; Γ � V2 : τ1 × τ2]],
Assume (v1, v2, τ1 × τ2, p) ∈ ∇ΞΓ

V .
Let m1 = [[Δ; Ξ; Γ � πiV1 : Tτi]], m2 = [[Δ; Ξ; Γ � πiV2 : Tτi]].
m1(ρ′1) = λk.λS. case v1(ρ′1) of in⊗(d′11, d

′
12) �= ⊥ then kSd′1i else ⊥,

m1(ρ1) = λk.λS. case v1(ρ1) of in⊗(d11, d12) �= ⊥ then kSd1i else ⊥,
m2(ρ′2) = λk.λS. case v2(ρ′2) of in⊗(d′21, d

′
22) �= ⊥ then kSd′2i else ⊥,

m2(ρ2) = λk.λS. case v2(ρ2) of in⊗(d21, d22) �= ⊥ then kSd2i else ⊥.

The assumption (v1, v2, τ1 × τ2, p) ∈ ∇ΞΓ
V implies that either v1(ρ′1) = v2(ρ′2) = ⊥ or

∃(d′11, d
′
12 ‖ d11, d12, τ1[σj/αj ], p′) ∈ ∇V , (d′21, d

′
22 ‖ d21, d22, τ2[σj/αj ], p′) ∈ ∇V and

v1(ρ1) = in⊗(d11, d12) �= ⊥, (v1(ρ′1) = ⊥∧(d′11 = ⊥∨d′12 = ⊥))∨(v1(ρ′1) = in⊗(d′11, d
′
12) �= ⊥),

v2(ρ2) = in⊗(d21, d22) �= ⊥, (v2(ρ′2) = ⊥∧(d′21 = ⊥∨d′22 = ⊥))∨(v2(ρ′2) = in⊗(d′21, d
′
22) �= ⊥).

In all cases we get (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T τi[σj/αj ], p′) ∈ ∇M

so (m1,m2, T τi, p) ∈ ∇ΞΓ .

arith: Δ; Ξ; Γ � Va : int Δ; Ξ; Γ � Vb : int

Δ; Ξ; Γ � Va + Vb : Tint

Let v1a = [[Δ; Ξ; Γ � V1a : int]], v2a = [[Δ; Ξ; Γ � V2a : int]],
v1b = [[Δ; Ξ; Γ � V1b : int]], v2b = [[Δ; Ξ; Γ � V2b : int]].
Assume (v1a, v2a, int, p) ∈ ∇ΞΓ

V and (v1b, v2b, int, p) ∈ ∇ΞΓ
V .

The assumption implies that either v1a(ρ′1) = v2a(ρ′2) = ⊥ or
∃na ∈ Z. i−1(v1a(ρ′1)) � i−1(v1a(ρ1)) = inZna and i−1(v2a(ρ′2)) � i−1(v2a(ρ2)) = inZna.
and either v1b(ρ′1) = v2b(ρ′2) = ⊥ or
∃nb ∈ Z. i−1(v1a(ρ′1)) � i−1(v1a(ρ1)) = inLnb and i−1(v2a(ρ′2)) � i−1(v2a(ρ2)) = inLnb.
Let m1 = [[Δ; Ξ; Γ � V1a + V1b : Tint]], m2 = [[Δ; Ξ; Γ � V2a + V2b : Tint]].

If v1a(ρ′1) = v2a(ρ′2) = ⊥ or v1b(ρ′1) = v2b(ρ′2) = ⊥ then m1(ρ′1) = m2(ρ′2) = ⊥ and then
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (unit + unit), p′) ∈ ∇M .
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Else let n = na + nb then
m1(ρ′1) � m1(ρ1) = λk.λS.(i−1k)S(i ◦ inZn),
m2(ρ′2) � m2(ρ2) = λk.λS.(i−1k)S(i ◦ inZn).
Then
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T int[σj/αj ], p′) ∈ ∇M =
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T int, p′) ∈ ∇M

hence (m1,m2, T int, p) ∈ ∇ΞΓ
M .

zero: Δ; Ξ; Γ � V : int

Δ; Ξ; Γ � iszero V : T (unit + unit)

Let v1 = [[Δ; Ξ; Γ � V1 : int]] and v2 = [[Δ; Ξ; Γ � V2 : int]]. Assume (v1, v2, int, p) ∈ ∇ΞΓ
V .

This assumption implies (v1(ρ′1), v2(ρ′2) ‖ v1(ρ1), v2(ρ2), int, p′) ∈ ∇V ,
and this again implies that either v1(ρ′1) = v2(ρ′2) = ⊥ or
∃n ∈ Z. v1(ρ′1) � v1(ρ1) = inZn and v2(ρ′2) � v2(ρ2) = inZn

Let m1 = [[Δ; Ξ; Γ � iszero V1 :: T (unit + unit)]] and m2 = [[Δ; Ξ; Γ � iszero V2 :: T (unit +
unit)]]. We need to show (m1,m2, T (unit + unit), p) ∈ ∇ΞΓ

M , that is we want to show
(m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (unit + unit), p′) ∈ ∇M , or
(i−1(m1(ρ′1)), i

−1(m2(ρ′2)) ‖ i−1(m1(ρ1)), i−1(m2(ρ2)), T (unit + unit), p′) ∈ F (∇,∇)M .

If v1(ρ′1) = v2(ρ′2) = ⊥ then m1(ρ′1) and m2(ρ′2) will both be the constant ⊥ function in M,
and hence (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (unit + unit), p′) ∈ ∇M .
Else, if n = 0 then
i−1(m1(ρ′1)) � i−1(m1(ρ1)) = λk.λS.i−1(k)S(in⊕ ◦ in1(i(in1∗))),
i−1(m2(ρ′2)) � i−1(m2(ρ2)) = λk.λS.i−1(k)S(in⊕ ◦ in1(i(in1∗))).
If n �= 0 then
i−1(m1(ρ′1)) � i−1(m1(ρ1)) = λk.λS.i−1(k)S(in⊕ ◦ in2(i(in1∗))),
i−1(m2(ρ′2)) � i−1(m2(ρ2)) = λk.λS.i−1(k)S(in⊕ ◦ in2(i(in1∗))).
Hence (m1(ρ′1),m2(ρ′2) ‖ m1(ρ1),m2(ρ2), T (unit + unit), p′) ∈ ∇M .
We conclude (m1,m2, T (unit + unit), p) ∈ ∇Γ

M .
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Abstract. A fully-automated algorithm is developed able to show that evaluation of a
given untyped λ-expression will terminate under CBV (call-by-value). The “size-change
principle” from first-order programs is extended to arbitrary untyped λ-expressions in
two steps. The first step suffices to show CBV termination of a single, stand-alone λ-
expression. The second suffices to show CBV termination of any member of a regular set
of λ-expressions, defined by a tree grammar. (A simple example is a minimum function,
when applied to arbitrary Church numerals.) The algorithm is sound and proven so in
this paper. The Halting Problem’s undecidability implies that any sound algorithm is
necessarily incomplete: some λ-expressions may in fact terminate under CBV evaluation,
but not be recognised as terminating.

The intensional power of the termination algorithm is reasonably high. It certifies as
terminating many interesting and useful general recursive algorithms including programs
with mutual recursion and parameter exchanges, and Colson’s “minimum” algorithm.
Further, our type-free approach allows use of the Y combinator, and so can identify as
terminating a substantial subset of PCF.

1. Introduction

The size-change analysis by Lee, Jones and Ben-Amram [32] can show termination of pro-
grams whose parameter values have a well-founded size order. The method is reasonably
general, easily automated, and does not require human invention of lexical or other pa-
rameter orders. It applies to first-order functional programs. This paper applies similar
ideas to termination of higher-order programs. For simplicity and generality we focus on
the simplest such language, the λ-calculus.

Contribution of this paper. Article [23] (prepared for an invited conference lecture)
showed how to lift the methods of [32] to show termination of closed λ-expressions. The
current paper is a journal version of [23]. It extends [23] to deal not only with a single
λ-expression in isolation, but with a regular set of λ-expressions generated by a finite
tree grammar. For example, we can show that a λ-expression terminates when applied to
Church numerals, even though it may fail to terminate on all possible arguments. This
paper includes a number of examples showing its analytical power, including programs with
primitive recursion, mutual recursion and parameter exchanges, and Colson’s “minimum”
algorithm. Further, examples show that our type-free approach allows free use of the Y
combinator, and so can identify as terminating a substantial subset of PCF.
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1.1. Related work. Jones [22] was an early paper on control-flow analysis of the untyped
λ-calculus. Shivers’ thesis and subsequent work [53, 54] on CFA (control flow analysis)
developed this approach considerably further and applied it to the Scheme programming
language. This line is closely related to the approximate semantics (static control graph)
of Section 3.6 [22].

Termination of untyped programs. Papers based on [32] have used size-change graphs
to find bounds on program running times (Frederiksen and Jones [16]); solved related
problems, e.g., to ensure that partial evaluation will terminate (Glenstrup and Jones, Lee
[24, 30]); and found more efficient (though less precise) algorithms (Lee [31]). Further,
Lee’s thesis [29] extends the first-order size-change method [32] to handle higher-order
named combinator programs. It uses a different approach than ours, and appears to be
less general.

We had anticipated from the start that our framework could naturally be extended
to higher-order functional programs, e.g., functional subsets of Scheme or ML. This has
since been confirmed by Sereni and Jones, first reported in [50]. Sereni’s Ph.D. thesis [49]
develops this direction in considerably more detail with full proofs, and also investigates
problems with lazy (call-by-name) languages. Independently and a bit later, Giesl and
coauthors have addressed the analysis of the lazy functional language Haskell [17].

Termination of typed λ-calculi. Quite a few people have written about termination based
on types. Various subsets of the λ-calculus, in particular subsets typable by various disci-
plines, have been proven strongly normalising. Work in this direction includes pathbreak-
ing results by Tait [56] and others concerning simple types, and Girard’s System F [26].
Abel, Barthe and others have done newer type-based approaches to show termination of
a λ-calculus extended with recursive data types [1, 2, 5].

Typed functional languages: Xi’s Ph.D. research focused on tracing value flow via data
types for termination verification in higher order programming languages [61], Wahlstedt
has an approach to combine size-change termination analysis with constructive type theory
[59, 60].

Term rewriting systems: The popular “dependency pair” method was developed by
Arts and Giesl [4] for first-order programs in TRS form. This community has begun to
study termination of higher order term rewriting systems, including research by Giesl et.al.
[18, 17], Toyama [57] and others.

2. The call-by-value λ-calculus

First, we review relevant definitions and results for the call-by-value λ-calculus, and
then provide an observable characterisation of the behavior of a nonterminating expression.

2.1. Classical semantics.

Definition 2.1. Exp is the set of all λ-expressions that can be formed by these syntax
rules, where @ is the application operator (sometimes omitted). We use the teletype font
for λ-expressions.

e, P ::= x | e @ e | λx.e
x ::= Variable name
• The set of free variables fv(e) is defined as usual: fv(x) = {x}, fv(e@e′) = fv(e) ∪

fv(e′) and fv(λx.e) = fv(e) \ {x}. A closed λ-expression e satisfies fv(e) = ∅.
• A program, usually denoted by P, is any closed λ-expression.
• The set of subexpressions of a λ-expression e is denoted by subexp(e).
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The following is standard, e.g., [43]. Notation: β-reduction is done by substituting v for
all free occurrences of x in e, written e[v/x], and renaming λ-bound variables if needed to
avoid capture.

Definition 2.2. (Call-by-value semantics) The call-by-value evaluation relation is defined
by the following inference rules, with judgement form e ⇓ v where e is a closed λ-expression
and v ∈ ValueS . ValueS (for “standard value”) is the set of all abstractions λx.e.

(ValueS)
v ⇓ v

(If v ∈ ValueS ) (ApplyS) e1 ⇓ λx.e0 e2 ⇓ v2 e0[v2/x] ⇓ v

e1@e2 ⇓ v

Lemma 2.3. (Determinism) If e ⇓ v and e ⇓ w then v = w.

2.2. Nontermination is sequential. A proof of e ⇓ v is a finite object, and no such
proof exists if the evaluation of e fails to terminate. Thus in order to be able to trace an
arbitrary computation, terminating or not, we introduce a new “calls” relation e → e′, in
order to make nontermination visible.

The “calls” relation. The rationale is straightforward: e → e′ if in order to deduce e ⇓ v
for some value v, it is necessary first to deduce e′ ⇓ u for some u, i.e., some inference rule

has form . . . e′ ⇓ ? . . .

e ⇓ ?
. Applying this to Definition 2.2 gives the following.

Definition 2.4. (Evaluation and call semantics) The evaluation and call relations are
defined by the following inference rules, where →

r
, →

d
, →

c
⊆ Exp × Exp1.

(Value)
v ⇓ v

(If v ∈ Value)

(Operator)
e1@e2 →

r
e1

(Operand) e1 ⇓ v1

e1@e2 →
d
e2

(Call0)
e1 ⇓ λx.e0 e2 ⇓ v2

e1@e2 →
c
e0[v2/x]

(Apply0)
e1 ⇓ λx.e0 e2 ⇓ v2 e0[v2/x] ⇓ v

e1@e2 ⇓ v

For convenience we will sometimes combine the three into a single call relation → =
→
r

∪ →
d

∪ →
c

. As usual, we write →+ for the transitive closure of →, and →∗ for
its reflexive transitive closure. We will sometimes write s ⇓ to mean s ⇓ v for some
v ∈ ValueS , and write s �⇓ to mean there is no v ∈ ValueS such that s ⇓ v, i.e., if
evaluation of s does not terminate.

A small improvement to the operational semantics. Note that rules (Call0) and (Apply0)
from Definition 2.4 overlap: e2 ⇓ v2 appears in both, as does e0[v2/x]. Thus (Call0) can be
used as an intermediate step to simplify (Apply0), giving a more orthogonal set of rules.
Variations on the following combined set will be used in the rest of the paper:

1Naming: r, d in →
r

, →
d

are the last letters of operator and operand, and c in →
c

stands for “call”.
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Definition 2.5. (Combined evaluate and call rules, standard semantics)

(Value)
v ⇓ v

(If v ∈ Value)

(Operator)
e1@e2 →

r
e1

(Operand) e1 ⇓ v1

e1@e2 →
d
e2

(Call) e1 ⇓ λx.e0 e2 ⇓ v2

e1@e2 →
c
e0[v2/x]

(Apply)
e1@e2 →

c
e′ e′ ⇓ v

e1@e2 ⇓ v

The call tree of program P is the smallest set of expressions CT containing P that is closed
under → . It is not necessarily finite.

Lemma 2.6. (NIS, or Nontermination Is Sequential) Let P be a program. Then P ⇓ if
and only if CT has no infinite call chain starting with P:

P = e0 → e1 → e2 → . . .

Example: evaluation of expression Ω = (λx.x@x)@(λy.y@y) yields an infinite call chain:

Ω = (λx.x@x)@(λy.y@y) → (λy.y@y)@(λy.y@y) → (λy.y@y)@(λy.y@y) → . . .

By the NIS Lemma all nonterminating computations give rise to infinite linear call chains.
Such call chains need not, however, be repetitive as in this example, or even finite.

Informally e0 �⇓ implies existence of an infinite call chain as follows: Try to build,
bottom-up and left-to-right, a proof tree for e0 ⇓ v. Since call-by-value evaluation cannot
“get stuck” this process will continue infinitely, leading to an infinite call chain. Figure 1
shows such a call tree with infinite path starting with e0 → e1 → e2 → e3 → . . ., where
→ = →

r
∪ →

d
∪ →

c
. The Appendix contains a formal proof.

3. An approach to termination analysis

The “size-change termination” analysis of Lee, Jones and Ben-Amram [32] is based
on several concepts, including:

(1) Identifying nontermination as caused by infinitely long sequential state transitions.
(2) A fixed set of program control points.
(3) Observable decreases in data value sizes.
(4) Construction of one size-change graph for each function call.
(5) Finding the program’s control flow graph, and the call sequences that follow it.

The NIS Lemma establishes point 1. However, concepts 2, 3, 4 and 5 all seem a priori
absent from the λ-calculus, except that an application must be a call; and even then, it
is not a priori clear which function is being called. We will show, one step at a time, that
all the concepts do in fact exist in call-by-value λ-calculus evaluation.

3.1. An environment-based semantics. Program flow analysis usually requires evi-
dent program control points. An alternate environment-based formulation remedies their
absence in the λ-calculus. The ideas were formalised by Plotkin [43], and have long been
used in implementations of functional programming language such as scheme and ml.
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Code: r = “Operator”, d = “Operand”, c = “call”.

Figure 1: Nontermination implies existence of an infinite call chain

Definition 3.1. (States, etc.) Define State, Value, Env to be the smallest sets such that
State = { e : ρ | e ∈ Exp, ρ ∈ Env and dom(ρ) ⊇ fv(e) }
Value = { λx.e : ρ | λx.e : ρ ∈ State }
Env = { ρ : X → Value | X is a finite set of variables }

Equality of states is defined by:

e1 : ρ1 = e2 : ρ2 holds if e1 = e2 and ρ1(x) = ρ2(x) for all x ∈ fv(e1)

The empty environment with domain X = ∅ is written []. The environment-based evalu-
ation judgement form is s ⇓ v where s ∈ State, v ∈ Value.

The Plotkin-style rules follow the pattern of Definition 2.1, except that substitution (β-
reduction) e0[v2/x] of the (CallS) rule is replaced by a “lazy substitution” that just updates
the environment in the new (Call) rule. Further, variable values are fetched from the
environment

Definition 3.2. (Environment-based evaluation semantics) The evaluation relation ⇓, is
defined by the following inference rules.

(ValueE)
v ⇓ v

(If v ∈ Value) (VarE)
x : ρ ⇓ ρ(x)
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(ApplyE0)
e1 : ρ ⇓ λx.e0 : ρ0 e2 : ρ ⇓ v2 e0 : ρ0[x �→ v2] ⇓ v

e1@e2 : ρ ⇓ v

3.2. States are tree structures. A state has form s = e : ρ as in Definition 3.1 where
ρ binds the free variables of e to values, which are themselves states. Consider, for two
examples, these two states

s = e:ρ = r@(r@a):[r �→ succ : [], a �→ 2 : []]

s′ = e′:ρ′ = r@(r@a):[r �→ λa . r@(r@a) : [r �→ succ : []], a �→ 2 : []]

(written in our usual linear notation and using the standard Church numerals 0, 1, 2, . . ..
For brevity details of the successor function succ are omitted. It is straightforward to
verify that s ⇓ 4 and s′ ⇓ 6 by Definition 3.2.

More generally, each value bound in an environment is a state in turn, so in full detail
a state’s structure is a finite tree. (The levels of this tree represent variable bindings, not
to be confused with the syntactic or subexpression tree structures from Figure 3.)

e ρ︷ ︸︸ ︷
r@(r@a) :

︷︸︸︷
[ · ]

�
���

�
���
r a

succ:[] 2:[]

e′ ρ′︷ ︸︸ ︷
r@(r@a) :

︷︸︸︷
[ · ]

�
���

�
���
r a

λa.r@(r@a):[·] 2:[]

	
r

succ:[]

Figure 2: Structures of two states s, s′. Each state is a finite tree.

Figure 2 shows the structure of these two states, with abbreviations for Church numerals
such as 2 = λsλz . s@(s@z).

3.3. Nontermination made visible in an environment-based semantics. Straight-
forwardly adapting the approach of Section 2.2. gives the following set of inference rules,
variations on which will be used in the rest of the paper:

Definition 3.3. (Combined evaluate and call rules, environment semantics)

(Value)
v ⇓ v

(If v ∈ Value) (Var)
x : ρ ⇓ ρ(x)

(Operator)
e1@e2 : ρ →

r
e1 : ρ

(Operand) e1 : ρ ⇓ v1

e1@e2 : ρ →
d
e2 : ρ

(Call) e1 : ρ ⇓ λx.e0 : ρ0 e2 : ρ ⇓ v2

e1@e2 : ρ →
c
e0 : ρ0[x �→ v2]

(Apply)
e1@e2 : ρ →

c
e′ : ρ′ e′ : ρ′ ⇓ v

e1@e2 : ρ ⇓ v
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The following is proven in the same way as Lemma 2.6.

Lemma 3.4. (NIS, or Nontermination Is Sequential) Let P be a program. Then P : [] ⇓ if
and only if CT has no infinite call chain staring with P : [] (where → = →

r
∪ →

d
∪ →

c
):

P : [] = e0 : ρ0 → e1 : ρ1 → e2 : ρ2 → . . .

Following the lines of Plotkin [43], the environment-based semantics is shown equiv-
alent to the usual semantics in the sense that they have the same termination be-
haviour. Further, when evaluation terminates the computed values are related by function
F : States → Exp defined by

F (e : ρ) = e[F (ρ(x1))/x1, ..., F (ρ(xk))/xk] where {x1, .., xk} = fv(e).

Lemma 3.5. P : [] ⇓ v (by Definition 3.2) implies P ⇓ F (v) (by Definition 2.5), and
P ⇓ w implies there exists v′ such that P : [] ⇓ v′ and F (v′) = w.

Example: evaluation of closed Ω = (λx.x@x)@(λy.y@y) yields an infinite call chain:

Ω : [] = (λx.x@x)@(λy.y@y) : [] → x@x : ρ1 → y@y : ρ2 → y@y : ρ2 → y@y : ρ2 → . . .

where ρ1 = [x �→ λy.y@y : []] and ρ2 = [y �→ λy.y@y : []].

3.4. A control point is a subexpression of a λ-expression. The following subexpres-
sion property does not hold for the classical rewriting λ-calculus semantics, but does hold
for Plotkin-style environment semantics of Definition 3.2. It is central to our program
analysis: A control point will be a subexpression of the program P being analysed, and our
analyses will trace program information flow to and from subexpressions of P.

Lemma 3.6. If P : [] ⇓ λx.e : ρ then λx.e ∈ subexp(P). [Recall Definition 2.1.]

This is proven as follows, using a more general inductive hypothesis.

Definition 3.7. The expression support of a given state s is exp sup(s), defined by

exp sup(e : ρ) = subexp(e) ∪
⋃

x∈fv(e)

exp sup(ρ(x))

Lemma 3.8. (Subexpression property) If s ⇓ s′ or s → s′ then exp sup(s) ⊇ exp sup(s′).

Proof. This follows by induction on the proof of s ⇓ v or s → s′. Lemma 3.6 is an
immediate corollary.

Base cases: s = x : ρ and s = λx.e : ρ are immediate. For rule (Call) suppose
e1 : ρ ⇓ λx.e0 : ρ0 and e2 : ρ ⇓ v2. By induction

exp sup(e1 : ρ) ⊇ exp sup(λx.e0 : ρ0) and exp sup(e2 : ρ) ⊇ exp sup(v2)

Thus
exp sup(e1@e2 : ρ) ⊇ exp sup(e1 : ρ) ∪ exp sup(e2 : ρ) ⊇

exp sup(λx.e0 : ρ0) ∪ exp sup(v2) ⊇ exp sup(e0 : ρ0[x �→ v2])

For rule (Apply) we have exp sup(e1@e2 : ρ) ⊇ exp sup(e′ : ρ′) ⊇ exp sup(v). Cases
(Operator), (Operand) are immediate.
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3.5. Finitely describing a program’s computation space. A standard approach to
program analysis is to trace data flow along the arcs of the program’s dynamic control
graph or DCG. In our case this is the call relation → of Definition 2.5. Unfortunately
the DCG may be infinite, so for program analysis we will instead compute a safe finite
approximation called the SCG, for static control graph.

Example 3.9. Figure 3 shows the combinator Ω = (λx.x@x)@(λy.y@y) as a syntax tree
whose subexpressions are labeled by numbers. To its right is the “calls” relation →. It
has an infinite call chain:

Ω : [] → x@x : ρ1 → y@y : ρ2 → y@y : ρ2 → y@y : ρ2 → . . .

Using subexpression numbers, the loop is

1 : [] → 3 : ρ1 → 7 : ρ2 → 7 : ρ2 → . . .

where ρ1 = [x �→ λy.y@y : []] and ρ2 = [y �→ λy.y@y : []]. The set of states reachable
from P : [] is finite, so this computation is in fact a “repetitive loop.” (It is also possible
that a computation will reach infinitely many states that are all different.)

λ-expression Ω

1 @�
��� ���

2 λx�
	

6 λy�
	

3 @�


� ��


4 x�5 x�
7 @�


� ��


8 y�9 y�

The “calls” relation →

1: []��
��

�
c

���
r









�

d

6: [] ⇓ 6 : []��
��
2: [] ⇓ 2 : []��
��

3: ρ1��
	


�
c

���
r








�

d

5: ρ1 ⇓ 6 : []��
	

4: ρ1 ⇓ 6 : []��
	


7: ρ2��
	
���

r








�

d�
�

c

9: [] ⇓ 6 : []��
	

8: [] ⇓ 6 : []��
	


where ρ1 = [x �→ 6 : []] and ρ2 = [y �→ 6 : []]

Figure 3: The DCG or dynamic control graph of a λ-expression

By the NIS Lemma 3.4, if P �⇓ then there exists an infinite call chain

P : [] = e0 : ρ0 → e1 : ρ1 → e2 : ρ2 → . . .

By Lemma 3.8, ei ∈ subexp(P) for each i. Our termination-detecting algorithm will focus
on the size relations between consecutive environments ρi and ρi+1 in this chain. Since
subexp(P) is a finite set, at least one subexpression e occurs infinitely often, so “self-loops”
will be of particular interest.

Since all states have an expression component lying in a set of fixed size, and each
expression in the environment also lies in this finite set, in an infinite state set S there
will be states whose environment depths are arbitrarily large.

3.6. Static control flow graphs for λ-expressions. The end goal, given program P,
is implied by the NIS Lemma 3.4: correctly to assert the nonexistence of any infinite call
chain starting at P : []. By the Subexpression Lemma 3.8 an infinite call chain e0 : ρ0 →
e1 : ρ1 → e2 : ρ2 → . . . can only contain finitely many different expression components ei.
A static control flow graph (SCG for short) including all expression components can be
obtained by abstract interpretation of the “Calls” and “Evaluates-to” relations (Cousot
and Cousot [14]). Figure 4 shows a SCG for Ω.

An approximating SCG may be obtained by removing all environment components
from Definition 3.3. To deal with the absence of environments the variable lookup rule
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λ-expression Ω
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Figure 4: The SCG or static control graph of a λ-expression

is modified: If e1@e2 is any application in P such that e1 can evaluate to a value of form
λx.e and e2 can evaluate to value v2, then v2 is regarded as a possible value of x.

Although approximate, these rules have the virtue that there are only finitely many
possible judgements e → e′ and e ⇓ e′. Consequently, the runtime behavior of program P
may be (approximately) analysed by exhaustively applying these inference rules. A later
section will extend the rules so they also generate size-change graphs.

Definition 3.10. (Approximate evaluation and call rules) The new judgement forms are
e ⇓ e′ and e → e′. The inference rules are:

(ValueA)
λx.e ⇓ λx.e

(VarA) e1@e2 ∈ subexp(P) e1 ⇓ λx.e0 e2 ⇓ v2

x ⇓ v2

(OperatorA)
e1@e2 →

r
e1

(OperandA)
e1@e2 →

d
e2

(CallA) e1 ⇓ λx.e0 e2 ⇓ v2

e1@e2 →
c
e0

(ApplyA)
e1@e2 →

c
e′ e′ ⇓ v

e1@e2 ⇓ v

The (VarA) rule refers globally to P, the program being analysed. The approximate
evaluation is nondeterministic, since an expression may evaluate to more than one value.

Following is a central result: that all possible values obtained by the actual evaluation
of Definition 3.3 are accounted for by the approximate evaluation of Definition 3.10.

Lemma 3.11.
If P : [] →∗ e : ρ and e : ρ ⇓ e′ : ρ′, then e ⇓ e′.
If P : [] →∗ e : ρ and e : ρ → e′ : ρ′, then e → e′.

Proof is in the Appendix.

4. A quick review of size-change analysis

Using the framework of [32], the relation between two states s1 and s2 in a call s1 → s2

or an evaluation s1 ⇓ s2 will be described by means of a size-change graph G.

Example 4.1. Let first-order functions f and g be defined by mutual recursion:

f(x,y) = if x=0 then y else 1: g(x,y,y)
g(u,v,w) = if w=0 then 3:f(u-1,w) else 2:g(u,v-1,w+2)
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Label the three function calls 1, 2 and 3. The “control flow graph” in Figure 5 shows
the calling function and called function of each call, e.g., 1 : f → g. Associate with each
call a “size-change graph”, e.g., G1 for call 1, that safely describes the data flow from the
calling function’s parameters to the called function’s parameters. Symbol ↓ indicates a
value decrease.

Size-change graph set G
x u

y v

v

G1

=→
=→
���=

u u

v v

w w

G2

↓→

=→ u x

v y

w���=

G3

↓→
Control flow graph

f g�� 2
1

3
�

�
� �

Figure 5: Call graph and size-change graphs for the example first-order program.

Termination reasoning: We show that all infinite size-change graph sequences M =
g1g2 . . . ∈ {G1, G2, G3}ω that follow the program’s control flow are impossible (assuming
that the data value set is well-founded):

Case 1: M ∈ . . . (G2)ω ends in infinitely many G2’s: This would imply that variable
v descends infinitely.

Case 2: M ∈ . . . (G1G
∗
2G3)ω. This would imply that variable u descends infinitely.

Both cases are impossible; therefore a call of any program function with any data will
terminate. End of example.

Definition 4.2.
(1) A size-change graph A

G→ B consists of a source set A; a target set B; and a set of
labeled2 arcs G ⊆ A × {=, ↓} × B.

(2) The identity size-change graph for A is A
idA→ A where idA = {x =→ x | x ∈ A}.

(3) Size-change graphs A
G1→ B and C

G2→ D are composible if B = C. The composition

of A
G1→ B and B

G2→ C is A
G1;G2−→ C where

G1; G2 = {x ↓→ z | ↓ ∈ { r, s | x r→ y ∈ G1 and y
s→ z ∈ G2 for some y ∈ B} }

∪ {x =→ z | {=} = { r, s | x r→ y ∈ G1 and y
s→ z ∈ G2 for some y ∈ B} }

Lemma 4.3. Composition is associative, and A
G→ B implies idA; G = G; idB = G.

Definition 4.4. A multipath M over a set G of size-change graphs is a finite or infinite
composible sequence of graphs in G. Define

Gω = {M = G0, G1, . . . | graphs Gi, Gi+1 are composible for i = 0, 1, 2, . . . }
Definition 4.5.

(1) A thread in a multipath M = G0, G1, G2, . . . is a sequence t = aj
rj→ aj+1

rj+1→ . . .

such that ak
rk→ ak+1 ∈ Gk for every k ≥ j (and each rk is = or ↓.)

(2) Thread t is of infinite descent if rk = ↓ for infinitely many k ≥ j.

2Arc label ↓= signifying ≥ was used in [32] instead of =, but this makes no difference in our context.
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Definition 4.6. The size-change condition.
A set G of size-change graphs satisfies the size-change condition if every infinite
multipath M ∈ Gω contains at least one thread of infinite descent.

Perhaps surprisingly, the size-change condition is decidable. Its worst-case complexity is
shown to be complete for pspace in [32] (for first-order programs, in relation to the length
of the program being analysed).

The example revisited. The program of Figure 5 has three size-change graphs, one for each
of the calls 1 : f → g, 2 : g → g, 3 : g → f, so G = {A G1→ B,B

G2→ B,B
G3→ A} where

A = {x, y} and B = {u, v, w}. (Note: the vertical layout of size-change graphs in Figure 5

is inessential; one could simply write G3 = {u ↓→ x, w
=→ y}.)

G satisfies the size-change condition, since every infinite multipath has either a thread
that decreases u infinitely, or a thread that decreases v infinitely.

5. Tracing data size changes in call-by-value λ-calculus evaluation

The next focus is on size relations between consecutive environments in a call chain.

5.1. Size changes in a computation: a well-founded relation between states.

Definition 5.1.
(1) A name path is a finite string p of variable names, where the empty string is (as

usual) written ε.
(2) The graph basis of a state s = e : ρ is the smallest set gb(s) of name paths satisfying

gb(e :ρ) = {ε} ∪ {xp | x ∈ fv(e) and p ∈ gb(ρ(x))}
By this definition, for the two states in the example above we have gb(s) = {ε, r, a}

and gb(s′) = {ε, r, rr, a}. Further, given a state s and a path p ∈ gb(s), we can find the
substate identified by name path p as follows:

Definition 5.2. The valuation function s : gb(s) → State of a state s is defined by:

s(ε) = s and e : ρ(xp) = ρ(x)(p)

We need to develop a size ordering on states. This will be modeled by size-change
arcs =→ and

↓→. The size relation we use is partly the “subtree” relation on closure values
e : ρ, and partly the “subexpression” relation on λ-expressions.

Definition 5.3.
(1) The state support of a state e : ρ is given by

support(e : ρ) = {e : ρ} ∪
⋃

x∈fv(e)

support(ρ(x))

(2) Relations ,1, ,2, & and , on states are defined by:
• s1 ,1 s2 holds if support(s1) - s2 and s1 �= s2;
• s1 ,2 s2 holds if s1 = e1 : ρ1 and s2 = e2 : ρ2, where subexp(e1) - e2 and
e1 �= e2 and ∀x ∈ fv(e2).ρ1(x) = ρ2(x). Further,

• Relation & is defined to be the transitive closure of ,1 ∪ ,2 ∪ =.
• Finally, s1 , s2 if s1 & s2 and s1 �= s2
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Lemma 5.4. The relation , ⊆ State × State is well-founded.

We prove that the relation , on states is well-founded by proving that

e1 : ρ1 , e2 : ρ2 implies that (H(e1 : ρ1), L(e1)) >lex (H(e2 : ρ2), L(e2))

in the lexicographic order, where H gives the height of the environment and L gives the
length of the expression. The proof is in the Appendix.

Lemma 5.5. If p ∈ gb(s) then s &1 s(p). If p ∈ gb(s) and p �= ε then s ,1 s(p).

6. Size-change graphs that safely describe a program

6.1. Safely describing state transitions. We now define the arcs of the size-change
graphs (recalling Definition 4.2):

Definition 6.1. A size-change graph G relating state s1 to state s2 has source gb(s1) and
target gb(s2).

Definition 6.2. Let s1 = e1 : ρ1 and s2 = e2 : ρ2. Size-change graph s1→s2, G is safe3

for (s1, s2) if

p1
=→ p2 ∈ G implies s1(p1) = s2(p2) and p1

↓→ p2 ∈ G implies s1(p1) , s2(p2)

By dom(G) we denote the subset of source(G) from where arcs begin. By codom(G) we
denote the subset of target(G) where arcs end. Notice that if a size-change graph G is
safe for the states (s1, s2), then any subset size-change graph G′ ⊂ G with source(G′) =
source(G) and target(G′) = target(G) is safe for (s1, s2).

Definition 6.3. A set G of size-change graphs is safe for program P if P : [] →∗ s1 → s2

implies some G ∈ G is safe for the pair (s1, s2).

Example 6.4. Figure 6 shows a graph set G that is safe for program Ω = (λx.x@x)(λy.y@y).
For brevity, each subexpression of Ω is referred to by number in the diagram of G. Subex-
pression 1 = Ω has no free variables, so arcs from node 1 are labeled with size-change
graphs G0 = ∅.

λ-expression Ω

1 @�
��� ���

2 λx�
	

6 λy�
	

3 @�


� ��


4 x�5 x�
7 @�


� ��


8 y�9 y�

Set of size-change graphs G = {G0, G1, G2, G3}

1��
��

����
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��
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��
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���






�

G1

G1 G2
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7��
	
���







�

�
�

G3

G3

G3

9��
	

8��

	


G0 = ∅, G1 = {x =→ x}, G2 = {x =→ y}, G3 = {y =→ y}

Figure 6: A set of size-change graphs that safely describe Ω’s nonterminating computation.

Theorem 6.5. If G is safe for program P and satisfies the size-change condition, then
call-by-value evaluation of P terminates.

3The term “safe” comes from abstract interpretation [25]. An alternative would be “sound.”
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Proof. Suppose call-by-value-evaluation of P does not terminate. Then by Lemma 3.4
there is an infinite call chain

P : [] = e0 : ρ0 → e1 : ρ1 → e2 : ρ2 → . . .

Letting si = ei : ρi, by safety of G (Definition 6.3), there is a size-change graph Gi ∈ G
that safely describes each pair (si, si+1). By the size-change condition (Definition 4.6)
the multipath M = G0, G1, . . . has an infinite thread t = aj

rj→ aj+1
rj+1→ . . . such that

k ≥ j implies ak
rk→ ak+1 ∈ Gk, and each rk is ↓ or =, and there are infinitely many

rk = ↓. Consider the value sequence sj(aj), sj+1(aj+1), . . .. By safety of Gk (Definition
6.2) we have sk(ak) & sk+1(ak+1) for every k ≥ j, and infinitely many proper decreases
sk(ak) , sk+1(ak+1). However this is impossible since by Lemma 5.4 the relation , on
State is well-founded.

Conclusion: call-by-value-evaluation of P terminates.

The goal is partly achieved: We have found a sufficient condition on a set of size-change
graphs to guarantee program termination. What we have not yet done is to find an
algorithm to construct a size-change graph set G that is safe for P (The safety condition
of Definition 6.3 is in general undecidable, so enumeration of all graphs won’t work.) Our
graph construction algorithm is developed in two stages:

• First, the exact evaluation and call relations are “instrumented” so as to produce
safe size-change graphs during evaluation.

• Second, an extension of the abstract interpretation from Section 3.6 yields a com-
putable over-approximation G that contains all graphs that can be built during
exact evaluation.

6.2. Generating size-change graphs during a computation. We now “instrument”
the exact evaluation and call relations so as to produce safe size-change graphs during
evaluation. In the definition of the size-change graphs x, y, z are variables, and p, q can
be variables or ε, the empty path. Recall the valuation function for a state gives s̄(ε) = s,
so in a sence ε is bound to the whole state.

Definition 6.6. (Evaluation and call with graph generation) The extended evaluation and
call judgement forms are e : ρ → e′ : ρ′, G and e : ρ ⇓ e′ : ρ′, G, where source(G) =
fv(e)∪{ε} and target(G) = fv(e′)∪{ε}. The inference rules are:

(ValueG)
λx.e : ρ ⇓ λx.e : ρ, id=

λx.e

(OperatorG)
e1@e2 : ρ →

r
e1 : ρ, id↓

e1

(OperandG) e1 : ρ ⇓ v1

e1@e2 : ρ →
d
e2 : ρ, id↓

e2

id=
e stands for {ε =→ ε} ∪ {y =→ y | y ∈ fv(e)}

id↓
e stands for {ε ↓→ ε} ∪ {y =→ y | y ∈ fv(e)}

An arc y
=→ y express that the state bound to the variable y is the same in both sides,

before and after the evaluation or call.
The ε “represent” the whole state. In the (ValueG) rule the state λx.e : ρ is the same in
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both sides and so there is an arc ε
=→ ε. In the (OperatorG) and (OperandG) rules the

state is smaller in the right hand side because we go to a strict subexpression and possibly
also restrict the environment ρ accordingly. So there are ε

↓→ ε arcs.

(VarG)
x : ρ ⇓ ρ(x), {x ↓→ y |y ∈ fv(e′) } ∪ {x =→ ε} (ρ(x) = e′ : ρ′)

In the (VarG) rule the state on the right side is ρ(x). This is the state which x is bound
to in the environment in the left hand side, therefore we have an arc x

=→ ε. Suppose
ρ(x) = e′ : ρ′ and y ∈ fv(e′). Then y is bound in ρ′ and this binding is then a subtree of

e′ : ρ′. So we have an arc x
↓→ y.

(CallG) e1 : ρ ⇓ λx.e0 : ρ0, G1 e2 : ρ ⇓ v2, G2

e1@e2 : ρ →
c
e0 : ρ0[x �→ v2], G

−ε/λx.e0

1 ∪e0 Gε�→x
2

In the definition of the size-change graphs used in the (CallG) rule x, y, z are variables,
and p, q can be variables or ε. In r→ the r can be either ↓ or =. The construction of the
size-change graph associated with the call is explained below.

G
−ε/λx.e0

1 stands for cases

x ∈ fv(e0) : {y r→ z | y r→ z ∈ G1} ∪ {ε ↓→ z | ε
r→ z ∈ G1}

x /∈ fv(e0) : {y r→ z | y r→ z ∈ G1} ∪ {ε ↓→ q | ε
r→ q ∈ G1} ∪

{p ↓→ ε | p
r→ ε ∈ G1}

Gε�→x
2 stands for { y

r→ x | y
r→ ε ∈ G2} ∪ { ε

↓→ x | ε
r→ ε ∈ G2 }

G ∪e G′ stands for the restriction of G ∪ G′ such that
the codomain ⊆ fv(e) ∪ {ε}

First we consider how much information from G1 we can preserve. We have that the whole
state e1@e2 : ρ in left hand side for the c-call is strictly larger than e1 : ρ. The variable x
is not free in λx.e0 and so does not belong to the target of G1. If a variable z ∈ fv(λx.e0)
is bound in ρ0 then it is bound to the same state in ρ0[x �→ v2]. Therefore, if there is an
arc y

r→ z in G1, then it also safely describes the c-call and can be preserved. Also, if

there is an arc ε
r→ z in G1, then an arc ε

↓→ z describes the c-call. Further, if x /∈ fv(e0)
then e0 : ρ0[x �→ v2] = e0 : ρ0 and then λx.e0 : ρ0 , e0 : ρ0[x �→ v2] = e0 : ρ0. In this case,

if there is an arc p
r→ ε going to ε in G1, then the arc p

↓→ ε describes the c-call.
Now consider which information we can gain from G2. We have that the whole state
e1@e2 : ρ in left hand side for the c-call is strictly larger than e2 : ρ. If x ∈ fv(e0) then
in e0 : ρ0[x �→ v2] we have that x is bound to the whole state in the right hand side for
the evaluation of the operand. So in this case, if there is an arc y

r→ ε in G2 then the arc

y
r→ x describes the c-call, and if there is an arc ε

r→ ε in G2 then the arc ε
↓→ x describes

the c-call. If x /∈ fv(e0) then we cannot gain any information from G2. The restriction
built into the definition of ∪e0 ensures that this holds.
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(ApplyG)
e1@e2 : ρ →

c
e′ : ρ′, G′ e′ : ρ′ ⇓ v,G

e1@e2 : ρ ⇓ v, (G′; G)

The size-change graph (G’;G) is the composition of the two graphs.

In the size-change graphs generated by the rules above, the less-than relations (x
↓→ y)

in (VarG)-rule arise from the sub-environment property of ,1 from Lemma 5.5. The

remaining relations
↓→ arise from the subexpression property of ,2. The relations based

on the sub-environment property capture the case that the state on the right hand side
is fetched from the environment in the left hand side. The equality relations =→ describe
how values are preserved under calls and evaluations.

Lemma 6.7. s → s′ (by Definition 2.5) iff s → s′, G (by Definition 6.6) for some G.
Further, s ⇓ s′ iff s ⇓ s′, G for some G.

Theorem 6.8. (The extracted graphs are safe)
s → s′, G or s ⇓ s′, G (by Definition 6.6) implies G is safe for (s, s′) (with source and
target sets extended as necessary).

Lemma 6.7 is immediate since the new rules extend the old, without any restriction
on their applicability. Proof of “safety” Theorem 6.8 is in Appendix.
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Figure 7: Data-flow in a variable evaluation

The diagram of Figure 7 illustrates the data-flow in a variable evaluation. The diagram
of Figure 8 may be of some use in visualising data-flow during evaluation of e1@e2. States
are in ovals and triangles represent environments. In the application e1@e2 : ρ on the
left, operator e1 : ρ evaluates to λx.e0 : ρ0, G1 and operand e2 : ρ evaluates to e′ :
ρ′, G2. The size-change graphs G1 and G2 show relations between variables bound in their
environments. There is a call from the application e1@e2 : ρ to e0 : ρ0[x �→ e′ : ρ′] the
body of the operator-value with the environment extended with a binding of x to the
operand-value e′ : ρ′.

It is possible to approximate the calls and evaluates to relations with different de-
grees of precision depending on how much information is kept about the bindings in the
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Figure 8: Data-flow in an application

environment. Here we aim at a coarse approximation, where we remove all environment
components.4

6.3. Construction of size-change graphs by abstract interpretation. We now ex-
tend the coarse approximation to construct size-change graphs.

Definition 6.9. (Approximate evaluation and call with graph generation)
The judgement forms are now e → e′, G and e ⇓ e′, G, where source(G) = fv(e)∪{ε} and
target(G) = fv(e’)∪{ε}. The inference rules are:

(ValueAG)
λx.e ⇓ λx.e, id=

λx.e

(VarAG) e1@e2 ∈ subexp(P) e1 ⇓ λx.e0, G1 e2 ⇓ v2, G2

x ⇓ v2, {x ↓→ y | y ∈ fv(v2)} ∪ {x =→ ε}

(OperatorAG)
e1@e2 →

r
e1, id↓

e1

(OperandAG)
e1@e2 →

d
e2, id↓

e2

(CallAG) e1 ⇓ λx.e0, G1 e2 ⇓ v2, G2

e1@e2 →
c
e0, G

−ε/λx.e0

1 ∪e0 Gε�→x
2

(ApplyAG)
e1@e2 →

c
e′, G′ e′ ⇓ v,G

e1@e2 ⇓ v,G′; G

Lemma 6.10. Suppose P : [] →∗ e : ρ. If e : ρ → e′ : ρ′, G by definition 6.6 then
e → e′, G. Further, if e : ρ ⇓ e′ : ρ′, G then e ⇓ e′, G.

Proof. Follows from Lemma 3.11; see the Appendix.

4It is possible to keep a little more information in the graphs than we do here even with no knowledge
about value-bindings in the environment. We have chosen the given presentation for simplicity.
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Definition 6.11.

absint(P) = { Gj | j > 0∧∃ei, Gi(0 ≤ i ≤ j) : P = e0∧(e0 → e1, G1)∧. . .∧(ej−1 → ej , Gj) }
Theorem 6.12.

(1) The set absint(P) is safe for P.
(2) The set absint(P) can be effectively computed from P.

Proof. Part 1: Suppose P : [] = s0 → s1 → . . . → sj . Theorem 6.8 implies si → si+1, Gi

where each Gi is safe for the pair (si, si+1). Let si = ei : ρi. By Lemma 6.10, ei → ei+1, Gi.
By the definition of absint(P), Gj ∈ absint(P) .

Part 2: There is only a fixed number of subexpressions of P, or of possible size-change
graphs with source and target ⊆ {ε} ∪ {x | x is a variable in P }. Thus absint(P) can be
computed by applying Definition 6.9 exhaustively, starting with P, until no new graphs or
subexpressions are obtained.

7. Some examples

7.1. A simple example. Using Church numerals (n = λsλz.sn(z)), we expect 2 succ
0 to reduce to succ(succ 0). However this contains unreduced redexes because call-by-
value does not reduce under a λ, so we force the computation to carry on through by
applying 2 succ 0 to the identity (twice). This gives:

2 succ 0 id1 id2 where
succ = λm.λs.λz. m s (s z)
id1 = λx.x
id2 = λy.y

After writing this out in full as a λ-expression, our analyser yields (syntactically sugared):

[λs2.λz2.(s2 @ (s2 @ z2))] -- two --
@ [λm.λs.λz. 15: ((m@s)@(s@z))] -- succ --
@ [λs1.λz1.z1] -- zero --
@ [λx.x] -- id1 --
@ [λy.y] -- id2 --

Output of loops from an analysis of this program:

15→∗ 15: [(m,>,m),(s,=,s),(z,=,z)], []

Size Change Termination: Yes

The first number refers to the program point, then comes a list of edges. The loop
occurs because application of 2 forces the code for the successor function to be executed
twice, with decreasing argument values m. The notation for edges is a little different from
previously, here (m,>,m) stands for m

↓→ m.

7.2. fnx = x + 2n by Church numerals. This more interesting program computes
fnx = x+2n by higher-order primitive recursion. If n is a Church numeral then expression
n g x reduces to gn(x). Let x be the successor function, and g be a “double application”
functional. Expressed in a readable named combinator form, we get:
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f n x where
f n = if n=0 then succ else g(f(n-1))
g r a = r(ra)

As a lambda-expression (applied to values n = 3, x = 4) this can be written:

[λn.λx. n -- n --
@ [λr.λa. 11: (r@ 13: (r@a))] -- g --
@ [λ k.λ s.λ z.(s@((k@s)@z))] - succ-
@ x ] -- x --

@ [λs2.λz2. (s2@(s2@(s2@z2))) ] -- 3 --
@ [λs1.λz1. (s1@(s1@(s1@(s1@z1))))] -- 4 --

Following is the output from program analysis. The analysis found the following loops
from a program point to itself with the associated size-change graph and path. The first
number refers to the program point, then comes a list of edges and last a list of numbers,
the other program points that the loop passes through.

SELF Size Change Graphs, no repetition of graphs:

11 →∗ 11: [(r,>,r)] []
11 →∗ 11: [(a,=,a),(r,>,r)] [13]
13 →∗ 13: [(a,=,a),(r,>,r)] [11]
13 →∗ 13: [(r,>,r)] [11,11]

Size Change Termination: Yes

7.3. Ackermann’s function, second-order. This can be written without recursion us-
ing Church numerals as: a m n where a = λm. m b succ and b = λg. λn. n g (g
1). Consequently a m = bm(succ) and b g n = gn+1(1), which can be seen to agree
with the usual first-order definition of Ackermann’s function. Following is the same as
a lambda-expression applied to argument values m=2, n=3, with numeric labels on some
subexpressions.

(λm.m b succ) 2 3 = (λm.m@b@succ)@2@3
(λm.m@(λg.λn.n@g@(g@1))@succ)@2@3
(λm.m@(λg.λn. 9: (n@g@ 13: (g@1)))@succ)@2@3
where
1 = λs1.λz1. 17: (s1@z1)

succ = λk.λs.λz. 23: (s@ 25: (k@s@z))
2 = λs2.λz2. s2@(s2@z2)
3 = λs3.λz3. 39: (s3@ 41: (s3@ 43: (s3@z3)))

Output from an analysis of this program is shown here.
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SELF Size Change Graphs, no repetition of graphs:
(Because graphs are only taken once it is not always the case that the
same loop is shown for all program points in its path)

9 →∗ 9: [(ε,>,n),(g,>,g)] [13]
9 →∗ 9: [(g,>,g)] [17]

13 →∗ 13: [(g,>,g)] [9]
17 →∗ 17: [(s1,>,s1)] [9]
23 →∗ 23: [(k,>,k),(s,=,s),(z,=,z)] [25]
23 →∗ 23: [(s,>,s)] [9]
23 →∗ 23: [(s,>,s),(z,>,k)] [25,17,9]
25 →∗ 25: [(k,>,k),(s,=,s),(z,=,z)] [23]
25 →∗ 25: [(s,>,s),(z,>,k)] [17,9,23]
25 →∗ 25: [(s,>,s)] [23,9,23]
39 →∗ 39: [(s3,>,s3)] [9]
41 →∗ 41: [(s3,>,s3)] [9,39]
43 →∗ 43: [(s3,>,s3)] [9,39,41]

Size Change Termination: Yes

7.4. Arbitrary natural numbers as inputs. The astute reader may have noticed a lim-
itation in the above examples: each only concerns a single λ-expression, e.g., Ackermann’s
function applied to argument values m=2, n=3.

In an implemented version of the λ-termination analysis a program may have an
arbitrary natural number as input; this is represented by •. Further, programs can have as
constants the predecessor, successor and zero-test functions, and if-then-else expressions.
We show, by some examples using •, that the size-change termination approach can handle
the Y-combinator.

In Section 8 we show how to do size-change analysis of λ-expressions applied to sets
of argument values in a more classic context, using Church or other numeral notations
instead of •.
7.5. A minimum function, with general recursion and Y-combinator. This pro-
gram computes the minimum of its two inputs using the call-by-value combinator Y = λp.
[λq.p@(λs.q@q@s)] @ [λt.p@(λu.t@t@u)]. The program, first as a first-order recursive
definition.

m x y = if x=0 then 0 else if y=0 then 0 else succ (m (pred x) (pred y))

Now, in λ-expression form for analysis.
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{λp. [λq.p@(λs.q@q@s)] @ [λt.p@(λu.t@t@u)]} -- the Y combinator --
@
[ λm.λx.λy. 27: if( (ztst @ x),

0,
32: if( (ztst @ y),

0,
37: succ @ 39: m @ (pred@x) @ (pred@y) ]

@ •
@ •

Output of loops from an analysis of this program:

27 →∗ 27: [(x,>,x),(y,>,y)] [32,37,39]
32 →∗ 32: [(x,>,x),(y,>,y)] [37,39,27]
37 →∗ 37: [(x,>,x),(y,>,y)] [39,27,32]
39 →∗ 39: [(x,>,x),(y,>,y)] [27,32,37]

Size Change Termination: Yes

7.6. Ackermann’s function, second-order with constants and Y-combinator.
Ackermann’s function can be written as: a m n where a m = bm(suc) and b g n =
gn+1(1). The following program expresses the computations of both a and b by loops,
using the Y combinator (twice).

[λ y.λ y1.
(y1 @
λ a.λ m. 11: if( (ztst@m),

λ v.(suc@v),
19: ( (y @

λ b.λ f.λ n.
25: if( (ztst@n),

29: (f@1),
32: f@ 34: b @ f @ (pred@n))

@ 41: a @ (pred@m) ]

@ {λp. [λq.p@(λs. q@q@s)] @ [λt.p@(λu. t@t@u)]}
@ {λp1. [λq1.p1@(λs. 72: q1@1q@s1)] @ [λt1.p1@(λu1. 81: t1@t1@u1)]}
@ •
@ •

Output of loops from an analysis of this program:

SELF Size Change Graphs no repetition of graphs:
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11 →∗ 11: [(a,>,y),(m,>,m)] [19,41,72]
11 →∗ 11: [(m,>,m)] [19,41,72,11,19,41,72]
19 →∗ 19: [(a,>,y),(m,>,m)] [41,72,11]
19 →∗ 19: [(m,>,m)] [41,72,11,19,41,72,11]
25 →∗ 25: [(f,>,b),(f,>,f)] [29]
25 →∗ 25: [(f,=,f),(n,>,n)] [32,34]
25 →∗ 25: [(f,>,f)] [29,25,32,34]
29 →∗ 29: [(f,>,f)] [25]
32 →∗ 32: [(f,>,b),(f,>,f)] [25]
32 →∗ 32: [(f,=,f),(n,>,n)] [34,25]
32 →∗ 32: [(f,>,f)] [25,32,34,25]
34 →∗ 34: [(f,=,f),(n,>,n)] [25,32]
34 →∗ 34: [(f,>,b),(f,>,f)] [25,29,25,32]
34 →∗ 34: [(f,>,f)] [25,29,25,32,34,25,32]
41 →∗ 41: [(m,>,m)] [72,11,19]
72 →∗ 72: [(s1,>,s1)] [11,19,41]
81 →∗ 81: [(u1,>,u1)] [11,19,41]

Size Change Termination: Yes

7.7. Imprecision of abstract interpretation. It is natural to wonder whether the gross
approximation of Definition 3.10 comes at a cost. The (VarA) rule can in effect “mix up”
different function applications, losing the coordination between operator and operand that
is present in the exact semantics.

We have observed this in practice: The first time we had programmed Ackermann’s
using explicit recursion, we used the same instance of Y-combinator for both loops, so
the single Y-combinator expression was “shared”. The analysis did not discover that the
program terminated.

However when this was replaced by the “unshared” version above, with two instances
of the Y-combinator (y and y1) (one for each application), the problem disappeared and
termination was correctly recognised.

7.8. A counterexample to a conjecture. Sereni disproved in [48, 49] our conjecture
that the size-change method would recognise as terminating any simply typed λ-expression.
The root of the problem is the imprecision of abstract interpretation just noted. A counter-
example: the λ-expression

E = (λa.a(λb.a(λcd.d)))(λe.e(λf.f))

is simply-typable but not size-change terminating. Its types are any instantiation of

a : ((τ → τ) → μ → μ) → μ → μ
b, c : τ → τ
d : μ
e : (τ → τ) → μ → μ
f : τ
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8. Arbitrary λ-regular program inputs (Extended λ-calculus)

Above we have analysed the termination behaviour of a single closed λ-expression. We
now analyse the termination behaviour for a program in the λ-calculus for all possible
inputs from a given input-set of λ-expressions (e.g., Church numerals). The first step is
to define which sets of λ-expressions we consider. A well-defined input set will be the set
of closed expressions in the “language” generated by a λ-regular grammar.

We extend the syntax and semantics of the λ-calculus to handle expressions containing
nonterminals. An extended lambda term represents all instances of a program with input
taken from the input set. If our analysis certifies that the extended term terminates, then
this implies that the program will terminate for all possible inputs.

8.1. λ-regular grammars. We are interested in a λ-regular grammar for the sake of the
language that it generates: a set of pure λ-expressions (without nonterminals). This is
done using the derivation relation ⇒∗

Γ, soon to be defined.

Definition 8.1.
(1) A λ-regular grammar has form Γ = (N, Π) where N is a finite set of nonterminal

symbols and Π is a finite set of productions.
(2) A Γ-extended λ-expression has the following syntax:

e, P ::= x | A | e @ e | λx.e
A ::= Non-terminal name, A ∈ N
x ::= Variable name

ExpΓ denotes the set of Γ-extended λ-expressions. Exp denotes the set of pure
λ-expressions (without nonterminals). Clearly ExpΓ ⊇ Exp.

(3) A production has form A ::= e where e is a Γ-extended λ-expression.

Definition 8.2. Let nt(e) = {X1, . . . , Xk} denote the multi-set of nonterminal occurrences
in e ∈ ExpΓ. The derivation relation ⇒∗

Γ ⊆ ExpΓ ×Exp is the smallest relation such that
(1) If nt(e) = {X1, . . . , Xk} and Xi ⇒∗

Γ ti ∈ Exp for i = 1, . . . , k,
then e ⇒∗

Γ e[t1/X1, . . . , tk/Xk]

(2) If A ::= e ∈ Γ and e ⇒∗
Γ e′ then A ⇒∗

Γ e′.

Notice that ⇒∗
Γ relates extended λ-terms to pure λ-terms.

In the above definition 8.2 nt(e) = {X1, . . . , Xk} denotes the multi-set of nonterminals in
e so two different Xi, Xj may be instances of the same nonterminal A. In the substitu-
tion e[t1/X1, . . . , tk/Xk] such two different instances of a nonterminal may be replaced by
different pure λ-terms.

Example 8.3. A grammar for Church Numerals: Consider

Γ = ({C, A}, {C ::= λ sλ z . A, A ::= z, A ::= s @ A}
Here A ⇒∗

Γ v iff v has form sn(z) for some n ≥ 0. Clearly C ⇒∗
Γ v iff v has form λ sλ z . sn(z)

for some n ≥ 0.
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The following assumption makes proofs more convenient; proof is standard and so omitted.

Lemma 8.4. For any λ-regular grammar Γ0 there exists an equivalent λ-regular grammar
Γ1 such that no production in Γ1 has form A ::= A′ where A′ ∈ N . We henceforth assume
that all productions in a λ-regular grammar have form A ::= e where e /∈ N .

Definition 8.5. In the following e is a Γ-extended λ-expression:
(1) Define the free variables of e by fv(e) = {x | ∃t.e ⇒∗

Γ t and x ∈ fv(t)}
(2) Define that e is closed iff t is closed for all t such that e ⇒∗

Γ t. It follows that e is
closed iff fv(e) = {}.

(3) Define subterms(e) inductively by:
For a variable x: subterms(x) = {x}.
For an abstraction λx.e: subterms(λx.e) = {λx.e} ∪ subterms(e).
For an application e1@e2: subterms(e1@e2) = {e1@e2}∪subterms(e1)∪subterms(e2).
For a nonterminal A: subterms(A) = {A}.

(4) Define subexps(e) as the smallest set satisfying:
For a variable x: subexps(x) = {x}.
For an abstraction λx.e: subexps(λx.e) = {λx.e} ∪ subexps(e).
For an application e1@e2: subexps(e1@e2) = {e1@e2}∪ subexps(e1)∪ subexps(e2).
For a nonterminal A: subexps(A) = {A} ∪ {t | ∃e.A ::= e ∈ Γ and t ∈ subexps(e)}.

If e′ ∈ subterms(e) then e′ is syntactically present as part of e.
If e′ ∈ subexps(e) then e′ is either a subterm of e or a subexpression of a nonterminal
A ∈ subterms(e).

Sets subterms(e), subexps(e) are both finite, and subterms(e) = subexps(e) for ex-
pressions e in the pure λ-calculus.

Example 8.6. In the grammar for Church Numerals C is a closed Γ-extended expression,
but A is not a closed Γ-extended expression. Further, subexps(A) = {A, z, s@A, s},
subexps(C) = {C, λ sλ z . A, λ z . A, A, z, s@A, s}, fv(C) = {}, fv(A) = {s, z}
Lemma 8.7. Let x be a variable. If A ⇒∗

Γ x then A ::= x ∈ Γ.
If A ⇒∗

Γ λx.e then there exists e′ ∈ ExpΓ such that A ::= λx.e′ ∈ Γ.
If A ⇒∗

Γ e1@e2 then there exist e′1, e′2 ∈ ExpΓ such that A ::= e′1@e′2 ∈ Γ.

Any production has one of the forms A ::= x, A ::= λx.e, A ::= e1@e2. No production
performed on a subterm (which must be a nonterminal) can give a new outermost syntactic
term-constructor.

The following Lemma follows from the definition of free variables of an extended expression.

Lemma 8.8. For a variable x: fv(x) = {x}.
For an abstraction λx.e: fv(λx.e) = fv(e) \ {x}.
For an application e1@e2: fv(e1@e2) = fv(e1) ∪ fv(e2).
For a nonterminal A ∈ N: fv(A) = {x | ∃t.A ⇒∗

Γ t and x ∈ fv(t)}.
Lemma 8.9. For A ∈ N the sets subexps(A) and fv(A) are finite and computable.

Proof is straightforward.
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8.2. Extended environment-based semantics. A semantics extending Definition 3.3
addresses the problem of substitution in expressions with non-terminals. Environments
bind λ-variables (and not non-terminals) to values.

Definition 8.10. (Extended states, values and environments) State, Value, Env are the
smallest sets such that
State = { e : ρ | e ∈ ExpΓ , ρ ∈ Env and f v(e) ⊆ dom(ρ) }
Value = { λx.e : ρ | λx.e : ρ ∈ State }
Env = { ρ : X → Value | X is a finite set of variables }

The empty environment with domain X = ∅ is written []. The evaluation judgement form
is s ⇓ v where s ∈ State, v ∈ Value.

The following rules for calls and evaluations in the extended language are simple
extensions of the rules for pure λ-calculus to also handle nonterminals.

Definition 8.11. (Extended environment-based evaluation) The judgement forms are
e : ρ → e′ : ρ′ and e : ρ ⇓ e′ : ρ′, where e, e′ ∈ ExpΓ, e : ρ and e′ : ρ′ are states.
The evaluation and call relations ⇓,→ are defined by the following inference rules, where
→ = →

r
∪ →

d
∪ →

c
∪ →

n
.

(GramX)
A : ρ →

n
e : ρ

(A ::= e ∈ Γ) New rule

(ResultX)
e : ρ →

x
e′ : ρ′ e′ : ρ′ ⇓ v

e : ρ ⇓ v
(x ∈ {c, n}) Extended Def. 3.3 (Apply)

The following rules have not been changed (but now expressions belong to ExpΓ).

(ValueX)
λx.e : ρ ⇓ λx.e : ρ

(VarX)
x: ρ ⇓ e′ : ρ′

(ρ(x) = e′ : ρ′)

(OperatorX)
e1@e2 : ρ →

r
e1 : ρ

(OperandX) e1 : ρ ⇓ v1

e1@e2 : ρ →
d
e2 : ρ

(CallX) e1 : ρ ⇓ λx.e0 : ρ0 e2 : ρ ⇓ v2

e1@e2 →
c
e0 : ρ0[x �→ v2]

A Γ-extended program is a closed expression P ∈ ExpΓ. While evaluating a program in
the extended language (P : [] ⇓ ), all calls and subevaluations will be from state to state.

In pure λ-calculus the evaluation relation is deterministic. The extended language is
nondeterministic since a nonterminal A may have A ::= e for more than one e.

Informally explained, consider closed extended λ-expression e@B where nonterminal B sat-
isfies fv(B) = {}. Then e@B represents application of e to all possible inputs generated by
B. The analysis developed below can safely determine that e terminates on all inputs by
analysing e@B.
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If a program in the extended language takes more than one input at a time, then we
may rename the nonterminals and bound variables similarly as in α-conversion. As an
example, if a program takes two Church numerals as input, then they can be given by two
grammars identical in structure:

C1 ::= λs1.λz1.A1 A1 ::= z1 A1 ::= s1@A1 and
C2 ::= λs2.λz2.A2 A2 ::= z2 A2 ::= s2@A2

and we can analyse the termination behaviour for (e@C1)@C2. Such renaming can some-
times make the termination analysis more precise.

Definition 8.12. Suppose e is a closed Γ-extended expression and nt(e) = {A1, . . . , Ak}
where Γ = (N, Π) is a λ-regular grammar. By definition e is Γ-terminating iff

e[t1/A1, . . . , tk/Ak] : [] ⇓
for all pure λ-expressions t1, . . . , tk such that Ai ⇒∗

Γ ti for i = 1, . . . , k.

The following rules for calls and evaluations with size-change graphs in the extended
language are simple extensions of the rules for pure λ-calculus to also handle nonterminals.

Definition 8.13. (Environment-based evaluation and call semantics with size-change
graphs) The judgement forms are e : ρ → e′ : ρ′, G and e : ρ ⇓ e′ : ρ′, G, where e, e′ ∈
ExpΓ, e : ρ and e′ : ρ′ are states, source(G) = fv(e) ∪ {ε} and target(G) = fv(e′) ∪ {ε}.
The evaluation and call relations ⇓,→ are defined by the following inference rules, where
→ = →

r
∪ →

d
∪ →

c
∪ →

n
.

(GramG)
A : ρ →

n
e : ρ, id=

e

(A ::= e ∈ Γ) New rule

(ResultG)
e : ρ →

x
e′ : ρ′, G′ e′ : ρ′ ⇓ v,G

e : ρ ⇓ v,G′; G
(x ∈ {c, n}) Ext. Def. 6.6 (ApplyG)

The following rules have not been changed (but now expressions belong to ExpΓ).

(ValueG)
λx.e : ρ ⇓ λx.e : ρ, id=

λx.e

(VarG)
x: ρ ⇓ e′ : ρ′, {x =→ ε} ∪ {x ↓→ y | y ∈ f v(e′)} (ρ(x) = e′ : ρ′)

(OperatorG)
e1@e2 : ρ →

r
e1 : ρ, id↓

e1

(OperandG) e1 : ρ ⇓ v1

e1@e2 : ρ →
d
e2 : ρ, id↓

e2

(CallG) e1 : ρ ⇓ λx.e0 : ρ0, G1 e2 : ρ ⇓ v2, G2

e1@e2 →
c
e0 : ρ0[x �→ v2], G

−ε/λx.e0

1 ∪e0 Gε�→x
2
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Theorem 8.14. (The extracted graphs are safe) s → s′, G or s ⇓ s′, G implies G is safe
for (s, s′).

Proof. This is shown by a case analysis as in the pure λ-calculus. For the (GramG) rule
it is immediate from the definition of free variables for non-terminals.

8.3. Relating extended and pure λ-calculus.
The aim is now to show that execution of a program P in the extended language can
simulate execution of any program Q in the pure λ-calculus, where Q is derived from P
by replacing each nonterminal occurrence A in P with a pure λ-expression A can produce.
The converse does not hold: it is possible that there are simulated executions that do
not correspond to any instantiated program Q. We have however certified a number of
programs to terminate when applied to arbitrary Church numerals. An example is given
at the end of this section.

Properties of the relation ⇒∗
Γ

⇒∗
Γ relates expressions e′ ∈ ExpΓ in the extended language to expressions e ∈ Exp in

the pure lambda-calculus. Notice that there are only the following possible forms of ⇒∗
Γ-

related expressions:
x ⇒∗

Γ x λx.e′ ⇒∗
Γ λx.e e′1@e′2 ⇒∗

Γ e1@e2

A ⇒∗
Γ x A ⇒∗

Γ λx.e A ⇒∗
Γ e1@e2

The relation ⇒∗
Γ has the following inductive properties:

A ⇒∗
Γ t, for A ∈ N is given by definition 8.2.

x ⇒∗
Γ x, – a variable x corresponds to the same variable x and nothing else.

λx.e′ ⇒∗
Γ λx.e, iff e′ ⇒∗

Γ e, same x.
e′1@e′2 ⇒∗

Γ e1@e2 iff e′1 ⇒∗
Γ e1 and e′2 ⇒∗

Γ e2.

Lemma 8.15. If e′ ⇒∗
Γ e then fv(e′) ⊇ fv(e).

Proof. This is by induction on the structure of e′.
Case x ⇒∗

Γ x, immediate.
Case A ⇒∗

Γ t where A ∈ N . By definition fv(A) = {x|∃t.A ⇒∗
Γ t and x ∈ fv(t)}.

Case λx.e′ ⇒∗
Γ λx.e, iff e′ ⇒∗

Γ e. By induction the lemma holds for e′ and e. Therefore
fv(λx.e′) = fv(e′) \ {x} ⊇ fv(e) \ {x} = fv(λx.e).
Case e′1@e′2 ⇒∗

Γ e1@e2, iff e′1 ⇒∗
Γ e1 and e′2 ⇒∗

Γ e2. By induction the lemma holds for
e′1, e1 and e′2, e2. Hence fv(e′1@e′2) = fv(e′1) ∪ fv(e′2) ⊇ fv(e1) ∪ fv(e2) = fv(e1@e2).

If e ∈ Exp, i.e., no nonterminals occur in e, then e ⇒∗
Γ e.

If A ⇒∗
Γ e then there exist t /∈ N such that A ::= t and t ⇒∗

Γ e.

Definition 8.16. The relation S between states
Define relation S between states in the extended language and states in the pure λ-calculus
as the smallest relation S such that:

S(e′ : ρ′, e : ρ) if e′ ⇒∗
Γ e and for all x ∈ fv(e) it holds that S(ρ′(x), ρ(x)).

If e : ρ is a state in the pure lambda calculus then it is also a state in the extended
language and S(e : ρ, e : ρ).
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Lemma 8.17. If S(A : ρ′, e : ρ) and A ::= t, t ⇒∗
Γ e then also S(t : ρ′, e : ρ).

We now define a relation T between size-change graphs. The intention is that T (G′, G)
is to hold when the only difference in the generation of the graphs is due to nonterminals
that take the place of pure lambda expressions.

Definition 8.18. The relation T between size-change graphs
Define T (G′, G) to hold iff
i) source(G′) ⊇ source(G) and target(G′) ⊇ target(G).
ii) The subgraph of G′ restricted to source(G) and target(G) is a subset of G.
iii) Furthermore if z ∈ source(G′)\source(G) then either there is no edge from z in G′

or the only edge from z in G′ is (z =→ z), and if (z =→ z) ∈ G′ then z /∈ target(G).

We have that T (G′
0, G0), T (G′

1, G1), target(G′
0) = source(G′

1) and target(G0) = source(G1)
together imply that T ((G′

0; G
′
1), (G0; G1)) holds.

Lemma 8.19. Simulation Property
i) If S(e′ : ρ′, e : ρ) and e : ρ ⇓ e0 : ρ0, G then there exist e′0 : ρ′0, G′ with S(e′0 :

ρ′0, e0 : ρ0) and T (G′, G) such that e′ : ρ′ ⇓ e′0 : ρ′0, G′.
ii) If S(e′ : ρ′, e : ρ) and e : ρ →

x
e0 : ρ0, G with x ∈ {r, d, c} then there exist e′0 : ρ′0, G′

and possibly s such that either e′ : ρ′ →
x

e′0 : ρ′0, G′ or e′ : ρ′ →
n

s →
x

e′0 : ρ′0, G′

with S(e′0 : ρ′0, e0 : ρ0), T (G′, G), and in the last case S(s, e : ρ).
The composite size-change graph for the double-call e′ : ρ′ →

n
s →

x
e′0 : ρ′0 will

have the same edges as G′ because the →
n

call generates an id= graph.

Corollary 8.20. For programs P ∈ ExpΓ and Q ∈ Exp with P ⇒∗
Γ Q it holds that:

If Q : [] →∗ e : ρ then there exists e′ : ρ′ such that P : [] →∗ e′ : ρ′ and S(e′ : ρ′, e : ρ).
If Q : [] ⇓ e : ρ then there exist e′ : ρ′ such that P : [] ⇓ e′ : ρ′ and S(e′ : ρ′, e : ρ).

Also notice that if e1 : ρ1 →
n

e2 : ρ2 then fv(e1) ⊇ fv(e2) by the definition of free variables
for nonterminals. (By definition, S(e′ : ρ′, e : ρ) implies fv(e′) ⊇ fv(e).)

Proof. Lemma 8.19 is shown by induction on the tree for the proof of evaluation or call in
the pure λ-calculus and uses the observation about free variables. Proof is in the appendix.

8.4. The subexpression property.

Definition 8.21. Given a state s in the extended language, we define its expression
support exp sup(s) by

exp sup(e : ρ) = subexps(e) ∪
⋃

x∈f v(e)

exp sup(ρ(x))

Lemma 8.22. (Subexpression property) If s ⇓ s′ or s → s′ then exp sup(s) ⊇ exp sup(s′).

Corollary 8.23. If P : [] ⇓ λx.e : ρ then λx.e ∈ subexp(P). If P : [] →∗ e : ρ then
e ∈ subexps(P).
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The proof of Lemma 8.22 follows the same lines as the proof of Lemma 3.8. The proof
for the rule (Gram) is immediate from the definition of subexpressions in the extended
language. Proof omitted.

8.5. Approximate extended semantics with size-change graphs.

Definition 8.24. (Approximate evaluation and call rules for extended semantics with
size-change graphs). The judgement forms are now e → e′, G and e ⇓ e′, G, where
e, e′ ∈ ExpΓ, and source(G) = fv(e) ∪ {ε} and target(G) = fv(e′) ∪ {ε}.

(GramAG)
A →

n
e, id=

e

(A ::= e ∈ Γ)

(ResultAG)
e →

x
e′, G′ e′ ⇓ v,G

e ⇓ v,G′; G
(x ∈ {c, n})

(ValueAG)
λx.e ⇓ λx.e, id=

λx.e

(VarAG) e1@e2 ∈ subexps(P) e1 ⇓ λx.e0, G1 e2 ⇓ v2, G2

x ⇓ v2, {x =→ ε} ∪ {x ↓→ y | y ∈ f v(v2)}

(OperatorAG)
e1@e2 →

r
e1, id↓

e1

(OperandAG)
e1@e2 →

d
e2, id↓

e2

(CallAG) e1 ⇓ λx.e0, G1 e2 ⇓ v2, G2

e1@e2 →
c
e0, G

−ε/λx.e0

1 ∪e0 Gε�→x
2

Putting the pieces together, we now show how to analyse any program in the regular
grammar-extended λ-calculus . Let P be a program in the extended language.

Definition 8.25.

absintExt(P) = { Gj | j > 0∧∃ei, Gi, (0 ≤ i ≤ j) : P = e0∧(e0 → e1, G1)∧. . .∧(ej−1 → ej , Gj) }
Theorem 8.26.

The set absintExt(P) can be effectively computed from P.

Proof. In the extended λ-calculus there is only a fixed number of subexpressions of P, and
a fixed number of of possible size-change graphs with

source, target ⊆ {ε} ∪ {x | x is a variable that occurs in a subexpression of P}
Thus absintExt(P) can be computed in finite time by applying Definition 8.24 exhaustively,
starting with P, until no new graphs or subexpressions are obtained.
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8.6. Simulation properties of approximate extended semantics.
We will show the following properties of approximate extended semantics:

(1) Calls and evaluations for a program in extended semantics with environments
can be stepwise simulated by approximate extended semantics with identical size-
change graphs associated with corresponding calls and evaluations. To a call or
evaluation in the extended λ-calculus with environments corresponds the same call
or evaluation with environments removed.

(2) Suppose P ⇒∗
Γ Q for programs P,Q. Then calls and evaluations for Q in the pure

lambda calculus with environments can be simulated by calls and valuations in the
approximate extended semantics for P using the relations ⇒∗

Γ and T .
(3) The extra edges in the size-change graphs in extended semantics can never give

rise to incorrect termination analysis.

Lemma 8.27. Let P be a program in the extended language and P : [] →∗ e : ρ.
If e : ρ → e0 : ρ0, G then e → e0, G in approximate semantics.
If e : ρ ⇓ e0 : ρ0, G then e ⇓ e0, G in approximate semantics.

Proof. The proof is similar to the proof for approximation of the pure lambda-calculus 3.11
and 6.10. For rules (Value), (Operator), (Operand) it is immediate. The (Gram)-rule do
not refer to the environment, hence the lemma holds if the (Gram)-rule has been applied.
For rules (Call) and (Result) it holds by induction. For the (Var)-rule we need induction
on the total size of the derivation, and we can argue as in the case of the pure lambda
calculus.

Lemma 8.28. Let P be a program in the extended language and Q a program in the pure
λ-calculus with P ⇒∗

Γ Q.
If Q : [] →∗ e : ρ and e : ρ ⇓ e0 : ρ0, G then there exist e′, e′0, G′ with e′ ⇒∗

Γ e,
e′0 ⇒∗

Γ e0, T (G′, G) such that P →∗ e′ and e′ ⇓ e′0, G′.
If Q : [] →∗ e : ρ and e : ρ →

x
e0 : ρ0, G, x ∈ {r, d, c} then there exist e′, e′0, G′ with

e′ ⇒∗
Γ e ,e′0 ⇒∗

Γ e0, T (G′, G) such that P →∗ e′ and either e′ →
x

e′0, G′ or e′ →
n

e′′ →
x

e′0, G′

where in the last case G′ is the composite size-change graph for the double call.

Proof. The lemma follows from the simulation property lemma 8.19 together with lemma
8.27.

Theorem 8.29.
(1) Let P be a program in the extended language. If there is a program Q in the pure

lambda-calculus such that P ⇒∗
Γ Q and there exists an infinite call-sequence in the

call-graph for Q in the exact semantics, then there exists an infinite call-sequence
with no infinitely descending thread in the call-graph for P in the approximate
extended semantics.

(2) It follows that if each infinite call-sequence in the call-graphs for P in the ap-
proximate extended semantics has an infinitely descending thread, then P is Γ-
terminating.

Proof. (1): Assume an infinite call-sequence exists in the call-graph for Q. By the safety
of the size-change graphs in the pure λ-calculus, the size-change graphs associated with
this call sequence cannot have an infinitely descending thread. By lemma 8.28 there exists
a simulating call-sequence in the call-graph for P such that the corresponding size-change
graphs are in the T -relation. Let GP , GQ be any such two corresponding T -related size-
change graphs from these call-sequences, T (GP , GQ). By the definition of the T -relation
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it holds that the largest subgraph of GP , with source and target the same as source(GQ)
and target(GQ), is equal to or a subset of GQ. We need to show that the possible extra
variables in the size-change graphs for the simulating sequence in the call-graph for P can
never take part in an infinitely descending thread. By the definition of the T -relation it
holds that an edge leaving from such a variable x must have have the form (x =→ x) if any
exists in the simulating sequence. Also by the definition of the T -relation, if T (GP , GQ) and
(x =→ x) ∈ GP then x /∈ codomain(GQ). Hence either an extra thread in the size-change
graphs going out from x will be finite or it will be infinitely equal x =→ x

=→ x
=→ . . ., i.e.

an extra variable can never take part in an infinitely descending thread in the simulating
sequence.
(2) is a corollary to (1).

Example 8.30.
The following is an example of a program certified to terminate by our proof method. The
program computes x+ 2n when applied to two arbitrary Church numerals for x and n. In
Section 7 we analysed the program applied to Church numerals 3 and 4 (Example 7.2).

Grammar for Church numerals: C ::= λs.λz.A A ::= z | s@A
The program applied to two Church numerals:

[λn1.λn2. n1 -- n --
@ [λr.λa. 11: (r@ 13: (r@a))] -- g --
@ [λ k.λ p.λ q.(p@((k@p)@q))] - succ-
@ n2 ] -- x --

@ C -- Church numeral --
@ C -- Church numeral --

Following is the output from program analysis. The analysis found the following loops
from a program point to itself with the associated size-change graph and path. The
first number refers to the program point, then comes a list of edges and last a list of
numbers, the other program points that the loop passes through. The program points are
found automatically by the analysis. The program points 30 and 32 are not written into
the presentation of the program because they involve the subexpression A of a Church
numeral. The subexpression associated with 30 is A and the subexpression associated
with 32 is s@A. The loops from 30 to itself and from 32 to itself in the output correspond
to the call sequence A→s@A→A→s@A. . . .

SELF SCGS no repetition of graphs:

11 →∗ 11: [(r,>,r)] []
11 →∗ 11: [(a,=,a),(r,>,r)] [13]
13 →∗ 13: [(a,=,a),(r,>,r)] [11]
13 →∗ 13: [(r,>,r)] [11,11]
30 →∗ 30: [(ε,>,ε),(s,=,s),(z,=,z)] [32]
32 →∗ 32: [(ε,>,ε),(s,=,s),(z,=,z)] [30]

Size Change Termination: Yes
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9. Concluding matters

We have developed a method based on The Size Change Principle to show termination
of a closed expression in the untyped λ-calculus. This is further developed to analyse if
a program in the λ-calculus will terminate when applied to any input from a given input
set defined by a tree grammar. The analysis is safe and the method can be completely
automated. We have a simple first implementation. The method certifies termination
of many interesting recursive programs, including programs with mutual recursion and
parameter exchange.

Acknowledgements. The authors gratefully acknowledge detailed and constructive com-
ments by Arne Glenstrup, Chin Soon Lee and Damien Sereni, and insightful comments by
Luke Ong, David Wahlstedt and Andreas Abel.

Appendix A. Proof of Lemma 2.6

Proof. ⇒: Assume P ⇓. To show: CT has no infinite call chain starting with P. The proof
is by induction on the height of the proof tree. Each call rule of Definition 2.6 is associated
with a use of rule (ApplyS) from Definition 2.2. So if P is a value, there is no call from P.
If P ⇓ is concluded by rule (ApplyS), then P = e1@e2 and by induction there is no infinite
call chain starting with e1, e2 and e0[v2/x]. All call chains starting with P go directly to
one of these. So, there are no infinite call chains starting with P.

⇐: Assume CT has no infinite call chain starting with P. To show: P ⇓. Since the call
tree is finitely branching, by König’s lemma the whole call tree is finite, and hence there
exists a finite number m bounding the length of all branches.

We prove that e ⇓ for any expression in the call tree, by induction on the maximal
length n of a call chain from e.

n = 0 : e is an abstraction that evaluates to itself.
n > 0 : e must be an application e = e1@e2. By rule (Operator) there is a call

e1@e2 →
d
e1, and the maximal length of a call chain from e1 is less than n. By induction

there exists v1 such that e1 ⇓ v1. We now conclude by rule (Operand) that e1@e2 →
r
e2.

By induction there exists v2 such that e2 ⇓ v2.
All values are abstractions, so we can write v1 = λx.e0. We now conclude by rule

(Call) that e1@e2 →
c
e0[v2/x]. By induction again, e0[v2/x] ⇓ v for some v. This gives us

all premises for the (ApplyS) rule of Definition 2.2, so e = e1@e2 ⇓ v.

Appendix B. Proof of Lemma 3.11

Proof. To be shown: If P : [] →∗ e : ρ and e : ρ ⇓ e′ : ρ′, then e ⇓ e′.
If P : [] →∗ e : ρ and e : ρ → e′ : ρ′, then e → e′.

We prove both parts of Lemma 3.11 by course-of-value induction over the size n = |D| of
a deduction D by Definition 3.3 of the assumption

P : [] →∗ e : ρ ∧ e : ρ ⇓ e′ : ρ′ or P : [] →∗ e : ρ ∧ e : ρ → e′ : ρ′

The deduction size may be thought of as the number of steps in the computation of
e : ρ ⇓ e′ : ρ′ or e : ρ → e′ : ρ′ starting from P : [].

The induction hypothesis IH(n) is that the Lemma holds for all deductions of size not
exceeding n. This implies that the Lemma holds for all calls and evaluations performed
in the computation before the last conclusion giving (P : [] →∗ e : ρ and e : ρ ⇓ e′ : ρ′)
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or (P : [] →∗ e : ρ and e : ρ → e′ : ρ′), i.e., the Lemma holds for premises of the rule last
applied, and for any call and evaluation in the computation until then.

Proof is by cases on which rule is applied to conclude e : ρ ⇓ e′ : ρ′ or e : ρ → e′ : ρ′.
In all cases we show that some corresponding abstract interpretation rules can be applied
to give the desired conclusion.

Base cases: Rule (Value), (Operator) and (Operand) in the exact semantics (def. 3.2)
are modeled by axioms (ValueA), (OperatorA) and (OperandA) in the abstract semantics
(def. 3.10). These are the same as their exact-evaluation counterparts, after removal of
environments for (ValueA) and (OperatorA), and a premise as well for (OperandA). Hence
the Lemma holds if one of these rules was the last one applied.

The (Var) rule is, however, rather different from the (VarA) rule. If (Var) was applied
to a variable x then the assumption is (P : [] →∗ x : ρ and x : ρ ⇓ e′ : ρ′). In this case
x ∈ dom(ρ) and e′ : ρ′ = ρ(x). The total size of the deduction (of both parts together) is
n.

Now P : [] →∗ x : ρ begins from the empty environment, and we know all calls are
from state to state. The only possible way x can have been bound is by a previous use of
the (Call) rule, the only rule that extends an environment.5

The premises of the (Call) rule require that operator and operand in an application
have previously been evaluated. So it must be the case that there exist e1@e2 : ρ′′ and
λx.e0 : ρ0 such that (P : [] →∗ e1@e2 : ρ′′ and e1 : ρ′′ ⇓ λx.e0 : ρ0 and e2 : ρ′′ ⇓ e′ : ρ′)
and the size of both deductions are strictly smaller than n. By the Subexpression Lemma,
e1@e2 ∈ subexp(P). By induction, Lemma 3.11 holds for both e1 : ρ′′ ⇓ λx.e0 : ρ0 and
e2 : ρ′′ ⇓ e′ : ρ′, so e1 ⇓ λx.e0 and e2 ⇓ e′ in the abstract semantics. Now we have all
premises of rule (VarA), so we can conclude that x ⇓ e′ as required.

For remaining rules (Apply) and (Call), when we assume that the Lemma holds for
the premises in the rule applied to conclude e ⇓ e′ or e → e′, then this gives us the
premises for the corresponding rule for abstract interpretation. From this we can conclude
the desired result.

Appendix C. Proof of Lemma 5.4

Proof. Define the length L(e) of an expression e by:

L(x) = 1 L(λx.e) = 1 + L(e) L(e1@e2) = 1 + L(e1) + L(e2)

For any expression e, L(e) is a natural number > 0. For a program, the length of the
initial expression bounds all lengths of occurring expressions.

Define for a state s the height H(s) of the state to be the height of the environment:

H(e : ρ) = max{(1 + H(ρ(x))) | x ∈ fv(e)}
So, H(e : []) = 0 the maximum of the empty set, and for any state e : ρ,H(e : ρ) is a
natural number ≥ 0. Let >lex stand for lexicographic order relation on pairs of natural
numbers, hence >lex is well-founded. We prove that the relation , on states is well-founded
by proving that e1 : ρ1 , e2 : ρ2 implies that

(H(e1 : ρ1), L(e1)) >lex (H(e2 : ρ2), L(e2))

5This must have occurred in the part P : [] →∗ x : ρ.
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First, consider ,1. Clearly, if e1 : ρ1 ,1 e2 : ρ2 then H(e1 : ρ1) > H(e2 : ρ2). Hence
even though L(e2) might be larger than L(e1), it holds that in the lexicographic order
(H(e1 : ρ1), L(e1)) >lex (H(e2 : ρ2), L(e2)).

Now, consider ,2. If e1 : ρ1 ,2 e2 : ρ2 then H(e1 : ρ1) ≥ H(e2 : ρ2) and L(e1) >
L(e2), hence in the lexicographic order (H(e1 : ρ1), L(e1)) >lex (H(e2 : ρ2), L(e2)). Triv-
ially, e1 : ρ1 = e2 : ρ2 implies (H(e1 : ρ1), L(e1)) =lex (H(e2 : ρ2), L(e2)).

Recall, by definition & is the transitive closure of ,1 ∪ ,2 ∪ =, and s1 , s2 holds when
s1 & s2 and s1 �= s2. So, from the derivations above we can conclude that e1 : ρ1 , e2 : ρ2

implies (H(e1 : ρ1), L(e1)) >lex (H(e2 : ρ2), L(e2)), hence the relation , on states is
well-founded.

Appendix D. Proof of Theorem 6.8

Proof. For the “safety” theorem we use induction on proofs of s ⇓ s′, G or s → s′, G. Safety
of the constructed graphs for rules (ValueG), (OperatorG) and (OperandG) is immediate
by Definitions 6.2 and 5.3.

In the following x, y, z are variables and p, q can be variables or ε.

The variable lookup rule (VarG) yields x : ρ ⇓ ρ(x), G with G = {x ↓→ y | y ∈
fv(e′)} ∪ {x =→ ε} and ρ(x) = e′ : ρ′. By Definition 5.2, x : ρ(x) = ρ(x)(ε), so arc x

=→ ε

satisfies Definition 6.2. Further, if x
↓→ y ∈ G then y ∈ fv(e′). Thus x : ρ(x) = ρ(x) = e′ :

ρ′ , ρ′(y) = ρ(x)(y) as required.

The rule (CallG) concludes s →
c

s′, G, where s = e1@e2 : ρ and s′ = e0 : ρ0[x �→ v2]

and G = G
−ε/λx.e0

1 ∪e0 Gε�→x
2 . Its premises are e1 : ρ ⇓ λx.e0 : ρ0, G1 and e2 : ρ ⇓ v2, G2.

We assume inductively that G1 is safe for (e1 : ρ, λx.e0 : ρ0) and that G2 is safe for
(e2 : ρ, v2). Let v2 = e′ : ρ′.

We wish to show safety: that p
=→ p′ ∈ G implies s(p) = s′(p′), and p

↓→ p′ ∈ G implies
s(p) , s′(p′). By definition of G

−ε/λx.e0

1 and Gε�→x
2 , p

r→ p′ ∈ G = G
−ε/λx.e0

1 ∪e0 Gε�→x
2 breaks

into 7 cases:

Case 1: y
↓→ z ∈ G

−ε/λx.e0

1 because y
↓→ z ∈ G1. By safety of G1, e1 : ρ(y) , λx.e0 : ρ0(z).

Thus, as required,

s(y) = e1@e2 : ρ(y) = e1 : ρ(y) , λx.e0 : ρ0(z) = e0 : ρ0[x �→ v2](z) = s′(z)

Case 2: y
=→ z ∈ G

−ε/λx.e0

1 because y
=→ z ∈ G1. Like Case 1.

Case 3: y
↓→ ε ∈ G

−ε/λx.e0

1 because y
r→ ε ∈ G1, then x /∈ fv(e0) by the definition of

G
−ε/λx.e0

1 and then e0 : ρ0[x �→ v2] = e0 : ρ0. By safety of G1, e1 : ρ(y) & λx.e0 : ρ0(ε) =
λx.e0 : ρ0. Thus, as required,

s(y) = e1@e2 : ρ(y) = e1 : ρ(y) & λx.e0 : ρ0 , e0 : ρ0 = s′(ε)

Case 4: ε
↓→ p ∈ G

−ε/λx.e0

1 because ε
r→ p ∈ G1. Then it holds that either p is a variable-

name or x /∈ fv(e0). Now ε in G1 refers to e1 : ρ, so e1 : ρ & λx.e0 : ρ0(p) by safety of G1.
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Thus, as required,

s(ε) = e1@e2 : ρ , e1 : ρ & λx.e0 : ρ0(p) & e0 : ρ0[x �→ v2](p) = s′(p)

Case 5: y
↓→ x ∈ G because x ∈ fv(e0) and y

↓→ x ∈ Gε�→x
2 because y

↓→ ε ∈ G2. By safety
of G2, e2 : ρ(y) , v2(ε). Thus, as required,

s(y) = e1@e2 : ρ(y) = e2 : ρ(y) , v2(ε) = e0 : ρ0[x �→ v2](x) = s′(x)

Case 6: y
=→ x ∈ G because x ∈ fv(e0) and y

=→ x ∈ Gε�→x
2 because y

=→ ε ∈ G2. Like Case
5.

Case 7: ε
↓→ x ∈ G because x ∈ fv(e0) and ε

↓→ x ∈ Gε�→x
2 because ε

r→ ε ∈ G2. By safety
of G2, e2 : ρ(ε) = e2 : ρ. Thus, as required,

s(ε) = e1@e2 : ρ , e2 : ρ & v2(ε) = ρ0[x �→ v2](x) = s′(x)

The rule (ApplyG) concludes s ⇓ v,G′; G from premises s →
c

s′, G′ and s′ ⇓ v,G,
where s = e1@e2 : ρ and s′ = e′ : ρ′. We assume inductively that G′ is safe for (s, s′) and
G is safe for (s′, v). Let G0 = G′; G.

We wish to show that G0 is safe: that p
=→ q ∈ G0 implies s(p) = v(q), and p

↓→ q ∈ G0

implies s(p) , v(q) (p, q can be variables or ε). First, consider the case p
=→ q ∈ G0.

Definition 4.2 implies p
=→ p′ ∈ G′ and p′ =→ q ∈ G for some p′. Thus by the inductive

assumptions we have s(p) = s′(p′) = v(q), as required.

Second, consider the case p
↓→ q ∈ G0. Definition 4.2 implies p

r1→ p′ ∈ G′ and
p′ r2→ q ∈ G for some p′, where either one or both of r1, r2 are ↓. By the inductive
assumptions we have s(p) & s′(p′) and s′(p′) & v(q), and one or both of s(p) , s′(p′) and
s′(p′) , v(q) hold. By Definition of , and & this implies that s(p) , v(q), as required.

Appendix E. Proof of Lemma 6.10

Proof. The rules are the same as in Section 3.10, only extended with size-change graphs.
We need to add to Lemma 3.11 that the size-change graphs generated for calls and eval-
uations can also be generated by the abstract interpretation. The proof is by cases on
which rule is applied to conclude e ⇓ e′, G or e : ρ → e′ : ρ′, G.

We build on Lemma 3.11, and we saw in the proof of this that in abstract interpretation
we can always use a rule corresponding to the one used in exact computation to prove
corresponding steps. The induction hypothesis is that the Lemma holds for the premises
of the rule in exact semantics.

Base case (VarAG): By Lemma 3.11 we have x : ρ ⇓ e′ : ρ′ implies x ⇓ e′. The
size-change graph built in (VarAG) is derived in the same way from x and e′ as in rule
(VarG), and they will therefore be identical.

For other call- and evaluation rules without premises, the abstract evaluation rule is as
the exact-evaluation rule, only with environments removed, and the generated size-change
graphs are not influenced by environments. Hence the Lemma will hold if these rules are
applied.
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For all other rules in a computation: When we know that Lemma 3.11 holds and
assume that Lemma 6.10 hold for the premises, then we can conclude that if this rule is
applied, then Lemma 6.10 holds by the corresponding rule from abstract interpretation.

Appendix F. Proof of Lemma 8.19

Proof. By induction on the tree for the proof of evaluation or call in the pure λ-calculus.
Possible cases of the structure of e′ : ρ′ and e : ρ in S-related states:
(x : ρ′, x : ρ) (λx.e′ : ρ′, λx.e : ρ) (e′1@e′2 : ρ′, e1@e2 : ρ)
(A : ρ′, x : ρ) (A : ρ′, λx.e : ρ) (A : ρ′, e1@e2 : ρ)

Base cases, evaluations and calls in pure λ-calculus by rules without premisses.

Case S(x : ρ′, x : ρ): No calls from x : ρ.

(Var)-rule, x : ρ ⇓ ρ(x) = e0 : ρ0, {x =→ ε} ∪ {x ↓→ y | y ∈ f v(e0)} and x : ρ′ ⇓ ρ′(x) =

e′0 : ρ′0, {x =→ ε} ∪ {x ↓→ y | y ∈ f v(e′0)}. Beginning from S-related states, by defintion
of the relation S we have S(ρ′(x), ρ(x)) and fv(e′0) ⊇ fv(e0). source(G′) = source(G) and
the generation of size-change graphs gives that the restriction of G′ to target(G) equals
G, hence T (G′, G).

Case S(λx.e′ : ρ′, λx.e : ρ): No calls from λx.e : ρ.
(Value)-rule, λx.e : ρ ⇓ λx.e : ρ, id=

λx.e and λx.e′ : ρ′ ⇓ λx.e′ : ρ′, id=
λx.e′ . T (id=

λx.e′ , id
=
λx.e).

Case S(e′1@e′2 : ρ′, e1@e2 : ρ):
(Operator)-rule, e1@e2 : ρ →

r
e1 : ρ, id↓

e1
and e′1@e′2 : ρ′ →

r
e′1 : ρ′, id↓

e′1
.Beginning from S-

related states, by defintion of the relation S we have S(e′1 : ρ′, e1 : ρ). Then T (id↓
e′1

, id↓
e1

)

Case S(A : ρ′, x : ρ):

(Var)-rule: x : ρ ⇓ ρ(x) = e0 : ρ0, G where G = {x =→ ε} ∪ {x ↓→ y | y ∈ f v(e0)}. By
the definition of S we must have A ⇒∗

Γ x. This againg by lemma 8.7 gives that we must
have A ::= x. Then A : ρ′ →

n
x : ρ′, id=

x by (Gram)-rule, and we have S(x : ρ′, x : ρ).

Also x : ρ′ ⇓ ρ′(x) = e′0 : ρ′0, G′′ where G′′ = {x =→ ε} ∪ {x ↓→ y | y ∈ f v(e′0)} by (Var)-
rule. The edges in G′′ are the same as the edges in G′ = id=

x ; G′′. Hence by (Result)-rule
A ⇓ ρ′(x), G′. As before S(ρ′(x), ρ(x)) and T (G′, G).

Cases S(A : ρ′, λx.e : ρ) with (Value)-rule, and S(A : ρ′, e1@e2 : ρ) with (Operator)-
rule: similarly by use of lemma 8.7 and reasoning as above. We wil use the rules
(Gram)(Value)(Result) and (Gram)(Operator) respectively, where (Value) and (Opera-
tor) do not have premises.

Step cases.

Case S(e′1@e′2 : ρ′, e1@e2 : ρ). e1@e2 : ρ →
d
e2 : ρ, id↓

e2
by (Operand)-rule. It follows from

the definition of S that also S(e′1 : ρ′, e1 : ρ) hence by IH since e1 : ρ ⇓ then also e′1 : ρ′ ⇓
and then e′1@e′2 : ρ′ →

d
e′2 : ρ′, id↓

e′2
and by the definition of S we have S(e′2 : ρ′, e2 : ρ),
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T (id↓
e′2

, id↓
e2

).

The next case is the one that requires the most consideration to see that we stay
within the T -relation. Assume we know for graphs G̃′, G̃, that the restriction of G̃′ to
source and target of G̃ is a subset of G̃. Notice, if x, y ∈ source(G̃′) \ source(G̃) and
x, z ∈ target(G̃′) \ target(G̃), then for testing T (G̃′, G̃) we only need to look at which
edges leaves from x, y, we do not need to care about if other edges goes into x, z.

Case S(e′1@e′2 : ρ′, e1@e2 : ρ). e1@e2 : ρ →
c
e0 : ρ0[x �→ v2], G

−ε/λx.e0

1 ∪e0 Gε�→x
2 by (Call)-

rule, where we have the premises e1 : ρ ⇓ λx.e0 : ρ0, G1 and e2 : ρ ⇓ v2, G2.
It follows from the definition of S that also S(e′1 : ρ′, e1 : ρ) and S(e′2 : ρ′, e2 : ρ).

Hence by IH since e1 : ρ ⇓ λx.e0 : ρ0, G1 then also e′1 : ρ′ ⇓ v,G′
1 where T (G′

1, G1) and
S(v, λx.e0 : ρ0). Then by definition of values, relations ⇒∗

Γ and S we must have v = λx.e′0 :
ρ′0. Also by IH since e2 : ρ ⇓ v2, G2 then also e′2 : ρ′ ⇓ v′2, G′

2 where T (G′
2, G2) and S(v′2, v2).

Then we have the premises to conclude e′1@e′2 : ρ′ →
c
e′0 : ρ′0[x �→ v′2], G

′−ε/λx.e′0
1 ∪e′0 G′ε�→x

2 .
By definition of S we have S(e′0 : ρ′0[x �→ v′2], e0 : ρ0[x �→ v2]). We notice that x /∈ fv(λx.e′0)
and therefore (p r→ x) /∈ G′

1.
We consider different possibilities for the generated graphs:

If x ∈ fv(e′0) but x /∈ fv(e0) then we can have some extra edges going to x in extended
semantics where we will have no edges to x in pure semantics because x is not in the
target, but this is acceptable in the T -relation. There can also be some extra edges going
to ε in pure semantics where no edges go to ε in exact semantics, but as ε is within the
codomain in pure semantics, this is also acceptable in the T -relation. Since T (G′

1, G1) it
will still hold that T (G′−ε/λx.e′0

1 ∪e′0 G′ε�→x
2 , G

−ε/λx.e0

1 ∪e0 Gε�→x
2 ).

If x ∈ fv(e0) then also x ∈ fv(e′0) and if x /∈ fv(e′0) then x /∈ fv(e0), in these cases
since T (G′

1, G1) and T (G′
2, G2) also T (G′−ε/λx.e′0

1 ∪e′0 G′ε�→x
2 , G

−ε/λx.e0

1 ∪e0 Gε�→x
2 ).

Case S(A : ρ′, e1@e2 : ρ) with e1@e2 : ρ →
d
e2 : ρ, id↓

e2
by(Operand)-rule. By the

definition of S we must have A ⇒∗
Γ e1@e2. This againg by lemma 8.7 gives that we

must have A ::= e′1@e′2. Then A : ρ′ →
n

e′1@e′2 : ρ′, id=
e′1@e′2

by (Gram)-rule, and we

have S(e′1@e′2 : ρ′, e1@e2 : ρ). Then we have seen that e′1@e′2 : ρ′ →
d
e′2 : ρ′, id↓

e′2
with

S(e′2 : ρ′, e2 : ρ), T (id↓
e′2

, id↓
e2

) and we have that the edges of id↓
e′2

are the same as the

edges of (id=
e′1@e′2

; id↓
e′2

) hence T ((id=
e′1@e′2

; id↓
e′2

), id↓
e2

).

Case S(A : ρ′, e1@e2 : ρ) with (Call)-rule e1@e2 : ρ →
c

e0 : ρ0[x �→ v2], G: Simi-
larly as before we have A : ρ′ →

n
e′1@e′2 : ρ′, id=

e′1@e′2
by (Gram)-rule, and we have

S(e1@e2 : ρ, e′1@e′2 : ρ′). We can now use the derivation above and with the notation from
above we have e′1@e′2 : ρ′ →

c
e′0 : ρ′0[x �→ v′2], G′ with S(e′0 : ρ′0[x �→ v′2], e0 : ρ0[x �→ v2])

and T (G′, G). Looking into the derivation of G′ we find that the edges of G′ are the same
as the edges of (id=

e′1@e′2
; G′).

Case S(e′ : ρ′, e : ρ), e : ρ ⇓ v,G by (Result)-rule, where we have the premises
e : ρ →

c
es : ρs, Gs and es : ρs ⇓ v,Gv, G = Gs; Gv: By IH since e : ρ →

c
es : ρs, Gs
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then e′ : ρ′ →
n

js : ρ′ →
c
e′s : ρ′s, G′

s with S(e′s : ρ′s, es : ρs), and T (G′
s, Gs), j ∈ {0, 1}.

Again by IH since es : ρs ⇓ v,Gv then e′s : ρ′s ⇓ v′, G′
v with S(v, v′) and T (G′

v, Gv). Let
G′ = G′

s; G
′
v then T (G′, G). If j = 0 we have the premises to conclude e′ : ρ′ ⇓ v′, G′.

If j = 1 by lemma 8.17 we have S(s : ρ′, e : ρ) and we have the premises to conclude
s : ρ′ ⇓ v′, G, and by applications of (Result)-rule once more in the extended semantics we
can also conclude e′ : ρ′ ⇓ v′, id=

s ; G′ where the edge set of G′ is the same as the edge set
of id=

s ; G′.
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