
Towards Modular Reasoning
for

Stateful and Concurrent
Programs

Morten Krogh-Jespersen

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Towards Modular Reasoning
for

Stateful and Concurrent
Programs

A Dissertation
Presented to the Faculty of Science and Technology

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Morten Krogh-Jespersen

September 4, 2018

Abstract

Software is an integral part of our everyday lives and we rely on man-written
programs to solve a wide range of problems. Ensuring that programs solve
well-defined problems satisfactory can be accomplished by the art of software
verification, i.e. formal reasoning about the program in some mathematically
founded model. However, formal reasoning about real-world programs is
well known to be difficult because of the advanced programming language
features used when writing them.

The main objective of this dissertation is to develop state-of-the-art models
that allow for verification of programs using advanced language features such
as (1) higher-order functions, (2) higher-order store (general references) and
(3) concurrency. Conceptually, languages with store and concurrency are
extremely hard to reason about because threads may race when trying to read
and update references. Technically, reasoning about such languages formally
require sophisticated mathematical models and some notion of ownership
and invariants.

In this dissertation we present a relational model for reasoning about a con-
current, higher-order language with general references, where all references
are tracked by a type-and-effect system. The model validates data-abstraction
by masking effects and parallelizing expressions if effects are suitable dis-
joint. Masking stateful effects can in pure languages be done monadically
as well. In this dissertation we further present a logical relations model that
semantically verifies that runST, the run-function of the ST monad, provides
proper encapsulation of state for real-world implementations. Finally, we
also present Aneris, a logical framework for writing and reasoning about
distributed systems. Aneris allow for node-local reasoning and each node can
have local state and concurrency. We show that the framework is suitable
for verifying distributed systems by verifying a broad range of interesting
examples.

i

Resumé

Software er en fast integreret del af vores hverdagsliv, og vi har næsten blind
tillid til, at en lang række af vores problemer løses korrekt af menneskeskabte
programmer. En måde at sikre at disse programmer rent faktisk løser de
problemer, hvortil de med formål blev skabt, kan gøres ved hjælp af software
verifikation, i.e. ved at argumentere formelt for korrekthed i en matematisk
funderet model. Desværre er det alment kendt, at det er meget vanskeligt at
argumentere for korrektheden af virkelige programmer pga. de avancerede
konstruktioner, man kan bruge ved udviklingen af disse programmer.

Det primære fokus for denne afhandling er på udviklingen af splinternye
modeller, der muliggør verifikation af programmer, der anvender avancerede
programmeringssprogskonstruktioner såsom (1) højere-ordensfunktioner, (2)
højere-ordenslager og (3) flertrådet programmering. Konceptuelt er det svært
at ræsonnere om flertrådede programmer, der også anvender datalageret, da
tråde kan konkurrere om at læse og skrive til referencer. Teknisk set kræver
formel verifikation af sådanne programmer avancerede matematiske modeller
samt begreber om ejerskab og invarianter.

I denne afhandling præsenteres en relationel model, der tillader at ræs-
sonere om et flertrådet, højere-ordensprogrammeringssprog hvor hukom-
melseslageret også er højere-orden og hvor alle referencer spores gennem
et type-og-effekt system. Modellen validerer data-abstraktion ved at skjule
effekter samt parallel sammensætning af programmer, såfremt adgange til
data-lageret er tilpas opdelt.

Det er også muligt at skjule effekter monadisk i siddeeffektfrie højere-
ordenssprog. I denne afhandling præsenteres også en logisk relationel model,
der indfanger, at konstruktionen runST, kørselsfunktionen tilhørende ST
monaden, på passende vis indkapsler tilstand for realistiske programmer.

Slutteligt præsenterer afhandlingen den logiske platform Aneris, der er
specifikt designet til at skrive og ræsonnere om distribuerede systemer. Aneris
tillader brugen af lokal tilstand og tråde, og at man verificerer knuder i isola-
tion, såkaldt knude-lokal-ræsonnering. Det vises, gennem verifikationen af
en bred vifte af eksempler, at platformen er et stærkt værktøj ved verifikation
af distribuerede systemer.

iii

Acknowledgments

First and foremost I would like to thank my supervisor Lars Birkedal for
taking a chance on me as his PhD student, his expert guidance throughout
the years and the sense of comradery extended by him. I have always felt Lars
has done his best to aid me in my career and for that I am truly grateful.

I am thankful for all of my coauthors valuable input and collaboration, in
particular I would like to thank Amin Timany for hosting me in my trip to
Leuven and for all of his invaluable help and friendship. I would also like
to thank the Logic and Semantics group for all the great discussions, social
gatherings and for enabling a good work environment. I hope you will have
many trips to the coffee-room after my departure.

A special thanks to Aleš Bizjak for always being helpful and having time
for my questions. I wish you all the best in the future. I would also like to
thank William Hesse from Google Aarhus for hosting me as an intern in 2017.

Finally, my biggest gratitude goes to my wife Marianne for her generous
love and support and for delaying my thesis by giving birth to our second
child. Thank you Hannah and Emilie for all your smiles and support through
difficult moments and monads. Love from a family may be one of the best
categories (therapy) for the working computer scientist.

Morten Krogh-Jespersen,
Aarhus, September 4, 2018.

v

Contents

Abstract i

Resumé iii

Acknowledgments v

Contents vii

I Overview 1

1 Introduction 3
1.1 Published Papers and Manuscripts 3
1.2 Outline of the Dissertation . 4

2 Contributions of this Dissertation 7
2.1 Relational Model of Types-and-Effects 7
2.2 Relational Model for Monadic Encapsulation of State 12
2.3 Aneris: A Logic for Node-Local, Modular Reasoning of Dis-

tributed Systems . 17
2.4 Verifying a Conc. Data-Structure from the Dartino Framework 24

II Publications and Manuscripts 27

3 A Relational Model of Types-and-Effects in Higher-Order Concur-
rent Separation Logic 29
3.1 Introduction . 30
3.2 λref,conc with Types, Regions and Effects 36
3.3 A Logical Relation for λref,conc 39
3.4 Discussion . 63

4 A Logical Relation for Monadic Encapsulation of State 65
4.1 Introduction . 66
4.2 The STLang language . 72

vii

viii CONTENTS

4.3 Logical Relation . 77
4.4 Proving Contextual Refinements and Equivalences 87
4.5 Iris Definitions of Predicates used in the Logical Relation . . . 92
4.6 Formalization in Coq . 97
4.7 Related work . 99
4.8 Conclusion and Future Work . 100

5 Aneris: A Logic for Node-Local, Modular Reasoning of Distributed
Systems 103
5.1 Introduction . 104
5.2 The core concepts of Aneris . 107
5.3 Operational Semantics of AnerisLang 112
5.4 Semantics of Aneris . 117
5.5 Case Study 1: A Load Balancer 125
5.6 Case Study 2a: Two-Phase Commit 128
5.7 Case Study 2b: Replicated Logging 134
5.8 Related Work . 135
5.9 Conclusion and Future Work . 137

6 Verifying a Concurrent Data-Structure from the Dartino Frame-
work 139
6.1 Introduction . 140
6.2 The Dartino Queue in Iris . 141
6.3 The Iris Logic . 149
6.4 A Specification for the Dartino Queue 154
6.5 A Logically Atomic Specification for the Dartino Queue 159
6.6 Client . 162
6.7 Conclusion . 165

Appendix 167

A Relational Model of Types-and-Effects in Higher-Order Concur-
rent Separation Logic 169
The Language and Typing Rules . 169
Monoids and Constructions . 171
The LR

ML
relation . 189

The LR
Eff

relation . 189
The LR

Bin
relation . 194

The LR
Par

relation . 198
Effect-Dependent Transformations 219
Data Abstraction . 227

Bibliography 245

Part I

Overview

1

Chapter 1

Introduction

Programming languages with advanced features, such as concurrency, higher-
order store and network primitives are standard today, e.g. OCaml, Rust,
Haskell, Swift to name a few. However, formal reasoning about programs
utilizing those advanced features is difficult and very much non-standard.

In this dissertation I present work that facilitates modular reasoning about
programs with local state, concurrency and network primitives in unary or
relation models. Such formally verified models allow developers to formally
prove correctness of programs and modules and in some cases allow for
automatic compile time optimizations.

The reader is assumed to be familiar with separation logic and some knowl-
edge regarding logical relational models would be beneficial. Futhermore,
some familiarity with the proof-assistant Coq is required to understand the
formal developments accompanying this dissertation.

1.1 Published Papers and Manuscripts

The following papers are included in Part II, Publications and Manuscripts of
this dissertation.

[42] A Relational Model of Types-and-Effects in Higher-Order Concurrent Sepa-
ration Logic.
Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal.
Proceedings of the ACM on Programming Languages (POPL), 2017.
Included in Chapter 3.

[75] A logical relation for monadic encapsulation of state: Proving contextual
equivalences in the presence of runST.
Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal.
Proceedings of the ACM on Programming Languages (POPL), 2018. In-
cluded in Chapter 4.

3

4 CHAPTER 1. INTRODUCTION

Minor layout adjustments and typo corrections have been carried out on
the above papers. In addition to the above published papers, this dissertation
also contains the following manuscripts:

• Aneris: A Logic for Node-Local, Modular Reasoning of Distributed Systems.
Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, and
Lars Birkedal. Included in Chapter 5.

• Verifying a concurrent data-structure from the Dartino Framework.
Morten Krogh-Jespersen, Thomas Dinsdale-Young, and Lars Birkedal.
Included in Chapter 6.

The author of this dissertation have, with the exception of [75], contributed
significantly to the above research projects – from the technical innovations,
to proving and paper writing. For [75], the author aided in the development
and discussions of the logical relation and proofs of the fundamental theorem,
along with a proportional writing of the paper.

1.2 Outline of the Dissertation

This dissertation is divided into two parts. Part I provides an overview of
the technical developments gathered from the papers and manuscripts. Part
II consists of the co-authored papers and manuscripts listed in the previous
section.

For Part I, Overview the main chapter is Chapter 2 that summarizes chal-
lenges and the scientific contributions for each research project. Additionally,
the closest related work is also discussed to allow the reader to better position
our technical developments.

For Part II, Publications and Manuscripts, each work has its own chapter.
Chapter 3 present the work on a relational model for a type-and-effect system.
The chapter also gives a general introduction to invariants and resources in
Iris, and uses these basic definitions to gradually build a relational model in a
higher-order, separation logic, that validates the parallelization theorem. That
is done by starting from a unary relation that characterizes type-inhabitance
and introducing necessary resources along the way. Finally, the proof outline
of the parallelization theorem is shown.

Chapter 4 considers effectful computations in the spirit of the ST monad by
defining a call-by-value language with the operations of the ST as primitives.
To reason about effectful computations in a purely fashion way, a logical
relational is developed that allow for encapsulation of effects. The logical
relational is built on top of several novel logical connectives also explained
in detail. Finally, proof outlines of several relational properties and a state-
independence theorem is shown.

1.2. OUTLINE OF THE DISSERTATION 5

Chapter 5 presents Aneris, a verification framework for distributed sys-
tems built to reason about real-world programs that use sockets. The chapter
describes the novelties of Aneris at a high-level and introduce the term node-
local reasoning. We then formally define the language and logic accompanying
the framework. Finally, the logic is used to show two interesting examples:
a load-balancer and replicated-logging, which is a client built on top of the
consensus protocol two-phase commit.

Finally, Chapter 6, presents a case study for verifying a concurrent process
queue from the Dartino framework, which is a virtual machine for running
Dart code on IoT-devices. The case study describes the difficulty of formally
specifying a process queue before introducing the logical machinery needed.
The chapter also discusses the trade-offs by translating the code from C++ to
Iris. Finally, the case-study describe how specifications on the process queue’s
operations can be strengthened by introducing logical atomic triples.

Chapter 2

Contributions of this
Dissertation

In this chapter, we present an overview of the main challenges and contribu-
tions of the listed work in §1.1. For a full account see Part II, Publications and
Manuscripts.

2.1 Relational Model of Types-and-Effects

Programming and reasoning about higher-order, concurrent programs with
effects is known to be challenging. As a consequence, different kinds of
refined type-systems has been proposed to simplify reasoning about effectful
programs. Examples of such type-systems include: alias types [71], capability
type systems [60], linear type systems [23, 40, 53] Hoare type theory [54],
permissions-based type systems [61], type-and-effect systems [11, 12, 26, 51],
etc. There has also been larger-scale implementation efforts on higher-order
programming languages, e.g., the Mezzo programming language [61] and
the Rust programming language [67], which employ refined type systems to
control the use of state in the presence of concurrency.

In Krogh-Jespersen et al. [42], included in Chapter 3, the main technical
result is a logical relations model, LR

Par
, that models an expressive region-

based type-and-effect system for a higher-order concurrent programming
language with general references, λref,conc, that allow for:

• Verifying effect-based transformations and optimizations, including the
tricky parallelization theorem.

• Verifying implementations of abstract data types with local state.

• Verifying statically ill-typed terms that satisfy semantic invariants.

It is the first model that allow for the above verification properties for such an
expressive language and it is presented in all its gory details in Figure 39. In

7

8 CHAPTER 2. CONTRIBUTIONS OF THIS DISSERTATION

the remainder of this section, we discuss the challenges, key ideas and related
work for [42].

The Language and the Type-and-Effect System

λref,conc is standard call-by-value language with general references (higher-
order store), dynamic allocation, parallel composition (||) and CAS (compare-
and-set). An example of a stack module written in λref,conc is shown in Fig-
ure 21.

stack() = let h = new (new inj1 ()) in (push2(h),pop2(h))

push(h) = rec loop(n).let v = !h in

if CAS(h,v,new inj2 (n,v)) then () else loop(n)

pop(h) = rec loop(_).let v = !h in

case(!v, inj1 ()⇒ inj1 ()

inj2 (n,v′′)⇒ if CAS(h,v,v′′) then inj2 n else loop())

Figure 21: An implementation of a stack-module with local references in
λref,conc.

The stack module uses CAS in its push and pop method, to ensure it
functions correctly in the presence of other interfering threads.

We use a type-and-effect system similar to the type-and-effect system
in [14], to assign types to expressions in λref,conc. The type-and-effect system
is inspired by Lucassen and Gifford’s seminal work [26, 51], with the addition
that public and private regions are segregated. The typing judgment for the
type-and-effect system is as follows:

Π |Λ | Γ ` e : τ,ε

stating that the expression e has type τ , with effects ε, in the typing envi-
ronment Γ . The effects ε is a finite set of possible effects the evaluation of
e can have and consists of read effects rdρ, write effects wrρ, and allocation
effects, alρ, for region variables ρ in either the public region context Π or the
private region context Λ. Intuitively, public regions are those shared with
other threads where as private regions are owned exclusively. The idea is that
only mutable effects in the public regions are visible to the environment. This
is particularly visible in the function types, τ→Π,Λ

ε τ , which is annotated with
latent effects for public and private regions to capture any potential side-effects
of evaluating it.

2.1. RELATIONAL MODEL OF TYPES-AND-EFFECTS 9

Private regions can be introduced by the masking rule:

Π |Λ,ρ | Γ ` e : τ,ε ρ < FRV (Γ , τ)

Π |Λ | Γ ` e : τ,ε − ρ
TMask

The rule expresses when we can introduce a new private region ρ for the
evaluation of an expression e and hide all of e’s effects on region ρ. The
condition ρ < FRV (Γ , τ) ensures that we do not leak any locations of ρ. In
earlier work, a similar masking rule has been used for memory-management
[76] and for hiding local effects to enable more program-transformations
[10, 74].

Private regions can be made public for the duration of a parallel execution
by the TPar rule:

Π,Λ3 |Λ1 | Γ1 ` e1 : τ1, ε1 Π,Λ3 |Λ2 | Γ2 ` e2 : τ2, ε2

Π |Λ1,Λ2,Λ3 | Γ1,Γ2 ` e1 ||e2 : τ1 × τ2, ε1 ∪ ε2
TPar

The private region context is split in Λ1, Λ2 and Λ3, with Λi being the private
region context for ei , and the shared part Λ3 moved to the public region for
both e1 and e2.

The stack module in Figure 21 can be given the following type τStack:

1→ρ,−
{alρ}

(int→ρ,−
{wrρ ,rdρ ,alρ}

1)× (1→ρ,−
{wrρ ,rdρ}

1+ int)

This type expresses that the module will allocate in a public region ρ and
return two functions – push and pop. The type further expresses that push is
allowed to have read, write and allocate effects in the local state described by
ρ and that pop can read and write in ρ.

We show in Krogh-Jespersen et al. [42], by the means of LR
Par

, that the
above stack module is contextually equivalent to a module that uses a ref-
erence to a pure stack. Intuitively, this holds because their internal data
representations are purely local and hidden from clients of the modules.

Theorem 2.1.1. ρ | − | − ` stack �ctx stackpure : τStack,
{
alρ

}
We can further restrict the possible interference from the environment on

the stack module by asserting that region ρ should be private, as expressed by
the type τ ′Stack:

1→−,ρalρ (int→−,ρ{wrρ ,rdρ ,alρ} 1)× (1→−,ρ{wrρ ,rdρ} 1+ int)

Let stack_nc be the implementation of stack having the CAS loop swapped
with ordinary assignment. Then we can use our logical relation to prove the
following equivalence

10 CHAPTER 2. CONTRIBUTIONS OF THIS DISSERTATION

Theorem 2.1.2.

− | ρ | − ` stack_nc �ctx stack : τ ′Stack,
{
alρ

}
The above equivalence is valid because the type τ ′Stack require the stack

modules to be owned exclusively. As a result, operations on the modules will
run sequentially, thereby removing the need to use CAS for synchronization.

The Parallelization Theorem

Having a static type system can also be used to perform optimizations during
the compilation phase. In our setting, we can perform effect-based optimiza-
tions based on the effect types. The most interesting effect-based optimization
is a parallelization theorem expressing the equivalence of running expressions
e1 and e2 in parallel and running them sequentially, assuming their effects are
suitably disjoint.

Theorem 2.1.3 (Parallelization). If

1. Λ3 |Λ1 | Γ1 ` e1 : τ1, ε1 and Λ3 |Λ2 | Γ2 ` e2 : τ2, ε2

2. als ε1 ∪wrs ε1 ⊆Λ1, als ε2 ∪wrs ε2 ⊆Λ2

3. rds ε1 ⊆Λ1 ∪Λ3 and rds ε2 ⊆Λ2 ∪Λ3

then · |Λ1,Λ2,Λ3 |Γ1,Γ2 ` e1 ||e2 �ctx (e1, e2) : τ1 × τ2, ε1 ∪ ε2.

The theorem states that if there exists region contexts, Λ1, Λ2 and Λ3,
such that ei is well-typed having Λi and Λ3 as private and public region
contexts (item 1), and if all write and allocation effects of ei is confined to
Λi (item 2), and ei is allowed to read from Λi ∪Λ3 (item 3), then running
e1 and e2 in parallel is contextually equivalent to running them sequentially.
The parallelization theorem is difficult to prove sound when considering a
higher-order language with general references and dynamic allocation, having
many intricate subtleties.

To show contextual refinement in a concurrent language, one usually
shows that, for related heaps hI and hS , a step in an implementation eI ;hI
can be simulated by zero or more steps in the specification eS ;hS producing
related heaps h′I and h′S . Generally, following the approach of Turon et al. [78],
this relational property can be described as a unary Hoare triple by having
an exclusive specification thread-reduction resource j =⇒e expressing that the
term e is in an evaluation context for a thread informally identified by j:

eI ≤ eS ≈ {j =⇒eS ∗ heap(hS)}
eI

{vI .∃vS ,h′S . j =⇒vS ∗ heap(h′S) ∗ eS ;hS →∗ vS ;h′S ∗φ(vI ,vS)}

2.1. RELATIONAL MODEL OF TYPES-AND-EFFECTS 11

Here, the post-condition says that if eI terminates, a reduction from eS ;hS →∗
vS ;h′S exists, that the simulation resource is updated to a value vS (requires
exclusive ownership) and that the heap resource is updated to the resulting
heap h′S .

For proving relatedness of the ordinary parallel composition e1||e2, we
need to be able to split the specification resource j =⇒e1S ||e2S into two separate
resources, one for e1S and another for e2S . Then we can pass one to e1I and
the other to e2I and they can each reduce their corresponding specification
expression, independently of the other. This is possible because e1S and e2S
both occur in evaluation contexts.

For the left-to-right case of Theorem 2.1.3, we need to show, that for a re-
duction step taken in e1I ||e2I ;hI a reduction step must be taken in (e1S , e2S);hS .
This may not be possible when taking a step in e2S , unless e1S is fully reduced
to a value and e2S is in an evaluation context, thus previous methods for
proving parallelization therefore relied on reordering steps taken in e2S while
preserving the semantic invariants [9, 14]. For our purposes, the naïve use of
j =⇒vS proves insufficient since we cannot split the resource on a sequential
reduction; that would violate having full ownership.

A key contribution in Krogh-Jespersen et al. [42] is a novel technique for
proving parallelization that is based on framing.

Conceptually, instead of relating an execution on the left with an execution
on the right, the model LR

Par
relates an execution on the left with all “legal”

simulations on the right, that is, all simulations that terminates with related
values and ends up in related configurations.

Technically, we use a simulation identifier ζ to keep track of a particular

simulation heap heapζ(hS) and reduction j
ζ
=⇒vS .

To show the parallelization theorem in our model, we suspend the current

simulation j
ζ
=⇒ (e1S , e2S) in configuration heapζ(hS). Due to the type-and-effect

annotation, the heap hS can be split into: a mutable part h1 for e1, a mutable
part h2 for e2 and an immutable part hF shared by both. We then construct

two new semi-independent simulations for e1 and e2, j
ζ1
=⇒ e1S and j

ζ2
=⇒ e2S ,

in initial configurations heapζi (hi] hF). When the simulations are finished,
they can be reassembled in the original simulation ζ using framing. The
formalization of this argument is not straight forward and it leverages Iris’
facility for capturing sophisticated ownership disciplines.

Related Work

Relational models of type-and-effect systems have been well-studied in in-
creasingly sophisticated sequential programming languages, initiated by the
work of Benton et al. [8, 10–14, 74]. In this section we only touch on the
closest related work and leave the rest for §3.4.

12 CHAPTER 2. CONTRIBUTIONS OF THIS DISSERTATION

Birkedal et al. [14] showed a relational model for a concurrent language
with the same type-and-effect system used in our work. The relational model
in [14] was defined as a step-indexed Kripke logical relation. The authors
used the model to prove a parallelization theorem similar to ours, informally
by proving that the right hand side expression for parallel composition could
be delayed and catch-up if it was safe to do so, somewhat similar to our
notion of simulation. A technical byproduct of that approach meant that
they disallowed the delayed computation e2 to have any allocation effects. In
contrast, we build in support for parallelization in the LR

Par
relation through

its notion of multiple simulations. This allowed us to reduce the proof of the
parallelization theorem to the essence of why it holds: framing. Additionally,
the logical relation presented in [14] only allowed for much more restricted
invariants thus it could not be used to prove equivalences such as the ones in
2.1.1 and 2.1.2.

Benton et al. [9] also considered a concurrent language, which, in contrast
to the language considered here, only includes first-order store. Technically,
this makes the construction of a logical relations model simpler by avoiding
the type-world circularity problem. Additionally, their type and effect system
does not support dynamic allocation of abstract locations, corresponding to
regions in our work, which we support through the masking rule. Conversely,
their effect system supports a notion of abstract effects, which means, e.g.,
that an operation in a data structure module can be considered pure even if
it uses effects internally, as long as those effects are not observable from the
outside of the module. Benton et al. used this facility to show refinement of
fine-grained concurrent data structures. Our semantics also supports refine-
ments between fine-grained concurrent data structures, using Iris’ support
for general invariants.

2.2 Relational Model for Monadic Encapsulation of
State

Section §2.1 gave an account of a logical relations model for a language with a
type-and-effect system. Another way to characterize effectful computations
in functional programming languages is to do it monadically. This is done by
running the effectful computation in an encapsulated environment dictated
by the type of the monad and not allowing “impure” values to escape. Since
values cannot normally escape the monad, functional languages with support
for monads, e.g. Haskell, is often considered pure languages.

One particular interesting aspect of the type-and-effect system above was
the possibility of hiding effects via the masking rule, conceptually allowing
values to escape. This is in fact also possible with monads, namely the ST
monad introduced by Launchbury and Jones [47]. The ST monad comes
equipped with a function runST : (∀β,ST β τ) → τ that allows a value to

2.2. MONADIC ENCAPSULATION OF STATE 13

escape from the monad. runST runs a stateful computation of the monadic
type ST β τ and then returns the resulting value of type τ .

The relation between the ST monad and a type-and-effect system should
not come as a surprise, as it was already mentioned in [47] that there seems
to be a connection between encapsulation using runST and effect masking in
type-and-effect systems à la Gifford and Lucassen [26]. This connection was
formalized by Semmelroth and Sabry [69], who showed how a language with
a simplified type-and-effect system with effect masking can be translated into
a language with runST.

In Timany et al. [75], included in Chapter 3, the main technical result is a
logical relations model of STLang, a call-by-value, higher-order, functional
programming language with impredicative polymorphism, recursive types,
and a Haskell-style ST monad type with runST. The operational semantics of
STLang uses a single global mutable heap, capturing how the language would
be implemented in reality in contrast to earlier work [48, 52]. The main
contributions of the work is as follows:

• We present a logical relations model defined using a new approach
involving novel predicates for STLang – a language featuring a parallel
to Haskell’s ST monad.

• We use the logical relation to show that runST provides proper encapsu-
lation of stateful computations, by showing: (i) contextual refinements
and equivalences expected to hold for pure languages and (ii) a State-
Independence theorem.

• The technical development have been formalized in the Iris implementa-
tion, which is a higher-order, concurrent separation logic framework, in
Coq, including all proofs of the equations and the State-Independence
theorem.

It is the first model that validates the above-mentioned equivalences ((i)
and (ii)) for a programming language with a single global heap and in-place
destructive updates. The model is described in detail in Figure 46. In the
remainder of this section, we discuss the challenges of modeling STLang with
runST and the technical innovations required to produce [75].

The ST Monad, STLang and Results Hereof

The ST monad, described in Launchbury and Jones [47] and implemented in
Haskell’s standard library, is a family of ST β monads satisfying the Kleisli
arrow interface:

return :: α → ST β α
(>>=) :: ST β α → (α → ST β α’) → ST β α’

14 CHAPTER 2. CONTRIBUTIONS OF THIS DISSERTATION

The monad comes equipped with functions to allocate, read and write to
references of type STRef β α where α captures the type of the reference cell:

newSTRef :: α → ST β (STRef β α)
readSTRef :: STRef β α → ST β α
writeSTRef :: STRef β α → α → ST β ()

The type variable β, informally, identifies a logical region of the heap to which
the function:

runST :: (∀ β. ST β α) → α

can perform effectful computations on.
STLang is an untyped, call-by-value, higher-order language with con-

structs similar to the ST monad described above. We use return and bind
for the return and bind (»=) operations of the ST monad, respectively. ref(e)
creates a new reference, e← e writes to a reference and !e reads from one.

The operational semantics for STLang is original, so we explain it briefly
here. It is a small-step relation,→, that relates pairs of heaps and expressions
and is defined as the closure of a head-step relation→h by evaluation contexts.
Interestingly, to reduce effectful computations, the plain reduction has an
embedded effectful reduction ;:

〈h,v〉;
〈
h′ , e

〉
〈h,runST {v}〉 →h

〈
h′ ,runST {e}

〉
Notice that ; always reduces from a value, conceptually, values of type ST
are “frozen” computations until run inside runST .

Typing judgments, Ξ | Γ ` e : τ , are standard, where Ξ is an environment
of type variables, Γ an environment associating types to variables, e is an
expression, and τ is a type. With the operational semantics and typing
judgments briefly discussed, we can state the State Independence theorem,
proven in [75]:

Theorem 2.2.1 (State Independence).

· | x : STRef ρ τ ′ ` e : τ ∧ (∃h1, `,h2,v. 〈h1, e[`/x]〉 →∗ 〈h2,v〉) =⇒
∀h′1, `

′ . ∃h′2,v
′ .

〈
h′1, e[`

′/x]
〉
→∗

〈
h′2,v

′〉∧ h′1 ⊆ h′2.
This theorem says that, if the execution of a well-typed expression e

terminates, with x substituted by some location, in some heap h1, then e, when
x is substituted by any location l′ in any heap h′1, also terminates in some heap
h′2. The heap h′2 is an extension of h′1, i.e., the execution cannot modify h′1; it
can only allocate new state, via encapsulated stateful computations.

Contextual refinement, Ξ | Γ � e �ctx e
′ : τ , is defined for well-typed terms.

As usual, e and e′ are contextually equivalent, denoted Ξ | Γ � e ≈ctx e
′ : τ , if e

contextually refines e′ and vice versa.

2.2. MONADIC ENCAPSULATION OF STATE 15

The contextual refinements and equivalences proven in [75] for pure
computations are given in Figure 42 and those for monadic computations are
shown in Figure 43. We will touch on the proof of Rec hoisting after shortly
presenting the challenges of building a logical relation for STLang. For a full
account, we refer to [75].

Challenges of Building a Logical Relations Model for STLang

We mentioned in the section above, that values of type ST ρ τ can be consid-
ered as frozen computations, that is, well-typed values that will produce a
value τ when run under runST . To that end, we need some logical machinery
when stating the value relation, ~Ξ ` τ�∆, for the above type in the logical
relations model, where Ξ is an environment of type variables, and ∆ is a
semantic environment for these type variables, as is usual for languages with
parametric polymorphism [65].

Assume that an update modality is defined in Iris, |VP , that allow re-
sources to be updated (by allocation, modification or deallocation) to resources
that satisfy P . Timany et al. [75] defines a future modality based on the update
modality:

|�{n}≡.P , (|V .)n|VP

which intuitively express that we can update resources to satisfy P , n steps
into the future. The future modality can be used to tie the updating of
resources together with the operational steps taken, by a predicate referred to
as if-convergent (IC), also defined in [75]:

ICγ e {|v. Q|}, ∀h1,h2,v,n. 〈h1, e〉 →n 〈h2,v〉 ∗
heapγ (h1) −∗ |�{n}≡. heapγ (h2) ∗Q v

where −∗ is the ordinary magic wand of separation logic. The IC predicate
express that for any heap h1, if 〈h1, e〉 can reduce to a value v and heap h2,
and we have ownership over logical heap γ with contents h1, the heap can be
updated n steps later to h2. The IC predicate allows us to reason abstractly
and not consider concrete heaps.

The IC predicate can be used to define IC-triples in the same way as
weakest pre-condition is used to define Hoare-triples in Iris:

{|P |}e {|v. Q |}γ , persistent(P −∗ ICγ e {|v. Q|})

The quantification over the logical heap, γ , is crucial when giving a semantic
type to frozen computations of type ST ρ τ , since runST are pure expressions

16 CHAPTER 2. CONTRIBUTIONS OF THIS DISSERTATION

and therefore should yield the same result no matter heap configuration:

~Ξ ` ST ρ τ�∆(v,v′), ∀γh,γ ′h,h
′
1.{∣∣∣heapγ ′h(h′1) ∗ region(∆,ρ,γh,γ
′
h)
∣∣∣}

runST {v}{∣∣∣w. ∃h′2,v′ . 〈h′1,runST {
v′
}〉
→∗d

〈
h′2,v

′〉 ∗ heapγ ′h(h′2) ∗ ~Ξ ` τ�∆(v′ , ·)
∣∣∣}
γh

Here, region is a predicate tying the logical region ρ to some semantic region
with implementation and specification side heaps identified by γh and γ ′h. It
is worth to reiterate that the segregation of heaps is just a logical division –
the operational semantics is defined by means of a global single heap.

Notice, that defining the logical relation in terms of IC-triples, unlike
the standard way of giving the expression relation in terms of Hoare-triples,
allows one to omit a concrete heap on the implementation side. This approach
solves the same problem for the implementation side that the encoding of
simulations in Krogh-Jespersen et al. [42] solved for the specification side.

The logical relation defined in [75] is sufficient for validating most of the
refinements stated, however, proving Rec hoisting is particularly difficult to
prove:

lety = e1inrecf (x) = e2 �ctx recf (x) = lety = e1ine2 : τ1→ τ2

The number of steps do not align for the steps taken on the implementation
and specification side. To show this refinement, a slightly stronger version
of the logical relation is required, that force the number of steps taken on
both sides to be the same. All this work, including soundness of both logical
relations, all refinements and the State-Independence theorem, are proven in
Coq.

Related Work

The closest related work to our work in Timany et al. [75] is the original
seminal work of Launchbury and Jones [47] and [48], in which the authors
discovered that the use of parametric polymorphism in the type for runST
should still ensure proper encapsulation of effectful computations. However,
in Launchbury and Peyton Jones [48], the semantics and parametricity results
is denotational and does not use a global mutable heap with in-place update.
The authors state in [48, Section 9.1], that proving the remaining part of the
language remains pure for an implementation with in-place updates “would
necessarily involve some operational semantics.”. In Timany et al. [75], we
have shown such results for a language with a defined operational semantics
with a single global heap with in-place updates.

Moggi and Sabry [52] showed type soundness of calculi with runST-like
constructs for a call-by-value language and for a lazy language. The results

2.3. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS 17

were shown with respect to an operational semantics in which memory was
divided into separate regions: a runST-encapsulated computation always
started out in an empty heap and the final heap of such a computation was
discarded. Timany et al. [75] argue, that such an operational semantics
is not realistic for any real-world language implementation. Additionally,
the models in [52] are not relational and therefore not suitable for proving
relational statements such as the ones shown in Timany et al. [75]. We discuss
other related work in §4.7.

2.3 Aneris: A Logic for Node-Local, Modular
Reasoning of Distributed Systems

Relational models are necessary for showing relational properties about pro-
grams, as shown the parallelization theorem and rec hoisting above, however,
defining unary models to allow reasoning about programs can be sufficiently
difficult for some languages. This is true in particular for languages capa-
ble of programming distributed systems. Previous work on verification of
distributed systems has traditionally focused on verification of protocols of
core network components by model-checking, such as SPIN Holzmann [30],
TLA+ [46] and Mace [37]. More recently, significant contributions has been
made in the field of formal proofs of implementations of challenging proto-
cols, such as two-phase-commit, lease-based key-value stores, Paxos and Raft
[28, 50, 62, 70, 81].

One particular issue when verifying distributed systems is the problem of
composition. Composing programs from modules that implement protocols
is not well-studied by most other verification efforts, with [50, 70] as notable
exceptions. One reason for this is that the specification languages of most
other verification efforts is based on first order logic, which makes specifying
modules and modular reasoning more difficult than it would be for higher-
order logics. Additionally, distributed systems composed of individually
verified nodes belonging to different protocols, such as a verified load-balancer
that balance requests amongst servers, is not well-studied either, because most
other works consider a global system, dictated by some state-transition system
and thus lack the ability to reason about a node in isolation.

In Krogh-Jespersen et al. [43], included in Chapter 5, we present Aneris, a
framework for verifying real-world distributed systems in Iris [38], specifically
developed to do node-local reasoning, a concept similar to thread-local reasoning
for concurrent programs, ideal for building verified modules and nodes. In
summary, the key contributions of Krogh-Jespersen et al. [43] is as follows:

• AnerisLang, a formalized higher-order functional programming lan-
guage, with higher-order node-local store, concurrency (threads) and

18 CHAPTER 2. CONTRIBUTIONS OF THIS DISSERTATION

network sockets, allowing for dynamic creation and binding of sockets
to addresses.

• Aneris, a higher-order, separation logic to reason about distributed
systems, with support for node-local state and threaded concurrency.
Aneris has an adequacy result, which says, that if a system can be boot-
strapped in the logic, it is safe to run, i.e., it will not crash.

• A simple, novel, approach to guarding network sockets as arbitrary
predicates on messages, allowing for asynchronous ownership-transfer
between sockets and composition of protocols. Together with a node-
start rule, similar to fork for threads, we obtain the possibility of veri-
fying nodes in isolation. We refer to this as node-local reasoning, the
basic principle that allows for modular reasoning of distributed systems
components.

• We use Aneris to verify different interesting examples, including a load-
balancer, which is a program that distributes work on multiple servers
by the means of threaded concurrency. Additionally, we also verify a
module that implements the two-phase commit protocol along with a
distributed client of the two-phase commit that does replicated logging.

Aneris is the first logic that allows for reasoning about distributed systems
with node local state and threaded concurrency, and the first logic to define
node-local reasoning. Since the logic is built on top of Iris, assertions on
state and protocols can use all of the features from Iris, including invariants,
monoids and state-transition systems (which is basically just a monoid). In
this section we highlight a few of the main principles of Aneris and defer to
Chapter 5 for a lengthier discussion.

AnerisLang and its Operational Semantics

Aneris is a framework consisting of a language, AnerisLang, and a logic build
on top of Iris, which we refer to as Aneris. AnerisLang is an untyped call-by-
value, higher-order concurrent functional language with general references.
In addition it has constructs for creating sockets, binding sockets, and sending
and receiving messages. The syntax is quite readable and expressible, as
shown in the lock server example below (taken from Figure 51):

2.3. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS 19

rec lockserver ip p :=
let lock := ref NONE in
let skt := socket() in
Socketbind skt (makeaddress ip p);
listen skt (rec h msg from :=
if msg = "LOCK"
then match !lock with

NONE => lock← SOME ();
sendto skt "YES" from

| SOME __ => sendto skt "NO" from
end

else lock← NONE;
sendto skt "RELEASED" from);

listen skt h)

rec listen skt handler :=
match receivefrom skt with
SOME m => handler (fst m)

(snd m) in
| NONE => listen skt handler
end

The lock server declares a node-local variable lock to keep track of the
lock. It then creates and binds a socket skt on the given address ip and port
and starts to continuously listen for incoming messages on the bound socket.
When a "LOCK" message arrives 1 and the lock is available, the lock is taken
and the server responds "YES". If the lock was already taken, the server
responds with "NO". Finally, if the request is not "LOCK", the lock is released
and the server responds with "RELEASED".

The semantics of AnerisLang is quite involved since it models sockets
in addition to node-local threads and state. Conceptually, a socket is an
abstract representation of a handle for a local endpoint of some channel. In
Aneris we restrict sockets to use the User Datagram Protocol (UDP), which
is asynchronous, connectionless and stateless. In accordance with UDP, Aneris
provides no guarantee of delivery or ordering, although we assume duplicate
protection, since spatial resources could otherwise potentially be duplicated.

The operational semantics is defined in multiple stages; the first being a
node-local, thread-local, small-step head-relation between expressions, heap
and allocated sockets shown in Figure 55.

The node-local relation,→h, Figure 56, is then lifted to a network-aware
stepping relation, tracking the heap and sockets for all nodes, all bound-
addresses, all ports in use and all messages sent. The final distributed-systems
relation reduces by either taking a step in an existing thread on any node or
by forking of a new thread.

The simplified inference rules below (see Figure 56 for a full account)

1Operationally, messages are pairs of String×Address, but for the lock server example we
do not use the second component.

20 CHAPTER 2. CONTRIBUTIONS OF THIS DISSERTATION

show the semantics for message passing with sockets:

address(z) = Some from m = (from, to,msg,Sent) mid < dom(M)

〈n;sendtozmsgto〉,M→h 〈n; length msg〉,M[mid 7→m]

address(z) = None m = (from, to,msg,Sent) mid < dom(M)

〈n;sendtozmsgto〉,M→h 〈n; length msg〉,M[mid 7→m]

address(z) = Somea mid 7→m ∈M state(m) = Sent

m′ = (from(m), a,msg(m),Received)

〈n;receivefromz〉,M→h 〈n;Some (msg(m), from(m))〉,M[mid 7→m′]

address(z) = Somea ∅ = {mid |mid 7→ (−, a,−,Sent) ∈M}
〈n;receivefromz〉,M→h 〈n;None〉,M

One can send a message through a socket by sendto, to which, the message
will be added to the message soup M. If the socket is bound, the from field
of the message will be the address of the bound socket. If the socket is
unbound, from is some quantified address that is free in the system with
an ip-address matching the node. When calling receivefrom there are two
possible outcomes. Either the message soup M has messages in Sent state
waiting to be received or there are no messages available. If a message is
received, the message soup is updated with the state of the message changed
to Received.

It is noteworthy that inter-process communication can happen in multiple
ways in Aneris. Thread-concurrent programs can communicate through the
store but they can also communicate by sending messages through sockets.
There is no shared state between nodes thus they can only communicate by
message-passing through sockets.

Node-local Reasoning and Protocols

Similarly to thread-local reasoning for concurrent separation logic [56], Aneris’
logic allows for node-local reasoning about programs, i.e., verification of a
node in a distributed system is done in isolation with the environment as a
frame. This can be seen in the Start-rule by the pre- and post-condition having
no explicit assertions on other nodes in the distributed system:

Start-Rule

{P ∗ freePorts(ip, {p|0 ≤ p ≤ 65536})} 〈n;e〉 {x. true}
{P ∗ freeIp(ip)} 〈S;start {n; ip;e}〉 {x. x = 〈S; ()〉}

Here start is the command that launches a new node named n in the dis-
tributed system associated with ip-address ip running program e. The predi-
cate freePorts(ip,P) denotes the available ports P for an ip ip, that the program

2.3. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS 21

e can bind sockets on. Note that only the distinguished system nodeS can start
new nodes. In Aneris, the execution of the system starts with the execution of
S as the only node in the distributed system.

In Aneris we associate each socket endpoint (pair of ip-addresses and
ports) with a protocol which restricts what can be communicated over that
socket. The protocol is an Aneris assertion, s �⇒prot Φ , associating a socket
s with a predicate Φ of type Message → iProp. Socket protocols agree on
predicates, thus, if we have s �⇒prot Φ and s �⇒prot Ψ , we can conclude that Φ
and Ψ is the same protocol.

Aneris supports two kinds of socket endpoints: static socket endpoints and
dynamic socket endpoints. This distinction is only at the level of the logic and
not the distributed system itself. Static socket endpoints are those which have
primordial protocols agreed upon before bootstrapping the system, which
makes them ideal for servers. By having primordial protocols and by protocols
having to agree on predicates, any node in the system must respect primordial
protocols, including the server itself. To track primordial socket endpoints,

we use
f
7→ (A) where A is a set of addresses.

The primordial socket protocol for a lock server can be specified as follows:

lock(m,φ),body(m) = ”LOCK” ∗
((∀m′ .body(m′) = ”NO”∨ body(m′) = ”YES” ∗ R) −∗ φ(m′))

rel(m,φ),body(m) = ”RELEASE” ∗ R ∗
(∀m′ .body(m′) = ”RELEASED” −∗ φ(m))

lock_si ,λm.∃φ. from(m) �⇒prot φ ∗ (lock(m,φ)∨ rel(m,φ))

A universally quantified resource describing the lock, R, is transferred to the
client if the server responds "YES" and the same resources must be returned
when calling "RELEASE". Additionally, the lock protocol also illustrates how
primordial servers respond to dynamic bound sockets. The lock server socket
must be primordial in practice, however, the lock does not need to know about
its clients as long as the clients follow the socket protocol defined by the lock
server. As a consequence, a client has to prove that it can receive a reply from
the server by proving the resource-aware implication −∗ known as magic wand
(expanded upon in 5.4).

A node-local specification for the lock server is as follows:

{R ∗ (ip,p) �⇒prot lock_si ∗
f
7→ ({(ip,p)} ∪A) ∗ freePorts(ip, {p})}

〈n; lockserver ()〉
{True}

There are several interesting observations one can make on the lock server
example:

22 CHAPTER 2. CONTRIBUTIONS OF THIS DISSERTATION

• The lock server can allocate, read and write node-local references but
these are hidden in the specification. This is in contrast to [70] which
do not have true local references and thus they have to be part of the
specification.

• Sockets can be created and bound to specified endpoints. In this example
we expect the lock server to be primordial, i.e., the system should agree
on a protocol (ip,p) �⇒prot lock_si. Notice as well that there are no
channel descriptors or assertions on the socket in the code.

• Without a proper protocol, the lock server fails to provide mutual ex-
clusion since everyone can release the lock. However, with the protocol
defined, one can rely on the environment satisfying all stated protocols
and as a result no client will try to release without owning the lock.

In Krogh-Jespersen et al. [43] we show two more interesting examples,
replicated logging and load-balancing, which we briefly discuss below.

Replicated logging by two-phase commit The two-phase commit protocol
(TPC) is a well-studied consensus protocol, however, as mentioned earlier,
verifying clients of TPC has received almost no interest.

In Krogh-Jespersen et al. [43] we verify a TPC coordinator and participant
module. The TPC module is completely parametric in the event handlers and
shape of the messages used for consensus. This allows for different use cases,
e.g. an auction service or voting scheme.

In [43] we verify an instance of replicated logging as the client of two-
phase commit. A central server listens for incoming log messages and initiates
rounds of two-phase commit to ask a collection of databases to append the
log.

Load balancer A load balancer is crucial for horizontal scaling of a dis-
tributed system. A load balancer program forwards request from clients to
one of the available servers to which it balances the work load. It then waits
for the answer from the server and relays it back to the client.

In order to be able to handle requests from several clients simultaneously,
the load balancer can employ concurrency by forking off a new thread for
every available server in the system. Each of these threads will then race for
incoming requests.

The load balancer is completely modular and can provide load-balancing
to an array of services, as long as all of the socket protocols involved do not
depend on the sender in any specific way. Since Aneris is the first logic to
provide node-local concurrency, no other distributed verification efforts could
verify such an example.

2.3. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS 23

Verification effort The total verification effort needed to verify replicated
logging with two-phase commit was only 1,272 lines in total. Adding load
balancing to an existing service and proving adequacy is around 200 lines in
total. These results indicate that verifying distributed systems in Aneris is not
too demanding.

Related Work

In this section we describe the closest related work to Krogh-Jespersen et al.
[43] and defer discussion of other related work to §5.8.

Disel, Sergey et al. [70], is a framework for implementing and verifying
distributed systems in Coq. It has a shallowly embedded DSL for writing
distributed components that can be verified in by means of a separation
logic style Hoare-type theory. Disel achieves compositionality by providing a
frame-like inference rule, along with two novel logical mechanisms: WithInv

for strengthening assumptions by elaborating protocol invariants and send-
hooks for inter-protocol dependencies. In Aneris, all assertions are stable
by definition and quantifiable in such a way that WithInv is not needed.
Additionally, Aneris allow for node-local state updates, removing the need
for send-hooks. Aneris is also equipped with an adequacy result which seems
hard to prove in Disel.

One of the examples shown in Sergey et al. [70] is two-phase commit, and
a client for logging on top of TPC, quite similar to the example shown in
§5.6. However, because of Aneris node-local reasoning principle, Aneris’ TPC
implementation is easier to compose for clients, compared to the one in [70].
This is a side-effect of having node-local state hidden in the specification of a
network module and the quantification of protocols.

IronFleet, Hawblitzel et al. [28], allows for building provably correct
distributed systems by a novel combination of TLA-style state-machine re-
finement with Hoare-logic verification in a layered approach, all embedded in
Dafny [49]. Connecting the implementation with the specification is achieved
by defining a refinement function and by having the implementation ab-
stractly run the specification by ImplInit and ImplNext. The assertions on
imperative programs is stated in first-order predicate logic, in contrast to
Aneris’ higher-order logic, making it difficult to verify and compose advanced
network modules in a distributed system. IronFleet also has support for
verifying liveness properties which we do not support in Aneris.

Verdi, Wilcox et al. [81], is a framework for writing and verifying imple-
mentations of distributed algorithms in Coq, providing a novel approach to
network semantics and fault models. To achieve compositionality, the authors
introduced verified system transformers, that is, a function that transforms one
implementation to another implementation. Generally, [81] has two types
of system transformers: transmission transformers, which add network fault
toleration to nodes and replication transformers which add node failure tol-

24 CHAPTER 2. CONTRIBUTIONS OF THIS DISSERTATION

erance to the distributed system. In Aneris, one can easily encode different
network protocols by adding sequence numbering to the messages sent, and
adding acknowledge responses to received messages, by building a module
on top of the defined sockets. Additionally, it is not quite clear how system
transformers can be used to verify modules and clients separately, as we do
with TPC and replicated logging.

2.4 Verifying a Concurrent Data-Structure from the
Dartino Framework

The final manuscript included in this dissertation is a case-study on to how
specify and verify an underlying, concurrent scheduler-queue of a real-world
virtual machine, Google’s Dartino Framework. The Dartino Framework is
a managed runtime for the Dart language, specifically designed for high
throughput on limited devices, such as IoT devices. The Dartino Framework
uses a pool of low-level (hardware) threads to run high-level Dart processes.
Each thread has its own process queue, implemented as a doubly-linked list,
which we refer to as a Dartino Queue.

Having a Dartino Queue per thread serves to reduce contention, although
threads may access the queues of other threads. For instance, a thread with
no processes may steal one from another thread. In addition to the usual
enqueue and dequeue operations, the data structure allows a specific process
to be removed from anywhere in the queue. This allows the scheduler to
prioritize certain processes – for instance, to immediately schedule a process
that is the recipient of a message.

The case study in Krogh-Jespersen et al. [41], included in Chapter 6,
applies Iris to the verification of a Dartino Queue. In effect, the case study
demonstrates the practicality and effectiveness of the following:

• Using resources in Iris to reason about dynamic allocation and stealing
of processes which may be transferred between queues.

• Using logical atomicity in Iris in concert with resource transfer to verify
strong specifications that accurately capture the intention for the real-
world code. Having a logically atomic specification allow clients to
impose their own invariants on the queue, because it appears as if the
operations on the queue take effect at a single (atomic) instant in time.

The case-study has been carried out in collaboration with the Google
Dartino Team and all development is fully verified in the Coq implementation
of Iris.

2.4. DATA-STRUCTURE FROM THE DARTINO FRAMEWORK 25

A Doubly-Linked List as Concurrent Queue

One particular goal with the Dartino Framework, a virtual-machine for the
Dart language written in C++, is to increase the computation throughput of
concurrent programs that use message passing for communication. To this
end, when one Dart process sends a message to another, the recipient is pref-
erentially scheduled. This means that the Dartino Queue, which represents a
process queue in the scheduler, must allow for processes that are not at the
head to be removed from the queue, concurrently.

Updating the doubly-linked queue requires multiple updates to references,
thus, some sort of locking is needed. The Dartino Queue use the head-pointer
as a virtual lock for the queue. When enqueueing or dequeuing, a CAS-loop
is used to swing the head-pointer to some sentinel, conceptually informing
other threads that the queue is locked. When finished, the head-pointer is
moved back which logically releases the lock.

A general-purpose queue data structure based on a linked-list typically
allocate a new node when enqueueing, to hold the inserted value. However,
for process queues such as the Dartino Queue, nodes are process descriptors,
and for performance reason, they exists for the lifetime of the process. Thus, to
build a doubly-linked list, the process descriptor holds pointers to the queue
the process belongs to and its adjacent processes. This makes specification
of the queue more involved because one must handle ownership of process
objects carefully, since they may belong to multiple queues during their
lifetimes.

In Krogh-Jespersen et al. [41], we have faithfully translated the data-
structure from C++ to Iris-ML as shown in Figure 61. Giving a specification to
the queue is done in §6.4. The specification is non-trivial and requires a lot of
logical machinery to allow for arbitrary process removal without allocating
new node-structures and still satisfying the doubly-linked property of the
queue.

Atomic Triples

One approach to specifying operations on the Dartino Queue such as enqueue,
assuming a predicate qproc p asserting ownership of the process descriptor
for a process p would be the following high-level Hoare-triple:

{qproc p ∗ queue q l}
enqueue(q,p)

{v. v = () ∗ queue q (l++ [p])}

This specifies that calling enqueue with a valid queue q and un-enqueued pro-
cess p will result in the process being appended to the queue. Unfortunately,
to use this specification, a thread must have ownership of the queue, which is
not useful for a concurrent scheduler where the queue is shared.

26 CHAPTER 2. CONTRIBUTIONS OF THIS DISSERTATION

An alternative specification would be to wrap the queue in an invariant
which allow multiple threads to access the queue simultaneously:

{qproc p ∗ inv N (∃l.queue q l)}
enqueue(q,p)

{v. v = () ∗ inv N (∃l.queue q l)}

The problem with the above specification is that we lose the information that
enqueue actually appends the process to the queue. Indeed, an implementa-
tion of enqueue could not change the queue at all and be correct with respect
to such a specification.

Conceptually, the first specification do not allow any concurrent updates
to the queue while the second allow all possible concurrent updates to the
queue. The optimal specification would allow the client of the queue to
determine exactly which concurrent updates are possible. We can achieve
such a specification by viewing the update as logically atomic [18]:

A

l.〈qproc p ∗ queue q l〉
enqueue(q,p)

〈v. v = () ∗ queue q (l++ [p])〉

This specification expresses that the process p is atomically appended to the
queue q in the execution of enqueue(q,p). The binding of l, representing
the contents of the queue at the atomic point in time, allows the client to
arbitrarily update the queue during the execution of enqueue, provided that
the precondition holds for some l up until the atomic update taking effect.
Immediately after the atomic update, the postcondition will hold for the value
of l at which the precondition held immediately prior.

In Krogh-Jespersen et al. [41] we give an abstract atomic specification to
all Dartino Queue operations and show how a the logical atomic specification
can be used by a client.

Part II

Publications and Manuscripts

27

Chapter 3

A Relational Model of
Types-and-Effects in
Higher-Order Concurrent
Separation Logic

MORTEN KROGH-JESPERSEN, Aarhus University, Denmark
KASPER SVENDSEN, Aarhus University, Denmark
LARS BIRKEDAL, Aarhus University, Denmark

In Proceedings of the ACM on Programming Languages (POPL), 2017.

Abstract

Recently we have seen a renewed interest in programming languages that tame
the complexity of state and concurrency through refined type systems with
more fine-grained control over effects. In addition to simplifying reasoning
and eliminating whole classes of bugs, statically tracking effects opens the
door to advanced compiler optimizations.

In this paper we present a relational model of a type-and-effect system
for a higher-order, concurrent programming language. The model precisely
captures the semantic invariants expressed by the effect annotations. We
demonstrate that these invariants are strong enough to prove advanced pro-
gram transformations, including automatic parallelization of expressions with
suitably disjoint effects. The model also supports refinement proofs between
abstract data type implementations with different internal data representa-
tions, including proofs that fine-grained concurrent algorithms refine their
coarse-grained counterparts. This is the first model for such an expressive
language that supports both effect-based optimizations and data abstraction.

29

30 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

The logical relation is defined in Iris, a state-of-the-art higher-order con-
current separation logic. This greatly simplifies proving well-definedness of
the logical relation and provides a powerful logic for reasoning in the model.

3.1 Introduction

Programming with and reasoning about effects in higher-order programs is
well-known to be very challenging. Over the years, there have therefore been
many proposals of refined type systems for taming and simplifying reason-
ing about effectful programs. Examples include alias types [71], capability
type systems [60], linear type systems [23, 40, 53] Hoare type theory [54],
permissions-based type systems [61], type-and-effect systems [11, 12, 26, 51],
etc. Lately, we have also witnessed some larger-scale implementation efforts
on higher-order programming languages, e.g., the Mezzo programming lan-
guage [61] and the Rust programming language [67], which employ refined
type systems to control the use of state in the presence of concurrency.

In this paper, we provide a logical account of an expressive region-based
type-and-effect system for a higher-order concurrent programming language
λref,conc with general references (higher-order store). The type-and-effect sys-
tem is taken from [14]; it is inspired by Lucassen and Gifford’s seminal
work [26, 51], but also features a notion of public and private regions, which
can be used to limit interference from threads running in parallel. Hence it
can be used to express effect-based optimizations, as emphasized for type-
and-effect systems for sequential languages by Benton et al., see, e.g., [11, 12].
Effect-based optimizations are examples of so-called “free theorems”, i.e.,
they just depend on the types and effects of the involved expressions, not on
the particular expressions involved. The most interesting effect-based opti-
mization is a parallelization theorem expressing the equivalence of running
expressions e1 and e2 in parallel and running them sequentially, assuming
their effects are suitably disjoint. Note that this is a relational property, i.e., the
intended invariants of the type-and-effect system are relational in nature. Our
logical account of the type-and-effect system thus consists of a logical rela-
tions interpretation of the types in a program logic, and we prove that logical
relatedness implies contextual equivalence. We show that our logical rela-
tions interpretation is strong enough to prove the soundness of effect-based
optimizations, in particular the challenging parallelization theorem.

Since the programming language λref,conc includes higher-order store, it is
non-trivial to define a logical relations interpretation of the types, as one is
faced with the well-known type-world circularity [4] (see [15] for an overview).
Here we factor out this challenge, by using a state-of-the-art program logic,
Iris [33], as the logic in which we express the logical relations. Iris has direct
support for impredicative invariants, as needed for defining logical relations
for general references. Iris also supports reasoning about concurrency; in

3.1. INTRODUCTION 31

particular, it supports a form of rely-guarantee reasoning about shared state.
We use this facility to capture invariants of private and public regions. More-
over, we show, using simple synthetic examples, how we can also use the logic
to prove that syntactically ill-typed programs obey the semantic invariants
enforced by the type system. This is important in practice: both Mezzo and
Rust contain facilities for programming with statically ill-typed expressions
(Mezzo uses dynamic type checks [61] and Rust allows for including unsafe
code in statically typed programs [67]) thus models of type-and-effect systems
should preferably support reasoning about combinations of statically ill-typed
and statically well-typed programs.

Overview of Challenges and Contributions

The typing judgments of our type-and-effect system take the form

Π |Λ | Γ ` e : τ,ε

and express that the term e is of type τ and has effect ε in the typing context Γ
mapping variables to types. The additional contextsΠ andΛ consist of region
variables ρ denoting, respectively, the public regions and the private regions
that e may use. Intuitively, public regions are those that other threads may
also use, whereas private regions are not subject to interference from other
threads. Thus, from a thread-local perspective, the segregation describes an
expression’s expectations of interference from the environment. The effect
ε is a finite set of read rdρ, write wrρ, or allocation effects, alρ, the intuition
being that if, e.g., rdρ ∈ ε, then e may read a reference belonging to region ρ.

Effect-based optimizations. Using effect annotations we can express the
idea of parallelization mentioned above formally as follows (where rds ε is
the set of regions with read effects in ε and likewise for wrs ε and als ε):

Theorem 3.1.1 (Parallelization). If Λ =Λ1,Λ2,Λ3 and

1. Λ3 |Λ1 | Γ1 ` e1 : τ1, ε1 and Λ3 |Λ2 | Γ2 ` e2 : τ2, ε2

2. als ε1 ∪wrs ε1 ⊆Λ1, als ε2 ∪wrs ε2 ⊆Λ2

3. rds ε1 ⊆Λ1 ∪Λ3 and rds ε2 ⊆Λ2 ∪Λ3

then · |Λ1,Λ2,Λ3 |Γ1,Γ2 ` e1 ||e2 �ctx (e1, e2) : τ1 × τ2, ε1 ∪ ε2.

Here Λ1 are the private regions of e1, Λ2 are the private regions of e2, and
Λ3 are regions that can be used by both e1 and e2. The theorem then says, that
if the expressions ei only write and allocate in their private regions (item 2)
and only read in private or shared regions (item 3), then, running e1 in parallel
with e2 is contextually equivalent with running e1 and e2 sequentially, if the

32 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

stack1() = let h = new inj1 () in (push1(h),pop1(h))

push1(h) = rec loop(n).let v = !h in

if CAS(h,v, inj2 (n,v)) then () else loop(n)

pop1(h) = rec loop(_).let v = !h in case(v, inj1 ()⇒ inj1 (),

inj2 (n,v′)⇒ if CAS(h,v,v′) then inj2 n else loop())

(a) Stack1

stack2() = let h = new (new inj1 ()) in (push2(h),pop2(h))

push2(h) = rec loop(n).let v = !h in

if CAS(h,v,new inj2 (n,v)) then () else loop(n)

pop2(h) = rec loop(_).let v = !h in case(!v, inj1 ()⇒ inj1 (),

inj2 (n,v′′)⇒ if CAS(h,v,v′′) then inj2 n else loop())

(b) Stack2

Figure 31: The first stack module, (a) Stack1, has a single reference to a pure
list where (b) Stack2 uses a reference to a linked list.

context is not allowed to access any locations used by the two expressions
(expressed by the fact that Λ1,Λ2,Λ3 are all private in the conclusion).

Intuitively, this theorem sounds very plausible, perhaps even quite obvi-
ous, but proving it formally was an open problem for more than 25 years [14]
and it is still very difficult to prove for higher-order languages with general
references, such as ours. Indeed, one of our key contributions is a novel proof
technique for proving parallelization. To outline our approach, consider prov-
ing the left-to-right approximation of the parallelization theorem (Theorem
3.1.1). Then we, in particular, have to show that any reduction step taken
by e1 ||e2 can also be taken by (e1, e2). In the case where the expression e1 ||e2
takes a step in the right branch, we cannot yet take the corresponding step in
(e1, e2), unless e1 has already reduced to a value. Previous methods for prov-
ing parallelization therefore relied on reordering steps taken in e2 with steps
from e1, while preserving the semantic invariants - resulting in very difficult
proofs [14] or trace-based arguments [9], which are not known to scale to
programming languages with general references and dynamic allocation.

Our new technique is instead based on framing. We suspend the reduction
on the right hand side temporarily, and first disentangle the reduction of
e1 ||e2 into two semi-independent (“semi” because they can read from shared
regions) reductions for e1 and e2 respectively, which can then be reassembled
into a reduction for (e1, e2) using framing. The disentanglement and the re-

3.1. INTRODUCTION 33

assembling qua framing, of course, depends on the effect annotations, and our
formal argument leverages Iris’ facility for capturing sophisticated ownership
disciplines. We present a more detailed description and the formal argument
in Section 3.3.

Data abstraction and local state. The λref,conc language supports hiding of
local state using closures. Hiding can be used to implement abstract data
types (ADTs) that manipulate an internal data representation, which can only
be accessed through the provided operations. Relating ADT implementations
that use different internal data representations is well-studied in the setting
of ML-like type systems (see, e.g., [3, 79] and the references therein); effect
tracking adds several interesting dimensions.

In the ML setting the type system imposes no constraints on local state
when relating ADT implementations. This is not the case in our setting. To
illustrate, consider the following counter implemented using local state:

ecount , let x = new 0 in rec inc().let y = !x in

if CAS(x,y,y + 1) then y else inc()

ecount allocates a local reference x and returns a function that try to increment
x inside a loop, until it succeeds, and returns the old value. To allow for con-
current access, the function uses a compare-and-set operation (CAS), which
atomically sets the value of x to y + 1 if the value of x is equal to y and returns
true or false depending on the result. The counter has the following type:

ρ | − | − ` ecount : 1→ρ,−
{rdρ ,wrρ}

int, {alρ}

The type is a function type, which is annotated with a latent effect, expressing
that the returned function may read and write in the public region ρ. To prove
soundness of effect-based transformations, it is, of course, crucial that the
semantic model also enforces the semantic invariants expressed by the effect
annotations on local state. Otherwise, if our semantic model would allow us
to forget about the effects on the local reference x, then we would be able to
show, using a semantic version of Theorem 3.1.1, that let g = ecount in g() ||g()
is contextually equivalent to let g = ecount in (g(), g()), which is not the case
(the first expression may evaluate to (1,0), while the second always evaluates
to (0,1)).

We can use the type-and-effect system to limit interference from the en-
vironment on the internal state of ADTs, when relating ADTs. For example,
consider the two stack modules listed in Figure 31. The left stack module,
Stack1, uses a single reference to a pure functional list whereas the right
module, Stack2, uses a linked list representation. Both stack implementations
use a CAS operation to ensure that they function correctly in the presence of
concurrent interference. The implementations (i.e., stack1 and stack2) can be

34 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

given the following type τStack:

1→ρ,−
{alρ}

(int→ρ,−
{wrρ ,rdρ ,alρ}

1)× (1→ρ,−
{wrρ ,rdρ}

1+ int)

This type expresses that each module will allocate in region ρ and return two
functions push and pop. The type further expresses that push is allowed to
have read, write and allocate effects on the local state described by ρ and that
pop is allowed to read and write.

Intuitively, the two implementations are equivalent at this type, because
their internal data representations are purely local and hidden from clients of
the modules. Indeed, we can use our logical relation to prove:

Theorem 3.1.2. ρ | − | − ` stack1 �ctx stack2 : τStack,
{
alρ

}
Now, if we restrict possible interference from the environment by making

the ρ region private, as expressed by the type τ ′Stack (ρ is now private on the
latent effects, since it comes after the comma):

1→−,ρalρ (int→−,ρ{wrρ ,rdρ ,alρ} 1)× (1→−,ρ{wrρ ,rdρ} 1+ int)

then the two implementations are still contextually equivalent at this type.
Moreover, for this type, we can also prove that we can safely omit the CAS

operation from the stack implementations (intuitively, because there is no
possible concurrent interference). Thus, writing stack_nci for the implemen-
tation of stacki without a CAS loop, we can use our logical relation to prove
the following equivalences.

Theorem 3.1.3.

− | ρ | − ` stack_nc1 �ctx stack1 : τ ′Stack,
{
alρ

}
and − | ρ | − ` stack_nc2 �ctx stack2 : τ ′Stack,

{
alρ

}
Our proofs of data abstraction, detailed in §3.3 and §II, leverage Iris’s

facility for expressing invariants on local state. As pointed out in [14] the
logical relation in loc.cit. could not be used to prove equivalences such as this
one, since the logical relation there only allowed for much more restricted
invariants.

Ill-typed terms. Here is a simple example of a statically ill-typed expression
which nevertheless satisfies the semantic invariants enforced by the type
system:

e , x := ();x := true

This expression first assigns the unit value to a boolean reference, and then
assigns true to it.

3.1. INTRODUCTION 35

This expression is not statically typable, due to the assignment of unit to a
boolean reference. However, if the boolean reference is private then the rest of
the program is not allowed to observe the ill-typed intermediate value and
will thus never observe that the typing discipline has been broken. It is thus
perfectly safe to use the untypable term e as if it had the following type:

− | ρ | x : refρ B ` e : 1, {rdρ,wrρ}

Our logical relations model allows us also to reason about such statically
ill-typed terms and, e.g., prove that e is equivalent to a statically well-typed
expression which only assigns true to x.

Summary of Contributions In summary, the contributions of this paper
are:

• We show how to interpret types of a region-based type-and-effect system
for a concurrent higher-order imperative programming language with
higher-order store as logical relations in the state-of-the-art program
logic Iris.

• We use the interpretation to prove soundness of effect-based optimiza-
tions. In particular, we prove the soundness of the parallelization theo-
rem. Our parallelization theorem is a strengthening of the one in [14]
and for our proof we use a novel proof technique, based on framing.
The resulting proof is arguably a lot clearer and more abstract than the
one in [14], thanks to the use of the logical features of Iris.

• We use the interpretation to prove contextual equivalence of fine-grained
concurrent data structures that use local state to hide internal data rep-
resentations. Our examples could not be proved with the logical relation
in [14].

• We show how the logic may be used to prove that syntactically ill-typed
expressions obey the semantic properties enforced by the type system.

• We demonstrate that the logic allows us to give a modular definition of
the logical relation and explain the relation by breaking it down into
more manageable parts.

Outline We begin by formally defining the syntax and semantics of λref,conc,
the type-and-effect system, and contextual equivalence in §3.2. In §3.3 we
turn our attention to logical relations for λref,conc. We present our logical
relation in four stages, starting from a unary relation that characterizes type
inhabitance and ending with a binary relation for reasoning about contextual
equivalence that supports advanced effect-based optimizations, each building
on the previous relation. We conclude and discuss related and future work in
§3.4.

36 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

3.2 λref,conc with Types, Regions and Effects

In this section we present the operational semantics and the type-and-effect
system for λref,conc, a call-by-value language with general references and con-
currency primitives || and CAS (compare-and-set).

Syntax and Operational Semantics of λref,conc

The syntax of λref,conc is shown in Figure 32 and the operational semantics
is summarized in Figure 33. We assume given denumerably infinite sets of
variables Var, ranged over by x, y, f , and locations Loc, ranged over by l.
We use v to range over the set of values, Val, and e to range over the set
of expressions, Exp. Note that expressions do not include types. We use B,
true, false and if e then e1 else e2 as shorthands for booleans and branching
encoded using sums.

v ::= () | n | (v,v) | inji v | rec f (x).e | x | l
e ::= v | e = e | e e | (e,e) | prji e | inji e | e+ e | new e | !e | e := e

| CAS(e,e, e) | e ||e | case(e, inj1 x⇒ e, inj2 y⇒ e)

Figure 32: Syntax of λref,conc.

The operational semantics is defined by a small-step relation between configu-
rations consisting of a heap and an expression. Heaps h are finite partial maps
from locations to values. The semantics is defined in terms of evaluation con-
texts, K ∈ ECtx. We use K[e] to denote the expression obtained by plugging e
into the context K and e[v/x] to denote capture-avoiding substitution of value
v for variable x in expression e.

Types and Effects for λref,conc

The set of types is defined by the following grammar:

Type τ ::= 1 | int | refρ τ | τ × τ | τ + τ | τ→Π,Λ
ε τ

Π and Λ are finite sets of region variables, taken from a denumerably infinite
set RegVar ranged over by ρ. We use comma to denote disjoint union of sets
of region variables. An atomic effect on a region ρ is either a read effect, rdρ, a
write effect, wrρ, or an allocation effect, alρ. An effect ε is a finite set of atomic
effects. Typing judgments take the form Π |Λ |Γ ` e : τ,ε. An excerpt of the
typing rules are shown in Figure 34. All typing rules can be found in §II.

Regions can be introduced by the masking rule (TMask). The masking rule
expresses when we can introduce a new private region ρ for the evaluation

3.2. λref,conc WITH TYPES, REGIONS AND EFFECTS 37

Evaluation Contexts

K ::= [] | K = e | v = K | K e | v K | (K,e) | (v,K) | prji K | K + e | v +K

| inji K | case(K, inj1 x⇒ e, inj2 y⇒ e) | new K | !K | K := e | v := K

| K ||e | e ||K | CAS(K,e,e) | CAS(v,K,e) | CAS(v,v,K)

Pure reduction e
pure
→ e′

v1 ||v2
pure
→ (v1,v2)

Reduction h;e→ h′;e′

h;e→ h;e′ if e
pure
→ e′

h;new v → h] [l 7→ v]; l

h; !l → h;v if h(l) = v

h[l 7→ −]; l := v → h[l 7→ v]; ()

h;CAS(l,vo,vn)→ h; false if h(l) , vo
h[l 7→ vo];CAS(l,vo,vn)→ h[l 7→ vn];true

h;K[e]→ h′;K[e′] if h;e→ h′;e′

Figure 33: Operational semantics of λref,conc. Remaining pure reductions are
standard (see Chapter II).

of an expression e and hide all of e’s effects on region ρ. The condition
ρ < FRV (Γ , τ) ensures that we do not leak any locations of ρ and hence, from
the perspective of e, region ρ is private. The masking rule has been used
to do memory-management [76] and to hide local effects to enable more
program-transformations [10, 74].

Since the masking rule allows us to hide local state effects, a pure operation
is not necessarily deterministic in our setting. For instance, the following
code-snippet which non-deterministically returns true or false can be typed
as a pure expression:

− ` let x = new true in (x := true||x := false); !x : B,∅

Contextual Equivalence for λref,conc

We take contextual equivalence as our basic notion of equivalence. Contex-
tual equivalence relates two expressions if no suitably typed context can
distinguish them. For a concurrent language such as λref,conc we have to
choose whether there simply has to exist an indistinguishable reduction

38 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

(x : τ) ∈ Γ
Π |Λ | Γ ` x : τ,∅ Ξ ` () : 1,∅

Ξ ` e1 : τ,ε1 Ξ ` e2 : τ,ε2 eqtype(τ)

Ξ ` e1 = e2 : B, ε1 ∪ ε2

Π |Λ | Γ , f : τ1→Π,Λ
ε τ2,x : τ1 ` e : τ2, ε

Π |Λ | Γ ` rec f (x).e : τ1→Π,Λ
ε τ2,∅

Π |Λ | Γ ` e1 : τ1→Π,Λ
ε τ2, ε1 Π |Λ | Γ ` e2 : τ1, ε2

Π |Λ | Γ ` e1 e2 : τ2, ε∪ ε1 ∪ ε2

Ξ ` e : refρ τ,ε

Ξ ` !e : τ,ε∪
{
rdρ

}
Π |Λ | Γ ` e : τ,ε ρ ∈Π,Λ

Π |Λ | Γ ` new e : refρ τ,ε∪
{
alρ

} Ξ ` e1 : refρ τ,ε1 Ξ ` e2 : τ,ε2

Ξ ` e1 := e2 : 1, ε1 ∪ ε2 ∪
{
wrρ

}
Π |Λ,ρ | Γ ` e : τ,ε ρ < FRV (Γ , τ)

Π |Λ | Γ ` e : τ,ε − ρ
TMask

eqtype(1)

Π,Λ3 |Λ1 | Γ1 ` e1 : τ1, ε1 Π,Λ3 |Λ2 | Γ2 ` e2 : τ2, ε2

Π |Λ1,Λ2,Λ3 | Γ1,Γ2 ` e1 ||e2 : τ1 × τ2, ε1 ∪ ε2

Ξ ` e1 : refρ τ,ε1 Ξ ` e2 : τ,ε2 Ξ ` e3 : τ,ε3 eqtype(τ)

Ξ ` CAS(e1, e2, e3) : B, ε1 ∪ ε2 ∪ ε3 ∪
{
wrρ, rdρ

}
Π |Λ | Γ ` e : τ1, ε1 Π,Λ ` τ1 ≤ τ2 ε1 ⊆ ε2

Π |Λ | Γ ` e : τ2, ε2

eqtype(τ) eqtype(σ) op ∈ {+,×}
eqtype(τ op σ)

FRV (τ) ∈Π
Π ` τ ≤ τ

Π ` τ1 ≤ τ ′1 Π ` τ2 ≤ τ ′2
Π ` τ1 × τ2 ≤ τ ′1 × τ

′
2

Π ` τ ′1 ≤ τ1 Π ` τ2 ≤ τ ′2 ε1 ⊆ ε2 Π1 ⊆Π2 Λ1 ⊆Λ2

Π ` τ1→
Π1,Λ1
ε1 τ2 ≤ τ ′1→

Π2,Λ2
ε2 τ ′2

Figure 34: Excerpt of typing and sub-typing inference rules. We write FV (e)
and FRV (e) for the sets of free program variables and region variables respec-
tively. For all typing judgments Π | Λ | Γ ` e : τ,ε we implicitly assume that
FRV (Γ , τ,ε) ∈Π∪Λ. The equality type predicate, eqtype, defines the types we
may test for equality. We use Ξ as shorthand for Π |Λ | Γ .

3.3. A LOGICAL RELATION FOR λref,conc 39

(may-equivalence) or whether all possible reductions must be indistinguish-
able (must-equivalence). In this paper we study may-equivalence and may-
approximation, as defined below.

Definition 3.2.1. Π | Λ | Γ ` e1 ≤ctx e2 : τ,ε iff for all contexts C, values v, and
heaps h1 such that C : (Π | Λ | Γ ` τ,ε) (− | − | − ` B,∅) and [];C[e1]→∗ h1;v
there exists a heap h2 such that [];C[e2]→∗ h2;v.

The C : (Π | Λ | Γ ` τ,ε) (Π′ | Λ′ | Γ ′ ` τ ′ , ε′) relation expresses that
the context C takes a term e of the former type to a term of the latter type;
the definition is standard and relegated to §II. Note that e1 and e2 are not
required to be well-typed in the definition above. Contextual equivalence
Π |Λ | Γ ` e1 �ctx e2 : τ,ε is then defined as contextual approximation in both
directions.

3.3 A Logical Relation for λref,conc

In this section we present a logical relation for λref,conc. To aid exposition
we present the logical relation in four steps. We start by defining a unary
logical relation for a simplified type system without regions and effects. This
allows us to focus on the use of Iris as a meta-language for logical relations
and provide a gentle introduction to Iris. We then extend the unary relation
to the full type system with regions and effects, focusing on how effects are
translated into abstract descriptions of possible interference. These unary
logical relations characterize type inhabitance, which suffices for establishing
type soundness, but not for proving equivalences. As the third step we naively
extend the unary relation for the full type system to a binary relation, focusing
on how to express a binary relation in a unary program logic. This yields
a logical relation that is sound with respect to contextual approximation
and suffices for proving equivalences of many concrete examples, but not
advanced effect-based equivalences such as parallelization. For the fourth and
final relation, we refine the third relation further, to support reasoning using
multiple simulations. This final relation validates parallelization and is also
sound with respect to contextual approximation.

This staged presentation also highlights the modularity of using Iris as a
meta-language for logical relations. In particular, each step builds naturally
on the previous, only requiring small changes or additions between each
relation.

Unary Relation for λref,conc Without Effects

We begin by defining a unary logical relation for λref,conc with a standard
ML-like type system without regions and effects. The goal is to define a unary
relation, LR

ML
that characterizes type inhabitance semantically and is sound

with respect to the syntactic typing rules. More precisely, we wish to define

40 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

κ ::= 1 |Exp |Val |Name |Prop |Monoid |κ ×κ | · · ·

t,ϕ, ι,P ,M ::= x | λx : κ.t | ϕ t | (t, t) | π1(t) | π2(t) | t =κ t | t 7→ t | ⊥ | >
| P ∧ P | P ∨ P | P ⇒ P | ∀x : κ.P | ∃x : κ.P | P ∗ P
| P −∗ P |2P | .P | P ι | {P } e {v. Q}M | P VM M Q | · · ·

Figure 35: Excerpt of Iris syntax.

two unary relations, a value relation, ~τ�, that characterizes values of type τ
and an expression relation, E~τ�, that characterizes expressions that either
diverge or evaluate to values of type τ .

For ground types the definition of ~τ� is obvious: it is the values of the
given type τ . The main difficulty arises when defining the interpretation of
reference types. The idea is to take a location l to be an inhabitant of type
ref τ if location l contains a value of type τ in the current heap. λref,conc is a
concurrent language and the context is free to update the heap as it sees fit.
However, the context must preserve typing and we can thus think of ~ref τ�(l)
as expressing an invariant that l must always contain a value v of the semantic
type ~τ� in the heap. To formalize this we introduce our meta-language, Iris.

Iris and invariants. Iris is a generic framework for constructing higher-
order separation logics. For the purposes of this paper we present one partic-
ular instance of this framework for the λref,conc language and we refer to this
instance simply as Iris.

Figure 35 contains an excerpt of the Iris syntax. Iris is a higher-order
logic over a simply-typed term language. The set of Iris types, ranged over
by κ, includes a type of λref,conc expressions Exp and values Val, a type of
propositions, Prop, and is closed under products and function spaces. Iris
includes the usual connectives (⊥,>,∧,∨,⇒,∀,∃,∗,−∗ ,=κ) and proof rules of
higher-order separation logic. Iris extends this with a few new primitives,
which we explain below.

Iris makes no distinction between assertions and specifications. Specifica-
tions are simply treated as special assertions that do not express ownership of
any state. This is captured by the always modality, 2P , which expresses that
P holds and does not assert ownership of any state. Since 2P does not assert
any ownership, it can be freely duplicated (2P =⇒ 2P ∗2P). We therefore
call assertions of the form 2P persistent.

One of the main features of Iris is invariants for reasoning about shared
state. The pure assertion P

ι
asserts the existence of an invariant with the

name ι that owns a resource satisfying the assertion P . Resources owned by
invariants are shared by every thread and can be accessed freely by atomic
operations, provided the invariant is preserved. For atomic operations we can

3.3. A LOGICAL RELATION FOR λref,conc 41

thus open an invariant and take local ownership of the resource owned by
the invariant for the duration of the operation, provided we transfer back a
resource that satisfies the invariant assertion after the operation. In Iris this is
captured formally by view-shifts. A view-shift, written PV Q expresses that it
is possible to transform a resource satisfying P into a resource satisfying Q,
without changing the underlying physical state. To reason about opening of
invariants, view-shifts are further annotated with invariant masks indicating
which invariants are required to hold before and after the view-shift. In the
view-shift P VM1 M2 Q, M1 andM2 are invariant masks (sets of invariant
names) required to hold before and after the view-shift respectively. The
invariant masks ensure that we do not open an invariant twice (which would
not be sound in general). Opening and closing of invariants is captured by
the two following view-shift axioms:

P
ιι
V{ι} ∅ .P

InvOpen

P
ιι ∗ .P V∅ {ι} >

InvClose

The InvOpen rule allows us to take ownership of P upon opening the invariant
ι, while the InvClose rule requires us to relinquish ownership of P to close
the invariant ι. In both rules, the resource P is guarded by a modality, ., which
we explain shortly.

To apply these view-shifts to open an invariant for the duration of an
atomic operation, such as reading (!e), writing (x := e) or allocating (new e),
Iris features the following atomic rule-of-consequence.

e atomic
P1 VM]M′ M P2 {P2} e {Q2}M ∀v.Q2(v) VM M]M′ Q1(v)

{P1} e {Q1}M]M′
ACsq

Iris triples, {P } e {Q}M, are also annotated with an invariant mask, M, in-
dicating which invariants are required to hold before, during and after the
execution of e. The atomic rule-of-consequence allows us to change this mask
to open invariants for the duration of an atomic expression e. View-shifts
include implication (2 (p⇒ q) ` pV q) and we can thus recover the usual
rule-of-consequence from ACsq.

The “later” modality, ., is used to express that a property is only required
to hold after one step of execution. It is used in connection with invariants
because an Iris invariant may contain any predicate P , including one referring
to the invariant itself. To ensure this is well-defined, Iris uses a form of
guarded recursion, an abstract version of step-indexing — where . is used to
guard the resource in the invariant. Since the later modality expresses that
a predicate holds after one step of execution, we can remove a . modality
from a precondition whenever our program makes an operational step. This
is captured by the frame rule for atomic expressions:

{P } e {Q} e atomic

{P ∗ .R} e {v. Q(v) ∗R}
AFrame

42 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

For many assertions it is also possible to remove laters without an operational
step. We call these assertions timeless as they are independent of the number
of steps left. For timeless assertions P we can view-shift away laters: .PV P .
Timeless assertions are closed under the connectives and quantifiers of first-
order separation logic, but crucially does not include invariant assertions
P
ι
, as the steps are precisely needed to model potentially self-referential

invariants. With the exception of the reference invariants we use, all the
invariants used throughout this article are timeless.

While the invariant names ι on invariant assertions, view shifts and Hoare
triples are important for soundness, they are not important for understanding
our encodings of logical relations in Iris. We have therefore chosen to elide
all invariant names in the article, and refer interested readers to Chapter II,
where everything is fully annotated.

Logical relation. We now have enough logical machinery to define the first
unary logical relation in Iris. The full definition of LR

ML
is given in Figure 36.

The value relation, ~τ�, is defined by induction on τ and defines an Iris
assertion of type Val→ Prop. The expression relation, E, is defined indepen-
dently of the value relation and takes an arbitrary value predicate and extends
it to expressions. It has the following type in Iris:

E : (Val→ Prop)→ (Exp→ Prop)

As already mentioned, for ground types, ~τ� is simply the set of values of the
given type τ . The definition for arrow-types follows the usual idea of related
arguments to related values, with the added wrinkle that we only require the
argument to be related later. This suffices since applying a function takes a
step in the operational semantics. The always modality in the value relation
for arrow types is there to ensure the value relation is pure, which allows us
to duplicate the resource that witnesses that a value is well-typed. It is needed
in the arrow-case as implication does not preserve purity in general. For space
reasons we omit the cases for products and sum types and refer the reader to
§II.

Finally, for reference types, ref τ , the value relation is the set of locations
l such that there exists an invariant that owns the location l and contains a
value v in ~τ�. Resources owned by invariants are shared, which allow all
concurrently executing threads to freely update references, provided they
respect the typing of the reference. This type of invariant can be seen as a
particularly simple instance of rely / guarantee reasoning, where the rely and
the guarantee are the same: namely, to preserve the invariant. A large part
of the challenge throughout the rest of this article boils down to refining this
invariant to limit possible interference from the environment, based on the
region and effect system.

The expression relation E(φ) extends a value predicate φ to expressions e
by requiring that, if e terminates, then it terminates with a value satisfying

3.3. A LOGICAL RELATION FOR λref,conc 43

~1�, λx. x = () ~int�, λx. x ∈ N

Ref(x,φ), ∃v. x 7→ v ∗φ(v) ~ref τ�, λx. Ref(x,~τ�)
Rf(x)

~τ1→ τ2�, λx. 2∀y. (.~τ1�(y))⇒E(~τ2�)(x y)

E(φ)(e), {>}e {v. φ(v)}>

Logical relatedness

x : τ |=
ML

e : τ , `
Iris
∀x′ .~τ�(x′) =⇒ E(~τ�)(e[x′/x])

Figure 36: LR
ML

: Unary rel. for λref,conc sans effect-types.

φ. Finally, Γ |=
ML

e : τ extends this to open expressions, by closing under all
substitutions. This semantic typing judgment is sound with respect to the
usual typing rules, in the sense that for any well-typed term Γ ` e : τ , the Iris
assertion Γ |=

ML
e : τ is provable in Iris.

Lemma 3.3.1 (Soundness). If Γ ` e : τ then `
Iris

Γ |=
ML

e : τ .

We note in passing that this logical relation shows the power of using Iris
as a meta-language for defining logical relations: Usually, to define logical
relations for a language with general references, one would need to index
semantic types by worlds containing semantic types for allocated locations and
the worlds and semantic types would have to be recursively defined [4, 15];
here this is all taken care of by Iris’ built-in general logical facility for defining
and working with invariants.

Unary Relation for λref,conc with Effects

In this section we extend the unary relation from the previous section to
the full type system with regions and effects. Note that simply extending
the relation from the previous section to the full type system by ignoring
all region and effect annotations already yields a relation that is sound with
respect to the full type system. However, this is needlessly conservative and
by interpreting region and effect annotations as restricting interference, we
obtain a more precise semantic typing relation that is also sound.

The idea is to use the distinction between public and private regions to
limit interference from the context, and the effect annotations to limit the
effects of the given expression. We can encode this in Iris using tokens indexed
by a region r corresponding to each type of effect: [Rd]πr , [Wr]πr , [Al]πr . Each
token is intended to grant permission to perform the corresponding effect on
region r and, depending on the fractional permission π ∈ {π ∈Q | 0 < π ≤ 1},

44 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

prevent the context from performing the given effect. These tokens must
satisfy the following properties (and likewise for Wr,Al):

[Rd]1
r ∗ [Rd]πr ⇒⊥ [Rd]π1+π2

r ⇔ [Rd]π1
r ∗ [Rd]π2

r (3.1)

expressing that the full permission (π = 1) really means exclusive ownership
of the token and that these tokens can be split and recombined arbitrarily.
In Iris we can define such tokens using ghost state. Below we give a brief
introduction to ghost state in Iris; for a more thorough treatment, we refer the
reader to [33].

Iris and ghost state. Ghost resources provide a modular way of reason-
ing about knowledge and rights to modify some shared state. Ghost state is
modeled using partial commutative monoids in Iris. Formally, these partial
commutative monoids are presented as total commutative monoids with a
distinguished zero element, ⊥. The assertion m :M

γ
asserts ownership of a

ghost resource m ∈ |M | of the monoid instance γ . Separating conjunction on
ghost state is simply the lifting of the underlying monoid composition:

m1 :M
γ ∗ m2 :M

γ ⇔ m1 ·M m2
γ

(3.2)

The zero-element represents an ill-defined resource and thus cannot be owned:
⊥ :M

γ ⇔ false.
Tokens are a degenerate form of ghost state, consisting only of rights.

The Frac monoid, defined below, allows us to define an effect token for a
single region. The carrier is rationals between 0 and 1, with addition as
composition and 0 as the unit (we typically omit the explicit zero element
from the definition of the monoid carrier and composition):

Frac = [0,1]∩Q q · q′ = q+ q′ , if q+ q′ ≤ 1

The idea is that 0 represents no ownership, 1 exclusive ownership and any-
thing rational in the interval (0,1) non-exclusive ownership.

To define effect tokens for arbitrary regions, we also need the partial finite
function monoid, FpFun(X,M), with unit ε being the empty map and whose
carrier is functions f from a set X into the non-zero elements of a monoid
M, such that the set {x ∈ X | f (x) , ε} is finite. Composition on FpFun(X,M)
is defined point-wise, but is only defined if all point-wise compositions are
well-defined:

(f · g)(x), f (x) · g(x) if f (x) · g(x) ,⊥ for all x ∈ X

Effect tokens can now be defined as follows and proven to satisfy property
(3.1). The proof is an easy consequence of (3.2) and the definition of the
monoid.

[X]πr , [r 7→ π] : FpFun(RN ,Frac)
X
, X ∈ {Rd,Wr,Al}

3.3. A LOGICAL RELATION FOR λref,conc 45

Ghost state is a purely logical construct and is updated using view-shifts
rather than assignments. To update a ghost resource we must ensure that
our update is consistent with all ghost resources potentially owned by the
environment. This is captured by the GhostUpd rule given below:

GhostUpd

∀mf .m ·mf ,⊥⇒∃m′ ∈M ′ .m′ ·mf ,⊥

m :M
γ
V ∃m′ ∈M ′ . m′ :M γ

To update a ghost resource m to some element m′ ∈M ′, we have to show that
doing so preserves all possible frames mf composable with the resource m.

We can instantiate the finite partial functions monoid with locations and
values to obtain the standard monoid of heaps used in separation logic. To
define a monoid on values, we extend it with a unit element and a composition
operator that is only defined if one of the two elements is unit.

Heap, FpFun(Loc,Val+ {ε})

The ghost resource [l 7→ v] : Heap
γ

asserts the exclusive right to modify loca-
tion l in ghost heap γ and that location l currently contains the value v (here
we use [l 7→ v] for the function that maps l to v and every other argument
to ε). Using the GhostUpd rule, we can update ghost locations we own and
allocate new ghost locations:

[l 7→ v] : Heap
γ
V [l 7→ v′] : Heap

γ
(3.3)

[] : Heap
γ
V ∃l. [l 7→ v] : Heap

γ
(3.4)

Throughout the rest of the article we will need many ghost resources, includ-
ing the Heap monoid. We will introduce them by explaining the properties
we expect them to satisfy. Naturally, we must define monoids for all of these
resources and prove that the desired properties hold. All of these definitions
and proofs can be found in §II.

Encoding effects using ghost state. Now that we have seen how to define
and work with ghost state in Iris, we proceed with how to encode effects using
ghost state.

A read-effect on a private region translates into exclusive ownership of the
corresponding read token, while a read-effect on a public region translates
into ownership of the corresponding read token with an arbitrary fractional
permission π (and likewise for write and allocation effects).

The intended meaning of these tokens is enforced through the interplay
between two invariants: a new region invariant, Reg(r), linking references with
their corresponding region, and an updated reference invariant, Ref(r,φ,x),
indexed by a region identifier r and the reference’s semantic type φ. Before
we define these formally, we review some properties that should hold. If we

46 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

own part of the read token for a region r then the context knows we might
read references belonging to this region and must ensure that their values
are well-typed. This is captured by the following property (where all free
variables are universally quantified):

Reg(r)
Rg(r)

, Ref(r,φ,x)
Rf(x) ` {[Rd]πr } !x {y. [Rd]πr ∗φ(y)} (3.5)

Preservation of well-typedness is expressed by φ(y) in the post-condition. If
we own part of the write token for a region r then we should be allowed to
write any well-typed value to a reference belonging to region r:

Reg(r)
Rg(r)

, Ref(r,φ,x)
Rf(x)

,φ(v) ` {[Wr]πr } x := v {y. [Wr]πr } (3.6)

Likewise, if we own any part of the allocation token for a region r we should
be allowed to allocate a new reference and associate it with region r:

Reg(r)
Rg(r)

,φ(v) ` {[Al]πr } new v {y. [Al]πr ∗ Ref(r,φ,y)
Rf(y)}

Those three properties were fairly uneventful; the interesting properties deal
with exclusive ownership of effect tokens.

Exclusive read effect. If we own the read token for region r exclusively, then
the context cannot rely on references in region r containing well-typed values.
If we additionally own a write token for region r, then we should be allowed to
assign arbitrary values to references belonging to region r, provided we restore
them with well-typed values before returning the exclusive read token. To
capture this formally, we introduce two new tokens, [Rd(x)]r and [NoRd(x)]r ,
which express that if location x belongs to region r then it contains a well-
typed value and may contain a value that is not well-typed, respectively. If
we own the read token on a region r exclusively, then the following property
allows us to exchange it for tokens that force all locations belonging to region
r to contain well-typed values.

Reg(r)
Rg(r) ` [Rd]1

rWV ~x[Rd(x)]r (3.7)

By giving up the token that expresses that a location contains a well-typed
value, we can assign an arbitrary value to the location. If we later assign a
well-typed value, we can recover the token witnessing the well-typedness of
the location. This is captured by the following two properties.

Reg(r)
Rg(r)

, Ref(r,φ,x)
Rf(x)

(3.8)

` {[Wr]πr ∗ [Rd(x)]r} x := v {y. [Wr]πr ∗ [NoRd(x)]r}

Reg(r)
Rg(r)

, Ref(r,φ,x)
Rf(x)

,φ(v) (3.9)

` {[Wr]πr ∗ [NoRd(x)]r} x := v {y. [Wr]πr ∗ [Rd(x)]r}

3.3. A LOGICAL RELATION FOR λref,conc 47

Exclusive write effect. If we own the full write token, [Wr]1
r , then the con-

text should not be allowed to modify references belonging to region r. Again,

we capture this property by introducing new tokens [Wr(x)]r and x
π
↪−→r v.

Both tokens express that if location x belongs to region r, then we own the
exclusive right to update it; the latter token further asserts that the current
value is v. As before, we can trade ownership of a per-region write token for
region r for all per-location write tokens for region r:

Reg(r)
Rg(r) ` [Wr]1

rWV ~x[Wr(x)]r (3.10)

Given ownership of a per-location write token for a location x belonging to
region r, we can trade the token for a points-to proxy for x with fractional
permission 1

2 :

Ref(r,φ,x)
Rf(x) ` [Wr(x)]rWV ∃v.x

1
2
↪−→r v (3.11)

This points-to proxy satisfies similar properties as the standard separation

logic points-to: If we own the points-to proxy x
π
↪−→r v and read location x, we

will read the value v:

Reg(r)
Rg(r) ` {x

π
↪−→r v} !x {y.y = v ∗ x

π
↪−→r v} (3.12)

If we own half of the points-to proxy for a location x we can also use it to
assign a well-typed value to x:

Reg(r)
Rg(r)

, Ref(r,φ,x)
Rf(x)

, (3.13)

φ(v2) ` {x
1
2
↪−→r v1} x := v2 {y. x

1
2
↪−→r v2}

Exclusive ownership of the per-region write token thus allows us to reason
about the exact value of all references belonging to the region.

Exclusive allocation effect. Exclusive ownership of a per-region allocation
token allows us to lock the domain of the heap associated with the given
region. By trading our exclusive per-region allocation token, we can take
ownership of a new token, [Al(h)]πr , that witnesses the domain of the heap
associated with the given region:

Reg(r)
Rg(r) ` [Al]1

rWV ∃h. [Al(h)]
1
2
r (3.14)

As usual, we use fractional permissions to share the [Al(h)]πr token. Given
fractional ownership of two parts of the [Al(h)]πr token, the domains of the
two heaps must agree:

[Al(h1)]π1
r ∗ [Al(h2)]π2

r ⇒ [Al(h1)]π1
r ∗ [Al(h2)]π2

r ∗dom(h1) = dom(h2)

48 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

Exclusive ownership (π = 1) is required to update the domain of the heap. It
is possible to update the heap without exclusive access, as long as the domain
is preserved:

[Al(h)]1
rV [Al(h′)]1

r

[Al(h)]πr ∗dom(h) = dom(h′)V [Al(h′)]πr

Logical relation. The LR
Eff

logical relation, including the new region in-
variant and updated reference invariant is defined in Figure 37. Changes to
existing predicates are in green. The value relation, ~τ�M , is now indexed by
an injective mapping M from region variables to Iris invariant names. This
mapping allows us to model that the same region variable might refer to
different regions in the case where a region ρ is created after hiding a region
with the same name ρ. Likewise, the expression relation, EΠ,Λε,M (φ), is also
indexed by the region mapping M, in addition to the region contexts Π,Λ
and the effect typing ε.

To explain the relation, let us start with the reference invariant Ref(r,φ,x).
Note first that the reference invariant no longer owns the underlying physical

location (i.e., x 7→ v). Instead it owns a proxy x
1
2
↪−→r v. The effs predicate

encodes the meaning of the per-location read and write tokens. It allows
us to exchange a write token [Wr(x)]r for a proxy that describes the current
value of the location (property (3.11)) and track when the location contains a
well-typed value (properties (3.8) and (3.9)).

The region invariant Reg(r) consists of two resources, a token resource
toks(r) that ties all the per-region tokens together with the per-location tokens,
and the locs(r) resource that ties together the points-to proxies with the
physical state. The toks(r) resource allows us to exchange an exclusive per-
region read or write token for all the corresponding per-location read or write
tokens (properties (3.7) and (3.10)). It also enforces that if we only own a
fraction of the per-region read or write token then the region invariant must
own all per-location read and write tokens for the given region. This ensures
that the location must contain a well-typed value and that we are allowed to
update it, respectively (properties (3.5) and (3.6)).

The local points-to proxies for a region r are tied to the physical state
using the global counter-part rheap(h,r) resource in locs(r). The local points-
to proxy always agrees with the global heap proxy:

rheap(h,r) ∗ x
π
↪−→r v V rheap(h,r) ∗ x

π
↪−→r v ∗ h(x) = v

To update a points-to proxy thus requires ownership of both the corresponding
global heap proxy and exclusive ownership of the local points-to proxy:

rheap(h,r) ∗ x
1
↪−→r v V rheap(h[x 7→ v′], r) ∗ x

1
↪−→r v

′

3.3. A LOGICAL RELATION FOR λref,conc 49

New predicates

effs(r,φ,x,v), ([Wr(x)]r ∨ x
1
2
↪−→r v) ∗ ([Rd(x)]r ∨ (φ(v) ∗ [NoRd(x)]r))

Reg(r), locs(r) ∗ toks(r)
locs(r), ∃h.rheap(h,r) ∗ alloc(h,r) ∗~(l,v)∈hl 7→ v ∗

~{x|x∈(Loc\dom(h))} [NoRd(x)]r
toks(r), ([Rd]1

r ∨~x∈Loc[Rd(x)]r) ∗ ([Wr]1
r ∨~x∈Loc[Wr(x)]r)

alloc(h,r), ([Al]1
r ∗ [Al(h)]

1
2
r)∨ [Al(h)]1

r

Ptoks(ρ,r,π,ε), (ρ < rds ε∨ [Rd]πr) ∗ (ρ < wrs ε∨ [Wr]πr) ∗
(ρ < als ε∨ [Al]πr)

Preg(R,g,ε,M), ~
ρ∈R

Ptoks(ρ,M(ρ), g(ρ), ε) ∗ Reg(M(ρ))
Rg(M(ρ))

PΠ,Λ(g,ε,M), Preg(Λ,1, ε,M) ∗ Preg(Π, g,ε,M)

Changes to previous definitions

Ref(r,φ,x), ∃v. x
1
2
↪−→r v ∗ effs(r,φ,x,v)

~τ1→Π,Λ
ε τ2�

M , λx. 2∀y. (.y ∈ ~τ1�
M)⇒EΠ,Λε,M (~τ2�

M)(x y)

~refρ τ�
M , λx. Ref(M(ρ),~τ�M ,x)

Rf(x)

EΠ,Λε,M (φ)(e), ∀g.{PΠ,Λ(g,ε,M)}e {v. φ(v) ∗ PΠ,Λ(g,ε,M)}>
Logical relatedness

Π |Λ | x : τ |=
Eff

e : τ,ε ,`
Iris
∀M.∀x′ .~τ�M(x′) =⇒ EΠ,Λε,M (~τ�M)(e[x′/x])

Figure 37: LR
Eff

: Unary rel. for λref,conc with effect-types.

The locs(r) resource asserts ownership of physical points-to resources for each
location and value in the global points-to proxy for region r. Since these
are tied together with the local points-to proxies, the local points-to proxies
must agree with the underlying physical state (properties (3.12) and (3.13)).
locs(r) also asserts ownership of all the [NoRd(x)]r resources for locations x
not belonging to the region.

The reason for introducing the indirection of proxies, is to allow reasoning
about the set of locations belonging to a region, to interpret allocation effects.
This is captured by the alloc(h,r) resource, which allows clients to trade the
exclusive allocation token for a lock on the set of locations belonging to the
region (property (3.14)).

50 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

Finally, Preg specifies how the effect annotation translates into ownership
of the corresponding effect tokens. Effects in private regions yield exclusive
ownership, while effects in public regions yield non-exclusive ownership.

Example: type violating update. To illustrate how we can use this stronger
semantic typing judgment to semantically type-check code that is not syntac-
tically well-typed, recall the previous mentioned type-violating example.

− | ρ | x : refρ B |=Eff
x := ();x := true : 1, {rdρ,wrρ}

The read and write effect on the private region ρ translates into exclusive
ownership of the read and write token. Using properties (3.7), (3.8) and (3.9)
we can thus easily verify that the example is semantically well-typed.

Context: Reg(r)
Rg(r)

, Ref(r,~B�M ,x)
Rf(x){

[Wr]1
r ∗ [Rd]1

r

}
V

{
[Wr]1

r ∗~y∈Loc[Rd(y)]r
}

x := (){
[Wr]1

r ∗ [NoRd(x)]r ∗~y∈Loc\{x}[Rd(y)]r
}

x := true{
[Wr]1

r ∗~y∈Loc[Rd(y)]r
}
V

{
[Wr]1

r ∗ [Rd]1
r

}
Binary Relation for λref,conc with Effects

Previously we looked at unary relations for semantically characterizing type
inhabitance. Now, we switch to binary relations intended to imply contextual
approximation.

We define two families of binary relations, ~τ�M and E(~τ�M), that char-
acterize contextual approximation on values and expressions of type τ , re-
spectively. Generalizing the value relation to contextual approximation is
fairly straightforward: on ground types it is simply the identity relation on
the values of the given type; for arrow types it relates functions that map
related arguments to related expressions, and for reference types it relates
two locations if they contain related values.

The expression relation is more interesting: intuitively it should express
that eI approximates eS , if any step that eI can make can be simulated by zero
or more steps of eS . We think of eI as an “implementation” and of eS as a
“specification”. We follow the approach of Turon et al. [78] and capture this
relational property as a unary Hoare triple on eI by requiring the triple to
update ghost resources that force the execution of eS . The idea is to introduce
a ghost resource j =⇒S e that expresses that the expression e is in an evaluation
context on the “specification” side and the exclusive right to reduce this

3.3. A LOGICAL RELATION FOR λref,conc 51

New predicates

Spec(h0, e0), ∃h,e.heapS(h) ∗mctx(e) ∗ (h0;e0→∗ h;e)

Changes to previous definitions

Ref(r,φ,x), ∃v. xI
1
2
↪−→I,r vI ∗ xS

1
2
↪−→S,r vS ∗ effs(r,φ,x,v)

effs(r,φ,x,v), ([Wr(x)]r ∨ (xI
1
2
↪−→I,r vI ∗ xS

1
2
↪−→S,r vS)) ∗

([Rd(x)]r ∨ (φ(vI ,vS) ∗ [NoRd(x)]r))

locs(r), ∃h.rheapI (hI , r) ∗ rheapS(hS , r) ∗ alloc(h,r)
~(l,v)∈hI l 7→I v ∗~(l,v)∈hS l 7→S v

~x∈Loc\dom(hI)×(Loc\dom(hS)) [NoRd(x)]r
tokens(r), ([Wr]1

r ∨~x∈Loc2[Wr(x)]r) ∗ ([Rd]1
r ∨~x∈Loc2[Rd(x)]r)

alloc(h,r), ([Al]1
r ∗ [Al(hI ,hS)]

1
2
r)∨ [Al(hI ,hS)]1

r

~1�M , λx. xI = xS = ()

~int�M , λx. xI ,xS ∈ N∧ xI = xS

~τ1→Π,Λ
ε τ2�

M , λx. 2∀y. (.~τ1�
M)(yI , yS)⇒EΠ,Λε,M (~τ2�

M)(xI yI ,xS yS)

~refρ τ�
M , λx. Ref(M(ρ),~τ�M ,x)

Rf(x)

EΠ,Λε,M (φ)(eI , eS), ∀g, j,h0, e0. Spec(h0, e0) `

{j =⇒S eS ∗ PΠ,Λ(g,ε,M)}
eI

{vI . ∃vS . j =⇒S vS ∗φ(vI ,vS) ∗ PΠ,Λ(g,ε,M)}>

Logical relatedness

Π |Λ | x : τ |=
Bin

e1 ≤log e2 : τ,ε ,

`
Iris
∀M.∀x.~τ�M(x)⇒EΠ,Λε,M (~τ�M)(e1[xI /x], e2[xS /x])

Figure 38: LR
Bin

: Binary rel. for λref,conc with effect-types.

expression. With this ghost resource we can express a simulation between an
implementation eI and a specification eS as follows:

eI ≤ eS ≈ {j =⇒S eS} eI {vI .∃vS . j =⇒S vS ∗φ(vI ,vS)}

By requiring eI to update the ghost resource from eS to a value vS , we are
forced to show that we can reduce eS , which appears in an evaluation con-

52 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

text on the specification side, to the value vS . We refer to j =⇒S e as a local
expression resource, as it allows us to reason locally about reductions on
sub-expressions of the full specification program.

The generalization to expressions in evaluation contexts is necessary to
prove that the relation is a congruence. In particular, to prove the following
congruence property:

e1I ≤ e1S ∧ e2I ≤ e2S ⇒ e1I ||e2I ≤ e1S ||e2S

We need to be able to split the local expression resource j =⇒S e1S ||e2S into
two separate resources, one for e1S and another for e2S . Then we can pass
one to e1I and the other to e2I and they can each reduce their corresponding
expression on the right, independently of the other. This is possible because
e1S and e2S both occur in evaluation contexts. This is also the reason why
local expression resources j =⇒S e are indexed. The j serves as a logical “thread
identifier”, allowing us to distinguish different local expression resources.

Specification resources. To formalize this idea, we need a number of ghost
resources. In addition to the local expression resource, j =⇒S e we also need a
global expression resource, mctx(e), for reasoning about the full specification
program. Naturally, the global expression resource and all local expression
resources must agree on the specification program, so splitting a local expres-
sion resource requires ownership of both. The following lemma allows us to
introduce and eliminate a local expression resource for an expression that
occurs in an evaluation context inside another local expression resources:

j =⇒S κ[e1] ∗mctx(e)WV ∃i. j =⇒S κ[i] ∗ i =⇒S e1 ∗mctx(e) (3.15)

This is achieved by introducing a new logical thread identifier i for the new
local expression resource for e1 and replacing e1 with i in the original local
expression resource. Here κ is an evaluation context extended to expressions
that may contain logical thread identifiers. By applying the above property
twice, we can split a local expression resource for a parallel composition into
two:

j =⇒S e1||e2 ∗mctx(e)WV ∃i1, i2. j =⇒S i1||i2 ∗ i1 =⇒S e1 ∗ i2 =⇒S e2 ∗mctx(e)

Since all local specification expressions are in an evaluation context of the
global specification expression, any reduction of a local specification expres-
sion can be extended to the global specification expression:

j =⇒S e1 ∗mctx(e) ∗ (h;e1→ h′;e′1)V (3.16)

∃e′ . j =⇒S e
′
1 ∗mctx(e′) ∗ (h;e→ h′;e′)

In the case where there exists just one local expression resource that contains
no free logical thread identifiers, then the local expression should agree with

3.3. A LOGICAL RELATION FOR λref,conc 53

the global expression. To formalize this, we treat the thread identifier 0 as the
“root” local expression:

0 =⇒S e1 ∗mctx(e2) ∗FA(e1) = ∅ ⇒ (3.17)

0 =⇒S e1 ∗mctx(e2) ∗ e1 = e2

where FA(e) is the set of free logical thread identifiers in e. These local and
global expression resources are definable in Iris and we refer the reader to §II
for detailed definitions

We need another two ghost resources, heapS(h) and l 7→S v, for reasoning
about specification heaps. This is in fact the Heap monoid we have seen
before, with some additional structure. The heapS(h) resource asserts global
ownership of the full specification heap h, while l 7→S v asserts local owner-
ship of a single location l, respectively. We require that the global heap agrees
with the local heap resources:

heapS(h) ∗ l 7→S v⇒ heapS(h) ∗ l 7→S v ∗ h(l) = v (3.18)

Updating a location l requires both local ownership of l and the global heap
resource and allocation requires ownership of the global heap resource, both
lifted from updating and allocating ghost locations seen before in (3.3) and
(3.4).

heapS(h) ∗ l 7→S v V heapS(h[l 7→ v′]) ∗ l 7→S v
′ (3.19)

heapS(h) ∗ l < dom(h)V heapS(h[l 7→ v]) ∗ l 7→S v (3.20)

With these resources in hand, we can now formally define a simulation as a
Hoare triple. We define a specification invariant that asserts ownership of the
global specification heap and expression. Additionally, it also requires that
there exists a reduction from some initial configuration h0;e0 to the current
global specification heap and expression:

Spec(h0, e0), ∃h,e.heapS(h) ∗mctx(e) ∗ (h0;e0→∗h;e)

By requiring the Hoare triple to update the local expression eS of a to a value
vS , we thus force it to show the existence of a reduction:

Spec(h0, e0)
ι ` {j =⇒S eS} eI {vI .∃vS . j =⇒S vS}

The only way to update the local expression resource j =⇒S e is through prop-
erty (3.16) which also requires opening and reestablishing the specification
invariant to gain access to the global expression resource.

The logical relation. Now that we have seen how we can express relational
properties as unary Hoare triples, we just need to integrate this idea with

54 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

the techniques from the previous section for translating region and effect
annotations into specifications of abstract interference.

Consider the reference invariant, Ref(r,φ,x). In the unary setting it asserts
ownership of a proxy for the underlying heap location that, depending on
ownership of the per-location read and write tokens, contains a well-typed
value and may be updated. In the binary setting, x is now a pair of locations
(xI ,xS) and the invariant asserts ownership of proxies for both the implementa-
tion and specification side heaps, but otherwise the structure of the definition
remains the same. The binary reference invariant is defined in Figure 38. We
use xI and xS as shorthand for the first and second projection of a pair x. Note
that, in the binary setting, per-location read, write and no-read tokens are
now indexed by a pair of locations, rather than just a single location. The
[Rd(xI ,xS)]r token now expresses that if locations xI and xS are related and
belong to region r, then they contain related values, and likewise for the other
tokens.

The LR
Bin

logical relation satisfies the fundamental theorem of logical
relations (Theorem 3.3.2), which expresses that all well-typed terms are re-
lated to themselves. It is also sound with respect to contextual approximation
(Theorem 3.3.3).

Theorem 3.3.2 (Fundamental Theorem). If Π | ∆ | Γ ` e : τ,ε then Π | ∆ | Γ |=
Bin

e ≤log e : τ,ε

Theorem 3.3.3 (Soundness). If Π | ∆ | Γ |=
Bin

eI ≤log eS : τ,ε then Π | ∆ | Γ `
eI ≤ctx eS : τ,ε.

Binary Relation for λref,conc with Effects Using Multiple
Simulations

The LR
Bin

relation supports proofs of contextual approximations by showing
that each step on the left can be simulated on the right. However, it requires
that each thread on the left owns the local expression resource of the thread
on the right that simulates the thread on the left. This is too restrictive in
cases where multiple threads on the left are simulated by a single thread on
the right, such as the case of parallelization. In this section we introduce our
final logical relation, LR

Par
, that removes this restriction.

The idea is simple: The LR
Bin

relation allowed us to reason about a single
simulation; now, we generalize the relation to allow reasoning about multiple
simulations, such that multiple threads on the left can be given ownership of
an expression resource for the same thread on the right, in different simula-
tions.

Multiple simulations. To make this precise, we generalize the existing spec-
ification ghost resources, so that we can have multiple independent copies, by

3.3. A LOGICAL RELATION FOR λref,conc 55

indexing the global and local expression resources (mctx(e,ζ) and j
ζ
=⇒S e) and

heap resources (heapS(h,ζ) and l 7→ζ
S v) with a simulation identifier ζ. For

each simulation identifier ζ, the resources mctx(e,ζ) and j
ζ
=⇒S e satisfy the

same properties as before (properties (3.15) to (3.17)) and likewise for the
heap resources (properties (3.18) and (3.19)). We can allocate new expression
and heap resources initialized with an arbitrary expression e and an empty
heap:

>V ∃ζ.mctx(e,ζ) ∗ heapS([],ζ) ∗ 0
ζ
=⇒S e (3.21)

The idea is to relate eI and eS if eS can simulate any step performed by eI in
an arbitrary simulation ζ in which eS appears in an evaluation context:

∀ζ, i,h0, e0. ∃h,e.heapS(h,ζ) ∗mctx(e,ζ) ∗ (h0;e0→∗ h;e)
Sp(ζ)

` {i
ζ
=⇒S eS}eI {vI .∃vS . i

ζ
=⇒S vS}

This allows the caller of eI to choose in which simulation ζ the specification eS
must simulate eI . It also allows eI to simulate sub-expressions of eI in different
simulations than ζ, provided it can still prove a simulation in ζ at the end.

We can allocate a new simulation with an arbitrary initial configuration
h;e and take ownership of the local heap and expression resources for this
simulation, using (3.21) and (3.20).

This ability to simulate sub-expressions in different simulations is exactly
what we need to disentangle an execution of e1 ||e2 into two independent
executions of e1 and e2, when proving parallelization. To show that e1 ||e2 is
related to (e1, e2) in the expression relation, we (roughly) prove the following
triple:

∃h,e.heapS(h,ζ) ∗mctx(e,ζ) ∗ (h0;e0→∗ h;e)
Sp(ζ) `

{i
ζ
=⇒S (e1, e2) ∗ · · · } e1 ||e2 {vI .∃vS . i

ζ
=⇒S vS ∗ · · · }

Recall from the Introduction that the idea is to use the effect annotations to
prove that an execution of e1 ||e2 can be disentangled into semi-independent
executions of e1 and e2.

Since e1 and e2 are well-typed, it follows by the fundamental theorem of
logical relations that they are related to themselves. To use these assumptions
we must pass ownership of a local expression resource to each of e1 and
e2 with e1 and e2 in an evaluation context, respectively. We could use the
ζ simulation with e1 since e1 is already in an evaluation context in the ζ
simulation. However, this leaves us without an expression resource for e2.

Instead, the idea is to suspend the ζ simulation and create two new simu-
lations ζ1 and ζ2 with e1 as the full specification of the ζ1 simulation and e2 as

56 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

the full specification of the ζ2 simulation. Then we can appeal to relatedness
of e1 and e2 to themselves with ζ1 and ζ2 as the respective simulations, which
will show the existence of the two independent executions of e1 and e2. Once
e1 ||e2 has terminated on the left, we can resume the ζ simulation and use the
two independent executions of e1 and e2 to take the appropriate steps in the ζ
simulation.

The reason this works, is the effect annotations, which ensure that e1 and
e2 are semi-independent. In particular, all locations accessed by both e1 and
e2 are read-only and can therefore soundly be shared between the ζ1 and ζ2
simulations.

Relating heaps in multiple simulations. In previous relations, the region

invariant ensured that all specification heap proxies (l
π
↪−→S,r v) matched the

contents of the actual specification heap. With multiple simulations, we have
multiple specification heaps. The idea is to allow proxies to be tied to multiple
specification heaps, provided we can guarantee that the given references are
immutable. In cases where we cannot guarantee immutability, we still only
allow proxies to be tied to a single simulation, to ensure we can reason locally
about reductions in simulations.

To capture this formally, we introduce a new ghost resource, to specify
whether a region is immutable or not, and which simulations the region
proxies are tied to. The [Im(r,S,h)]π resource asserts that region r is immutable
and the current specification heap of the region is h, while [Mu(r,S)]π asserts
that it is mutable. In both cases the set S specifies which simulations the
proxies of region r are tied to. In the mutable state, we require that the set S
is a singleton. We call this ghost resource the specification link resource.

The fractional permission is used to track whether we are allowed to
change the state of a region. If we own a specification link resource exclusively
(i.e., π = 1), then we can change its state between mutable and immutable and
which simulations the proxies of the region are tied to.

[Mu(r,S)]1WV [Im(r,S ′ ,h)]1 (3.22)

Both tokens can be split arbitrarily using the fraction. Any two fractional
immutable tokens must agree on the current heap and which simulations the
region is tied to:

[Im(r,S1,h1)]π1 ∗ [Im(r,S2,h2)]π2 =⇒ (3.23)

[Im(r,S1,h1)]π1 ∗ [Im(r,S2,h2)]π2 ∗ (h1 = h2) ∗ (S1 = S2)

Disjointness of allocations. We need two final bits of ghost state before we
can define the full logical relation. Namely, we need a way to control which
locations simulations use when allocating new locations.

3.3. A LOGICAL RELATION FOR λref,conc 57

To facilitate this level of control over locations, we introduce a ghost
resource, [X], for asserting ownership of a set of locations X. These can be
split and recombined and ensure that disjoint resources refer to disjoint sets
of locations:

[X1]X2]WV [X1] ∗ [X2] (3.24)

[X1] ∗ [X2] =⇒ [X1] ∗ [X2] ∗X1 ∩X2 = ∅ (3.25)

The idea is to give each specification invariant ownership of a countably
infinite set of locations that only that simulation may use for future allocations.

To allow simulations to replay reductions from other simulations, we also
need a way of deactivating a simulation, such that we can take back ownership
of that simulation’s locations. To achieve this we introduce a ghost resource
[Sr]πζ , which we refer to as a specification runner resource, to track whether a
simulation is active. Ownership of any fraction of this token witnesses that
the simulation is active.

The LR
Par

logical relation is defined in Figure 39. The most important
difference compared to the LR

Bin
relation, is in the locs(r) predicate contained

in the region invariant Reg. Reg now asserts fractional ownership of a spec-
ification link resource for the given region through the slink predicate. In
case the region is immutable, the pair of heaps given by the specification link
resource must match the actual implementation and specification heap for the
references belonging to the given region. The region invariant further asserts
ownership of the local specification heap resource l 7→ζ

S v for every simulation
ζ ∈ S tied to the given region through the specification link resource.

The specification invariant, Spec, has been extended to support global
freshness when allocating, as explained above. Either the specification in-
variant owns half of the specification runner resource, in which case it also
asserts ownership of countably infinite sets of fresh locations through the
disj predicate. Otherwise, the specification invariant is inactive and asserts
exclusive ownership of the specification runner resource.

Finally, the expression relation now asserts fractional ownership of the
specification runner resource and fractional ownership of specification link
resources, for all regions in the context. The specification runner resource
ensures that the ζ simulation is active. In case a region is private or the effect
mask contains a write or allocation effect for the given region, then the region
must be in the mutable state and tied only to the simulation ζ. Otherwise, the
region may be in either the mutable or the immutable state, as long as it is
tied to the ζ simulation.

The LR
Par

relation is sound with respect to contextual approximation and
supports parallelization.

Theorem 3.3.4 (Soundness). If Π | ∆ | Γ |=
Par

eI ≤log eS : τ,ε then Π | ∆ | Γ `
eI ≤ctx eS : τ,ε.

58 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

New predicates

Ppar(R,g,ε,M,ζ),~ρ∈mutable(R,g,ε)[Mu(M(ρ), {ζ})]g(ρ) ∗
~ρ∈R\mutable(R,g,ε)∃h,S.slink(M(ρ), {ζ}] S,h,g(ρ), g(ρ))

slink(r,S,h,π,π′), [Mu(r,S)]π ∨ [Im(r,S,h)]π
′

disj(X0,X), ∃Y . [Y]∧dom(X0)∩Y = ∅∧ (dom(X) \dom(X0)) ⊂ Y

mutable(R,g,ε), wrs ε∪als ε∪
{
ρ | ρ ∈ R∧ g(ρ) = 1

2

}
Changes to previous definitions

locs(r), ∃h,S. slink(r,S,hS ,
1
2 ,

1
4) ∗ rheapI (hI , r) ∗ rheapS(hS , r)∗

alloc(h,r) ∗~(l,v)∈hI l 7→I v ∗~ζ∈S ~(l,v)∈hS l 7→
ζ
S v

Spec(h0, e0,ζ), ∃h,e,π. heapS(h,ζ) ∗mctx(e,ζ) ∗ (h0, e0)→∗ (h,e)∗

([Sr]1
ζ ∨ ([Sr]

1
2
ζ ∗ disj(h0,hS)))

Preg(· · · ,ζ), · · · ∗ Ppar(R, 1
2 ◦ g,ε,M,ζ)

EΠ,Λε,M (φ)(eI , eS), ∀g, j,h0, e0,π,ζ. Spec(h0, e0,ζ) `

{j ζ
=⇒S eS ∗ [Sr]πζ ∗ Preg(Λ,1, ε,M,ζ) ∗ Preg(Π, g,ε,M,ζ)}
eI

{vI . ∃vS . j ζ
=⇒S vS ∗ [Sr]πζ ∗φ(vI ,vS) ∗

Preg(Λ,1, ε,M,ζ) ∗ Preg(Π, g,ε,M,ζ)}>
Figure 39: LR

Par
: Binary rel. for λref,conc with effect-types and effect-based

simulations.

Theorem 3.3.5 (Parallelization (semantically)). If

1. EΛ3,Λ1
ε1,M

(~τ1�
M)(e1I , e1S) and EΛ3,Λ2

ε2,M
(~τ2�

M)(e2I , e2S)

2. als ε1 ∪wrs ε1 ⊆Λ1, als ε2 ∪wrs ε2 ⊆Λ2

3. rds ε1 ⊆Λ1 ∪Λ3 and rds ε2 ⊆Λ2 ∪Λ3

then E−,(Λ1,Λ2,Λ3)
ε1∪ε2,M

(~τ1 × τ2�
M)(e1I ||e2I , (e1S , e2S)).

To illustrate how we can use the LR
Par

relation to prove contextual refinements
that depend on the effect annotations, we give a proof sketch of Theorem 3.1.3
below. The full proof can be found in §II.

Recall that Theorem 3.1.3 states that each of the two stack modules is
contextually equivalent to their counterpart without a CAS loop, at an effect

3.3. A LOGICAL RELATION FOR λref,conc 59

stacknc1
() = let h = new inj1 () in (pushnc1

(h),popnc1
(h))

pushnc1
(h) = rec p(n).h := inj2 (n, !h)

popnc1
(h) = rec p(_).case(!h, inj1 ()⇒ inj1 (),

inj2 (n,v′)⇒ h := v′; inj2 n)

Figure 310: Stack module without CAS.

type where the local state of the stack module belongs to a private region:

− | ρ | − ` stack_nc1 �ctx stack1 : τ ′
Stack

,
{
alρ

}
and

− | ρ | − ` stack_nc2 �ctx stack2 : τ ′
Stack

,
{
alρ

}
with

τ ′
Stack

=1→−,ρ{alρ} (int→−,ρ{wrρ ,rdρ} 1)×(1→−,ρ{wrρ ,rdρ} 1+ int)

We will focus on the first contextual equivalence where the stacknc1
module

is implemented using a single reference to a pure functional list as shown in
Figure 310.

To show logical relatedness between stacknc1
and stack1 we will have to

assert a relation between the state maintained by the modules. Since the state
is local to each module we are not required to use the ~refρ τ�M interpretation
and are free to pick any invariant to relate the state of the two modules.

A suitable relation would assert ownership of each head-pointer for the
region ρ and would state that each pair-wise entry in the stacks are related.
Stack is a promising candidate:

Stack(h,r, l,v), hI
1
↪−→I,r vI ∗ hS

1
↪−→S,r vS ∗ vals(l,v)

vals(nil,v), vI = inj1 ()∧ vS = inj1 ()

vals(x :: xs,v), ~int�(x) ∗ ∃v′ . vI = inj2 (xI ,v
′
I) ∧

vS = inj2 (xS ,v
′
S)∧ vals(xs,v′)

Note that while we are free to pick an invariant to relate the internal state of
the modules, we still use the points-to proxy resources to ensure that the state
is tied to simulations correctly.

The Stack relation allows us to read from the head-pointer using a simple
extension of property 3.12:

Reg(r)
Rg(r) ` {Stack(h,r, l,v)} (3.26)

!hI
{vI .∃vS .Stack(h,r, l, (vI ,vS)}

60 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

Similarly, we can use a variant of property 3.13 to do assignment to the
head-pointer location:

Reg(r)
Rg(r) ` {Stack(h,r, l,v)} (3.27)

hI := v′

{hI
1
↪−→I,r v

′ ∗ hS
1
↪−→S,r vS ∗ vals(l,v)}

Putting Stack into an invariant is not sufficient, however, for showing
the direction stacknc1

≤log stack1. The reason is that both push1(hS)(nS) and
pop1(hS)() has a CAS operation, that we must guarantee succeeds in a com-
patible state with pushnc1

(hI)(nI) and popnc1
(hI)(), for related nI and nS . This

relies on the fact that the ρ region is private which ensures that the environ-
ment cannot access the local state during the stack operations. We can capture
this by defining a Rel predicate with a property that allow us to exchange
the exclusive write permission [Wr]1

r for ownership of the stack module’s
points-to proxies:

Rel(h,r) ` [Wr]1
rWV ∃l,v.Stack(h,r, l,v) (3.28)

We will need to establish the invariant when the data structures in the imple-
mentation and specification side are both empty:

` hI
1
↪−→I,r inj1 () ∗ hS

1
↪−→S,r inj1 ()V Rel(h,r) (3.29)

Rel as defined below allows for the above view-shifts:

Rel(h,r), ∃l,v.Stack(h,r, l,v)∨ [Wr]1
r

For this particular example we have no need for interpreting read effects on
the local state. The Rel invariant therefore makes no mention of the [Rd]1

r
token.

We show logical equivalence by showing logical approximation in both
directions. Here we present a proof outline of the direction stacknc1

≤ctx stack1,
the full proof of both directions can be found in §II. Since stacknc1

and stack1
are already values, it suffices to show they are related in the value relation for
τ ′
Stack

, which reduces to showing that:

E−,ρ{alρ},M(φ)(stacknc1
(), stack1())

where φ = ~(int→−,ρ{wrρ ,rdρ} 1)×(1→−,ρ{wrρ ,rdρ} 1+ int)�M .

Thus we first show that we can establish the Rel invariant using the
local state allocated by the two modules. Next, we show that this invariant
is preserved by the push and pop operations and that they are pairwise
related assuming this invariant. The proof outline is given below and uses the

3.3. A LOGICAL RELATION FOR λref,conc 61

following two properties to allocate points-to proxies on the implementation
and specification side, respectively:

Reg(r)
Rg(r) ` {[Al]πr } new v {y. [Al]πr ∗ hI

1
↪−→I,r v} (3.30)

Reg(r)
Rg(r) ` [Al]πr ∗ [Mu(r, {ζ})]π ∗ i

ζ
=⇒S new v (3.31)

V ∃l. [Al]πr ∗ [Mu(r, {ζ})]π ∗ i
ζ
=⇒S l ∗ l

1
↪−→S,r v

Context: Spec(h0, e0,ζ)
Sp(ζ)

, Reg(r)
Rg(r)

,~1�M(y)j ζ
=⇒S let hS = new inj1 () in (push1(hS),pop1(hS)) ∗

[Sr]πζ ∗ [Al]1
r ∗ [Mu(r, {ζ})]

1
2

∃i. j
ζ
=⇒S let hS = i in (push1(hS),pop1(hS)) ∗

i
ζ
=⇒S new inj1 () ∗ [Sr]πζ ∗ [Al]1

r ∗ [Mu(r, {ζ})]
1
2

 new inj1 ()

// Follows from Properties 3.30 and 3.31hI . ∃h
′
S , i. j

ζ
=⇒S let hS = i in (push1(hS),pop1(hS)) ∗ i

ζ
=⇒S h

′
S ∗

[Sr]πζ ∗ [Al]1
r ∗ [Mu(r, {ζ})]

1
2 ∗ hI

1
↪−→I,r inj1 () ∗ hS

1
↪−→S,r inj1 ()


// Follows from Property 3.29∃hI ,h′S . j ζ

=⇒S let hS = h′S in (push1(hS),pop1(hS)) ∗
[Sr]πζ ∗ [Al]1

r ∗ [Mu(r, {ζ})]
1
2 ∗ Rel((hI ,h′S), r)

∃h. j ζ
=⇒S (push1(hS),pop1(hS)) ∗ [Sr]πζ ∗ [Al]1

r ∗
[Mu(r, {ζ})]

1
2 ∗ Rel(h,r)


(pushnc1

(hI),popnc1
(hI))vI . ∃vS . j

ζ
=⇒S vS ∗ [Sr]πζ ∗ [Al]1

r ∗ [Mu(r, {ζ})]
1
2 ∗

~(int→−,ρ{wrρ ,rdρ} 1)×(1→−,ρ{wrρ ,rdρ} 1+ int)�M(vI ,vS)


For the last step we need to show the following two refinements:

Rel(h,r) ,~int�M(n) ` E−,ρ{wrρ ,rdρ},M(~1�M)(pushnc1
(hI)(nI),push1(hS)(nS))

Rel(h,r) ` E−,ρ{wrρ ,rdρ},M(~1 + int�M)(popnc1
(hI)(),pop1(hS)())

We sketch a proof of the first refinement below. The proof of the second
refinement can be found in §II.

The interpretation of the region and effect annotations for the first refine-
ment is as follows. Since we do not interpret read effects on the local state,
[Rd]1

r is framed off in the proof outline below.

Preg(
{
ρ
}
,1,

{
wrρ, rdρ

}
,M[ρ 7→ r],ζ)

= [Wr]1
r ∗ [Rd]1

r ∗ [Mu(r, {ζ})]
1
2 ∗ Reg(r)

Rg(r)

62 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

The proof starts by trading the exclusive write token for ownership of the
local state (3.28). The we use (3.27) to push nI onto the implementation-side
stack.

Context: Spec(h0, e0,ζ)
Sp(ζ)

, Rel(h,r) , Reg(r)
Rg(r)

,~int�(n){
j
ζ
=⇒S push1(hS)(nS) ∗ [Sr]πζ ∗ [Wr]1

r ∗ [Mu(r, {ζ})]
1
2

}
{
∃l,v. j

ζ
=⇒S push1(hS)(nS) ∗ [Sr]πζ ∗ [Mu(r, {ζ})]

1
2 ∗ Stack(h,r, l,v)

}
!hI{
vI .∃l,vS . j

ζ
=⇒S push1(hS)(nS) ∗ [Sr]πζ ∗ [Mu(r, {ζ})]

1
2 ∗ Stack(h,r, l, (vI ,vS))

}
hI := inj2 (nI ,vI)v
′
I .∃l,vS . j

ζ
=⇒S push1(hS)(nS) ∗ [Sr]πζ ∗ [Mu(r, {ζ})]

1
2 ∗

hI
1
↪−→I,r inj2 (nI ,vI) ∗ hS

1
↪−→S,r vS ∗ vals(l,v) ∗ v′I = ()


After pushing nI on the stack on the implementation side, we simulate push-
ing nS on the specification side. Let:

K1 , let v = [] in

if CAS(hS ,v, inj2 (nS ,v)) then () else loop(nS)

K2 , if [] then () else loop(nS)

be the evaluation contexts which require a non-trivial reduction. Notice that
push1(hS)(nS) = K1[!hS]. We can now perform the simulation:

Spec(h0, e0,ζ)
Sp(ζ)

, Reg(r)
Rg(r) `

j
ζ
=⇒S push1(hS)(nS) ∗ [Sr]πζ ∗ [Mu(r, {ζ})]

1
2 ∗ hS

1
↪−→S,r vS

V ∃i. j
ζ
=⇒S K1[i] ∗ i

ζ
=⇒S !hS ∗ [Sr]πζ ∗ [Mu(r, {ζ})]

1
2 ∗ hS

1
↪−→S,r vS

V ∃i. j
ζ
=⇒S K2[i] ∗ i

ζ
=⇒S CAS(hS ,vS , inj2 (nS ,vS)) ∗ [Sr]πζ ∗

[Mu(r, {ζ})]
1
2 ∗ hS

1
↪−→S,r vS

V j
ζ
=⇒S () ∗ [Sr]πζ ∗ [Mu(r, {ζ})]

1
2 ∗ hS

1
↪−→S,r inj2 (nS ,vS)

The simulation follows from repeatedly stepping by using property 3.15 and
3.16. Observe that CAS(hS ,vS , inj2 (nS ,vS)) always succeeds since we have

ownership of hS
1
↪−→S,r vS . We can now finish the proof by reestablishing the

relation between the local state of the modules and trading it for the exclusive

3.4. DISCUSSION 63

write permission:∃l,vS . j
ζ
=⇒S () ∗ [Sr]πζ ∗ [Mu(r, {ζ})]

1
2 ∗

hI
1
↪−→I,r inj2 (nI ,vI) ∗ hS

1
↪−→S,r inj2 (nS ,vS) ∗ vals(l,v)

∃l,v′ . j ζ
=⇒S () ∗ [Sr]πζ ∗ [Mu(r, {ζ})]

1
2 ∗ hI

1
↪−→I,r v

′
I ∗ hS

1
↪−→S,r v

′
S ∗

vals(n :: l,v′)

{
∃l,v′ . j

ζ
=⇒S () ∗ [Sr]πζ ∗ [Mu(r, {ζ})]

1
2 ∗ Stack(h,r,n :: l,v′)

}
{
∃l,v′ . j

ζ
=⇒S () ∗ [Sr]πζ ∗ [Wr]1

r ∗ [Mu(r, {ζ})]
1
2

}

3.4 Discussion

We have already mentioned some related work along the way; here we discuss
some other related work.

Benton et al. initiated a line of work on relational models of type-and-
effect systems to formally justify effect-based program transformations for
increasingly sophisticated sequential programming languages and increas-
ingly expressive effect systems [8, 10–13, 74]. Birkedal et al. showed how to
extend this approach to a concurrent language [14]. The effect system we use
here is from loc. cit. Birkedal et al.’s relational interpretation is defined by a
concrete step-indexed Kripke logical relation. They used the model to prove a
parallelization theorem similar to ours, but the proof was very technical and
consisted of manual disentangling and re-ordering of computation steps. Part
of the reason for this was that support for parallelization was not built into
their logical relation and had to be proven separately. In contrast, we build
in support for parallelization in the LR

Par
relation through its support for

multiple simulations. This allows us to reduce the proof of the parallelization
theorem to the essence of why it holds: framing. Moreover, as mentioned in
the Introduction, it makes it possible to use the program logic to show that an
expression satisfies the semantic invariants imposed by the type system even
if the expression is not statically well-typed and to reason about refinements.

In recent work, Benton et al. [9] have also considered a concurrent lan-
guage, which in contrast to the language considered here only includes first-
order store. Technically, this makes the construction of a logical relations
model simpler, since one avoids having to deal with the type-world circu-
larity mentioned in the Introduction. Their type-and-effect system does not
support dynamic allocation of abstract locations (which correspond to re-
gions in our setup), requiring all abstract locations to be given up front. Our
type-and-effect system supports dynamic allocation and hiding of regions,
through the masking rule. On the other hand, their effect system supports
a notion of abstract effects, which means, e.g., that an operation in a data

64 CHAPTER 3. MODEL OF TYPES-AND-EFFECTS

structure module can be considered pure even if it uses effects internally, as
long as those effects are not observable outside the module boundary. Benton
et al. use this facility for treating refinement of fine-grained concurrent data
structures, illustrated using an idealized Michael-Scott queue. Our semantics
also supports refinements between fine-grained concurrent data structures,
using Iris’ support for general invariants. In this paper we have focused on an
example of a refinement that only holds by restricting interference through
the type-and-effect system. Our method also scales to fine-grained concurrent
data structures that use helping, thanks to Iris [33].

Raza et al. [64] and Botincan et al. [16], both explore automatic paralleliza-
tion of sequential programs verified in separation logic. Raza et al. rely on
specifications inferred from a shape analysis. Botincan et al. explore the idea of
using the proof to insert synchronization that ensures the dependencies of the
original program are preserved. These analyses focus on first-order programs,
whereas our type-and-effect system applies to higher-order programs.

The idea of defining logical relations in a program logic goes back at
least to Plotkin and Abadi, who used a second-order logic to define logical
relations for a second-order lambda calculus [58]. Dreyer et al. used a second-
order logic with a Löb modality, inspired by [7], to give a logical relations
interpretation of a programming language with recursive types [21]. The
logic used by Dreyer et al. did not support invariants and hence it did not
support the interpretation of reference types. Turon et al. showed how to use a
variant of second-order concurrent separation logic with invariants for giving
a logical relations interpretation of an ML-like type system for a language
similar to the one considered in this paper [78]. To define logical relations in
the unary separation logic, their logic had a built-in notion of specification
resources and a single specification invariant. In contrast, here we use a
higher-order concurrent separation logic, Iris, which is flexible enough that
one can define specification resources and invariants in it. We rely crucially
on this flexibility for the LR

Par
relation to support multiple simulations, as

discussed in Section 3.3.

Chapter 4

A Logical Relation for Monadic
Encapsulation of State

Proving contextual equivalences in the presence of runST

AMIN TIMANY, imec-Distrinet, KU Leuven, Belgium
LÉO STEFANESCO, IRIF, Université Paris Diderot & CNRS, France
MORTEN KROGH-JESPERSEN, Aarhus University, Denmark
LARS BIRKEDAL, Aarhus University, Denmark

In Proceedings of the ACM on Programming Languages (POPL), 2018.

The formal development accompanying this research project can be found
on the Iris project web-site https://iris-project.org. As of writing a
direct link for the development is https://iris-project.org/artifacts/
2018-popl-runst.tar.gz.

Abstract

We present a logical relations model of a higher-order functional programming
language with impredicative polymorphism, recursive types, and a Haskell-
style ST monad type with runST. We use our logical relations model to show
that runST provides proper encapsulation of state, by showing that effectful
computations encapsulated by runST are heap independent. Furthermore, we
show that contextual refinements and equivalences that are expected to hold
for pure computations do indeed hold in the presence of runST. This is the first
time such relational results have been proven for a language with monadic
encapsulation of state. We have formalized all the technical development and
results in Coq.

65

https://iris-project.org
https://iris-project.org/artifacts/2018-popl-runst.tar.gz
https://iris-project.org/artifacts/2018-popl-runst.tar.gz

66 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

4.1 Introduction

Haskell is often considered a pure functional programming language because
effectful computations are encapsulated using monads. To preserve purity,
values usually cannot escape from those monads. One notable exception is
the ST monad, introduced by Launchbury and Jones [47]. The ST monad
comes equipped with a function runST : (∀β,ST β τ)→ τ that allows a value
to escape from the monad: runST runs a stateful computation of the monadic
type ST β τ and then returns the resulting value of type τ . In the original
paper [47], the authors argued informally that the ST monad is “safe”, in the
sense that stateful computations are properly encapsulated and therefore the
purity of the functional language is preserved.

In this paper we present a logical relations model of STLang, a call-by-
value higher-order functional programming language with impredicative
polymorphism, recursive types, and a Haskell-style ST monad type with
runST. In contrast to earlier work, the operational semantics of STLang uses a
single global mutable heap, capturing how the language would be implemented
in reality. We use our logical relations model to show, for the first time, that
runST provides proper encapsulation of state. Concretely, we state a number
of contextual refinements and equivalences that are expected to hold for
pure computations and we then use our logical relations model to prove that
they indeed hold for STLang, i.e., in the presence of stateful computations
encapsulated using runST. Moreover, we show a State-Independence theorem
that intuitively expresses that, for any well-typed expression e of type τ , the
evaluation of e in a heap h is independent of the choice of h, i.e., e cannot read
from or write to locations in h but may allocate new locations (via encapsulated
stateful computations). Note that this is the strong result one really wishes
to have since it is proved for a standard operational semantics using a single
global mutable heap allowing for updates in-place, not an abstract semantics
partitioning memory into disjoint regions as some earlier work [48, 52].

In STLang, values of any type can be stored in the heap, and thus it is an
example of a language with so-called higher-order store. It is well-known that
it is challenging to construct logical relations for languages with higher-order
store. We define our logical relations model in Iris, a state-of-the-art higher-
order separation logic [33, 34, 38]. Iris’s base logic [38] comes equipped with
certain modalities which we use to simplify the construction of the logical
relation. Logical relations for other type systems have recently been defined in
Iris [39, 42], but to make our logical relations model powerful enough to prove
the contextual equivalences for purity, we use a new approach to defining
logical relations in Iris, which involves several new technical innovations,
described in §4.3 and §4.5.

Another reason for using Iris is that the newly developed powerful proof
mode for Iris [39] makes it possible to conduct interactive proofs in the Iris
logic in Coq, much in the same way as one normally reasons in the Coq logic

4.1. INTRODUCTION 67

itself. Indeed, we have used the Iris proof mode to formalize all the technical
results in this paper in Iris in Coq.

In the remainder of this Introduction, we briefly recap the Haskell ST
monad and recall why runST intuitively encapsulates state. We emphasize that
STLang, unlike Haskell, is call-by-value; we show Haskell code to make the
examples easier to understand. Finally, we give an overview of the technical
development and our new results.

A Recap of the Haskell ST Monad

The ST monad, as described in [47] and implemented in the standard Haskell
library, is actually a family ST β of monads, where β ranges over types, which
satisfy the following interface. The first two functions

return :: α → ST β α
(>>=) :: ST β α → (α → ST β α’) → ST β α’

are the standard Kleisli arrow interface of monads in Haskell; »= is pro-
nounced “bind”. Recall that in Haskell, free type variables (α, α′, and β above)
are implicitly universally quantified.1

The next three functions

newSTRef :: α → ST β (STRef β α)
readSTRef :: STRef β α → ST β α
writeSTRef :: STRef β α → α → ST β ()

are used to create, read from and write into references, respectively. Notice that
the reference type STRef β τ , contains the type of the contents of the reference
cells, τ , but also another type parameter, β, which, intuitively, indicates which
(logical) region of the heap this reference belongs to. The interesting part
of the interface is the interaction of this type parameter with the following
function

runST :: (∀ β. ST β α) → α

The runST function runs effectful computations and extracts the result from
the ST monad. Notice the impredicative quantification of the type variable of
runST.

Finally, equality on references is decidable:

(==) :: STRef β α → STRef β α → bool

Notice that equality is an ordinary function, since it returns a boolean value
directly, not a value of type ST β bool.

1In STLang, we use capital letters, e.g. X, for type variables and use ρ for the index type in
ST ρ τ and STRef ρ τ .

68 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

fibST :: Integer → Integer
fibST n =
let fibST’ 0 x _ = readSTRef x

fibST’ n x y = do
x’ <- readSTRef x
y’ <- readSTRef y
writeSTRef x y’
writeSTRef y (x’+y’)
fibST’ (n-1) x y

in
if n < 2 then n else
runST do
x <- newSTRef 0
y <- newSTRef 1
fibST’ n x y

let fibST : Z -> Z =
let rec fibST’ n x y =
if n = 0 then !x
else bind !x in λ x’ ->

bind !y in λ y’ ->
bind x := y’ in λ () ->
bind y := (x’+y’) in λ () ->

fibST’ (n-1) x y
in
if n < 2 then n else
runST {
bind (ref 0) in λ x ->
bind (ref 1) in λ y ->
fibST’ n x y }

Figure 41: Computing Fibonacci numbers using the ST monad in Haskell (left)
and in STLang (right). Haskell code adapted from https://wiki.haskell.
org/Monad/ST. do is syntactic sugar for wrapping bind around a sequence of
expressions.

Figure 41 shows how to compute the n-th term of the Fibonacci sequence
in Haskell using the ST monad and, for comparison, in our model language
STLang. Haskell programmers will notice that the STLang program on the
right is essentially the same as the one on the left after the do-notation has
been expanded. The inner function fibST’ can be typed as follows:

fibST’ :: Integer → STRef β Integer → STRef β Integer → ST β Integer

Hence, the argument of runST has type (∀ β. STRef β Integer) and thus fibST

indeed has return type Integer.

Encapsulation of State Using runST: What is the Challenge?

The operational semantics of the newSTRef, readSTRef, writeSTRef opera-
tions is intended to be the same as for ML-style references. In particular, an
implementation should be able to use a global heap and in-place update for
the stateful operations. The ingenious idea of Launchbury and Jones [47] is
that the parametric polymorphism in the type for runST should still ensure
that stateful computations are properly encapsulated and thus, that ordinary
functions remain pure.

The intuition behind this intended property is that the first type variable
parameter of ST, denoted β above, actually denotes a region of the heap, and
that we can imagine that the heap consists of a collection of disjoint regions,
named by types. A computation e of type ST β τ can then read, write, and
allocate in the region named β, and then produce a value of type τ .

https://wiki.haskell.org/Monad/ST
https://wiki.haskell.org/Monad/ST

4.1. INTRODUCTION 69

Moreover, if e has type ∀β. ST β τ , with β not free in τ , the intuition is
that runST e can allocate a fresh region, which e may use and then, since β is
not free in τ , the resulting value of type τ cannot involve references in the
region β. It is therefore safe to discard the region β and return the value of
type τ . Since stateful computations intuitively are encapsulated in this way,
this should also entail that the rest of the “pure” language indeed remains
pure. For example, it should still be the case that for an expression e of type
τ , running e twice should be the same as running it once. More precisely, we
would expect the following contextual equivalence to hold for any expression
e of type τ :

letx = ein (x,x) ≈ctx (e,e) (∗)

Note that, of course, this contextual equivalence would not hold in the pres-
ence of unrestricted side effects as in ML: if e is the expression y := !y + 1,
which increments the reference y, then the reference would be incremented
by 1 on the left hand-side of (∗) and by 2 on the right.

Similar kinds of contextual equivalences and refinements that we expect
should hold for a pure language should also continue to hold. Moreover,
we also expect that the State-Independence theorem described above should
hold.

Notice that this intuitive explanation is just a conceptual model — the real
implementation of the language uses a standard global heap with in-place update
and the challenge is to prove that the type system still enforces this intended proper
encapsulation of effects.

In this paper, we provide a solution to this challenge: we define a higher-
order functional programming language, called STLang, with impredicative
polymorphism, recursive types, and a Haskell-style ST monad type with
runST. The operational semantics uses a global mutable heap for stateful
operations. We develop a logical relations model which we use to prove
contextual refinements and equivalences that one expects should hold for a
pure language in the presence of stateful computations encapsulated using
runST.

Earlier work has focused on simpler variations of this challenge; specifically,
it has focused on type safety, and none of the earlier formal models can
be used to show expected contextual equivalences for the pure part of the
language relative to an operational semantics with a single global mutable
heap. In particular, the semantics and parametricity results of Launchbury
and Peyton Jones [48] is denotational and does not use a global mutable heap
with in-place update, and they state [48, Section 9.1] that proving that the
remaining part of the language remains pure for an implementation with
in-place update “would necessarily involve some operational semantics.” We
discuss other related work in §4.7.

70 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

Overview of Results and the Technical Development

In §4.2 we present the operational semantics and the type system for our
language STLang. In this paper, we focus on the encapsulation properties of a
Haskell-style monadic type system for stateful computations. The choice of
evaluation order is an orthogonal issue and, for simplicity (to avoid having
to formalize a lazy operational semantics), we use call-by-value left-to-right
evaluation order. Typing judgments take the standard form Ξ | Γ ` e : τ , where
Ξ is an environment of type variables, Γ an environment associating types to
variables, e is an expression, and τ is a type. For well-typed expressions e and
e′ we define contextual refinement, denoted Ξ | Γ � e �ctx e

′ : τ . As usual, e and
e′ are contextually equivalent, denoted Ξ | Γ � e ≈ctx e

′ : τ , if e contextually
refines e′ and vice versa. With this in place, we can explain which contextual
refinements and equivalences we prove for STLang. The soundness of these
refinements and equivalences means, of course, that one can use them when
reasoning about program equivalences.

The contextual refinements and equivalences that we prove for pure com-
putations are given in Figure 42. To simplify the notation, we have omitted
environments Ξ and Γ in the refinements and equivalences in the Figure.
Moreover, we do not include assumptions on typing of subexpressions in the
Figure; precise formal results are stated in §4.4.

Refinement (Neutrality) expresses that a computation of unit type either
diverges or produces the unit value.

e �ctx () : 1 (Neutrality)

letx = e2in (e1,x) ≈ctx (e1, e2) : τ1 × τ2 (Commutativity)

letx = ein (x,x) ≈ctx (e,e) : τ × τ (Idempotency)

lety = e1inrecf (x) = e2 �ctx recf (x) = lety = e1ine2 : τ1→ τ2
(Rec hoisting)

lety = e1inΛe2 �ctx Λ (lety = e1ine2) : ∀X.τ (Λ hoisting)

e �ctx recf (x) = (e x) : τ1→ τ2
(η expansion for rec)

e �ctx Λ (e _) : ∀X.τ (η expansion for Λ)

(recf (x) = e1) e2 �ctx e1[e2, (recf (x) = e1)/x, f] : τ
(β reduction for rec)

(Λe) _ ≈ctx e : τ[τ ′/X] (β reduction for Λ)

Figure 42: Contextual Refinements and Equivalences for Pure Computations.

The contextual equivalence in (Commutativity) says that the order of evalua-
tion for pure computations does not matter: the computation on the left first

4.1. INTRODUCTION 71

evaluates e2 and then e1, on the right we first evaluate e1 and then e2. The
contextual equivalence in (Idempotency) expresses the idempotency of pure
computations: it does not matter whether we evaluate an expression once, as
done on the left, or twice, as done on the right. The contextual refinements
in (Rec hoisting) and (Λ hoisting) formulate the soundness of λ-hoisting
for ordinary recursive functions and for type functions. The contextual re-
finements (η expansion for rec) and (η expansion for Λ) express η-rules for
ordinary recursive functions and for type functions. The contextual refine-
ments (β reduction for rec) and (β reduction for Λ) express the soundness
of β-rules for ordinary recursive functions and for type functions.

In addition, we prove the expected contextual equivalences for monadic
computations, shown in Figure 43.

bindein (λx.returnx) ≈ctx e : ST ρ τ (Left Identity)

e2 e1 �ctx bind (returne1)ine2 : ST ρ τ (Right Identity)

bind (binde1ine2)ine3 �ctx binde1in (λx.bind (e2 x)ine3) : ST ρ τ ′

(Associativity)

Figure 43: Contextual Equivalences for Stateful Computations.

The results in Figure 42 are the kind of results one would expect for pure
computations in a call-by-value language; the challenge is, of course, to show
that they hold in the full STLang language, that is, also when subexpressions
may involve arbitrary (possibly nested) stateful computations encapsulated
using runST. That is the purpose of our logical relation, which we present
in §4.3. We further use our logical relation to show the following State-
Independence theorem:

Theorem 4.1.1 (State Independence).

· | x : STRef ρ τ ′ ` e : τ ∧ (∃h1, `,h2,v. 〈h1, e[`/x]〉 →∗ 〈h2,v〉) =⇒
∀h′1, `

′ . ∃h′2,v
′ .

〈
h′1, e[`

′/x]
〉
→∗

〈
h′2,v

′〉∧ h′1 ⊆ h′2.
This theorem expresses that, if the execution of a well-typed expression

e, when x is substituted by some location, in some heap h1 terminates, then
running e, when x is substituted by any location, in any heap h′1 will also
terminate in some heap h′2 which is an extension of h′1, i.e., the execution
cannot have modified h′1 but it can have allocated new state, via encapsulated
stateful computations. Note that this implies that e never reads from or writes
to x.

Summary of contributions To sum up, the main contributions of this paper
are as follows:

72 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

• We present a logical relation for a programming language STLang fea-
turing a parallel to Haskell’s ST monad with a construct, runST, to
encapsulate stateful computations. We use our logical relation to prove
that runST provides proper encapsulation of state, by showing (1) that
contextual refinements and equivalences that are expected to hold for
pure computations do indeed hold in the presence of stateful compu-
tations encapsulated via runST and (2) that the State-Independence
theorem holds. This is the first time that these results have been estab-
lished for a programming language with an operational semantics that
uses a single global higher-order heap with in-place destructive updates.

• We define our logical relation in Iris, a state-of-the-art higher-order sep-
aration logic designed for program verification, using a new approach
involving novel predicates defined in Iris, which we explain in §4.5.

• We have formalized the whole technical development, including all
proofs of the equations above and the State-Independence theorem, in
the Iris implementation in Coq.

The paper is organized as follows. We begin by formally defining STLang,
its semantics and typing rules in §4.2. There, we also formally state our
definition of contextual refinement and contextual equivalence. In §4.3, we
present our logical relation after briefly introducing the parts of Iris needed
for a conceptual understanding of the logical relation. We devote §4.4 to the
precise statement and proof sketches of the refinements in Figure 42 and
Figure 43. In §4.5, we recall some further concepts of Iris and explain how
they are used to give a complete technical definition of the logical relation.
Readers only interested in the ideas behind the logical relation can skip this
section. We describe our formalization of the technical development in the Iris
implementation in Coq in §4.6. We discuss related work in §4.7 and conclude
in §4.8.

4.2 The STLang language

In this section, we present STLang, a higher-order functional programming
language with impredicative polymorphism, recursive types, higher-order
store and a ST-like type.

Syntax The syntax of STLang is mostly standard and presented in Figure 44.
Note that there are no types in the terms; following [2] we write Λe for type
abstraction and e _ for type application / instantiation. For the stateful part
of the language, we use return and bind for the return and bind operations
of the ST monad, and ref(e) creates a new reference, !e reads from one and
e← e writes into one. Finally, runST runs effectful computations. Note that

4.2. THE STLang LANGUAGE 73

we treat the stateful operations as constructs in the language rather than as
special constants.

} ::= + | − | ∗ | = | <
e ::= x | () | true | false | n | ` | (e,e) | inji e | recf (x) = e | Λe | folde

| unfolde | e e | e _ | πi e | matchewithinji x⇒ ei end

| ifetheneelsee | e} e | ref(e) | !e | e← e | e == e | bindeine
| returne | runST {e}

v ::= () | true | false | n | ` | (v,v) | inji v | recf (x) = e | Λe | foldv
| ref(v) | !v | v← v | bindv inv | returnv

τ ::= X | ρ | 1 | B | Z | τ × τ | τ + τ | τ→ τ | ∀X.τ | µX.τ
| ref(τ) | ST ρ τ

Figure 44: The syntax of STLang.

Typing Typing judgments are of the form Ξ | Γ ` e : τ , where Ξ is a set of
type variables, and Γ is a finite partial function from variables to types. An
excerpt of the typing rules are shown in Figure 45.

Operational semantics We present a small-step call-by-value operational
semantics for STLang, using a transition system 〈h,e〉 → 〈h′ , e′〉 whose nodes
are configurations consisting of a heap h and an expression e. A heap h ∈
Loc ⇀fin Val is a finite partial function that associates values to locations,
which we suppose are positive integers (Loc , Z+)2.

The semantics, shown in Figure 46, is presented in the Felleisen-Hieb
style [24], using evaluation contexts C: the reduction relation→ is the closure
by evaluation context of the head reduction relation →h. Notice that even
the “pure” reductions steps, such as β-reduction, mention the heap. The
more subtle part of the operational semantics is how the ST monad is handled,
indeed, we only want the stateful computations to run when they are wrapped
inside runST. This is why we define an auxiliary reduction relation, 〈h,e〉;
〈h′ , e′〉. This auxiliary relation is also defined using a head reduction and
evaluation contexts K, which are distinct from the evaluation contexts for the
main reduction relation. This auxiliary relation in “embedded” in the main
one by the rule

〈h,v〉;
〈
h′ , e

〉
〈h,runST {v}〉 →h

〈
h′ ,runST {e}

〉
2This choice is due to the fact that Iris library in Coq provides extensive support for the

type of positive integers.

74 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

Ξ | Γ ` e : τ

Tvar

Ξ | Γ ,x : τ ` x : τ

Trec

Ξ | Γ ,x : τ1, f : τ1→ τ2 ` e : τ2

Ξ | Γ ` recf (x) = e : τ1→ τ2

Tabs

Ξ,X | Γ ` e : τ

Ξ | Γ `Λe : ∀X.τ

Tfold

Ξ | Γ ` e : τ[µX.τ/X]

Ξ | Γ ` folde : µX.τ

Tinst

Ξ | Γ ` e : ∀X.τ Ξ ` τ ′

Ξ | Γ ` e _ : τ[τ ′/X]

Tnew

Ξ | Γ ` e : τ Ξ ` ρ
Ξ | Γ ` ref(e) : ST ρ (STRef ρ τ)

Tderef

Ξ | Γ ` e : STRef ρ τ

Ξ | Γ ` !e : ST ρ τ

Tgets

Ξ | Γ ` e : STRef ρ τ Ξ | Γ ` e′ : τ
Ξ | Γ ` e← e′ : ST ρ 1

Trefeq

Ξ | Γ ` e : STRef ρ τ Ξ | Γ ` e′ : STRef ρ τ
Ξ | Γ ` e == e′ : B

Treturn

Ξ | Γ ` e : τ Ξ ` ρ
Ξ | Γ ` returne : ST ρ τ

Tbind

Ξ | Γ ` e : ST ρ τ Ξ | Γ ` e′ : τ→ (ST ρ τ ′)

Ξ | Γ ` bindeine′ : ST ρ τ ′

Trunst

Ξ,X | Γ ` e : ST X τ Ξ ` τ
Ξ | Γ ` runST {e} : τ

Figure 45: An excerpt of the typing rules for STLang.

4.2. THE STLang LANGUAGE 75

Reduction 〈h,e〉 → 〈h′ , e′〉 and head step 〈h,e〉 →h 〈h′ , e′〉

Evaluation contexts:

C ::=[] | (C,e) | (v,C) | injiC | foldC | unfoldC | C e | v C | C _

| C} e | v}C | πiC | matchC withinji x⇒ ei end

| ifC theneelsee | ref(C) | !C | C← e | v← C | C == e

| v == C | bindC ine | bindv inC | returnC | runST {C}

〈h,e〉 →h
〈
h′ , e′

〉
〈h,C[e]〉 →

〈
h′ ,C[e′]

〉 〈h,unfold (foldv)〉 →h 〈h,v〉 〈h, (Λe) _〉 →h 〈h,e〉

〈h, (recf (x) = e) v〉 →h 〈h,e[v,recf (x) = e/x, f]〉
` = `′〈

h,` == `′
〉
→h 〈h,true〉

〈h,matchinji v withinji x⇒ ei end〉 →h 〈h,ei[v/x]〉

` , `′〈
h,` == `′

〉
→h 〈h,false〉

〈h,v〉;
〈
h′ , e

〉
〈h,runST {v}〉 →h

〈
h′ ,runST {e}

〉
〈h,runST {returnv}〉 →h 〈h,v〉

Effectful reduction 〈h,v〉; 〈h′ , e〉 and head step 〈h,v〉;h 〈h′ , e〉

Effectful evaluation contexts: K ::= [] | bindKinv

〈h,v〉;h
〈
h′ , e

〉
〈h,K[v]〉;

〈
h′ ,K[e]

〉 〈
h,bind (returnv)inv′

〉
;h

〈
h,v′ v

〉
Alloc

` < dom(h)

〈h,ref(v)〉;h 〈h] {` 7→ v} ,return`〉

〈h] {` 7→ v} , !`〉;h 〈h] {` 7→ v} ,returnv〉〈
h]

{
` 7→ v′

}
, `← v

〉
;h 〈h] {` 7→ v} ,return ()〉

If ⇀ is a relation, we note ⇀n its iterated self-composition and ⇀∗ its
reflexive and transitive closure.

Figure 46: An excerpt of the dynamics of STLang, a call-by-value, small-step
operational semantics.

76 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

Notice that ; always reduces from a value: this is because values of type
ST can be seen as “frozen” computations, until they appear inside a runST.
The expression e on the right hand-side of the rule above can be a reducible
expression, which is reduced by using C = runST{[]} as a context for the main
reduction rule→.

This operational semantics is new, therefore we include an example of how
a simple program reduces. The program initializes a reference r to 3, then
writes 7 into r and finally reads r.

〈∅,runST{bindref(3)in

λr.bind (r← 7)in (λ_.bind !r in (λx.returnx))}〉

The contents of the runST is a value, so we can use the rule above, and the
context K = bind []in · · · to reduce 〈∅,ref(3)〉;h 〈[l 7→ 3],return l〉 (for some
arbitrary l) and get:

〈[l 7→ 3],runST{bind (return l)in

λr.bind (r← 7)in (λ_.bind !r in (λx.returnx))}〉

The contents of runST is still a value, and this time we use the empty context
K = [] and the rule for the bind of a return,

〈[l 7→ 3],bind (return l)in (λr. · · ·)〉 ;h 〈[l 7→ 3], (λr. · · ·) l〉

to get:

〈[l 7→ 3],runST {(λr.bind (r← 7)in (λ_.bind !r in (λx.returnx))) l}〉

This time we use the context C = runST {[]} and the rule for β-reduction to
get:

〈[l 7→ 3],runST {bind (l← 7)in (λ_.bind ! l in (λx.returnx))}〉

The situation is now the same as for the first two reduction steps and we
reduce further to:

〈[l 7→ 7],runST {bind (return ())in (λ_.bind ! l in (λx.returnx))}〉

and then, in two steps (rule for bind and return, then β-reduction):

〈[l 7→ 7],runST {bind ! l in (λx.returnx)}〉

Finally we get:
〈[l 7→ 7],runST {return7}〉

and, from the rule for runST and return v:

〈[l 7→ 7],7〉.

4.3. LOGICAL RELATION 77

Having defined the operational semantics and the typing rules we can
now define contextual refinement and equivalence. In this definition we write
C : (Ξ | Γ ;τ) (· | ·;1) to express that C is a well-typed closing context (the
remaining rules for this relation are completely standard).

Definition 4.2.1 (Contextual refinement and equivalence). We define contex-
tual refinement �ctx and contextual equivalence ≈ctx as follows.

Ξ | Γ � e �ctx e
′ : τ , Ξ | Γ ` e : τ ∧ Ξ | Γ ` e′ : τ ∧

∀h,h′ ,C. C : (Ξ | Γ ;τ) (· | ·;1) ∧ (h,C[e])↓ =⇒ (h′ ,C[e′])↓

Ξ | Γ � e ≈ctx e
′ : τ , Ξ | Γ � e �ctx e

′ : τ ∧ Ξ | Γ � e′ �ctx e : τ.

where (h,e)↓ , ∃h′ ,v. (h,e)→∗ (h′ ,v)

4.3 Logical Relation

It is well-known that it is challenging to construct logical relations for lan-
guages with higher-order store because of the so-called type-world circular-
ity [1, 4, 15]. Other recent work has shown how this challenge can be ad-
dressed by using the original Iris logic to define logical relations for languages
with higher-order store [39, 42]. In fact, a key point is that Iris has enough
logical features to give a direct inductive interpretation of the programming
language types into Iris predicates.

The binary relations in [39, 42] were defined using Iris’s built-in notion of
Hoare triple and weakest precondition. This approach is, however, too abstract
for our purposes: to prove the contextual refinements and equivalences for
pure computations mentioned in the Introduction, we need to have more
fine-grained control over how computations are related.

In this section we start by giving a gentle introduction to the base logic of
Iris. Hereafter, we use the Iris base logic to define two new logical connectives
called future modality and If-Convergent. We use these, instead of the weakest
precondition used in [39, 42], when defining our binary logical relation.

We focus on properties that are necessary for understanding the key ideas
of the definition of the logical relation; more technical details, including
definitions and lemmas required for proving properties of the logical relation,
are deferred until §4.5.

An Iris Primer

Iris was originally presented as a framework for higher-order (concurrent)
separation logic, with built-in notions of physical state (in our case heaps),
ghost-state (monoids) invariants and weakest preconditions, useful for Hoare-
style reasoning about higher-order concurrent imperative programs [33]. Sub-
sequently, Iris was extended with a notion of higher-order ghost state [34],

78 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

i.e., the ability to store arbitrary higher-order separation-logic predicates in
ghost variables. Recently, a simpler Iris base logic was defined, and it was
shown how that base logic suffices for defining the earlier built-in concepts of
invariants, weakest preconditions, and higher-order ghost state [38].

In Iris one can quantify over the Iris types κ:

κ ::= 1 |κ ×κ |κ→ κ |Expr |Val |Z |B |κ fin−−⇀κ |finset(κ) |Monoid |Names

| iProp | . . .

Here Expr and Val are the types of syntactic expressions and values of STLang,
Z is the type of integers, B is the type of booleans, κ ⇀fin κ is the type of
partial functions with finite support, finset(κ) is the type of finite sets, Monoid
is the type of monoids, Names is the type of ghost names, and iProp is the type
of Iris propositions. A basic grammar for Iris propositions P is:

P ::=> | ⊥ | P ∗ P | P −∗ P | P ∧ P | P ⇒ P | P ∨ P | ∀x : κ. Φ | ∃x : κ. Φ

| .P | µr.P | 2P | |VP

The grammar includes the usual connectives of higher-order separation logic
(>, ⊥, ∧, ∨, ⇒, ∗, −∗, ∀ and ∃). In this grammar Φ is an Iris predicate,
i.e., a term of type κ→ iProp (for appropriate κ). The intuition is that the
propositions denote sets of resources and, as usual in separation logic, P ∗ P ′
holds for those resources which can be split into two disjoint parts, with one
satisfying P and the other satisfying P ′. Likewise, the proposition P −∗ P ′
describes those resources which satisfy that, if we combine it with a disjoint
resource satisfied by P we get a resource satisfied by P ′. In addition to these
standard connectives there are some other interesting connectives, which we
now explain.

The . is a modality, pronounced “later”. It is used to guard recursively
defined propositions: µr.P is a well-defined guarded-recursive predicate
only if r appears under a . in P . The . modality is an abstraction of step-
indexing [5, 6, 21]. In terms of step-indexing .P holds if P holds a step later;
thence the name. In Iris it can be used to define weakest preconditions and to
guard impredicative invariants to avoid self-referential paradoxes [38]. Here
we simply use it to take a guarded fixed point when we give the interpretation
of recursive types, similarly to what was done in [21]. For any proposition P ,
we have that P ` .P . The later modality commutes with all of the connectives
of higher-order separation logic, including quantifiers.

Another modality of the Iris logic is the “persistence” modality (2). This
modality is used in Iris to capture a sublogic of knowledge (as opposed to re-
sources) that obeys standard rules for intuitionistic higher-order logic. We say
that P is persistent if P `2P . Intuitively, 2P holds if P holds without asserting
any exclusive ownership. Hence 2P is a duplicable assertion, i.e., we have
(2P) ∗ (2P) a` 2P , where a` is the logical equivalence of formulas. Hence

4.3. LOGICAL RELATION 79

persistent propositions are therefore duplicable. The persistence modality is
idempotent, 2P `22P , and also satisfies 2P ` P . It (and by extension persis-
tence) also commutes with all of the connectives of higher-order separation
logic, including quantifiers.

The final modality we present in this section is the “update” modality3

(|V). Intuitively, the proposition |VP holds for resources that can be updated
(through allocation, deallocation, or alteration) to resources that satisfy P ,
without violating the environment’s knowledge or ownership of resources. We
write P ≡∗Q as a shorthand for P −∗ |VQ. The update modality is idempotent,
|V(|VP) a` |VP .

Future Modality and If-Convergent

In this subsection we define two new constructs in Iris, which we will use to
define the logical relation. The first construct, the future modality, will allow
us to reason about what will happen in a “future world”. The second construct,
the If-Convergent predicate, will be used instead of weakest preconditions to
reason about properties of computations.

Future Modality We define the future modality |�{·}≡. as follows:

|�{n}≡.P , (|V .)n|VP

where (|V .)n is n times repetition of |V .. Intuitively, |�{n}≡.P expresses that
n steps into the future, we can update our resources to satisfy P . We write
P�{n}≡∗Q as a shorthand for P −∗ |�{n}≡.Q.

If-Convergent (IC) We define the If-Convergent (IC) predicate in Iris as
follows:

ICγ e {|v. Q|},
∀h1,h2,v,n. 〈h1, e〉 →n 〈h2,v〉 ∗ heapγ (h1)�{n}≡∗ heapγ (h2) ∗Q v

In general the number of steps, n, can also appear in Q but here we only
present this slightly simpler version. The ICγ e {|v. Q|} predicate expresses
that, for any heap h1, if (e,h1) can reduce to (v,h2) in n steps, and if we have
ownership over h1, then, n steps into the future, we will have ownership over
the heap h2, and the postcondition Q will hold.

A crucial feature of the IC predicate is that it allows us to use a ghost state
name γ to keep track of the contents of the heap during the execution of e.
This allows us to abstract away from the concrete heaps when reasoning about
IC predicates4. Note that the IC predicate does not require that it is safe to

3In [38] this modality is called the fancy update modality. Technically, this modality comes
equipped with certain “masks” but we do not discuss those here.

4This is related to the way the definition of weakest preconditions in Iris hides state [38].

80 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

execute the expression e: in particular, if e gets stuck (or diverges) in all heaps,
then ICγ e {|v. Q|} holds trivially.

The predicate heapγ (h1) is a ghost state predicate stating ownership of a
logical heap identified by the ghost state name γ (one can think of this as the
usual ownership of a heap in separation logic). Ownership of a logical heap
cell l is written as ` 7→γ v, and says that the heap identified by γ stores the
value v at location `. We show the precise definition of heapγh(h) and ` 7→γ v
in §4.5; here we just highlight the properties that these abstract predicates
enjoy:

heapγ (h) ∗ ` 7→γ v⇒ h(l) = v (4.1)

heapγ (h)∧ l < dom(h) ≡∗ heapγ (h[l 7→ v]) ∗ ` 7→γ v (4.2)

heapγ (h) ∗ ` 7→γ v ≡∗ heapγ (h[l 7→ v′]) ∗ ` 7→γ v
′ (4.3)

` 7→γ v ∗ ` 7→γ v
′ ⇒⊥ (4.4)

Property (4.1) says that if we have ownership of a heap h and a location l
pointing to v, both with the same ghost name γ , then we know that h(l) = v.
Property (4.2) expresses that we can allocate a new location l in h, if l is not
already in the domain of h. Finally, Property (4.3) says that we can update
the value at location l, if we have both heapγ (h) and ` 7→γ v. Property (4.4)
expresses exclusivity of the ownership of locations.

Akin to the way Hoare triples are defined in Iris using the weakest precon-
dition, we define a new notion called IC triple as follows:

{|P |}e {|v. Q |}γ ,2(P −∗ ICγ e {|v. Q|})

The IC triple says, that given resources described by P , if e reduces in a heap
identified by γ , then the post-condition Q will hold. Notice that the IC triple
is a persistent predicate and is not allowed to own any exclusive resources.

Definition of the Logical Relation

We now have enough logical machinery to describe the logical relation (pedan-
tically, it is a family of logical relations) shown in Figure 46. The logical
relation is a binary relation, which allows us to relate pairs of expressions
and pairs of values to each other. We will show that if two expressions are
related in the logical relation, then the left hand side expression contextually
approximates the right hand side expression. Therefore, we sometimes refer
to the the left hand side as the implementation and the right hand side as the
specification.

The value relation ~Ξ ` τ�∆ is an Iris relation of type (Val×Val)→ iProp
and, intuitively, it relates STLang values of type τ . The value relation is
defined by induction on the type τ . Here, Ξ is an environment of type
variables, and ∆ is a semantic environment for these type variables, as is usual
for languages with parametric polymorphism [65].

4.3. LOGICAL RELATION 81

Value relations:

~Ξ ` X�∆ , (∆(X)).1

~Ξ ` 1�∆(v,v′), v = v′ = ()

~Ξ ` B�∆(v,v′), v = v′ ∈ {true,false}
~Ξ ` Z�∆(v,v′), v = v′ ∈ Z

~Ξ ` τ × τ ′�∆(v,v′), ∃w1,w2,w
′
1,w

′
2. v = (w1,w2)∧ v′ = (w′1,w

′
2) ∧

~Ξ ` τ�∆(w1,w
′
1)∧ ~Ξ ` τ ′�∆(w2,w

′
2)

~Ξ ` τ + τ ′�∆(v,v′), (∃w,w′ . v = inj1w∧ v′ = inj1w
′ ∧

~Ξ ` τ�∆(w,w′))∨ (∃w,w′ . v = inj2w ∧
v′ = inj2w

′ ∧ ~Ξ ` τ ′�∆(w,w′))

~Ξ ` τ→ τ ′�∆(v,v′), 2

(
∀(w,w′). ~Ξ ` τ�∆(w,w′)⇒

E ~Ξ ` τ�∆ (v w,v′ w′)
)

~Ξ ` ∀X.τ�∆(v,v′), 2

(
∀f , r ∈ R. persistent(f)⇒

E ~Ξ,X ` τ�∆,X 7→(f ,r) (v _,v′ _)
)

~Ξ ` µX.τ�∆(v,v′), µf . ∃w,w′ . v = foldw∧ v′ = foldw′∧
.~Ξ,X ` τ�∆,X 7→(f ,toRgn(∆,µX.τ))(w,w

′)

~Ξ ` STRef ρ τ�∆(v,v′), ∃`,`′ , r. v = `∧ v′ = `′ ∧ isRgn(toRgn(∆,ρ), r) ∗
bij(r,`,`′) ∗ rel(r,`,`′ ,~Ξ ` τ�∆)

~Ξ ` ST ρ τ�∆(v,v′), ∀γh,γ ′h,h
′
1.{∣∣∣heapγ ′h(h′1) ∗ regions ∗ region(toRgn(∆,ρ),γh,γ

′
h)
∣∣∣}

runST {v}{∣∣∣∣w. (h′1,runST {
v′
}
) ⇓γ

′
h

~Ξ`τ�∆(w,·) ∗region(toRgn(∆,ρ),γh,γ
′
h)
∣∣∣∣}
γh

Expression relation:

EΦ (e,e′), ∀γh,γ ′h,h
′
1.

{∣∣∣heapγ ′h(h′1) ∗ regions
∣∣∣}e{∣∣∣∣w. (h′1, e′) ⇓γ ′hΦ(w,·)

∣∣∣∣}
γh

Environment relation:

G~Ξ ` ·�∆(~v, ~v′),>

G~Ξ ` Γ ,x : τ�∆(w~v,w′ ~v′), ~Ξ ` τ�∆(w,w′) ∗ G~Ξ ` Γ �∆(~v, ~v′)

Logical relatedness:

Ξ | Γ � e �log e
′ : τ , ∀∆, ~v, ~v′ . G~Ξ ` Γ �∆(~v, ~v′)⇒E ~Ξ ` τ�∆ (e[~v/~x], e′[~v′/~x])

82 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

toRgn(∆, τ),
{
∆(X).2 if τ = X is a type variable

1 otherwise

Figure 46: Binary logical relation.

If τ is a ground type like 1,B or Z, two values are related at type τ if and
only if they are equal (and compatible with the type). For instance, if τ is Z,
then ~Ξ ` Z�∆(v,v′), v = v′ ∈ Z.

For a product type of the form τ ×τ ′, two values v and v′ are related if and
only if they both are pairs, and the corresponding components are related at
their respective types:

~Ξ ` τ × τ ′�∆(v,v′), ∃w1,w2,w
′
1,w

′
2. v = (w1,w2)∧ v′ = (w′1,w

′
2) ∧

~Ξ ` τ�∆(w1,w
′
1)∧ ~Ξ ` τ ′�∆(w2,w

′
2)

Note that the formula on the right hand side of , is simply a formula in (the
first order fragment of) Iris. The case of sum types is handled in a very similar
fashion.

Two values v and v′ are related at a function type τ→ τ ′ if, given any two
related values w and w′ at type τ , the applications v w and v′ w′ are related at
type τ ′. Notice that those latter two terms are expressions, not values; thus
they have to be related under the expression relation E ~Ξ ` τ ′�∆ , which we
will define later. Using Iris, the case for function types is defined as follows:

~Ξ ` τ→ τ ′�∆(v,v′),2

(
∀(w,w′). ~Ξ ` τ�∆(w,w′)⇒E ~Ξ ` τ�∆ (v w,v′ w′)

)
The 2 modality is used to ensure that ~Ξ ` τ → τ ′�∆(v,v′) is persistent and
hence duplicable. In fact, we will make sure that all predicates ~Ξ ` τ�∆(v,v′)
are persistent. The intuition behind this is that the types of STLang just
express duplicable knowledge (the type system is not a substructural type
system involving resources).

Let us now discuss the case of polymorphic types. We use the semantic
environment ∆, which maps type variables to pairs consisting of an Iris
relation on values (the semantic value relation interpreting the type variable)
and a region name (we use positive integers, Z+, to identify regions):

∆ : Tvar→ (((Val×Val)→ iProp)×Z+)

Thus, we simply define ~Ξ ` X�∆ , ∆(X).1.
For type abstraction, two values v and v′ are related at ∀X.τ when v _ and

v′ _ are related at τ , where the environments (Ξ and ∆) have been extended

4.3. LOGICAL RELATION 83

with X, and any persistent binary value relation f . (Recall that v _ is the
syntax for type application).

~Ξ ` ∀X.τ�∆(v,v′), 2

(
∀f . persistent(f)⇒E ~Ξ,X ` τ�∆,X 7→f (v _,v′ _)

)
The last case, before we get to the types associated to the ST monad, is

the case of recursive types: two values are related at type µX.τ if they are
of the form foldw and foldw′ and, moreover, w and w′ are related at τ ,
where the type variable X is added to the environments, and mapped in ∆ to
(~Ξ ` µX.τ�∆, toRgn(∆,µX.τ)) (ignore toRgn(∆,µX.τ) for now):

~Ξ ` µX.τ�∆(v,v′), µf .
(
∃w,w′ . v = foldw∧ v′ = foldw′ ∧

.~Ξ,X ` τ�∆,X 7→(f ,toRgn(∆,µX.τ)) (w,w′)
)

Notice that we use a guarded recursive predicate in Iris, which is well-defined
because the occurrence of f is guarded by the later modality ..

Before describing the cases for STRef ρ τ and ST ρ τ we touch upon the
expression relation, which is defined independently of the value relation and
has the following type:

E · : ((Val×Val)→ iProp)→ (Expr×Expr)→ iProp

Intuitively, the expression relation EΦ (e,e′) holds for two expressions e and e′

if e (the implementation) refines, or approximates, e′ (the specification). That
is, reduction steps taken by e can be simulated by zero or more steps in e′. We
use IC triples to define the expression relation. The IC triples are unary and
are used to express a property of the implementation expression e. We use
the following Iris assertion in the postcondition of the IC triple to talk about
the reductions in the specification expression e′:

(h′1, e
′) ⇓γΦ , ∃h

′
2,v
′ .

〈
h′1, e

′〉→∗d 〈
h′2,v

′〉 ∗ heapγ (h′2) ∗ Φ(v′)

This assertion says that there exists a deterministic reduction from (h′1, e
′) to

(h′2,v
′), that the resulting heap h′2 is owned and the value satisfies Φ . The

deterministic reduction relations,→d and ;d , are defined by the same infer-
ence rules as→ and ;, except that the only non-deterministic rule, Alloc, is
replaced by a deterministic one:

det-Alloc

` = min(Loc \dom(h))

〈h,ref(v)〉;h 〈h] {` 7→ v} ,return`〉

The requirement that the reduction on the specification side is deterministic is
used crucially in the proofs of the purity properties in §4.4. We emphasize

84 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

that even with this requirement, we can still prove that logical relatedness im-
plies contextual refinement (without requiring that STLang use deterministic
reductions), essentially since we only require determinism on the specification
side.

Thus, in more detail, the expression relation E Φ (e,e′) says that, when
given full ownership of a heap h′1 for the specification side (heapγ ′ (h′1)), if
e reduces to a value w when given some heap h (quantified in IC), then a
deterministic reduction on the specification side exists, and the resulting
values are related. Notice that the heaps used for the implementation and
specification side reductions are universally quantified, because we quantify
over the ghost names γh, and γ ′h, and that we do not require any explicit
relationship between them. The persistent Iris assertion regions is responsible
for keeping track of all allocated regions; it will be explained later.

For the value interpretation of STRef ρ τ and ST ρ τ , the key idea is to tie
each type ρ in an ST monad type (ρ in ST ρ τ) to a semantic region name r ∈ Z+.
The association can be looked up using the function toRgn. Intuitively, a
region r contains a collection of pairs of locations (one for the implementation
side and one for the specification side) in one-to-one correspondence, together
with a semantic predicate φ for each pair of locations in the region. The idea
is that an implementation-side heap h and a specification-side heap h′ satisfies
a region r if, for any pair of locations (`,`′) in r, we have values v and v′, such
that h(`) = v and h′(`′) = v′ and φ(v,v′). All this information is contained in
the predicate region(r,γh,γ ′h), where γh and γ ′h are the ghost names for the
implementation and specification heap, respectively.

We have to maintain a one-to-one correspondence between locations be-
cause the operational semantics allows for comparison of locations. Given
the one-to-one correspondence, we know that two locations on the imple-
mentation side are equal if and only if their two related counterparts on the
specification side are.

We write isRgn(r,ρ) to say that r is the semantic region tied to ρ. We keep
track of all regions by the regions assertion, which allows us to allocate new
regions, as so:

regions ≡∗∃r. region(r,γh,γ
′
h) (4.5)

Notice that (4.5) gives back a fresh semantic region r. The region(r,γh,γ ′h)
predicate allows for local reasoning about relatedness of two locations in
a region r. We use a predicate bij(r,`,`′), which in conjunction with region
captures that ` and `′ are related by the one-to-one correspondence in r.
Similarly, we use a predicate rel(r,`,`′ ,φ) in conjunction with region for local
reasoning about the fact that values at locations ` and `′ in region r are related
by predicate φ.

With this in mind, the definition of the value relation for STRef ρ τ is
that there exists a semantic region r and locations ` and `′ in a bijection,

4.3. LOGICAL RELATION 85

bij(r,`,`′), such that values pointed to by these locations are related by the
relation corresponding to the type τ , asserted by rel(r,`,`′ ,~Ξ ` τ�∆).

Finally, (v,v′) are related by ~Ξ ` ST ρ τ�∆ if, for any h1 and h′1 related
in r (region(r,γh,γ ′h)) along with some h2 and w such that 〈h1,runST {v}〉 →∗
〈h2,w〉, then there is a heap h′2 and a value w′ such that we afterwards have〈
h′1,runST {v′}

〉
→∗d

〈
h′2,w

′
〉

and region(r,γh,γ ′h) still holds. The intuitive mean-
ing of the word afterwards refers to an application of the future modality (in
the IC triple). Note that it is important that the semantic region r still holds
after runST {v} and runST {v′} have been evaluated. This captures that encap-
sulated computations cannot modify the values of existing locations, but may
allocate new locations (in new regions).

We have now completed the explanation of the value and expression
relation for closed values and expressions. As usual for logical relations, we
then relate open terms by closing them by related substitutions, as specified
according the environment relation G, and finally relate them in the expression
relation for closed terms, see the definition of Ξ | Γ � e �log e

′ : τ in Figure 46.

Properties of the Logical Relation

To show the fundamental theorem and the soundness of the logical relation
wrt. contextual approximation, we prove compatibility lemmas for all typing
rules. Instead of working with the explicit definition of the IC triple, we make
use of the following properties of IC:

Lemma 4.3.1 (Properties of IC).

1. ICγ e {|v. Q|} ∗ (∀w. (Q w) −∗ ICγ C[w] {|v. Q′ v|}) ` ICγ C[e] {|v. Q′ |}

2. |V(Q w) ` ICγ w {|v. Q|}

3. (∀v. (P v) ≡∗ (Q v)) ∗ ICγ e {|v. P |} ` ICγ e {|v. Q|}

4. |VICγ e {|v. Q|} ` ICγ e {|v. Q|}

5. ICγ e {|v. |VQ|} ` ICγ e {|v. Q|}

6. (∀h. 〈h,e〉 → 〈h,e′〉) ∗ . ICγ e′ {|v. Q|} ` ICγ e {|v. Q|}

7. .(∀`. ` 7→γ v ≡∗Q `) ` ICγ runST {ref(v)} {|w. Q|}

8. .` 7→γ v ∗ .(` 7→γ v ≡∗Q v) ` ICγ runST {!`} {|w. Q|}

9. .` 7→γ v
′ ∗ .(` 7→γ v ≡∗Q ()) ` ICγ runST {`← v} {|w. Q|}

10. ICγ runST {e} {|v. Q|} ∗
(
∀w. (Q w) −∗

ICγ runST {K[returnw]} {|v. Q′ w|}
)
` ICγ runST {K[e]} {|v. Q′ |}

86 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

Items (1) and (2) above show that IC is a monad in the same way that
weakest precondition is a monad, known as the Dijkstra monad. Item (3)
allows one to strengthen the post-condition. Items (4) and (5) says that we
can dispense with the update modality |V for IC since the update modality
is idempotent and IC is based on the update modality. Item (6) says that if
a pure reduction from e to e′ exists and later the postcondition Q will hold
when reducing e′, then Q will also hold when reducing e. Items (7),(8) and (9)
are properties that allow to allocate, read and modify the heap, all expressing,
that the post-condition Q will hold, if the resources needed are given and Q
holds for the updated resources. Finally, (10) captures the “bind” property
for the RunST monad.

All the compatibility lemmas have been proved in the Coq formalization;
here we just sketch the proof of the compatibility lemma for runST :

Lemma 4.3.2 (Compatibility for runST). Suppose Ξ,X | Γ � e �log e
′ : ST X τ

and Ξ ` τ . Then
Ξ | Γ � runST {e} �log runST

{
e′
}

: τ

Proof Sketch. We prove that for any f and r that ~Ξ,X ` ST X τ�∆,X 7→(f ,r)(v,v′)
implies E ~Ξ ` τ�∆ (runST {v} ,runST {v′}). The lemma follows from the as-
sumption that e and e′ are suitably related. Assume we have regions, ghost
names for the implementation and specification side, γh and γ ′h, and heapγ ′h(h

′
1)

for some h′1. We are to show:

ICγh runST {v}

∣∣∣∣∣∣w. ∃h′2,w′ .

〈
h′1,runST

{
v′
}〉
→∗d

〈
h′2,w

′〉 ∗
heapγ ′h(h

′
2) ∗ ~Ξ ` τ�∆(w,w′)

∣∣∣∣∣∣


Using (4.5) with regions we know there exists a fresh semantic region r and
that the predicate region(r,γh,γ ′h) holds for r. We then instantiate our assump-
tion by the unit relation ~Ξ ` 1�∆ and r to get ~Ξ,X ` STX τ�∆,X 7→(~Ξ`1�∆,r)(v,v

′).
By the definition of the value relation for the type ST X τ , we get that if we

give a starting specification heap heapγ ′h(h
′
1) and region(r,γh,γ ′h), then we have

runST {v} reduces to a value w, and there exist a reduction on the specification
side producing w′ such that w and w′ are related by ~Ξ,X ` τ�∆,X 7→(~Ξ`1�,ρ).
Moreover, we also get the ownership of the resulting specification heap
heapγh(h

′
2).

By Lemma 4.3.1 (3), it suffices to show: |V∃h′2,w′ .
〈
h′1,runST {v′}

〉
→∗d

〈
h′2,w

′
〉
∗

heapγ ′h(h
′
2) ∗ ~Ξ ` τ�∆(w,w′). The only thing that we do not immediately

have from our assumption is ~Ξ ` τ�∆(w,w′), we only have that w and w′

are related in a larger environment. However since X does not appear free
in τ (which follows from Ξ ` τ) it follows by induction on τ that ~Ξ,X `
τ�∆,X 7→(~Ξ`1�,r)(w,w

′) a` ~Ξ ` τ�∆(w,w′) which concludes the proof.

Notice that in the above proof we start out with two completely unrelated
heaps for the specification and the implementation side since these are uni-
versally quantified inside the IC triple. We then establish a trivial relation

4.4. PROVING CONTEXTUAL REFINEMENTS AND EQUIVALENCES 87

between them by creating a new empty region. We extend and maintain this
relation during the simulation of the stateful expressions on both sides. This
is in essence the reason why our expression relations need not assume (or
guarantee at the end) any relation between the heaps on the implementation
and specification sides.

Using the compatibility lemmas, we can prove the following two theorems.

Theorem 4.3.3 (Fundamental theorem). Ξ | Γ ` e : τ⇒ Ξ | Γ � e �log e : τ

Theorem 4.3.4 (Soundness of logical relation).

Ξ | Γ ` e : τ ∧Ξ | Γ ` e′ : τ ∧Ξ | Γ � e �log e
′ : τ⇒ Ξ | Γ � e �ctx e

′ : τ

4.4 Proving Contextual Refinements and Equivalences

In this section we show how to prove the contextual refinements and equiva-
lences mentioned in the Introduction. For the sake of illustration we present
the proofs of Neutrality and one side of the Commutativity theorems in
moderate detail — the proofs of these two cases demonstrate the key tech-
niques that are also used to show the remaining contextual refinements and
equivalences from the Introduction. For the remaining theorems, we only
sketch their proofs at a higher level of abstraction. Readers who are eager to
see all proofs in all their details are thus referred to our Coq formalization.

Theorem 4.4.1 (Neutrality). If Ξ | Γ ` e : 1 then Ξ | Γ � e �ctx () : 1

Proof Sketch. By the fundamental theorem we have Ξ | Γ � e �log e : 1. We
show that this implies Ξ | Γ � e �log () : 1. The final result follows from the
soundness theorem.

By unfolding the IC predicate, we get the assumption that 〈h1, e〉 →∗ 〈h2,v〉,
including the ownership of heapγh(h1) and heapγ ′h(h

′
1), and have to prove that5〈

h′1, ()
〉

reduces deterministically to a value w (and some heap) and that (v,w)
are in the value relation for the unit type. We proceed by allocating a copy
of h′1, obtaining heapγ (h′1) for some fresh γ . We use this together with our

assumptions, notably Ξ | Γ � e �log e : 1, to get that
〈
h′1, e

〉
→∗d

〈
h′2,v

′
〉

for some
v′ and h′2 such that (v,v′) are related in the value relation for the unit type, i.e.,
v = v′ = (), heapγh(h2) and heapγ (h′2). Notice that we have, crucially, retained
the ownership of heapγ ′h(h

′
1) and have only updated the freshly allocated copy

of h′1 with the fresh name γ . We are allowed to do this because the relatedness
of expressions, as in Ξ | Γ � e �log e : 1, universally quantifies over ghost names
for the specification and implementation side heaps. We conclude the proof
by noting that since () is a value, we have, trivially,

〈
h′1, ()

〉
→∗d

〈
h′1, ()

〉
and that

(v, ()) are related at the unit type.

5We ignore the future modality for the sake of simplicity.

88 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

Theorem 4.4.2 (Commutativity). If Ξ | Γ ` e1 : τ1 and Ξ | Γ ` e2 : τ2 then

Ξ | Γ � letx = e2in (e1,x) ≈ctx (e1, e2) : τ1 × τ2

Proof Sketch. We only showΞ | Γ � letx = e2in (e1,x) �log (e1, e2) : τ1×τ2, the
other direction is similar. Unfolding the IC predicate we get the assumption
that 〈h1,letx = e2in (e1,x)〉 →∗ 〈h2,v〉 for some h2 and v, the ownership of
heapγh(h1) and heapγ ′h(h

′
1) and we have to prove that

〈
h′1, (e1, e2)

〉
→∗d

〈
h′2,v

′
〉

for some h′2 and v′, and that (v,v′) are in the value relation for τ ×τ ′. From the
first assumption, we can conclude that 〈h1, e2〉 →∗ 〈h3,v2〉, 〈h3, e1〉 →∗ 〈h2,v1〉
and that v = (v1,v2).

We proceed by allocating a fresh copy of h3 (the heap in the middle
of execution of the implementation side) with the fresh name γ , heapγ (h3)
and also a fresh heapγ ′ (h′1) (the heap at the beginning of execution of the
specification side). Notice that these are heaps (on either side) immediately
before executing e1. We use these freshly allocated heaps together with
Ξ | Γ � e1 �log e1 : τ1 (which follows from the fundamental theorem) to
conclude6

〈
h′1, e1

〉
→∗d

〈
h′3,v

′
1

〉
for some v′1 and h′3.

Now we have the information about the starting heap for execution of e2
on the specification side. Thus, we are ready to simulate the execution of e2
on both sides. Note that the order of simulations is dictated by the order on
the implementation side as we have to prove that the implementation side is
simulated by the specification side.

To simulate e2 we proceed by allocating a fresh copy of h′3 (the heap
immediately before executing e2 on the specification side) with a fresh name
γ ′′, heapγ ′′ (h′3). We use this, together with heapγh(h1) (which we originally got
by unfolding the IC predicate) and Ξ | Γ � e2 �log e2 : τ2 (which we know from
the fundamental theorem). We can do this as we know 〈h1, e2〉 →∗ 〈h3,v2〉.
This allows us to conclude that

〈
h′3, e2

〉
→∗d

〈
h′2,v

′
2

〉
for some h′2 and v′2, the

ownership of heapγ ′′ (h′2) and heapγh(h3) together with the fact that (v2,v
′
2) are

related at type τ2.
Now we are ready to simulate e1 on both sides. We use Ξ | Γ � e1 �log e1 : τ1

(which we know from the fundamental theorem) together with heapγh(h3)
(from simulating e2) and heapγ ′h(h

′
1) (which we had as an assumption from

the definition relatedness). We can do this because we know that 〈h3, e1〉 →∗

〈h2,v1〉. This allows us to conclude that
〈
h′1, e1

〉
→∗d

〈
h′′3 ,v

′′
1

〉
for some h′′3 and

v′′1 , the ownership of heapγ ′h(h
′′
3) and heapγh(h2) together with the fact that

(v1,v
′′
1) are related at type τ1. It follows from the determinism of reduction on

the specification side that h′3 = h′′3 and v′1 = v′′1 .
The only thing we need to conclude the proof is the ownership of heapγ ′h(h2)

(the heap at the end of execution of the specification side) whereas we own
heapγ ′h(h

′′
3) which is the heap of the specification side after execution of e1

6For simplicity, we are ignoring some manipulations involving the future modality.

4.4. PROVING CONTEXTUAL REFINEMENTS AND EQUIVALENCES 89

and before execution of e2. However, using some resource reasoning (which
depends on details explained in §4.5), we can conclude that h′′3 ⊆ h2. This in
turn allows us to update our heap resource to get heapγ ′h(h2), which concludes
the proof.

The proof sketches of the two theorems above show that the true expres-
siveness of our logical relation comes from the fact that the expression relation
quantifies over the names of resources used for the heaps on the specification
and implementation sides. This allows us to allocate fresh instances of ghost
resources corresponding to the heaps (for any of the two sides) and simulate
the desired part of the program. This is the reason why we can prove such
strong equations as Commutativity, Idempotency, Hoisting, etc. The proof of
Commutativity above also elucidates the use of deterministic reduction for
the specification side.

Theorem 4.4.3 (Idempotency). If Ξ | Γ ` e : τ then Ξ | Γ � letx = ein (x,x) ≈ctx
(e,e) : τ × τ

Proof Sketch. We show the contextual equivalence, by proving logical relat-
edness in both directions. For the left-to-right direction, we allocate a fresh
heap and simply simulate twice on the specification side using the same re-
duction on the implementation side. For the other direction, we simulate the
same reduction on the specification side twice for the two different reductions
on the implementation side. For the latter we conclude, by determinism of
reduction on the specification side, that the two reductions coincide.

Theorem 4.4.4 (Rec Hoisting). If Ξ | Γ ` e1 : τ and Ξ | Γ , y : τ,x : τ1, f : τ1 →
τ2 ` e2 : τ2 then

Ξ | Γ � lety = e1inrecf (x) = e2 �ctx recf (x) = lety = e1ine2 : τ1→ τ2

Proof Sketch. The proof of this theorem is quite tricky, in particular because
the the number of operational steps do not match up for the function bodies
on the implementation and specification sides. We do not delve into those
issues here, but concentrate instead on the high-level structure of the proof.

We prove three different contextual refinements, such that their composi-
tion gives us the desired contextual refinement in the theorem. These three
contextual refinements are:

(a) lety = e1inrecf (x) = e2 �ctx lety = e1inrecf (x) = letz = e1ine2 :
τ1→ τ2

(b) lety = e1inrecf (x) = letz = e1ine2 �ctx letz = e1inrecf (x) = lety =
e1ine2 : τ1→ τ2

(c) letz = e1inrecf (x) = lety = e1ine2 �ctx recf (x) = lety = e1ine2 :
τ1→ τ2 where z is a fresh variable.

90 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

We prove (a) by proving the corresponding logical relatedness. Since
e1 reduces to a value we know that it will reduce deterministically to some
value under any heap on the specification side. We prove (c) also by the
corresponding logical relatedness which is rather trivial to prove.

To prove (b) we show the corresponding logical relatedness for a slightly
stronger logical relation; �NNlog . The NN-logical relation is defined entirely
similarly to the primary logical relation above except that the specification
side is required to deterministically reduce to a value in the same number of
steps as the implementation side. Notice that the proofs of the fundamental
theorem and soundness for NN-logical relation are very similar to those of
the primary logical relation.

Formally, for (b) we show

lety = e1inrecf (x) = letz = e1ine2

�NNlog letz = e1inrecf (x) = lety = e1ine2 : τ ′→ τ ′′

This logical relatedness is in fact rather easy to show if we know that all
reductions of e1 (on either side) take the same number of steps. This is
precisely why we use the NN-logical relation: By the fundamental theorem of
the NN-logical relation we know that e1 �NNlog e1 : τ ′ → τ ′′ and hence we can
conclude that both outer reductions (on either side) take the same number of
steps, say n. Similarly we know that both reductions of e1 inside the functions
also take the same number of steps, say m. Hence, by allocating appropriate
heaps, we can show that the outer reduction of e1 on the implementation
side takes the same number steps as that of the reduction of the inner one
on the specification side. This shows, by determinism of reduction on the
specification side, that n =m, which allows us to conclude the proof.

Theorem 4.4.5 (η expansion for Rec). If Ξ | Γ ` e : τ1→ τ2 then Ξ | Γ � e �ctx
recf (x) = e x : τ1→ τ2

Proof Sketch. We prove this theorem by proving the following three contextual
refinements.

(a) Ξ | Γ � e �ctx lety = einrecf (x) = (y x) : τ→ τ ′

(b) Ξ | Γ � lety = einrecf (x) = (y x) �ctx recf (x) = lety = ein (y x) : τ →
τ ′

(c) Ξ | Γ � recf (x) = lety = ein (y x) �ctx recf (x) = (e x) : τ→ τ ′

Refinements (a) and (c) follow rather easily from their corresponding logical
relatedness while case (b) is an instance of rec Hoisting above. For (c) notice
that f does not appear free in e.

4.4. PROVING CONTEXTUAL REFINEMENTS AND EQUIVALENCES 91

Theorem 4.4.6 (β reduction for λ). If Ξ | Γ ,x : τ1 ` e1 : τ2 and Ξ | Γ ` e2 : τ1
then

(λx.e1) e2 �ctx e1[e2/x] : τ

Proof Sketch. By induction on the typing derivation of e1; for each case we use
appropriate contextual refinements proven by (using the induction hypothesis
if necessary) some of the contextual refinement theorems stated above and
some instances of logical relatedness. We only present a couple cases here.

Case e1 = inji e The induction hypothesis tells us that Ξ | Γ � (λx.e) e2 �ctx
e[e2/x] : τi and we have to show that Ξ | Γ � (λx.inji e) e2 �ctx (inji e)[e2/x] :
τ1 + τ2. Notice that it is easy to prove (using the fundamental theorem) that
Ξ | Γ � (λx.inji e) e2 �log inji ((λx.e) e2) : τ1 + τ2 The final result follows by
the induction hypothesis, transitivity of contextual refinement and the fact
that contextual refinement is a congruence relation.

Case e1 = recf (y) = e The induction hypothesis tells us that Ξ | Γ , y :
τ1, f : τ1 → τ2 � (λx.e) e2 �ctx e[e2/x] : τ2 and we have to show that Ξ | Γ �
(λx. (recf (y) = e)) e2 �ctx (recf (y) = e)[e2/x] : τ1 → τ2 or equivalently (by
simply massaging the terms) Ξ | Γ � letx = e2in (recf (y) = e) �ctx (recf (y) =
e[e2/x]) : τ1→ τ2. By rec Hoisting and transitivity of contextual refinement,
it suffices to show Ξ | Γ � (recf (y) = letx = e2ine) �ctx (recf (y) = e[e2/x]) :
τ1→ τ2 which easily follows from the induction hypothesis and the fact that
contextual refinement is a congruence relation.

We omit the theorems of hoisting and η-expansion for polymorphic terms
as they are fairly similar in statement and proof to their counterparts for
recursive functions. We also omit β-reduction for polymorphic terms and
recursive functions. The former follows directly from the corresponding
logical relatedness and the latter follows from β-reduction for λ’s and rec-
unfolding: if Ξ | Γ ,x : τ1, f : τ1→ τ2 ` e : τ2, then

Ξ | Γ � recf (x) = e �ctx λx.e
′[(recf (x) = e′)/f] : τ1→ τ2,

which is a consequence of the corresponding logical relatedness.

Theorem 4.4.7 (Equations for stateful computations). See Figure 43.

Proof. Left identity follows by proving both logical relatednesses. Right
identity is proven as follows using equational reasoning:

e2 e1 �ctxletx = e2inlety = e1inbind (returny)inletz = xy inλ_. z

�ctxletx = e2inlety = e1inbind (returny)inλ_.letz = xy inz

�ctxletx = e2inlety = e1inbind (returny)inx

�ctxlety = e1inletx = e2inbind (returny)inx

�ctxbind (returne1)ine2 : ST ρ τ

92 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

Here the second equation is by rec Hoisting and the fourth by a variant of com-
mutativity. The rest follow by proving the corresponding logical relatedness.
Associativity is proven as follows using equational reasoning:

bind (binde1ine2)ine3

�ctx lety = e1inbindy inletz = (e2, e3)in (λx.bind (π1 z) xinπ2 z)

�ctx lety = e1inbindy in (λx.letz = (e2, e3)inbind (π1 z) xinπ2 z)

�ctx lety = e1inbindy in (λx.letz1 = e2inletz2 = e3in

letz3 = (z1 x)inbindz3inz2)

�ctx lety = e1inbindy in (λx.letz1 = e2inletz3 = (z1 x)in

letz2 = e3inbindz3inz2)

�ctx binde1in (λx.bind (e2 x)ine3) : ST ρ τ

Here the second equation is by rec Hoisting and the fourth by a variant of
commutativity. The rest follow by proving the corresponding logical related-
ness.

4.5 Iris Definitions of Predicates used in the Logical
Relation

In this section we detail how the abstract predicates (regions, region(r,γh,γ ′h),
isRgn(α,r), heapγh(h) and ` 7→γ v) used in the definition of the logical relation
are precisely defined in the Iris logic. To this end, we first introduce three
more concepts from the Iris logic: invariants, saved predicates and ghost-state.

Invariants, Saved Predicates and Ghost State

We extend the grammar for Iris propositions P , presented in §4.3 with syntax
for invariants, saved predicates and ghost-resources:

P ::= · · · | P | γ �⇒Φ | X(a) | a :M γ

Invariants in Iris, P , are typically used to enforce that a proposition P
holds for some shared state. In this paper we use a certain kind of invari-
ants for which we can use the following rules for allocating and opening
invariants7:

Inv-alloc

P

|VP

Inv-open

P ≡∗ P ∗Q
P ≡∗Q

7Technically,V has masksVE where E keeps track of already opened invariants, preventing
the same invariant being opened twice in a nested fashion, which would be unsound. In this
paper we omit the masks for the sake of simplicity.

4.5. IRIS DEFINITIONS OF PREDICATES 93

Notice that these are not the general rules for allocating and opening in-
variants in Iris. In general, the rule Inv-open should involve a . to ensure
soundness of the logic. However, the above rules do hold for the invariants
we use in this paper.8 Invariants are persistent, P a` P ∗ P .

For storing of Iris propositions we use a mechanism called saved predi-
cates, γ �⇒ Φ . This is simply a convenient way of assigning a name γ to a
predicate Φ . There are only three rules governing the use of saved propo-
sitions. We can allocate them (rule SavedPred-Alloc), they are persistent
(rule SavedPred-Persistent) and the association of names to predicates is
functional (rule SavedPred-Equiv).

SavedPred-Alloc

|VE ∃γ. γ �⇒Φ
SavedPred-Persistent

γ �⇒Φ a` γ �⇒Φ ∗γ �⇒Φ

SavedPred-Equiv

γ �⇒Φ ∗γ �⇒ Ψ

.Φ(a) ` .Ψ (a)

The later modality is used in rule SavedPred-Equiv as a guard to avoid self
referential paradoxes [38], which is not so surprising, after all, since saved
propositions essentially allow us to store a predicate (something of type
κ→ iProp) inside a proposition (something of type iProp).

Resources in Iris are described using a kind of partial commutative monoids,
and the user of the logic can introduce new monoids. For instance, in the
case of finite partial maps, the partiality comes from the fact that disjoint
union of finite maps is partial. Undefinedness is treated by means of a validity
predicate X :M→ iProp, which expresses which elements of the monoidM
are valid/defined.

We write a :M γ
to assert that a monoid instance named γ , of typeM has

contents a. Often, we disregard the type if it is obvious from the context. We
think of this assertion as a ghost variable γ with contents a.

Ghost-Alloc

Xa ` |V∃γ. a γ
Own-Valid

a
γ `X(a)

Sharing

a
γ ∗ b γ a` a · b γ

Some Useful Monoids In this paragraph, we describe a few monoids which
are particularly useful and which we will use in the following. We do not
give the full definitions of the monoids (those can be found in [38]), but focus
instead on the properties which the elements of the monoids satisfy, shown in
Figure 47. These rules stated are only for monoids that we use in this work
and not in Iris in its generality. For instance, in the rule Auth-Included, ⊆ is
a set relation and is defined for finite set and finite partial function monoids
and not in general.

The figure depicts the rules necessary for allocating and updating finite
set monoids, finset(A), and finite partial function monoids, A ⇀fin M. In

8The rules hold for invariants P where P is timeless. For details see [38].

94 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

Auth-Included

•a · ◦b ` b ⊆ a
Fpfn-valid

X(a) a` ∀x ∈ dom(a).X(a(x))
Agreement-Valid

X(ag(a) ·ag(b)) a` a = b

Exclusive

X\ (ex(a) · b)
Frag-distributes

◦a · ◦b = ◦ (a · b)
Full-Exclusive

X\ (•a · •b)

Auth-Alloc-Finset

h∩ a = ∅
•h γ ≡∗ • (h] a) · ◦a γ

Auth-Alloc-Fpfn

dom(h)∩dom(a) = ∅
•h γ ≡∗ • (h] a) · ◦a γ

Agree

ag(a) ·ag(a) = ag(a)

Fpfn-operation-success

(a · b)(x) =


a(x) if x ∈ dom(a)∧ x < dom(b)

a(x) · b(x) if x ∈ dom(a)∩dom(b)

b(x) if x ∈ dom(b)∧ x < dom(a)

Auth-Update-Fpfn

• (h] (` 7→ ex(v1))) · ◦` 7→ ex(v1)
γ ≡∗ • (h] (` 7→ ex(v2))) · ◦` 7→ ex(v2)

γ

Figure 47: Rules for selected monoid resources in Iris

these monoids, the monoid operation x ·y is disjoint union. The notation
a 7→ b : A⇀fin B, {(a,b)} is a singleton finite partial function.

The constructs • and ◦ are constructors of the so-called authoritative
monoid Auth(M). We read •a as full a and ◦a as fragment a. We use the
authoritative monoid to distribute ownership of fragments of a resource. The
intuition is that •a is the authoritative knowledge of the full resource, think
of it as being kept track of in a central location. This central location is the
full part of the resource (see rule Auth-Included). The fragments, ◦a, can be
shared (rule Frag-distributes) while the full part (the central location) should
always remain unique (rule Full-Exclusive).

In addition to authoritative monoids, we also use the agreement monoid
Ag(M) and exclusive monoid Ex(M). As the name suggests, the operation
of the agreement monoid guarantees that ag(a) · ag(b) is invalid whenever
a , b (and otherwise it is idempotent; see rules Agree and Agreement-Valid).
From the rule Agree it follows that the ownership of elements of Ag(M) is
persistent.

ag(a)
γ a` ag(a) ·ag(a)

γ a` ag(a)
γ ∗ ag(a)

γ

The operation of the exclusive monoid never results in a valid element (rule
Exclusive), enforcing that there can only be one instance of it owned. We can
now give meaning to the heap-specific predicates used in the earlier sections,

4.5. IRIS DEFINITIONS OF PREDICATES 95

by presenting the canonical example of a Heap monoid:

Heap, Auth(Loc
fin−−⇀ (Ex(Val)))

heapγ (h), •h γ ` 7→γ v , ◦ [l 7→ ex(v)]
γ

Notice here that Heap is build from nesting Ex in the finite partial functions
monoid, which again is nested in the Auth monoid. Therefore, to allocate
and update and in the Heap monoid, we can use Auth-Alloc-Fpfn and Auth-

Update-Fpfn respectively.

Encoding of Regions by Ghost Resources

In order to concretely represent bijections and relatedness between locations,
we use a pair of monoids, one for the bijection (one-to-one correspondence)
and one for the semantic interpretation, i.e., a name to a saved predicate:

Rel, Auth((Loc×Loc)
fin−−⇀ (Ag(Names))) Bij, Auth(P (Loc×Loc))

Both are defined as authorative monoids which allow for having a global and
a local part. To tie the two monoids together with a semantic region r (the
name r is simply a positive integer) we use a third monoid:

Region, Auth(Z+ fin−−⇀ (Ag(Names×Names)))

We fix a global ghost name γreg for an instance of this last monoid. For
Region, ownership of ◦r 7→ ag(γbij,γrel)

γreg indicates that the semantic region
r is represented by two ghost variables named γbij and γrel, for Bij and Rel
respectively. Notice that this ownership of ◦r 7→ ag(γbij,γrel)

γreg is duplicable
and also, due to the properties of the agreement monoid, we have that the
semantic region tied to r is uniquely defined. Formally,

◦r 7→ ag(γbij,γrel)
γreg ∗ ◦r 7→ ag(γ ′bij,γ

′
rel)

γreg ` γbij = γ ′bij ∧γrel = γ ′rel (4.6)

We can now present the region(r,γh,γ ′h) predicate in detail:

region(r,γh,γ
′
h), ∃R,γbij,γrel. ◦r 7→ ag(γbij,γrel) : Region

γreg ∗ •R : Rel
γrel∗

∗
(`,`′)7→ag(γpred)∈R

(
∃Φ : (Val×Val)→ iProp),v,v′ . ` 7→γh v ∗

`′ 7→γ ′h
v′ ∗γpred �⇒Φ ∗ .Φ(v,v′)

)
The predicate asserts that the semantic region r is associated with two ghost
names, γbij and γrel, by ◦r 7→ ag(γbij,γrel)

γreg , and full authoritative ownership
of R, which is a mapping of pairs of locations to ghost names. Further, for each
element (`,`′) 7→ ag(γpred) ∈ R we have ownership of the points-to predicates

96 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

` 7→γh v and `′ 7→γ ′h
v′ and the knowledge about a saved predicate Φ , named

by γpred, that holds later for v and v′.
The regions predicate keeps track of all the allocated regions by having

the full authoritative part •M : Reg
γreg :

regions,

∃M. •M : Region
γreg ∗

∗
r 7→ag(γbij,γrel)∈M

∃g :finset(Loc×Loc),R : (Loc×Loc)
fin−−⇀ (Ag(Names)).

•g γbij ∗ bijection(g) ∗ ◦R γrel ∗ g = dom(R)


For each element r 7→ ag(γbij,γrel) in M, regions have full authoritative own-
ership of a bijection g and fragment ownership of R, which maps each pairs
of locations to a ghost name for saved predicates. Here, g and the domain of
R is forced to be equal, ensuring that all pairs that are related in the bijection
are also related in the region. Notice that since the regions predicate is an
invariant, it is also persistent.

Notice here as well that individual regions are tied to the regions predicate,
regions, by having the fragment ownership of ◦r 7→ ag(γbij,γrel) : Region

γreg

since the authoritative element •M : Region
γreg is owned by regions. Similarly,

the regions predicate is tied to all regions by asserting ownership of the
fragment ◦R γrel . This illustrates how ghost resources are important to enforce
relations in and out of invariants.

We can now give meaning to the abstract predicates used in the definition
of STRef ρ τ9:

isRgn(α,r), ∃γbij,γrel,γpred. α = r ∗ ◦r 7→ ag(γbij,γrel)
γreg

bij(r,`,`′), ∃γbij,γrel. ◦r 7→ ag(γbij,γrel)
γreg ∗ ◦ (`,`′)

γbij

rel(r,`,`′ ,Φ), ∃γbij,γrel,γpred. ◦r 7→ ag(γbij,γrel)
γreg ∗

◦ [(`,`′) 7→ ag(γpred)]
γbij ∗γpred �⇒Φ

Each of the predicates owns the ghost resource suggested by its name. For
instance, Property (4.5) from §4.3 can now be shown:

regions ≡∗∃r. region(r,γh,γ
′
h)

First, we open the invariant using Inv-open to obtain •M : Region
γreg . By

Ghost-Alloc we obtain •∅ · ◦∅ : Rel
γrel and •g γbij , for fresh ghost names γrel

and γbij. Now, by Auth-Alloc-Fpfn we can extend M with r 7→ ag(γbij,γrel),

9The predicate ◦r 7→ ag(γbij,γrel)
γreg appears in all the abstract predicates to obtain γbij

and γrel. This is to keep the initial description of the predicates simple. The redundancy does
not exist in the actual implementation.

4.6. FORMALIZATION IN COQ 97

to obtain ◦r 7→ ag(γbij,γrel)
γreg , for some r not in dom(M), since M is finite.

region(r,γh,γ ′h) now holds trivially, since there are no locations allocated
in •∅ γrel . Similarly, bijection(∅) and dom(∅) = ∅ hold trivially, so we have
reestablished the body of the invariant.

4.6 Formalization in Coq

We have formalized our technical development and proofs in the Iris imple-
mentation in Coq [38, 39]. The Iris implementation in Coq [38] includes a
model of Iris and proof of soundness of the Iris logic itself. The Iris Proof
Mode (IPM) [39] allows users to carry out proofs inside Iris in much the same
way as in Coq itself by providing facilities for working with the substruc-
tural contexts and modalities of Iris. We have used Iris and IPM to formalize
the future modality, the IC predicates, our logical relation and to prove the
state-independence theorem and all the refinements presented in this paper.

The Trusted Computing Base

Even though our logical relation has been defined inside the Iris logic, the
soundness theorem of Iris [38] allows us to prove the soundness of our logical
relation:

Theorem binary__soundness Γ e e’ τ : typed Γ e τ → typed Γ e’ τ →
(∀ Σ ‘{ICG__ST Σ, LogRelG Σ}, Γ � e ≤log≤ e’ : τ) → Γ � e ≤ctx≤ e’ : τ.

This statement says that whenever Ξ | Γ ` e : τ and Ξ | Γ ` e′ : τ and we can
prove in the Iris logic (notice the quantification of Iris parameters, Σ ‘{ICG__

ST Σ} ‘{LogRelG Σ})10 that e and e′ are logically related, then e contextually
refines e′. Notice that Ξ does not appear in the Coq code as we are using
de Bruijn indices to represent type variables and hence need no type level
context. The definition of contextual refinement and well-typedness are in
turn normal Coq statements, independent of Iris.

All lemmas and theorems in this paper are type checked by Coq without
any assumptions or axioms apart from the use of functional extensionality
which is used for the de Bruijn indices. It is used by the Autosubst library.

Extending Iris and IPM and instantiating them with STLang

The implementations of Iris and IPM in Coq are almost entirely independent
of the choice of programming language. In practice, the only definitions that
are parameterized by a language are the definitions of weakest-precondition
and Hoare triples. To use these with a particular programming language,
one needs to instantiate a data structure in Coq that represents the language.

10Σ is the set of Iris resources and the other two parameters express that resources necessary
for IC and our logical relations are present in Σ.

98 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

Basically, one is required to instantiate this data structure with the language’s
set of states (heaps in our case), expressions, values and reduction relation,
together with proofs that they behave as expected (e.g., values do not reduce
any further). In this work we use IC predicates and IC triples instead of
the weakest precondition and Hoare triples used in earlier work. Therefore,
we have also parameterized IC predicates and IC triples by a data structure
representing the programming language. We instantiate these with STLang.

The formalization of Iris in Coq is a shallow embedding. That is, the model
of the Iris logic is formalized in Coq, and terms of the type iProp (propositions
of Iris) are defined as well-behaved predicates over the elements of that model.
The advantage of shallow embeddings is that one can easily introduce new
connectives and modalities to the logic by defining another function with
iProp as co-domain. For instance, our IC predicate is defined as follows in
Coq.

Definition ic__def {Λ Σ} ‘{ICState Λ, ICG Λ Σ} γ E e Φ : iProp Σ :=
(∀ σ1 σ2 v n, (pnsteps pstep n (e, σ1) (of__val v, σ2)q ∗ ownP__full γ σ1)

−∗ |�{E}=[n]=> Φ v n ∗ ownP__full γ σ2)%I.

Here, p ·q embeds Coq propositions into Iris and ownP__full γ σ is the full
ownership of the physical state of the language (parameter Λ), equivalent to
our heapγ (σ). The Coq proposition nsteps pstep n (e, σ1) (of__val v, σ2)
) states that (e,σ1) physically reduces (pstep) in n steps to (v,σ2) where v is a
value. The %I at the end instructs Coq to parse connectives (e.g., the universal
quantification) as Iris connectives and not those of Coq.

As discussed in [39], IPM tactics, like the iMod tactic for elimination of
modalities, simply apply lemmas with side conditions that are discharged
with the help of Coq’s type class inference mechanism. Extending IPM with
support for the future modality and IC predicates essentially boils down to
instantiating some of these type classes appropriately.

Representing binders

We use de Bruijn indices to represent variables both at the term level and
the type level; in particular, we use the Autosubst library [68]. It provides
excellent support for manipulating and simplifying terms with de Bruijn
indices in Coq. The simplification procedure, however, seems to be non-linear
in the size of the term. This is the main reason for the slowness of Coq’s
processing of our proofs.11

11About 17 minutes on a laptop using “make -j4” to compile our Coq formalization of about
12,500 lines.

4.7. RELATED WORK 99

4.7 Related work

The most closely related work is the original seminal work of Launchbury
and Jones [47], which we discussed and related to in the Introduction. In this
section we discuss other related work.

Moggi and Sabry [52] showed type soundness of calculi with runST-like
constructs, both for a call-by-value language (as we consider here) and for
a lazy language. The type soundness results were shown with respect to
operational semantics in which memory is divided into regions: a runST-
encapsulated computation always start out in an empty heap and the final
heap of such a computation is thrown away. Thus their type soundness result
does capture some aspects of encapsulation. However, the models in loc. cit.
are not relational and therefore not suitable for proving relational statements
such as our theorems above. The authors write: “Indeed substantially more
work is needed to establish soundness of equational reasoning with respect to our
dynamic semantics (even for something as unsurprising as β-equivalence)” [52].

In contrast to Moggi and Sabry [52], who also considered type soundness
for a call-by-need language, we only develop our model for a call-by-value
language. For call-by-need one would need to keep track of the dependencies
between effectful operations in the operational semantics and only evaluate
them if they contribute to the end result. These dependencies would also have
to be reflected in the logical relations model. It is not clear how difficult that
would be and we believe it deserves further investigation.

It was pointed out already in [47] that there seems to be a connection
between encapsulation using runST and effect masking in type-and-effect
systems à la Gifford and Lucassen [26]. This connection was formalized by
Semmelroth and Sabry [69], who showed how a language with a simplified
type-and-effect system with effect masking can be translated into a language
with runST. Moreover, they showed type soundness on their language with
runST with respect to an operational semantics. In contrast to our work, they
did not investigate relational properties such as contextual refinement or
equivalence.

Benton et al. have investigated contextual refinement and equivalence for
type-and-effect systems in a series of papers [10–13] and their work was ex-
tended by Thamsborg and Birkedal [74] to a language with higher-order store,
dynamic allocation and effect masking. These papers considered soundness of
some of the contextual refinements and equivalences for pure computations
that we have also considered in this paper, but, of course, with very different
assumptions, since the type systems in loc. cit. were type-and-effect systems.
Thus, as an alternative to the approach taken in this paper, one could also
imagine trying to prove contextual equivalences in the presence of runST
by translating the type system into the language with type-and-effects used
in [74] and then appeal to the equivalences proved there. We doubt, however,
that such an alternative approach would be easier or better in any way. The

100 CHAPTER 4. MONADIC ENCAPSULATION OF STATE

logical relation that we define in this paper uses an abstraction of regions and
relates regions to the concrete global heap used in the operational semantics.
At a very high level, this is similar to the way regions are used as an abstrac-
tion in the models for type-and-effect systems, e.g., in [74]. However, since
the models are for different type systems, they are, of course, very different in
detail. One notable advance of the current work over the models for type-and-
effect systems, e.g., the concrete step-indexed model used in [74], is that our
use of Iris allows us to give more abstract proofs of the fundamental lemma
for contextual refinements than a more low-level concrete step-indexed model
would.

Recently Iris has been used in other works to define logical relations for
different type systems than the one we consider here [39, 42]. The defini-
tions of logical relations in those works have used Iris’s weakest precondi-
tions wp e

{
v. P

}
to reason about computations. Here, instead, we use our

if-convergence predicate, ICγ e {|v. P |}. One of the key technical differences be-
tween the weakest precondition predicate and the if convergence predicate is
that the latter keeps explicit track of the ghost variable γ used for heap. This
allows us to reason about different (hypothetical) runs of the same expression,
a property we exploit in the proofs of contextual refinements in §4.4.

4.8 Conclusion and Future Work

We have presented a logical relations model of STLang, a higher-order func-
tional programming language with impredicative polymorphism, recursive
types, and a Haskell-style ST monad type with runST. To the best of our
knowledge, this is the first model which can be used to show that runST pro-
vides proper encapsulation of state, in the sense that a number of contextual
refinements and equivalences that are expected to hold for pure computations
do indeed hold in the presence of stateful computations encapsulated using
runST. We defined our logical relation in Iris, a state-of-the-art program logic.
This greatly simplified the construction of the logical relation, e.g., because
we could use Iris’s features to deal with the well-known type-world circular-
ity. Moreover, it provided us with a powerful logic to reason in the model.
Our logical relation and our proofs of contextual refinements used several
new technical ideas: in the logical relation, e.g., the linking of the region
abstraction to concrete heaps and the use of determinacy of evaluation on the
specification side; and, in the proof of contextual refinements, e.g., the use of
a helper-logical relation for reasoning about equivalence of programs using
the same number of steps on the implementation side and the specification
side. Finally, we have used and extended the Iris implementation in Coq to
formalize our technical development and proofs in Coq.

4.8. CONCLUSION AND FUTURE WORK 101

Future work Future work includes developing a model for a call-by-need
variant of STLang. In the original paper [47], Launchbury and Peyton Jones
argue that it would be useful to have a combinator for parallel composition of
stateful programs, as opposed to the sequential composition provided by the
monadic bind combinator. One possible direction for future work is to inves-
tigate the addition of concurrency primitives in the presence of encapsulation
of state. It is not immediately clear what the necessary adaptations are for
keeping the functional language pure. It would be interesting to investigate
whether a variation of the parallelization theorem studied for type-and-effect
systems in [42] would hold for such a language.

Chapter 5

Aneris: A Logic for Node-Local,
Modular Reasoning of
Distributed Systems

MORTEN KROGH-JESPERSEN, Aarhus University, Denmark
AMIN TIMANY, imec-Distrinet, KU Leuven, Belgium
MARIT EDNA OHLENBUSCH, Aarhus University, Denmark
LARS BIRKEDAL, Aarhus University, Denmark

The formal development accompanying this research project can be found at
https://github.com/mkroghj/aneris.

Abstract

Building network-connected programs and distributed systems is a powerful
way to provide availability in our digital, always-connected era. As always,
however, with great power comes great complexity. As such, reasoning about
distributed systems is well-known to be quite difficult.

In this paper we present Aneris, a state-of-the-art separation logic capable
of node-local reasoning about concurrent and distributed systems. The logic is
higher-order, concurrent, with higher-order store, and network sockets and is
built entirely in the Coq proof-assistant.

We use our logic to verify a load-balancer that use threading to distribute
load amongst servers and to verify an implementation of the two-phase-commit
protocol with a verified replicated logging service as client.

The two examples certifies that Aneris is well-suited for both horizontal
and vertical modular reasoning.

103

https://github.com/mkroghj/aneris

104 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

5.1 Introduction

Network-connected applications and in particular distributed systems are
used every day by myriads of people for providing financial services, hailing
taxis and sending messages over social media. However, formal reasoning
about such systems is well-known to be difficult because of the complexity
that concurrent, stateful programs expose. A well-known approach to combat
complexity in programs is to disentangle software systems into independent
modules to enable local reasoning. Local reasoning enables (a) information
hiding and abstraction and (b) separation of concerns.

Previous work on verification of distributed systems has traditionally
focused on verification of protocols of core network components. This ap-
proach has proven particularly useful within the context of model-checking,
by validating both safety and liveness assertions [59], such as SPIN Holzmann
[30], TLA+ [46] and Mace [37]. More recently, significant contributions has
been made in the field of formal proofs of implementations of challenging
protocols, such as two-phase-commit, lease-based key-value stores, Paxos and
Raft [28, 50, 62, 70, 81]. All of these developments define domain specific
languages, specialized for distributed systems verification. Protocols and
modules proven correct can be compiled to an executable often relying on
some trusted code-base. However, reusing verified components in larger ap-
plications is difficult because: (1) the implementation specific code is often
mixed with logical assertions about the abstract state, therefore lacking ab-
straction (a), (2) the DSL’s do not support many modern language constructs
such as concurrency or simplistic local state, (3) combining artifacts requires
a unified framework to reason about specifications written in separate DSL’s.
The Disel framework [70] is a promising candidate for modular programming
of distributed components, however, node-local references are visible in the
global protocol specifications and the language lacks node-local concurrency.

In this work, we present Aneris, a framework for verifying real-world
network-connected applications in Iris [38], specifically developed with mod-
ular reasoning in mind. We obtain this property by what we refer to as
node-local reasoning, similar to thread-local reasoning for thread-concurrent
programs. We start by motivating the need for Aneris.

Why Aneris?

The design goal of Aneris and the surface language AnerisLang is to facil-
itate verified modular programming of large software systems, including
distributed systems. Thus, Aneris should strive for the following:

1. The programming language should be realistic, familiar and easy to work
with in practice: In particular, AnerisLang should have higher-order

5.1. INTRODUCTION 105

functions, local state, concurrency and network primitives, to aid the
developer in writing succinct, performant programs.

2. Code re-use and vertical composition of specifications: A client should be
able to use a verified component by only relying on the components
specification, known as modular reasoning or vertical composition. This
allows for changing and updating modules, without having to update
the client or the clients proof.

3. Horizontal composition: A verified component should be able to be com-
posed with other components, potentially engaging in different proto-
cols, as long as the environment satisfies the protocols stated by the
component. This allows for components to be composed horizontally
and to build an verify large scale distributed systems.

4. Verification should be as easy as possible: Interactive theorem proving,
such as tactics in Coq, has proven successful for large scale verification
projects. Ideally, using Aneris for verification purposes should provide
a compatible experience.

There are many different ways of adding network primitives to languages.
One approach is message-passing, either by first-class communication channels
from the π-calculus or by an implementation of the actor model, similar to
Erlang. However, any such implementation is an abstraction built on top of
network sockets. Network sockets are a quintessential part of distributed
systems and all major operating systems provide an application programming
interface (API) for it. AnerisLang provides support for network sockets by
exposing a simple API with the core methods necessary for UDP based pro-
gramming. This allows for a wide-range of real-world systems and protocols
to be written (and verified) in AnerisLang.

Aneris is built on top of Iris, a state-of-the-art higher-order concurrent
separation logic, which already has powerful built-in features to support rea-
soning about higher-order programs with higher-order store and concurrency,
e.g., higher-order impredicative invariants, higher-order Hoare triples, etc..
Setting up such a powerful program logic is difficult in general because it
requires one to solve recursive domain equations – however, this has been
solved in Iris. Thus, we can obtain all the features mentioned in bullet point
(1) above by setting up Aneris on top of Iris and including an API for sockets.
We discuss in Section 5.4 how Iris’s facilities are used to define the program
logic of Aneris.

The higher-order concurrent distributed separation logic of Aneris pro-
vides a clear distinction between the programs, specifications for those pro-
grams and proofs thereof. Hoare-style reasoning, a traditional way of giving
abstract specifications to implementations, can be encoded in Aneris through

106 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

weakest-pre-conditions, allowing one to compose proofs about programs ver-
tically without relying on a specific components’ implementation, satisfying
(2).

Formal reasoning about nodes in distributed systems has often been done
by giving an abstract model in the form of some kind of state-transition system
or flow-chart, in the tradition of Floyd [25], Lamport [44, 45]. States are
normally taken to be a view of the global state and events are then observable
changes to this state. State-transition systems are quite versatile and have been
used in other verification applications, e.g., logical relations models [3, 22]
and in Hoare-style logic and type-theory [70, 72]. However, Jung et al. [33]
showed that all you need is monoids (to encode resources) and invariants1 (to
encode protocols with the help of resources). We follow said approach, and
associate each socket with a protocol in the form of an Aneris predicate on the
incoming messages. We further allow the network to own the resources in
transit, thus resources are transferred from the sender to the network before
they are transferred to the recipient. This allows for independent program
verification (state evolution) and local synchronization by ownership transfer.
This enables reasoning about distributed systems in a fully node-local way
(3).

Finally, by the virtue of using Iris as a basis for Aneris we have the Iris proof
mode (IPM) [39] at our disposal. It enables us to carry out interactive reasoning
about the distributed separation logic of Aneris. This makes verification of
distributed systems more pleasant and intuitive (4).

In summary, the key contributions of this work are:

• AnerisLang, a formalized higher-order functional programming lan-
guage, with higher-order store, concurrency and network sockets, al-
lowing for dynamic creation and binding of sockets to addresses with
serialization and de-serialization primitives for encoding and parsing
messages.

• Aneris, the first higher-order, concurrent, separation logic with support
for network sockets, verified fully in the proof-assistant Coq. Since the
logic is built on top of Iris, assertions on state and protocols can use all
of the features from Iris, including invariants and monoids.

• A simple, novel, approach to guarding network sockets as predicates
on messages, allowing for logical synchronization by the means of
ownership-transfer. Ultimately, this enables what we refer to as node-
local reasoning, the basic principle that allows for modular reasoning of
distributed systems components.

1This has since been reduced to just resources as invariants can be, and are in recent
version of Iris, implemented using high-order ghost resources [34, 38].

5.2. THE CORE CONCEPTS OF ANERIS 107

• We use Aneris to verify a load-balancer, a program that distributes work
on multiple servers by the means of threaded concurrency. The only
assumption made on the servers is that they have a known address and
that the socket protocols do not assert anything about the sender.

• We use Aneris to prove an implementation of two-phase-commit correct.
Specifically, we prove that the coordinator and participant components
satisfy the protocol. We then use these components in a distributed
client of the two-phase-commit that does replicated logging, showing
that vertical composition is achieved through node-local reasoning.

The structure of the rest of the paper We start be describing the core con-
cepts of Aneris in 5.2. We then show the operational semantics of AnerisLang
5.3 before showing adequacy and how to encode Aneris in Iris in 5.4. We then
use the logic to show a specification for a load-balancer 5.5 and two-phase-
commit 5.6 with a client of replicated logging 5.7 before describing related
work 5.8 and concluding 5.9.

5.2 The core concepts of Aneris

In this section, we present Aneris’ approach to formal verification of dis-
tributed systems: node-local reasoning and protocols. These concepts are
already familiar in the context of separation logic, thus we start by describ-
ing local reasoning in this context. We then explain how to lift thread-local
reasoning to node-local reasoning, a novel approach to distributed systems
verification. Finally, we describe protocols in Aneris and show a concrete lock
server with a guarding protocol.

Local Reasoning and Thread Local Reasoning

Arguably the most important feature of (concurrent) separation logic, to
which it owes its success and prevalence, is that it enables modular reasoning.
Originally, separation logic [66] was introduced to enable modular reasoning
about the heap. The essential idea was that we could give a local specification
{P }e {x. Q} to a program e involving only the footprint of e. Local specifications
could then be lifted to (more) global specifications by the following Frame-

rule:

Frame-rule

{P }e {x. Q}
{P ∗R}e {x. Q ∗R}

Here, the proposition R is called the frame. The symbol ∗ is separating conjunc-
tion. Intuitively, P ∗Q holds if resources (in this case heaps) can be divided
into two disjoint resources such that P holds for one and Q holds for the other.

108 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

Thus, the Frame-rule essentially says that executing e for which we know
{P }e {x. Q} cannot possibly affect parts of the heap that are separate from its
footprint.

Ever since its introduction, separation logic has been extended to resources
beyond the heap of the program. Concurrent separation logics [56] have been
developed to reason about concurrent programs and again a pre-eminent
feature of these program logics is modular reasoning, in this instance with
respect to concurrency, i.e., thread-local reasoning. That is, when reasoning
about a concurrent program we consider threads one at a time and need not
reason about different interleavings explicitly. In a way, our frame here is, in
addition to the shared fragments of heap and other resources, the execution
of other threads which can be interleaved throughout the execution of the
thread being verified. This can be seen in the following Fork-rule:

Fork-rule

{P }e {x. true}
{P } fork {e} {x. x = ()}

One notable program logic in the family of concurrent separation logics is
Iris. Iris is a concurrent higher-order separation logic framework which was
designed to reason about concurrent higher-order imperative programming
languages. Iris has already proven to be quite versatile for reasoning about a
number of sophisticated properties of programming languages, e.g., [35, 36,
75]. In order to support modular reasoning about concurrent programs, Iris
(1) features impredicative invariants for expressing protocols among multiple
threads, and, (2) allows encoding of higher-order ghost state using a form of
partial commutative monoids for reasoning about resources. We will give
examples of these features and explain them in more detail later on.

Aneris programs are higher-order imperative concurrent programs that
run on multiple nodes in a distributed system. One of the main contributions
of the present work is that when reasoning about distributed systems in
Aneris, alongside heap-local and thread-local reasoning we reason node-locally.
That is, when proving correctness of Aneris programs we reason about each
node of the system in isolation.

In the rest of this section we explain at a conceptual level, how we achieve
node-local reasoning in Aneris. The key idea is that although distributed
systems and concurrent programs are vastly different, they conceptually share
some essential features. The similarities allow us to put the machinery that
Iris provides for thread-reasoning about concurrent programs into use for
node-local reasoning about distributed systems.

Node-Local Reasoning About Distributed Systems

By the virtue of working in Iris the reasoning in Aneris is both modular with
respect to separation logic frames and with respect to threads. Similarly to

5.2. THE CORE CONCEPTS OF ANERIS 109

threads Aneris allows for node-local reasoning about programs:

Start-rule

{P ∗ freePorts(ip, {p|0 ≤ p ≤ 65536})} 〈n;e〉 {x. true}
{P ∗ freeIp(ip)} 〈S;start {n; ip;e}〉 {x. x = 〈S; ()〉}

Here start is the command that launches a new node named n in the dis-
tributed system associated with ip-address ip running program e. Only the
distinguished system node S can start new nodes. The idea is that in Aneris,
the execution of the system starts with the execution of S as the only node in
the distributed system. S then bootstraps the distributed system by starting
other nodes. In order to start a new node associated with ip-address ip, one
needs to provide freeIp(ip) which indicates that the ip-address ip is not used
by other nodes. The node can on the other hand rely on the fact that when
it starts, all ports on the ip-address ip are available. To facilitate modular
reasoning, free ports can be divided up:

A∩B = ∅
freePorts(ip,A) ∗ freePorts(ip,B) a` freePorts(ip,A∪B)

where a` is logical equivalence of Iris propositions.
In Aneris we associate with each socket (pair of ip-addresses and ports) a

protocol which restricts what can be communicated over that socket. In Aneris
terms, we write s �⇒prot Φ to mean that socket s is governed by the protocol
Φ . In particular, if we have s �⇒prot Φ and s �⇒prot Ψ , we can conclude that Φ
and Ψ are the same protocol.

We support two kinds of sockets: static sockets and dynamic sockets.
This distinction is abstract, it is only at the level of the logic and not the
distributed system itself. Static sockets are those which have primordial
protocols agreed upon before starting the system. The static protocols are
primarily for addresses pointing to servers. By having a primordial protocol,
any node in the system (including the server itself) know and must respect
this protocol.

To support node modular reasoning in general we distinguish static and

dynamic addresses. To this end, we use the proposition
f
7→ (A) which means

the set of addresses in A are static and should have a fixed interpretation.

The proposition
f
7→ (A) expresses knowledge without asserting ownership

of resources. In Iris terminology, this proposition is persistent:
f
7→ (A) a`

f
7→

(A)∗
f
7→ (A).

Corresponding to the two kinds of addresses, we have the two rules Bind-

stat-rule and Bind-dyn-rule shown below for binding addresses (starting the
communication over) to a socket. Notice that in the case of Bind-dyn-rule

one can choose the protocol while in the case of Bind-stat-rule the protocol is
existentially quantified, i.e., it is the primordial protocol associated to (ip,p).

110 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

rec lockserver ip p :=
let lock := ref NONE in
let skt := socket() in
Socketbind skt (makeaddress ip p);
listen skt (rec h msg from :=
if msg = "LOCK"
then match !lock with

NONE => lock← SOME ();
sendto skt "YES" from

| SOME __ => sendto skt "NO" from
end

else lock← NONE;
sendto skt "RELEASED" from);

listen skt h)

rec listen skt handler :=
match receivefrom skt with
SOME m => handler (fst m)

(snd m) in
| NONE => listen skt handler
end

Figure 51: A lock server in AnerisLang. Function binders are strings in Coq
but are shown as regular binders for the sake of clarity.

Bind-stat-rule

{ f7→ (A) ∗ (ip,p) ∈ A ∗ z s7→
[n]

None ∗ freePorts(ip, {p})}
〈n;socketbindz (ip,p)〉

{x. x = 0 ∗ ∃Φ. zn
s7→

[n]
Some (ip,p) ∗ (ip,p) �⇒prot Φ}

Bind-dyn-rule

{ f7→ (A) ∗ (ip,p) < A ∗ zn
s7→

[n]
None ∗ freePorts(ip, {p})}

〈n;socketbindz (ip,p)〉

{x. x = 0 ∗ z s7→
[n]

Some (ip,p) ∗ (ip,p) �⇒prot Φ}

Here, z
s7→

[n]
Some (ip,p) is a socket assertion used to keep track of resources

associated with the socket that belongs to node n. The resource is there to
ensure that each socket is bound only once.

A Lock Server

Mutual exclusion in distributed systems is often a necessity and there are
many different approaches for providing it. The simplest solution, presented
in this section, is a centralized algorithm with a single node acting as a
coordinator. The code is shown in Figure 51. We later show a more involved
example of log-replication using two-phase-commit (5.7).
The lock server declares a node-local variable lock to keep track of the lock.
It then binds a new socket skt on the given address ip:p and continuously
listens for incoming messages on the socket. When a "LOCK" message arrives

5.2. THE CORE CONCEPTS OF ANERIS 111

and the lock is available, the lock is taken and the server responds "YES". If the
lock was already taken the server responds with "NO". Finally, if the request
is not "LOCK", the lock is released and the server responds with "RELEASED".

Notice that the lock server program looks as if it was written in a decent
functional language with sockets. Messages sent and received are strings
to make programming with sockets easier (similar to send_substring in the
Unix module in OCaml). This is a direct result of the ambition to make
AnerisLang useful for verifying existing code but also writing new programs
in AnerisLang.

A node-local specification for the lock server, with a universally quantified
lock source R and a protocol governing the socket endpoint (ip,p) �⇒prot φ, is
as follows:

{R ∗ (ip,p) �⇒prot φ ∗
f
7→ ({(ip,p)} ∪A) ∗ freePorts(ip, {p})}

〈n; lockserver ()〉
{True}

There are several interesting observations one can make on the lock server
example:

• The lock server can allocate, read and write node-local references but
these are hidden in the specification.

• Sockets can be created and bound to specified endpoints. In this example
we expect the lock server to be primordial, i.e., the system should agree
on a protocol (ip,p) �⇒prot φ. Notice as well that there are no channel
descriptors or assertions on the socket in the code.

• Without a proper protocol, the lock server fails to provide mutual exclu-
sion since everyone can release the lock.

With the necessity of protocols on sockets established, we explain Aneris’
interpretation of sockets and protocols in more detail.

Aneris Sockets and Protocols

Conceptually, a socket is an abstract representation of a handle for a local end-
point of some channel. In Aneris we further restrict channels to use the User
Datagram Protocol (UDP), which is asynchronous, connectionless and stateless.
In accordance with UDP, Aneris provides no guarantee of delivery or ordering,
although we assume duplicate protection, since spatial resources could other-
wise potentially be duplicated. One can therefore think of Aneris sockets as
open-ended multi-party communication channels without synchronization.

It is noteworthy that inter-process communication can happen in multiple
ways in Aneris. Thread-concurrent programs can communicate through the

112 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

store but they can also communicate by sending messages through sockets. For
memory separated programs, there is no shared state and all communication
is done with message-passing through sockets.

As mentioned in the Introduction, Iris has an un-opinionated approach
to protocol design, therefore one can use a state-transition system if desired.
However, modeling the execution of concurrent code with asynchronous
message passing as state transition systems on thread and node levels can be
quite cumbersome as opposed to a more descriptive approach in the form of
resource reasoning.

A simple, novel approach to protocol design is to just give an Aneris
predicate over messages to be received on the sockets. This can be regarded as
a socket-local approach by requiring each socket to be guarded by an Aneris
predicate. One can think of this as rely-reasoning, restricting the distributed
environment’s interference with a node on a particular socket. Ultimately,
this is what allows node-local verification of programs.

Concretely, the socket protocol for a lock server can be specified as follows:

lock(m,φ),body(m) = ”LOCK” ∗
((∀m′ .body(m′) = ”NO”∨ body(m′) = ”YES” ∗ R) −∗ φ(m′))

rel(m,φ),body(m) = ”RELEASE” ∗ R ∗
(∀m′ .body(m′) = ”RELEASED” −∗ φ(m))

lock_si ,λm.∃φ. from(m) �⇒prot φ ∗ (lock(m,φ)∨ rel(m,φ))

The resources describing the lock, R, are transferred to the client if the
server responds "YES" and the same resources must be returned when calling
"RELEASE". The protocol is sufficient to prove that the clients of distributed
system will use the lock server correctly.

Additionally, the lock protocol also illustrates how primordial servers
respond to dynamic bound sockets. As mentioned earlier, the lock server
socket should be primordial, however, the lock does not need to know about
its clients as long as the clients follow the socket protocol defined by the
lock server. As a consequence, a client has to prove that she can receive a
reply from the server. This is specifically done by proving the resource-aware
implication −∗ known as magic wand (expanded upon in 5.4).

The lock server protocol is very similar to a non-blocking specification of
a locking module in concurrent separation logic, where the implication in the
socket protocol can be seen as the post-condition.

5.3 Operational Semantics of AnerisLang

In this section, we present AnerisLang, a feature-rich concurrent programming
language with network primitives. Usually, in a concurrent programming
language, the operational semantics of the program are defined as a reduction

5.3. OPERATIONAL SEMANTICS OF ANERISLANG 113

v ::= () | true | false | i | s | ` | z | rec f(x) = e | (v,v) | inji v | address s p

e ::= v | � e | e} e | e e | find e e e | substring e e e | ife theneelsee

| (e,e) | πi e | inji e | matchewith inji x⇒ ei end | ref(e) | !e | e← e

| cas(e,e, e) | fork {e} | start {n;e;e} | makeaddresse e | socket

| socketbinde e | sendtoe e e | receivefrome

Figure 52: Syntax of AnerisLang

relation over configurations consisting of pairs of a state, i.e., heap, and a
thread pool. AnerisLang is a programming language designed to model, rea-
son about and implement distributed systems. These are systems comprised
of a number of nodes, each of which concurrently runs a number of threads.
Hence, configurations of AnerisLang are pairs consisting of state, i.e., a heap
for each node in the system and the state of the network, together with a
collection of thread pools, one for each node.

In the sequel, we first present the syntax of AnerisLang. Subsequently, we
show a head-step relation for programs. This head-step relation is then lifted
to arbitrary AnerisLang configurations in the usual way in three steps: (1) a
program takes a step if one of its nodes takes the corresponding step, (2) a
node takes a step if one of its concurrently running threads does, and (3) a
thread makes a step if the sub-expression of the program running on that
thread in the evaluation position takes a head-step.

Syntax of AnerisLang

AnerisLang is a call-by-value, higher-order, concurrent imperative program-
ming language with higher-order mutable references, fine-grained concur-
rency and network sockets. The syntax for values and expressions is shown in
Figure 52.

In this figure v ranges over values and e ranges over expressions. In
addition to the standard literal values we write i for integers and s for strings.
The value address s p is a network address where s is the ip-address and p
is the port number. Booleans, integers and strings can be manipulated by
unary operations � (negation, unary minus, string-length and conversions
between strings and integers) and binary operations } (arithmetic operations,
comparisons and test for equality). The string operations find and substring
find the index of a particular substring and split a string producing a substring
respectively.

We use ` for memory locations. These can be allocated by ref, read by
! l, and updated by l ← v. The expression fork {e} forks off a new thread on
the node it is running on. The atomic compare-and-set operation, cas(l,v1,v2),
is used to achieve synchronization between threads on a specific memory

114 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

n ∈Node, Ip, String

a ∈ Address, Ip×Port

MessageState, {Sent,Received}
Message, Address×Address× String×MessageState

MessageStable, Address×Address× String

h ∈Heap, Loc
fin−−⇀ Val

S ∈ Sockets,Handle
fin−−⇀ Address?

Lookup, Address
fin−−⇀Node

Ports, Ip
fin−−⇀℘fin(Port)

MessageSoup,MessageId
fin−−⇀Message

σ ∈NetworkState,Node
fin−−⇀Heap×Node

fin−−⇀ Sockets×Lookup×Ports×
MessageSoup

Figure 53: The physical state interpretation of Aneris

location l. Operationally, it does the following atomically: it tests whether `
has value v1 and if so, updates the location to v2. It returns true if successful
and false otherwise.

The expression start {n; ip;e} starts a new node n running program e as-
signed the ip-address ip. The only stipulation here is that nodes can only
be started at the bootstrapping phase of the distributed system by a special
system-node S.

We use z to range over socket handles. The network primitives socket,
socketbind, sendto and receivefrom correspond to the BSD-sockets API meth-
ods socket, to create sockets, bind, to bind to a socket, sendto, to send over
the network on a socket, and, recvfrom, to receive over the network on socket,
respectively. The expression makeaddress is used to compute addresses. The
expression makeaddresse e′ evaluates to a network address if e evaluates to a
string for the ip address and e′ evaluates to a number for the port number 2.

Semantics of AnerisLang

We define the operational semantics of AnerisLang in three stages. First we
define a node-local thread-local, head-step relation between configurations
(e,h,S)→n,h (e′ ,h′ ,S ′) for a heap h, allocated socket-endpoints S and expres-
sions e, a node n and evaluation context K ∈ Ectx. Heaps are finite maps

2In the setting of OCaml, makeaddress would internally call inet_addr_of_string

5.3. OPERATIONAL SEMANTICS OF ANERISLANG 115

from locations to values and sockets are finite maps from socket handles to
option socket address. We write K[e] to denote the expression of plugging e
into the K and e[v/x] to denote capture-avoiding substitution of v for x in e.
Evaluation contexts are listed in Figure 54 and an excerpt of the node-local
rules is shown in Figure 55.

K ::= [] | � K | K } e | v} K | K e | v K | find K e e | find v K e

| find v v K | substring K e e | substring v K e | substring v v K

| ifK theneelsee | (K,e) | (v,K) | πiK | injiK

| matchKwith inji x⇒ ei end | ref(K) | !K | K ← e | v← K

| cas(K,e,e) | cas(v,K,e) | cas(v,v,K) | makeaddressK e

| makeaddressvK | socketbindK e | socketbindvK | sendtoK ee

| sendtovK e | sendtov vK | receivefromK

Figure 54: Evaluation contexts of AnerisLang

Node-local steps are lifted to a network-aware stepping relation→h by
lifting expressions to node-expressions ε = 〈n;e〉 and lifting the local state
Heap× Sockets to NetworkState, tracking heaps H and sockets Z for all nodes,
all bound addresses in the system L, ports in use P and messages sent M. The
network-aware stepping relation is shown in Figure 56.

((rec f(x) = e) v,h,S)→n,h (e[v, (rec f(x) = e)/x, f],h,S)

(if truethene2 elsee3,h,S)→n,h (e2,h,S) (π1 (v1,v2),h,S)→n,h (v1,h,S)

` < dom(h)

(ref(v),h,S)→n,h (`,h] {` 7→ v},S)

h = h′] {` 7→ v′}
(`← v,h,S)→n,h ((),h′] {` 7→ v},S)

v = h(`)

(!`,h,S)→n,h (v,h,S)

h = h′] {` 7→ v}
(cas(`,v,v′),h,S)→n,h (true,h′] {` 7→ v′})

h = h′] {` 7→ v′′} v , v′′

(cas(`,v,v′),h,S)→n,h (false,h,S)

h = h′] {` 7→ v′′} v , v′′

(cas(`,v,v′),h,S)→n,h (false,h,S)

z < dom(S)

(socket,h,S)→n,h (z,h,S] {z 7→ None})

Figure 55: An excerpt of the node-local head-reduction rules

116 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

(e,h,S)→n,h (e′ ,h′ ,S ′) Z ′ = Z[n 7→ S ′] H ′ =H[n 7→ h′]

〈n;e〉, (H[n 7→ h],Z[n 7→ S],L,P ,M)→h 〈n;e′〉, (H ′ ,Z ′ ,L,P ,M)

Z(n) = S S(z) = None (ip,p) = a a < dom(L) p < P (ip)
Z ′ = Z[n 7→ S[z 7→ Somea]] L′ = L[a 7→ n] P ′ = P [a 7→ P (a)∪ {p}]

〈n;socketbindza〉, (H,Z,L,P ,M)→h 〈n;0〉, (H,Z ′ ,L′ , P ′ ,M)

Z(n)(z) = Some from m = (from, to,msg,Sent) mid < dom(M)
M ′ =M[mid 7→m]

〈n;sendtozmsgto〉, (H,Z,L,P ,M)→h 〈n; length msg〉, (H,Z,L,P ,M ′)

Z(n)(z) = None (ip,p) < dom(L) p < P (ip) mid < dom(M)
m = ((ip,p), to,msg,Sent) M ′ =M[mid 7→m]

〈n;sendtozmsgto〉, (H,Z,L,P ,M)→h 〈n; length msg〉, (H,Z,L,P ,M ′)

Z(n)(z) = Somea mid 7→m ∈M from(m) = f to(m) = a
msg(m) = b state(m) = Sent

m′ = (f ,a,b,Received) M ′ =M[mid 7→m′]

〈n;receivefromz〉, (H,Z,L,P ,M)→h 〈n;Some (b,f)〉, (H,Z,L,P ,M ′)

Z(n)(z) = Somea ∅ = {mid |mid 7→ (−, a,−,Sent) ∈M}
〈n;receivefromz〉, (H,Z,L,P ,M)→h 〈n;None〉, (H,Z,L,P ,M)

Figure 56: Network-aware head-reduction rules for sockets.

The rule for socketbind expresses that a socket can be bound if it is not
already bound, the address is not already used in the network and the port
is not in use at the address. Hereafter, the address is stored in the lookup
table L and the port is no longer available in P . One can think of L as a global
name-server making sure address-conflicts do not occur.

There are two rules for sending messages through a sockets by sendto –
one for bound sockets, S(s) = Somea, and one for unbound sockets, S(s) =
None. For bound sockets, the message is populated with the sender’s address
(from), a destination address (to), the message itself and a status flag indicating
sent (and not received). The operation returns the number of characters sent.
For the unbound rule one has to show a free address exists. Notice that we do
not care if the destination exists or not.

Finally, messages can be received by the receivefrom rule. A socket can
receive messages if it has a registered address and awaiting messages. Upon
receiving the message, the message and sender are returned and the status

5.4. SEMANTICS OF ANERIS 117

flag of the message is updated to Received. If no messages are waiting, None
is returned.

The final head-step relation is a distributed systems relation→ shown below.
The distributed systems relation reduces by picking a thread on any node or
forking off a new thread on a node.

(〈n;e〉,σ)→h (〈n;e′〉,σ ′)
(~ε1,〈n;K[e]〉, ~ε2;σ)→ (~ε1,〈n;K[e′]〉, ~ε2;σ ′)

(~ε1,〈n;K[fork {e}]〉, ~ε2;σ)→ (~ε1,〈n;K[()]〉, ~ε2,〈n;e〉;σ)

5.4 Semantics of Aneris

With the Semantics of AnerisLang defined we focus on building the logic for
Aneris in this section. We start by introducing the Iris logic before presenting
the Aneris logic and stating adequacy.

A Primer on Iris

Iris was originally presented as a framework for higher-order (concurrent)
separation logic inside the proof assistant Coq. It has a built-in notion of
physical state, ghost-state (monoids) and invariants. Moreover, it includes
weakest preconditions which are useful for Hoare-style reasoning of concur-
rent imperative programs [33]. Recently, a simpler Iris base logic was defined.
This base logic suffices for defining all earlier built-in concepts, such as invari-
ants, higher-order ghost state and weakest preconditions. [38]. It is this latter
version of Iris we depend on for defining Aneris.

The quantifiable types of Iris, denoted by κ, are shown below:

κ ::= 1 | κ ×κ | κ→ κ | N | B | Ectx | Var | Expr | Val | κ fin−−⇀κ | finset(κ)

|Monoid | Names | iProp | . . .

Iris includes basic types such as the unit, 1, pairs and ordinary functions.
N is the type of natural numbers, B is the type of booleans and Expr and
Val are the types of AnerisLang syntactic expressions and values. The type
κ ⇀fin κ is that of partial functions with finite support and finset(κ) is the
type of finite sets. Monoid is the type of monoids, Names is the type of ghost
names, and iProp is the type of Iris propositions. An excerpt of the grammar
for Iris propositions P is:

P ::=> | ⊥ | P ∗ P | P −∗ P | P ∧ P | P ⇒ P | P ∨ P | ∀x : κ. Φ | ∃x : κ. Φ

| 2P | wp 〈n;e〉
{
x. P

}
| {P } 〈n;e〉 {x. Q} | |VP | P N | . . .

118 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

The grammar includes the usual connectives of higher-order separation logic
(>,⊥, ∧, ∨,⇒, ∗, −∗, ∀ and ∃). In this grammarΦ is an Iris predicate, i.e., a term
of type κ→ iProp (for an appropriate κ). Intuitively, as in any separation logic,
propositions P denote sets of resources satisfied by P . Propositions joined
by separating conjunction, P ∗ P ′, express that resources can be split into
disjoint parts; one satisfying P and the other satisfying P ′. Propositions P −∗ P ′
describe those resources that, combined with disjoint resources satisfied by P ,
can result in resources satisfied by P ′. In addition to these standard separation
logic connectives, Iris includes other useful connectives of which the most
frequently used ones will be described below.

Arguably, the most important feature of any separation logic is the ability
to update the parts you own while leaving all other resources intact. In Iris
this is accomplished by the “update” modality3, |V. Intuitively, |VP holds
for those resources that can be updated to resources that satisfy P , without
violating the environment’s knowledge or ownership of resources. The update
modality is idempotent, |V(|VP) a` |VP . We write P ≡∗Q as a shorthand for
P −∗ |VQ.

Possibly, the second most important feature of any separation logic is the
concept of invariants. Conceptually, invariants capture what is known, as
opposed to what is owned. In Iris, the “persistence” modality (2) is used to
capture a sub logic of knowledge that obeys standard rules for intuitionistic,
higher-order logic. We say that a proposition is persistent if P `2P . Intuitively,
2P are those propositions that are satisfied without asserting any exclusive
ownership. Consequently, because 2P asserts no exclusive ownership, it is
a duplicable assertion (2P) ∗ (2P) a`2P . The persistence modality is idem-
potent, that is, 2P ` 22P for any P . Furthermore, 2P ` P . The persistence
modality also commutes with all of the connectives of higher-order separation
logic.

The . modality, pronounced “later”, is an abstraction of step-indexing [5,
6, 21]. For any proposition P , we have that P ` .P , which in terms of step-
indexing means that if P holds now then it also does so a step later. In Iris,
the . modality is used in the definition of weakest preconditions and to guard
impredicative invariants to avoid self-referential paradoxes [38]. The later
modality commutes with all of the connectives of higher-order separation
logic.

The propositions wp〈n;e〉 {x. P } and {P } 〈n;e〉 {x. Q} are Iris’s propositions
for reasoning about programs, where Iris is instantiated with AnerisLang.
Intuitively, wp〈n;e〉 {x. P } holds when the expression e is safe to execute, i.e.,
it does not get stuck, and that whenever it reduces to a value v, then P [v/x]
holds. In Iris, Hoare triples are defined based on weakest preconditions in the

3In [38] this modality is called the fancy update modality. Technically, this modality comes
equipped with certain “masks” but we do not discuss those here.

5.4. SEMANTICS OF ANERIS 119

usual manner:

{P } 〈n;e〉 {x. Q} , 2
(
P −∗ wp 〈n;e〉

{
x. Q

})
Notice that we require Hoare triples to be persistent, i.e., Hoare triples assert
only knowledge and no ownership of resources. In other words, the Hoare
triple {P } 〈n;e〉 {x. Q} states that all the (non-persistent) resources that are used
by e are contained in P . At any point in the course of proving correctness of a
program we can update resources. This is captured in the following property
of the weakest preconditions:

|Vwp 〈n;e〉
{
x. P

}
a` wp 〈n;e〉

{
x. P

}
a` wp 〈n;e〉

{
x. |VP

}
The weakest precondition for values is equivalent to the postcondition holding
for that value, modulo updating resources:

wp-value

wp 〈n;v〉
{
x. P

}
a` |VP [v/x]

Proving safety of a program under an evaluation context, K[e], can be done in
two separate steps: (1) we prove that e is safe, and, (2) for a value w that we
get out of the execution of e, K[w] is safe to execute. This fact is embodied in
Iris as the 5.4 rule below:

wp-bind

wp 〈n;e〉
{
y. wp 〈n;K[y]〉

{
x. P

}}
wp 〈n;K[e]〉

{
x. P

}
Iris features invariants P

N
, pronounced invariantly P . The name N is

the name associated with the invariant and it is used to keep track of which
invariants are opened as opening invariants multiple times in a nested fashion
is in general unsound.4 Invariants are Iris’s way of encoding protocols for
shared resources. Invariants, once established, can only be violated during the
execution of an atomic program step, i.e., the time when it cannot be noticed
by other threads. The following two rules allow us to establish and open
invariants:

inv-alloc

.P

|VP
N

inv-open

P
N

.P −∗ wp 〈n;e〉
{
x. .P ∗Q

}
e is phys. atomic

wp 〈n;e〉
{
x. Q

}
Note the use of the later modality with invariants. This is necessary as invari-

ants are impredicative, i.e., P
N

is an iProp and so is P . The later modality
4Indeed the update modality is annotated with a mask consisting of the set of names of

invariants that are opened before and after the update to prevent such unsound opening of
invariants. We omit masks of the update modality in this paper for the sake of brevity and
simplicity.

120 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

is necessary [38] to ensure that invariants do not allow encoding of self-
referential paradoxes. Invariants are persistent as they simply assert the
knowledge that some proposition holds invariantly.

Aneris: the program logic

Iris as a (program) logic consists of two layers: the Iris base logic, explained
above in Subsection 5.4 except for weakest preconditions and Hoare triples,
and a program logic defined on top of the base logic. The program logic
layer of Iris is language agnostic. That is, the user of Iris can specify the
syntax and operational semantics of their programming language together
with the resources one needs to keep track of the state of programs (the heaps
of individual nodes and the state of the network in our case) and as a result get
a program logic, i.e., a basic notion of weakest preconditions for that language.
This is what we have done for Aneris: we have instantiated Iris’s program logic
layer with the syntax and operational semantics of Aneris given in Section 5.3.

The basic notion of weakest preconditions provided by the program logic
layer of Iris is defined using the Iris base logic, based on the given operational
semantics. In order to get a full-blown program logic one needs to derive the
intended rules of the logic based on the definition of weakest preconditions
provided by Iris.5 In the sequel we present the weakest precondition rules
that we derive for Aneris. We use these rules for proving correctness of the
programs that we discuss in this paper.

Aneris program logic rules can be divided into three classes: those pertain-
ing to pure computations, those for manipulating the heap (of a node) and
those for network-communications. We discuss them in that order.

The weakest precondition rules for pure computations are exactly as one
would expect. An instructive excerpt is given below:

fst-wp

.wp 〈n;v〉
{
Φ

}
wp 〈n;π1 (v,w)〉

{
Φ

}
if-true-wp

.wp 〈n;e〉
{
Φ

}
wp 〈n; if truetheneelsee′〉

{
Φ

}
rec-wp

.wp 〈n;e[recf (x) = e,v/f ,x]〉
{
Φ

}
wp 〈n; (recf (x) = e) v〉

{
Φ

}
Note that all these programs take a step of computation to execute and hence
their antecedent is only required to hold at a later step.

5Iris as a program logic framework comes with an internal programming language. For
this programming language, the Iris program logic is instantiated and all the relevant program
logic rules are derived. Here, we put this internal language aside and start from scratch: we
define syntax and semantics of Aneris and derive all the program logic proof rules presented
in this section.

5.4. SEMANTICS OF ANERIS 121

The weakest preconditions for heap-manipulating programs are similar
to their analogues in standard separation logic for ML-like programming
languages:

wp-alloc

∀`. ` 7→[n] v −∗ wp 〈n;`〉
{
Φ

}
. IsNode(n)

wp 〈n;ref(v)〉
{
Φ

}
wp-load

` 7→[n]
q v −∗ wp 〈n;v〉

{
Φ

}
.` 7→[n]

q v

wp 〈n; !`〉
{
Φ

}
wp-store

` 7→[n] w −∗ wp 〈n; ()〉
{
Φ

}
.` 7→[n] v

wp 〈n;`← w〉
{
Φ

}
wp-cas-suc

` 7→[n] w −∗ wp 〈n; true〉
{
Φ

}
.` 7→[n] v

wp 〈n;cas(`,v,w)〉
{
Φ

}
wp-cas-fail

` 7→[n] v′ −∗ wp 〈n; false〉
{
Φ

}
.` 7→[n] v′ v , v′

wp 〈n;cas(`,v,w)〉
{
Φ

}
The propositions ` 7→[n] v and ` 7→[n]

q v are called points-to and fractional
points-to propositions respectively. These are similar to their counterparts
in other (concurrent) separation logics; they are simply annotated with the
node they belong to. They both assert that a memory location ` in the heap
of node n has value v. The former asserts full ownership of this location
while the latter asserts only the ownership of a fraction 0 < q ≤ 1 of this
memory location. In particular, we have ` 7→[n]

1 v a` ` 7→[n] v. The proposition
IsNode(n) indicates that the node n is a valid node in the system. It is required
for allocation of new memory locations but not for reading and updating
them. This is because having a (fractional) points-to proposition for a location
on a node in and of itself is indicative of the fact that that node is a valid node.

wp-socket

∀z. z s7→
[n]

None −∗ wp 〈n;z〉
{
Φ

}
. IsNode(n)

wp 〈n;socket〉
{
Φ

}

122 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

wp-socket-bind-dyn

∀g. z s7→
[n]

Some (ip,p) ∗ (ip,p)
r7→ g ∗ (ip,p) �⇒prot φ −∗ wp 〈n;0〉

{
Φ

}
freePorts(ip, {p})

f
7→ A (ip,a) < A φ z

s7→
[n]

None

wp 〈n;socketbindz (ip,a)〉
{
Φ

}
wp-socket-bind-stat

∀g. z s7→
[n]

Some (ip,p) ∗ (ip,p)
r7→ g∗ −∗ wp 〈n;0〉

{
Φ

} f
7→ A

freePorts(ip, {p}) (ip,p) ∈ A (ip,p) �⇒prot φ z
s7→

[n]
None

wp 〈n;socketbindz (ip,a)〉
{
Φ

}
wp-send-to-bound

P z
s7→

[n]
Somea d �⇒prot φ

∀mid ,M. mSoup(M) ∗mid
st7→ (a,d, s) ∗ P ≡∗mSoup(M) ∗ .φ(a,d, s) ∗Q

z
s7→

[n]
Somea ∗Q −∗ wp 〈n; length(s)〉

{
Φ

}
wp 〈n;sendtoz sd〉

{
Φ

}
wp-send-to-unbound

P z
s7→

[n]
None d �⇒prot φ a = (ip,p) freePorts(ip, {p})

∀p,mid ,M. mSoup(M) ∗mid
st7→ (a,d, s) ∗ P ≡∗mSoup(M) ∗ .φ(a,d, s) ∗Q

z
s7→

[n]
None ∗Q −∗ wp 〈n; length(s)〉

{
Φ

}
wp 〈n;sendtoz sd〉

{
Φ

}
wp-receive-from

z
s7→

[n]
Somea a

r7→ g a �⇒prot φ

N , z
s7→

[n]
Somea ∗ a r7→ g r(m), (body(m), from(m))

S(mid ,m), z
s7→

[n]
Somea ∗ a r7→ {mid 7→m} ∪ g ∗mid

m7→3
4
m ∗φ(stable(m))

N −∗ wp 〈n;None〉
{
Φ

}
∨∃mid ,m. S(mid ,m) −∗ wp 〈n;Somer(m)〉

{
Φ

}
wp 〈n;receivefromz〉

{
Φ

}
Similar to allocation of locations on the heap, to allocate a socket by wp-

socket, one must provide IsNode(n) to indicate that n is valid. A socket points

to z
s7→

[n]
None is returned, that enjoy the same properties as those for heaps.

We already touched upon binding of sockets to both primordial and
dynamic addresses in 5.2, but here we present the actual rule as defined in
Aneris. What is new is the ghost-assertion (ip,p)

r7→ g which is a necessary evil
if one wants to build protocols on top of the UDP communication channel. If

we only used the z
s7→

[n]
Some (ip,p) we could not prove that no other messages

5.4. SEMANTICS OF ANERIS 123

was received on the socket. Notice again, that the dynamic bind allows one to
use a custom socket protocol φ.

When a socket has been bound to an address a, the duplicable assertion
a �⇒prot φ is returned, stating, that all participants in the distributed system
should obey the socket protocol.

Arguable, the most interesting part is the interaction with the socket
protocols in sendto and receivefrom . For sending, one has to prove, via ≡∗,
that the resources described by φ can be obtained from the resources one

currently owns and the message stable resource mid
st7→ (a,d, s), conveying that

a send operation took place. The P and Q are there to allow the client to
prove custom protocols at the atomic place the send operation occurs. When
complete, the resources guarding the socket protocol are transferred to the
network while the messages are in transit.

UDP sockets allow for both sending messages through bound sockets and
unbound sockets. For unbound sockets, an available socket will be picked
during the atomic send and released immediately afterwards. To allow for
picking an available port, the freePorts(ip,∅) has to be provided. Replies on
unbound ports is technically possible, however, logically one would know the
socket protocol for the sender address.

When calling receivefrom one of two things can happen; either you will
receive a message or no messages are available on the socket. If a message
can be received, the resources described by φ are now transferred from the
network to the node owning the socket. Furthermore, a certificate that says
the message has been received mid

m7→3
4
m is also returned to the client. The

fractional permission that the environment retain ensures that the client
cannot change the state post-delivery.

It may not be completely obvious that one can encode protocols that
require progress by these resources, however, consider the following socket
protocol.

φ(p)(m),∃a,mid ,n,φ′ .mid
st7→ (a,p,n) ∗ a �⇒prot φ′ ∗

(∀m′id .mid
m7→3

4
m ∗m′id

st7→ (p,a,n+ 1) −∗ φ′(p,a,n+ 1))

Here, a socket can require that when another participant q sends a node on a
socket to p, q must be able to receive a message where the number has been
incremented by 1. However, if the protocol did not assert mid

m7→3
4
m, p could

cheat and potentially send a message ahead of time. With the resources in
place, such cheating can be avoided.

124 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

Adequacy

A (program) logic is at most as good as its soundness/adequacy theorem. That
is, one needs to answer the question: “what do we get when prove a theorem
in the logic?”. Concretely in our case, what, if anything, can we conclude from
a proof of a weakest precondition proven in Aneris’ logic? The short answer is
safety. That is, when running a distributed system for which we have proven
a weakest precondition, none of the nodes in the system crash. This property,
i.e., weakest preconditions implying safety, is stronger than meets the eye at
first. The reason for this is, that it is possible, that violating socket protocols
can cause a node to crash, e.g., a client of the lock server in 5.2. However,
proving weakest precondition proves safety, so it must imply that protocols
are followed for all parties in the distributed system.

The adequacy theorem The statement of the adequacy theorem in our Coq
development is the following:

Theorem adequacy ‘{distPreG Σ} (IPs : gset ip__address)
(A : gset socket__address) e σ :

(∀ ‘{distG Σ}, (|={>}=> ∃ (f : socket__address → socket__interp Σ),
f
7→ A -? ([? set] a ∈ A, a �⇒prot (f a)) -?
([? set] ip ∈ IPs, FreeIP ip) -? WP e {{v, True }})%I) →

dom (gset ip__address) (state__ports__in__use σ) = IPs →
(∀ i, i ∈ IPs → state__ports__in__use σ !! i = Some ∅) →
state__heaps σ = ∅ → state__sockets σ = ∅ → state__lookup σ = ∅ →
state__ms σ = ∅ → safe e σ.

Notice that the %I instructs Coq to parse logical connectives as Iris con-
nectives instead of Coq connectives. The symbol |={>}=> is how we write the
update modality in Coq where > is the mask of this modality for invariant
names that we have omitted in this paper. We write [? set] a ∈ A in Coq for
the big separating conjunction connective.

This theorem is a bit long but its reading is straightforward: It proves
that running Aneris program e is safe starting from state σ if the following
conditions hold:

• That, under the assumption that resources are initialized, distG Σ, and
given predefined socket protocols for all the primordial sockets, A, and
having all necessary free ip-addresses, IPs, the weakest precondition for
e holds in Aneris.

• In σ there are no heaps, no sockets, and the lookup table and messages
are also empty

• The set of IP-address in σ should be exactly IPs and the set of ports used
in each of the ip-addresses should be empty.

5.5. CASE STUDY 1: A LOAD BALANCER 125

Load balancer

C1

...

Cn

Clients

m
P1T1 : serve

P2T2 : serve

S1

S2

Servers

ports nodes
messages threads

Figure 57: The architecture of a distributed system with a load balancer.

The distPreG Σ is the assumption stating that the set of resources that
Aneris is parameterized with includes all necessary resources for initializing
the distributed systems. Individual proofs of some distributed systems might
require more specific resources than the basic resources provided. One has
to show those resources can be allocated when proving adequacy of those
particular systems.

The adequacy theorem above is a direct consequence of the adequacy
theorem of Iris which says that closed (not relying on any particular resource)
proofs of weakest preconditions imply safety. To prove the adequacy of Aneris
we need to show that all the resources necessary for distributed systems can
be initialized appropriately. In other words, we need to instantiate distG Σ.

Note that the final result of the adequacy theorem above is safety, a fact
within Coq independent of Aneris and Iris. In other words, when we verify a
program within Aneris, we get that the program is safe to execute independent
of Aneris or Iris. So indeed one must only trust Coq as formal system and
need not trust Iris or our program logic Aneris build on top of it.

5.5 Case Study 1: A Load Balancer

As mentioned earlier, AnerisLang supports concurrency through its fork {e}
primitive. One example for illustrating the benefit of this primitive is server-
side load balancing. Load balancing is generally used in order to distribute
workload in a distributed system and is commonly utilized with the goal of
achieving horizontal scaling wrt. providing Internet services.

Implementation of a Load Balancing Protocol

In the case of server-side load balancing, the distribution of work is done by a
program listening on a specific port that clients send their requests to. This

126 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

rec load__balancer ip port servers :=
let main := socket() in
socketbind skt (makeaddress ip port);
list__fold (λ server acc :=
fork (serve main ip acc server);
acc + 1) 1100 servers

rec listen__wait skt :=
match receivefrom skt with
SOME m => m

| NONE => listen__wait skt
end

rec serve main ip port server :=
let skt := socket() in
socketbind skt (makeaddress ip port);
(rec loop () :=
match receivefrom main with
SOME m =>
let msg := Fst m in
let sender := Snd m in
sendto skt msg server in
let res := Fst (listen__wait skt) in
sendto main res sender;
loop ()

| NONE => loop ()
end) ()

Figure 58: An implementation of a load balancer in AnerisLang.

program then sends the request to one of the available servers, waits for the
answer from the server and sends this answer back to the client. In order to be
able to handle requests from several clients simultaneously, the load balancer
can employ concurrency by forking off a new thread for every available server
in the system. Each of these threads will then listen for and handle requests.
The architecture of such a system with two servers is illustrated in Figure 57.

As can be seen in Figure 58, the load_balancer module expects an ip address,
a port and a list of servers. It then creates and binds to a socket with the
given ip address and port. Finally, it folds over the list of servers, forking off a
new thread for each server, running the serve module with the newly-created
socket, the given ip address, a fresh port number and the current server as
arguments.

The serve module expects a socket, an ip address, a port and a server
address. It first creates and binds to a new socket with the given ip address
and port number. After this, serve continuously tries to receive a message on
the main socket. This message would be a request from a client. Once a request
is received, it is passed on to the given server via the fresh socket and serve

waits until it receives an answer from the server, which it finally passes on
to the client via the main socket. This way the entire process is hidden from
the client, whose view will be the same as if it was communicating with just a
single server handling its request.

Specification and Protocols

In order to keep the specification of the load balancer as general as possible,
we parameterize its socket protocol by the predicates Pv : X→ iProp, and Pin
and Pout of type MessageBody→ X→ iProp describing the client request and
server response, respectively. All predicates is parameterized by the type X

5.5. CASE STUDY 1: A LOAD BALANCER 127

which can be used for maintaining state between the request and the response.
These predicates may not depend of the sender of messages since the sender
changes when relaying the message forward from the load-balancer. The relay
socket protocol is shown below:

φrel(Pv , Pin, Pout), λm.∃ϕ, (v : X). from(m) �⇒prot ϕ ∗ Pin(body(m),v) ∗ Pv(v) ∗
(∀m′ . Pv(v) ∗ Pout(body(m′),v) −∗ ϕ(m′))

The load balancer and each of the servers are bound by the same socket
protocol. Combined, this enables the serve module to relay requests from
the load_balancer socket to the server and responses in the opposite direction
without invalidating the socket protocol.

The socket protocol that clients communicate with will normally have
PTrue , λv,True, thus the client only has to provide Pin(s,v) when sending a
message s to the service, via the load balancer. The request the serve module
receives already fulfills Pin(s,v), which is needed for passing the message
along to the service, however, the load-balancer needs to make sure the server
behaves faithfully when responding to requests. Otherwise, the serve module
would not be able to fulfill the client’s socket protocol. To this end, the
server protocol must have the following Pv defined in its socket protocol,
conceptually connecting the request to the server with the response from the
server.

Pv_lb(server), λ(v : X),server 7→1
2
v

The socket protocol for the serve module can now be given as such:

φserver(server, Pout), λm.∃v.a 7→1
2
v ∗ Pout(body(m),v)

Since all instances of the serve module need to access the main socket in
order to receive requests and send answers, we have to put the resources
required for accessing a socket in an invariant which is shared by all threads.

lb_inv(n,z,a), ∃g.z s7→
[n]

Somea ∗ a r7→ g
N

The specification for the serve module is:

{lb_inv(n,main,ma)∗
f
7→ (A) ∗ (ip,p) < A ∗ freePorts(ip, {p}) ∗ IsNode(n) ∗

main �⇒prot φrel(PTrue, Pin, Pout) ∗ server �⇒prot φrel(Plb_v, Pin, Pout) ∗ server 7→ v}
〈n;servemain ip port server〉
{True}

This specification is fairly straightforward. It requires the main socket is
bound to a socket protocol parameterized by Pin and Pout and the server to

128 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

be bound to the relay protocol with the ghost-resources described by Plb_v.
Also, serve expects an invariant that owns all resources needed to use the main

socket. Moreover, the address matching the given ip address and port should
not be in use already and the given port should be free on this ip address.

With these in place, the specification for the load_balancer module be-
comes:

{ f7→ (A) ∗ (ip,p) < A ∗ freePorts(ip, {80}) ∗ IsNode(n) ∗
main �⇒prot φrel(PTrue, Pin, Pout) ∗(∗
s∈servers

∃v.server 7→ v ∗ server �⇒prot φrel(Plb_v, Pin, Pout)
)
∗(∗

p∈[1100,··· ,1100+length(servers)]

(ip,p) < A ∗ freePorts(ip, {p})
) }

〈n; load_balancer ip servers〉
{True}

Basically, the load balancer module require that the main socket protocol
and all the server protocols are as described above. Furthermore for each
server we should own a ghost-resource we could pass to serve. For each local
port p in the range 1100 to length(servers), which will become the endpoint
for a corresponding server, p should be free and the address (ip,p) should not
be in A.

In the Coq development accompanying Aneris we have shown an imple-
mentation of an addition service, both in the single case and in the load-
balanced case.

5.6 Case Study 2a: Two-Phase Commit

A typical consensus problem in distributed systems is that of distributed
commit; one operation should be performed by all participants in the system
or none at all. A simplistic solution to distributed commit is the one-phase
commit where a coordinator broadcasts to all participants to either commit or
abandon a transaction. However, in distributed systems it is often the case
that not all parties can commit due to other constraints - or a node could
simply fail to comply by not receiving the message.

The two-phase commit protocol (TPC) due to Gray [27], is a distributed
consensus protocol that coordinates all participants to either commit or abort.
It is widely used in practice because it is somewhat resilient to a variety of
failures, such as unreliable message delivery and transient participant crashes.

The reason for implementing and studying this protocol in Aneris is: (1)
it is widely used in the real-world, (2) it is a complex network protocol thus
serves as a decent benchmark for reasoning in Aneris, and (3) investigate if

5.6. CASE STUDY 2A: TWO-PHASE COMMIT 129

the implementation can be given a specification that allow the TPC module to
be used by a client that abstractly rely on some consensus protocol.

Implementation of the Two-Phase Commit Protocol

The two-phase commit protocol consists of the following two phases, each
consisting of two steps:

1. a) The coordinator sends out a vote-request to each participant.

b) A participant that receives a vote-request, replies with either vote-
commit to inform that it is prepared to locally commit or a vote to
abort.

2. a) The coordinator collects all votes and determines a result. If all
participants voted commit, the coordinator sends a global-commit
to all. Otherwise, at least one participant voted abort and the
coordinator sends global-abort to all.

b) All participants that voted for a commit wait for the final verdict
from the coordinator. If the participant receives a global-commit it
locally commits the transaction, otherwise the transaction is locally
aborted. All must reply ACK.

These steps are shown as finite state machines in Figure 59 and an imple-
mentation of a TPC-module that satisfies the conceptual description is shown
in Figure 510. Our abstract model differs a bit from the standard diagram
([73]) because we reuse the same code and sockets for communication between
coordinators and participants. Every state is therefore tagged with a unique
round number and dashed arrows are local transitions allowing for reuse of
the state-transition systems by incrementing round numbers. To allow each
participant to locally transition to the INIT state upon round completion and
still communicating commit or abort, the INIT state is tagged with the previous
result (initially, COMMIT suffices).

The tpc_coordinator module expects an initial request message to be pro-
vided, along with a bound socket, a list of participants and a function to
make a decision when all votes have been received. Internally, it uses two
local references; one to collect all the votes and one to count the number of
acknowledgments.

The tpc_participant module expects a socket and two handlers – one han-
dler to decide on a vote and one handler to finalize on the decision made by
the coordinator. When invoked, the module listens for incoming requests,
decides on a vote and waits for a global decision from the coordinator. One
could argue that tpc_participant is not faithfully implemented according to
the TPC state-transition system because it always blocks until a decision is
made by the coordinator. However, because each node can employ concur-
rency, the client can decide on concurrent work, in particular it can engage

130 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

INIT r

WAIT r

commit
vote-request

ABORT r COMMIT r

vote-abort
global-abort

vote-commit
global-commit

(a) The coordinator state-transition system.

INIT r, last

READY r

COMMIT r

global-commmit
ACK

ABORT r

global-abort
ACK

vote-request
vote-commit

vote-request
vote-abort

(b) The participant state-transition system.

Figure 59: The finite state machine for two-phase commit.

in other rounds of TPC with other coordinators. Notice as well that there are
no round numbers in the implementation - these are purely in the abstract
model to strengthen the specification.

Specification and Protocols

The approach for verifying programs in Aneris is similar to the approach
in Iris; one has to consider the resources needed that correctly capture the
intended purpose. We will use the following pre-created resources for a TPC
instance, having a coordinator c and participants p ∈ ps:

• parts(ps): Keeps track of all participants for a concrete TPC instance and
is duplicable and unmodifiable. Conceptually, it fixes the participants
in the TPC instance.

• p
c7→ (r,CS): A participant-specific assertion on the state of the co-

ordinator CS (as seen in Figure 59) for round r. The coordinator c
owns an assertion regarding its own state c

c7→ (r,CS). We require that
∃r,CS.∀a ∈ ps ∪ {c}, a c7→ (r,CS), that is all parties are in agreement of
which round and state the coordinator has. Technically, this is stated as
an invariant tpc_inv.

5.6. CASE STUDY 2A: TWO-PHASE COMMIT 131

rec tpc__coordinate m skt ps dec :=
let count := list__length ps in
let msgs := ref (list__make ()) in
let ack := ref 0 in
list__iter (λ n := sendto skt m n) ps;
listen skt (rec handler m from :=
let msgs’ := !msgs in
msgs← list__cons m msgs’;
if: list__length !msgs = count
then () else listen skt handler);
let res := dec !msgs in
list__iter (λ n := sendto skt res n) ps;
listen skt (rec handler m from :=
ack← !ack + 1;
if !ack = count then res
else listen skt handler)

rec tpc__participant skt vote fin :=
let msg := listen__wait skt in
let act := vote (fst msg) in
sendto skt act (snd msg);
let res := listen__wait skt in
fin (fst res);
sendto skt "ACK" (snd res);
tpc__participant skt req fin

rec listen__wait skt :=
match receivefrom skt with
SOME m => m

| NONE => listen__wait skt
end

Figure 510: An implementation of the two-phase commit in AnerisLang. The
functions list_make, list_cons and list_length are library utility functions for
operations on lists implemented as splines.

• p
p
7→{π} (r,P S): An assertion for each participant p regarding its own

state. The resource can be split arbitrarily:

p
p
7→{π} (r,P S) a` p

p
7→{π1} (r,P S) ∗ p

p
7→{π2} (r,P S)

as long as π1 + π2 = π ≤ 1 and πi > 0. For any two fractions p
p
7→

{π1}x ∗ p
p
7→ {π2}x′ we have x = x′. Finally, if one owns all fractions

p
p
7→{1} (r,P S), the resource can be freely updated since the environment

cannot own any fractions.

To allow the client to use the TPC protocol in whatever fashion it wishes,
the implementation is parameterized at all places dealing with messages.
Consequently, when proving a client, the prover has to provide the decidable
predicates is_req, is_vote, is_abort and is_global of type (String×N)→ Prop. The
client is free to pick P : (Address×String)→ iProp andQ : (Address×N)→ iP rop,
conceptually, the local pre- and post-condition for each participant. The socket

132 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

protocol for the coordinator is shown below.

φvote , λm,∃s, r,ps, sp. from(m) = s ∗ parts({s} ∪ ps) ∗

is_vote(body(m), r) ∗ s c7→ (r,WAIT) ∗

(is_abort(body(m), r) ∗ s
p
7→{34 } (r,ABORT)∨

is_abort(body(m), r) ∗ s
p
7→{34 } (r,COMMIT))

φack , λm,∃m′ , cs,ps,pr, r, s. s = from(m) ∗ parts({s} ∪ ps) ∗

s
c7→ (r, cs) ∗ s

p
7→{34 } (r, INIT pr) ∗

(cs = COMMIT ∗ pr = COMMIT ∗Q(s, r)∨
cs = ABORT ∗ pr = ABORT ∗ P (m′ , s))

φcoord , λm,φvote(m)∨φack(m)

For a participant p to send a vote to the coordinator c, it has to show that
it is indeed a participant parts({p} ∪ ps), that the message is a vote for that
round and that it owns the resources for the state of c, p

c7→ (r,WAIT), and a
resource that confirms that the state of p matches p’s vote. For the participant
to send an acknowledgment, it has to prove it transitioned to INIT by sending

p
p
7→{34 } (r, INIT pr) where pr should match the global decision. If the decision

was to commit, the participant should send the updated resources for Q,
otherwise it should return the resources described by P . The socket protocol
for the participant is as follows:

φrec(p), λm,∃ps, r, sp.parts({p} ∪ ps) ∗ is_req(body(m), r + 1) ∗

from(m) �⇒prot φcoord ∗ p
c7→ (r + 1,WAIT) ∗ p

p
7→{34 } (r, INIT sp)

φglob(p), λm,∃ga,ms,ps, r, sc, sp. {from(m)|m ∈ms} = ps ∗
is_global(body(m), r) ∗ ga = {m|m ∈ms∧ is_abort(m,r)} ∗

parts(ps) ∗ from(m) �⇒prot φcoord ∗ p
c7→ (r, sc) ∗ p

p
7→{34 } (r, sp) ∗∗

m∈ms
∃mid ,π. is_vote(body(ms), r) ∗mid

m7→{π}m
 ∗

(ga = ∅∧¬is_abort(body(m), r)∧ sc = COMMIT∨
(ga , ∅∧ is_abort(body(m), r)∧ sc = ABORT)

φpart(p), λm,φrec(p)(m)∨φglob(p)(m)

In order to send a request for a round r + 1 of TPC to a participant p, a
coordinator c has to prove that request is valid and that the address the
participant will reply on is bound to a coordinator protocol (c �⇒prot φcoord).
Furthermore, the coordinator has to show it is in the WAIT state by transferring

p
c7→ (r + 1,WAIT) and give up p

p
7→{34 } (r, INIT sp) to allow the participant to make

a transition.

5.6. CASE STUDY 2A: TWO-PHASE COMMIT 133

Finally, the coordinator can broadcast a global decision to each partici-
pant when it has received all messages for a round. This is guaranteed by
(∗m∈ms∃mid ,π. is_vote(body(ms), r) ∗mid

m7→{π}m), where∗ is iterated separat-
ing conjunction over finite sets. The coordinator also has to be honest in its
decision, thus if any participant replied with an abort message, the global
message should be abort as well and the final state of the coordinator should
be ABORT. Also notice that for each message to a participant, the coordinator
will pass in the assertion (from(m) �⇒prot φcoord). Therefore, the coordinator
need not be primordial since the participant does not need to have prior
knowledge of the coordinator. The coordinator could even change from round
to round.

With the TPC protocol in place, we can finally give a specification to the
two TPC modules. The tpc_participant specification is straightforward:

{tpc_inv ∗ parts(ps) ∗ zn 7→ Somep ∗ p �⇒prot φpart(p) ∗ p
p
7→{14 } (r, INIT sp) ∗

is_reqf (req) ∗ is_finf (fin) }
〈n; tpc_participantz req fin〉
{True}

It requires ownership of a bound socket guarded by a participant protocol
φpart(p) and fractional ownership of its own state, initialized to be INIT. The
specification for tpc_coordinate is a bit more involved:

{ps ≡ psV ∗ is_req(m,r + 1) ∗ tpc_inv ∗ parts(ps) ∗ zn 7→ Somea ∗

a �⇒prot φcoord ∗ a
c7→ (r, INIT) ∗ is_decf (dec) ∗∗

p∈ps
∃sp,p �⇒prot φpart(p) ∗ p c7→ (r, INIT) ∗ p

p
7→{34 } (r, INIT sp) ∗ P (p,msg)}

〈n; tpc_coordinatem z psV dec〉

{〈n;v〉.∃sc, sp. is_global(v,r + 1) ∗ zn 7→ Somea ∗ a c7→ (r + 1, sc) ∗∗
p∈ps

p
c7→ (r, sc) ∗ p

p
7→{34 } (r, INIT sp)

 ∗
(is_abort(v,r + 1) ∗ sc = ABORT ∗ sp = ABORT ∗ ∗

p∈ps
∃m.P (p,m)∨

¬is_abort(v,r + 1) ∗ sc = COMMIT ∗ sp = COMMIT ∗ ∗
p∈ps

Q(p,r))
}

To call tpc_coordinate, one has to pass ownership of a socket zn already bound
to some address guarded by the φcoord protocol. The list of nodes psV should
be “equivalent“ to the set of participants and for each participant the resources
describing the participant’s view of the coordinators and participant’s state
should be passed along. Additionally, we also need knowledge about the
participant address being guarded by a suitable protocol φpart(p).

134 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

The post-condition here is the most exciting part, mainly because it is
exactly what one would expect. Either all participants along with the coordi-
nator agreed to commit to which we obtain Q(p,r) for each participant or they
all agreed to abort, to which we get back P (p,m). We elide the specifications
is_decf , is_reqf and is_finf to the Coq development.

As to reap the fruits of our hard labor we show a client that use the TPC
coordinator and participant modules.

5.7 Case Study 2b: Replicated Logging

As noted in Sergey et al. [70], clients of core consensus protocols have not
received much focus from other major verification efforts ([28, 62, 81]) with
the exception of ([50, 70]). In the work by Sergey et al. [70], both an implemen-
tation of TPC and a client for replicated logging with a side-channel for error
recovery are verified. We will prove a similar client without a side-channel
to allow for comparison with our verification efforts. The code is shown in
Figure 511.

rec logger log addr m dbs :=
let skt := socket() in
let dec := λ msgs :=
let r = list__fold (λ a m :=
a && m = "COMMIT") true msgs in

if r then "COMMIT" else "ABORT" in
socketbind skt addr;
tpc__coordinate ("REQUEST__" ^ m)

skt dbs dec

rec db addr :=
let skt := socket() in
let wait := ref "" in
let log := ref "" in
let req := λ m := wait← val__of m;

"COMMIT" in
let fin := λ m := if m = "COMMIT"

then log← !log ^ !wait
else () in

socketbind skt addr;
tpc__participant skt req fin

Figure 511: Replicated logging that use two-phase commit modules in Aneris-
Lang. ˆ is string concatenation.

The replicated logger opens a socket skt on address addr and initiates a
TPC-round for all databases dbs by sending "REQUEST_" ˆ msg. The decision
handler dec is called by the TPC coordinator module when all votes have been
received.

On the side of the database, db, we use an internal reference log as the log
6. Upon an incoming request, the message is parsed (val_of m) and the log
to append is stored in the reference wait. If the global decision by logger is
"COMMIT", the string stored in wait will be appended to the log.

To logically describe the local state of each database we use the following

heap-like predicates, p
l7→{π} log and p

w7→{π} log,wait, that keep track of the

6Ideally, this should be “persistent” storage, however, to keep the example concrete, we
use a local reference

5.8. RELATED WORK 135

log and waiting commit for each participant p. The predicate P and Q, which
we instantiate TPC with are defined below:

P , λp,m.∃log, s. m = ”REQUEST _”@s ∗ p l7→{12 } log ∗ p w7→{14 } log,s

Q , λp,n.∃log, s. p
l7→{12 } log@s ∗ p w7→{14 } log,s

With these resources in place, we can give the logger the following specifi-
cation:

{tpc_inv ∗ parts(dbs) ∗ freePorts(ip(addr), {port(addr)}) ∗ is_req(m)∗
p∈dbs

∃sp,p �⇒prot φpart(p) ∗ p c7→ (r, INIT) ∗ p
p
7→{34 } (r, INIT sp) ∗ P (p,m)}

〈n; logger log addr dbs〉

{〈n;v〉.∃m,r. ∗
p∈dbs

∃sp.p c7→ (r, INIT) ∗ p
p
7→{34 } (r, INIT sp) ∗

v = ”COMMIT ” ∗ ∗
p∈dbs

Q(p,r)∨ v = ”ABORT ” ∗ ∗
p∈dbs

P (p,m)

}
Verification of our replicated logging client using two-phased-commit follows
directly, in a modular node-local fashion, from applying the specification of
tpc_coordinate.

We assume that the consensus-protocol could be swapped with other
consensus protocols, such as strict versions of Raft or Paxos, by making the
protocol parametric in the code and proof. Raft and Paxos require only a
majority of participants for committing, which is observationally different
than two-phase commit, thus strict version of these consensus protocols would
be required to align functionality with two-phase commit.

Interestingly, different clients can easily be built upon TPC because the
two-phase commit module is parametric in the shape of messages sent. This
could be an auction service where each request carries an item number and
each commit response is a bid, or an election service where each request is a
list of candidates and each response is a vote.

5.8 Related Work

Verification of distributed systems has received a fair amount of attention.
In order to give a better overview, we have divided related work into four
categories.

Model-Checking of Distributed Protocols

Previous work on verification of distributed systems has traditionally focused
on verification of protocols or core network components by means of model-

136 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

checking. Frameworks for showing safety and liveness properties, such as
SPIN Holzmann [30], and TLA+ [46], have had great success. A clear benefit
of using model-checking frameworks is that they allow to state both safety
and liveness assertions as LTL assertions [59]. Mace [37] provides a suite for
building and model-checking distributed systems with asynchronous proto-
cols, including liveness conditions. Chapar [50] allows for model-checking of
programs that use causally consistent distributed key-value stores. Neither of
these languages provide higher-order functions or thread-based concurrency.
Additionally, model-checking frameworks cannot prove the absence of errors
in general, they can only show it for a specific model.

Session Types for Giving Types to Protocols

Session types have been studied for a wide range of process calculi, in particu-
lar, typed π-calculus. The original idea was to describe two-party communi-
cation protocols as a type to ensure communication safety and progress [31].
This was later extended to multi-party asynchronous channels [32], multi-role
types [19] which informally model topics of actor-based message-passing and
dependent session types allowing quantification over messages [77]. Our
socket protocol definitions are quite similar to the multi-party asynchronous
session types in the sense that our sockets are multi-party as well and progress
can be encoded by having suitable ghost-assertions and using magic-wand
(§5.2).

Distributed Hoare Type Theory and Concurrent Program Logics

Disel [70] is a Hoare Type Theory for distributed program verification in Coq
with ideas from separation logic. It provides the novel protocol-tailored rules
WithInv and Frame which allow for modularity of proofs under the condition
of an inductive invariant and distributed systems composition. We obtain
composition by node-local reasoning, which is possible because we work in a
logic that requires us to state stable assertions on the environment locally.

Disel cannot hide mutable state in the system and it must be made known
to all in a protocol. Additionally, node-local mutable state can only be altered
upon send/receive. Besides having thread-based concurrency on nodes, Aner-
isLang also provides “proper” local mutable state that can be hidden, which
the authors of Disel described as interesting future work.

However, in Disel, programs can be extracted into runnable OCaml pro-
grams, which is on our agenda for future work.

IronFleet [28] allows for building provably correct distributed systems by
combining TLA-style state-machine refinement with Hoare-logic verification
in a layered approach, all embedded in Dafny [49]. IronFleet even allows
for liveness assertions. The top layer is a simple specification of the system’s
behavior, the bottom layer is the actual implementation, and each layer is

5.9. CONCLUSION AND FUTURE WORK 137

proven to satisfy the layer above it. The verification results of IronFleet
are impressive, however, it seems like composition of protocols requires
progressing changes through the entire stack of layers. Compared to IronFleet,
verified components in Aneris are easier to compose and can employ thread-
local reasoning.

The concurrent program logic closest to our work is naturally Krebbers
et al. [38], since it is the foundation we have based Aneris upon. Other
concurrent program logics, [20, 55, 56, 72, 80] to name a few, all have some
notion of thread-local reasoning or rely-guarantee reasoning. We believe we
have successfully lifted that principle to reason about individual nodes locally
in distributed systems.

Other Distributed Verification Efforts

Verdi [81] is a framework for writing and verifying implementations of dis-
tributed algorithms in Coq, providing a novel approach to network semantics
and fault models. To achieve compositionality, the authors introduced verified
system transformers, that is, a function that transforms one implementation to
another implementation, which has different assumptions about its environ-
ment. This makes vertical composition difficult for clients of proven protocols
and in comparison, AnerisLang feature set is more expressive.

EventML [62, 63] is a functional language in the ML family that can be
used for coding distributed protocols using high-level combinators from the
Logic of Events, and verify them in the Nuprl interactive theorem prover. It
is not quite clear how modular reasoning works, since one works within the
model, however, the notion of a central main observer is akin to our system
node.

5.9 Conclusion and Future Work

Distributed systems are quite ubiquitous nowadays and hence it is essential
to be able to verify them. In this paper we presented Aneris, a framework
for writing and verifying distributed systems in Coq on top of the framework
of the Iris program logic. From a programming point of view, the important
aspect of Aneris is that it is quite feature rich: it is basically a concurrent ML-
like programming language with network primitives. This allows individual
nodes to internally use higher-order heap and concurrency to write efficient
programs.

On the program logic side the Aneris framework provides node-local rea-
soning. That is, we can reason about individual nodes in isolation as we
reason about individual threads in isolation in what we refer to as node-local
reasoning. We demonstrated the versatility of Aneris by studying interest-
ing distributed systems both implemented and verified within Aneris. The
adequacy theorem of Aneris implies that these programs are safe to run.

138 CHAPTER 5. ANERIS: A LOGIC FOR DISTRIBUTED SYSTEMS

Module Impl Spec Proofs

Load Balancer (§5.5)

Load-balancer 18 78 95

Addition Service

Server 11 15 38

Client 9 14 26

Adequacy (1 server, 2 clients) 5 12 62

Adequacy w. Load Balancing (3 servers, 2 clients) 16 28 175

Two-phase commit (§5.6)

Coordinator 18
181

265

Participant 11 280

Replicated logging (§5.7)

Instantiation of TPC - 85 -

Logger 22 19 95

Database 24 20 190

Adequacy (2 dbs, 1 coordinator, 2 clients) 13 - 137

Table 51: Sizes of implementations, specifications and proofs in lines of code
for modules. The addition service is a simple server that listens for incoming
messages consisting of two numbers and responds with the sum. When
proving adequacy the system must be closed.

Relating the verification sizes of the modules from Table 51 to other
formal verification efforts in Coq indicates that it is easier to specify and verify
systems in Aneris. The total work required to prove two-phase commit with
replicated logging is 1,272 lines which is just halve of the lines needed for
proving the inductive invariant for TPC in [70]. However, extensible work has
gone into the Iris Proof-mode thus it is hard to conclude that Aneris requires
less verification effort and not just have richer tactics.

As of writing, AnerisLang is suitable for verifying code written in other
operationally similar languages, such as OCaml, by writing it in the DSL
defined in Coq. However, because the language is so realistic, one could write
a simple transpiler for a one-to-one translation of terms in AnerisLang to terms
in OCaml, without the need for code-extraction. A transpiler would make it
feasible to use AnerisLang for a verify-first approach.

In fact, for an earlier version of AnerisLang, we had an existing compiler
with a small standard library consisting of 15 lines of OCaml, mainly for
parsing received bytes from sockets to strings.

Chapter 6

Verifying a Concurrent
Data-Structure from the
Dartino Framework

MORTEN KROGH-JESPERSEN, Aarhus University, Denmark
THOMAS DINSDALE-YOUNG, Aarhus University, Denmark
LARS BIRKEDAL, Aarhus University, Denmark

The formal development accompanying this research project can be found
on the Iris project web-site https://iris-project.org. As of writing a
direct link for the development is https://iris-project.org/artifacts/
2017-case-study-verifying-dartino-framework.zip.

Abstract

We specify and verify a concurrent queue data structure used in the scheduler
of a real-world virtual machine, Google’s Dartino Framework.

Our specification treats the queue operations as abstractly atomic. This
means that a client can reason about them as if they take effect at a single
instant in time, and thus impose its own invariants on the queue. The specifi-
cations also involve resource transfer: to enqueue a process, a thread transfers
ownership of its descriptor to the queue.

We show that an implementation of the data structure, directly translated
from the Dartino Framework source, satisfies our specification in Iris, a state-
of-the-art higher-order concurrent separation logic, capable of expressing
both abstract atomicity and resource transfer. Our verification is formalised
in the Coq proof assistant. Hence, our work shows that Iris is both expressive
and practical enough to formally reason about production code taken from
“the wild”.

139

https://iris-project.org
https://iris-project.org/artifacts/2017-case-study-verifying-dartino-framework.zip
https://iris-project.org/artifacts/2017-case-study-verifying-dartino-framework.zip

140 CHAPTER 6. DARTINO FRAMEWORK

6.1 Introduction

The scheduler is the beating heart of any virtual machine – it is responsible for
running and pausing processes of the system. Therefore, the scheduler must
be both correct and efficient. The Dartino Framework is a virtual machine for
the Dart language, which was designed by Google to run efficiently on limited
hardware (such as embedded systems or IoT-devices). The work presented
here is the result of a collaboration with the Google Dartino team to verify
the queue data structure underlying the Dartino Framework’s scheduler.

The Dartino Framework uses a pool of low-level (hardware) threads to
run high-level Dart processes. Each thread has its own process queue, imple-
mented as a doubly-linked list which we refer to as a Dartino Queue. Having
a queue per thread serves to reduce contention, although threads may access
the queues of other threads. For instance, a thread with no processes may
steal one from another thread. In addition to the usual enqueue and dequeue
operations, the data structure allows a specific process to be removed from
anywhere in the queue. This allows the scheduler to prioritise certain pro-
cesses – for instance, to immediately schedule a process that is the recipient
of a message.

Verification of sequential implementations of doubly-linked lists using
shape analysis or separation logics has already been studied in detail, e.g. in
the seminal work by Reynolds [57, 66]. Specifying and verifying the Dartino
Queue is complicated by a number of factors.

Firstly, this Dartino Queue allows for concurrent access by multiple
threads. We therefore require a specification that accounts for this. Abstract
atomicity achieves this by specifying that an operation (such as enqueuing a
process) appears to take effect at a single instant in time. A client can then
reason about abstractly atomic operations in a simple manner, for instance
by imposing new invariants on how the queue is used. Linearizability [29]
is a well-known verification condition for abstract atomicity. Recently, no-
tions of abstract atomicity have been introduced to separation logics such as
TaDA [18].

Secondly, during its lifetime, a process may belong to multiple queues.
This means that ownership of a process descriptor is transferred whenever it
is enqueued or dequeued. This ownership transfer does not necessarily take
place at the same instant that the operation atomically takes effect. Separation
logics are well-equipped to reason about resource transfer; consequently, a
separation logic which supports abstract atomicity is appropriate for this
verification problem.

We have chosen to verify the Dartino Queue in Iris [33, 38], a state-of-
the-art concurrent higher-order separation logic, implemented in the Coq
proof assistant [17]. The reason for this is that the Iris Proof Mode enables
us to do interactive proofs directly in Coq [39] and, moreover, Iris allows us
to prove so-called atomic triples [18], which capture abstract atomicity. We

6.2. THE DARTINO QUEUE IN IRIS 141

can therefore give strong specifications that integrate ownership transfer and
abstract atomicity.

Our case study applies Iris to verifying real-world code with non-trivial
specifications. Our case study demonstrates the practicality and effectiveness
of the following:

• Using resources in Iris to reason about dynamic allocation and stealing
of processes which may be transferred between queues.

• Using logical atomicity in Iris in concert with resource transfer to verify
strong specifications that accurately capture the intention for the real-
world code.

• Using the Iris Proof Mode for formal, mechanised verification of code.

Outline. First, we describe the Dartino Queue and show the translation
from C++ to Iris in §6.2. In §6.3 we give a primer to Iris and describe the
invariants that will guard the Dartino Queue in §6.4. In §6.5 we motivate and
show stronger specifications for the operations on the Dartino Queue before
showing a client of the queue in §6.6. Finally, we conclude in §6.7.

6.2 The Dartino Queue in Iris

The Dartino Framework is an experimental virtual machine, written in C++, for
running the programming language Dart on devices with limited memory and
limited processing resources. One particular goal with the Dartino Framework
is to increase the computation throughput of concurrent programs that use
message passing for communication. To this end, when one Dart process sends
a message to another, the recipient is preferentially scheduled. This means
that the Dartino Queue, which represents a process queue in the scheduler,
must allow for processes that are not at the head to be removed from the
queue.

In a general-purpose queue data structure, enqueuing a value typically
involves allocating a new node to hold the value. For a process queue, however,
the process descriptor, which exists for the lifetime of the process, directly
represents a node in a queue. That is, the descriptor object holds pointers
to the queue the process belongs to and its adjacent processes. This means
that no allocation is necessary in enqueuing a process (which is good, since
allocation is expensive and the scheduler must be as efficient as possible). On
the other hand, one must handle ownership of process objects carefully, since
they may belong to multiple queues during their lifetimes.

The Dartino Queue is implemented as a doubly-linked list to support
removal of an arbitrary process in its queue. Updating a doubly-linked list
requires multiple pointer updates. To ensure that these updates occur safely

142 CHAPTER 6. DARTINO FRAMEWORK

Definition unSOME := λ: p, match: p with NONE => assert false
| SOME p’ => p’ end.

Definition queue__head := λ: p, Fst p.
Definition queue__tail := λ: p, Fst (Snd p).
Definition queue__sent := λ: p, Snd (Snd p).

Definition pval := λ: p, Fst p.
Definition qref := λ: p, Fst (Snd p).
Definition prev := λ: p, Fst (Snd (Snd p)).
Definition next := λ: p, Snd (Snd (Snd p)).

Definition makeQueue := λ: <>, (ref NONE, (ref NONE, ref ())).

Definition makeProc :=
λ: v, (ref v, (ref NONE, (ref NONE, ref NONE))).

Definition obtainLockDeq :=
rec: loop head sentinel h :=
let: hv := !h in
if: (hv = SOME sentinel) || (∼ CAS head hv (SOME sentinel))
then h <- !head ;;

if: (!h) = NONE then true
else loop head sentinel h

else false.

Definition dequeue :=
λ: head tail s,

λ: <>,
let: h := ref !head in
if: !h = NONE then NONE
else let: obtLock := obtainLockDeq head s h in

if: obtLock then NONE
else let: h’ := unSOME (!h) in

let: next := !(next h’) in
(if: next = NONE then tail <- NONE
else prev (unSOME next) <- NONE);;

next h’ <- NONE;;
qref h’ <- NONE;;
head <- next;;
SOME h’.

Figure 61

6.2. THE DARTINO QUEUE IN IRIS 143

Definition obtainLockEnq :=
rec: loop head sentinel h :=
let: hv := !h in
if: (hv = SOME sentinel) || (∼ CAS head hv (SOME sentinel))
then h <- !head ;; loop head sentinel h
else ().

Definition enqueue :=
λ: head tail s,

λ: p, let: h := ref !head in
obtainLockEnq head s h;;
qref p <- SOME (head,(tail,s));;
match: !h with
NONE => tail <- SOME p;;

head <- SOME p;;
true

| SOME h’ => prev p <- !tail;;
next (unSOME !tail) <- SOME p;;
tail <- SOME p;;
head <- SOME h’;;
false

end.

Definition tryDequeueEntry :=
λ: head tail s,

λ: p, let: h := ref !head in
if: !h = NONE then false
else let: obtLock := obtainLockDeq head s h in

if: obtLock then false
else if: !(qref p) = SOME (head,(tail,s))

then let: next := !(next p) in
let: prev := !(prev p) in
(if: next = NONE
then tail <- prev
else prev (unSOME next) <- prev);;

(if: prev = NONE
then h <- next
else next (unSOME prev) <- next);;
(prev p) <- NONE;;
(next p) <- NONE;;
(qref p) <- NONE;;
head <- !h;;
true

else head <- !h;;
false.

Figure 61: Implementation of a doubly-linked queue with a virtual lock.
Function binders in Iris-ML are strings in Coq, but are shown as regular
binders for the sake of clarity.

144 CHAPTER 6. DARTINO FRAMEWORK

in a concurrent context, the Dartino Queue uses the queue’s head pointer as a
spin lock.

Modelling C++ in Iris-ML

In order to verify the Dartino Queue, we translate the C++ code used by Google
into Iris-ML, one of the programming languages supported by Iris. In doing
so, we must faithfully represent the semantics of the original program. In
particular, memory operations should have the same granularity: the ML
program cannot perform an update in a single atomic step that takes multiple
steps in the C++ source.

In C++, an object is represented as a contiguous block of memory holding
the object’s data members. A pointer to an object is the address of such a
block, and members are accessed by computing offsets from the address into
the block.

In Iris-ML, there are no objects, but there are references to arbitrary
(untyped) values. The basic operations on references are:

• ref v — allocate a reference with initial value v;

• !r — atomically read the value stored in reference r;

• r <- v — atomically update the contents of reference r to value v; and

• CAS r oldval newval — atomically compare the contents of reference
r with value oldval, updating it to newval if equal; return true if
successful (the value was updated) and false otherwise.

One way a C++ object reference might be represented in Iris-ML is as
a reference to a tuple of the object’s data members. This representation
is problematic, however, since any update to the object updates all of its
members at once, while in C++ each data member is updated individually.
Consequently, a C++ object reference is represented as a tuple of references to
each of the object’s data members. Each data member can thus be manipulated
independently.

Apart from a reference to an object, a C++ pointer may instead hold the
value null. To reflect that pointers are nullable in Iris-ML, we represent point-
ers as tagged data: NONE represents the null pointer, and SOME r represents a
pointer with a valid object reference r. To dereference a pointer, we first apply
the function unSOME, which strips the SOME tag and crashes when given NONE.

Doubly-Linked List with Arbitrary Removal

The interface of the Dartino Queue consists of five operations:

makeQueue: Construct a new Dartino Queue.

6.2. THE DARTINO QUEUE IN IRIS 145

makeProc: Construct a new process descriptor.

enqueue: Append a process to a Dartino Queue.

dequeue: Attempt to remove the first process from a Dartino Queue, return-
ing a pointer to the process. This can fail, returning a null pointer
(Iris-ML: NONE), if the queue is empty.

tryDequeueEntry: Attempt to remove a specified process from a Dartino
Queue. This can fail, returning false, if the process is no longer in the
queue.

The Iris-ML implementation is given in Figure 61. We now describe each
operation in detail.

New Dartino Queue. The function mkQueue() creates a new, empty Dartino
Queue. A Dartino Queue object has three data members: the pointers head
and tail to the head and tail of the queue, and a distinguished sentinel value
sent. To indicate when the lock on the queue is held, the head pointer is set
to the sentinel. To ensure that this sentinel value is distinct from any process
reference, the makeQueue constructor generates a new reference (whose con-
tents is immaterial). The head and tail pointers are both initialised to NONE
(representing null). Figure 62 shows the initial configuration of a Dartino
Queue object.

sentinel

sent head tail

Figure 62: Initial configuration of the queue

New Process. The function mkProcess(v) constructs a new process descrip-
tor holding value v. (The meaning of the value is determined by the client
of the queue, which in the Dartino Framework is the process’s instruction
pointer.) A process descriptor has four members: a value pval; a pointer
to the queue that currently holds the process, qref; and pointers prev and
next to the previous and next processes in the queue, respectively. We depict
processes as so (where the qref pointer is not drawn since the queue that
owns the process is obvious from the context):

prev
v

next

146 CHAPTER 6. DARTINO FRAMEWORK

In Iris-ML, a process object is represented as a tuple of references, and we
define four projections out of the tuple named pval, qref, prev and next.

Enqueuing. The function enqueue(q,p) enqueues process p in the Dartino
Queue q. Enqueuing elements involves obtaining the (virtual) lock of the
Dartino Queue, inserting the new element once the lock is acquired, and
finally releasing the lock again. These steps are illustrated in Figure 63.

sentinel
a b v

sent
head tail p

(a)

sentinel
a b v

sent
head tail p

h

(b)

sentinel
a b v

sent
head tail p

h

(c)

sentinel
a b v

sent
head tail p

h

(d)

Figure 63: Enqueuing an element into the Dartino Queue.

Obtaining the lock is delegated to obtainLockEnq, which loops attempt-
ing to update the head pointer of the queue (head) to the sentinel value
(sentinel); the old value of the head pointer is recorded in the reference h.
The function retries if the head currently holds the sentinel value (indicating
that another thread holds the lock) or if the CAS fails as a result of another
thread updating it. When obtainLockEnq returns, it must have successfully
updated the head pointer from the (non-sentinel) value now stored in h to the

6.2. THE DARTINO QUEUE IN IRIS 147

sentinel value. Thus the thread will have acquired the lock. Obtaining the
lock takes us from to a in Figure 63.

Once the lock is held, the thread is at liberty to modify the list, and can
assume that no other thread will concurrently modify it. The process is added
to the end of the list by performing four pointer updates: the process’s qref
pointer is updated to point to the queue; the process’s prev pointer is updated
to point to the original tail; the tail’s next pointer is updated to point to the
new process; and the tail pointer is updated to point to the new process.
This update takes us from a to b in Figure 63. In the case where the list was
initially empty, it is only necessary to update the process’s qref pointer and
the queue’s tail pointer.

To complete the enqueue operation, the head pointer is updated to point to
the original head of the list (which was stored in h), if the list was non-empty.
This takes us from b to c in Figure 63. If the list was empty, the head pointer
is updated to point to the newly enqueued process.

Dequeuing. The function dequeue(q) dequeues the process at the head of
the Dartino Queue q. As with enqueuing, the operation involves acquiring
the lock, updating the list, and finally releasing the lock. This is depicted in
Figure 64.

Before attempting to obtain the lock, a test checks if the head pointer
was NONE, indicating that the queue was empty, in which case the function
immediately returns NONE. Otherwise, an attempt to acquire the lock is made
by calling obtainLockDeq.

obtainLockDeq behaves like obtainLockEnq in acquiring the lock, except
that it does not attempt to acquire the lock if the queue is empty; it returns
true if the queue was empty, and therefore the lock was not acquired, and
false if the lock was successfully acquired with the queue non-empty.

When the lock is successfully acquired, h holds a (non-null) pointer to the
process descriptor at the head of the queue (Figure 64 a). The descriptor’s
next pointer is inspected to determine if it is the end of the queue, in which
case it will be NONE. If so, the queue’s tail pointer is set to NONE since the
queue will now be empty. If not, the next process’s prev pointer is set to NONE,
since it will now be the head of the queue. The next and qref fields of the
head process are both updated to NONE, since it is being removed from the
queue (Figure 64 b). Finally, the queue’s head is updated to point to the new
head process (the successor of the removed process, before it was removed).

Arbitrary Dequeuing. The most interesting aspect of the Dartino Queue is
that a specific process p can be removed from a queue q with the function
tryDequeueEntry(q,p). This is shown in Figure 65.

As with dequeue, the first step is to acquire the lock for the queue, but
only if the queue is non-empty. If the queue is empty then the process

148 CHAPTER 6. DARTINO FRAMEWORK

sentinel
a b

sent
head tail

(a)

sentinel
a b

sent
head tailh

(b)

sentinel
a b

sent
head tailh

(c)

sentinel
a b

sent
head tailh

(d)

Figure 64: Dequeuing an element from the Dartino Queue.

cannot be in the queue (perhaps another thread already dequeued it) and so
tryDequeueEntry returns false. Otherwise, it is necessary to check that the
process’s qref pointer points to the queue, since even if this was initially the
case, another thread may have dequeued the process since tryDequeueEntry
was called. If qref does not match the queue, the lock is released by updating
head to its previous value and the operation returns false. Otherwise, we
can be sure that the process indeed belongs to the queue, and since the thread
holds the lock on the queue, no other thread can concurrently dequeue it
(Figure 65 a).

The process p is removed from the queue by first updating the prev pointer
of its successor to the prev pointer of p. If the successor is NONE then the tail
pointer is updated instead, since p must be the last process in the queue. Next,
the next pointer of p’s predecessor is updated to point to the next pointer of
p. Again, if there is no predecessor, the h pointer is updated instead, since p

6.3. THE IRIS LOGIC 149

sentinel
a v b

sent
head tailp

(a)

sentinel
a v b

sent
head tailp

h

(b)

sentinel
a v b

sent
head tailp

h

(c)

sentinel
a v b

sent
head tailp

h

(d)

Figure 65: Dequeuing a specific element p from the Dartino Queue.

must be the first process in the queue. Next, the prev, next and qref pointers
of p are all set to NONE (Figure 65 b). Finally, the lock on the queue is released
by updating head to the pointer stored in h, which is either the former head
of the queue (if it was not p) or the successor of p (if p used to be the head).

6.3 The Iris Logic

We specify and verify the Dartino Queue in Iris, a concurrent higher-order
separation logic implemented in Coq. Iris is built around monoids and in-
variants. Monoids provide a way to define abstract (ghost) resources that
represent knowledge and rights available to threads. Invariants provide a way
to give concrete meaning to these abstract resources.

150 CHAPTER 6. DARTINO FRAMEWORK

Iris includes the following quantifiable types:

κ ::= 1 | κ ×κ | κ→ κ | Expr | Val | B | N | Names |Monoid | iProp | . . .

Here, 1, B and N is the unit type, the type of booleans and the type of
natural numbers respectively. Expr and Val are syntactic expressions and
values of Iris-ML. Monoid is the type of monoids, which are used for ghost
resources. Names is the type of ghost names, which is used to assign names to
instances of ghost resources. iProp is the type of Iris propositions, which are
defined by the following grammar:

P ::=> | ⊥ | P ∧ P | P ∨ P | P ⇒ P | P ∗ P | P −∗ P | ∀x : κ. Φ | ∃x : κ. Φ

| .P | µr.P | X(a) | 2P | �={E1,E2}⇒P | own γ a | inv N P | . . .

The grammar includes the usual higher-order logic connectives (>, ⊥, ∧,
∨,⇒, ∀, ∃). The separating conjunction, ∗, describes resources that are split
into two disjoint parts. Magic wand, P −∗ Q, behaves like implication for
resources: if resources P are given up, then the resources described by Q can
be obtained. Ownership of ghost resources is written as own γ a where a is
a monoid element and γ is a ghost name. Owned resources must be valid,
which is asserted by X(a). The update modality �={E1,E2}⇒P allows resources
to be updated to resources satisfying P, where the masks E1 and E2 describe
the set of invariants that are closed before and after the update, respectively.
When the masks are the same we write �={E}⇒P .

The 2 modality asserts that a proposition holds independently of resources.
Consequently, the proposition 2P is persistent: it can be freely duplicated as
it satisfies 2P ⇔2P ∗2P .

Invariants, inv N P, where N is the name of the invariant and P the in-
variant assertion, are also persistent propositions and hence duplicable. The
resources embodied by an invariant can only be accessed during atomic oper-
ations, which must reestablish the invariant. This ensures that no thread can
see a violation of the invariant: it is indeed invariant.

Updating resources and opening invariants modify the ghost state without
executing any code. The following two connectives, view shift and wand shift,
are particularly useful for these tasks:

P ={E1,E2}⇒Q , 2(P −∗ �={E1,E2}⇒Q)

P ={E1,E2}=∗Q , P −∗ �={E1,E2}⇒Q

The behaviour of view shifts and wand shifts are similar to Hoare-triples,
taking a precondition P , that asserts the shape of the ghost state before
updating and a postcondition Q, the ghost state obtained by running the view
shift or wand shift. There is not need for any code, since these shifts only

6.3. THE IRIS LOGIC 151

Monoid-Alloc

X(a)

�={E}⇒∃γ, own γ a

Monoid-Update

a B

own γ a ` �={E}⇒∃b ∈ B, own γ b

Monoid-Valid

own γ a `X(a)

Monoid-Op

own γ a ∗ own γ b a` own γ a · b

Figure 66: Rules for monoid resources in Iris

update ghost resources and not the physical state. Note that the view shift is
persistent: it cannot depend on any currently-available resources. By contrast,
the wand shift may use up available resources in the update.

Monoids

Commutative monoids are the bread and butter of any separation logic. A
commutative monoid consists of a set with a binary operation (which we
denote ·) that is associative, commutative and has an identity element. In
Iris, arbitrary monoids can be used as ghost resources. (Technically, Iris
uses resource algebras, which relax the identity property, but have some other
properties. We will abuse the terminology by referring to resource algebras as
monoids even when they do not have an identity element.)

Figure 66 shows Iris rules for working with monoid resources. The
Monoid-Alloc rule allows a new ghost resource to be allocated, holding
any valid monoid element. The Monoid-Valid rule requires that any allo-
cated resource must hold a valid monoid element. The Monoid-Update rule
allows a ghost resource to be updated. The represents frame-preserving
update: if a B and X(a · c) then it must be that X(b · c) holds for some b ∈ B.
Frame-preserving updates thus do not invalidate the ownership of any other
concurrent threads. The Monoid-Op rule allows ghost resources to be split
and joined with the monoid composition operator.

We now present a number of standard monoid constructions that are
useful in our verification efforts.

Exclusive. The Ex(S) monoid (over a given set S) is one of the simplest
monoids, where the composition a · b is undefined everywhere. (“Undefined”
is represented by a distinguished element of the monoid that is not valid.) For
the exclusive monoid, we thus have the following law:

∀ a b, own γ (Excl a) ∗ own γ (Excl b) ` ⊥.

There cannot be two owned instances at one point in time, therefore one is
always free to update the resource using the Monoid-Update rule.

152 CHAPTER 6. DARTINO FRAMEWORK

Decidable Agreement. The DecAgree(S) monoid over a set S with decid-
able equality has composition defined by s · s = s for all s ∈ S, but undefined
otherwise. This means that if two threads own elements of this monoid then
they must agree. This is expressed by the following Iris proposition:

∀ a b, own γ (DecAgree a) ∗ own γ (DecAgree b) ` a = b.

To show this holds, we use Monoid-Op to combine the components into
one assertion. Then, by Monoid-Valid, we have that a · b is valid, but that
can only be true if a = b. Notice that we cannot perform a frame-preserving
update for this monoid.

Fractional Permissions. Given a monoid M, the fractional permissions
monoid Frac(M) has carrier (Q ∩ (0,1]) ×M. Composition is defined as
(π1, a) · (π2,b) = (π1 + π2, a · b), where the sum π1 + π2 may not exceed 1.
We thus have the following Iris propositions:

∀ a b, own γ (π,a) ` own γ (π/2,a) ∗ own γ (π/2,a).
∀ a b, own γ (π,a) ∗ own γ (π’,a) ∗ π + π’ <= 1

` own γ (π + π’,a).

If one has own γ (1,a), no other fractions can be owned. Thus one has
exclusive ownership and can freely update the resource.

Finite Sets. Given a set X, the finite-set monoid Gset(X) consists of the
finite subsets of X under disjoint union. That is, the composition of two
finite subsets a · b is defined as the union a∪ b when a∩ b = ∅, and undefined
otherwise.

Finite Maps. Given a setX and monoid Y , the finite-map monoid Gmap(X,Y)
consists of the finite partial functions from X to Y . Composition is given by:

(a · b)(x) =


a(x) · b(x) if x ∈ dom(a) and x ∈ dom(b)

a(x) if x ∈ dom(a) and x < dom(b)

b(x) if x < dom(a) and x ∈ dom(b)

Composition is thus functorial in the co-domain monoid:

{[i := x]} · {[i := y]} = {[i := x · y]}

where {[i := x]} represents the singleton map from i to x.
A frame-preserving update can extend the domain of a finite map with a

new key, provided that we are not specific about which new key:

X(x) `m {m′ | ∃i.m′ = {[i := x]} ·m∧ i < dom(m)}

This gives a way of allocating new ghost resources in a monoid.

6.3. THE IRIS LOGIC 153

File name Contents

program.v the Dartino Queue implementation

definitions.v record definitions that model processes and
queues

monoids.v declarations of ghost resources and lemmas about
them

invariants.v invariants for processes and queues

helpers.v helper lemmas for the invariants

wp_helpers.v helper lemmas regarding weakest-precondition
reduction of terms

atomize.v the definition of abstract atomicity

makers.v proofs for the queue and process constructors

enqueue.v proofs for enqueuing processes

dequeue.v proofs for dequeuing processes (at the head and
arbitrarily)

client_sequential.v proofs for a sequential client of the Dartino Queue

client_concurrent.v proofs for a concurrent client of the Dartino
Queue

Table 61: Organization of the Coq project.

Authoritative. Given a monoid X, the authoritative monoid is built from
two types of resources: authoritative resources •a, and fragment resources ◦b.
Fragment resources can be composed according to the underlying monoid:
◦a · ◦b = ◦ (a · b). Authoritative resources cannot be composed with each
other: •a · •b is undefined. When an authoritative and fragment resource are
combined, the fragment must be contained with in the authoritative resource:
X(•a ·◦b) implies b 4 a, where the induced monoid ordering b 4 a means that
there exists some c such that b · c = a.

To perform a frame-preserving update in the authoritative monoid, one
typically requires the authoritative resource, and any such update must pre-
serve all fragments that may be owned by other threads. For instance, it is
possible to extend the authority by introducing a new fragment:

∀ γ a b, own γ •a ∗ X(a · b) ` own γ •(a · b) · ◦b.

154 CHAPTER 6. DARTINO FRAMEWORK

The Heap We can now give the ordinary Heap monoid in terms of the above
constructions:

Heap, Auth(Gmap(N,Ex(Val)))

Having ownership of an authoritative part of a heap is then own γ •h,
where local ownership of a points-to predicate is written as own γ ◦{[l :=
Excl v]}, which we can give a nicer syntactic representation as l 7→ v.

6.4 A Specification for the Dartino Queue

In this section, we present the Iris specification for the Dartino Queue. Ta-
ble 61 shows the structure of the Coq project. While the Coq development
includes all proofs, we only present the specifications here.

To simplify our presentation, we take a few liberties with the Coq syn-
tax. In particular, we omit some injections between types (e.g. from Coq
propositions into Iris terms) as well as scope specifiers.

Datatype Definitions

A reference to a process descriptor object is modelled as a record of four
locations, which we refer to as a process address. These locations correspond to
the addresses of the data members of the object.

Record procAddrT := ProcAddrT {
pvall : loc; pqueuel : loc; pprevl : loc; pnextl : loc

}.

A queue address is similarly defined as a record of three locations that
comprise the data members of a queue object.

Record queueAddrT := QueueAddrT {
qhead : loc; qtail : loc; qsent : loc

}.

A process value record models the contents of a process descriptor object.
It thus comprises the values of each data member of the object.

Record procValT := ProcValT’ {
pvalv : val;
pqueuev : option queueAddrT;
pprevv : option procAddrT;
pnextv : option procAddrT

}.

Monoids

Our specification of the Dartino Queue uses four custom monoids to represent
ghost state, which are explained in detail below.

6.4. A SPECIFICATION FOR THE DARTINO QUEUE 155

Process Monoid

The process monoid is the authoritative monoid on partial maps from process
addresses to process values with fractional permissions:

Auth(Gmap(procAddrT,Frac(DecAgree(procValT))).

This monoid represents the current state of process descriptor objects. The
authoritative part of the monoid belongs to the invariant procs__inv, which
ensures that the pval pointer of each process matches the value recorded
in the monoid. A 1/4 fraction of the fragment part typically belongs to an
invariant for the process (described by proc__inv), which establishes the
relationship between the qref, prev and next pointers and the values in the
monoid. The remaining 3/4 fraction represents ownership of the process, which
may either belong to a queue (if the process is in that queue) or a thread.

To denote a fragment part with a given fraction, we define:

Definition Proc (x : procAddrT)(π : Qp)(v : procValT) :=
◦ {[x := (π, DecAgree v)]}.

Queue Membership Monoid

The queue membership monoid is the authoritative monoid on finite sets of
process addresses:

Auth(Gset(procAddrT)).

Each queue has an instance of this monoid that tracks which processes cur-
rently belong to it. The authoritative part of the monoid belongs to the pred-
icate that represents a queue, which maintains that the processes recorded
in the monoid are exactly those belonging to the queue. The authoritative
part is represented as InQueueAuth l, where l is a list of process addresses.
When a process belongs to a queue, the invariant for the process holds a (sin-
gleton) fragment of the monoid to track that the process does indeed belong
to the queue. This fragment is represented as InQueue p, where p is a process
address. The authoritative monoid gives us the following property:

own γ (InQueueAuth l) ∗ own γ (InQueue a) ` a ∈ l

Link Monoid

Since queues may be dynamically created, their ghost resources (i.e. the queue
membership monoid for a queue) are also dynamically allocated. To track
these, we use a link monoid that records the ghost resource name associated
with queues. This monoid is the authoritative monoid on maps from locations
to ghost resource names:

Auth(Gmap(Loc,DecAgree(Names))).

156 CHAPTER 6. DARTINO FRAMEWORK

A fragment part is represented as Link qs γ , indicating that the queue with
sentinel qs is associated with ghost name γ . The authoritative part belongs to
a global invariant (queues) which tracks the current queues. The following
useful property holds for the link monoid:

own γq (Link (qsent q) γ) ∗ own γq (Link (qsent q) γ’) ` γ = γ’

List Monoid

The list monoid is used to track the list of processes that logically belong to a
queue. This is used to ensure that, when a thread holds the lock on a queue,
no other thread can update the logical contents of the queue: the monoid
records the logical contents of the queue; the thread has half of the resource
and the queue has the other half; both halves must agree, so only the thread
with the lock can update the queue. This monoid is the fractional monoid on
lists of process addresses:

Frac(DecAgree(list procAddrT)).

We define List l to be a 1/2 fraction with value l. This monoid has the
following important property:

own γ (List l) ∗ own γ (List l′) ` l = l
′

and, for updating,

own γ (List l) ∗ own γ (List l) ` own γ (List l′) ∗ own γ (List l′)

Predicate Definitions

We now define predicates to represent processes and queues, using the above
monoids.

Processes

The proc predicate specifies a process:

Definition proc γp γq (a : procAddrT) (v : val)
(qv : option queueAddrT) (pv nv : option procAddrT) :=
own γp (Proc a 1/4 {| pvalv := v; pqueuev := qv;

pprevv := pv; pnextv := nv |}) ∗
(pqueuel a) 7→ option__queueAddrT__to__val qv ∗
(pprevl a) 7→ option__procAddrT__to__val pv ∗
(pnextl a) 7→ option__procAddrT__to__val nv ∗
match qv with
| None => True
| Some q => ∃ γ, own γq (Link (qsent q) γ) ∗ own γ (InQueue a)
end.

6.4. A SPECIFICATION FOR THE DARTINO QUEUE 157

The assertion proc γp γq a v qv pv nv declares ownership of the points-to
predicates for the qref (pqueuel a), prev (pprevl a) and next (pnextl a)
locations. These locations hold pointers to the specified queue (qv), previous
process (pv) and next process (nv) respectively. Furthermore, the assertion
declares ownership of a 1/4 fragment of the corresponding process ghost re-
source.

If the process belongs to a queue (i.e. qv is Some q) then the assertion
establishes this relationship by holding the ghost resources:

own γq (Link (qsent q) γ) * own γ (InQueue a)

for some γ . The first of these certifies that the ghost name associated with the
queue is γ , while the second certifies that the process logically belongs to the
queue.

The predicate proc__inv γp γq x wraps the proc predicate in an invari-
ant (with other parameters existentially quantified). The qproc predicate
combines 3/4 ownership of the Proc ghost resource for a process with the
proc__inv invariant:

Definition qproc γp γq x :=
∃ v, own γp (Proc x 3/4 {| pvalv := v; pqueuev := None;

pprevv := None; pnextv := None
|}) ∗ proc__inv γp γq x.

Since the Proc fragment from the qproc predicate must agree with the Proc
fragment from the proc__inv invariant, we can be sure that the heap cells
representing the process object will hold the appropriate values. The qproc
requires that the qref, prev and next pointers should all be None — i.e. the
process does not belong to any queue.

Queues

A queue is represented by the queue γp γq q γ γ’ l predicate, where q is
the queue address, l is a list of the process addresses for processes that belong
to the queue, and the remaining parameters are ghost resource names. A
queue may either be locked or unlocked. If it is locked then the queue’s head
pointer must point to the sentinel value, and the majority of the resources
representing the queue will have been transferred to the thread that holds the
lock. If the queue is unlocked then these resources (which are represented
by the queue__lock predicate) will belong to the queue. In either state, the
queue maintains 1/2 ownership of the head and sentinel points-to predicates,
since threads require access to these in both cases. The predicate also includes
one (of two) List l ghost resources that tracks the logical contents of the
queue; the other is in the queue__lock predicate. Finally, it includes a Link
(qsent q) γ’ ghost resource, which records that γ’ is the ghost name for
the queue’s list membership resource.

158 CHAPTER 6. DARTINO FRAMEWORK

The predicate is defined as follows:

Definition queue γp γq (q : queueAddrT) γ γ’ l :=
∃ (hv : val) (hvOP tvOP : option procAddrT),
(qhead q) 7→{1/2} hv ∗ (qsent q) 7→{1/2} () ∗ own γ (List l) ∗
own γq (Link (qsent q) γ’) ∗ (hv = SOMEV (qsent q) ∨
hv = option__procAddrT__to__val hvOP ∗
queue__lock γp γq q γ γ’ hv hvOP tvOP l).

The queue__lock γp γq q γ γ’ hv hv’ tv l predicate represents the
majority of the resources that constitute a queue, and which may be obtained
by a thread on acquiring the lock. Here, q is the queue address, hv is the
value of the queue’s head pointer, hv’ and tv are pointers to the head and tail
processes in the queue respectively, and l is a list of process addresses that
are in the queue.

Definition queue__lock γp γq (q : queueAddrT) γ γ’ (hv : val)
(hv’ tv : option procAddrT) (l : list procAddrT) :=

(qhead q) 7→{1/2} hv ∗ own γ (List l) ∗ own γ’ (InQueueAuth l) ∗
(qtail q) 7→ option__procAddrT__to__val tv ∗ queue__cont γp γq q hv’ tv l.

The queue__lock predicate includes half ownership of the queue’s head
pointer and the second List l ghost resource for the queue. These resources
complement those of the queue predicate, and ensure that the head pointer
and logical contents of the queue cannot be changed by other threads while
the lock is held.

The predicate also asserts ownership of InQueueAuth l ghost resource,
which ensures that only processes in l can have a corresponding InQueue
resource. Moreover, the full permission on the queue’s tail pointer belongs
to the queue__lock predicate, since this pointer is only accessed by threads
that have acquired the lock. Finally, the list of processes, represented by the
queue__cont predicate, completes the predicate.

The predicate queue__cont consists of proc__inv invariants for each pro-
cess in the list, together with a recursively-defined predicate queue__dll that
ensures that the processes form a doubly-linked list.

Definition queue__cont γp γq (q : queueAddrT)
(h t : option procAddrT) (l : list procAddrT) :=

([∗ list] p ∈ l, proc__inv γp γq p) ∗ queue__dll γp q l h t None None.

The queue__dll γp q l i e p n resembles a standard doubly-linked
list segment predicate [66], except that Proc ghost resources are used to
represent the nodes of the list. (The proc__inv invariant for each process
establishes the connection between these ghost resources and the actual values
in the process object, since it holds the complementary Proc resource.) The
pointers i and e are to the first and last processes in the segment, respectively,
and p and n are the previous and next pointers of the first and last nodes of
the segment.

6.5. A LOGICALLY ATOMIC SPECIFICATION FOR THE DARTINO QUEUE159

Fixpoint queue__dll γp (q : queueAddrT) (l : list procAddrT)
(i e p n : option procAddrT) :=

match l with
| nil => (i = n ∧ e = p)
| x :: l’ => ∃ (v : val) (n’ : option procAddrT),

i = Some x ∗ own γp (Proc x 3/4 {| pvalv := v;
pqueuev := (Some q);
pprevv := p;
pnextv := n’ |}) ∗

queue__dll γp q l’ n’ e i n
end.

6.5 A Logically Atomic Specification for the Dartino
Queue

One approach to specifying the Dartino Queue would be with Hoare-triples
such as the following1:

{qproc p ∗ queue q l}
enqueue(q,p)

{v. v = () ∗ queue q (l++ [p])}

This specifies that calling enqueue with a valid queue q and un-enqueued
process p will result in the process being appended to the queue. Unfortu-
nately, to use this specification, a thread must have ownership of the queue.
Therefore, it is not useful in a concurrent situation where the queue may be
shared among many threads (such as a scheduler).

An alternative specification would be to wrap the queue in an invariant:

{qproc p ∗ inv N (∃l.queue q l)}
enqueue(q,p)

{v. v = () ∗ inv N (∃l.queue q l)}

With such a specification, multiple threads can access the queue. However, we
lose the information that enqueue actually appends the process to the queue.
Indeed an implementation could not change the queue at all and be correct
with respect to such a specification.

The problem with the first specification is that we do not allow any con-
current updates to the queue. The problem with the second is that we allow
all possible concurrent updates to the queue. The optimal specification would
allow the client of the queue to determine exactly which concurrent updates

1For exposition, we elide some parameters of the predicates.

160 CHAPTER 6. DARTINO FRAMEWORK

are possible. We can achieve such a specification by viewing the update as
logically atomic [18].

Access to invariants is generally only permitted to atomic operations: if the
operation preserves the invariant, then no other thread can observe a violation
of the invariant because the operation is atomic. Logically atomic operations
can similarly be used to access invariants, although they do not execute in a
single atomic step. In [18], da Rocha Pinto et al. propose an atomic triple for
specifying logical atomicity. For enqueue, we might give the following atomic
triple:

A

l.〈qproc p ∗ queue q l〉
enqueue(q,p)

〈v. v = () ∗ queue q (l++ [p])〉

This specification expresses that the process p is atomically appended to the
queue q in the execution of enqueue(q,p). The binding of l, representing the
contents of the queue, allows the client to arbitrarily update the queue during
the execution of enqueue, provided that the precondition holds for some l up
until the atomic update takes effect. Immediately after the atomic update,
the postcondition will hold for the value of l at which the precondition held
immediately prior.

Logical Atomicity in Iris

In Iris hoare-triples are encoded using weakest precondition, as so:

{P }e {Φ} ,2(P −∗ wp e
{
Φ

}
)

Therefore, we show how to construct a logically-atomic weakest precondition
in Iris. The core idea is expressed by an “atomic shift” [33]:

Definition atomic__shift {A B : Type}
(α: A → iProp Σ) (* atomic pre-condition *)
(β: A → B → iProp Σ) (* atomic post-condition *)
(Ei Eo: coPset) (* inside/outside invs *)
(P : iProp Σ) (Q : A → B → iProp Σ) : iProp Σ :=
(P ={Eo, Ei}=> ∃ x:A, α x ∗
((α x ={Ei, Eo}=∗ P) ∧ (∀ y, β x y ={Ei, Eo}=∗ Q x y))).

An atomic shift is a persistent assertion. It effectively captures that an
atomic update from α to β is sufficient to take precondition P to postcondition
Q. Specifically, it says:

• From the precondition P we can obtain α x for some x, by opening the
invariants Eo \ Ei.

• Having done so, it is possible to restore P by reestablishing α x and
closing the invariants.

6.5. A LOGICALLY ATOMIC SPECIFICATION FOR THE DARTINO QUEUE161

• Alternatively, by instead establishing β x y for any y, we my establish
Q x y by closing the invariants.

The idea is that if an operation e performs a logically-atomic update from α
to β, then for any given P and Q such that atomic__shift α β Ei Eo P Q we
have {P}e {Q}. Such an operation thus consists of steps that may access α x but
must preserve it, followed by a step that updates α x to β x y, followed by
steps that cannot violate the (arbitrary) postcondition Q. This idea is expressed
in the definition of logically-atomic weakest precondition:

Definition atomic__wp {A : Type}
(α: A → iProp Σ) (* atomic pre-cond. *)
(β: A → val __ → iProp Σ) (* atomic post-cond. *)
(Ei Eo : coPset) (* in/out invs *)
(e: expr __) : iProp Σ :=
(∀ P Q, atomic__shift α β Ei Eo P Q -∗
P -∗ WP e {{ v, ∃ x: A, Q x v }}).

Logically-atomic Specifications for the Dartino Queue Operations

Using this definition of logical atomicity, we can finally show the following
specification for enqueue:

Lemma enqueue__spec :
∀ q p γ γ’ E, procs__inv N γp ∗ qproc N γp γq p `
atomic__wp (λ l => . queue N γp γq q γ γ’ l)

(λ l ret => queue N γp γq q γ γ’ (l++[p]) ∗
ret = is__nil l)

∅ E
enqueue (qhead q) (qtail q) (qsent q) (procAddrT__to__val p).

This specification establishes that enqueue atomically adds the process
p to the end of the queue q, with the return value indicating whether the
queue was empty at the time. However, the qproc predicate does not form
part of the atomic precondition. Instead, it is in the overall precondition.
This means that ownership of the qproc predicate is transferred to enqueue
when it is called, rather than at the point it performs the atomic update. (This
is analogous to the generalization of atomic triples in [18] that permits this
kind of resource transfer.) The implementation can thus use these particular
resources as it sees fit, without being concerned with interference from other
threads. The overall precondition also establishes the invariant procs__inv.

Note that the atomic precondition is guarded under the . modality. Since
we have P ` .P , we could derive a specification without .. However, in Iris
when an invariant is opened with a view shift, the contents is guarded by
the . modality. Therefore it is more convenient for clients that the atomic
precondition should be guarded by ..

We can also show the following specification for dequeue:

162 CHAPTER 6. DARTINO FRAMEWORK

Lemma dequeue__spec :
∀ q γ γ’ E, procs__inv N γp `
atomic__wp (λ l => . queue N γp γq q γ γ’ l)

(λ l ret => ∃ p l’, l = p :: l’ ∗ queue N γp γq q γ γ’ l’ ∗
qproc N γp γq p ∗ ret = Some p ∨
l = [] ∗ queue N γp γq q γ γ’ [] ∗ ret = NONE)

∅ E
dequeue (qhead q) (qtail q) (qsent q) ().

Note that the atomic postcondition consists of a disjunction of the two
cases: either the queue was non-empty and the process at the head of the
queue is dequeued and returned; or the queue was empty, it is unchanged
and the value NONE is returned.

Finally, we present the specification for tryDequeueEntry:

Lemma tryDequeueEntry__spec :
∀ q p γ γ’ E, procs__inv N γp ∗ proc__inv N γp γq p `
atomic__wp (λ l => . queue N γp γq q γ γ’ l)

(λ l ret => (p ∈ l ∗ ∃ l1 l2, l = l1 ++ p :: l2 ∗
queue N γp γq q γ γ’ (l1 ++ l2) ∗
qproc N γp γq p ∗ ret = true) ∨
(p < l ∗ queue N γp γq q γ γ’ l ∗ ret = false))

(n__inv__proc N p) E
tryDequeueEntry (qhead q) (qtail q) (qsent q)

(procAddrT__to__val p).

As with dequeue, the atomic postcondition is a disjunction: if the process p is
in l, then the list l can be split such that l = l1++ p :: l2, so we update the
queue to l1++ l2, extract the qproc resource for p, and return true; if p is
not in l, we do nothing and return false.

Note that the global precondition requires the proc__inv invariant for the
process we wish to dequeue, in addition to the procs__inv invariant present
in the other specifications. This is since otherwise we would have no guarantee
that p indeed represents a legitimate process object.

Interestingly, we also require that the invariant for the process is closed
when obtaining the atomic pre-condition. This is because we have to case on
the process being in the queue, which requires us to open the invariant. Since
it is unsound to open the invariant twice, we need to enforce that the client
does not open the invariant for the process.

6.6 Client

Logically atomic specifications allow clients to build and enforce their own
protocol on top of data-structures. To illustrate this, we will consider a
simple client of the Dartino Queue that simulates a round-robin scheduler. To
simulate executing a process, we define a function doWork that simply reads

6.6. CLIENT 163

and writes a process’s pval pointer. We also define a function scheduler,
which loops attempting to dequeue, “execute” and re-enqueue a process from
a given queue, and a function enqueuer, which loops creating fresh processes
and enqueuing them.

Definition doWork : val := λ: pval, pval <- !pval.

Definition scheduler : val :=
rec: loop h t s :=
let: p := dequeue h t s () in
match: p with
NONE => ()

| SOME p’ => doWork (pval p’);;
enqueue h t s p’

end;;
loop h t s.

Definition enqueuer : val :=
rec: loop h t s :=
let: p := makeProc 1 in
enqueue h t s p;;
loop h t s.

Definition concurrent__client : val :=
λ: <>,

let: q1 := makeQueue () in
let: q1h := queue__head q1 in
let: q1t := queue__tail q1 in
let: q1s := queue__sent q1 in
Fork (scheduler q1h q1t q1s);;
Fork (scheduler q1h q1t q1s);;
Fork (enqueuer q1h q1t q1s).

The concurrent__client function creates a new Dartino Queue and forks
two scheduler threads to run processes from the queue, and one enqueuer
thread to add processes to the queue. (Recall that queue__head, queue__tail
and queue__sent are projection functions from the tuple that represents a
queue address.)

For doWork, to read and write a process’s pval member, our custom pro-
tocol needs to transfer ownership of the reference to doWork. Similarly, for
enqueuer and scheduler to operate on the same queue, the protocol should
allow for each to access the queue, to transfer ownership of the process’s pval
to the shared state when enqueueing a process, and to remove the ownership
of pval when dequeuing a process.

The following invariant client__queue__inv is an excellent candidate for
the shared state for our custom protocol:

Definition client__queue γp γq q γ γ’ l :=
queue N γp γq q γ γ’ l ∗ [∗ list] p ∈ l, ∃ v, pvall p 7→{1/2} v

164 CHAPTER 6. DARTINO FRAMEWORK

Definition client__queue__inv γp γq (q : queueAddrT) γ γ’ :=
inv (n__inv__queue q) (∃ l, client__queue γp γq q γ γ’ l).

This invariant holds a 1/2 fraction of the pval pointer for each process in the
queue. (The remaining 1/2 belongs to the procs__inv invariant, and can be
obtained from the qproc resource when a process is removed from the queue.)

To show how this custom protocol works, consider how the scheduler
function will use the logically atomic specification for dequeue. To do so,
it must establish an atomic__shift α β Ei Eo P Q, where α, β and Ei are
determined by the dequeue specification as:

α := (λ l => . queue N γp γq q γ γ’ l)
β := (λ l ret => ∃ p l’, l = p :: l’ ∗ queue N γp γq q γ γ’ l’ ∗

qproc N γp γq p ∗ ret = Some p ∨
l = [] ∗ queue N γp γq q γ γ’ [] ∗ ret = NONE)

Ei := ∅

and Eo, P and Q are determined by the client as:

Eo := { n__inv__queue q }
P := True
Q := λ l ret => l = [] ∗ ret = NONE ∨

∃ p l’ v, l = p :: l’ ∗ qproc N γp γq p ∗
.(pvall p) 7→{1/2} v ∗ ret = Some p

The precondition is True since the queue belongs to the client invariant, which
is persistent. The postcondition extracts the qproc and pval pointer resources
from the queue when the operation succeeds. The client obtains P and Q as a
pre- and postcondition for dequeue by establishing the atomic shift, namely:

P ={Eo, Ei}=> ∃ x:A, α x ∗
(α x ={Ei, Eo}=∗ P) ∧ (∀ y, β x y ={Ei, Eo}=∗ Q x y))

Since Eo is { n__inv__queue q } and Ei is ∅, the view shift opens the client
invariant to obtain α. Recall that opening an invariant obtains its resources
guarded under the later modality (.), and hence its presence in α. The wand
shifts close the client invariant, the first when no update is performed, and
the second when the dequeue operation takes effect. For the latter, when the
operation succeeds the dequeued process is no longer in the queue, and we
have

queue N γp γq q γ γ’ l ∗ . [∗ list] p’ ∈ p::l, ∃ v, pvall p’ 7→{1/2} v

To close the invariant again, we unfold the iterated separating conjunction
over lists ([* list]) to extract the pval resource for the process p that is
being dequeued:

queue N γp γq q γ γ’ l ∗ ∃ v’, . pvall p’ 7→{1/2} v’ ∗
. [∗ list] p’ ∈ l, ∃ v, pvall p’ 7→{1/2} v

6.7. CONCLUSION 165

The client invariant can then be closed and the . pvall p’ 7→{1/2} v’ re-
source can be retained by the postcondition Q.

6.7 Conclusion

We have formally specified and verified the concurrent queue data structure
at the heart of the Dartino Framework using Iris in the Coq proof assistant.
While the algorithm itself is fairly simple, giving a reasonable specification
for it is not trivial. For this, we have used an encoding of logical atomicity
in Iris. Logical atomicity allows us to precisely capture the behaviour of the
queue operations, allowing clients of the data structure to impose their own
invariants. We demonstrate this by verifying a concurrent client using our
specification. Our work is a case study which shows that Iris and logical
atomicity can be effectively applied to reason about real-world code.

Appendix

167

A Relational Model of
Types-and-Effects in
Higher-Order Concurrent
Separation Logic

The Language and Typing Rules

Syntax and Operational Semantics of λref,conc

The syntax of λref,conc is shown in Figure 1 and the operational semantics is
presented in Figure 2. We assume given denumerably infinite sets of variables
Var, ranged over by x, y, f , and locations Loc, ranged over by l. We use v to
range over the set of values, Val, and e to range over the set of expressions,
Exp. Note that expressions do not include types.

Heaps are finite partial maps from Loc to Val and a thread-pool is a
finite partial map from thread identifiers, modeled by natural numbers N, to
expressions Exp.

The operational semantics is defined by a small-step relation between
configurations consisting of a heap and a thread-pool, where each individual
step of the system is either a reduction on a thread or the forking of a new
thread. The semantics is defined in terms of evaluation contexts, K ∈ ECtx.
We use K[e] to denote the expression obtained by plugging e into the context

Val v ::= () | n | (v,v) | inji v | rec f (x).e | x | l
Exp e ::= v | e = e | e e | (e,e) | prji e | inji e | e+ e

| case(e, inj1 x⇒ e, inj2 y⇒ e)

| new e | !e | e := e | CAS(e,e, e) | e ||e

Figure 1: Syntax of λref,conc.

169

170 MODEL OF TYPES-AND-EFFECTS

Heap h ∈ Loc

fin−−⇀ Val

ECtx K ::= [] | K = e | v = K | K e | v K | (K,e) | (v,K)

| prji K | inji K | K + e | v +K | case(K, inj1 x⇒ e, inj2 y⇒ e)

| new K | !K | K := e | v := K | K ||e | e ||K
| CAS(K,e,e) | CAS(v,K,e) | CAS(v,v,K)

Pure reduction e
pure
→ e′

(rec f (x).e) v
pure
→ e[v/x,rec f (x).e/f]

case(inji v, inj1 x⇒ e1, inj2 x⇒ e2)
pure
→ ei[v/x]

v1 ||v2
pure
→ (v1,v2) prji (v1,v2)

pure
→ vi

v1 + v2
pure
→ v3 where v3 = v1 + v2

v = v
pure
→ true v1 = v2

pure
→ false where v1 , v2

Reduction h;e→ h′;e′

h;e→ h;e′ if e
pure
→ e′

h;new v → h] [l 7→ v]; l

h; !l → h;v if h(l) = v

h[l 7→ −]; l := v → h[l 7→ v]; ()

h;CAS(l,vo,vn)→ h; false if h(l) , vo
h[l 7→ vo];CAS(l,vo,vn)→ h[l 7→ vn];true

h;K[e]→ h′;K[e′] if h;e→ h′;e′

Figure 2: Operational semantics of λref,conc.

K and e[v/x] to denote capture-avoiding substitution of value v for variable x
in expression e.

Typing rules

We assume a denumerably infinite set RegVar of region variables, ranged over
by ρ. An atomic effect on a region ρ is either a read effect, rdρ, a write effect,
wrρ, or an allocation effect, alρ. An effect ε is a finite set of atomic effects. The

MONOIDS AND CONSTRUCTIONS 171

set of types is defined by the following grammar:

Type τ ::= 1 | int | refρ τ | τ × τ | τ + τ | τ→Π,Λ
ε τ

where Π and Λ are finite sequences of region variables. Typing judgments
take the form

Π |Λ | Γ ` e : τ,ε

Monoids and Constructions

Evaluation Context Monoid

Extended Expressions E ∈ EExp

E ∈ EExp ::= a | () | n | x | l | rec f (x).e | E = E | E E | (E ,E) | E + E
| prji E | inji E | case(E , inj1 x⇒ e, inj2 y⇒ e)

| new E | !E | E := E | CAS(E ,E ,E) | E ||E

where a ∈ A is an address.

Extended Evaluation Contexts κ ∈ EECtx

κ ∈ EECtx ::= • | κ = E | v = κ | κ E | v κ | (κ,E) | (v,κ) | κ+ E | v +κ

| prji κ | inji κ | case(κ, inj1 x⇒ e, inj2 y⇒ e)

| new κ | !κ | κ := E | v := κ

| κ||E | E||κ | CAS(κ,E ,E) | CAS(v,κ,E) | CAS(v,v,κ)

Multi Evaluation Contexts MECtx ⊆ EExp

B ∈MECtx ::= a | e | B = e | v = B | B e | v B | (B,e) | (v,B) | B+ e

| v +B | prji B | inji B | case(B, inj1 x⇒ e, inj2 y⇒ e)

| new B | !B | B := e | v := B

| B||B | CAS(B,e,e) | CAS(v,B,e) | CAS(v,v,B)

Free Addresses FA : EExp ⇀ P (A)

172 MODEL OF TYPES-AND-EFFECTS

Π |Λ | Γ ,x : τ ` x : τ,∅ Π |Λ | Γ ` () : 1,∅
v ∈ {true, false}
Π |Λ | Γ ` v : B,∅

v ∈ N
Π |Λ | Γ ` v : int,∅

Π |Λ | Γ ` e : τi , ε

Π |Λ | Γ ` inji e : τ1 + τ2, ε

Π |Λ | Γ ` e1 : τ,ε1 Π |Λ | Γ ` e2 : τ,ε2 eqtype(τ)

Π |Λ | Γ ` e1 = e2 : B, ε1 ∪ ε2

Π |Λ | Γ ` e : τ1 + τ2, ε Π |Λ | Γ ,xi : τi ` ei : τ,εi
Π |Λ | Γ ` case(e, inj1 x1⇒ e1, inj2 x2⇒ e2) : B, ε∪ ε1 ∪ ε2

Π |Λ | Γ ` e : τ1 × τ2, ε

Π |Λ | Γ ` prji e : τi , ε

Π |Λ | Γ ` e1 : int, ε1 Π |Λ | Γ ` e2 : int, ε2

Π |Λ | Γ ` e1 + e2 : int, ε1 ∪ ε2

Π |Λ | Γ ` e1 : τ1, ε1 Π |Λ | Γ ` e2 : τ2, ε2

Π |Λ | Γ ` (e1, e2) : τ1 × τ2, ε1 ∪ ε2

Π |Λ | Γ , f : τ1→Π,Λ
ε τ2,x : τ1 ` e : τ2, ε

Π |Λ | Γ ` rec f (x).e : τ1→Π,Λ
ε τ2,∅

Π |Λ | Γ ` e1 : τ1→Π,Λ
ε τ2, ε1 Π |Λ | Γ ` e2 : τ1, ε2

Π |Λ | Γ ` e1 e2 : τ2, ε∪ ε1 ∪ ε2

Π |Λ | Γ ` e : τ,ε ρ ∈Π,Λ

Π |Λ | Γ ` new e : refρ τ,ε∪
{
alρ

}
Π |Λ | Γ ` e1 : refρ τ,ε1 Π |Λ | Γ ` e2 : τ,ε2

Π |Λ | Γ ` e1 := e2 : 1, ε1 ∪ ε2 ∪
{
wrρ

} Π |Λ | Γ ` e : refρ τ,ε

Π |Λ | Γ ` !e : τ,ε∪
{
rdρ

}
Π |Λ,ρ | Γ ` e : τ,ε ρ < FRV (Γ , τ)

Π |Λ | Γ ` e : τ,ε − ρ

Π,Λ3 |Λ1 | Γ1 ` e1 : τ1, ε1 Π,Λ3 |Λ2 | Γ2 ` e2 : τ2, ε2

Π |Λ1,Λ2,Λ3 | Γ1,Γ2 ` e1 ||e2 : τ1 × τ2, ε1 ∪ ε2

Π |Λ | Γ ` e1 : refρ τ,ε1
Π |Λ | Γ ` e2 : τ,ε2 Π |Λ | Γ ` e3 : τ,ε3 eqtype(τ)

Π |Λ | Γ ` CAS(e1, e2, e3) : B, ε1 ∪ ε2 ∪ ε3 ∪
{
wrρ, rdρ

}

MONOIDS AND CONSTRUCTIONS 173

eqtype(1)

Π |Λ | Γ ` e : τ1, ε1 Π,Λ ` τ1 ≤ τ2 ε1 ⊆ ε2 FRV (ε2) ∈Π,Λ
Π |Λ | Γ ` e : τ2, ε2

eqtype(τ) eqtype(σ) op ∈ {+,×}
eqtype(τ op σ)

FRV (τ) ∈Π∪Λ
Π∪Λ ` τ ≤ τ

Π∪Λ ` τ1 ≤ τ ′1 Π∪Λ ` τ2 ≤ τ ′2
Π∪Λ ` τ1 × τ2 ≤ τ ′1 × τ

′
2

Π∪Λ ` τ1 ≤ τ ′1 Π∪Λ ` τ2 ≤ τ ′2 ε1 ⊆ ε2 Π1 ⊆Π2 Λ1 ⊆Λ2

Π∪Λ ` τ1→
Π1,Λ1
ε1 τ2 ≤ τ ′1→

Π2,Λ2
ε2 τ ′2

Figure 2: Typing and sub-typing inference rules. We write FV (e) and FRV (e)
for the sets of free program variables and region variables respectively. For all
typing judgments on the form Π |Λ | Γ ` e : τ,ε we always have FRV (Γ , τ,ε) ∈
Π∪Λ. The equality type predicate, eqtype, defines the types we may test for
equality.

FA(a), {a}
FA(()) = FA(x) = FA(l) = FA(rec f (x).e), ∅

FA(prji E) = FA(inji E) = FA(new E) = FA(!E), FA(E)

FA(case(κ, inj1 x⇒ e1, inj2 y⇒ e2)), FA(E)

FA(E1 = E2) = FA(E1 E2), FA(E1)]FA(E2)

FA(E1 := E2) = FA(E1 ||E2), FA(E1)]FA(E2)

FA((E1,E2)) = FA(E1 + E2), FA(E1)]FA(E2)

FA(CAS(E1,E2,E3)), FA(E1)]FA(E2)]FA(E3)

where A]B is the union of A and B, but is only defined if A and B are disjoint.

Evaluation Context Monoid ECtx

ECtx, ({f :A⇀fin MECtx | ∀a ∈ dom(f).∀b ∈ FA(f (a)). a <A b}, ·, [])

174 MODEL OF TYPES-AND-EFFECTS

where <A is strict ordering on addresses and monoid composition is defined
as follows

f · g ,

⊥ if dom(f)∩dom(g) , ∅

f ∪ g otherwise

Hereditarily Free Addresses FA : EExp × |ECtx|⇀ P (A)

FA(E , f), FA(E)]
⊎
{FA(f (a), f \ {a}) | a ∈ FA(E)∩dom(f)}

The FA(E , f) function is defined by recursively on the size of (the domain of)
f .

Address Substitution subst : EExp × |ECtx| → EExp

subst(a)(f),

subst(f (a), f \ {a}) if a ∈ dom(f)

a otherwise

subst(e, f), e

subst(E1 = E2, f), subst(E1, f) = subst(E2, f)

subst(E1 E2, f), subst(E1, f) subst(E2, f)

subst((E1,E2), f), (subst(E1, f),subst(E2, f))

subst(E1 + E2, f), subst(E1, f) + subst(E2, f)

subst(prji E , f), prji subst(E , f)

subst(inji E , f), inji subst(E , f)

subst(case(κ, inj1 x⇒ e1, inj2 y⇒ e2), f)

, case(subst(κ,f), inj1 x⇒ e1, inj2 y⇒ e2)

subst(new E , f), new subst(E , f)

subst(!E , f), !subst(E , f)

subst(E1 := E2, f), subst(E1, f) := subst(E2, f)

subst(CAS(E1,E2,E3), f), CAS(subst(E1, f),subst(E2, f),subst(E3, f))

subst(E1||E2, f), subst(E1, f)||subst(E2, f)

The subst(E , f) function is defined by lexicographic recursion on the size of f
and E.

MONOIDS AND CONSTRUCTIONS 175

Extended Context Substitution −[=] : EECtx ×Exp→MECtx
The extended context substitution function, κ[e], substitues the expression e
for the • in κ in the obvious way.

Lemma .0.1.

∀E .∀f ∈ |ECtx|.∀a ∈ FA(subst(E , f)).∃b ∈ FA(E).b ≤A a

Proof. By lexicographic induction on |f | and the size of E.

• Case E = c: if c ∈ dom(f) then subst(E , f) = subst(f (c), f \ {c}) and it
follows by the induction hypothesis that there exists a b ∈ FA(f (c)) such
that b ≤A a. Furthermore, by definition of |ECtx| it follows that c < b
and thus by transitivity that c <A a and c ∈ FA(E).

Conversely, if c < dom(f) then subst(E , f) = E and it follows trivially by
choosing b = a.

• All remaining cases follow directly from the induction hypothesis.

Lemma .0.2.

∀E .subst(E , []) = E

Lemma .0.3.

∀E .∀f1, f2 ∈ |ECtx|.
(∀a ∈ FA(E).∀b ≥A a. (b ∈ dom(f1)⇔
b ∈ dom(f2))∧ f1(b) = f2(b))⇒ subst(E , f1) = subst(E , f2)

Proof. By lexicographic induction on |f1| and the size of E.

• Case E � a: then a ∈ FA(E). If a ∈ dom(f1) then a ∈ dom(f2), f1(a) = f2(a)
and thus,

subst(E , f1) = subst(f1(a), f1) IH= subst(f1(a), f2) =

subst(f2(a), f2) = subst(E , f2)

and if a < dom(f1), then a < dom(f2) and thus

subst(E , f1) = a = subst(E , f2)

• All the remaining cases follow directly from the induction hypothesis.

176 MODEL OF TYPES-AND-EFFECTS

Definition .0.4.

f =a g , ∀b >A a. (b ∈ dom(f)⇔ b ∈ dom(g))∧ f (b) = g(b)

Lemma .0.5.

∀f ,g.∀a,b.a < b∧ f =a g⇒ f =b g

Proof. Let c ∈ A such that b <A c. Then by transitivity of <A it follows that
a <A c and thus c ∈ dom(f)⇔ c ∈ dom(g) and f (c) = g(c), as required.

Corollary .0.6.

∀E .∀f , f1, f2 ∈ |ECtx|.∀a.
a ∈ dom(f)∧ f1 =a f2⇒ subst(f (a), f1) = subst(f (a), f2)

Proof. By Lemma .0.3 it suffices to prove that

b ∈ dom(f1)⇔ b ∈ dom(f2) f1(b) = f2(b)

for all b ∈ FA(f (a)). To that end, let b ∈ FA(f (a)). By definition of |ECtx|
it follows that a < b and thus by the f1 =a f2 assumption it follows that
f1(b) = f2(b) and b ∈ dom(f1)⇔ b ∈ dom(f2), as required.

Lemma .0.7.

∀f ∈ |ECtx|.∀a ∈ A. f =a (f \ {a})

Proof. Let b ∈ A such that a < b. Then a , b and thus b ∈ dom(f) ⇔ b ∈
dom(f \ {a}) and f (b) = (f \ {a})(b).

Lemma .0.8.

∀f ,g ∈ |ECtx|. g ⊆ f ⇒ subst(E , f) = subst(subst(E , g), f)

Proof. By lexicographic induction on |g | and the size of E.

• Case E = a: if a ∈ dom(g) then

subst(subst(E , g), f) = subst(subst(g(a), g \ {a}), f) IH= subst(g(a), f)

= subst(f (a), f)

= subst(f (a), f \ {a})
= subst(E , f)

where the second to last equality follows from Corollary .0.6 and Lemma
.0.7. If a < dom(g) then

subst(subst(E , g), f) = subst(E , f)

MONOIDS AND CONSTRUCTIONS 177

• All the remaining cases follow directly from the induction hypothesis.

Lemma .0.9.

∀E ∈ EExp.∀f ∈ |ECtx|.FA(E) defined ⇒

FA(subst(E , f)) = (FA(E) \dom(f))∪
⋃
{FA(f (a)) | a ∈ FA(E)∩dom(f)}

Lemma .0.10.

∀E .∀κ.∀f .subst(κ[E], f) = subst(κ[subst(E , f)], f)

Proof. By induction on the structure of κ.

• Case κ ≡ •: then subst(E , f) = subst(subst(E , f), f) by Lemma .0.8.

• Cse κ ≡ κ1 = E ′: then

subst(κ1[E] = E ′ , f) = (subst(κ1[E], f) = subst(E ′ , f))
IH= (subst(κ1[subst(E , f)], f) = subst(E ′ , f))

= subst(κ1[subst(E , f)] = E ′ , f)

= subst(κ[subst(E , f)], f)

• All remaining cases follow directly from the induction hypothesis.

Lemma .0.11.

∀E .∀f .∀j.∀κ.∀e ∈ Exp.∀k < dom(f).

f (j) = κ[e]∧ j < k ∧FA(E , f) = dom(f)

⇒ subst(E , f) = subst(E , f [j 7→ κ[k], k 7→ e])

Proof. By lexicographic induction on |f | and the size of E.

• Case E = a: Since a ∈ FA(E , f) = dom(f) and k < dom(f) it follows that
a , k. If a = j then

subst(E , f [j 7→ κ[k], k 7→ e])

= subst(κ[k], (f \ {j})[k 7→ e])

= subst(subst(κ[k], [k 7→ e]), (f \ {j})[k 7→ e])

= subst(subst(κ[subst(k, [k 7→ e])], [k 7→ e]), (f \ {j})[k 7→ e])

= subst(subst(κ[e], [k 7→ e]), (f \ {j})[k 7→ e])

= subst(κ[e], (f \ {j})[k 7→ e])

= subst(κ[e], f \ {j})
= subst(E , f)

178 MODEL OF TYPES-AND-EFFECTS

and if a , j then

subst(E , f [j 7→ κ[k], k 7→ e]) = subst(f (a), (f \ {a})[j 7→ κ[k], k 7→ e])
IH= subst(f (a), f \ {a}))
= subst(E , f)

• All remaining cases follow directly from induction hypothesis.

Lemma .0.12.

∀E .∀f .∀j,k ∈ dom(f).∀κ.∀e ∈ Exp.
f (j) = κ[k]∧ f (k) = e∧ j , k ∧FA(E , f) = dom(f)

⇒ subst(E , f) = subst(E , f [j 7→ κ[e], k 7→ ⊥])

Proof. By lexicographic induction on |f | and |E|.

• Case E = a: If a = j then

subst(E , f) = subst(κ[k], f \ {j})
= subst(subst(κ[k], [k 7→ e]), f \ {j})
= subst(subst(κ[subst(k, [k 7→ e])], [k 7→ e]), f \ {j})
= subst(κ[e], f \ {j})
= subst(κ[e], f [k 7→ ⊥] \ {j})
= subst(E , f [j 7→ κ[e], k 7→ ⊥])

where the second to last equality follows from the fact that k < FA(κ[e]).

If a = k then dom(f) = FA(E , f) = {a}]FA(e) = {a}, which is a contradic-
tion, as k, j ∈ dom(f) and k , j.

Lastly, if a , k and a , j then

subst(E , f) = subst(f (a), f \ {a})
IH= subst(f (a), f \ {a}[j 7→ κ[e], k 7→ ⊥])

= subst(f (a), (f [j 7→ κ[e], k 7→ ⊥]) \ {a})
= subst(E , f [j 7→ κ[e], k 7→ ⊥])

• All remaining cases follow directly from the induction hypothesis.

Lemma .0.13.

∀κ.∀k.∀e ∈ Exp.FA(κ[k]) = FA(κ[e])] {k}

MONOIDS AND CONSTRUCTIONS 179

Proof. By induction on κ.

• Case κ = •: then FA(κ[k]) = FA(k) = {k} = FA(κ[e])] {k}.

• Case κ = κ1||E: then

FA(κ[k]) = FA(κ1[k])]FA(E)
IH= FA(κ1[e])] {k}]FA(E) = FA(κ[e])] {k}

• All remaining cases follows directly from the induction hypothesis.

Lemma .0.14.

∀κ.∀f .∀k ∈ dom(f).∀e ∈ Exp.
FA(κ[k], f) = FA(κ[e], f)] {k}]FA(f (k), f \ {k})

Proof. By induction on the structure of κ.

• Case κ = •: then

FA(κ[k], f) = FA(k,f) = {k}]FA(f (k), f \ {k})
= FA(κ[e], f)] {k}]FA(f (k), f \ {k})

• Case κ = κ1||E: then

FA(κ[k], f) = FA(κ1[k])]FA(E)]⊎
{FA(f (a), f \ {a}) | a ∈ FA(κ1[k])]FA(E)}

= FA(κ1[e])] {k}]FA(E)]FA(f (k), f \ {k})]⊎
{FA(f (a), f \ {a}) | a ∈ FA(κ1[e])]FA(E)}

= FA(κ1[e], f)] {k}]FA(f (k), f \ {k})

• All remaining cases should follow directly from the induction hypothe-
sis.

Lemma .0.15.

∀f .∀j.∀κ.∀k < dom(f).∀e.
f (j) = κ[e]∧FA(E , f) = dom(f)⇒

FA(E , f [j 7→ κ[k], k 7→ e]) = dom(f [j 7→ κ[k], k 7→ e])

180 MODEL OF TYPES-AND-EFFECTS

Proof. By lexicographic induction on |f | and the size of E. Let f ′ = f [j 7→
κ[k], k 7→ e].

• Case E = a: If a = k then a ∈ FA(E , f) = dom(f) and thus k ∈ dom(f),
which is a contradiction. If a = j then

FA(E , f ′) = {j}]FA(κ[k], (f \ {j})[k 7→ e])

= {j}]FA(κ[e], (f \ {j})[k 7→ e])] {k}]FA(e, f [k 7→ e])

= {j,k}]FA(κ[e], (f \ {j})[k 7→ e])

= {j,k}]FA(κ[e], f \ {j})
= {k}]FA(E , f)

= {k}]dom(f)

= dom(f ′)

Lastly, if a , k and a , j then

FA(E , f ′) = {a}]FA(f ′(a), f ′ \ {a})
= {a}]FA(f (a), (f \ {a})[j 7→ κ[k], k 7→ e])
IH= {a}]dom((f \ {a})[j 7→ κ[k], k 7→ e])

= {a}] (dom(f [j 7→ κ[k], k 7→ e]) \ {a})
= dom(f ′)

• All the remaining cases should follow directly from the induction hy-
pothesis.

Lemma .0.16.

∀f .∀j,k ∈ dom(f).∀κ.∀e.
f (j) = κ[k]∧ f (k) = e∧ j , k ∧FA(E , f) = dom(f)

⇒ FA(E , f [j 7→ κ[e], k 7→ ⊥]) = dom(f [j 7→ κ[e], k 7→ ⊥])

Proof. By lexicographic induction on |f | and the size of E. Let f ′ = f [j 7→
κ[e], k 7→ ⊥].

• Case E = a: If a = k then dom(f) ∈ FA(E , f) = {k}] FA(e, f \ {k}) = {k},
which is a contradiction as k, j ∈ dom(f) and k , j. If a = j then

FA(E , f ′) = {j}]FA(κ[e], (f \ {j})[k 7→ ⊥])

= {j}]FA(κ[e], f \ {j})
= {j}] (FA(κ[k], f \ {j}) \ {k})
= FA(E , f) \ {k}
= dom(f) \ {k}
= dom(f ′)

MONOIDS AND CONSTRUCTIONS 181

Lastly, if a , k and a , j then

FA(E , f ′) = {a}]FA(f ′(a), f ′ \ {a})
= {a}]FA(f (a), (f \ {a})[j 7→ κ[e], k 7→ ⊥])
IH= {a}]dom((f \ {a})[j 7→ κ[e], k 7→ ⊥])

= {a}] (dom(f [j 7→ κ[e], k 7→ ⊥]) \ {a})
= dom(f ′)

• All the remaining cases should follow directly from the induction hy-
pothesis.

Lemma .0.17.

∀f .∀E .∀a ∈ dom(f). a < FA(E , f)⇒ FA(E , f) = FA(E , f [a 7→ ⊥])

Proof. By lexicographic induction on |f | and |E|.

• Case E = b: since a < FA(E , f) = {b}]FA(f (b), f \ {b}) it follows that a , b.
We thus have,

FA(E , f) = {b}]FA(f (b), f \ {b})
IH= {b}]FA(f (b), (f \ {b})[a 7→ ⊥])

= {b}]FA(f (b), (f [a 7→ ⊥]) \ {b})
= FA(E , f [a 7→ ⊥])

• All the remaining cases follow directly from the induction hypothesis.

Lemma .0.18.

∀f .∀E .∀a ∈ dom(f). a < FA(E , f)⇒ subst(E , f) = subst(E , f [a 7→ ⊥])

Proof. By lexicographic induction on |f | and |E|.

• Case E = b: since a < FA(E , f) = {b}]FA(f (b), f \ {b}) it follows that a , b.
We thus have,

subst(E , f) = subst(f (b), f \ {b})
IH= subst(f (b), (f \ {b})[a 7→ ⊥])

= subst(f (b), (f [a 7→ ⊥] \ {b}))
= subst(E , f [a 7→ ⊥])

182 MODEL OF TYPES-AND-EFFECTS

• All the remaining cases follow directly from the induction hypothesis.

Lemma .0.19.

∀E .∀f .∀j ∈ dom(f).FA(E , f) = dom(f)∧FA(f (j)) = ∅
⇒ ∃K.∀e ∈ Exp.subst(E , f [j 7→ e]) = K[e]

Proof. By lexicographic induction on |f | and |E|.

• Case E = a: if a = j then dom(f) = FA(E , f) = FA(f (a))]{j} = {j}. We thus
take K = •. Then, for every e ∈ Exp we have

subst(E , f [j 7→ e]) = subst(e, []) = e = K[e]

If a , j then FA(f (a), f \ {a}) = dom(f \ {a}) and by the induction hypoth-
esis, there exists a K such that subst(f (a), (f \ {a})[j 7→ e]) = K[e]. We
simply pick this K :

subst(E , f [j 7→ e]) = subst(f (a), (f \ {a})[j 7→ e]) = K[e]

• Case E = E1 E2: we know that j ∈ dom(f) = FA(E , f) = FA(E1, f)]
FA(E2, f). By Lemma .0.17 it follows that FA(E1, f) = FA(E1, f \FA(E2, f))
and FA(E2, f) = FA(E2, f \FA(E1, f)) and more importantly,

FA(E1, f \FA(E2, f)) = dom(f \FA(E2, f))

FA(E2, f \FA(E1, f)) = dom(f \FA(E1, f))

If j ∈ FA(E1, f) then by the induction hypothesis, there exists a K such
that

subst(E1, (f \FA(E2, f))[j 7→ e]) = K[e]

for all expressions e. We thus simply pick K subst(E2, f) as our context,
such that

subst(E , f [j 7→ e]) = subst(E1, f [j 7→ e]) subst(E2, f [j 7→ e])

= subst(E1, (f \FA(E2, f))[j 7→ e]) subst(E2, f)

= K[e] subst(E2, f)

for all expressions e. Here the second equality follows by Lemma .0.18.

The case of j ∈ FA(E2, f) is symmetric.

• All other cases follow a similar pattern: on binary expression formers,
do a case-analysis on which sub-expression j “appears” in and appeal to
the induction hypothesis for that sub-expression.

MONOIDS AND CONSTRUCTIONS 183

Definition .0.20.

j
ζ
=⇒S B, ◦[j 7→ B] : AuthECtx

Exp(ζ)

mctx(e,ζ), ∃f ∈ |ECtx|. •f : AuthECtx
Exp(ζ) ∗

subst(0, f) = e ∗FA(0, f) = dom(f)

Lemma .0.21.

mctx(e,ζ) ∗ j
ζ
=⇒S κ[e′]V ∃k.mctx(e,ζ) ∗ j

ζ
=⇒S κ[k] ∗ k

ζ
=⇒S e

′

Proof.

mctx(e,ζ) ∗ j
ζ
=⇒S κ[e′]

= ∃f . j
ζ
=⇒S κ[e′] ∗ •f ζ ∗ subst(0, f) = e ∗FA(0, f) = dom(f)

⇒ j
ζ
=⇒S κ[e′] ∗ •f ζ ∗ subst(0, f ′) = e ∗FA(0, f) = dom(f)

⇒ j
ζ
=⇒S κ[e′] ∗ •f ζ ∗ subst(0, f ′) = e ∗FA(0, f ′) = dom(f ′)

V j
ζ
=⇒S κ[k] ∗ k

ζ
=⇒S e

′ ∗ •f ′ ζ ∗ subst(0, f ′) = e ∗FA(0, f ′) = dom(f ′)

⇒∃k. j
ζ
=⇒S κ[k] ∗ k

ζ
=⇒S e

′ ∗mctx(e,ζ)

where f ′ = f [j 7→ κ[k], k 7→ e′], the first implication follows by Lemma .0.11
and the second implication by Lemma .0.15.

Lemma .0.22.

mctx(e,ζ) ∗ j
ζ
=⇒S κ[k] ∗ k

ζ
=⇒S e

′V mctx(e,ζ) ∗ j
ζ
=⇒S κ[e′]

Proof.

mctx(e,ζ) ∗ j
ζ
=⇒S κ[k] ∗ k

ζ
=⇒S e

′

= ∃f . j
ζ
=⇒S κ[k] ∗ k

ζ
=⇒S e

′ ∗ •f ζ ∗ subst(0, f) = e ∗FA(0, f) = dom(f)

⇒ j
ζ
=⇒S κ[k] ∗ k

ζ
=⇒S e

′ ∗ •f ζ ∗ subst(0, f ′) = e ∗FA(0, f) = dom(f)

⇒ j
ζ
=⇒S κ[k] ∗ k

ζ
=⇒S e

′ ∗ •f ζ ∗ subst(0, f ′) = e ∗FA(0, f ′) = dom(f ′)

V j
ζ
=⇒S κ[e′] ∗ •f ′ ζ ∗ subst(0, f ′) = e ∗FA(0, f ′) = dom(f ′)

⇒ j
ζ
=⇒S κ[e′] ∗mctx(e,ζ)

where f ′ = f [j 7→ κ[e′], k 7→ ⊥], the first implication follows by Lemma .0.12
and the second implication by Lemma .0.16.

184 MODEL OF TYPES-AND-EFFECTS

Lemma .0.23.

mctx(e,ζ) ∗ 0
ζ
=⇒S e

′⇒mctx(e,ζ) ∗ 0
ζ
=⇒S e

′ ∗ e = e′

Proof. By unfolding the syntactic sugar, it follows that subst(e′ , f) = e and
since FA(e′) = ∅ we have e = e′ as required.

Lemma .0.24.

∀e,e′ , e1, e
′
1.∀h,h

′ .∀j.

mctx(e,ζ) ∗ j
ζ
=⇒S e1 ∗ (h;e1→ h′;e′1)V

∃e′ .mctx(e′ ,ζ) ∗ j
ζ
=⇒S e

′
1 ∗ (h;e→ h′;e′)

Proof. If j = 0 then it follows by Lemma .0.23 that e = e1 and the conclusion
thus follows easily by taking e′ = e′1.

Otherwise, j , 0 and by unfolding the syntactic sugar there exists an f
such that

•f ζ ∗ e = subst(0, f) ∗FA(0, f) = dom(f) ∗ ◦ [j 7→ e1]
ζ ∗ (h;e1→ h′;e′1)

By Lemma .0.19 there exists a K such that

subst(0, f [j 7→ e′′]) = K[e′′]

for all expressions e′′. Hence, in particular, e = subst(0, f [j 7→ e1]) = K[e1]. We
thus have

•f ζ ∗ e = subst(0, f) ∗FA(0, f) = dom(f) ∗ ◦ [j 7→ e1]
ζ ∗ (h;e1→ h′;e′1)

⇒ •f ζ ∗K[e′1] = subst(0, f [j 7→ e′1]) ∗FA(0, f [j 7→ e′1]) = dom(f [j 7→ e′1]) ∗

◦ [j 7→ e1]
ζ ∗ (h;K[e1]→ h′;K[e′1])

V •f [j 7→ e′1]
ζ ∗K[e′1] = subst(0, f [j 7→ e′1])∗

FA(0, f [j 7→ e′1]) = dom(f [j 7→ e′1]) ∗ ◦ [j 7→ e′1]
ζ ∗

(h;K[e1]→ h′;K[e′1])

⇒mctx(K[e′1],ζ) ∗ j
ζ
=⇒S e

′
1 ∗ (h;e→ h′;K[e′1],)

MONOIDS AND CONSTRUCTIONS 185

Standard Iris Monoids

AHeap, AuthFpFun(Loc,Val)

Sr, Frac{∗}
Reg, FpFun(RN ,FracX + ({A ∈ P (X) | |A| = 2} ×Heap))

where X , list Name

AFHeap, AuthFpFun(Loc,FracVal)

EfReg, FpFun(N,Frac{∗})
EfRegLoc, FpFun(Loc,Ex{∗})

AllocHeap, FracP (Loc)×P (Loc)

Disjoint Monoid

Assume a countably infinite set X, define:

Disjoint, (P (X),◦,∅)

where
x ◦ y , x∪ y if x # y

Syntactic Sugar

LRML

heap(h), •h : AHeap
π1(γ)

l 7→ v , ◦ [l 7→ v] : AHeap
π1(γ)

186 MODEL OF TYPES-AND-EFFECTS

LREff

heap(h), •h : AHeap
π1(γ)

l 7→ v , ◦ [l 7→ v] : AHeap
π1(γ)

[Rd]πr , [r 7→ (π,∗)] : EfReg
π2(γ)

[Wr]πr , [r 7→ (π,∗)] : EfReg
π3(γ)

[Al]πr , [r 7→ (π,∗)] : EfReg
π4(γ)

rheap(h,r), • ĥ : AFHeap

R(r)

x
π
↪−→r v , ◦ [l 7→ v] : AFHeap

R(r)

[Rd(x)]r , [x 7→ ∗] : EfRegLoc
Rd(r)

[NoRd(x)]r , [x 7→ ∗] : EfRegLoc
No(r)

[Wr(x)]r , [x 7→ ∗] : EfRegLoc
Wr(r)

[Al(h)]πr , (π,dom(h)) : AllocHeap
Al(r)

MONOIDS AND CONSTRUCTIONS 187

LRBin

heapI (h), •h : AHeap
π1(γ)

l 7→I v , ◦ [l 7→ v] : AHeap
π1(γ)

heapS(h), •h : AHeap
π2(γ)

l 7→S v , ◦ [l 7→ v] : AHeap
π2(γ)

[Rd]πr , [r 7→ (π,∗)] : EfReg
π5(γ)

[Wr]πr , [r 7→ (π,∗)] : EfReg
π6(γ)

[Al]πr , [r 7→ (π,∗)] : EfReg
π7(γ)

mctx(f), •f : AuthECtx
π8(γ)

j =⇒S e , ◦ [j 7→ e] : AuthECtx
π8(γ)

rheapX(h,r), • ĥ : AFHeap

X(r)

x
π
↪−→X,r v , ◦ [l 7→ v] : AFHeap

X(r)

[Rd(x)]r , [x 7→ ∗] : EfRegLoc
Rd(r)

[NoRd(x)]r , [x 7→ ∗] : EfRegLoc
No(r)

[Wr(x)]r , [x 7→ ∗] : EfRegLoc
Wr(r)

[Al(h1,h2)]πr , (π, (dom(h1),dom(h2))) : AllocHeap
Al(r)

188 MODEL OF TYPES-AND-EFFECTS

LRPar

heapI (h), •h : AHeap
π1(γ)

l 7→I v , ◦ [l 7→ v] : AHeap
π1(γ)

[Mu(r, {ζ})]π , [r 7→ (π, inj1 ζ)] : Reg
π2(γ)

[Im(r,S,h)]π , [r 7→ (π, inj2 (S,h))] : Reg
π2(γ)

[Y]H , Y : Disjoint
π3(γ)

[Rd]πr , [r 7→ (π,∗)] : EfReg
π4(γ)

[Wr]πr , [r 7→ (π,∗)] : EfReg
π5(γ)

[Al]πr , [r 7→ (π,∗)] : EfReg
π6(γ)

heapS(h,ζ), •h : AHeap
π1(ζ)

l 7→ζ
S v , ◦ [l 7→ v] : AHeap

π1(ζ)

mctx(f), •f : AuthECtx
π2(ζ)

j
ζ
=⇒S e , ◦ [j 7→ e] : AuthECtx

π2(ζ)

[Sr]πζ , (π,∗) : Sr
π3(ζ)

rheapX(h,r), • ĥ : AFHeap

X(r)

x
π
↪−→X,r v , ◦ [l 7→ v] : AFHeap

X(r)

[Rd(x)]r , [x 7→ ∗] : EfRegLoc
Rd(r)

[NoRd(x)]r , [x 7→ ∗] : EfRegLoc
No(r)

[Wr(x)]r , [x 7→ ∗] : EfRegLoc
Wr(r)

[Al(h1,h2)]πr , (π, (dom(h1),dom(h2))) : AllocHeap
Al(r)

The function̂embeds a partial finite function into a full fractional partial
finite function, formally, it is pairwise applied where each map is computed
as so:

x̂ 7→ v = x 7→ (1,v)

Utility functions for invariant names

Throughout the entire paper we assume a constant invariant name Hp and
functions Sp, Rg and Rf that maps simulation identifiers, region identifiers

THE LR
ML

RELATION 189

and locations into Iris names respectively. We assume each function is injec-
tive, that the images of each pair of functions is disjoint and does not contain
Hp.

The LRML relation

We assume a list of monoid-names γ to be defined globally.

Heap, ∃h. heap(h) ∗ bhc
Ref(φ,x), ∃v. x 7→ v ∗φ(v)

~1�,λx. x = ()

~B�,λx. x ∈ {true, false}
~int�,λx. x ∈ N

~τ1 × τ2�,λx.∃y1, y2. x = (y1, y2) ∧ .y1 ∈ ~τ1�∧ .y2,∈ ~τ2�

~τ1 + τ2�,λx. (.∃y ∈ ~τ1�. x = inj1 y) ∨ (.∃y ∈ ~τ2�. x = inj2 y)

~τ1→ τ2�,λx.2∀y. (.y ∈ ~τ1�) ⇒E(~τ2�)(x y)

~ref τ�,λx. Ref(~τ�,x)
Rf(x)

E(φ),λx. {Heap
Hp}x {v. φ(v)}>

Logical relatedness

x : τ |=
ML

e : τ , `
Iris
∀x′ .~τ�(x′) =⇒ E(~τ�)(e[x′/x])

Theorem .0.25 (Fundamental Theorem). If Π | ∆ | Γ ` e : τ,ε then Π | ∆ | Γ |=
ML

e : τ,ε

Proof. Proof omitted.

The LREff relation

We assume a list of monoid-names γ to be defined globally.

Heap, ∃h. heap(h) ∗ bhc

Ref(r,φ,x), ∃v. x
1
2
↪−→r v ∗ effs(r,φ,x,v)

Reg(r), locs(r) ∗ tokens(r)

190 MODEL OF TYPES-AND-EFFECTS

where

M :RV fin−−⇀MonoidName list

effs(r,φ,x,v), ([Wr(x)]r ∨ x
1
2
↪−→r v) ∗ ([Rd(x)]r ∨ (φ(v) ∗ [NoRd(x)]r))

locs(r), ∃h. rheap(h,r) ∗ alloc(h,r) ∗~(l,v)∈hl 7→ v ∗
~{x|x∈Loc\dom(h)} [NoRd(x)]r

toks(r), ([Wr]πwrr ∨~x∈Loc[Wr(x)]r) ∗ ([Rd]πrdr ∨~x∈Loc[Rd(x)]r)

alloc(h,r), ([Al(r)]1 ∗ [Al(h)]
1
2
r)∨ [Al(h)]1

r

~1�M ,λx. x = ()

~B�M ,λx. x ∈ {true, false}
~int�M ,λx. x ∈ N

~τ1 × τ2�
M ,λx.∃y1, y2. x = (y1, y2) ∧ .y1 ∈ ~τ1�

M ∧ .y2,∈ ~τ2�
M

~τ1 + τ2�
M ,λx. (.∃y ∈ ~τ1�

M . x = inj1 y) ∨ (.∃y ∈ ~τ2�
M . x = inj2 y)

~τ1→
Π,Λ
ε τ2�

M ,λx.2∀y. (.y ∈ ~τ1�
M) ⇒EΠ;Λ

ε,M (~τ2�
M)(x y))

~refρ τ�
M ,λx. Ref(M(ρ),~τ�M ,x)

Rf(x)
∗ Reg(M(ρ))

Rg(M(ρ))

Ptoks(ρ,r,π,ε), (ρ < rds ε∨ [Rd]πr) ∗ (ρ < wrs ε∨ [Wr]πr) ∗
(ρ < als ε∨ [Al]πr)

Preg(R,g,ε,M), ~
ρ∈R

Ptoks(ρ,M(ρ), g(ρ), ε) ∗ Reg(M(ρ))
Rg(M(ρ))

EΠ;Λ
ε,M (φ), λx. ∀g ∈Π→ P erm.

Heap
Hp `
{Preg(Λ,1, ε,M) ∗ Preg(Π, g,ε,M)}
x

{v. φ(v) ∗ Preg(Λ,1, ε,M) ∗ Preg(Π, g,ε,M)}>

Logical relatedness

Π |Λ | x : τ |=
Eff

e : τ,ε ,

`
Iris
∀M.∀x′ .~τ�M(x′) =⇒ EΠ;Λ

ε,M (~τ�M)(e[x′/x])

Theorem .0.26 (Fundamental Theorem). If Π | ∆ | Γ ` e : τ,ε then Π | ∆ | Γ |=
Eff

e : τ,ε

Proof. Proof omitted.

THE LR
Eff

RELATION 191

Example: Type violating assignments

The code below illustrates the possibility to temporarily break the type-
constraints for references in private regions.

x := ();x := True

The above example clearly violates the type of the parameter x, however,
we would still like to show:

· | · | refρ B ` x := ();x := True : 1,
{
wrρ, rdρ

}
which means we would have to show for M =M ′[ρ 7→ r]:

E ·;ρ{wrρ ,rdρ},M(~1�M)(x := ();x := True)

We define the following evaluation context:

K1 , [];x := True

Lemma .0.27.

∀r. .Reg(r)WV Reg(r)

Proof. . can be removed by VSTimeless since ghost resources are timeless.

Lemma .0.28.

∀r,φ,x. .Ref(r,φ,x)WV Ref(r,.φ,x)

Lemma .0.29 (Trade write tokens).

∀h,r. tokens(h,1,1, r) ∗ [Wr]1
rWV tokens(h,1,1, r) ∗~x∈Loc[Wr(x)]r

Lemma .0.30 (Trade read tokens).

∀h,r. tokens(h,1,1, r) ∗ [Rd]1
rWV tokens(h,1,1, r) ∗~x∈Loc[Rd(x)]r

Lemma .0.31 (Trade region points-to).

∀r,φ,x,v. effs(r,φ,x,v) ∗ [Wr(x)]r ⇔ effs(r,φ,x,v) ∗ x
1
2
↪−→r v

Lemma .0.32 (Trade Read for NoRead).

∀r,φ,x,v. effs(r,φ,x,v) ∗ [Rd(x)]r ⇔ effs(r,φ,x,v) ∗φ(v) ∗ [NoRd(x)]r

Lemma .0.33 (Region heap has mapping).

∀h,x,v,π,r. locs(h,r) ∗ x
π
↪−→r v⇒∃h′ . h = h′[x 7→ v]

192 MODEL OF TYPES-AND-EFFECTS

Proof. By owning an authorative fragment x
π
↪−→r v it must be that for regheap(ĥ, r),

ĥ contains [x 7→ v] since this is the corresponding authorative element. Since
the hat function is just an injection from a partial map to one with a full
fragment, there exists some h′ such that h = h′[x 7→ v].

Lemma .0.34 (Obtain points-to).

∀h,h′ , r,x,v. h = h′[x 7→ v] ∗ locs(h,r)⇔ regheap(ĥ, r) ∗ alloc(h,r) ∗
~(l,v′)∈h′ l 7→ v′ ∗ x 7→ v

Lemma .0.35 (Update concrete heap).

∀x,v. Heap
Hp `
{x 7→−}
x := v

{v′ . v′ = () ∗ x 7→ v}

Proof.

Context: x,v,Heap
Hp

{x 7→−}{Hp}

O
p

en
H
p

{.Heap ∗ x 7→−}
{Heap ∗ x 7→−}
{∃h. heap(h[x 7→ −],γ) ∗ bh[x 7→ −]c ∗ x 7→−}
x := v
{v′ . v′ = () ∗ ∃h. heap(h[x 7→ v],γ) ∗ bh[x 7→ v]c ∗ x 7→ v}
{v′ . v′ = () ∗Heap ∗ x 7→ v}

{v′ . v′ = () ∗ x 7→ v}{Hp}

Lemma .0.36 (Make type-violating assignment).

∀r,x,v,φ. Heap
Hp

, Reg(r)
Rg(r)

, Ref(r,φ,x)
Rf(x) `

{[Wr]1
r ∗ [Rd]1

r }
x := v

{v′ . v′ = () ∗ [Wr]1
r ∗~x′∈Loc\{x}[Rd(x′)]r ∗ [NoRd(x)]r}

THE LR
Eff

RELATION 193

Proof.

Context: r,x,v,φ,Heap
Hp

, Reg(r)
Rg(r)

, Ref(x,φ,x)
Rf(x){

[Wr]1
r ∗ [Rd]1

r

}
{Hp,Rg(r),Rf(x)}

O
p

en
R
g

(r
),
R
f
(x

)

{
.Reg(r) ∗ .Ref(r,φ,x) ∗ [Wr]1

r ∗ [Rd]1
r

}
{Hp}

By Lemma .0.27 and Lemma .0.28{
Reg(r) ∗Ref(r,.φ,x) ∗ [Wr]1

r ∗ [Rd]1
r

}
{Hp}

By Lemma .0.29 and Lemma .0.30∃h. locs(h,r) ∗ tokens(h,1,1, r) ∗Ref(r,.φ,x) ∗
~x′∈Loc\{x}([Wr(x′)]r ∗ [Rd(x′)]r) ∗ [Wr(x)]r ∗ [Rd(x)]r


{Hp}

F
r
a
m
e

{∃h. locs(h,r) ∗Ref(r,.φ,x) ∗ [Wr(x)]r ∗ [Rd(x)]r }{Hp}∃h. locs(h,r) ∗ x 1
2
↪−→r − ∗ effs(r,φ,x,−) ∗ [Wr(x)]r ∗ [Rd(x)]r


{Hp}

By Lemma .0.31, Lemma .0.32 and Lemma .0.33{
∃h. locs(h[x 7→ −], r) ∗ x

1
↪−→r − ∗ effs(r,φ,x,−) ∗ [NoRd(x)]r

}
{Hp}

By Lemma .0.34∃h. regheap(ˆh[x 7→ −], r) ∗ alloc(h[x 7→ −], r) ∗~(l,w)∈hl 7→w ∗

x 7→− ∗ x
1
↪−→r − ∗ effs(r,φ,x,−) ∗ [NoRd(x)]r


{Hp}

F
r
a
m
e

{x 7→−}{Hp}

x := v
{v′ . v′ = () ∗ x 7→−}{Hp} By Lemma .0.35v′ . v′ = () ∗ ∃h. regheap(ˆh[x 7→ −], r) ∗ alloc(h[x 7→ −], r) ∗

~(l,w)∈hl 7→w ∗ x 7→ v ∗ x
1
↪−→r − ∗ effs(r,φ,x,−) ∗ [NoRd(x)]r


{Hp}

Updated region points-to by having full fraction and having both the
full and the fragmental authorative parts by AFHeapUpd.v′ . v′ = () ∗ ∃h. regheap(ˆh[x 7→ v], r) ∗ alloc(h[x 7→ −], r) ∗
~(l,w)∈hl 7→w ∗ x 7→ v ∗ x

1
↪−→r v ∗ effs(r,φ,x,v) ∗ [NoRd(x)]r


{Hp}v′ . v′ = () ∗ ∃h. locs(h,r) ∗ x

1
2
↪−→r v ∗ x

1
2
↪−→r v ∗ effs(r,φ,x,v) ∗

[NoRd(x)]r


{Hp}

By

Lemma .0.31
{v′ . v′ = () ∗ ∃h. locs(h,r) ∗Ref(r,φ,x) ∗ [Wr(x)]r ∗ [NoRd(x)]r }{Hp}v′ . v′ = () ∗ ∃h. locs(h,r) ∗ tokens(h,1,1, r) ∗Ref(r,φ,x) ∗

~x′∈Loc\{x}([Wr(x′)]r ∗ [Rd(x′)]r) ∗ [Wr(x)]r ∗ [NoRd(x)]r


{Hp}

By Lemma .0.29{
v′ . v′ = () ∗ [Wr]1

r ∗~x′∈Loc\{x}[Rd(x′)]r ∗ [NoRd(x)]r
}
{Hp,Rg(r),Rf(x)}

194 MODEL OF TYPES-AND-EFFECTS

Lemma .0.37 (Make type-respecting assignment).

∀r,x,v,φ. Heap
Hp

, Reg(r)
Rg(r)

, Ref(r,φ,x)
Rf(x)

,φ(v) `

{[Wr]1
r ∗~x′∈Loc\{x}[Rd(x′)]r ∗ [NoRd(x)]r}

x := v

{v′ . v′ = () ∗ [Wr]1
r ∗ [Rd]1

r }

Proof. The proof follows the same outline as above, except for the last line,
before closing Rg(r),Rf(x), by havingφ(v)∗[NoRd(x)]r we can use Lemma .0.32
to obtain~x′∈Loc[Rd(x′)]r to which we can use Lemma .0.30 to obtain [Rd]1

r

The LRBin relation

For a pair x , (x1,x2) we have xI , π1(x) and xS , π2(x) when xI and xS is not
defined in the context. Similarly, for a pair X = (X1,X2), we have XΠ , π1(X)
and XΛ , π2(X).

Heap, ∃h. heap(h,γ) ∗ bhc
Spec(h0, e0), ∃h,e. heapS(h) ∗mctx(e,γ) ∗ (h0, e0)→∗ (h,e)

Ref(r,φ,x), ∃v. xI
1
2
↪−→I,r vI ∗ xS

1
2
↪−→S,r vS ∗ effs(r,φ,x,v)

Reg(r), locs(r) ∗ tokens(r)

where

effs(r,φ,x,v), ([Wr(x)]r ∨ (xI
1
2
↪−→I,r _ ∗ xS

1
2
↪−→S,r _)) ∗

([Rd(x)]r ∨ ((vI ,vS) ∈ φ ∗ [NoRd(x)]r))

locs(r), ∃h. rheapI (hI , r) ∗ rheapS(hS , r) ∗ alloc(h,r) ∗
~(l,v)∈hI l 7→I v ∗~(l,v)∈hS l 7→

γ
S v ∗

~{x|x∈(Loc\dom(hI))×(Loc\dom(hS))} [NoRd(x)]r
tokens(r), ([Wr]πwrr ∨~x∈Loc2[Wr(x)]r) ∗ ([Rd]πrdr ∨~x∈Loc2[Rd(x)]r)

alloc(h,r), ([Al]1
r ∗ [Al(hI ,hS)]

1
2
r)∨ [Al((hI ,hS))]1

r

For M ,RN fin−−⇀MonoidName list:

THE LR
Bin

RELATION 195

~1�M ,λx. xI = xS = ()

~int�M ,λx. xI ,xS ∈ N∧ xI = xS
~τ1 × τ2�

M ,λx.∃y1, y2, z1, z2. xI = (y1, y2)∧ xS = (z1, z2) ∧
.(y1, z1) ∈ ~τ1�

M ∧ .(y2, z2) ∈ ~τ2�
M

~τ1 + τ2�
M ,λx. (.∃(yI , yS) ∈ ~τ1�

M . xI = inj1 yI ∧ xS = inj1 yS) ∨
(.∃(yI , yS) ∈ ~τ2�

M . xI = inj2 yI ∧ xS = inj2 yS)

~τ1→
Π,Λ
ε τ2�

M ,λx.2∀yI , yS . (.(yI , yS) ∈ ~τ1�
M) ⇒

EΠ;Λ
ε,M (~τ2�

M)(xI yI ,xS yS)

~refρ τ�
M ,λx. Ref(M(ρ),~τ�M ,xI ,xS)

Rf(xI ,xS)
∗

Reg(M(ρ))
Rg(M(ρ))

Ptoks(ρ,r,π,ε), (ρ < rds ε∨ [Rd]πr) ∗ (ρ < wrs ε∨ [Wr]πr) ∗
(ρ < als ε∨ [Al]πr)

Preg(R,g,ε,M), ~
ρ∈R

Ptoks(ρ,M(ρ), g(ρ), ε) ∗ Reg(M(ρ))
Rg(M(ρ))

EΠ;Λ
ε,M (φ)(eI , eS), ∀g ∈Π→ P erm,j :A, e0 : Exp,Hp,Sp,h0.

Heap
Hp

, Spec(h0, e0)
Sp `

{j =⇒S eS ∗ Preg(Λ,1, ε,M) ∗ Preg(Π, g,ε,M)}
eI

{vI . ∃vS . j =⇒S vS ∗φ(vI ,vS) ∗ Preg(Λ,1, ε,M) ∗ Preg(Π, g,ε,M)}>

Logical relatedness

Π |Λ | x : τ |=
Bin

e1≤log e2 :τ,ε ,

`
Iris
∀M.∀xI ,xS .~τ�M(xI ,xS)

=⇒ EΠ;Λ
ε,M (~τ�M)(e1[xI /x], e2[xS /x])

Theorem .0.38 (Fundamental Theorem). If Π | ∆ | Γ ` e : τ,ε then Π | ∆ | Γ |=
Bin

e ≤log e : τ,ε

Proof. Proof omitted.

Theorem .0.39 (Soundness). If Π | ∆ | Γ |=
Bin

eI ≤log eS : τ,ε then Π | ∆ | Γ `
eI ≤ctx eS : τ,ε.

Proof. Proof omitted.

196 MODEL OF TYPES-AND-EFFECTS

Example: Type violating assignments

Consider the following two programs:

e1 , (x := ();x := true) e2 , x := true

We would like to show the following:

· | ρ | x : refρ B |=Bin
e1 � e2 : 1,

{
wrρ, rdρ

}
which means that we have to show:

EΠ;Λ
{wrρ ,rdρ},M(~1�M)(e1, e2)

Lemma .0.40.

∀r. Reg(r) ∗ [Rd]1
rWV Reg(r) ∗~x∈Loc2[Rd(x)]r

Lemma .0.41.

∀r,π,φ,x,v.
{[Wr]πr ∗ [Rd(x)]r ∗Ref(r,.φ,x) ∗Reg(r) ∗Heap}
x := v

{w. w = () ∗ [Wr]πr ∗ [NoRd(x)]r ∗Ref(r,φ,x) ∗Reg(r) ∗Heap}

Proof. Follows from view-shifts shown in the article and appendix

Lemma .0.42.

∀j, r,π,φ,x,v.
{j =⇒S xS := vS ∗ [Wr]πr ∗ [NoRd(x)]r ∗Ref(r,.φ,x) ∗Reg(r) ∗Heap ∗φ(vI ,vS)}
x := vI
{w. w = () ∗ j =⇒S () ∗ [Wr]πr ∗ [Rd(x)]r ∗Ref(r,φ,x) ∗Reg(r) ∗Heap}

Proof. Follows from view-shifts shown in the article and appendix

THE LR
Bin

RELATION 197

Context: x, j,M,ρ,Heap
Hp

, Spec
Sp

// Let r =M(ρ) and R = {Hp,Sp,Rf(x),Rg(r)}{
j =⇒S xS := true ∗ [Rd]1

r ∗ [Wr]1
r ∗ Ref(r,~1�M ,x)

Rf(x)
∗ Reg(r)

Rg(r)
}
R

B
in

d
on
x I

:=
()

;x
I

:=
tr
u
e

j =⇒S xS := true ∗ [Rd]1
r ∗ [Wr]1

r ∗ Ref(r,~1�M ,x)
Rf(x)

∗
Reg(r)

Rg(r)


R

O
p

en
R

j =⇒S xS := true ∗ [Rd]1
r ∗ [Wr]1

r ∗ .Ref(r,~1�M ,x) ∗ .Reg(r) ∗
.Heap ∗ .Spec


// Follows from VSTimelessj =⇒S xS := true ∗ [Rd]1

r ∗ [Wr]1
r ∗Ref(r,.~1�M ,x) ∗Reg(r) ∗

Heap ∗ Spec


// Follows from Lemma .0.40j =⇒S xS := true ∗ [Wr]1

r ∗Ref(r,.~1�M ,x) ∗Reg(r) ∗
Heap ∗ Spec ∗~x∈Loc2 [Rd(x)]r


x := ()

// Follows from Lemma .0.41w. w = () ∗ j =⇒S xS := true ∗ [Wr]1
r ∗Ref(r,~1�M ,x) ∗Reg(r) ∗

Heap ∗ Spec ∗~y∈Loc2\{x}[Rd(y)]r ∗ [NoRd(x)]r

w. w = () ∗ j =⇒S xS := true ∗ [Wr]1
r ∗ Ref(r,~1�M ,x)

Rf(x)
∗

Reg(r)
Rg(r) ∗~y∈Loc2\{x}[Rd(y)]r ∗ [NoRd(x)]r


R

O
p

en
R

j =⇒S xS := true ∗ [Wr]1
r ∗Ref(r,.~1�M ,x) ∗Reg(r) ∗

Heap ∗ Spec ∗~y∈Loc2\{x}[Rd(y)]r ∗ [NoRd(x)]r


x := true

// Follows from Lemma .0.42w′ . w′ = () ∗ j =⇒S () ∗ [Wr]1
r ∗Ref(r,~1�M ,x) ∗Reg(r) ∗

Heap ∗ Spec ∗~y∈Loc2\{x}[Rd(y)]r ∗ [Rd(x)]r

w′ . w′ = () ∗ j =⇒S () ∗ [Wr]1
r ∗Ref(r,~1�M ,x) ∗Reg(r) ∗

Heap ∗ Spec ∗~y∈Loc2 [Rd(y)]r


// Follows from Lemma .0.40w′ . w′ = () ∗ j =⇒S () ∗ [Wr]1

r ∗Ref(r,~1�M ,x) ∗Reg(r) ∗
Heap ∗ Spec ∗ [Rd]1

r

w′ . w′ = () ∗ j =⇒S () ∗ [Wr]1
r ∗ Ref(r,~1�M ,x)

Rf(x)
∗ Reg(r)

Rg(r) ∗
[Rd]1

r


Rw′ . ∃wS . j =⇒S wS ∗ [Wr]1

r ∗ Ref(r,~1�M ,x)
Rf(x)
∗ Reg(r)

Rg(r) ∗
[Rd]1

r ∗ ~1�M (w′ ,wS)


R

198 MODEL OF TYPES-AND-EFFECTS

Example: Local state

We have intensionally defined our logical relations to support local state that
is not tracked by the type-and-effect system. This means that we can for
instance prove that a pure expression approximates an impure expression at
a pure effect type, because the impure expression uses untracked local state.
To illustrate, consider the following two functions:

e1 , true e2 , let x = new true in !x

thus we would like to show:

· | · | · |=
Eff

e1 � e2 : B,∅

Context: Heap
Hp

, Spec
Sp

{j =⇒S e2}

O
p

en
S
p {Spec ∗ j =⇒S e2}{

Spec ∗ ∃vS . j =⇒S !vS ∗ vS 7→S true
}{

Spec ∗ ∃vS ,v′S . j =⇒S v
′
S ∗ vS 7→S true ∗ v

′
S = true

}{
∃vS ,v′S . j =⇒S v

′
S ∗ v

′
S = true

}
true{
vI . vI = true ∗ ∃vS ,v′S . j =⇒S v

′
S ∗ v

′
S = true

}{
vI . ∃v′S . j =⇒S v

′
S ∗ (vI ,v

′
S) ∈ ~B�M

}
As a consequence of this choice to allow local state not tracked by the type-

and-effect system, it is possible to have non-determinism in expressions that
we deem semantically pure. For instance, the following expression returns 1
or 2 non-deterministically, but can be proven to be semantically pure, because
it only uses local state.

e , let x = new 0 in x := 1 ||x := 2; !x

The LRPar relation

For a pair x , (x1,x2) we have xI , π1(x) and xS , π2(x) when xI and xS is not
defined in the context. Similarly, for a pair X = (X1,X2), we have XΠ , π1(X)
and XΛ , π2(X). We assume a list of monoid-names γ to be defined globally.

THE LR
Par

RELATION 199

A spec can either be active (π < 1) or finished (π = 1).

Heap, ∃hI . heapI (hI) ∗ bhI c
Ref(r,φ,x), ∃v. ref(r,φ,x,v)

Reg(r), ∃h. locs(h,r) ∗ toks(1,1, r)
Spec(h0, e0,ζ), ∃h,e.heapS(h,ζ) ∗mctx(e,ζ) ∗ (h0, e0)→∗ (h,e) ∗

([Sr]1
ζ ∨ ([Sr]

1
2
ζ ∗ disjH (h0,h)))

where

ref(r,φ,x,v), xI
1
2
↪−→I,r vI ∗ xS

1
2
↪−→S,r vS ∗ effs(r,φ,x,v)

effs(r,φ,x,v), ([Wr(x)]r ∨ (xI
1
2
↪−→I,r _ ∗ xS

1
2
↪−→S,r _)) ∗

([Rd(x)]r ∨ (φ(vI ,vS) ∗ [NoRd(x)]r))

locs(h,r), ∃S. locs(h,r,S,S)

locs(h,r,S,S ′), rheapI (hI , r) ∗ rheapS(hS , r) ∗ alloc(h,r) ∗
slink(r,S,hS ,

1
2 ,

1
4) ∗~(l,v)∈hI l 7→ v ∗

~ζ∈S ′ ~(l,v)∈hS l 7→
ζ
S v ∗

~x∈(Loc\dom(hI))×(Loc\dom(hS)) [NoRd(x)]r

slink(r,S,h,π,π′), ([Mu(r,S)]π ∨ [Im(r,S,h)]π
′
)

toks(πrd ,πwr , r), ([Wr]πwrr ∨~x∈Loc2[Wr(x)]r) ∗
([Rd]πrdr ∨~x∈Loc2[Rd(x)]r)

alloc(h,r), ([Al]1
r ∗ [Al(hI ,hS)]

1
2
r)∨ [Al(hI ,hS)]1

r

disjH (h0,h), ∃hY . [hY]H ∧dom(h0)∩ hY = ∅ ∧
(dom(h) \dom(h0)) ⊂ hY

~1�M ,λx. xI = xS = ()

~B�M ,λx. xI ,xS ∈ {true, false} ∧ xI = xS
~int�M ,λx. xI ,xS ∈ N∧ xI = xS

~τ1 × τ2�
M ,λx.∃y1, y2, z1, z2. xI = (y1, y2)∧ xS = (z1, z2) ∧

.(y1, z1) ∈ ~τ1�
M ∧ .(y2, z2) ∈ ~τ2�

M

~τ1 + τ2�
M ,λx. (.∃(yI , yS) ∈ ~τ1�

M . xI = inj1 yI ∧ xS = inj1 yS) ∨
(.∃(yI , yS) ∈ ~τ2�

M . xI = inj2 yI ∧ xS = inj2 yS)

~τ1→
Π,Λ
ε τ2�

M ,λx.2∀yI , yS . (.(yI , yS) ∈ ~τ1�
M) ⇒

EΠ;Λ
ε,M (~τ2�

M)(xI yI ,xS yS)

~refρ τ�
M ,λx. Ref(M(ρ),~τ�M ,x)

Rf(x)
∗ Reg(M(ρ))

Rg(M(ρ))

200 MODEL OF TYPES-AND-EFFECTS

Ppar(R,g,ε,M,ζ), ~
ρ∈mutable(R,g,ε)

[Mu(M(ρ), {ζ})]g(ρ) ∗

~
ρ∈R\mutable(R,g,ε)

∃S. slink(M(ρ), {ζ}] S,h,g(ρ), g(ρ))

Ptoks(ρ,r,π,ε), (ρ < rds ε∨ [Rd]πr) ∗ (ρ < wrs ε∨ [Wr]πr) ∗
(ρ < als ε∨ [Al]πr)

Preg(R,g,ε,M,ζ), Ppar(R,
1
2 ◦ g,ε,M,ζ) ∗ Reg(r)

Rg(r) ∗
~ρ∈R Ptoks(ρ,M(ρ), g(ρ), ε)

mutable(R,g,ε),wrs ε∪als ε∪
{
ρ | ρ ∈ R∧ g(ρ) = 1

2

}
EΠ;Λ
ε,M (φ)(eI , eS),∀g ∈Π→ P erm,j ∈ A, e0 ∈ Exp,h0,π,ζ.

Heap
Hp

, Spec(e0,h0,ζ)
Sp(ζ) `

{j ζ
=⇒S eS ∗ [Sr]πζ ∗ Preg(Λ,1, ε,M,ζ) ∗ Preg(Π, g,ε,M,ζ)}
eI

{vI . ∃vS . j ζ
=⇒S vS ∗ [Sr]πζ ∗ Preg(Λ,1, ε,M,ζ) ∗ Preg(Π, g,ε,M,ζ) ∗φ(vI ,vS)}>

Logical relatedness

Π |Λ | x : τ |=
Par

e1≤log e2 :τ,ε ,

`
Iris
∀M.∀xI ,xS .~τ�M(xI ,xS)

=⇒ EΠ;Λ
ε,M (~τ�M)(e1[xI /x], e2[xS /x])

Theorem .0.43 (Soundness). If Π | ∆ | Γ |=
Bin

eI ≤log eS : τ,ε then Π | ∆ | Γ `
eI ≤ctx eS : τ,ε.

Proof. Proof in end of appendix.

THE LR
Par

RELATION 201

Fundamental Theorem

Theorem .0.44 (Fundamental Theorem). If Π | ∆ | Γ ` e : τ,ε then Π | ∆ | Γ |=
Bin

e ≤log e : τ,ε

Proof. Hard cases are shown below

We will use the predicates below to make proving specific properties about
their internal state easier. The intended meaning and naming remains.

Spec(h0,h, e0, e,π,ζ), heapS(h,ζ) ∗mctx(e,ζ) ∗ (h0, e0)→∗ (h,e) ∗ [Sr]πζ ∗
(π = 1∨ (π < 1 ∗ disjH (h0,h)))

Spec(h0, e0,ζ), ∃h,e. Spec(h0,h, e0, e,
1
2
,ζ)

S(ζ, j,h0, e0, e,π,R,g,ε,M), Spec(e0,h0,ζ)
Sp(ζ) ∗ j

ζ
=⇒S e ∗ [Sr]πζ ∗

Preg(RΛ,1, ε,M,ζ) ∗ Preg(RΠ, g,ε,M,ζ)

Open invariants

Lemma .0.45 (Can remove .).

.HeapV Heap (1)

∀ζ. .Spec(h0, e0,ζ)V Spec(h0, e0,ζ) (2)

∀r. .Reg(r)V Reg(r) (3)

∀r,φ,x. .Ref(r,φ,x)V Ref(r,.φ,x) (4)

Proof. . commute over ∗ and all assertions inside are either ghost-resource or
pure statements thus we can use Timeless to remove the ..

Specification reduction

Lemma .0.46 (Specification reduction / no allocation).

∀j, e0, e, e1, e
′
1, e
′
1,π,π

′ ,h0,h,h
′ ,K,ζ.

(heapS(h,ζ) ∗ disjH (h0,h)V heapS(h′ ,ζ) ∗ disjH (h0,h
′)⇒

Spec(h0,h, e0, e,π,ζ) ∗ [Sr]π
′

ζ ∗ j
ζ
=⇒S K[e1] ∗ (h,e1)→ (h′ , e′1)

V ∃e′ . Spec(h0,h
′ , e0, e,π,ζ) ∗ [Sr]π

′

ζ ∗ j
ζ
=⇒S K[e′1]

202 MODEL OF TYPES-AND-EFFECTS

Proof.

Spec(h0,h, e0, e,π,ζ) ∗ [Sr]π
′

ζ ∗ j
ζ
=⇒S K[e1] ∗

(h,e1)→ (h′ , e′1)

(unfold)V heapS(h,ζ) ∗mctx(e,ζ) ∗ (h0, e0)→∗ (h,e) ∗ [Sr]πζ ∗

(π = 1∨ (π < 1 ∗ disjH (h0,h))) ∗ [Sr]π
′

ζ ∗ j
ζ
=⇒S K[e1] ∗

(h,e1)→ (h′ , e′1)

V heapS(h,ζ) ∗mctx(e,ζ) ∗ (h0, e0)→∗ (h,e) ∗ [Sr]π+π′
ζ ∗

disjH (h0,h) ∗ j
ζ
=⇒S K[e1] ∗ (h,e1)→ (h′ , e′1)

(Lemma .0.21)V ∃k. heapS(h,ζ) ∗mctx(e,ζ) ∗ (h0, e0)→∗ (h,e) ∗

[Sr]π+π′
ζ ∗ disjH (h0,h) ∗ j

ζ
=⇒S K[k] ∗

(h,e1)→ (h′ , e′1) ∗ k
ζ
=⇒S e1

(Lemma .0.24)V ∃k,e′ . heapS(h,ζ) ∗mctx(e′ ,ζ) ∗ (h0, e0)→∗ (h′ , e′) ∗

[Sr]π+π′
ζ ∗ disjH (h0,h) ∗ j

ζ
=⇒S K[k] ∗

(h,e1)→ (h′ , e′1) ∗ k
ζ
=⇒S e

′
1

(ass)V ∃k,e′ . heapS(h′ ,ζ) ∗mctx(e′ ,ζ) ∗ (h0, e0)→∗ (h′ , e′) ∗

[Sr]π+π′
ζ ∗ disjH (h0,h

′) ∗ j
ζ
=⇒S K[k] ∗

(h,e1)→ (h′ , e′1) ∗ k
ζ
=⇒S e

′
1

(Lemma .0.22)V ∃k,e′ . heapS(h′ ,ζ) ∗mctx(e′ ,ζ) ∗ (h0, e0)→∗ (h′ , e′) ∗

[Sr]π+π′
ζ ∗ disjH (h0,h

′) ∗ j
ζ
=⇒S K[e′1] ∗

(h,e1)→ (h′ , e′1)

(fold)V ∃e′ . Spec(h0,h
′ , e0, e

′ ,π,ζ) ∗ [Sr]π
′

ζ ∗ j
ζ
=⇒S K[e′1]

Lemma .0.47 (Spec pure reduction step).

∀e1, e
′
1,h,K,π. (h,e1)→ (h,e′1)⇒

∀ζ, j. (Spec(h0, e0,ζ)
Sp(ζ) ∗ j

ζ
=⇒S K[e1] ∗ [Sr]πζ VSp(ζ)

Spec(h0, e0,ζ)
Sp(ζ) ∗ j

ζ
=⇒S K[e′1] ∗ [Sr]πζ)

THE LR
Par

RELATION 203

Proof.

Spec(h0, e0,ζ)
Sp(ζ) ∗ j

ζ
=⇒S K[e1] ∗ [Sr]πζ

(VSInv) VSp(ζ) ∅ .Spec(h0, e0,ζ) ∗ j
ζ
=⇒S K[e1] ∗ [Sr]πζ

(Lemma .0.45)V Spec(h0, e0,ζ) ∗ j
ζ
=⇒S K[e1] ∗ [Sr]πζ

(unfold)⇒ ∃h,e. heapS(h,ζ) ∗mctx(e,ζ) ∗ (h0, e0)→∗ (h,e) ∗

([Sr]1
ζ ∨ ([Sr]

1
2
ζ ∗ disjH (h0,h))) ∗

j
ζ
=⇒S K[e1] ∗ [Sr]πζ

(Lemma .0.46)⇒ ∃h,e′ . heapS(h,ζ) ∗mctx(e′ ,ζ) ∗ (h0, e0)→∗ (h,e′) ∗

([Sr]1
ζ ∨ ([Sr]

1
2
ζ ∗ disjH (h0,h))) ∗

j
ζ
=⇒S K[e′1] ∗ [Sr]πζ

(fold)⇒ Spec(h0, e0,ζ) ∗ j
ζ
=⇒S K[e′1] ∗ [Sr]πζ

(VSClose) Spec(h0, e0,ζ)
Sp(ζ) ∗ j

ζ
=⇒S K[e′1] ∗ [Sr]πζ

Function abstraction

Lemma .0.48. If

~τ1→Π,Λ
ε τ2�

M(fI , fS) ` EΠ;Λ
ε,M (τ2)(eI , eS) (H1)

then
~τ1→Π,Λ

ε τ2�
M(rec f (x).eI ,rec f (x).eS)

Proof. Löb-induction, thus we have to show:

2∀yI , yS . (.(yI , yS) ∈ ~τ1�
M)⇒EΠ;Λ

ε,M (~τ2�
M)(rec f (x).eI yI ,rec f (x).eS yS)

under the assumption .(~τ1→
Π,Λ
ε τ2�

M(rec f (x).eI ,rec f (x).eS)):

Context: h0, e0, j,ζ,π,g,.(~τ1�
M(yI , yS)),Heap

Hp

, Spec(h0, e0,ζ)
Sp(ζ)

Context: .(~τ1→
Π,Λ
ε τ2�

M(fI , fS))j
ζ
=⇒S rec f (x).eS yS ∗ [Sr]πζ ∗ Preg(Λ,1, ε,M,ζ) ∗
Preg(Π, g,ε,M,ζ)


{Hp,Sp(ζ)}

rec f (x).eI yIvI . ∃vS . ~τ2�
M(vI ,vS) ∗ j

ζ
=⇒S vS ∗ [Sr]πζ ∗

Preg(Λ,1, ε,M,ζ) ∗ Preg(Π, g,ε,M,ζ)


{Hp,Sp(ζ)}

204 MODEL OF TYPES-AND-EFFECTS

We can take a step, thereby remove the . from the context

Context: h0, e0, j,ζ,π,g,.(~τ1�
M(yI , yS)),Heap

Hp

, Spec(h0, e0,ζ)
Sp(ζ)

Context: (~τ1→
Π,Λ
ε τ2�

M(fI , fS))j
ζ
=⇒S eS [yS /x, fS /f] ∗ [Sr]πζ ∗ Preg(Λ,1, ε,M,ζ) ∗
Preg(Π, g,ε,M,ζ)


{Hp,Sp(ζ)}

eI [yI /x, fI /f]vI . ∃vS . ~τ2�
M(vI ,vS) ∗ j

ζ
=⇒S vS ∗ [Sr]πζ ∗ Preg(Λ,1, ε,M,ζ) ∗

Preg(Π, g,ε,M,ζ)


{Hp,Sp(ζ)}

Now we can apply H1 with yI and yS .

Function application

Lemma .0.49.

∀v1,v2, j,π,Λ,Π, ε,h0, e0,ζ,M.

Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)

,~τ1→Π,Λ
ε τ2�

M(v1I ,v1S),~τ1�
M(v2I ,v2S) `

{j ζ
=⇒S v1S v2S ∗ [Sr]πζ ∗ Preg(Λ,1, ε,M,ζ) ∗ Preg(Π, g,ε,M,ζ)}
v1I v2I

{vI . ∃vS . j ζ
=⇒S vS ∗ ~τ2�

M(vI ,vS) ∗ [Sr]πζ ∗ Preg(Λ,1, ε,M,ζ) ∗
Preg(Π, g,ε,M,ζ) }

{Hp,Sp(ζ)}

Proof. Unfolding ~τ1→
Π,Λ
ε τ2�

M(v1I ,v1S) and apply that the computations
are related, thus we have to show ~τ1�

M(v2I ,v2S), which we have from our
assumption.

Par

regs(ε), {r | r ∈ rds ε∪wrs ε∪als ε }

Lemma .0.50 (Splitting region).

∀R1,R2, g,ε1, ε2,M,ζ.

Preg(R1]R2, g,ε1 ∪ ε2,M,ζ) ∗ regs(ε1) ⊆ R1 ∗ regs(ε2) ⊆ R2

V Preg(R1, g,ε1,M,ζ) ∗ Preg(R2, g,ε2,M,ζ)

THE LR
Par

RELATION 205

Lemma .0.51 (Assembling regions).

∀R1,R2, g,ε1, ε2,M,ζ.

Preg(R1, g,ε1,M,ζ) ∗ Preg(R2, g,ε2,M,ζ)

V Preg(R1]R2, g,ε1 ∪ ε2,M,ζ)

Lemma .0.52 (Changing region).

∀R,g,ε1, ε2,M,ζ.

Preg(R,g,ε1 ∪ ε2,M,ζ)

WV Preg(R, g2 , ε1,M,ζ) ∗ Preg(R, g2 , ε2,M,ζ) ∗ Preg(R, g2 , ε1 ∪ ε2 \ ε1 ∩ ε2,M,ζ)

where

g
2 (ρ),


g(ρ)

2 ρ ∈ dom(g)

⊥ otherwise

Lemma .0.53 (New expressions in evaluation contexts).

∀j, e1, e2. j
ζ
=⇒S e1 ||e2V ∃k1, k2. j

ζ
=⇒S k1 ||k2 ∗ k1

ζ
=⇒S e1 ∗ k2

ζ
=⇒S e2

Proof. Follows from Lemma .0.21.

Lemma .0.54 (Substituting expressions in evaluation contexts).

∀j,k1, j2,v1,v2. j
ζ
=⇒S k1 ||k2 ∗ k1

ζ
=⇒S v1 ∗ k2

ζ
=⇒S v2V j

ζ
=⇒S v1 ||v2

Proof. Follows from Lemma .0.22.

Lemma .0.55 (Par).

∀j,h0, e0, e1, e2,ζ,π,Λ1,Λ2,Λ3,Π, ε1, ε2,M,g,τ1, τ2.

regs(ε1) ⊆Λ1 ∪Λ3 ∪Π∧ regs(ε2) ⊆Λ2 ∪Λ3 ∪Π⇒

(E(Π,Λ3);Λ1
ε1,M

(~τ1�
M)(e1I , e1S),E(Π,Λ3);Λ2

ε2,M
(~τ2�

M)(e2I , e2S),

Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ) `

EΠ,(Λ1,Λ2,Λ3)
ε1∪ε2,M

(~τ1 × τ2�
M)(e1I ||e2I , e1S ||e2S))

206 MODEL OF TYPES-AND-EFFECTS

Proof. Let R = {Hp,Sp(ζ)}.
Context: j,h0, e0, e1, e2,ζ,π,Λ1,Λ2,Λ3,Π, ε1, ε2,M,g,τ1, τ2

Context: E(Π,Λ3);Λ1
ε1,M

(~τ1�
M)(e1I , e1S),E(Π,Λ3);Λ2

ε2,M
(~τ2�

M)(e2I , e2S)

Context: Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)j

ζ
=⇒S e1S ||e2S ∗ [Sr]πζ ∗ Preg (Λ1]Λ2]Λ3,1, ε1 ∪ ε2,M,ζ) ∗
Preg (Π, g,ε1 ∪ ε2,M,ζ)


// Lemma .0.50j

ζ
=⇒S e1S ||e2S ∗ [Sr]πζ ∗ Preg (Λ1,1, ε1,M,ζ) ∗ Preg (Λ2,1, ε2,M,ζ) ∗
Preg (Λ3,1, ε1 ∪ ε2,M,ζ) ∗ Preg (Π, g,ε1 ∪ ε2,M,ζ)


R

// Lemma .0.52
j
ζ
=⇒S e1S ||e2S ∗ [Sr]

π
2
ζ ∗ [Sr]

π
2
ζ ∗ Preg (Λ1,1, ε1,M,ζ) ∗ Preg (Λ2,1, ε2,M,ζ) ∗

Preg (Λ3,
1
2 , ε1,M,ζ) ∗ Preg (Λ3,

1
2 , ε2,M,ζ) ∗ Preg (Λ3,

1
2 , ε1 ∪ ε2 \ ε1 ∩ ε2,M,ζ) ∗

Preg (Π, g2 , ε1,M,ζ) ∗ Preg (Π, g2 , ε2,M,ζ) ∗ Preg (Π, g2 , ε1 ∪ ε2 \ ε1 ∩ ε2,M,ζ)


R

// Let g ′(r),


g
2 r ∈Π
1
2 r ∈Λ3

⊥ otherwise
j
ζ
=⇒S e1S ||e2S ∗ [Sr]

π
2
ζ ∗ [Sr]

π
2
ζ ∗ Preg (Λ1,1, ε1,M,ζ) ∗ Preg (Λ2,1, ε2,M,ζ) ∗

Preg (Λ3]Π, g ′ , ε1,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε2,M,ζ) ∗
Preg (Λ3]Π, g ′ , ε1 ∪ ε2 \ ε1 ∩ ε2,M,ζ)


R

// Lemma .0.53
∃k1, k2. j

ζ
=⇒S k1 ||k2 ∗ k1

ζ
=⇒S e1S ∗ k2

ζ
=⇒S e2S ∗ [Sr]

π
2
ζ ∗ [Sr]

π
2
ζ ∗

Preg (Λ1,1, ε1,M,ζ) ∗ Preg (Λ2,1, ε2,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε1,M,ζ) ∗
Preg (Λ3]Π, g ′ , ε2,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε1 ∪ ε2 \ ε1 ∩ ε2,M,ζ)


R

Fr
am

e


∃k1, k2. k1

ζ
=⇒S e1S ∗ [Sr]

π
2
ζ ∗ Preg (Λ1,1, ε1,M,ζ) ∗

Preg (Λ3]Π, g ′ , ε1,M,ζ) ∗ k2
ζ
=⇒S e2S ∗ [Sr]

π
2
ζ ∗

Preg (Λ2,1, ε2,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε2,M,ζ)


R

e 1
I
||e

2I

∃k1. k1
ζ
=⇒S e1S ∗ [Sr]

π
2
ζ ∗ Preg (Λ1,1, ε1,M,ζ) ∗

Preg (Λ3]Π, g ′ , ε1,M,ζ)


R

e1Iv1I . ∃k1,v1S . k1
ζ
=⇒S v1S ∗ ~τ1�

M (v1I ,v1S) ∗ [Sr]
π
2
ζ ∗

Preg (Λ1,1, ε1,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε1,M,ζ)


R∃k2. k2

ζ
=⇒S e2S ∗ [Sr]

π
2
ζ ∗ Preg (Λ2,1, ε2,M,ζ) ∗

Preg (Λ3]Π, g ′ , ε2,M,ζ)


R

e2Iv2I . ∃k2,v2S . k2
ζ
=⇒S v2S ∗ ~τ2�

M (v2I ,v2S) ∗ [Sr]
π
2
ζ ∗

Preg (Λ2,1, ε2,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε2,M,ζ)


R

vI . ∃k1, k2,v1S ,v2S . vI = (v1I ,v2I) ∗ ~τ1�
M (v1I ,v1S) ∗ ~τ2�

M (v2I ,v2S) ∗

k1
ζ
=⇒S v1S ∗ [Sr]

π
2
ζ ∗ Preg (Λ1,1, ε1,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε1,M,ζ) ∗

k2
ζ
=⇒S v2S ∗ [Sr]

π
2
ζ ∗ Preg (Λ2,1, ε2,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε2,M,ζ)


R

THE LR
Par

RELATION 207


vI . ∃k1, k2,v1S ,v2S . vI = (v1I ,v2I) ∗ ~τ1�

M (v1I ,v1S) ∗ ~τ2�
M (v2I ,v2S) ∗

j
ζ
=⇒S v1S ||v2S ∗ k1

ζ
=⇒S v1S ∗ k2

ζ
=⇒S v2S ∗ [Sr]

π
2
ζ ∗ [Sr]

π
2
ζ ∗ Preg (Λ1,1, ε1,M,ζ) ∗

Preg (Λ2,1, ε2,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε1,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε2,M,ζ) ∗
Preg (Λ3]Π, g ′ , ε1 ∪ ε2 \ ε1 ∩ ε2,M,ζ)


R

// Lemma .0.54
vI . ∃v1S ,v2S . vI = (v1I ,v2I) ∗ ~τ1�

M (v1I ,v1S) ∗ ~τ2�
M (v2I ,v2S) ∗

j
ζ
=⇒S v1S ||v2S ∗ [Sr]

π
2
ζ ∗ [Sr]

π
2
ζ ∗ Preg (Λ1,1, ε1,M,ζ) ∗

Preg (Λ2,1, ε2,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε1,M,ζ) ∗ Preg (Λ3]Π, g ′ , ε2,M,ζ) ∗
Preg (Λ3]Π, g ′ , ε1 ∪ ε2 \ ε1 ∩ ε2,M,ζ)


R

// Lemma .0.52
vI . ∃v1S ,v2S . vI = (v1I ,v2I) ∗ ~τ1�

M (v1I ,v1S) ∗ ~τ2�
M (v2I ,v2S) ∗

j
ζ
=⇒S v1S ||v2S ∗ [Sr]

π
2
ζ ∗ [Sr]

π
2
ζ ∗ Preg (Λ1,1, ε1,M,ζ) ∗

Preg (Λ2,1, ε2,M,ζ) ∗ Preg (Λ3,1, ε1 ∪ ε2,M,ζ) ∗ Preg (Π, g,ε1 ∪ ε2,M,ζ)


R

// From regs(ε1) <Λ2 and regs(ε2) <Λ1
vI . ∃v1S ,v2S . vI = (v1I ,v2I) ∗ ~τ1�

M (v1I ,v1S) ∗ ~τ2�
M (v2I ,v2S) ∗

j
ζ
=⇒S v1S ||v2S ∗ [Sr]πζ ∗ Preg (Λ1,1, ε1 ∪ ε2,M,ζ) ∗
Preg (Λ2,1, ε2 ∪ ε2,M,ζ) ∗ Preg (Λ3,1, ε1 ∪ ε2,M,ζ) ∗ Preg (Π, g,ε1 ∪ ε2,M,ζ)


R

vI . ∃v1S ,v2S . vI = (v1I ,v2I) ∗ ~τ1�
M (v1I ,v1S) ∗ ~τ2�

M (v2I ,v2S) ∗

j
ζ
=⇒S v1S ||v2S ∗ [Sr]πζ ∗ Preg (Λ1]Λ2]Λ3,1, ε1 ∪ ε2,M,ζ) ∗
Preg (Π, g,ε1 ∪ ε2,M,ζ)


R

// Pure step
vI . ∃v1S ,v2S . vI = (v1I ,v2I) ∗ ~τ1�

M (v1I ,v1S) ∗ ~τ2�
M (v2I ,v2S) ∗

j
ζ
=⇒S (v1S ,v2S) ∗ [Sr]πζ ∗ Preg (Λ1]Λ2]Λ3,1, ε1 ∪ ε2,M,ζ) ∗
Preg (Π, g,ε1 ∪ ε2,M,ζ)


RvI . ∃vS . j

ζ
=⇒S vS ∗ ~τ1 × τ2�

M (vI ,vS) ∗ [Sr]πζ ∗
Preg (Λ1]Λ2]Λ3,1, ε1 ∪ ε2,M,ζ) ∗ Preg (Π, g,ε1 ∪ ε2,M,ζ)


R

Read

Lemma .0.56 (Trade read tokens).

∀r, ι,π. Reg(r)
ι ` [Rd]πr WV{ι} ∅

∃h. locs(h,r) ∗ toks(π,1, r) ∗~x∈Loc2[Rd(x)]r
∀r, ι. Reg(r)

ι ` [Rd]1
r WV{ι} {ι} ~x∈Loc2[Rd(x)]r

Lemma .0.57 (Read effect ensures well-typedness).

∀r,φ,x,v. effs(r,φ,x,v) ∗ [Rd(x)]r
⇒ effs(r,φ,x,v) ∗ [Rd(x)]r ∗ v ∈ φ

208 MODEL OF TYPES-AND-EFFECTS

Lemma .0.58.

∀h,r,x,y,π. locs(h,r) ∗ x
π
↪−→I,r y⇒ locs(h,r) ∗ x

π
↪−→I,r y ∗ hI (x) = y

Lemma .0.59.

∀h,r,x,y,π. locs(h,r) ∗ x
π
↪−→S,r y⇒ locs(h,r) ∗ x

π
↪−→S,r y ∗ hS(x) = y

Lemma .0.60.

∀h,r,ζ,π.
locs(h,r) ∗ [Mu(r, {ζ})]π

⇒ locs(h,r, {ζ} , {ζ}) ∗ [Mu(r, {ζ})]π

Lemma .0.61.

∀h,hR, r,S,π.
locs(h,r) ∗ [Im(r,S,hR)]π

⇒ locs(h,r,S,S) ∗ [Im(r,S,hR)]π ∗ hS = hR

Lemma .0.62.

∀h,r,y,ζ,S,S ′ ,π.
locs(h,r,S ′ , {ζ}] S)

⇔ locs(h,r,S ′ ,S) ∗~(l,v)∈hS l 7→
ζ
S v

Lemma .0.63 (Implementation dereference).

∀r,x,v,h,π.

{Heap ∗ x
π
↪−→I,r v ∗ locs(h,r)}

!x

{v′ . Heap ∗ x
π
↪−→I,r v ∗ locs(h,r) ∗ v′ = v}

Proof. By Lemma .0.58 and definition of locs.

Lemma .0.64 (Specification dereference).

∀h0,hS , e0, e,π,π
′ ,ζ,x,v, j.

Spec(h0,hS , e0, e,π,ζ) ∗ x 7→ζ
S v ∗ j

ζ
=⇒S !x ∗ [Sr]π

′

ζ

V Spec(h0,hS , e0, e,π,ζ) ∗ x 7→ζ
S v ∗ j

ζ
=⇒S v ∗ [Sr]π

′

ζ

Proof. x 7→ζ
S v asserts hS [x 7→ v]. From our operational semantics we have

(hS [x 7→ v], !x) → (hS [x 7→ v],v) and since we do not change the heap the
update of ghost-state follows from Lemma .0.46.

THE LR
Par

RELATION 209

Lemma .0.65 (Specification dereference for region).

∀j,x,v, r,h,hR,ζ,S,π,π′ ,π′′ .

Spec(h0, e0,ζ) ∗ j
ζ
=⇒S !x ∗ [Sr]π

′′

ζ ∗ x
1
2
↪−→S,r v ∗ locs(h,r) ∗

slink(r,S,hR,π,π
′) ∗ ζ ∈ S

V Spec(h0, e0,ζ) ∗ j
ζ
=⇒S v ∗ [Sr]π

′′

ζ ∗ x
1
2
↪−→S,r v ∗ locs(h,r) ∗

slink(r,S,hR,π,π
′)

Proof. By Lemma .0.59, Lemma .0.62 and Lemma .0.64.

Lemma .0.66.

∀r,φ,x,ζ,S, j,h,π,π′ ,π′′ .

Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)

, Ref(r,φ,x)
Rf(x) `

{j ζ
=⇒S !xS ∗ [Sr]π

′′

ζ ∗ locs(h,r) ∗ [Rd(x)]r ∗ slink(r, {ζ}] S,hS ,π,π′)}
!xI

{vI . ∃vS . j ζ
=⇒S vS ∗ [Sr]π

′′

ζ ∗ locs(h,r) ∗ [Rd(x)]r ∗
slink(r, {ζ}] S,hS ,π,π′) ∗ (vI ,vS) ∈ φ }

{Hp,Sp(ζ),Rf(x)}

Proof.
Context: r,φ,x,ζ,S, j,h,π,π′ ,π′′ ,Heap

Hp

, Spec(h0, e0,ζ)
Sp(ζ)

, Ref(r,φ,x)
Rf(x){

j
ζ
=⇒S !xS ∗ [Sr]π

′′
ζ ∗ locs(h,r) ∗ [Rd(x)]r ∗ slink(r, {ζ}] S,hS ,π,π′)

}
{Hp,Sp(ζ),Rf(x)}

O
p

en
H
p
,S
p
(ζ

),
R
f
(x

)

// . moved by Lemma .0.45Heap ∗ Spec(h0, e0,ζ) ∗ j
ζ
=⇒S !xS ∗ [Sr]π

′′
ζ ∗ ∃v. ref(r,.φ,x,v) ∗

locs(h,r) ∗ [Rd(x)]r ∗ slink(r, {ζ}] S,hS ,π,π′)


∅

!xI
// Unfold ref and apply Lemma .0.63v2

I . Heap ∗ Spec(h0, e0,ζ) ∗ j
ζ
=⇒S !xS ∗ [Sr]π

′′
ζ ∗ ∃v. ref(r,φ,x,v) ∗

locs(h,r) ∗ [Rd(x)]r ∗ vI = v2
I ∗ slink(r, {ζ}] S,hS ,π,π′)


∅

// Lemma .0.65v2
I . Heap ∗ Spec(h0, e0,ζ) ∗ ∃v. j

ζ
=⇒S vS ∗ [Sr]π

′′
ζ ∗ ref(r,φ,x,v) ∗

locs(h,r) ∗ [Rd(x)]r ∗ vI = v2
I ∗ slink(r, {ζ}] S,hS ,π,π′)


∅

// Lemma .0.57v2
I . Heap ∗ Spec(h0, e0,ζ) ∗ ∃v. j

ζ
=⇒S vS ∗ [Sr]π

′′
ζ ∗ ref(r,φ,x,v) ∗

(v2
I ,vS) ∈ φ ∗ locs(h,r) ∗ [Rd(x)]r ∗ slink(r, {ζ}] S,hS ,π,π′)


∅v2

I . ∃vS . j
ζ
=⇒S vS ∗ [Sr]π

′′
ζ ∗ locs(h,r) ∗ [Rd(x)]r ∗

slink(r, {ζ}] S,hS ,π,π′) ∗ (v2
I ,vS) ∈ φ


{Hp,Sp(ζ),Rf(x)}

210 MODEL OF TYPES-AND-EFFECTS

Lemma .0.67.

∀r,ζ,π,π′ ,h. [Mu(r, {ζ})]π⇔ slink(r, {ζ} ,h,π,π′)

Lemma .0.68 (Read).

∀r,φ,x,π,π′ ,π′′ ,π′′′ , j,ζ,S,h.

Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)

, Reg(r)
Rg(r)

, Ref(r,φ,x)
Rf(x) `

{j ζ
=⇒S !xS ∗ [Sr]π

′′′

ζ ∗ [Rd]πr ∗ slink(r, {ζ}] S,h,π′ ,π′′)}
!xI

{vI . ∃vS . j ζ
=⇒S vS ∗ [Sr]π

′′′

ζ ∗ [Rd]πr ∗ (vI ,vS) ∈ φ ∗
slink(r, {ζ}] S,h,π′ ,π′′) }

{Hp,Sp(ζ),Rg(r),Rf(x)}

Proof. By Lemma .0.56 and Lemma .0.66.

Write

Lemma .0.69 (Trade write tokens).

∀r, ι,π. Reg(r)
ι ` [Wr]πr WV{ι} ∅ ∃h. locs(h,r) ∗ toks(1,π, r) ∗

~x∈Loc2 [Wr(x)]r
∀r, ι. Reg(r)

ι ` [Wr]1
r WV{ι} {ι} ~x∈Loc2[Wr(x)]r

Lemma .0.70 (Assign in concrete code).

∀x,v.
{Heap ∗ x 7→−}
x := v

{v′ . v′ = () ∗Heap ∗ x 7→ v}

Lemma .0.71 (Assign in specification code).

∀h0, e0,π,π
′ ,ζ, j, e,x,v.

Spec(h0, e0,ζ) ∗ j
ζ
=⇒S x := v ∗ [Sr]π

′

ζ ∗ x 7→
ζ
S −

V Spec(h0, e0,ζ) ∗ j
ζ
=⇒S () ∗ [Sr]π

′

ζ ∗ x 7→
ζ
S v

Proof. x 7→ζ
S − asserts hS [x 7→ −]. From the operational semantics we have

(hS [x 7→ −],x := v)→ (hS [x 7→ v], ()) and since we do not change the domain of
the heap, the update of ghost-state follows from Lemma .0.46.

THE LR
Par

RELATION 211

Lemma .0.72 (Exclusive ownership of region-references).

∀r,φ,x,v.
ref(r,φ,x,v) ∗ [Wr(x)]r

WV [Wr(x)]r ∗ xI
1
↪−→I,r vI ∗ xS

1
↪−→S,r vS ∗ ([Rd(x)]r ∨ (v ∈ φ ∗ [NoRd(x)]r))

Lemma .0.73 (Update related locations with related values).

∀r,φ,x,v.

xI
1
↪−→I,r v

′
I ∗ xS

1
↪−→S,r v

′
S ∗ v ∈ φ ∗ ([Rd(x)]r ∨ (v′ ∈ φ ∗ [NoRd(x)]r))

V ref(r,φ,x,v)

Lemma .0.74 (Assignment).

∀r,φ,x,v,h, j,ζ,π,π′ .

Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)

, Ref(r,φ,x)
Rf(x) `

{j ζ
=⇒S xS := vS ∗ [Sr]π

′

ζ ∗ locs(h,r) ∗ [Wr(x)]r ∗ [Mu(r, {ζ})]π ∗φ(v)}
xI := vI

{v′ . v′ = () ∗ j
ζ
=⇒S () ∗ [Sr]π

′

ζ ∗ locs(h,r) ∗ [Wr(x)]r ∗
[Mu(r, {ζ})]π }

{Hp,Sp(ζ),Rf(x)}

Proof.

212 MODEL OF TYPES-AND-EFFECTS

Context: r,φ,x,v,h, j,ζ,π,π′ ,Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)

, Ref(r,φ,x)
Rf(x)

,φ(v){
j
ζ
=⇒S xS := vS ∗ [Sr]π

′
ζ ∗ locs(h,r) ∗ [Wr(x)]r ∗ [Mu(r, {ζ})]π

}
{Hp,Sp(ζ),Rf(x)}

O
p

en
H
p
,S
p
(ζ

),
R
f
(x

)

Heap ∗ Spec(h0, e0,ζ) ∗Ref(r,φ,x) ∗ j
ζ
=⇒S xS := vS ∗ [Sr]π

′
ζ ∗

locs(h,r) ∗ [Wr(x)]r ∗ [Mu(r, {ζ})]π


∅

// Lemma .0.72.
Heap ∗ Spec(h0, e0,ζ) ∗ j

ζ
=⇒S xS := vS ∗ [Sr]π

′
ζ ∗ locs(h,r) ∗ [Wr(x)]r ∗

xI
1
↪−→I,r − ∗ xS

1
↪−→S,r − ∗ ([Rd(x)]r ∨ ((−,−) ∈ φ ∗

[NoRd(x)]r)) ∗ [Mu(r, {ζ})]π


∅

// Lemma .0.58 and Lemma .0.59 and unfolding of locs

Heap ∗ Spec(h0, e0,ζ) ∗ j
ζ
=⇒S xS := vS ∗ [Sr]π

′
ζ ∗

∃h′I ,h
′
S . hI = h′I] [xI 7→ −] ∗ hS = h′S] [xS 7→ −] ∗ slink(r, {ζ} ,hS , 1

2 ,
1
4) ∗

rheapI (hI , r) ∗ rheapS (hS , r) ∗ alloc(h,r) ∗~(l,v)∈h′I l 7→ v ∗ xI 7→− ∗

~(l,v)∈h′S l 7→
ζ
S v ∗ xS 7→

ζ
S − ∗ [Wr(x)]r ∗ xI

1
↪−→I,r − ∗ xS

1
↪−→S,r − ∗

([Rd(x)]r ∨ [NoRd(x)]r) ∗ [Mu(r, {ζ})]π


∅

Fr
am

e

{
Heap ∗ Spec(h0, e0,ζ) ∗ j

ζ
=⇒S xS := vS ∗ [Sr]π

′
ζ ∗ xI 7→− ∗ xS 7→

ζ
S −

}
∅

xI := vIv1
I . v

1
I = () ∗Heap ∗ Spec(h0, e0,ζ) ∗ j

ζ
=⇒S xS := vS ∗ [Sr]π

′
ζ ∗

xI 7→ vI ∗ xS 7→
ζ
S −


∅

// Lemma .0.71v1
I . v

1
I = () ∗Heap ∗ Spec(h0, e0,ζ) ∗ j

ζ
=⇒S () ∗ [Sr]π

′
ζ ∗

xI 7→ vI ∗ xS 7→
ζ
S vS


∅

v1
I . v

1
I = () ∗Heap ∗ Spec(h0, e0,ζ) ∗ j

ζ
=⇒S () ∗ [Sr]π

′
ζ ∗

∃h′I ,h
′
S . hI = h′I [xI 7→ −] ∗ hS = h′S [xS 7→ −] ∗ slink(r, {ζ} ,hS , 1

2 ,
1
4) ∗

rheapI (hI , r) ∗ rheapS (hS , r) ∗ alloc(h,r) ∗~(l,v)∈h′I l 7→ v ∗ xI 7→ vI ∗

~(l,v)∈h′S l 7→
ζ
S v ∗ xS 7→

ζ
S vS ∗ [Wr(x)]r ∗ xI

1
↪−→I,r − ∗

xS
1
↪−→S,r − ∗ ([Rd(x)]r ∨ [NoRd(x)]r) ∗ [Mu(r, {ζ})]π


∅

// Updated region points-to by having full fraction and having
both the full and the fragmental authorative parts by
AFHeapUpd.
v1
I . v

1
I = () ∗Heap ∗ Spec(h0, e0,ζ) ∗ j

ζ
=⇒S () ∗ [Sr]π

′
ζ ∗ ∃h

′ .

h′ = (hI [xI 7→ vI],hS [xS 7→ vS]) ∗ locs(h′ , r) ∗ [Wr(x)]r ∗ xI
1
↪−→I,r vI ∗

xS
1
↪−→S,r vS ∗ ([Rd(x)]r ∨ (φ(vI ,vS) ∗ [NoRd(x)]r)) ∗ [Mu(r, {ζ})]π


∅

// Lemma .0.73 and folding of Ref predicate.v1
I . ∃h

′ ,v1
S . v

1
I = () ∗ v1

S = () ∗Heap ∗ Spec(h0, e0,ζ) ∗ j
ζ
=⇒S v

1
S ∗ [Sr]π

′
ζ ∗

locs(h′ , r) ∗ [Wr(x)]r ∗Ref(r,φ,x) ∗ [Mu(r, {ζ})]π


∅v1

I . ∃h
′ ,v1

S . j
ζ
=⇒S v

1
S ∗ [Sr]π

′
ζ ∗ locs(h

′ , r) ∗ [Wr(x)]r ∗
[Mu(r, {ζ})]π ∗ ~1�M (v1

I ,v
1
S)


{Hp,Sp(ζ),Rf(x)}

THE LR
Par

RELATION 213

Lemma .0.75 (Write).

∀r,φ,x,ζ, j,π,π′ ,v.

Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)

, Reg(r)
Rg(r)

, Ref(r,φ,x)
Rf(x) `

{j ζ
=⇒S xS := vS ∗ [Sr]π

′

ζ ∗ [Mu(r, {ζ})]π ∗ [Wr]πr ∗φ(v)}
xI := vI

{(). j ζ
=⇒S () ∗ [Sr]π

′

ζ ∗ [Mu(r, {ζ})]π ∗ [Wr]πr ∗ ~1�M((), ())}{Hp,Sp(ζ),Rg(r),Rf(x)}

Proof. By Lemma .0.69 and Lemma .0.74.

Allocate

Lemma .0.76 (New location in disjoint domain).

∀v,h0,h,ζ.

heapS(h,ζ) ∗ disjH (h0,h)

V ∃h′ ,x. h′ = h] [x 7→ (1,v)] ∗ heapS(h′ ,ζ) ∗ disjH (h0,h
′) ∗ x 7→ζ

S v

Proof.

heapS(h,ζ) ∗ disjH (h0,h)

(unfold)⇒ ∃hY . heapS(h,ζ) ∗ [hY]H ∧dom(h0)∩ hY = ∅ ∧
(dom(h) \dom(h0)) ⊂ hY

(below)⇒ ∃hY ,x. heapS(h,ζ) ∗ [hY]H ∧dom(h0)∩ hY = ∅ ∧
(dom(h) \dom(h0)) ⊂ hY ∗ x < dom(h) ∗ x ∈ dom(hY)

(rewrite)⇒ ∃hY ,x,h′ . h′ = h] [x 7→ (1,v)] ∗ heapS(h,ζ) ∗ [hY]H ∧
dom(h0)∩ hY = ∅∧ (dom(h′) \dom(h0)) ⊂ hY ∗ x < dom(h)

(fold)⇒ ∃x,h′ . h′ = h] [x 7→ (1,v)] ∗ heapS(h,ζ) ∗ disjH (h0,h
′)

(FpAlloc)V ∃x,h′ . h′ = h] [x 7→ (1,v)] ∗ heapS(h′ ,ζ) ∗ disjH (h0,h
′) ∗

x 7→ζ
S v

From hY being enumerable and dom(h) being finite, we can pick an x such
that x < dom(h) and x ∈ dom(hY).

Lemma .0.77 (Trade allocate token).

∀h,r,π. alloc(h,r) ∗ [Al]πr ⇔ [Al]πr ∗ [Al(hI ,hS)]1
r

∀h,r. alloc(h,r) ∗ [Al]1
rWV alloc(h,r) ∗ [Al(hI ,hS)]

1
2
r

214 MODEL OF TYPES-AND-EFFECTS

Lemma .0.78 (Allocate in concrete code).

∀x,v.
{Heap}
new v

{l. Heap ∗ l 7→ v}

Lemma .0.79 (Allocate in specification code).

∀e0,h0, j,x,v,ζ,π.

Spec(h0, e0,ζ) ∗ [Sr]πζ ∗ j
ζ
=⇒S new v

V Spec(h0, e0,ζ) ∗ j
ζ
=⇒S () ∗ [Sr]πζ ∗ ∃x. x 7→

ζ
S v

Proof.

Spec(h0, e0,ζ) ∗ [Sr]πζ ∗ j
ζ
=⇒S new v

⇒∃h,e,π′ . Spec(h0,h, e0, e,π
′ ,ζ) ∗ [Sr]πζ ∗ j

ζ
=⇒S new v

V∃h,e,π′ . heapS(h,ζ) ∗mctx(e,ζ) ∗ (h0, e0)→∗ (h,e) ∗

[Sr]π
′+π
ζ ∗ disjH (h0,h) ∗ j

ζ
=⇒S new v

(Lemma .0.76)V∃h,h′ , e,π′ . heapS(h′ ,ζ) ∗mctx(e,ζ) ∗ (h0, e0)→∗ (h,e) ∗

[Sr]π
′+π
ζ ∗ disjH (h0,h

′) ∗ j
ζ
=⇒S new v ∗ x 7→

ζ
S v ∗

h′ = h] [x 7→ (1,v)]

(Lemma .0.46)V∃h′ , e′ ,π′ . heapS(h′ ,ζ) ∗mctx(e,ζ) ∗ (h0, e0)→∗ (h′ , e′) ∗

[Sr]π
′+π
ζ ∗ disjH (h0,h

′) ∗ j
ζ
=⇒S () ∗ x 7→ζ

S v

(fold)V∃h′ , e′ ,π′ . Spec(h0,h
′ , e0, e

′ ,π′ ,ζ) ∗ [Sr]πζ ∗ j
ζ
=⇒S () ∗ x 7→ζ

S v

(fold)⇒Spec(h0, e0,ζ) ∗ [Sr]πζ ∗ j
ζ
=⇒S () ∗ x 7→ζ

S v

We can take the step (h,new v)→ (h′[x 7→ v], ()) since we have x < dom(h).

Lemma .0.80 (Extending region heap).

∀x,v,π,r,π, ι. Reg(r)
ι

` xI 7→ vI ∗ xS 7→
ζ
S vS ∗ [Al]πr ∗ [Mu(r, {ζ})]π

V{i} {i} xI
1
↪−→I,r vI ∗ xS

1
↪−→S,r vS ∗ [NoRd(x)]r ∗ [Al]πr ∗ [Mu(r, {ζ})]π

THE LR
Par

RELATION 215

Proof. By VSInv we obtain .(∃h. locs(h,r) ∗ toks(1,1, r)) and we can remove the
later by Lemma .0.45. By having locs(h,r), xI 7→ vI and xS 7→

ζ
S vS it is the

case xI < dom(hI) and xS < dom(hS). By AFHeapAdd we obtain xI
1
↪−→I,r vI

and xS
1
↪−→S,r vS . By Lemma .0.77 we obtain the exclusive token guarding the

domains of hI and hS and we can do a frame-preserving update and we also
obtain [NoRd(x)]r . We can fold ∃h′ . locs(h′ , r) since we have provided all spec
points to required by slink, which we know since we own [Mu(r, {ζ})]π.

Lemma .0.81 (Allocating region reference).

∀x,v,φ,r.

xI
1
↪−→I,r vI ∗ xS

1
↪−→S,r vS ∗ v ∈ φ ∗ [NoRd(x)]r

V∅ {Rf(x)}
Ref(r,φ,x)

Rf(x)

Proof.

xI
1
↪−→I,r vI ∗ xS

1
↪−→S,r vs ∗ v ∈ φ ∗ [NoRd(x)]r

WV xI

1
2
↪−→I,r vI ∗ xI

1
2
↪−→I,r vI ∗ effs(r,φ,x,v)

V ref(r,φ,x,v)

V{Rf(x)}
Ref(r,φ,x)

Rf(x)

Lemma .0.82 (Allocate).

∀r,ζ, j,v,φ,π,π′ ,π′′ . Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)

, Reg(r)
Rg(r) `

{j ζ
=⇒S new vS ∗ [Sr]π

′′

ζ ∗ [Al]πr ∗ [Mu(r, {ζ})]π
′
∗ v ∈ φ}

new vI

{lI . ∃lS . j ζ
=⇒S lS ∗ [Sr]π

′′

ζ ∗ [Al]πr ∗ [Mu(r, {ζ})]π
′
∗

Ref(r,φ, (lI , lS))
Rf(lI ,lS) }

{Hp,Sp(ζ),Rg(r)}

216 MODEL OF TYPES-AND-EFFECTS

Proof.

Context r,ζ, j,v,φ,π,π′ ,π′′ ,Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)

, Reg(r)
Rg(r){

j
ζ
=⇒S new vS ∗ [Sr]π

′′

ζ ∗ [Al]πr ∗ [Mu(r, {ζ})]π′ ∗ v ∈ φ
}
{Hp,Sp(ζ),Rg(r)}

O
p

en
H
p
,S
p
(ζ

)

{
Heap ∗ Spec(h0, e0,ζ) ∗ j

ζ
=⇒S new vS ∗ [Sr]π

′′

ζ

}
{Rg(r)}

new vI
// Lemma .0.78{
lI . Heap ∗ lI 7→ vI ∗ Spec(h0, e0,ζ) ∗ j

ζ
=⇒S new vS

}
{Rg(r)}

// Lemma .0.79lI . ∃lS . Heap ∗ lI 7→ vI ∗ Spec(h0, e0,ζ) ∗ j
ζ
=⇒S lS ∗ [Sr]π

′′

ζ ∗
lS 7→

ζ
S vS


{Rg(r)}lI . ∃lS . j ζ

=⇒S lS ∗ lI 7→ vI ∗ lS 7→
ζ
S vS ∗ [Sr]π

′′

ζ ∗ [Al]πr ∗
[Mu(r, {ζ})]π′ ∗ v ∈ φ


{Hp,Sp(ζ),Rg(r)}

// Lemma .0.80 and Lemma .0.81lI . ∃lS . j
ζ
=⇒S lS ∗ [Sr]π

′′

ζ ∗ [Al]πr ∗ [Mu(r, {ζ})]π′ ∗
Ref(r,φ, (lI , lS))

Rf(lI ,lS)


{Hp,Sp(ζ),Rg(r)}

Masking

Lemma .0.83.

∀Π,Λ, ε,M1,M2,ζ,g. (∀ρ ∈Π,Λ. M1(ρ) =M2(ρ)) ⇒
Preg(Λ,1, ε,M1,ζ) ∗ Preg(Π, g,ε,M1,ζ) =

Preg(Λ,1, ε,M2,ζ) ∗ Preg(Π, g,ε,M2,ζ)

Proof. Unfolding shows syntactic equality between ghost-resources.

Lemma .0.84.

∀Π,Λ,M1,M2, e,φ,ψ,ε. (∀ρ ∈Π,Λ. M1(ρ) =M2(ρ)∧φ = ψ)⇒

EΠ,Λ,M1
ε,M (φ)(e) = EΠ,Λ,M2

ε,M (ψ)(e)

Proof. Follows by Lemma .0.83 and by φ = ψ.

Lemma .0.85.

∀τ,M1,M2. (∀ρ ∈ FRV (τ). M1(ρ) =M2(ρ))⇒ ~τ�M1 = ~τ�M2

THE LR
Par

RELATION 217

Proof. Induction on τ . The simple types are straight forward even for the
binary case. Arrow type follows by Lemma .0.84. To remind the reader, the
following is the definition of reference types:

~refρ τ�
M , λx. Ref(M(ρ),~τ�M ,x)

Rf(x)
∗ Reg(M(ρ))

Rg(M(ρ))

FromM1(ρ) =M2(ρ) we have Reg(M1(ρ))
Rg(M1(ρ))

= Reg(M2(ρ))
Rg(M2(ρ))

. Sim-
ilarly, we have to show:

Ref(M1(ρ),~τ�M ,x)
Rf(x)

= Ref(M2(ρ),~τ�M ,x)
Rf(x)

which follows directly from M1(ρ) =M2(ρ) and the induction hypothesis.

Lemma .0.86 (Creating monoids).

>V ∃r. locs(∅, r) ∗ toks(1,1, r) ∗ r < dom(M)

Proof. Follows by repeated application of NewGhost.

Lemma .0.87.

>V ∃r. Reg(r)
Rg(r) ∗ [Rd]1

r ∗ [Wr]1
r ∗ [Al]1

r

Proof. Follows by Lemma .0.86 and NewInv for creating ∃r. Reg(r)
Rg(r)

.

Soundness

Definition .0.88. Π | Λ | Γ ` e1 ≤ctx e2 : τ,ε iff for all contexts C, values v, and
heaps h1 such that C : (Π | Λ | Γ ` τ,ε) (− | − | − ` B,∅) and [];C[e1]→∗ h1;v
there exists a heap h2 such that [];C[e2]→∗ h2;v.

Theorem .0.89 (Iris soundness). For all p ∈ Props, e ∈ Exp, q : Val → Props,
n,k ∈ N, v ∈ Val, r ∈ Res, σ,σ ′ ∈ State, W ∈World, and E ∈Mask, if

valid({p} e {q}E) e,σ →n v,σ ′ (n+ k + 1, r) ∈ p(W)

(n+ k + 1,σ) ∈ brcWE

then there exists a W ′ ≥W and r ′ ∈ Res such that

(k + 1, r ′) ∈ q(v)(W ′) (k + 1,σ ′) ∈ br ′cW
′

E

Lemma .0.90. If Π | Λ | Γ |=
Par

e1 ≤log e2 : τ,ε and C : (Π | Λ | Γ ` τ,ε) (Π′ |
Λ′ | Γ ′ ` τ ′ , ε′) then Π′ | ∆′ | Γ ′ |=

Par
C[e1] ≤log C[e2] : τ ′ , ε′.

Lemma .0.91. If − | − | − |=
Par

e1 ≤log e2 : τ,ε then

` {>} e1 {λv1.∃h2.∃v2. (v1,v2) ∈ ~τ� ∗ [];e2→∗ h2;v2}

218 MODEL OF TYPES-AND-EFFECTS

Proof.

{>}{
∃ζ. Spec([], e2,ζ)

Sp(ζ) ∗ 0
ζ
=⇒S e2

}
e1{
v1.∃ζ. Spec([], e2,ζ)

Sp(ζ) ∗ ∃v2. ~τ�(v1,v2) ∗ 0
ζ
=⇒S v2

}
{v1.∃v2.~τ�(v1,v2) ∗ ∃h. [];e2→∗ h;v2}

Lemma .0.92. If − | − | − |=
Par

e1 ≤log e2 : B, ε and [];e1→∗ h1;v1 then there exists
an h2 such that [];e2→∗ h2;v1.

Proof.

• from the − | − | − ` e1 ≤log e2 : B, ε assumption it follows by Lemma .0.91
that

` {>} e1 {λv1.∃h2.∃v2.v1 = v2 ∗ [];e2→∗ h2;v2}

• hence, by Theorem .0.89, it follows that there exists W and r such that

(2, r ′) ∈ (λv1.∃h2.∃v2.v1 = v2 ∗ [];e2→∗ h2;v2)(v1)(W)

and (2,hI) ∈ br ′cWE

• hence, there exists v2,h2 such that v1 = v2 and [];e2→∗ h2;v2.

Theorem .0.93 (Soundness of LR
Par

). If Π | ∆ | Γ |=
Par

e1 ≤log e2 : τ,ε then
Π | ∆ | Γ ` e1 ≤ctx e2 : τ,ε

Proof.

• letC : (Π | ∆ | Γ ` τ,ε) (− | − | − ` B,∅) and assume that [];C[e1]→∗ h1;v

• by Lemma .0.90 it follows that − | − | − ` C[e1] ≤log C[e2] : B,∅

• and thus, by Lemma .0.92, there exists h2 such that [];C[e1]→∗ h2;v

EFFECT-DEPENDENT TRANSFORMATIONS 219

Effect-Dependent Transformations

Parallelization

Theorem .0.94 (Parallelization). Assuming

1. Λ3 |Λ1 | Γ ` e1 : τ1, ε1

2. Λ3 |Λ2 | Γ ` e2 : τ2, ε2

3. als ε1 ∪wrs ε1 ⊆Λ1 and als ε2 ∪wrs ε2 ⊆Λ2

4. rds ε1 ⊆Λ1 ∪Λ3 and rds ε2 ⊆Λ2 ∪Λ3

then
Π |Λ1,Λ2,Λ3 | Γ ` e1 ||e2 � (e1, e2) : τ1 × τ2, ε1 ∪ ε2

The two next lemmas provides the base of the proof:

Lemma .0.95 (Framed heap). If for all heaps h, h′, hF and expression e, e′:

(h;e)→∗ (h′;e)∧ hF # h∧ hf # h′

then
(hF] h;e)→∗ (hF] h′;e′)

Proof. By induction.

Lemma .0.96 (New disjoint range).

∀f ,g,h.disjH (f ,g)V disjH (f ,g) ∗ disjH (h,h,)

Lemma .0.97 (disjoint ensures disjointness).

∀f1, f2, g,h,Z.
disjH (f1, g] f2) ∗ disjH (f2,h)V disjH (f1, g] h)

We define the following short-hand notations:

I(R), {Rg(r) | r ∈ R}
HRef(h,r), ∃S. locs(h,r,S,∅) ∗ toks(1,1, r)

heaps(S,h),~ζ∈S ~(l,v)∈h l 7→
ζ
S v

Pf (Λ,M,ζ,ζ1,ζ2, ε1, ε2,h1,h2,h3,h3R),

h3 =]r∈M(Λ)h3R(r) ∗ heaps({ζ} ,h1] h2] h3) ∗

~ρ∈rds ε1∪ε2\ε1∩ε2
[Rd]

1
2
M(ρ) ∗~r∈M(Λ)[Im(r, {ζ1,ζ2} ,h3R(r))]

1
4

220 MODEL OF TYPES-AND-EFFECTS

Lemma .0.98.

∀r,S,π,π′ , r,y. Reg(r)
Rg(r) `

slink(r,S,y,π,π′) V{Rg(r)} ∅ ∃h.HRef(h,r) ∗ slink(r,S,h,π,π′) ∗ heaps(S,h)

Lemma .0.99.

∀r,S, r. Reg(r)
Rg(r) `

slink(r,S,h, 1
2 ,

3
4) ∗HRef(h,r) ∗ heaps(S ′ ,h) V∅ {Rg(r)} slink(r,S ′ ,h, 1

2 ,
3
4)

Lemma .0.100 (Create branching specification invariant).

∀h,e.
disjH (h,h)

V ∃ζ.Spec(h,e,ζ) ∗ [Sr]
1
2
ζ ∗ 0

ζ
=⇒S e ∗ heaps({ζ} ,h)

Lemma .0.101 (Prepare None-interference parallelization).

∀j, e1, e2,Λ1,Λ2,Λ3, ε1, ε2,M,ζ,h0,hS ,T0,T . R = I(M(Λ1]Λ2]Λ3))⇒
Preg(Λ1,1, ε1,M, {ζ}) ∗ Preg(Λ2,1, ε2,M, {ζ}) ∗
Preg(Λ3,1, ε1 ∪ ε2,M, {ζ}) ∗ disjH (h0,hS)

VR R∪{Sp(ζ1),Sp(ζ2)}

∃ζ1,ζ2,h1,h2,h3,h3R. S(ζ1,0,h1] h3, e1, e1,
1
2 , (Λ1,Λ3), 1

2 , ε1,M) ∗
S(ζ2,0,h2] h3, e2, e2,

1
2 , (Λ2,Λ3), 1

2 , ε2,M) ∗ disjH (h0,hS) ∗
Pf (Λ3,M,ζ,ζ1,ζ2, ε1, ε2,h1,h2,h3,h3R)

EFFECT-DEPENDENT TRANSFORMATIONS 221

Proof.Preg(Λ1,1, ε1,M, {ζ}) ∗ Preg(Λ2,1, ε2,M, {ζ}) ∗ Preg(Λ3,1, ε1 ∪ ε2,M, {ζ}) ∗
disjH (h0,hS)


R

Pregs(Λ1 ∪Λ2 ∪Λ3,M) ∗ Peffs(Λ1,1, ε1,M) ∗ Peffs(Λ2,1, ε2,M) ∗
Peffs(Λ3,1, ε1 ∪ ε2,M) ∗ Ppar(Λ1,1, ε1,M, {ζ}) ∗
Ppar(Λ2,1, ε2,M, {ζ}) ∗ Ppar(Λ3,1, ε1 ∪ ε2,M, {ζ}) ∗ disjH (h0,hS)


R

Fr
am

e

Ppar(Λ1,1, ε1,M, {ζ}) ∗ Ppar(Λ2,1, ε2,M, {ζ}) ∗
Ppar(Λ3,1, ε1 ∪ ε2,M, {ζ}) ∗ disjH (h0,hS)


R{

~ρ∈Λ1,Λ2,Λ3
[Mu(M(ρ), {ζ})]

1
2 ∗ disjH (h0,hS)

}
R

// Lemma .0.98~ρ∈Λ1,Λ2,Λ3
∃h.HRef(h,M(ρ)) ∗ [Mu(M(ρ), {ζ})]

1
2 ∗ heaps({ζ} ,h) ∗

disjH (h0,hS)


∅∃h.~ρ∈Λ1,Λ2,Λ3

HRef(h(ρ),M(ρ)) ∗ [Mu(M(ρ), {ζ})]
1
2 ∗ heaps({ζ} ,h(ρ)) ∗

disjH (h0,hS)


∅

Let

hi =
∏
ρ∈Λi h(ρ) for i ∈ {1,2,3}

// Follows from Lemma .0.96∃h.~ρ∈Λ1,Λ2,Λ3
HRef(h(ρ),M(ρ)) ∗ [Mu(M(ρ), {ζ})]

1
2 ∗ heaps({ζ} ,h(ρ)) ∗

disjH (h0,hS) ∗ disjH (h1] h3,h1] h3) ∗ disjH (h2] h3,h2] h3)


∅

// Follows from Lemma .0.100

~ρ∈Λ1,Λ2,Λ3
HRef(h(ρ),M(ρ)) ∗ [Mu(M(ρ), {ζ})]

1
2 ∗ heaps({ζ} ,h(ρ)) ∗

disjH (h0,hS)∃ζ1.Spec(h1] h3, e1,ζ1) ∗ [Sr]
1
2
ζ1
∗ 0

ζ1
=⇒S e1 ∗

heaps({ζ1} ,h1] h3) ∗ ∃ζ2.Spec(h2] h3, e2,ζ2) ∗ [Sr]
1
2
ζ2
∗ 0

ζ2
=⇒S e2 ∗

heaps({ζ2} ,h2] h3)


∅

Let E(ζ1,ζ2) = Spec(h1] h3, e1,ζ1) ∗ [Sr]
1
2
ζ1
∗ 0

ζ1
=⇒S e1 ∗

Spec(h2] h3, e2,ζ2) ∗ [Sr]
1
2
ζ2
∗ 0

ζ2
=⇒S e2

∃ζ1,ζ2.E(ζ1,ζ2) ∗ disjH (h0,hS) ∗~ρ∈Λ1
[Mu(M(ρ), {ζ1})]

1
2 ∗

~ρ∈Λ2
[Mu(M(ρ), {ζ2})]

1
2 ∗~ρ∈Λ3

[Im(M(ρ), {ζ1,ζ2} ,h(ρ))]
3
4 ∗

~ρ∈Λ1,Λ2,Λ3
heaps({ζ} ,h(ρ))


R

∃ζ1,ζ2.E(ζ1,ζ2) ∗ disjH (h0,hS) ∗ Pregs((Λ1,Λ2,Λ3),M) ∗ Peffs(Λ1,1, ε1,M) ∗
Peffs(Λ1,1, ε2,M) ∗ Peffs(Λ3,1, ε1 ∪ ε2,M) ∗~ρ∈Λ1

[Mu(M(ρ), {ζ1})]
1
2 ∗

~ρ∈Λ2
[Mu(M(ρ), {ζ2})]

1
2 ∗~ρ∈Λ3

[Im(M(ρ), {ζ1,ζ2} ,h(ρ))]
3
4 ∗

~ρ∈Λ1,Λ2,Λ3
heaps({ζ} ,h(ρ))


R

∃ζ1,ζ2.E(ζ1,ζ2) ∗ disjH (h0,hS) ∗ Preg(Λ1,1, ε1,M, {ζ1}) ∗
Preg(Λ2,1, ε2,M, {ζ2}) ∗ Preg(Λ3,

1
4 , ε1,M, {ζ1}) ∗ Preg(Λ3,

1
4 , ε2,M, {ζ2}) ∗

~ρ∈Λ3
[Im(M(ρ), {ζ1,ζ2} ,h(ρ))]

1
4 ∗~ρ∈Λ1,Λ2,Λ3

heaps({ζ} ,h(ρ)) ∗

~ρ∈Λ3∩(rds ((ε1∪ε2)\(ε1∩ε2)))[Rd]
1
2
M(ρ)


R

222 MODEL OF TYPES-AND-EFFECTS


∃ζ1,ζ2. disjH (h0,hS) ∗ S(ζ1,0,h1, e1, e1,

1
2 , (Λ1,Λ3), 1

2 , ε1,M) ∗
S(ζ2,0,h2, e2, e2,

1
2 , (Λ2,Λ3), 1

2 , ε2,M) ∗
~ρ∈Λ3

[Im(M(ρ), {ζ1,ζ2} ,h(ρ))]
1
4 ∗~ρ∈Λ1,Λ2,Λ3

heaps({ζ} ,h(ρ)) ∗

~ρ∈Λ3∩(rds ((ε1∪ε2)\(ε1∩ε2)))[Rd]
1
2
M(ρ)


R∪{Sp(ζ1),Sp(ζ2)}

S(ζ1,0,h1, e1, e1,
1
2 , (Λ1,Λ3), 1

2 , ε1,M) ∗
S(ζ2,0,h,2e2, e2,

1
2 , (Λ2,Λ3), 1

2 , ε2,M) ∗
Pf (Λ3,M,ζ,ζ1,ζ2, ε1, ε2,h1,h2,h3,h) ∗ disjH (h0,hS)


R∪{Sp(ζ1),Sp(ζ2)}

Lemma .0.102 (Combine shared part with frame).

∀Λ, ε1, ε2,M,ζ1,ζ2,h.

(wrs (ε1 ∪ ε2)∪als (ε1 ∪ ε2))∩Λ = ∅⇒

Preg(Λ, 1
2 , ε1,M,ζ1) ∗ Preg(Λ, 1

2 , ε2,M,ζ2) ∗~ρ∈rds ε1∪ε2\ε1∩ε2
[Rd]

1
2
M(ρ) ∗

~r∈M(Λ) [Im(r, {ζ1,ζ2} ,h(r))]
1
4

V ~r∈M(Λ) [Im(r, {ζ1,ζ2} ,h(r))]
3
4 ∗ Peffs(Λ,1, ε1 ∪ ε2,M) ∗ Pregs(Λ,M)

Lemma .0.103.

∀ζ, j, e0, e,h,h0. Spec(h0, e0,ζ)
Sp(ζ) `

j
ζ
=⇒S e ∗ heaps(h, {ζ})

V{Sp(ζ)} ∅ ∃hS , e′ .Spec(h0,h] hS , e0, e
′ , 1

2 ,ζ) ∗ j
ζ
=⇒S e ∗ heaps(h, {ζ})

Lemma .0.104 (Frozen regions are frames).

∀h,hf ,ζ, r,π. Reg(r)
Rg(r)

,ζ ∈ S `

heapS(h,ζ) ∗ [Im(r,S,hf)]π V{Rg(r)} ∅ ∃h′ . heapS(h′] hf ,ζ) ∗ [Im(r,S,hf)]π

Proof. Follows Lemma .0.61 for each region.

Lemma .0.105 (Obtain disjoint token by trading specification runner).

∀h0,h, e0, e,
1
2 ,ζ.

Spec(h0,h, e0, e,
1
2 ,ζ) ∗ [Sr]

1
2
ζ

⇒ Spec(h0,h, e0, e,1,ζ) ∗ disjH (h0,h) ∗ (h0, e0)→∗ (h,e)

EFFECT-DEPENDENT TRANSFORMATIONS 223

Lemma .0.106 (Combining new specs with old spec).

∀h0,hS ,h1,h
′
1, e0, e, e1, e

′
1,ζ,ζ

′ .

Spec(h1,h
′
1, e1, e

′
1,

1
2 ,ζ
′) ∗ [Sr]

1
2
ζ′ ∗

Spec(h0,hS] h1, e0, e,
1
2 ,ζ) ∗ [Sr]πζ ∗ j

ζ
=⇒S e1 ∗ heaps({ζ} ,h1)

V ∃e′′ . Spec(h1,h
′
1, e1, e

′
1,1,ζ

′) ∗

Spec(h0,hS] h′1, e0, e
′′ , 1

2 ,ζ) ∗ [Sr]πζ ∗ j
ζ
=⇒S e

′
1 ∗ heaps({ζ} ,h

′
1)

Proof.
By Lemma .0.105 we obtain disjH (h1,h

′
1) ∗ (h1, e1)→∗ (h′1, e

′
1) for simulation in

ζ′. By Lemma .0.97 we have that h′S # h′1 thus we allocate dom(h′1) \dom(h1)
with the values specifically in h′1. For all values in h1 we own the points to
predicate thus we can just update it directly. To update the stepping relation
we use Lemma .0.95 and Lemma .0.46.

Lemma .0.107 (Swap immutable to mutable for regions).

∀R1,R2,R3,h1,h2,h3,ζ,ζ1,ζ2,h3R.

~r∈R1]R2]R3
(Reg(r)

Rg(r)
,h3 =]r∈R3

h3R(r)) `

heapS(h1] h3,ζ1) ∗ heapS(h2] h3,ζ2) ∗~i∈{1,2}~r∈Ri [Mu(r, {ζi})]
1
2 ∗

~r∈R3
(Reg(r) ∗ [Im(r, {ζ1,ζ2} ,h3R(r))]

3
4) ∗~(l,v)∈h1]h2]h3

l 7→ζ
S v

V{Rg(r)|r∈R1]R2} {Rg(r)|r∈R1]R2]R3}

heapS(h1] h3,ζ1) ∗ heapS(h2] h3,ζ2) ∗~r∈R1]R2]R3
[Mu(r, {ζ})]

1
2

Lemma .0.108 (Complete Non-interference parallelization).

∀ζ,ζ1,ζ2,Λ1,Λ2,Λ3,M,e1, e2,v1,v2, j,h1,h2,h3,h3R,π,ε1, ε2,R,S.

R = I(M(Λ1]Λ2]Λ3)),S = {Sp(ζ),Sp(ζ1),Sp(ζ2)} `
S(ζ1,0,h1, e1,v1,

1
2 , (Λ1,Λ3), 1

2 , ε1,M) ∗
S(ζ2,0,h2, e2,v2,

1
2 , (Λ2,Λ3), 1

2 , ε2,M) ∗

Pf (Λ3,M,ζ,ζ1,ζ2, ε1, ε2,h1,h2,h3,h3R) ∗ j
ζ
=⇒S (e1, e2) ∗

[Sr]πζ ∗ Spec(h0, e0,ζ)
Sp(ζ)

VR]S j
ζ
=⇒S (v1,v2) ∗ [Sr]πζ ∗ Preg(Λ1,1, ε1,M,ζ) ∗ Preg(Λ2,1, ε2,M,ζ) ∗

Preg(Λ3,1, ε1 ∪ ε2,M,ζ) ∗ Spec(h0, e0,ζ)
Sp(ζ)

224 MODEL OF TYPES-AND-EFFECTS

Proof.

Context: ζ,ζ1,ζ2,R,Λ1,Λ2,Λ3,M,e0, e1, e2,v1,v2, j,h0,h1,h2,h3,h3R,π,ε1, ε2

S(ζ1,0,h1, e1,v1,
1
2 , (Λ1,Λ3), 1

2 , ε1,M) ∗ S(ζ2,0,h2, e2,v2,
1
2 , (Λ2,Λ3), 1

2 , ε2,M) ∗

Pf (Λ3,M,ζ,ζ1,ζ2, ε1, ε2,h1,h2,h3,h3R) ∗ j
ζ
=⇒S (e1, e2) ∗ [Sr]πζ ∗ Spec(h0, e0,ζ)

Sp(ζ)

VR]{Sp(ζ),Sp(ζ1),Sp(ζ2)} // Unfold S and Pf

Context: Spec(h1, e1,ζ1)
Sp(ζ1)

, Spec(h2, e2,ζ2)
Sp(ζ2)

, Spec(h0, e0,ζ)
Sp(ζ)

0
ζ1
=⇒S v1 ∗ [Sr]

1
2
ζ1
∗ Preg (Λ1,1, ε1,M,ζ1) ∗ Preg (Λ3,

1
2 , ε1,M,ζ1) ∗

0
ζ2
=⇒S v2 ∗ [Sr]

1
2
ζ2
∗ Preg (Λ2,1, ε2,M,ζ2) ∗ Preg (Λ3,

1
2 , ε2,M,ζ2) ∗

h3 =]r∈M(Λ3)h3R(r) ∗ heaps({ζ} ,h1] h2] h3) ∗~ρ∈rds ε1∪ε2\ε1∩ε2
[Rd]

1
2
M(ρ) ∗

~r∈M(Λ3) [Im(r, {ζ1,ζ2} ,h3R(r))]
1
4 ∗ j

ζ
=⇒S (e1, e2) ∗ [Sr]πζ

VR]{Sp(ζ),Sp(ζ1),Sp(ζ2)} // Lemma .0.102

0
ζ1
=⇒S v1 ∗ [Sr]

1
2
ζ1
∗ Preg (Λ1,1, ε1,M,ζ1) ∗ 0

ζ2
=⇒S v2 ∗ [Sr]

1
2
ζ2
∗ Preg (Λ2,1, ε2,M,ζ2) ∗

h3 =]r∈M(Λ3)h3R(r) ∗ heaps({ζ} ,h1] h2] h3) ∗~r∈M(Λ3)[Im(r, {ζ1,ζ2} ,h(r))]
3
4 ∗

Peffs(Λ3,1, ε1 ∪ ε2,M) ∗ Pregs(Λ3,M) ∗ j
ζ
=⇒S (e1, e2) ∗ [Sr]πζ

VR // Lemma .0.103

∃h0,hS , e0, eS , e1, e2,h
′
1,h
′
2,v1,v2. Spec(h0,hS] h1] h2] h3, e0, eS ,

1
2 ,ζ) ∗

Spec(h1] h3,h
′
1, e1,v1,

1
2 ,ζ1) ∗ [Sr]

1
2
ζ1
∗ Preg (Λ1,1, ε1,M,ζ1) ∗

Spec(h2] h3,h
′
2, e2,v2,

1
2 ,ζ2) ∗ [Sr]

1
2
ζ2
∗ Preg (Λ2,1, ε2,M,ζ2) ∗

h3 =]r∈M(Λ3)h3R(r) ∗ heaps({ζ} ,h1] h2] h3) ∗~r∈M(Λ3)[Im(r, {ζ1,ζ2} ,h3R(r))]
3
4 ∗

Peffs(Λ3,1, ε1 ∪ ε2,M) ∗ Pregs(Λ3,M) ∗ j
ζ
=⇒S (e1, e2) ∗ [Sr]πζ

V{Rg(r)|r∈M(Λ1]Λ2)} // Lemma .0.104

∃h0,hS , e0, eS , e1, e2,h
′
1,h
′
2,v1,v2. Spec(h0,hS] h1] h2] h3, e0, eS ,

1
2 ,ζ) ∗

Spec(h1] h3,h
′
1] h3, e1,v1,

1
2 ,ζ1) ∗ [Sr]

1
2
ζ1
∗ Preg (Λ1,1, ε1,M,ζ1) ∗

Spec(h2] h3,h
′
2] h3, e2,v2,

1
2 ,ζ2) ∗ [Sr]

1
2
ζ2
∗ Preg (Λ2,1, ε2,M,ζ2) ∗

h3 =]r∈M(Λ3)h3R(r) ∗ heaps({ζ} ,h1] h2] h3) ∗~r∈M(Λ3)[Im(r, {ζ1,ζ2} ,h3R(r))]
3
4 ∗

Peffs(Λ3,1, ε1 ∪ ε2,M) ∗~r∈M(Λ3)Reg(r) ∗ j
ζ
=⇒S (e1, e2) ∗ [Sr]πζ

V{Rg(r)|r∈M(Λ1]Λ2)} // Lemma .0.106 with k1
ζ
=⇒S e1 and k2

ζ
=⇒S e2

∃h0,hS , e0, e
′
S , e1, e2,h

′
1,h
′
2,v1,v2. Spec(h0,hS] h′1] h

′
2] h3, e0, e

′
S ,

1
2 ,ζ) ∗

Spec(h1] h3,h
′
1] h3, e1,v1,1,ζ1) ∗ Preg (Λ1,1, ε1,M,ζ1) ∗

Spec(h2] h3,h
′
2] h3, e2,v2,1,ζ2) ∗ Preg (Λ2,1, ε2,M,ζ2) ∗

h3 =]r∈M(Λ3)h3R(r) ∗ heaps({ζ} ,h′1] h
′
2] h3) ∗

~r∈M(Λ3) [Im(r, {ζ1,ζ2} ,h3R(r))]
3
4 ∗ Peffs(Λ3,1, ε1 ∪ ε2,M) ∗

~r∈M(Λ3) Reg(r) ∗ j
ζ
=⇒S (v1,v2) ∗ [Sr]πζ

EFFECT-DEPENDENT TRANSFORMATIONS 225

VR // Lemma .0.107

∃h0,hS , e0, e
′
S , e1, e2,h

′
1,h
′
2,v1,v2. Spec(h0,hS] h′1] h

′
2] h3, e0, e

′
S ,

1
2 ,ζ) ∗

Spec(h1] h3,h
′
1] h3, e1,v1,1,ζ1) ∗ Preg (Λ1,1, ε1,M,ζ) ∗

Spec(h2] h3,h
′
2] h3, e2,v2,1,ζ2) ∗ Preg (Λ2,1, ε2,M,ζ) ∗

~r∈M(Λ3) [Mu(r, {ζ})]
3
4 ∗~r∈M(Λ)Reg(r)

Rg(r) ∗

Peffs(Λ3,1, ε1 ∪ ε2,M) ∗ j
ζ
=⇒S (v1,v2) ∗ [Sr]πζ

VR]{Sp(ζ),Sp(ζ1),Sp(ζ2)}

Spec(h0, e0,ζ)
Sp(ζ) ∗ Preg (Λ1,1, ε1,M,ζ) ∗ Preg (Λ2,1, ε2,M,ζ) ∗

Preg (Λ3,1, ε1 ∪ ε2,M,ζ) ∗ j
ζ
=⇒S (v1,v2) ∗ [Sr]πζ

Proof of Parallelization.

226 MODEL OF TYPES-AND-EFFECTS

Let Λ =Λ1,Λ2,Λ3 and we have to show E ·;Λε1∪ε2,M
(τ1 × τ2)(e1I ||e2I , (e1S , e2S)):

Context: j,π,ζ,h0, e0,Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ){

j
ζ
=⇒S (e1S , e2S) ∗ [Sr]πζ ∗ Preg(Λ,1, ε1 ∪ ε2,M,ζ)

}
{Hp,Sp(ζ)}

O
p

en
S
p
(ζ

)

j
ζ
=⇒S (e1S , e2S) ∗ [Sr]πζ ∗ .(Spec(h0, e0,ζ)) ∗ Preg(Λ1,1, ε1,M,ζ) ∗
Preg(Λ2,1, ε2,M,ζ) ∗ Preg(Λ3,1, ε1 ∪ ε2,M,ζ)


{Hp}

// Lemma .0.101
∃ζ1,ζ2,h1,h2,h3,h3R. Spec(h0, e0,ζ) ∗ j

ζ
=⇒S (e1, e2) ∗

[Sr]πζ ∗ S(ζ1,0,h1] h3, e1S , e1S ,
1
2 , (Λ1,Λ3), 1

2 , ε1,M) ∗
S(ζ2,0,h2] h3, e2S , e2S ,

1
2 , (Λ2,Λ3), 1

2 , ε2,M) ∗
Pf (Λ3,M,ζ,ζ1,ζ2, ε1, ε2,h1,h2,h3,h3R)


{Hp,Sp(ζ1),Sp(ζ2)}

∃ζ1,ζ2,h1,h2,h3,h3R.

S(ζ1,0,h1] h3, e1S , e1S ,
1
2 , (Λ1,Λ3), 1

2 , ε1,M) ∗
S(ζ2,0,h2] h3, e2S , e2S ,

1
2 , (Λ2,Λ3), 1

2 , ε2,M) ∗

j
ζ
=⇒S (e1, e2) ∗ [Sr]πζ ∗
Pf (Λ3,M,ζ,ζ1,ζ2, ε1, ε2,h1,h2,h3,h3R)


{Hp,Sp(ζ),Sp(ζ1),Sp(ζ2)}

e 1
||e

2

{
S(ζ1,0,h1] h3, e1S , e1S ,

1
2 , (Λ1,Λ3), 1

2 , ε1,M)
}

e1Iv1I . ∃v1S . S(ζ1,0,h1] h3, e1S ,v1S ,
1
2 , (Λ1,Λ3), 1

2 , ε1,M) ∗
~τ1�

M (v1I ,v1S)


{Hp,Sp(ζ),Sp(ζ1),Sp(ζ2)}{

S(ζ2,0,h2] h3, e2S , e2S ,
1
2 , (Λ2,Λ3), 1

2 , ε2,M)
}

e2Iv2I . ∃v2S . S(ζ2,0,h2] h3, e2S ,v2S ,
1
2 , (Λ2,Λ3), 1

2 , ε2,M) ∗
~τ2�

M (v2I ,v2S)


{Hp,Sp(ζ),Sp(ζ1),Sp(ζ2)}

v. v = (v1I ,v2I) ∗ ∃v1S ,v2S .

S(ζ1,0,h1] h3, e1S ,v1S ,
1
2 , (Λ1,Λ3), 1

2 , ε1,M) ∗

S(ζ2,0,h2] h3, e2S ,v2S ,
1
2 , (Λ2,Λ3), 1

2 , ε2,M) ∗ j
ζ
=⇒S (e1, e2) ∗

[Sr]πζ ∗ Pf (Λ3,M,ζ,ζ1,ζ2, ε1, ε2,h1,h2,h3,h3R) ∗
~τ1�

M (v1I ,v1S) ∗ ~τ2�
M (v2I ,v2S)


{Hp,Sp(ζ),Sp(ζ1),Sp(ζ2)}

//

Lemma .0.108
v. v = (v1I ,v2I) ∗ ∃v1S ,v2S . j

ζ
=⇒S (v1S ,v2S) ∗ [Sr]πζ ∗ ~τ1�

M (v1I ,v1S) ∗
~τ2�

M (v2I ,v2S) ∗ Preg(Λ1,1, ε1,M,ζ) ∗ Preg(Λ2,1, ε2,M,ζ) ∗
Preg(Λ3,1, ε1 ∪ ε2,M,ζ)


{Hp,Sp(ζ)}v. v = (v1I ,v2I) ∗ ∃v1S ,v2S . j

ζ
=⇒S (v1S ,v2S) ∗

~τ1 × τ2�
M ((v1I ,v2I), (v2I ,v2S)) ∗ [Sr]πζ ∗ Preg(Λ,1, ε1 ∪ ε2,M,ζ)


{Hp,Sp(ζ)}

DATA ABSTRACTION 227

Commuting

Assuming

1. Λ3 |Λ1 | Γ ` e1 : τ1, ε1

2. Λ3 |Λ2 | Γ ` e2 : τ2, ε2

3. als ε1 ⊆Λ1, als ε2 ⊆Λ2, wrs ε1 ⊆Λ1, wrs ε2 ⊆Λ2, rds ε1 ⊆Λ1 ∪Λ3 and
rds ε2 ⊆Λ2 ∪Λ3

then

· |Λ1,Λ2,Λ3 | Γ ` (e1, e2) � let x = e2 in (e1,x) : τ1 × τ2, ε1 ∪ ε2

Proof. By parallelization, we have

· |Λ1,Λ2,Λ3 | Γ ` (e1, e2) � e1 ||e2 : τ1 × τ2, ε1 ∪ ε2

and by switching the parallel composition

· |Λ1,Λ2,Λ3 | Γ ` e1 ||e2 � let x = e2 ||e1 in (π2(x),π1(x)) : τ1 × τ2, ε1 ∪ ε2

now using parallel composition in the opposite direction

· |Λ1,Λ2,Λ3 | Γ ` let x = e2 ||e1 in (π2(x),π1(x)) �
let x = (e2, e1) in (π2(x),π1(x)) : τ1 × τ2, ε1 ∪ ε2

for which the post-condition easily follows

· |Λ1,Λ2,Λ3 | Γ ` let x = (e2, e1) in (π2(x),π1(x)) �
let x = e2 in (e1,x) : τ1 × τ2, ε1 ∪ ε2

Data Abstraction

Example: Stacks

Consider the following two stack-modules:

Stack1 has a single reference to a pure functional list, where the cas opera-
tion is used to update the entire list on push and pop.

create1() = let h = new inj1 () in (push1,pop1)

push1(n) = let v = !h in

let v′ = inj2 (n,v) in if CAS(h,v,v′) then () else push1(n)

pop1() = let v = !h in

case(v, inj1 ()⇒ inj1 (),

inj2 (n,v′)⇒ if CAS(h,v,v′) then inj2 n else pop1())

228 MODEL OF TYPES-AND-EFFECTS

Stack2 uses a header-reference to a mutable linked list, where the cas oper-
ation is used to move the header back on pop and forth on push.

create2() = let t = new inj1 () in let h = new t in (push2,pop2)

push2(n) = let v = !h in

let v′ = new inj2 (n,v) in if CAS(h,v,v′) then () else push2(n)

pop2() = let v = !h in

let v′ = !v in

case(v′ , inj1 ()⇒ inj1 (),

inj2 (n,v′′)⇒ if CAS(h,v,v′′) then inj2 n else pop2())

The physical footprint of the two modules differ, thus to show contextual
equivalence we are required to establish an invariant that relates one location
having a pure functional list to a collection of mutable heap-cells organized
as a linked list. Such equivalences was not possible to show in ’A Concurrent
Logical Relation’ due to their more restrictive worlds allowing invariants to
only relate values at two locations for a semantic type.

Theorem .0.109 (Stack1 and Stack2 are contextually equivalent).

∀τ. ρ | · | · ` create1 �ctx create2 : 1→ρ|·
alρ

(τ→ρ|·
wrρ ,rdρ ,alρ

1×1→ρ|·
wrρ ,rdρ

1+ τ),∅

Proof. Contextual equivalence is defined as contextual approximation in both
directions, thus we are to show:

ρ | · | · ` create1 ≤ctx create2 : 1→ρ|·
alρ

(τ→ρ|·
wrρ ,rdρ ,alρ

1×1→ρ|·
wrρ ,rdρ

1+ τ),∅ (5)

ρ | · | · ` create2 ≤ctx create1 : 1→ρ|·
alρ

(τ→ρ|·
wrρ ,rdρ ,alρ

1×1→ρ|·
wrρ ,rdρ

1+ τ),∅ (6)

(1) follows from Lemma .0.110 and soundness. Similarly, (2) follows from
Lemma .0.111 and soundness.

Lemma .0.110 (Stack1 logically refines Stack2).

∀τ. ρ | · | · ` create1 � create2 : 1→ρ|·
alρ

(τ→ρ|·
wrρ ,rdρ ,alρ

1×1→ρ|·
wrρ ,rdρ

1+ τ),∅

Proof. Proof follows directly from Lemma .0.113 and Lemma .0.114

Lemma .0.111 (Stack2 logically refines Stack1).

∀τ. ρ | · | · ` create2 � create1 : 1→ρ|·
alρ

(τ→ρ|·
wrρ ,rdρ ,alρ

1×1→ρ|·
wrρ ,rdρ

1+ τ),∅

Proof. This direction is straight-forward, since any successful update from
cas forces the shape of the linked list on the implementation side and we
are required to make only a single heap update on the specification side for
Stack1:

DATA ABSTRACTION 229

We choose the following relation to show equality:

StackRel(h,r,φ), ∃l,v,n. hI
1
↪−→I,r v ∗ hS

1
↪−→S,r n ∗ vals(l,v,φ) ∗

linked(l,n, r,φ)

StackInv(h,r,φ), ∃ι. StackRel(h,r,φ)
Si(ι)

where

vals(nil,v,φ), v = inj1 ()

vals(x :: xs,v,φ), ∃v′ . v = inj2 (xI ,v
′) ∗φ(x) ∗ vals(xs,v′ ,φ)

and

linked(nil,n, r,φ), ∃v. n
1
↪−→S,r v ∗ v = inj1 ()

linked(x :: xs,n, r,φ), ∃v,n′ . n
1
↪−→S,r v ∗ v = inj2 (xS ,n

′) ∗φ(x) ∗
linked(xs,n′ , r,φ)

and the function Si(ι) ensures that the invariant identifier is disjoint from
Hp,Sp(ζ) and Rg(r) for all ζ and r.

Lemma .0.112 (Can create StackInv).

∀hI ,hS , lS , r,φ.

hI
1
↪−→I,r inj1 () ∗ lS

1
↪−→S,r inj1 () ∗ hS

1
↪−→S,r lS

VSi(ι)
StackInv((hI ,hS), r,φ)

Proof. Intro hI ,hS , lS , r and φ.

hI
1
↪−→I,r inj1 () ∗ lS

1
↪−→S,r inj1 () ∗ hS

1
↪−→S,r lS

V ∃vI . vI = inj1 () ∗ hI
1
↪−→I,r vI ∗ lS

1
↪−→S,r inj1 () ∗ hS

1
↪−→S,r lS ∗

vals(nil,vI ,φ)

V ∃vI ,vS . hI
1
↪−→I,r vI ∗ hS

1
↪−→S,r vS ∗ vals(nil,vI ,φ) ∗ linked(nil,vS ,φ)

V StackRel((hI ,hS), r,φ)

VSi(ι) ∃ι. StackRel((hI ,hS), r,φ)
Si(ι)

V StackInv((hI ,hS), r,φ)

Lemma .0.113. Stack1-push refines Stack2-push

∀ρ,M,h,n,m. V ~τ�M(n,m)

⇒ StackInv(h,M(ρ)) ` Eρ;·
{alρ ,wrρ ,rdρ};M(V ~1�M)(push1(n),push2(m))

230 MODEL OF TYPES-AND-EFFECTS

Proof. We define the following short-hands:

e1I , let v = !hI in let v′ = inj2 (n,v) in if CAS(h,v,v′) then () else push1(n)

e1S , let v = !hI in let v′ = new inj2 (m,v) in if CAS(h,v,v′) then () else push2(m)

K1I , let v = [] in let v′ = inj2 (n,v) in if CAS(h,v,v′) then () else push1(n)

K2I , let v′ = [] in if CAS(h,v1
I ,v
′) then () else push1(n)

K3I , if [] then () else push1(n)

K1S , let v = [] in let v′ = new inj2 (n,v) in if CAS(h,v,v′) then () else push2(m)

K2S , let v′ = [] in if CAS(h,v1
S ,v
′) then () else push2(m)

K3S , if [] then () else push2(m)

and the following predicate to track the stacks:

StackRel(h, l, l′ ,v,n, r,φ), hI
1
↪−→I,r v ∗ hS

1
↪−→S,r n ∗ vals(l,v,φ) ∗

linked(l′ ,n, r,φ)

and continue by Löb-induction.

Context: g, j,π′ , e0,h0,ζ,M,h,n,m

Context: Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)

,StackInv(h,M(ρ),V ~τ�M),V ~τ�M (n,m),

.

{j ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ, alρ

}
,M,ζ)}

push(n)

{v1
I . ∃v

1
S . j

ζ
=⇒S v

1
S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ, alρ

}
,M,ζ) ∗V ~1�M (v1

I ,v
1
S)}>{

j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ, alρ

}
,M,ζ)

}
>

// Let π = g(ρ), r =M(ρ) and R = {Hp,Sp(ζ),Rg(r)}{
j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗ [Mu(r, {ζ})]
π
2

}
>

B
in

d
on
K

1I
[!
h I

]

// Unfolding StackInv(h,r,V ~τ�M)j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗

[Mu(r, {ζ})]
π
2 ∗ ∃ι. StackRel(h,r,V ~τ�M)

Si(ι)


>

O
p

en
R
,S
i
(ι

)


j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ .Reg(r) ∗

[Mu(r, {ζ})]
π
2 ∗ .Heap ∗ .Spec(h0, e0,ζ) ∗

.StackRel(h,r,V ~τ�M)


>\R,Si(ι)

!hI
// Follows from Lemma .0.63
v1
I . ∃l. vals(l,v

1
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗

[Wr]πr ∗ [Al]πr ∗Reg(r) ∗ [Mu(r, {ζ})]
π
2 ∗Heap ∗

Spec(h0, e0,ζ) ∗ StackRel(h,r,V ~τ�M)


>\R,Si(ι)v1

I . ∃l. vals(l,v
1
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗

Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2 ∗ StackInv(h,r,V ~τ�M)


>

DATA ABSTRACTION 231

∀v1
I .

∃l. vals(l,v1
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗

Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2 ∗ StackInv(h,r,V ~τ�M)


>

B
in

d
on
K

2
[i
n
j 2

(n
,v

1 I
)]

∃l. vals(l,v1
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗

Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2 ∗ StackInv(h,r,V ~τ�M)


>

inj2 (n,v1
I)

v2
I . v

2
I = inj2 (n,v1

I) ∗ ∃l. vals(l,v1
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗

[Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2 ∗

StackInv(h,r,V ~τ�M)


>

v2
I . ∃l. vals(l,v

1
I ,V ~τ�

M) ∗ vals((n,m) :: l,v2
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗

[Sr]π
′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗ [Mu(r, {ζ})]
π
2 ∗

StackInv(h,r,V ~τ�M)


>

∀v2
I .


∃l. vals(l,v1

I ,V ~τ�
M) ∗ vals((n,m) :: l,v2

I ,V ~τ�
M) ∗ j

ζ
=⇒S e1S ∗

[Sr]π
′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗ [Mu(r, {ζ})]
π
2 ∗

StackInv(h,r,V ~τ�M)


>

B
in

d
on
K

3
[C
A
S

(h
,v

1 I
,v

2 I
)]


∃l, ι. vals(l,v1

I ,V ~τ�
M) ∗ vals((n,m) :: l,v2

I ,V ~τ�
M) ∗

j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗

[Mu(r, {ζ})]
π
2 ∗ StackRel(h,r,V ~τ�M)

Si(ι)


>

O
p

en
R
,S
i
(ι

)



∃l, l′ ,v,n′ . vals(l,v1
I ,V ~τ�

M) ∗

vals((n,m) :: l,v2
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗

[Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ .Reg(r) ∗ .Heap ∗
.Spec(h0, e0,ζ) ∗ [Mu(r, {ζ})]

π
2 ∗

StackRel(h, l′ , l′ ,v,n′ , r,V ~τ�M) ∗
((v = v1

I ∧ l = l′)∨ (v , v1
I ∧ l , l

′))


>\R,Si(ι)

CAS(h,v1
I ,v

2
I)

// Follows from CAS (shown below)

v3
I . ∃l, l

′ ,v,n′ . j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗

[Al]πr ∗Reg(r) ∗ [Mu(r, {ζ})]
π
2 ∗Heap ∗

Spec(h0, e0,ζ) ∗ ((v3
I = true ∗

StackRel(h, (n,m) :: l, l,v2
I ,n
′ , r,V ~τ�M)) ∨

(v3
I = false ∗ StackRel(h, l, l,v,n′ , r,V ~τ�M)))


>\R,Si(ι)

// Follows from simulating on the right hand
side (shown below)

v3
I . ∃l,v,n

′ ,v2
S ,v

3
S . [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗

Reg(r) ∗ [Mu(r, {ζ})]
π
2 ∗Heap ∗ Spec(h0, e0,ζ) ∗

((v3
I = true ∗ v3

S = true ∗
StackRel(h, (n,m) :: l, (n,m) :: l,v2

I ,v
2
S , r,V ~τ�

M) ∗

j
ζ
=⇒S K3S [v3

S])∨ (v3
I = false ∗ v3

S = false ∗

StackRel(h, l′ , l′ ,v,n′ , r,V ~τ�M) ∗ j
ζ
=⇒S e1S))


>\R,Si(ι)

232 MODEL OF TYPES-AND-EFFECTS


v3
I . ∃v

3
S . [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗
StackInv(h,r,V ~τ�M) ∗ [Mu(r, {ζ})]

π
2 ∗ ((v3

I = true ∗

v3
S = false ∗ j

ζ
=⇒S K3S [v3

S]) ∨

(v3
I , true ∗ v3

S = false ∗ j
ζ
=⇒S e1S))


>

if v3
I then[Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗

[Mu(r, {ζ})]
π
2 ∗ j

ζ
=⇒S K3S [()]


>

()v4
I . ∃v

3
S . j

ζ
=⇒S v

3
S ∗ [Sr]π

′
ζ ∗V ~1�

M (v4
I ,v

3
S) ∗

Preg (
{
ρ
}
, g,

{
wrρ, rdρ, alρ

}
,M,ζ)


>

else{
j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ, alρ

}
,M,ζ)

}
>

push(n)
// Follows from IHv4

I . ∃v
3
S . j

ζ
=⇒S v

3
S ∗ [Sr]π

′
ζ ∗V ~1�

M (v4
I ,v

3
S) ∗

Preg (
{
ρ
}
, g,

{
wrρ, rdρ, alρ

}
,M,ζ)


>

We have to show we can perform the cas (open invariants are R,Si(ι)):
∃l, l′ ,v,n′ . vals(l,v1

I ,V ~τ�
M) ∗ vals((n,m) :: l,v2

I ,V ~τ�
M) ∗ j

ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗

[Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ .Reg(r) ∗ [Mu(r, {ζ})]
π
2 ∗ .Heap ∗ .Spec(h0, e0,ζ) ∗

StackRel(h, l′ , l′ ,v,n′ , r,V ~τ�M) ∗ ((v = v1
I ∧ l = l′)∨ (v , v1

I ∧ l , l
′))


∃l, l′ ,v,n′ . vals(l,v1

I ,V ~τ�
M) ∗ vals((n,m) :: l,v2

I ,V ~τ�
M) ∗ j

ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗

[Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗Reg(r) ∗ [Mu(r, {ζ})]
π
2 ∗Heap ∗ Spec(h0, e0,ζ) ∗

StackRel(h, l′ , l′ ,v,n′ , r,V ~τ�M) ∗ ((v = v1
I ∧ l = l′)∨ (v , v1

I ∧ l , l
′))


∃l, l′ ,v,n′ . vals(l,v1

I ,V ~τ�
M) ∗ vals((n,m) :: l,v2

I ,V ~τ�
M) ∗ j

ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗

[Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗ ∃t. locs((tI [hI 7→ v], tS [hS 7→ n′]), r) ∗ toks(1,1, r) ∗
[Mu(r, {ζ})]

π
2 ∗ StackRel(h, l, l,v,n′ , r,V ~τ�M) ∗Heap ∗ Spec(h0, e0,ζ) ∗

((v = v1
I ∧ l = l′)∨ (v , v1

I ∧ l , l
′))



Fr
am

e {Heap ∗ hI 7→I v}
CAS(hI ,v

1
I ,v

2
I){

v3
I . Heap ∗ ((v3

I = true ∗ hI 7→I v
2
I)∨ (v3

I = false ∗ hI 7→I v))
}

// Updating h
1
↪−→I,r v follows from having the authorative element and

fragment
v3
I . ∃l, l

′ ,v,n′ . j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ [Al]πr ∗Heap ∗

Spec(h0, e0,ζ) ∗Reg(r) ∗ [Mu(r, {ζ})]
π
2 ∗

((v3
I = true ∗ StackRel(h, (n,m) :: l, l,v2

I ,n
′ , r,V ~τ�M)) ∨

(v3
I = false ∗ StackRel(h, l′ , l′ ,v,n′ , r,V ~τ�M)))



DATA ABSTRACTION 233

We also have to show that we could simulate on the right hand side, which
consists of three parts - (1) reading the head pointer, (2) allocating a new
location for the new node and (3) updating the head pointer:

∃l,n′ . j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Al]πr ∗Reg(r) ∗ [Mu(r, {ζ})]

π
2 ∗ Spec(h0, e0,ζ) ∗

StackRel(h, (n,m) :: l, l,v2
I ,n
′ , r,V ~τ�M)

V ∃l,n′ . j
ζ
=⇒S K1S [!hS] ∗ [Sr]π

′
ζ ∗ [Al]πr ∗Reg(r) ∗ [Mu(r, {ζ})]

π
2 ∗

Spec(h0, e0,ζ) ∗ StackRel(h, (n,m) :: l, l,v2
I ,n
′ , r,V ~τ�M)

// Follows from Lemma .0.65

V ∃l,n′ ,v1
S . j

ζ
=⇒S K1S [v1

S] ∗ [Sr]π
′
ζ ∗ [Al]πr ∗Reg(r) ∗ [Mu(r, {ζ})]

π
2 ∗

Spec(h0, e0,ζ) ∗ StackRel(h, (n,m) :: l, l,v2
I ,v

1
S , r,V ~τ�

M)

V ∃l,n′ ,v1
S . j

ζ
=⇒S K2S [new inj2 (n,v1

S)] ∗ [Sr]π
′
ζ ∗ [Al]πr ∗Reg(r) ∗

[Mu(r, {ζ})]
π
2 ∗ Spec(h0, e0,ζ) ∗ StackRel(h, (n,m) :: l, l,v2

I ,v
1
S , r,V ~τ�

M)

// Follows from Lemma .0.79

V ∃l,n′ ,v1
S ,v

2
S . j

ζ
=⇒S K2S [v2

S] ∗ [Sr]π
′
ζ ∗ [Al]πr ∗Reg(r) ∗ [Mu(r, {ζ})]

π
2 ∗

Spec(h0, e0,ζ) ∗ StackRel(h, (n,m) :: l, l,v2
I ,v

1
S , r,V ~τ�

M) ∗

v2
S 7→

ζ
S inj2 (n,v1

S)

// Follows from Lemma .0.80

V ∃l,n′ ,v1
S ,v

2
S . j

ζ
=⇒S K2S [v2

S] ∗ [Sr]π
′
ζ ∗ [Al]πr ∗Reg(r) ∗ [Mu(r, {ζ})]

π
2 ∗

Spec(h0, e0,ζ) ∗ StackRel(h, (n,m) :: l, l,v2
I ,v

1
S , r,V ~τ�

M) ∗

v2
S

1
↪−→S,r inj2 (n,v1

S)

V ∃l,n′ ,v1
S ,v

2
S . j

ζ
=⇒S K3S [CAS(hS ,v

1
S ,v

2
S)] ∗ [Sr]π

′
ζ ∗ [Al]πr ∗Reg(r) ∗

Spec(h0, e0,ζ) ∗ [Mu(r, {ζ})]
π
2 ∗ StackRel(h, (n,m) :: l, l,v2

I ,v
1
S , r,V ~τ�

M) ∗

v2
S

1
↪−→S,r inj2 (n,v1

S)

// Follows from Lemma .0.62, Lemma .0.59

V ∃l,n′ ,v1
S ,v

2
S ,v

3
S . v

3
S = true ∗ j

ζ
=⇒S K3S [v3

S] ∗ [Sr]π
′
ζ ∗ [Al]πr ∗Reg(r) ∗

Spec(h0, e0,ζ) ∗ [Mu(r, {ζ})]
π
2 ∗ hI

1
↪−→I,r v

2
I ∗ hS

1
↪−→S,r v

2
S ∗

vals((n,m) :: l,v2
I ,φ,V ~τ�

M) ∗ linked(l,v1
S , r,V ~τ�

M) ∗ v2
S

1
↪−→S,r inj2 (n,v1

S)

// From V ~τ�M (n,m)

234 MODEL OF TYPES-AND-EFFECTS

V ∃l,n′ ,v1
S ,v

2
S ,v

3
S . v

3
S = true ∗ j

ζ
=⇒S K3S [v3

S] ∗ [Sr]π
′
ζ ∗ [Al]πr ∗Reg(r) ∗

Spec(h0, e0,ζ) ∗ [Mu(r, {ζ})]
π
2 ∗ hI

1
↪−→I,r v

2
I ∗ hS

1
↪−→S,r v

2
S ∗

vals((n,m) :: l,v2
I ,φ,V ~τ�

M) ∗ linked((n,m) :: l,v2
S , r,V ~τ�

M)

V ∃l,n′ ,v1
S ,v

2
S ,v

3
S . v

3
S = true ∗ j

ζ
=⇒S K3S [v3

S] ∗ [Sr]π
′
ζ ∗ [Al]πr ∗ Spec(h0, e0,ζ) ∗

Reg(r) ∗ [Mu(r, {ζ})]
π
2 ∗ StackRel(h, (n,m) :: l, (n,m) :: l,v2

I ,v
2
S , r,V ~τ�

M)

Lemma .0.114. Stack1-pop refines Stack2-pop

∀ρ,M,h.
⇒ StackInv(h,r,V ~τ�M) ` Eρ;·

wrρ ,rdρ;M(V ~1+ τ�M)(pop1(),pop2())

Proof. We define the following short-hands:

e1I , let v = !hI in

case(v, inj1 ()⇒ inj1 (),

inj2 (nI ,v
′)⇒ if CAS(hI ,v,v

′) then inj2 nI else pop1())

e1S , let v = !hS in

let v′ = !v in

case(v′ , inj1 ()⇒ inj1 (),

inj2 (nS ,v
′′)⇒ if CAS(hS ,v,v

′′) then inj2 nS else pop2())

K1I , let v = [] in case(v, inj1 ()⇒ inj1 ()),

inj2 (nI ,v
′)⇒ if CAS(hI ,v,v

′) then inj2 nI else pop1()

K2I , if [] then inj2 nI else pop1()

K1S , let v = [] in

let v′ = !v in

case(v′ , inj1 ()⇒ inj1 (),

inj2 (nS ,v
′′)⇒ if CAS(hS ,v,v

′′) then inj2 nS else pop2())

K2S , let v′ = [] in

case(v′ , inj1 ()⇒ inj1 (),

inj2 (nS ,v
′′)⇒ if CAS(hS ,v

1
S ,v
′′) then inj2 nS else pop2())

K3S , if [] then inj2 nS else pop2()

DATA ABSTRACTION 235

Context: g, j,π′ , e0,h0,ζ,M,h

Context: Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)

,StackInv(h,r,V ~τ�M)

.

{j ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ

}
,M,ζ)}

pop()

{v1
I . ∃v

1
S . j

ζ
=⇒S v

1
S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ

}
,M,ζ) ∗V ~1+ τ�M (v1

I ,v
1
S)}>{

j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ

}
,M,ζ)

}
>

// Let π = g(ρ), r =M(ρ) and R = {Hp,Sp(ζ),Rg(r)}{
j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ Reg(r)

Rg(r) ∗ [Mu(r, {ζ})]
π
2

}
>

B
in

d
on
K

1I
[!
h I

]

// Unfolding StackInv(h,r,V ~τ�M)j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ Reg(r)

Rg(r) ∗

[Mu(r, {ζ})]
π
2 ∗ ∃ι. StackRel(h,r,V ~τ�M)

Si(ι)


>

O
p

en
R
,S
i
(ι

)


j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ .Reg(r) ∗

[Mu(r, {ζ})]
π
2 ∗ .Heap ∗ .Spec(h0, e0,ζ) ∗

.StackRel(h,r,V ~τ�M)


>\R,Si(ι)

!hI
// Follows from Lemma .0.63
v1
I . ∃l. vals(l,v

1
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗

[Wr]πr ∗Reg(r) ∗ [Mu(r, {ζ})]
π
2 ∗Heap ∗

Spec(h0, e0,ζ) ∗ StackRel(h,r,V ~τ�M)


>\R,Si(ι)

// Follows from simulation on the right hand side
v1
I . ∃l. vals(l,v

1
I ,V ~τ�

M) ∗ [Sr]π
′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗

Reg(r) ∗Heap ∗ Spec(h0, e0,ζ) ∗ [Mu(r, {ζ})]
π
2 ∗

StackRel(h,r,V ~τ�M) ∗ ((v1
I = inj1 () ∗ j

ζ
=⇒S inj1 ()) ∨

(∃nI ,nS ,v2
I . v

1
I = inj2 (nI ,v

2
I) ∗ l = (n,m) :: l′ ∗ j

ζ
=⇒S e1S))


>\R,Si(ι)

v1
I . ∃l. vals(l,v

1
I ,V ~τ�

M) ∗ [Sr]π
′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ Reg(r)

Rg(r) ∗
[Mu(r, {ζ})]

π
2 ∗ StackInv(h,r,V ~τ�M) ∗

((v1
I = inj1 () ∗ j

ζ
=⇒S inj1 ())∨ (∃nI ,nS ,v2

I .

v1
I = inj2 (nI ,v

2
I) ∗ l = (n,m) :: l′ ∗ j

ζ
=⇒S e1S))


>

236 MODEL OF TYPES-AND-EFFECTS

∀v1
I .


∃l. vals(l,v1

I ,V ~τ�
M) ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗ Reg(r)

Rg(r) ∗
[Mu(r, {ζ})]

π
2 ∗ StackInv(h,r,V ~τ�M) ∗ ((v1

I = inj1 () ∗

j
ζ
=⇒S inj1 ())∨ (∃nI ,v2

I . v
1
I = inj2 (nI ,v

2
I) ∗ l = (n,m) :: l′ ∗

j
ζ
=⇒S e1S))


>

case v1
I

in
j 1

()
⇒


∃l. vals(l,v1

I ,V ~τ�
M) ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗

Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2 ∗ StackInv(h,r,V ~τ�M) ∗

v1
I = inj1 () ∗ j

ζ
=⇒S inj1 ()


>

inj1 ()
v3
I . v

3
I = inj1 () ∗ ∃l. vals(l,v1

I ,V ~τ�
M) ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗

Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2 ∗ StackInv(h,r,V ~τ�M) ∗

v1
I = inj1 () ∗ j

ζ
=⇒S inj1 ()


>v3

I . ∃v
3
S . j

ζ
=⇒S v

3
S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ, alρ

}
,M,ζ) ∗

V ~1+ τ�M (v3
I ,v

3
S)


>

in
j 2

(n
I,
v

2 I
)
⇒


∃l, l′ ,nS . vals(l,v1

I ,V ~τ�
M) ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗

Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2 ∗ StackInv(h,r,V ~τ�M) ∗

v1
I = inj2 (nI ,v

2
I) ∗ l = (n,m) :: l′ ∗ j

ζ
=⇒S e1S


>

B
in

d
on
K

2I
[C
A
S

(h
I,
v

1 I
,v

2 I
)]


∃l, l′ ,nS , ι. vals(l,v1

I ,V ~τ�
M) ∗ [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗

Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2 ∗ StackRel(h,r,V ~τ�M)

Si(ι)
∗

v1
I = inj2 (nI ,v

2
I) ∗ l = (n,m) :: l′ ∗ j

ζ
=⇒S e1S


>

O
p

en
R
,S
i
(ι

)



∃l, l′ ,nS . vals(l,v1
I ,V ~τ�

M) ∗ [Sr]π
′
ζ ∗ [Rd]πr ∗

[Wr]πr ∗ .Heap ∗ .Spec ∗ .Reg(Rg(r)) ∗
[Mu(r, {ζ})]

π
2 ∗

j
ζ
=⇒S e1S ∗ .StackRel(h,r,V ~τ�M) ∗
v1
I = inj2 (nI ,v

2
I) ∗ l = (n,m) :: l′


>\R,Si(ι)

CAS(hI ,v
1
I ,v

2
I)

// Follows from performing cas

v3
I . ∃l, l

′ ,nS . [Sr]π
′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗Reg(Rg(r)) ∗

[Mu(r, {ζ})]
π
2 ∗ l = (n,m) :: l′ ∗Heap ∗ Spec ∗

j
ζ
=⇒S e1S ∗ ((v3

I = true ∗
∃n′ . StackRel(h, l′ , l,v2

I ,n
′ , r,V ~τ�M)) ∨

(v3
I = false ∗ StackRel(h,r,V ~τ�M)))


>\R,Si(ι)

// Follows from simulating on the right hand
side (below)

v3
I . [Sr]π

′
ζ ∗ [Rd]πr ∗ [Wr]πr ∗Reg(Rg(r)) ∗

[Mu(r, {ζ})]
π
2 ∗Heap ∗ Spec ∗ ((v3

I = true ∗

StackRel(h,r,V ~τ�M) ∗ j
ζ
=⇒S K3S [true] ∗

V ~τ�M (n,m))∨ (v3
I = false ∗

StackRel(h,r,V ~τ�M ∗ j
ζ
=⇒S e1S)))


>\R,Si(ι)

DATA ABSTRACTION 237


v3
I . [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ

}
,M,ζ) ∗

StackInv(h,r,V ~τ�M) ∗ ((v3
I = true ∗ j

ζ
=⇒S K3S [true] ∗

V ~τ�M (n,m))∨ (v3
I = false ∗ j

ζ
=⇒S e1S))


>

if v3
I then[Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ

}
,M,ζ) ∗

StackInv(h,r,V ~τ�M) ∗ j
ζ
=⇒S K3S [true] ∗V ~τ�M (n,m)


>

inj2 nIv4
I . ∃v

4
S . j

ζ
=⇒S v

4
S ∗ [Sr]π

′
ζ ∗V ~1+ τ�M (v4

I ,v
4
S) ∗

Preg (
{
ρ
}
, g,

{
wrρ, rdρ, alρ

}
,M,ζ)


>

else[Sr]π
′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ

}
,M,ζ) ∗

StackInv(h,r,V ~τ�M) ∗ j
ζ
=⇒S e1S


>

push(h,n)
// Follows from IHv4

I . ∃v
4
S . j

ζ
=⇒S v

4
S ∗ [Sr]π

′
ζ ∗V ~1+ τ�M (v4

I ,v
4
S) ∗

Preg (
{
ρ
}
, g,

{
wrρ, rdρ, alρ

}
,M,ζ)


>

We have to show we can perform the simulation on the right hand side:

238 MODEL OF TYPES-AND-EFFECTS

∃l, l′ ,nS ,n′ . [Sr]π
′
ζ ∗ [Wr]πr ∗Reg(Rg(r)) ∗ [Mu(r, {ζ})]

π
2 ∗

l = (n,m) :: l′ ∗ Spec ∗ j
ζ
=⇒S e1S ∗ StackRel(h, l′ , l,v2

I ,n
′ , r,V ~τ�M)

V ∃l, l′ ,nS ,n′ . [Sr]π
′
ζ ∗ [Wr]πr ∗Reg(Rg(r)) ∗ [Mu(r, {ζ})]

π
2 ∗

l = (n,m) :: l′ ∗ Spec ∗ j
ζ
=⇒S K1S [!hS] ∗ hI

1
↪−→I,r v

2
I ∗ hS

1
↪−→I,r n

′ ∗
vals(l′ ,v2

I ,V ~τ�
M) ∗ linked(l,n′ , r,V ~τ�M)

// Follows from Lemma .0.64

V ∃l, l′ ,nS ,v1
S . [Sr]π

′
ζ ∗ [Wr]πr ∗Reg(Rg(r)) ∗ [Mu(r, {ζ})]

π
2 ∗

l = (n,m) :: l′ ∗ Spec ∗ j
ζ
=⇒S K1S [v1

S] ∗ hI
1
↪−→I,r v

2
I ∗ hS

1
↪−→I,r v

1
S ∗

vals(l′ ,v2
I ,V ~τ�

M) ∗ linked(l,n′ , r,V ~τ�M)

// Unfolding linked

V ∃l, l′ ,nS ,v1
S ,v

2
S ,n
′′ . [Sr]π

′
ζ ∗ [Wr]πr ∗Reg(Rg(r)) ∗ [Mu(r, {ζ})]

π
2 ∗

l = (n,m) :: l′ ∗ Spec ∗ j
ζ
=⇒S K2S [!v1

S] ∗ hI
1
↪−→I,r v

2
I ∗ hS

1
↪−→I,r v

1
S ∗

vals(l′ ,v2
I ,V ~τ�

M) ∗ linked(l′ ,n′′ , r,V ~τ�M) ∗ v1
S

1
↪−→I,r v

2
S ∗

v2
S = inj2 (nS ,n

′′) ∗V ~τ�M (n,m)

// Follows from Lemma .0.62, Lemma .0.59

V ∃l, l′ ,nS ,v1
S ,v

2
S ,n
′′ . [Sr]π

′
ζ ∗ [Wr]πr ∗Reg(Rg(r)) ∗ [Mu(r, {ζ})]

π
2 ∗

l = (n,m) :: l′ ∗ Spec ∗ j
ζ
=⇒S K3S [CAS(hS ,v

1
S ,v

2
S)] ∗ hI

1
↪−→I,r v

2
I ∗

hS
1
↪−→I,r v

1
S ∗ vals(l

′ ,v2
I ,V ~τ�

M) ∗ linked(l′ ,n′′ , r,V ~τ�M) ∗

v1
S

1
↪−→I,r v

2
S ∗ v

2
S = inj2 (nS ,n

′′) ∗V ~τ�M (n,m)

// Perform CAS

V ∃l, l′ ,nS ,v1
S ,v

2
S ,n
′′ . [Sr]π

′
ζ ∗ [Wr]πr ∗Reg(Rg(r)) ∗ [Mu(r, {ζ})]

π
2 ∗

l = (n,m) :: l′ ∗ Spec ∗ j
ζ
=⇒S K3S [true] ∗ hI

1
↪−→I,r v

2
I ∗ hS

1
↪−→I,r v

2
S ∗

vals(l′ ,v2
I ,V ~τ�

M) ∗ linked(l′ ,n′′ , r,V ~τ�M) ∗ v1
S

1
↪−→I,r v

2
S ∗

v2
S = inj2 (nS ,n

′′) ∗V ~τ�M (nI ,nS ,n
′′)

// Fold linked

V ∃nS ,v1
S ,v

2
S . [Sr]π

′
ζ ∗ [Wr]πr ∗Reg(Rg(r)) ∗ [Mu(r, {ζ})]

π
2 ∗

Spec ∗ j
ζ
=⇒S inj2 nS ∗ StackRel(h,r,V ~τ�M) ∗V ~τ�M (n,m)

Lemma .0.115. Create

∀ρ,M. Eρ;·
alρ;M(V ~τ→ρ|·

wrρ ,rdρ ,alρ
1×1→ρ|·

wrρ ,rdρ
1+ τ�M)(create1(), create2())

DATA ABSTRACTION 239

Proof.

Context: g, j,K,π′ ,ζ,M

Context: Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)j

ζ
=⇒S let t = new inj1 () in let h = new t in (push2,pop2) ∗ [Sr]π

′
ζ ∗

Preg (
{
ρ
}
, g,

{
alρ

}
,M,ζ)


>

// Let r =M(ρ) and R = {Hp,Sp(ζ), r}j
ζ
=⇒S let t = new inj1 () in let h = new t in (push2,pop2) ∗ [Sr]π

′
ζ ∗

[Al]πr ∗ Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2


>

B
in

d
on

(l
e
t
h

=
[]
in

(p
u
sh

1
,p
op

1
))

[n
e
w
in
j 1

()
]

j
ζ
=⇒S let t = new inj1 () in let h = new t in (push2,pop2) ∗ [Sr]π

′
ζ ∗

[Al]πr ∗ Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2


>

O
p

en
R

// Let K1S , let t = [] in let h = new t in (push2,pop2)

// Let K2S , let h = new t in (push2,pop2)j ζ
=⇒S K1[new inj1 ()] ∗ [Sr]π

′
ζ ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗
[Mu(r, {ζ})]

π
2 ∗ .Heap ∗ .Spec(h0, e0,ζ)


>\R

Fr
am

e

{Heap}>\R
new inj1 ()

// Follows from Lemma .0.78

{hI . Heap ∗ hI 7→I inj1 ()}>\RhI . j ζ
=⇒S K1[new inj1 ()][Sr]π

′
ζ ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗
[Mu(r, {ζ})]

π
2 ∗Heap ∗ Spec(h0, e0,ζ) ∗ hI 7→I inj1 ()


>\R

// Follows from Lemma .0.79
hI . ∃lS . j

ζ
=⇒S K1S [lS] ∗ [Sr]π

′
ζ ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗
[Mu(r, {ζ})]

π
2 ∗Heap ∗ Spec(h0, e0,ζ) ∗ hI 7→I inj1 () ∗

lS 7→
ζ
S inj1 ()


>\R

hI . ∃lS . j
ζ
=⇒S K2S [new lS] ∗ [Sr]π

′
ζ ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗
[Mu(r, {ζ})]

π
2 ∗Heap ∗ Spec(h0, e0,ζ) ∗ hI 7→I inj1 () ∗

lS 7→
ζ
S inj1 ()


>\R

// Follows from Lemma .0.79
hI . ∃hS , lS . j

ζ
=⇒S K2S [hS] ∗ [Sr]π

′
ζ ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗
[Mu(r, {ζ})]

π
2 ∗Heap ∗ Spec(h0, e0,ζ) ∗ hI 7→I inj1 () ∗

lS 7→
ζ
S inj1 () ∗ hS 7→

ζ
S lS


>\RhI . ∃hS , lS . j ζ

=⇒S (push2,pop2) ∗ [Sr]π
′
ζ ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗
[Mu(r, {ζ})]

π
2 ∗ hI 7→I inj1 () ∗ lS 7→

ζ
S inj1 () ∗ hS 7→

ζ
S lS


>

// Extending reg: Lemma .0.80hI . ∃hS , lS . j
ζ
=⇒S (push2,pop2) ∗ [Sr]π

′
ζ ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗

[Mu(r, {ζ})]
π
2 ∗ hI

1
↪−→I,r inj1 () ∗ lS

1
↪−→S,r inj1 () ∗ hS

1
↪−→S,r lS


>

240 MODEL OF TYPES-AND-EFFECTS

// Fold into StackInv((hI ,hS), r,V ~τ�M) for the empty list by
Lemma .0.112hI . ∃hS , lS . j ζ

=⇒S (push2,pop2) ∗ [Sr]π
′
ζ ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗
[Mu(r, {ζ})]

π
2 ∗ StackInv((hI ,hS), r,V ~τ�M)


>

∀hI .

∃hS , lS . j ζ
=⇒S (push2,pop2) ∗ [Sr]π

′
ζ ∗ [Al]πr ∗ Reg(r)

Rg(r) ∗
[Mu(r, {ζ})]

π
2 ∗ StackInv((hI ,hS), r,V ~τ�M)


>

(push1,pop1)v1
I . v

1
I = (push1,pop1) ∗ ∃v1

S . j
ζ
=⇒S v

1
S ∗ v

1
S = (push2,pop2) ∗ [Sr]π

′
ζ ∗

Preg (
{
ρ
}
, g,

{
alρ

}
,M,ζ) ∗ StackInv((hI ,hS), r,V ~τ�M)


>

v1
I . ∃v

1
S . j

ζ
=⇒S v

1
S ∗ v

1
S = (push2,pop2) ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
alρ

}
,M,ζ) ∗

StackInv(h,r,V ~τ�M) ∗V ~τ→ρ|·
wrρ ,rdρ ,alρ

1�M (push1,push2) ∗

V ~1→ρ|·
wrρ ,rdρ

1+ τ�M (pop1,pop2)


>

v1
I . ∃v

1
S . j

ζ
=⇒S v

1
S ∗ v

1
S = (push2,pop2) ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
alρ

}
,M,ζ) ∗

StackInv(h,r,V ~τ�M) ∗
V ~τ→ρ|·

wrρ ,rdρ ,alρ
1×1→ρ|·

wrρ ,rdρ
1+ τ�M ((push1,pop1), (push2,pop2))


>

Example: Private Stacks

Consider the following two stack-modules:

Stack1 has a single reference to a pure functional list, where the plain as-
signments updates the entire list on push and pop.

create1() = let h = new inj1 () in (push1,pop1)

push1(n) = let v = !h in h := inj2 (n,v)

pop1() = let v = !h in

case(v, inj1 ()⇒ inj1 (),

inj2 (n,v′)⇒ h := v′; inj2 n)

Stack2 has a single reference to a pure functional list, where the cas opera-
tion is used to update the entire list on push and pop.

create2() = let h = new inj1 () in (push2,pop2)

push2(n) = let v = !h in

let v′ = inj2 (n,v) in if CAS(h,v,v′) then () else push2(n)

pop2() = let v = !h in

case(v, inj1 ()⇒ inj1 (),

inj2 (n,v′)⇒ if CAS(h,v,v′) then inj2 n else pop2())

DATA ABSTRACTION 241

This example shows, that if we know the module is private to us, we can
directly update the value without the need for doing compare-and-swap.

We choose the following relation to show equality:

StackRel(h,r,φ), ([Wr]1
r ∨ (∃l,vI ,vS . hI

1
↪−→I,r vI ∗ hS

1
↪−→S,r vS ∗

vals(l, (vI ,vS),φ)))

StackInv(h), ∃ι. StackRel(h,V ~τ�M)
Si(ι)

where

vals(nil,v,φ), vI = inj1 ()∧ vS = inj1 ()

vals(x :: xs,v,φ), ∃v′I ,v
′
S . vI = inj2 (xI ,v

′
I)∧ vS = inj2 (xS ,v

′
S)∧φ(x) ∧

vals(xs, (v′I ,v
′
S),φ)

We only show the refinement proof of push, the proof of pop is straight-
forward.

Lemma .0.116. Stack1-push refines Stack2-push

∀ρ,M,h,n,m. V ~τ�M(n,m)

⇒ StackInv(h,M(ρ)) ` Eρ;·
wrρ ,rdρ;M(V ~1�M)(push1(n),push2(m))

Proof. We define the following short-hands:

e1I , let v = !h in h := inj2 (n,v)

e1S , let v = !hI in let v′ = inj2 (n,v) in if CAS(h,v,v′) then () else push2(n)

K1I , let v = [] in h := inj2 (n,v)

K1S , let v = [] in let v′ = inj2 (n,v) in if CAS(h,v,v′) then () else push2(n)

K2S , let v′ = [] in if CAS(h,v1
I ,v
′) then () else push1(n)

K3S , if [] then () else push2(n)

242 MODEL OF TYPES-AND-EFFECTS

Context: g, j,K,π′ ,ζ,M,h,n

Context: Heap
Hp

, Spec(h0, e0,ζ)
Sp(ζ)

,StackInv(h,M(ρ)),V ~τ�M (n,n)

.

{j ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ

}
,M,ζ)}

push(n)

{v1
I . ∃v

1
S . j

ζ
=⇒S v

1
S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ

}
,M,ζ) ∗V ~1�M (v1

I ,v
1
S)}>{

j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ

}
,M,ζ)

}
>

// Let π = g(ρ), r =M(ρ) and R = {Hp,Sp(ζ),Rg(r)}{
j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]1

r ∗ [Wr]1
r ∗ Reg(r)

Rg(r) ∗ [Mu(r, {ζ})]
π
2

}
>

B
in

d
on
K

1I
[!
h I

]

// Unfolding StackInv(h,r)j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]1

r ∗ [Wr]1
r ∗ Reg(r)

Rg(r) ∗ [Mu(r, {ζ})]
π
2 ∗

∃ι. StackRel(h,r,V ~τ�M)
Si(ι)


>

O
p

en
R
,S
i
(ι

)


j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]1

r ∗ [Wr]1
r ∗ .Reg(r) ∗

[Mu(r, {ζ})]
π
2 ∗ .Heap ∗ .Spec(h0, e0,ζ) ∗

.StackRel(h,r,V ~τ�M)


>\R,Si(ι)

!hI
// Follows from Lemma .0.63
v1
I . ∃l,v

1
S . vals(l, (v

1
I ,v

1
S),V ~τ�M) ∗ j

ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗

[Rd]1
r ∗ [Wr]1

r ∗Reg(r) ∗ [Mu(r, {ζ})]
π
2 ∗Heap ∗

Spec(h0, e0,ζ) ∗ StackRel(h,r,V ~τ�M)


>\R,Si(ι)

// Trade [Wr]1
r in StackRel(h,r,V ~τ�M)

v1
I . ∃l,v

1
S . vals(l, (v

1
I ,v

1
S),V ~τ�M) ∗ j

ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗

[Rd]1
r ∗Reg(r) ∗ [Mu(r, {ζ})]

π
2 ∗Heap ∗ Spec(h0, e0,ζ) ∗

StackRel(h,r,V ~τ�M) ∗ hI
1
↪−→I,r v

1
I ∗ hS

1
↪−→S,r v

1
S


>\R,Si(ι)

v1
I . ∃l,v

1
S . vals(l, (v

1
I ,v

1
S),V ~τ�M) ∗ j

ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]1

r ∗
Reg(r)

Rg(r) ∗ [Mu(r, {ζ})]
π
2 ∗ StackInv(h,r) ∗

hI
1
↪−→I,r v

1
I ∗ hS

1
↪−→S,r v

1
S


>

∀v1
I .


∃l,v1

S . vals(l, (v
1
I ,v

1
S),V ~τ�M) ∗ j

ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]1

r ∗
Reg(r)

Rg(r) ∗ [Mu(r, {ζ})]
π
2 ∗ StackInv(h,r) ∗

hI
1
↪−→I,r v

1
I ∗ hS

1
↪−→S,r v

1
S


>

DATA ABSTRACTION 243

B
in

d
on

(h
I

:=
[]

)[
in
j 2

(n
,v

1 I
)]


∃l,v1

S . vals(l, (v
1
I ,v

1
S),V ~τ�M) ∗ j

ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]1

r ∗
Reg(r)

Rg(r) ∗ [Mu(r, {ζ})]
π
2 ∗ StackInv(h,r) ∗

hI
1
↪−→I,r v

1
I ∗ hS

1
↪−→S,r v

1
S


>

inj2 (n,v1
I)

v2
I . ∃l,v

1
S ,v

2
S . v

2
S = inj2 (n,v1

S) ∗ vals(l,v1
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗

[Sr]π
′
ζ ∗ [Rd]1

r ∗ Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2 ∗ StackInv(h,r) ∗

hI
1
↪−→I,r v

1
I ∗ hS

1
↪−→S,r v

1
S ∗ vals((n,n) :: l, (v2

I ,v
2
S),V ~τ�M)


>

∀v2
I .


∃l,v1

S ,v
2
S . v

2
S = inj2 (n,v1

S) ∗ vals(l,v1
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗

[Sr]π
′
ζ ∗ [Rd]1

r ∗ Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2 ∗ StackInv(h,r) ∗

hI
1
↪−→I,r v

1
I ∗ hS

1
↪−→S,r v

1
S ∗ vals((n,n) :: l, (v2

I ,v
2
S),V ~τ�M)


>

B
in

d
on
K

3
[C
A
S

(h
,v

1 I
,v

2 I
)]


∃l,v1

S ,v
2
S , ι. v

2
S = inj2 (n,v1

S) ∗ vals(l,v1
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗

[Sr]π
′
ζ ∗ [Rd]1

r ∗ Reg(r)
Rg(r) ∗ [Mu(r, {ζ})]

π
2 ∗

hI
1
↪−→I,r v

1
I ∗ hS

1
↪−→S,r v

1
S ∗ vals((n,n) :: l, (v2

I ,v
2
S),V ~τ�M) ∗

StackRel(h,r,V ~τ�M)
Si(ι)


>

O
p

en
R
,S
i
(ι

)



∃l,v1
S ,v

2
S . v

2
S = inj2 (n,v1

S) ∗ vals(l,v1
I ,V ~τ�

M) ∗

j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗ [Rd]1

r ∗ .Reg(r) ∗ .Heap ∗

.Spec(h0, e0,ζ) ∗ [Mu(r, {ζ})]
π
2 ∗ hI

1
↪−→I,r v

1
I ∗

hS
1
↪−→S,r v

1
S ∗ vals((n,n) :: l, (v2

I ,v
2
S),V ~τ�M) ∗

.StackRel(h,r,V ~int�M)


>\R,Si(ι)

hI := v2
I

v3
I . v

3
I = () ∗ ∃l,v1

S ,v
2
S . v

2
S = inj2 (n,v1

S) ∗

vals(l,v1
I ,V ~τ�

M) ∗ j
ζ
=⇒S e1S ∗ [Sr]π

′
ζ ∗

[Rd]1
r ∗Reg(r) ∗ [Mu(r, {ζ})]

π
2 ∗Heap ∗

Spec(h0, e0,ζ) ∗ hI
1
↪−→I,r v

2
I ∗ hS

1
↪−→S,r v

1
S ∗

StackRel(h,r,V ~int�M) ∗
vals((n,n) :: l, (v2

I ,v
2
S),V ~τ�M)


>\R,Si(ι)

// Follows from simulation on the right hand

side. CAS succeeds because we have hS
1
↪−→S,r v

1
S

v3
I . v

3
I = () ∗ ∃l,v2

S ,v
3
S . v

3
S = () ∗ j

ζ
=⇒S v

3
S ∗

[Sr]π
′
ζ ∗ [Rd]1

r ∗Reg(r) ∗ [Mu(r, {ζ})]
π
2 ∗Heap ∗

Spec(h0, e0,ζ) ∗ hI
1
↪−→I,r v

2
I ∗ hS

1
↪−→S,r v

2
S ∗

vals((n,n) :: l, (v2
I ,v

2
S),V ~τ�M) ∗

StackRel(h,r,V ~int�M)


>\R,Si(ι)

// We trade for [Wr]1
r

v3
I . v

3
I = () ∗ ∃v3

S . v
3
S = () ∗ j

ζ
=⇒S v

3
S ∗ [Sr]π

′
ζ ∗

[Rd]1
r ∗Reg(r) ∗ [Mu(r, {ζ})]

π
2 ∗

Heap ∗ Spec(h0, e0,ζ) ∗ [Wr]1
r ∗

StackRel(h,r,V ~int�M)


>\R,Si(ι)

244 MODEL OF TYPES-AND-EFFECTS

v3
I . ∃v

3
S . j

ζ
=⇒S v

3
S ∗ [Sr]π

′
ζ ∗ [Rd]1

r ∗ [Wr]1
r ∗ Reg(r)

Rg(r) ∗ [Mu(r, {ζ})]
π
2 ∗

StackInv(h) ∗V ~1�M (v3
I ,v

3
S)


>{

v3
I . ∃v

3
S . j

ζ
=⇒S v

3
S ∗ [Sr]π

′
ζ ∗ Preg (

{
ρ
}
, g,

{
wrρ, rdρ

}
,M,ζ) ∗V ~1�M (v3

I ,v
3
S)

}
>

Bibliography

[1] Amal Ahmed.
Semantics of Types for Mutable State.
PhD thesis, Princeton University, 2004.
Cited on page 77.

[2] Amal Ahmed.
Step-indexed syntactic logical relations for recursive and quantified

types.
In European Symposium on Programming (ESOP), 2006.
Cited on page 72.

[3] Amal Ahmed, Derek Dreyer, and Andreas Rossberg.
State-dependent representation independence.
In Principles of Programming Languages (POPL), 2009.
Cited on pages 33 and 106.

[4] Amal J. Ahmed, Andrew W. Appel, and Roberto Virga.
A stratified semantics of general references embeddable in higher-order

logic.
In Logic in Computer Science (LICS), pages 75–86. IEEE Computer Society

Press, 2002.
Cited on pages 30, 43, and 77.

[5] Andrew Appel and David McAllester.
An indexed model of recursive types for foundational proof-carrying

code.
Programming Languages and Systems (TOPLAS), 23(5):657–683, 2001.
Cited on pages 78 and 118.

[6] Andrew Appel, Paul-André Melliès, Christopher Richards, and Jérôme
Vouillon.

A very modal model of a modern, major, general type system.
In Principles of Programming Languages (POPL), 2007.
Cited on pages 78 and 118.

[7] A.W. Appel, P-A. Melliès, C.D. Richards, and J. Vouillon.

245

246 BIBLIOGRAPHY

A very modal model of a modern, major, general type system.
In Principles of Programming Languages (POPL), 2007.
Cited on page 64.

[8] N. Benton, M. Hofmann, and V. Nigam.
Abstract effects and proof-relevant logical relations.
In Principles of Programming Languages (POPL), 2014.
Cited on pages 11 and 63.

[9] N. Benton, M. Hofmann, and V. Nigam.
Effect-dependent transformations for concurrent programs.
In Principles and Practice of Declarative Programming (PPDP), 2016.
Cited on pages 11, 12, 32, and 63.

[10] Nick Benton and Peter Buchlovsky.
Semantics of an effect analysis for exceptions.
In International Workshop on Types in Language Design and Implementation

(TLDI), 2007.
Cited on pages 9, 11, 37, 63, and 99.

[11] Nick Benton, Andrew Kennedy, Martin Hofmann, and Lennart Beringer.
Reading, writing and relations.
In PLAS. Springer, 2006.
Cited on pages 7 and 30.

[12] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann.
Relational semantics for effect-based program transformations with dy-

namic allocation.
In Principles and Practice of Declarative Programming (PPDP), 2007.
Cited on pages 7 and 30.

[13] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann.
Relational semantics for effect-based program transformations: higher-

order store.
In Principles and Practice of Declarative Programming (PPDP), 2009.
Cited on pages 63 and 99.

[14] L. Birkedal, F. Sieczkowski, and J. Thamsborg.
A concurrent logical relation.
In Computer Science Logic (CSL), 2012.
Cited on pages 8, 11, 12, 30, 32, 34, 35, and 63.

[15] Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring,
Jacob Thamsborg, and Hongseok Yang.

Step-indexed Kripke models over recursive worlds.
In Principles of Programming Languages (POPL), 2011.
Cited on pages 30, 43, and 77.

BIBLIOGRAPHY 247

[16] Matko Botincan, Mike Dodds, and Suresh Jagannathan.
Proof-Directed Parallelization Synthesis by Separation Logic.
Programming Languages and Systems (TOPLAS), 35(2), 2013.
Cited on page 64.

[17] The Coq Development Team.
The Coq Proof Assistant Reference Manual, 2016.
URL http://coq.inria.fr.
Version 8.6.
Cited on page 140.

[18] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.
TaDA: A logic for time and data abstraction.
In European Conference on Object-Oriented Programming (ECOOP), pages

207–231, 2014.
Cited on pages 26, 140, 160, and 161.

[19] Pierre-Malo Deniélou and Nobuko Yoshida.
Dynamic multirole session types.
In Principles of Programming Languages (POPL), volume 46, pages 435–

446. ACM, 2011.
Cited on page 136.

[20] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew
Parkinson, and Hongseok Yang.

Views: compositional reasoning for concurrent programs.
In Principles of Programming Languages (POPL), volume 48, pages 287–

300. ACM, 2013.
Cited on page 137.

[21] D. Dreyer, A. Ahmed, and L. Birkedal.
Logical step-indexed logical relations.
Logical Methods in Computer Science (LMCS), 7(2:16), 2011.
Cited on pages 64, 78, and 118.

[22] Derek Dreyer, Georg Neis, and Lars Birkedal.
The impact of higher-order state and control effects on local relational

reasoning.
In International Conference on Functional Programming (ICFP), 2010.
Cited on page 106.

[23] M. Fähndrich and R. DeLine.
Adoption and focus: practical linear types for imperative programming.
In Programming Language Design and Implementation (PLDI), 2002.
Cited on pages 7 and 30.

http://coq.inria.fr

248 BIBLIOGRAPHY

[24] Matthias Felleisen and Robert Hieb.
The revised report on the syntactic theories of sequential control and

state.
Theoretical Computer Science (TCS), 103(2):235–271, 1992.
Cited on page 73.

[25] Robert W Floyd.
Assigning meanings to programs.
Mathematical aspects of computer science, 19(19-32):1, 1967.
Cited on page 106.

[26] D. K. Gifford and J. M. Lucassen.
Integrating functional and imperative programming.
In LISP and functional programming (LISP), 1986.
Cited on pages 7, 8, 13, 30, and 99.

[27] James N Gray.
Notes on data base operating systems.
In Operating Systems, pages 393–481. Springer, 1978.
Cited on page 128.

[28] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan
Parno, Michael L Roberts, Srinath Setty, and Brian Zill.

Ironfleet: proving practical distributed systems correct.
In Symposium on Operating Systems Principles (SOSP), pages 1–17. ACM,

2015.
Cited on pages 17, 23, 104, 134, and 136.

[29] Maurice P. Herlihy and Jeannette M. Wing.
Linearizability: a correctness condition for concurrent objects.
Programming Languages and Systems (TOPLAS), 12(3):463–492, July 1990.
Cited on page 140.

[30] Gerard J. Holzmann.
The model checker spin.
IEEE Transactions on software engineering, 23(5):279–295, 1997.
Cited on pages 17, 104, and 136.

[31] Kohei Honda, Vasco T Vasconcelos, and Makoto Kubo.
Language primitives and type discipline for structured communication-

based programming.
In European Symposium on Programming (ESOP), pages 122–138.

Springer, 1998.
Cited on page 136.

[32] Kohei Honda, Nobuko Yoshida, and Marco Carbone.
Multiparty asynchronous session types.

BIBLIOGRAPHY 249

Principles of Programming Languages (POPL), 43(1):273–284, 2008.
Cited on page 136.

[33] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer.

Iris: Monoids and invariants as an orthogonal basis for concurrent rea-
soning.

In Principles of Programming Languages (POPL), pages 637–650, 2015.
Cited on pages 30, 44, 64, 66, 77, 106, 117, 140, and 160.

[34] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer.
Higher-order ghost state.
In International Conference on Functional Programming (ICFP), pages

256–269, 2016.
Cited on pages 66, 77, and 106.

[35] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
Rustbelt: Securing the foundations of the rust programming language.
Principles of Programming Languages (POPL), 2017.
Cited on page 108.

[36] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor
Vafeiadis.

Strong logic for weak memory: Reasoning about release-acquire consis-
tency in iris.

In European Conference on Object-Oriented Programming (ECOOP), vol-
ume 74, 2017.

Cited on page 108.

[37] Charles Edwin Killian, James W Anderson, Ryan Braud, Ranjit Jhala,
and Amin M Vahdat.

Mace: language support for building distributed systems.
In Programming Language Design and Implementation (PLDI), volume 42,

pages 179–188. ACM, 2007.
Cited on pages 17, 104, and 136.

[38] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek
Dreyer, and Lars Birkedal.

The essence of higher-order concurrent separation logic.
In European Symposium on Programming (ESOP), April 2017.
Cited on pages 17, 66, 78, 79, 93, 97, 104, 106, 117, 118, 120, 137,

and 140.

[39] Robbert Krebbers, Amin Timany, and Lars Birkedal.
Interactive Proofs in Higher-Order Concurrent Separation Logic.
In Principles of Programming Languages (POPL), 2017.
Cited on pages 66, 77, 97, 98, 100, 106, and 140.

250 BIBLIOGRAPHY

[40] N. Krishnaswami, P. Pradic, and N. Benton.
Integrating linear and dependent types.
In Principles of Programming Languages (POPL), 2015.
Cited on pages 7 and 30.

[41] Morten Krogh-Jespersen, Thomas Dinsdale-Young, and Lars Birkedal.
Verifying a Concurrent Data-Structure from the Dartino Framework,

2017.
Cited on pages 24, 25, and 26.

[42] Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal.
A relational model of types-and-effects in higher-order concurrent sepa-

ration logic.
In Principles of Programming Languages (POPL), pages 218–231, 2017.
Cited on pages 3, 7, 8, 9, 11, 16, 66, 77, 100, and 101.

[43] Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, and
Lars Birkedal.

Aneris: A Logic for Node-Local, Modular Reasoning of Distributed
Systems, 2018.

Cited on pages 17, 22, and 23.

[44] Leslie Lamport.
Proving the correctness of multiprocess programs.
IEEE transactions on software engineering, (2):125–143, 1977.
Cited on page 106.

[45] Leslie Lamport.
The implementation of reliable distributed multiprocess systems.
Computer networks, 2(2):95–114, 1978.
Cited on page 106.

[46] Leslie Lamport.
Hybrid systems in tla+.
In Hybrid Systems, pages 77–102. Springer, 1993.
Cited on pages 17, 104, and 136.

[47] John Launchbury and Simon Peyton Jones.
Lazy functional state threads.
In Programming Language Design and Implementation (PLDI), 1994.
Cited on pages 12, 13, 16, 66, 67, 68, 99, and 101.

[48] John Launchbury and Simon L. Peyton Jones.
State in haskell.
Lisp and symbolic computation, 8(4):293–341, 1995.
Cited on pages 13, 16, 66, and 69.

BIBLIOGRAPHY 251

[49] K Rustan M Leino.
Dafny: An automatic program verifier for functional correctness.
In Logic for Programming Artificial Intelligence and Reasoning (LPAR),

pages 348–370. Springer, 2010.
Cited on pages 23 and 136.

[50] Mohsen Lesani, Christian J Bell, and Adam Chlipala.
Chapar: certified causally consistent distributed key-value stores.
In Principles of Programming Languages (POPL), volume 51, pages 357–

370. ACM, 2016.
Cited on pages 17, 104, 134, and 136.

[51] John M Lucassen and David K Gifford.
Polymorphic effect systems.
In Principles of Programming Languages (POPL), 1988.
Cited on pages 7, 8, and 30.

[52] E. Moggi and Amr Sabry.
Monadic encapsulation of effects: A revised approach (extended version).
Journal of Functional Programming, 11(6):591–627, November 2001.
ISSN 0956-7968.
Cited on pages 13, 16, 17, 66, and 99.

[53] G. Morrisett, A. Ahmed, and M. Fluet.
L3: A linear language with locations.
In Typed Lambda Calculi and Applications (TLCA), 2005.
Cited on pages 7 and 30.

[54] A. Nanevski, G. Morrisett, and L. Birkedal.
Polymorphism and separation in hoare type theory.
In International Conference on Functional Programming (ICFP), 2006.
Cited on pages 7 and 30.

[55] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés
Delbianco.

Communicating state transition systems for fine-grained concurrent
resources.

In European Symposium on Programming (ESOP), pages 290–310, 2014.
Cited on page 137.

[56] Peter W O’hearn.
Resources, concurrency, and local reasoning.
Theoretical Computer Science (TCS), 375(1-3):271–307, 2007.
Cited on pages 20, 108, and 137.

[57] Peter O’Hearn, John Reynolds, and Hongseok Yang.

252 BIBLIOGRAPHY

Local reasoning about programs that alter data structures.
In Computer Science Logic (CSL), pages 1–19. Springer, 2001.
Cited on page 140.

[58] G.D. Plotkin and M. Abadi.
A logic for parametric polymorphism.
In Typed Lambda Calculi and Applications (TLCA), 1993.
Cited on page 64.

[59] Amir Pnueli.
The temporal logic of programs.
In Foundations of Computer Science, 1977., 18th Annual Symposium on,

pages 46–57. IEEE, 1977.
Cited on pages 104 and 136.

[60] F. Pottier.
Hiding local state in direct style: a higher-order anti-frame rule.
In Logic in Computer Science (LICS), 2008.
Cited on pages 7 and 30.

[61] F. Pottier and J. Protzenko.
Programming with permissions in Mezzo.
In International Conference on Functional Programming (ICFP), 2013.
Cited on pages 7, 30, and 31.

[62] Vincent Rahli, David Guaspari, Mark Bickford, and Robert L Constable.
Formal specification, verification, and implementation of fault-tolerant

systems using eventml.
Electronic Communications of the EASST, 72, 2015.
Cited on pages 17, 104, 134, and 137.

[63] Vincent Rahli, David Guaspari, Mark Bickford, and Robert L Constable.
Eventml: Specification, verification, and implementation of crash-

tolerant state machine replication systems.
Science of Computer Programming, 148:26–48, 2017.
Cited on page 137.

[64] Mohammad Raza, Cristiano Calcagno, and Philippa Gardner.
Automatic Parallelization with Separation Logic.
In European Symposium on Programming (ESOP), 2009.
Cited on page 64.

[65] John C. Reynolds.
Types, abstraction, and parametric polymorphism.
Information Processing, 1983.
Cited on pages 15 and 80.

BIBLIOGRAPHY 253

[66] John C Reynolds.
Separation logic: A logic for shared mutable data structures.
In Logic in Computer Science (LICS), pages 55–74. IEEE, 2002.
Cited on pages 107, 140, and 158.

[67] Rust Language.
https://doc.rust-lang.org, 2016.
Cited on pages 7, 30, and 31.

[68] Steven Schäfer, Tobias Tebbi, and Gert Smolka.
Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions.
In Interactive Theorem Proving (ITP), volume 9236 of LNCS, pages 359–

374, 2015.
Cited on page 98.

[69] Miley Semmelroth and Amr Sabry.
Monadic encapsulation in ml.
In International Conference on Functional Programming (ICFP), pages 8–17,

New York, NY, USA, 1999. ACM.
ISBN 1-58113-111-9.
Cited on pages 13 and 99.

[70] Ilya Sergey, James R Wilcox, and Zachary Tatlock.
Programming and proving with distributed protocols.
Principles of Programming Languages (POPL), 2:28, 2017.
Cited on pages 17, 22, 23, 104, 106, 134, 136, and 138.

[71] F. Smith, D. Walker, and G. Morrisett.
Alias types.
In European Symposium on Programming (ESOP), 2000.
Cited on pages 7 and 30.

[72] Kasper Svendsen and Lars Birkedal.
Impredicative concurrent abstract predicates.
In European Symposium on Programming Languages (ESOP), pages 149–

168. Springer, 2014.
Cited on pages 106 and 137.

[73] Andrew S Tanenbaum and Maarten Van Steen.
Distributed systems: principles and paradigms.
Prentice-Hall, 2007.
Cited on page 129.

[74] Jacob Thamsborg and Lars Birkedal.
A kripke logical relation for effect-based program transformations.
In International Conference on Functional Programming (ICFP), 2011.
Cited on pages 9, 11, 37, 63, 99, and 100.

https://doc.rust-lang.org

254 BIBLIOGRAPHY

[75] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars
Birkedal.

A logical relation for monadic encapsulation of state: Proving contextual
equivalences in the presence of runst.

Principles of Programming Languages (POPL), page 64, 2017.
Cited on pages 3, 4, 13, 14, 15, 16, 17, and 108.

[76] Mads Tofte and Jean-Pierre Talpin.
Implementation of the typed call-by-value λ-calculus using a stack of

regions.
In Principles of Programming Languages (POPL), 1994.
Cited on pages 9 and 37.

[77] Bernardo Toninho, Luís Caires, and Frank Pfenning.
Dependent session types via intuitionistic linear type theory.
In Principles and Practice of Declarative Programming (PPDP), pages 161–

172. ACM, 2011.
Cited on page 136.

[78] Aaron Turon, Derek Dreyer, and Lars Birkedal.
Unifying refinement and Hoare-style reasoning in a logic for higher-order

concurrency.
In International Conference on Functional Programming (ICFP), pages

377–390, 2013.
Cited on pages 10, 50, and 64.

[79] Aaron Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek
Dreyer.

Logical relations for fine-grained concurrency.
In Principles of Programming Languages (POPL), 2013.
Cited on page 33.

[80] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer.
GPS: navigating weak memory with ghosts, protocols, and separation.
In Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pages 691–707, 2014.
Cited on page 137.

[81] James R Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D Ernst, and Thomas Anderson.

Verdi: a framework for implementing and formally verifying distributed
systems.

In Principles of Programming Languages (POPL), volume 50, pages 357–
368. ACM, 2015.

Cited on pages 17, 23, 104, 134, and 137.

	Abstract
	Resumé
	Acknowledgments
	Contents
	Overview
	Introduction
	Published Papers and Manuscripts
	Outline of the Dissertation

	Contributions of this Dissertation
	Relational Model of Types-and-Effects
	Relational Model for Monadic Encapsulation of State
	Aneris: A Logic for Node-Local, Modular Reasoning of Distributed Systems
	Verifying a Conc. Data-Structure from the Dartino Framework

	Publications and Manuscripts
	A Relational Model of Types-and-Effects in Higher-Order Concurrent Separation Logic
	Introduction
	ref,conc with Types, Regions and Effects
	A Logical Relation for ref,conc
	Discussion

	A Logical Relation for Monadic Encapsulation of State
	Introduction
	The STLang language
	Logical Relation
	Proving Contextual Refinements and Equivalences
	Iris Definitions of Predicates used in the Logical Relation
	Formalization in Coq
	Related work
	Conclusion and Future Work

	Aneris: A Logic for Node-Local, Modular Reasoning of Distributed Systems
	Introduction
	The core concepts of Aneris
	Operational Semantics of AnerisLang
	Semantics of Aneris
	Case Study 1: A Load Balancer
	Case Study 2a: Two-Phase Commit
	Case Study 2b: Replicated Logging
	Related Work
	Conclusion and Future Work

	Verifying a Concurrent Data-Structure from the Dartino Framework
	Introduction
	The Dartino Queue in Iris
	The Iris Logic
	A Specification for the Dartino Queue
	A Logically Atomic Specification for the Dartino Queue
	Client
	Conclusion

	Appendix
	A Relational Model of Types-and-Effects in Higher-Order Concurrent Separation Logic
	The Language and Typing Rules
	Monoids and Constructions
	The LRML relation
	The LREff relation
	The LRBin relation
	The LRPar relation
	Effect-Dependent Transformations
	Data Abstraction

	Bibliography

