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Abstract

The work presented in this thesis is a contribution to the area of type theory and semantics for programming
languages in that we develop and study new models for type theories and programming logics. It is also
a contribution to the area of logic in computer science, in that our categorical analysis provides us with
new insights into functional interpretations. Functional interpretations have proved highly effective in the
area of proof mining, which is the enterprise of extracting constructive (computable) contents from non-
constructive proofs.

When Gödel published his functional interpretation in the journal Dialectica, hence the name “Dialec-
tica Interpretation”, in 1958, it was as a contribution to Hilbert’s program. The Dialectica interpretation
reduces consistency of Heyting arithmetic (and combined with the double negation translation, also Peano
arithmetic) to consistency of Gödel’s system T, a quantifier-free theory of computable finite-type function-
als. Nowadays, fifty years later, the interest in Gödel’s functional interpretation as well as other functional
interpretations (e.g. Kleene’s number realizability, Kreisel’s modified realizability, the Diller-Nahm inter-
pretation) is much less philosophical, and much more oriented toward (theoretical) computer science.

The Dialectica interpretations are remarkable syntactic constructions, We use these constructions to
develop new mathematical structures such as the Dialectica categories, the Dialectica- and Diller-Nahm
triposes, and the Dialectica- and Diller-Nahm toposes. The benefits work in both directions. The mathe-
matical structures created from the functional interpretations provides us with new models for type theories
and programming logics. And from studying the mathematical structures we also gain new insights into
the syntactical constructions, in particular we present a new Dialectica variant for higher typed Heyting
arithmetic: the Copenhagen interpretation, which is a product of the categorical analysis of the original
Dialectica interpretation.
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Preface

This Ph.D. dissertation is a collection of papers, preprints and technical reports that document my research
at the IT-University (2004–2008) and during my stay at Cambridge University (Spring, 2006). Each of
the papers, preprints or technical reports is preceded by a short declaration that summarizes the current
status (published, accepted or submitted), contributions of the authors if more than one author, main results
and relation to other work. To help the reader, each declaration also contains a short list of references for
background material. It is the overall assumption that the reader is familiar with the basics of category
theory, logic, and categorical logic.
I would like to start with a few words on the broader context into which this work fits. Let me to quote
from [HHI+01]:

Just as in natural sciences, mathematics has been highly effective in computer science. In
particular, several areas of mathematics, including linear algebra, number theory, probability
theory, graph theory, and combinatorics, have been instrumental in the development of com-
puter science. Unlike the natural sciences, however, computer science has also benefited from
an extensive and continuous interaction with logic. As a matter of fact, logic has turned out
to be significantly more effective in computer science than it has been in mathematics. This
is quite remarkable, especially since much of the impetus for the development of logic during
the past one hundred years came from mathematics.

Indeed, let us recall that to a large extent mathematical logic was developed in an attempt
to confront the crisis in the foundations of mathematics that emerged around the turn of the
20th Century. Between 1900 and 1930, this development was spearheaded by Hilbert’s Pro-
gram, whose main aim was to formalize all of mathematics and establish that mathematics is
complete and decidable. Informally, completeness means that all “true” mathematical state-
ments can be “proved”, whereas decidability means that there is a mechanical rule to deter-
mine whether a given mathematical statement is “true” or “false”. Hilbert firmly believed that
these ambitious goals could be achieved. Nonetheless, Hilbert’s Program was dealt devastat-
ing blows during the 1930’s. Indeed, the standard first-order axioms of arithmetic were shown
to be incomplete by Gödel in his celebrated 1931 paper [Göd06]. [...]

[L]ogic has permeated through computer science during the past thirty years much more than
it has through mathematics during the past hundred years. Indeed, at present concepts and
methods of logic occupy a central place in computer science, insomuch that logic has been
called “the calculus of computer science” [MW85].

And from the same source we get a nice description of type theory in programming language research:

In the 1980’s and 1990’s the study of programming languages was revolutionized by a remark-
able confluence of ideas from mathematical and philosophical logic and theoretical computer
science. Type theory emerged as a unifying conceptual framework for the design, analysis, and
implementation of programming languages. Type theory helps to clarify subtle concepts such
as data abstraction, polymorphism, and inheritance. It provides a foundation for developing
logics of program behavior that are essential for reasoning about programs. It suggests new
techniques for implementing compilers that improve the efficiency and integrity of generated
code.
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The work presented in this thesis is a contribution to the area of type theory and semantics for program-
ming languages in that we develop and study new models for type theories and programming logics. It is
also a contribution to the area of logic in computer science, in that our categorical analysis provides us with
new insights into functional interpretations. Functional interpretations have proved highly effective in the
area of proof mining. Proof mining is the enterprise of extracting constructive (computable) contents from
non-constructive proofs, see e.g. the survey papers [KO03], [Koh].

When Gödel finally1 published his functional interpretation in the journal Dialectica, hence the name
“Dialectica Interpretation”, in 1958, it was as a contribution to Hilbert’s program. The Dialectica interpre-
tation reduces consistency of Heyting arithmetic (and combined with the double negation translation, also
Peano arithmetic) to consistency of Gödel’s system T, a quantifier-free theory of computable finite-type
functionals. Nowadays, fifty years later, the interest in Gödel’s functional interpretation as well as other
functional interpretations (e.g. Kleene’s number realizability, Kreisel’s modified realizability, the Diller-
Nahm interpretation) is much less philosophical, and much more oriented toward (theoretical) computer
science.

The Effective Topos [Hyl82] is a categorical structure which is built from Kleene’s number realizability.
The benefits of this structure falls into two: new insights related to the source of origin - in this case
Kleene’s number realizability, and new categorical models for type theory and logic. In the case of the
Effective topos these benefits include a higher order version of Kleene’s number realizability, and a whole
range of models for dependent type theory. For a text book presentation see [Jac99].

Thus inspired we turn to another, and somewhat more complex functional interpretation - the Dialectica
interpretation, to attack it with the powerful, modern tool that Gödel and his contemporaries would have
wished they had: category theory. I believe the first attack was carried out by Valeria de Paiva, who defined
and studied the Dialectica categories in [dP91, dP89] when she was a student of Martin Hyland. Given
sufficient conditions on the base category C, the Dialectica category Dial(C) is symmetric monoidal closed
with products and weak coproducts. No Cartesian closed structure was found. In her thesis [dP91], de Paiva
also makes the connection between the Diller-Nahm interpretation [DN74] and the Dialectica interpretation
via a Girardian comonad ! (i.e., it satisfies !(A× B) ∼=!A⊗!B), achieving a class of categorical models of
Girard’s linear logic with modality. Valeria de Paiva also introduced the Girard categories, and showed that
they are symmetric, monoidal closed and have finite products and coproduct. The Kleisli category for the
comonad ! corresponds to the Diller-Nahm interpretation. This category is Cartesian closed because the
comonad is Girardian.

The Dialectica categories by de Paiva were studied for the subobject fibration only, and in [Hyl02] this
was taken a step further to preordered fibrations. There are (at least) three different approaches to obtaining
Cartesian closed Dialectica categories. The natural structure of the category Dial(p) is symmetric monoidal
closed with finite products. One way to obtain Cartesian closure is by adding structure that will make ⊗ a
product, that is, making sure we get projections and diagonals for⊗. This approach has been studied briefly
in [Hyl02]. Another way of obtaining Cartesian closed Dialectica categories is by altering the definition
slightly to get variations like the Diller-Nahm Dialectica category (see [dP91]). We show in Chapter 3
that there are several variants constructed in the same manner as the Diller-Nahm category, that is, by a
Girardian comonad on a Dialectica category, or on a Girard category. The third approach that one might
think of is to add enough structure to define an exponent (without making ⊗ = ×). The paper in Chapter
4 is devoted to studying this approach.

Combining the ideas of the Effective Topos with that of Dialectica categories, we get the Dialectica
topos (and tripos). The Dialectica tripos was first described by Lars Birkedal, following ideas of Martin
Hyland, in an unpublished note. This note was later merged with another unpublished note by Thomas
Streicher, and after thorough revision and addition of material, this resulted in the preprint in Chapter 2.

The exponent construction, originally defined for the Dialectica tripos, is examined in the paper in
Chapter 4. The analysis there shows that what we are really looking at, is a variant of the Dialectica
categories, namely the Kleisli category of a certain non-Girardian comonad on a Dialectica category. This
Dialectica-Kleisli category is weakly Cartesian closed. Thus, both the preordered reflection and the Cauchy
completion are Cartesian closed variants of Dialectica categories.

1“The ideas in this paper date back at least as far as 1941, since Gödel lectured at that time on his interpretation at Princeton and
Yale.” From [Göd90]
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Outline: In Chapter 2 we present four new triposes reflecting as much as possible of the Dialectica in-
terpretation, which we call the Dialectica tripos and denote by d. The resulting topos is denoted by Dia.
From the tripos d we get a closed subtripos, the modified Dialectica tripos, denoted by dm, and the result-
ing topos is denoted by Diam. We also define a tripos reflecting as much as possible of the Diller-Nahm
interpretation, which we call the Diller-Nahm tripos, denoted dn. The resulting topos is denoted by DN.
From the tripos dn we get a closed subtripos, the modified Diller-Nahm tripos, denoted by dnm, and the
resulting topos is denoted by DNm. The modified versions are in closer correspondence with the standard
interpretations of Dialectica, respectively Diller-Nahm, since “modified” corresponds to having non-empty
types. We give an account of the first order logic of the toposes and find that first order logic of dnm

corresponds to the Diller-Nahm interpretation, and that first order logic of Diam does not correspond to
the Dialectica interpretation, but instead to a variant of Dialectica, which we call the Copenhagen inter-
pretation. This is perhaps not so surprising when we recall that the Dialectica interpretation assumes that
atomic formulas are decidable, and that there is no such restriction for the tripos. Though we have some
nice results regarding the decidable fragment of predicates over the natural numbers in Diam, we argue
that it is not possible to interpret first order logic with decidable atomic formulas in this fragment. Hence
we do not find a correspondence between first order logic with decidable atomic formulas in Diam and the
Dialectica interpretation. The tripos setting allows us to reveal many new relations in the form of geometric
morphisms to other functional interpretations, which are also represented by triposes. The relations can be
summed up in diagrams:

At the tripos level, we get the following diagram of fibred adjunctions, where, however, only some give
rise to geometric morphisms:
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Here H, v, and q all are connected geometric morphisms, so they lift to surjective geometric morphisms on
the induced toposes, and i and j are open geometric inclusions, so they lift to open geometric inclusions.
The left adjoints of the adjunctions ! a id , ∇ a F , and p∗ a p∗ are full and faithful. At the topos level we
get the following geometric morphisms

DNm
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with i, j open inclusions.
In Chapter 3 we develop a uniform way to relate the triposes, namely via comonads on a Girard cate-

gory. Independently, a similar unifying framework is presented in [Oli08], but in a syntactic setting. If the
comonad is Girardian, then we have a result stating that the Kleisli category is a tripos. In Chapter 3, we
have collected the results in the following neat table, which we will explain properly there:
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G Gm

comonad Kleisli L(p ∧ q) ≡ Lp⊗ Lq comonad Kleisli K(p ∧ q) ≡ Kp⊗Kq
Ld d No Kdm = Ld dm No
Ls Set(−, 2) Yes Ks = Ls Set(−, 2) Yes
Ldn dn Yes Kdnm

= Ldn dnm Yes
Le e Yes Ke e Yes
Le2 e2 Yes Km = Le2 m Yes

The Girard category together with a Girardian comonad yields a model of linear logic with modality,
so we get a collection of realizability models for linear logic with modality.

The construction from a fibration p : E → T to its Dialectica category Dial(p) contains an implicit
soundness proof. Informally, if for example Dial(p) (as a preorder) carries the structure of a Heyting al-
gebra, then HA ` φ implies L(p) ` φD, where L(p) is the internal logic of the fibration p and φD is
the Dialectica interpreted formula. With the intention of making the ideas available outside the categories
community, this soundness proof has been made explicit in Chapter 5, giving rise to the Copenhagen inter-
pretation. The Copenhagen interpretation is a generalization of Dialectica which is not limited to decidable
atomic formulas, thus it soundly interprets higher typed Heyting arithmetic, HAω, whereas the original
Dialectica interpretation only interprets first order Heyting arithmetic, HA. Generalizing the Dialectica in-
terpretation to higher types has been one of the aims for our research. With the Copenhagen interpretation,
we reach this goal, though it is perhaps not as simple as one would have liked. Very recently, we have dis-
covered a much simpler variant, which we believe also interprets HAω. This new variant will be presented
in a future paper, but we give a rough sketch of the idea in an appendix of the paper in Chapter 5. The
Copenhagen interpretation is the direct result of the categorical analysis of the Dialectica and Diller-Nahm
interpretations in [dP89, Hyl02], and the papers in Chapters 2 and 4. The basic structure was discovered
during the research for the preprint in Chapter 2 and refined by Martin Hyland at a meeting in Copenhagen2

in 2006, hence the name “Copenhagen interpretation”. A thorough analysis of the clause for implication
can be found in Chapter 4.

Though chronologically it came first, the paper on BI-hyperdoctrines in 6 is placed at the very end of the
dissertation, because the story, though related, is somewhat separate from the rest. In Chapter 6 we present
a precise correspondence between separation logic (for an introduction see [Rey02] and the references
therein) and a simple notion of higher order predicate BI (logic of bunched implications), extending an
earlier correspondence given between propositional separation logic and propositional BI. Moreover, we
introduce the notion of a BI hyperdoctrine, show that it soundly models classical and intuitionistic first- and
higher-order predicate BI, and use it to show that we may easily extend separation logic to higher order. We
also show that the “canonical guess” for a model of higher order separation logic, namely a topos, though
it is a BI hyperdoctrine, it is a trivial one in the sense that the monoidal structure (⊗,() coincides with the
intuitionistic structure (∧,→). The extension of separation logic to higher order has proved very useful for
modular reasoning (data abstraction) in [Bir07a, Bir07b, Bie08] and for formalization of separation logic
in [Bir08].

Indications for future work are given in the chapters they belong to. All together this dissertation
comprises the following:

1. B. Biering, Extended Introduction to Topos Theoretic Versions of Dialectica Interpretations, Unpub-
lished manuscript.

2. B. Biering, L. Birkedal, C. Butz, J.M.E. Hyland, J. van Oosten, G. Rosolini, T. Streicher, Topos
Theoretic Versions of Dialectica Interpretations, Preprint for publication.

3. B. Biering, A Unified View on the Dialectica Triposes, Unpublished manuscript.

4. B. Biering, Cartesian Closed Dialectica Categories, Submitted for publication in Annals of Pure and
Applied Logic.

2The authors of [BBLBCB07] have held two “Dialectica meetings” the first in Copenhagen in September 2006, the second in
Genoa, June 2007
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5. B. Biering, The Copenhagen Interpretation, Submitted for publication in Annals of Pure and Applied
Logic.

6. B. Biering, L. Birkedal, N. Torp-Smith, BI Hyperdoctrines and Higher Order Separation Logic, pub-
lished in ACM Transactions on Programming Languages and Systems, Volume 29, Issue 5, Article
24 (2007), Special Issue ESOP’05.
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Chapter 1

Extended Introduction to Topos
Theoretic Versions of Dialectica
Interpretations

This note contains some background material for the paper in Chapter 3. It is mostly material which
is folklore, but can be hard to find written accounts of. There are also a few new results including: A
connected geometric morphism of triposes lifts to a surjection of toposes, and any geometric morphism of
triposes factors uniquely as an inclusion followed by a connected geometric morphism.

The reader should be familiar with basic tripos theory (see [Pit02, HJP80, Pit81]) and have some knowl-
edge about toposes and j-topologies (see e.g. [MLM94, Joh02]).
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Extended Introduction to Topos Theoretic

Versions of Dialectica Interpretations

Bodil Biering

In this note we have collected some background material for the paper in
[Bie08, Chapter 3]. It is mostly material which is folklore, but can be hard to
find written accounts of. Some of it exists in the literature (when that is the
case, we give references), and some of the results are new.

1 Triposes and Geometric Morphisms of Tri-

poses

In this section we recall some definitions and standard results, and we show
a new result: that the lifting of a connected geometric morphism of triposes
results in a surjection of toposes.

The Logic of the Topos C[P ] Reduced to the Logic of the Tripos P

Definition 1.1. For an object (X,∼) of the topos C[P ] a strict predicate on
(X,∼) is a predicate A ∈ P (X) which satisfies

A(x), x ∼ x′ ` A(x′) and A(x) ` x ∼ x.

Proposition 1.2. For each object (X,∼), there is an isomorphism between
strict predicates on (X,∼) and subobjects of (X,∼) in C[P ].

For details see [HJP80, Pit81].
Now assume that subobjects are represented by strict predicates. If we mark

the connectives of the topos with ·̃, we can express the logic of SubC[P ](X,∼)
in terms of the tripos logic of P (X) in the following way:

• Propositional connectives: ⊥̃ = ⊥, ∨̃ = ∨, >̃ = x ∼ x, ∧̃ = ∧, A→̃B =
(x ∼ x) ∧ (A→ B).

• Quantifiers: For a morphism F : (X,∼) → (Y,∼),

∃̃F (A)(y) = ∃x : X.F (x, y) ∧A(x)

∀̃F (A)(y) = y ∼ y ∧ (∀x : X.F (x, y) → A(x)).

1
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In the special case where F is a projection (X,∼) × (J,∼) → (J,∼) we
get

∃̃x : X.A(x, j) = ∃x : X.A(x, j)

∀̃x : X.A(x, j) = j ∼ j ∧ (∀x : X.(x ∼ x) → A(x, j)).

Example 1.3. We now look at how a decidable subobject in a topos C[P ] is
expressed in the logic of P . Let A ∈ P (X) be a strict predicate over (X,∼). We
want to know what is means in terms of tripos logic that A is decidable in C[P ],
i.e., that

C[P ] |= A(x) ∨ ¬A(x).

Using the translation into tripos logic that we gave above, this reads

x ∼ x ` A(x) ∨ (x ∼ x ∧ (A(x) → ⊥))

in P (X). Since A(x) is strict, this is equivalent to

x ∼ x ` (A(x) ∨ ¬A(x)) ∧ x ∼ x

and clearly
x ∼ x ` (A(x) ∨ ¬A(x)) ∧ x ∼ x iff
x ∼ x ` A(x) ∨ ¬A(x).

Definition 1.4. Let C be a finitely complete category, and let P and Q be
triposes over C. A geometric morphism f : P → Q is a pair of fibred functors
(f∗, f∗) over C, with f∗ : Q → P and f∗ : P → Q such that f∗ is fibred left
adjoint to f∗, and f∗ preserves fibred finite limits.

Definition 1.5. A connected geometric morphism is a geometric morphism
f : P → Q with the property that f∗ is full and faithful, or, equivalently, the
unit η : id ⇒ f∗f

∗ is iso.

Definition 1.6. A geometric inclusion is a geometric morphism i : P → Q with
the property that i∗ is full and faithful, or, equivalently, the counit ε : f∗f∗ ⇒ id
is iso.

Both f∗ and f∗ preserve finite limits so if ∼∈ P (X ×X) is a partial equiva-
lence relation then so is f∗(∼) ∈ Q(X ×X) and likewise for f∗. Since the left
adjoint f∗ preserves ∃ as well, it preserves all the properties of being a functional
relation, so if F ∈ Q(X × Y ) is a functional relation, then f∗(F ) ∈ P (X × Y )
is a functional relation. The right adjoint does not necessarily preserve ∃ so
if we apply f∗ to a functional relation F , this will in general only result in a
partial functional relation f∗(F ). However, there are objects (Y,∼) with the
property that if F : (X,∼) → (Y,∼) is a functional relation in P , then f∗(F ) is
a functional relation in Q. These are called weakly complete.

Definition 1.7. An object (Y,∼) of a topos C[P ] is called weakly complete if
given a partial function F : (X,∼) → (Y,∼), there is a morphism f : X → Y

in C, such that
P |= ∃y : Y.F (x, y) ↔ F (x, fx).
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It was shown in [Pit81] that any object of C[P ] is isomorphic to a weakly
complete one. We give a detailed proof here (in Proposition 1.9) since we shall
make use of it for proving Theorem 1.15. First recall the definition of the
membership predicate which is part of the tripos definition:

For every object X of C there is an object π(X) of C and an element ∈X of
P (X × π(X)) with the following property: For every object Y of C and every
element φ of P (X × Y ), there is a morphism {φ} : Y → π(X) in C such that in
P (X × Y ), φ is isomorphic to x ∈X {φ}.

The object (π(X),∼S) is defined as follows: π(X) is the carrier object for
the membership predicate, and the partial equality relation in (π(X),∼S) is
defined by

S(U) ≡ ∃x. x ∼ x ∧ ∀x′.(x′ ∈X U ↔ x ∼ x′)

and
U ∼S V ≡ S(U) ∧ ∀x.(x ∈X U ↔ x ∈X V ).

(π(X),∼S) is the object of singletons with respect to ∼X , that is, equivalence
classes of X .

Proposition 1.8. The object (π(X),∼S) is weakly complete.

For a detailed proof of this see [vO08].

Proposition 1.9. The object (π(X),∼S) is isomorphic to (X,∼).

Proof: The object (π(X),∼S) is isomorphic to (X,∼), the isomorphism is given
by

K(x, U) ≡ x ∼ x ∧ S(U) ∧ x ∈X U

and K has itself as inverse.
On arrows F : (X,∼) → (Y,∼) we first compose to get the map:

(π(X),∼S)
∼ // (X,∼)

F // (Y,∼)
∼ // (π(X),∼S)

and then apply f∗ to the composite.
We give the proof that K is a functional relation and K−1 = K. Clearly we

have:

Strict:

K(x, U) ` x ∼ x ∧ U ∼S U

Relational:

x ∼ x′ ∧ U ∼S V ∧K(x, U) ` x′ ∼ x′ ∧ S(V ) ∧ x′ ∈X V ≡ K(x′, V )

Single valued:

K(x, U) ∧K(x, V ) ` U ∼S V
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Total: To show that
` x ∼ x→ ∃U.K(x, U)

we use the properties of the membership predicate: For ∼∈ P (X × X)
there is an arrow {φ} : X → π(X) in C such that in P (X ×X) we have

x ∼ x′ a` x ∈X {φ}(x′)

so we can put U = {φ}(x).

Next we show K−1 = K. We must prove that

x ∼ x ≡ ∃U.K(x, U) ∧K(x, U)

Clearly
∃U.K(x, U) ∧K(x, U) ≡ ∃U.K(x, U) ` x ∼ x

and
x ∼ x ` ∃U.K(x, U)

follows from K being total. We must also show that

U ∼S U ≡ ∃x.K(x, U) ∧K(x, U)

again the direction from right to left is clear, to see that

U ∼S U ` ∃x.x ∼ x ∧ S(U) ∧ x ∈X U

just unfold the definition of U ∼S U .

Proposition 1.10. Any geometric morphism f = (f∗, f∗) : P → Q of triposes,
can be lifted to a geometric morphism f̄ = (f̄∗, f̄∗) : C[P ] → C[Q] of toposes.

For a proof of this see [HJP80, Pit81] or [vO08], we give the definition here
for convenience. Suppose F : (X,∼) → (Y,∼) is a map in C[Q], then f̄∗ is
simply

f∗(F ) : (X, f∗(∼)) → (Y, f∗(∼)).

On objects (X,∼), the functor f̄∗ is defined as (π(X), f∗(∼S)). If G : (Y,∼) →
(X,∼), let G′ represent the composite map

(π(X),∼S)
∼ // (X,∼)

G // (Y,∼)
∼ // (π(Y ),∼S)

then f̄∗(G) = f∗(G
′).

Proposition 1.11. If f : P → Q is an inclusion of triposes, then f̄ : C[P ] →
C[Q] is an inclusion of toposes.

Proof: Proof sketch: We have

f̄∗f̄∗(X,∼) = f̄∗(π(X), f∗(∼S)) = (π(X), f∗f∗(∼S)) ∼= (π(X),∼S) ∼= (X,∼).

The following example shows that if f : P → Q is a connected geometric
morphism of triposes, then it is not necessarily the case that f̄ : C[P ] → C[Q]
is connected.
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Example 1.12. 1 Consider the Set-triposes Set(−, 2) and Set(−, 2×2). There
is a connected geometric morphism δ a ∧ from Set(−, 2×2) to Set(−, 2), where
δ is the diagonal. The induced geometric morphism on the topos level is ∆ a P
from Set× Set → Set is given by

∆(A) = (A,A) P (A,B) = A×B

with unit ηA = δA = A 7→ A×A, which is not an iso. see [Fre07].

Next we show a result regarding the lifting from tripos to topos of a con-
nected geometric morphism. We have seen that any geometric morphism f :
P → Q of C-triposes P and Q lifts to a geometric morphism f̄ : C[P ] → C[Q],
and also that if f is an inclusion, then so is f̄ .

As Example 1.12 demonstrates, it is not in general the case that a con-
nected geometric morphism of triposes lifts to a connected geometric morphism
of toposes. In his thesis [Bir99], Lars Birkedal shows that if f is connected and
if f∗ preserves ∃, then f̄ is also connected. The result that we show in this
section is a “local” version of this result, in the sense that if f∗ only preserves
∃h for certain morphisms h, then f∗ is fully faithful for certain homsets.

Definition 1.13. Let C,D be categories and X,Y objects of C. We say that a
functor H : C → D is fully faithful on (X,Y ) if there is a bijection HomC(X,Y ) ∼=
HomD(HX,HY ).

We now proof a local version of a well known fact.

Lemma 1.14. Suppose H = (H∗, H∗) is an adjunction. If the component
ηY : Y → H∗H

∗(Y ) on Y of the unit η is an iso, then H∗ is fully faithful on
(X,Y ) for all objects X.

Proof. Let F : H∗(X) → H∗(Y ), we are going to define F ′ : X → Y such that
H∗(F ′) = F . We define F ′ as the composite

X
ηX // H∗H∗(X)

H∗(F ) // H∗H∗(Y )
η
−1

Y // Y

If we can show that H∗(η−1
Y ) = εH∗(Y ) it follows from the universal properties

of adjunctions that H∗(F ′) = F . By the triangle equalities we have

εH∗Y ◦H∗(ηY ) = idH∗Y

so H∗(ηY )−1 = εH∗Y , and since H∗(ηY )−1 = H∗(η−1
Y ), we are done. On the

other hand let G : X → Y , we show that (H∗G)′ = G. (H∗G)′ = η−1
Y ◦H∗H

∗G◦
ηX , and by naturality of η, we have ηY ◦ G = H∗H

∗G ◦ ηX . We have shown
that H∗ and (−)′ are inverses.

1I am happy to thank Jonas Frey for providing this counter example.

5

6



Theorem 1.15. Suppose f : P → Q is a connected geometric morphism of
triposes and let π : X × J → J be a projection in C for some fixed object
X. Suppose further that for any strict predicate φ(x) over an object f̄∗(X,∼),
where (X,∼) is in C[Q], we have f∗∃P

π (φ(x)) ∼= ∃Q
π f∗(φ(x)). Then the induced

geometric morphism f̄ : C[P ] → C[Q] satisfies that f̄∗ is fully faithful on ((Y,∼
), (X,∼)) for any object (Y,∼) in C[Q].

Proof. We are going to show that the component η(X,∼) : (X,∼) → f̄∗f̄
∗(X,∼)

of the unit η is iso, then the theorem follows from Lemma 1.14.
First we recall the definition of f̄ .

f̄∗(X,∼) = (X, f∗(∼))

and if F : (X,∼) → (Y,∼) is a functional relation, then f∗(F ) : (X, f∗(∼)) →
(Y, f∗(∼)) is a functional relation. On objects we have

f̄∗(X,∼) = (π(X), f∗(∼S))

where the partial equality relation in (π(X),∼S) is defined by

S(U) ≡ ∃x. x ∼ x ∧ ∀x′.(x′ ∈X U ↔ x ∼ x′)

and
U ∼S V ≡ S(U) ∧ ∀x.(x ∈X U ↔ x ∈X V )

Let K(x, U) ≡ f∗(x ∼ x) ∧ S(U) ∧ x ∈X U . as in Prop. 1.9. Consider f∗
applied to the composite

(X, f∗(∼))
id=f∗(∼) // (X, f∗(∼))

K // (π(X), [f∗(∼)]S)

which we call K ′(x, U), it is defined by

K ′(x, U) ≡ f∗(∃x′.f∗(x ∼ x′) ∧K(x′, U))
≡ f∗(f

∗(x ∼ x) ∧K(x, U))
≡ x ∼ x ∧ f∗(K(x, U))

Now η(X,∼) is K ′ precomposed with the map H : (X,∼) → (X, f∗f
∗(∼))

defined by
H(x, x′) ≡ x ∼ x ∧ f∗f

∗(x ∼ x′) ≡ x ∼ x′

so
η(X,∼)(x, U) ≡ x ∼ x ∧ f∗(K(x, U)) ≡ f∗(K(x, U)).

We are finally ready to show that η(X,∼) is an iso with itself as inverse.

f∗(K)(x, U) ≡ f∗(f
∗(x ∼ x) ∧ x ∈X U ∧ S(U))

≡ x ∼ x ∧ f∗(x ∈X U) ∧ f∗(∃x.f∗(x ∼ x) ∧ ∀x′.(x′ ∈X U ↔ f∗(x ∼ x′)))
≡ x ∼ x ∧ f∗(x ∈X U) ∧ ∃x.x ∼ x ∧ ∀x′.f∗(x′ ∈X U ↔ f∗(x ∼ x′)))
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where we use the fact that f∗(x ∼ x) ∧ ∀x′.(x′ ∈X U ↔ f∗(x ∼ x′) is a strict
predicate in (X, f∗(∼)), so that f∗ commutes with ∃.

Clearly
∃U.f∗(K)(x, U) ` x ∼ x.

Suppose x ∼ x, put U = [x]f∗(∼), i.e., x′ ∈X U ≡ f∗(x ∼ x′), then f∗(x ∈X

U) ≡ f∗(f
∗(x ∼ x)) ≡ x ∼ x, which shows that

x ∼ x ` ∃U.f∗(K)(x, U),

which shows that f∗(K)(x, U) ◦ f∗(K)(x, U) ≡ id (X,∼). By definition we have

U ∼S U ≡ f∗(S(U) ∧ ∀x.(x ∈X U ↔ x ∈X U)) ≡ f∗(S(U))

so clearly
∃x.f∗(K)(x, U) ∧ f∗(K)(x, U) ` U ∼ U.

Suppose U ∼ U that is

f∗(S(U)) ≡ f∗(∃x.f∗(x ∼ x) ∧ ∀x′.(x′ ∈X U ↔ f∗(x ∼ x′)))
≡ ∃x.x ∼ x ∧ ∀x′.f∗(x′ ∈X U ↔ f∗(x ∼ x′));

this implies
∃x.x ∼ x ∧ ∀x′.f∗(x

′ ∈X U) ↔ x ∼ x′,

since f∗(A→ B) ` f∗A→ f∗B, hence

x ∼ x ∧ f∗(x ∈X U),

so we conclude that

U ∼S U ` x ∼ x ∧ f∗(S(U)) ∧ f∗(x ∈X U).

That is,
U ∼S U ` ∃x.f∗(K)(x, U),

so we have shown that f∗(K)(x, U) ◦ f∗(K)(x, U) ≡ id f̄∗f̄∗(X,∼).

We have seen that connected geometric morphisms of triposes do not in
general lift to connected geometric morphisms of toposes. However, as we show
next, a connected geometric morphism of triposes lifts to a surjection of toposes.
Later we will show some factorization results that make this property very
natural.

Theorem 1.16. Let f = (f∗, f∗) : P → Q be a connected geometric mor-
phism of triposes, the induced geometric morphism f̄ : C[P ] → C[Q] is then a
surjection, i.e., f̄∗ is faithful.
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Proof. There are many equivalent definitions of a surjective geometric mor-
phism, we shall show that the unit ηX : X → f̄∗f̄

∗(X) in C[Q] is mono. We
must show that for (X,∼) in C[Q],

Q |= η(X,∼)(x, U) ∧ η(X,∼)(x
′, U) → x ∼ x′.

Recall that

η(X,∼)(x, U) ≡ f∗(K(x, U))
≡ f∗(f

∗(x ∼ x) ∧ x ∈X U ∧ S(U))
≡ x ∼ x ∧ f∗(x ∈X U) ∧ f∗(∃x.f∗(x ∼ x) ∧ ∀x′.(x′ ∈X U ↔ f∗(x ∼ x′)))
` x ∼ x ∧ f∗(x ∈X U) ∧ f∗(f∗(x ∼ x)) ∧ ∀x′.f∗((x′ ∈X U ↔ f∗(x ∼ x′)))
` ∀x′.f∗(x′ ∈X U) → f∗f

∗(x ∼ x′) since f∗(A→ B) ` f∗A→ f∗B

(1)
Now for η(X,∼)(x

′, U) we have

η(X,∼)(x
′, U) ≡ f∗(K(x′, U))

` f∗(x
′ ∈X U)

together with equation (1) this implies that in the internal logic of Q we have

η(X,∼)(x, U) ∧ η(X,∼)(x
′, U)

` (∀y.f∗(y ∈X U) → f∗f
∗(x ∼ y)) ∧ f∗(x

′ ∈X U)
` f∗f

∗(x ∼ x′)
` x ∼ x′ since f is connected.

Some easy observations:

Proposition 1.17. We assume that P and Q are canonically presented, C-
based triposes, where C is ccc.

1. The generic predicate σ ∈ P (ΣP ) ∼= Hom(ΣP ,ΣP ) can be chosen as idσ.

2. Any tripos morphism f : P → Q is given by composition with a morphism
f̂ : ΣP → ΣQ in C.

3. The membership predicate ∈X of P (X×π(X)) is given by evX : X×ΣX
P →

ΣP .

4. f(x ∈P
X S) ∼= x ∈Q

X f(S).

Proof. 1. Let φ ∈ P (X) be given. We can choose [φ] = φ : X → ΣP and
clearly φ a` P ([φ])(idΣP

) since P ([φ])(idΣP
) = idΣP

◦ [φ] = φ.

2. This follows from the Yoneda Lemma, we get

f̂ = fΣP
(idΣP

) : ΣP → ΣQ.

Now let φ ∈ P (X) = Hom(X,ΣP ), then f(φ) = f(P (φ)(idΣP
)) = Q(φ)(f(idΣP

)) =

Q(φ)(f̂ ) = f̂ ◦ φ.
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3. When C is ccc, the membership predicate is defined by

∈X= P (evX)(σ) = P (evX)(idΣP
) = evX

.

4. From the above it follows that f(x ∈P
X S) = f(evP

X(x, S)) = f̂ ◦evP
X(x, S).

And x ∈Q
X f(S) = evQ

X(x, f(S)) = evQ
X(x, f̂ ◦ S). By naturality of ev we

get
f̂ ◦ evP

X(x, S) = evQ
X(x, f̂ ◦ S).

The following theorem is due to Pitts [Pit81].

Theorem 1.18 (Iteration). Let C be a finitely complete category, P a C-tripos,
and R a C[P ]-tripos, and assume that ∆R preserves epis. Then R ◦ ∆op

P is a
C-tripos and ∆R◦∆op

P
: C → C[R ◦∆op

P ] is equivalent over C to ∆R ◦∆P : C →
C[P ][R] and the following diagram commutes:

C

∆
R◦∆

op
P //

∆op

P   B
BB

BB
BB

B C[R ◦∆op
P ]

OO

∼=

��

C[P ]

∆R %%KKK
KK

KKK
KK

C[P ][R]

The Toposes Mod, Eff and Eff2 We recall the definitions of the realiz-
ability toposes Eff ,Mod and Eff2. We use the following abbreviations for
A,B,C ⊆ N:

1 = {0} ,
A⊗B = {〈a, b〉 | a ∈ A, b ∈ B} ,
A⊕B = ({0} ⊗A) ∪ ({1} ⊗B) ,
A⊕B ⊕ C = {0} ⊗A ∪ {1} ⊗B ∪ {2} ⊗ C ,

A⇒ B = {e ∈ N | ∀a ∈ A. e · a ∈ B} .

For A ⊆ N×N, we often write A(x, y) for (x, y) ∈ A. We assume that a coding is
chosen such that 〈0, 0〉 = 0 and 0 ·x = 0, for all x ∈ N. Moreover, we often write
f(x) or even fx instead of f ·x and F (x, y) instead of F · 〈x, y〉. We write Pf(N)
for the set of finite subsets of N. Let e : N → Pf (N) be the bijection where
en = S iff n =

∑

k∈S 2k. We write m ∈ n as abbreviation for m ∈ en. If A ⊆ N

we write Pf (A) for {n ∈ N | en ⊆ A} and P≤1(A) for {n ∈ Pf (A) | |en| ≤ 1}.
The effective topos, Eff is the topos one obtains by the tripos-to-topos con-

struction on the Set-based tripos e, defined as follows. For a set X , e(X) is

9
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the Heyting pre-algebra (ΣX
e
,`X), where Σe = P(N) and the connectives are

defined by

(A ∧B)(x) = A(x) ∧B(x) = A(x)⊗B(x),
(A ∨B)(x) = A(x) ∨B(x) = A(x)⊕B(x),
(A→ B)(x) = A(x) → B(x) = A(x) ⇒ B(x),
⊥X = ∅,
>X = N.

and the order on ΣX
e

is

A `X B iff
⋂

x∈X

(A→ B)(x) 6= ∅.

∀u(A)(j) =
⋂

i∈u−1(j){0} ⇒ A(i)

∃u(A)(j) =
⋃

i∈u−1(j) A(i)

for u : I → J and A ∈ ΣI
e

For more details see [Hyl82].
The modified realizability topos, Mod is the topos one obtains by the tripos-

to-topos construction on the Set-based tripos m, defined as follows. For a set
X , m(X) is the Heyting pre-algebra (ΣX

m
,`X), where

Σm = {A = (Aa, Ap) ∈ P(N)2 | Aa ⊆ Ap and 0 ∈ Ap}.

The connectives are defined by

(A ∧B)a(x) = Aa(x) ⊗Ba(x), (A ∧B)p(x) = Ap(x)⊗Bp(x),
(A→ B)a(x) = (Aa(x) ⇒ Ba(x)) ∩ (Ap(x) ⇒ Bp(x)),
(A→ B)p(x) = (Ap(x) ⇒ Bp(x)),
>a(x) = N, >p(x) = N,

⊥a(x) = N, ⊥p(x) = ∅.

and the order on ΣX
m

is

A `X B iff
⋂

x∈X

(A→ B)a(x) 6= ∅.

The quantifiers are given by

∀u(A)(j) =
(

⋂

i∈u−1(j){0} ⇒ Aa(i) ,
⋂

i∈u−1(j){0} ⇒ Ap(i)
)

∃u(A)(j) =
(

succ

(
⋃

i∈u−1(j) Aa(i)
)

, {0} ∪ succ

(
⋃

i∈u−1(j) Ap(i)
) )

for u : I → J and A ∈ m
I . Notice that this description of quantifiers is easily

seen to be equivalent to the one of [vO97].
The topos Eff2 is defined as the topos built on the realizability tripos over

Set→, i.e., the Set→-tripos

X 7→ Set→(X,P(N)).

where N is the natural numbers object in Set→. The following is due to van
Oosten [vO97].
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Proposition 1.19. Let Σe2
= {A = (Aa, Ap) ∈ P(N)2 | Aa ⊆ Ap}, and define

the preorder `X on ΣX
e2

just as `X on ΣX
m

, then e2(X) = (ΣX
e2
,`X) defines a

Set-tripos, and the topos Eff2 is obtained by the tripos-to-topos construction on
this tripos.

Proof: It is well known that Set→ is sheaves over Sierpinski space, so Set→ ∼=
Set[Set(−,ΣS)], where ΣS is the locale corresponding to the open sets of Sier-
pinski space. Using Pitt’s Iteration Theorem with P = Set(−,ΣS), and with
R = Set→(−,P(N)), we get that

Set[P ][R] ∼= Set[R ◦∆op
P ],

i.e., that
Eff2

∼= Set[Set→(∆P (−),P(N))].

Now, the tripos Set→(∆P (−),P(N)) can be described as follows: P(N) in
Set→ is

{(A,B) | A ⊆ B ⊆ N}

π1

��
P(N)

and ∆P (X) = id : X → X , so an element of the set Set→(∆P (X),P(N)), are
two functions (φ, φ′) such that the following commutes

X
φ //

id

��

{(A,B) | A ⊆ B ⊆ N}

π1

��
X

φ′
// P(N)

and clearly this is defined by φ : X → {(A,B) | A ⊆ B ⊆ N}. The order is
derived from the definition of a standard realizability tripos:

φ `X ψ iff Set→ |= ∃n : N∀x : X.n ∈ (φ(x) ⇒ ψ(x)).

2 Local Operators

In this section we recall some results about local operators for toposes as well
as for triposes. We also prove a factorization theorem for geometric morphisms
of triposes.

Definition 2.1 (Local Operator). A local operator (also known as a Lawvere-
Tierney topology or j-topology) on a topos E, is a morphism j : Ω → Ω, satisfying
the following axioms in the internal logic of E:
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1. j(>) = >,

2. jj(a) = j(a),

3. j(a ∧ b) = j(a) ∧ j(b).

There is a correspondence between local operators and universal closure
operation, which we define now:

Definition 2.2 (Universal Closure Operation). A universal closure operation
on E consists of, for every object X of E an operation clX on Sub(X) satisfying:

1. A ≤ clX(A) = clX(clX(A)),

2. stability under pullback: for f : X → Y , and B ∈ Sub(Y ), we have
clX(f∗(B)) = f∗(clY (B)).

We have the following

Proposition 2.3. For any topos E, there is a bijection between universal closure
operations on E and local operators on E.

Proof: We only give the bijection, for a detailed proof see e.g. [Joh02, MLM94,
vO08]. Given j : Ω → Ω let cj be the operation on subobject defined by
composing the classifying map with j. Conversely, given a universal closure
operation cl, Let Ωj = clΩ(>), where > : 1 → Ω is the subobject classifier, then
Ωj is a subobject of Ω with classifying map j : Ω → Ω.

Example 2.4. Typical examples of local operators are (using the internal logic
of the topos) ¬¬ : Ω → Ω, and for a subterminal object U � 1, with classifying
map u : 1 → Ω, the open topology o(u) defined by u ⇒ (−), and the closed
topology c(u) defined by u ∨ (−).

Theorem 2.5. Every local operator j on E, determines a subtopos Ej ↪→ E.
Conversely, every geometric inclusion of toposes i : E ′ ↪→ E gives rise to a
unique local operator j on E, and Ej is equivalent to E ′.

For a proof see [Joh02] or [MLM94].
We now turn to toposes of the form E [P ], for a canonical E-tripos P =

E(−Σ). First we define what we mean by local operator on a canonical tripos
P = E(−,Σ) over a topos E .

Definition 2.6 (Local Operator for Tripos). A local operator on a tripos P =
E(−,Σ), where E is a topos, is a map J : Σ → Σ satisfying

1. P |= (p→ q) → (Jp→ Jq),

2. P |= J(>) ↔ >,

3. P |= J(Jp) ↔ Jp, and

4. P |= J(p ∧ q) ↔ (Jp ∧ Jq). It follows that
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5. P |= p→ J(p).

Proposition 2.7. Every local operator j on E [P ] determines a local operator J
on Σ, and vice versa.

Proof: Given local operator j on the topos E [P ], let Ωj � Ω be the subobject
classified by j (the generic j-dense subobject). Since Ω = (Σ,↔P ), the subob-
ject Ωj is represented by a strict predicate J : Σ → Σ. Since p ≡ p ↔ > in P ,
one can infer that j(p, q) ≡ q ↔ j(p,>). Hence J is given by

J(p) ≡ j(p,>).

Conversely, given a local operator J : Σ → Σ it defines a strict relation on Ω
in E [P ] whose classifying map is a local operator on E [P ]. For more details see
[Pit81].

The operator J on the tripos P determines a subtripos PJ , defined as follows:
PJ is canonically presented on Σ, but ↔, ∀ and D (the designated truth values)
are redefined by letting:

• →PJ be Σ× Σ
id×J // Σ× Σ

→ // Σ.

• (∀f )(p) be (∀f )(Jp).

• 1
p // Σ be in DPJ

iff 1
p // Σ

J // Σ is in DP . That is, > `PJ
p

iff > `P J(p).

• It follows that p `PJ
q iff p `P J(q).

That is, PJ is the canonically presented tripos (Σ,`PJ
), where p `PJ

q iff
p `P J(q). Notice that this is actually the Kleisli category for the monad J on
P (a local operator is also a left exact monad).

One may define the tripos PJ as a canonically presented tripos on

ΣJ = {p ∈ Σ | p↔P J(p)} = {p ∈ Σ | J(p) `P p}

and with the connectives ∧,>,→, ∀ inherited from P , and ∃,∨,⊥ defined by
J(∃p), J(p∨q), J(⊥). This is perhaps a more natural way to define PJ , bearing
in mind that local operators correspond to subtriposes (we come to that later).

To see why the tripos (ΣJ ,`P ) is equivalent to (Σ,`PJ
), as indexed categories

(by the equivalence J a i), just notice that J(p) a`PJ
p iff J(p) `P J(p) and

p `P JJ(p).
Notice that the definition of ΣJ makes sense in E because P is canonically

presented, so →P∈ E(Σ×Σ,Σ). Thus we have a map p 7→ (p↔P J(p)) from Σ
to Σ, so > = (p↔P J(p)) is a predicate defining a subobject of Σ in E .

Example 2.8. Let j : Ω → Ω in E [P ] be defined in terms of the internal logic of
E [P ], e.g., j(p) = ¬¬p. Since Ω = (Σ,↔P ), j determines a functional relation
represented by ĵ on Σ× Σ. ĵ is defined by

ĵ(p, q) ≡ j(p) ↔ q.
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Now, on the tripos level, we get a local operator J : Σ → Σ by

J(p) ≡ ĵ(p,>) ≡ j(p),

where the latter equivalence is due to the fact that p↔ > ≡ p in P .

Proposition 2.9. Let (E [P ])j be the sheaf subtopos corresponding to a local
operator J on P , then (E [P ])j is equivalent over E to E [PJ ].

For a proof see [Pit81].
We now show the tripos version of a well known factorization theorem for

toposes, namely:

Proposition 2.10. Every geometric morphism factors as a surjection followed
by an inclusion. The factorization is essentially unique.

For a proof see e.g. [Joh02, MLM94]. Now the tripos version is:

Theorem 2.11. Let P and Q be canonically presented triposes, over a topos
E. Every geometric morphism f : P → Q factors as a connected geometric
morphism followed by an inclusion. The factorization is essentially unique.

Proof. Let L = f∗f∗ be the comonad on P defined from f , then L a id and

(L, id) : P � PL

is a connected geometric morphism, and PL the Kleisli category of L. L a id
is the usual adjunction associated with the Kleisli category. We show that
L : PL → P is full and faithful: Lp `P Lq implies Lp `P Lq `P q, i.e., p `PL q.

On Q we have a local operator defined by j = f∗f
∗. j is clearly functorial

and preserves finite limits. Since f∗f
∗ also defines a monad on Q, we have

p `Q jp and jjp `Q jp

so j is idempotent. Qj is the full subcategory of Q of j-sheaves, i.e.,

ΣQj
= {p ∈ ΣQ | jp a`Q p} = {p ∈ ΣQ | jp `Q p}.

Notice that Qj is equivalent to the category of algebras for the monad j. We
have j a i : Qj ↪→ Q. We now show that i is full and faithful: For all p, q ∈ Qj ,
ip `Q iq iff p `Qj q.

We will show that the following diagram commutes

P
f //

g
##G

GGGGGGGG Q

PL ' Qj

-

 i

;;wwwwwwwww

where g∗ = in, g∗ = L and i∗ = i, i∗ = j.
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First we show the equivalence PL
∼= Qj . It is given by f∗L : PL → Qj , and

f∗ : Qj → PL. Let p ∈ PL, to see that f∗Lp ∈ Qj , we check that f∗Lp is j-closed:
j(f∗Lp) ≡Q f∗Lp iff j(f∗f

∗f∗p) ≡Q f∗f
∗f∗p which is to say that jjf∗p ≡Q jf∗p.

Let q ∈ Qj, then f∗q ∈ PL. To see that this defines an equivalence, let p ∈ PL,
then f∗f∗Lp = LLp ≡PL p. And for q ∈ Qj, f∗Lf

∗q = f∗f
∗f∗f

∗q = jjq ≡Qj q.
To see that the diagram commutes (up to iso), we must show that

i∗f∗Lg∗ = if∗Lid ∼= f∗ and g∗f∗i∗ = Lf∗j ∼= f∗

The latter is equal to
LLf∗ ∼= f∗

which holds since for all q ∈ Q, LLf∗q `P f∗q and f∗q `P LLf∗q iff q `Q

f∗LLf
∗q = jjjq = jq. The other equation holds by uniqueness of adjoints

(because an equivalence is an adjunction). Uniqueness: Consider two factoriza-
tions:

A � o

u

��?
??

??
??

g

���
�

�

�

�

�

�

P

p

??��������

q
��?

??
??

??
?

Q

B
/
� v

??�������

where u, v are inclusions and p, q are connected. Then g is an equivalence.
g∗ : B → A is defined by q∗p

∗ and g∗ : A→ B is q∗p
∗. Observe that p∗q

∗b `A a

iff u∗p∗q
∗b `Q u∗a iff v∗q∗q

∗b `Q u∗a iff u∗v∗b `A a, so p∗q
∗ ∼= u∗v∗. Likewise

we have q∗p
∗ ∼= v∗u∗. Verifying that g is an equivalence and that the diagram

commutes is routine.

Together with Theorem 1.16 which says that a connected geometric mor-
phism of triposes lifts to a surjection of toposes, this ties the factorization theo-
rems for triposes and toposes very neatly together. Notice that there is a similar
factorization theorem for locales, see [MLM94].

For the sake of completeness we also mention that even if P is not a canonical
tripos over a topos, we can still have a notion of closure operation on P that
corresponds to inclusions of toposes into C[P ].

Definition 2.12 (Closure Operation on Tripos). A closure operation Φ on a
tripos P is an indexed functor Φ : P → P , which preserves finite meets, is
idempotent, and inflationary (id ≤ Φ).

The following is from [vO08].

Theorem 2.13. let P be a C-tripos.

1. Every inclusion of toposes into C[P ] is, up to equivalence, of the form
C[Q] → C[P ] for a C-tripos Q and an inclusion of triposes Q→ P .
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2. Inclusions into P correspond, up to equivalence, to closure operations on
P .

The following example is from [vO97].

Example 2.14. Eff is an open subtopos of Eff2 and Mod is its closed com-
plement. Let U = (∅,N). U is a subobject of 1 in the topos Eff2. We have
inclusions δ : Eff ↪→ Eff2 and i : Mod ↪→ Eff2. These give rise to local opera-
tors kE , kM on Eff2. Since Eff2 = Set[e2] we get local operators KE ,KM . On
the tripos level, these are given by:

KE(A,B) = δ∗δ∗(A,B) = (B,B),

and
KM (A,B) = i∗i

∗(A,B) = (succ(A), succ(B) ∪ {0}).

Now in Σ
Σe2

e2
we have KE(A,B) ≡ U ⇒ (A,B) hence kE is given by p 7→ (u→

p), where u is the classifying map of U � 1. Likewise, KM (A,B) ≡ U ∨ (A,B)
so kM is the closed topology p 7→ u ∨ p on Eff2.

Definition 2.15 (Localic). A topos E is localic over a topos F via a geometric
morphism f , if E is equivalent to the topos of F-valued sheaves on the internal
locale f∗(ΩE ), i.e., E ∼= F [f∗(ΩE )] = F [F(−, f∗(ΩE))].

The following is from [Bir99]

Theorem 2.16. let C be a finitely complete category and let P and Q be C

triposes. Suppose f = (f∗, f∗) : P → Q is a geometric morphism of triposes,
then C[P ] is localic over C[Q] via the induced geometric morphism f̄ = (f̄∗, f̄∗) :
C[P ] → C[Q].

We now give some more details of the situation in [Bie08, Chapter 3] regard-
ing the pullbacks of the form

DNe
� _

��

// Eff ,
� _

��

and DNm
� _

��

//Mod
� _

��
DN q

// Eff2 DN q
// Eff2

Suppose D = Set[d] is a topos over a tripos d and q : D → Eff2 a geo-
metric morphism induced by a geometric morphism q : d → e2, then we have
D ∼= Eff2[q∗(ΩD)], and q∗(ΩD) is an internal local in Eff2. Consider the open
topology o(u) on Eff2 from Example 2.14 above. Let o(u)(ΩEff2

) denote the
generic o(u)-dense subobject of ΩEff2

. o(u)(ΩEff2
) is an internal locale, and by

[Joh02, Lemma 1.2.10] we have a pullback of internal locales in Eff2:

o(q∗(u))(q∗(ΩD)) //
� _

��

o(u)(ΩEff2
)

� _

��
q∗(ΩD)

q
// ΩEff2
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(The same holds for closed topologies.) Since the functor L 7→ Eff2[L] from lo-
cales to toposes preserves limits (see [MLM94, Joh02, JT84]), there is a pullback
of toposes

Eff2[o(q
∗(u))(q∗(ΩD))] //

� _

��

Eff2[o(u)(ΩEff2
)] ∼= Eff

� _

��
Eff2[q∗(ΩD)]

q
// Eff2[ΩEff2

] ∼= Eff2

Now, by Theorem 2.16 we have Eff2[q∗(ΩD)] ∼= D, so using Proposition 2.9 we
get Eff2[o(q

∗(u))(q∗(ΩD))] ∼= Eff2[(q∗(ΩD))]o(q∗(u))
∼= Do(q∗(u)).

More generally, it holds that (see [Joh02]):

Proposition 2.17. Pullback along a localic geometric morphism of toposes pre-
serves open/closed subtoposes.
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Chapter 2

Topos Theoretic Versions of Dialectica
Interpretations

The preprint presented in this chapter has grown out of two sets of unpublished notes, one written by
Thomas Streicher, the other by Lars Birkedal. These notes in turn grew out of ideas originating from
Martin Hyland, and from many discussions between all of the authors. The two sets of notes were merged
and thoroughly revised by the author, changes have been made and new results added along the way. For
this paper we assume that the reader is familiar with the background material from Chapter 1. Again, the
reader should be familiar with basic tripos theory (see [Pit02, HJP80, Pit81]) and have some knowledge
about toposes and j-topologies (see e.g. [MLM94, Joh02]).

In Chapter 2 we present four new triposes reflecting as much as possible of the Dialectica interpretation,
which we call the Dialectica tripos and denote by d. The resulting topos is denoted by Dia. From d we
get a closed subtripos, the modified Dialectica tripos, denoted by dm, and the resulting topos is denoted
by Diam. We also define a tripos reflecting as much as possible of the Diller-Nahm interpretation, which
we call the Diller-Nahm tripos, denoted dn. The resulting topos is denoted by DN. From dn we get a
closed subtripos, the modified Diller-Nahm tripos, denoted by dnm, and the resulting topos is denoted by
DNm. The modified versions are in closer correspondence with the standard interpretations of Dialectica,
respectively Diller-Nahm, since “modified” corresponds to having non-empty types. We give an account
of the first order logic of the toposes and find that first order logic of dnm corresponds to the Diller-Nahm
interpretation, and that first order logic of Diam does not correspond to the Dialectica interpretation,
but instead to a variant of Dialectica, which we call the Copenhagen interpretation. This is perhaps not so
surprising when we recall that the Dialectica interpretation assumes that atomic formulas are decidable, and
that there is no such restriction for the tripos. Though we have some nice results regarding the decidable
fragment of predicates over the natural numbers in Diam, we argue that it is not possible to interpret
first order logic with decidable atomic formulas in this fragment. Hence we do not find a correspondence
between first order logic with decidable atomic formulas in Diam and the Dialectica interpretation. The
tripos setting allows us to reveal many new relations in the form of geometric morphisms to other functional
interpretations, which are also represented by triposes.

The exponent construction of the triposes d and dm is studied in Chapter 4 and has also lead to the
Copenhagen interpretation presented in Chapter 5.

References

[HJP80] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos theory. Math. Proc. Camb. Phil. Soc.,
88:205–232, 1980.

[Joh02] Peter T. Johnstone. Sketches of an elephant: a topos theory compendium., volume 44 of Oxford
Logic Guides. The Clarendon Press Oxford University Press, Oxford, 2002.

21



[MLM94] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic. Universitext. Springer-
Verlag, New York, 1994. A first introduction to topos theory, Corrected reprint of the 1992
edition.

[Pit81] A.M. Pitts. The Theory of Triposes. PhD thesis, Cambridge University, 1981.

[Pit02] Andrew M. Pitts. Tripos theory in retrospect. Math. Structures Comput. Sci., 12(3):265–279,
2002. Realizability (Trento, 1999).

22



Topos Theoretic Versions of Dialectica

Interpretations

B. Biering, L. Birkedal, C. Butz, J.M.E. Hyland,

J. van Oosten, G. Rosolini, T. Streicher

Contents

1 The Dialectica Tripos 4
1.1 Relation of Dia to Eff2 . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Relation of Dia to Number Realizability . . . . . . . . . . . . . . 10
1.3 First Order Logic in Dia . . . . . . . . . . . . . . . . . . . . . . . 11

2 Modified Dialectica Tripos Diam 12
2.1 Relation of Diam to Number Realizability . . . . . . . . . . . . . 16
2.2 Decidable Predicates in the Modified Dialectica Topos . . . . . . 18
2.3 First Order Logic in Diam . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Relation of Diam to Modified Realizability and to Set . . . . . . 27

3 The Diller-Nahm Tripos 29
3.1 Relation of DN to Eff2 . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Relation of DN to Number Realizability . . . . . . . . . . . . . . 32
3.3 First Order Logic in DN . . . . . . . . . . . . . . . . . . . . . . . 32

4 Modified Diller-Nahm Tripos 33
4.1 Relation of DNm to Number Realizability . . . . . . . . . . . . . 35
4.2 First Order Logic in DNm . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Relation of DNm to Modified Realizability . . . . . . . . . . . . 36

5 Relation Between the Triposes d/dn and dm/dnm 37

6 A Fibration for the Standard Interpretation of Dialectica 38
6.1 Logic of the Natural Numbers Object in Diam . . . . . . . . . . 39
6.2 A First order Fibration . . . . . . . . . . . . . . . . . . . . . . . 40

1

23



In this paper we present four new triposes built on Gödel’s Dialectica inter-
pretation [Göd58] (named so after the journal in which it was published) and
the Diller-Nahm variant of Gödel’s Dialectica interpretation [DN74]. We define
triposes reflecting as much as possible the original idea of Gödel’s Dialectica
Interpretation and the Diller-Nahm variant of Gödel’s Dialectica Interpreta-
tion. The motives for studying these triposes and their related toposes (by the
tripos-to-topos construction, see [HJP80]) are many-fold.

By studying these categorical constructions as models of the Dialectica and
Diller-Nahm interpretations, we can obtain new insight into the Dialectica and
Diller-Nahm interpretations and their relations to other functional interpreta-
tions. Moreover, the categorical analysis is likely to lead to new, interesting
variants of functional interpretations and at the same time the triposes and
toposes are interesting in themselves as new models for logic and type theory.
The Effective Topos [Hyl82] gave rise to a higher order version of Kleene’s num-
ber realizability. One aim is to achieve a similar result for the Dialectica and
Diller-Nahm interpretations. At the moment, it is not quite clear whether the
toposes presented in this paper are exactly the “right” ones for achieving this
goal.

Clearly, there are many questions related to the triposes and toposes we
present here that deserve an answer, and admittedly, more questions are posed
than answered by this paper. Any one of these questions requires a thorough
analysis (an example of this is the somewhat surprising exponent construction
in the Dialectica tripos, which has been studied in detail in [Bie07a]), and the
authors therefore think that the best way to proceed is to present the core of the
subject in this paper and outsource or postpone some of the related questions.

We define a tripos reflecting as much as possible of the Dialectica interpre-
tation, which we call the Dialectica tripos and denote by d. The resulting topos
is denoted by Dia. From d we get a closed subtripos, the modified Dialectica
tripos, denoted by dm, and the resulting topos is denoted by Diam.

We also define a tripos reflecting as much as possible of the Diller-Nahm
interpretation, which we call the Diller-Nahm tripos, denoted dn. The resulting
topos is denoted by DN. From dn we get a closed subtripos, the modified Diller-
Nahm tripos, denoted by dnm, and the resulting topos is denoted by DNm.

For each of the four resulting toposes, we give an account of first order
logic (over the natural numbers). The non-modified toposes, Dia and DN have
strong connections with the effective topos, Eff via open inclusions. These open
inclusions gives a lot of information about the first order logic of Dia and DN.
For the modified versions, Diam and DNm, the situation is not as straight
forward, for these two toposes we give a characterizations of first order logic
and prove it by induction. The modified versions are in closer correspondence
with the standard interpretations of Dialectica, respectively Diller-Nahm, since
“modified” corresponds to having non-empty types. We also study relations
(in the form of geometric morphisms) between the new triposes/toposes and
more familiar realizability triposes/toposes. The relations can be summed up
in diagrams:

At the tripos level, we get the following diagram of fibred adjunctions, where,
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however, only some give rise to geometric morphisms:

dnm

!

q∗

dm
id

H∗p∗

F

Set
∇

m

q∗

v∗

p∗

Γ

e
v∗

H∗

Γ

i∗

j∗

dn
i∗

Set

∆

∼=
Set

∆

d
j∗

where H, v, and q all are connected geometric morphisms, so they lift to sur-
jective geometric morphisms on the induced toposes, and i and j are open
geometric inclusions, so they lift to open geometric inclusions. The left adjoints
of the adjunctions ! a id , ∇ a F , and p∗ a p∗ are all full and faithful. At the
topos level we get the following geometric morphisms

DNm

q

Diam

H

Mod v Eff
i

j

DN

Mod¬¬
∼=

Eff¬¬ Dia

with i, j open inclusions.
We find that the triposes d and dm have a doubly closed structure, and it is

(⊗,() and not (∧,→) that corresponds to Gödel’s interpretation of conjunction
and implication. In Gödel’s Dialectica interpretation one assumes that atomic
predicates are decidable, and this assumption is directly related to the inter-
pretation of conjunction. For Diam we show that in the fragment of decidable
subobjects over the natural numbers, conjunction and implication correspond
exactly to Gödel’s definition. One would hope to get a subtopos by restricting to
this decidable fragment, since this would yield a higher order version of Dialec-
tica interpretation, but we conjecture that this is not possible. Any decidable
predicate is also ¬¬-stable, and for Dia we show that Dia¬¬ ∼= Set.

Outline The rest of the paper is organized as follows:
We start by defining the Dialectica tripos in detail and we study its relation

to the tripos e2 and to number realizability, finally we record some results re-
garding the first order logic of the topos Dia, which is built on the Dialectica
tripos using the tripos to topos construction. The modified Dialectica tripos
arises as a closed subtripos of the Dialectica tripos. For the modified Dialectica
tripos we study decidable predicates, relation to number realizability, first order
logic of the natural numbers objects, and the relation to modified realizability
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and to Set. In section 3 we move on to the Diller-Nahm tripos and again we
study the relation to Eff2 and to number realizability, and we also get a modi-
fied Diller-Nahm tripos as a closed subtripos, which we then study. In Section 5
we make a connection between the triposes d and dn and also between dm and
dnm. Finally, we describe a first order fibration that corresponds exactly to the
Dialectica interpretation.

Throughout this paper we use the following abbreviations for A,B,C ⊆ N:

1 = {0} ,
A⊗B = { 〈a, b〉 | a ∈ A, b ∈ B } ,
A⊕B = ({0} ⊗ A) ∪ ({1} ⊗B) ,
A⊕B ⊕ C = {0} ⊗A ∪ {1} ⊗B ∪ {2} ⊗ C ,
A⇒ B = { e ∈ N | ∀a ∈ A. e · a ∈ B } .

For A ⊆ N×N, we often write A(x, y) for (x, y) ∈ A. We assume that a coding
is chosen such that 〈0, 0〉 = 0 and 0 · x = 0, for all x ∈ N. Moreover, we often
write f(x) instead of f · x and F (x, y) instead of F · 〈x, y〉. We write Pf(N) for
the set of finite subsets of N. Let e : N → Pf (N) be the bijection where en = S
iff n =

∑

k∈S 2k. We write m ∈ n as abbreviation for m ∈ en. If A ⊆ N we
write Pf (A) for {n ∈ N | en ⊆ A} and P≤1(A) for {n ∈ Pf (A) | |en| ≤ 1}.

1 The Dialectica Tripos

In this section we define the canonically presented Set-based Dialectica tripos
d. The set of propositions of d is given by

Σd = {(U,X,R) ∈ P(N)2 × P(N2) | R ⊆ U ×X}

and for A = (U,X,R) ∈ Σd we write A+ for U , A− for X and A(u, x) for
(u, x) ∈ R. For I ∈ Set we define a preorder `I on the fibre ΣI

d
where A `I B iff

there exist f, F ∈ N such that, for all i ∈ I, f ∈ A+
i ⇒ B+

i and F ∈ A+
i ⊗B

−
i ⇒

P≤1(A
−
i ) and, moreover, for all u ∈ A+

i , y ∈ B−
i ,

(

∀x ∈ F (u, y)Ai(u, x)
)

⊃
Bi(f(u), y).

Truth and Falsity
The terminal object and the initial object are given by

> =
(

{0}, ∅, ∅
)

and ⊥ =
(

∅, ∅, ∅
)

respectively.

Conjunction
For A0, A1 ∈ Σd their conjunction A0 ∧A1 is given by (A0 ∧A1)

+ =
A+

0 ⊗ A+
1 , (A0 ∧ A1)

− = A−0 ⊕ A−1 and (A0 ∧ A1)(〈n0, n1〉,m) ≡
Aπ(m)(nπ(m), π

′(m)).

Implication
For A,B ∈ Σd their implication A→ B is given by
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(A→ B)+ =
{

〈f, F 〉 ∈ (A+ ⇒ B+)⊗ (A+ ⊗B− ⇒ P≤1(A
−)) |

∀u ∈ A+, y ∈ B−. ∀x ∈ F (u, y). (A(u, x) ⊃ B(f(u), y))
}

(A→ B)− = A+ ⊗B−

(A→ B)(〈f, F 〉, 〈u, y〉) ≡
(

∀x ∈ F (u, y). A(u, x)
)

⊃ B(f(u), y)

Notice that since e0 = ∅ we may reformulate the third clause as

(A→ B)(〈f, F 〉, 〈u, y〉) ≡ F (u, y) = 0 ⊃ B(f(u), y)

because if F (u, y) contains x as its single element then B(f(u), y)
follows from ∀x ∈ F (u, y). (A(u, x) ⊃ B(f(u), y)) as ensured by
〈f, F 〉 ∈ (A→ B)+.

Notice also that there is an alternative way of defining the implica-
tion:

(A→ B)+ =
{

〈f, F 〉 ∈ (A+ ⇒ B+)⊗ (A+ ⊗B− ⇒ A− ⊕ 1) |
∀u ∈ A+, y ∈ B−. (πF (u, y) = 0 ∧A(u, π′F (u, y))) ⊃ B(f(u), y)

}

(A→ B)− = A+ ⊗B−

(A→ B)(〈f, F 〉, 〈u, y〉) ≡ πF (u, y) = 1 ⊃ B(f(u), y)

This equivalent definition has been explored in [Bie07a] and [Bie07b]

Disjunction
For A0, A1 ∈ Σd their disjunction A0 ∨A1 is given by (A0 ∨A1)

+ =
A+

0 ⊕A
+
1 , (A0 ∨A1)

− = A−0 ⊕A
−
1 and (A0 ∨A1)(〈i, n〉, 〈j,m〉) ≡ i =

j ⊃ Ai(n,m).

Universal Quantification
Suppose A ∈ ΣI

d
and h : I → J in Set. Then ∀h(A) ∈ ΣJ

d
is given

by

∀h(A)+j =
⋂

i∈I

(

[h(i) = j] ⇒ A+
i

)

∀h(A)−j =
⋃

i∈h−1(j)

A−i

∀h(A)j(u, x) ≡ ∀i ∈ h−1(j).
(

x ∈ A−i ⊃ Ai(u · 0, x)
)

where [i = j] ≡ {0 | i = j}. For epic h this may be simplified as
follows

∀h(A)+j =
⋂

i∈h−1(j)

A+
i

∀h(A)−j =
⋃

i∈h−1(j)

A−i

∀h(A)j(u, x) ≡ ∀i ∈ h−1(j).
(

x ∈ A−i ⊃ Ai(u, x)
)
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Existential Quantification
For arbitrary maps h : I → J in Set and A ∈ ΣI

d
existential quan-

tification of A along h is given by

∃h(A)+j =
⋃

i∈h−1(j)

A+
i

∃h(A)−j =
⋂

i∈h−1(j)

(

A+
i ⇒ P≤1(A

−
i )

)

∃h(A)j(u, f) ≡ ∃i ∈ h−1(j).
(

u ∈ A+
i ∧ ∀x ∈ f(u). Ai(u, x)

)

Lawvere Equality
As a particular case of existential quantification we have for every
set I, Lawvere equality eqi ≡ ∃δI

(>), which can be simplified as
follows

eqI(i, j) =
(

[i = j], {0}, [i = j]⊗ {0}
)

Generic Family
The generic family of propositions is given by the identity on Σd.

The Dialectica tripos has an additional fibred closed symmetric monoidal
structure, defined as follows. The definition is inspired by the work
on Dialectica categories by de Paiva and Hyland [dP89].

Tensor Product The tensor is given by

(Ui, Xi, Ai)⊗ (Vi, Yi, Bi) = (Ui ⊗ Vi, Xi ⊗ Yi, Ai ⊗Bi),

where

(Ai ⊗Bi)(〈u, v〉, 〈x, y〉) ⇐⇒ Ai(u, x) ∧Bi(v, y).

Tensor is symmetric monoidal with

Unit I = ({0}, {0}, {(0, 0)}).

Closed Structure The closed structure is given by

(Ui, Xi, Ai) ( (Zi,Wi, Ci) = ((Ui ⇒ Zi)⊗(Ui⊗Wi ⇒ Xi), Ui⊗Wi, Ai ( Ci),

where

(Ai ( Ci)(〈f, F 〉, 〈u,w〉) ⇐⇒ Ai(u, F 〈u,w〉) ⊃ Ci(fu,w).

Remark 1.1. There is no diagonal (U,X,A) ` (U,X,A) ⊗ (U,X,A) (we do
have projections in those special cases where

⋂

i∈I Xi 6= ∅).
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Proposition 1.2. The Dialectica tripos is a BI-hyperdoctrine. BI-hyperdoctrines
were introduced in [BBTS05].

Definition 1.3. The Dialectica topos, denoted Dia, is the topos Set[d] obtained
by the tripos-to-topos construction (see [HJP80]) from the tripos d.

It is easy to see that a predicate A ∈ ΣI
d

over I is true, i.e. >I `I A, iff there
exists an u ∈

⋂

i∈I A
+
i such that Ai(u, x) for all i ∈ I and x ∈ A−i and that A

is false, i.e. A `I ⊥, iff A+
i = ∅ for all i ∈ I.

In d negation is fairly simple as can be seen from the following lemma.

Lemma 1.4. For A ∈ ΣI
d

its negation ¬A ≡ A → ⊥ is isomorphic to (A+
i ⇒

∅, ∅, ∅). Thus ¬¬A is isomorphic to
(

{0 | A+
i 6= ∅}, ∅, ∅

)

.

This gives rise to the following characterization of ¬¬-stable predicates in
the tripos d.

Corollary 1.5. An A ∈ ΣI
d

is ¬¬-stable, i.e. ¬¬A `I A, if and only if there
exists an u ∈ N such that for all i ∈ I if A+

i 6= ∅ then u ∈ A+
i with Ai(u, x) for

all x ∈ A−i .

Contrary to standard realizability toposes like the effective topos, the Di-
alectica topos is not 2-valued. This holds because the Dialectica tripos is not
2-valued since the preorder Σd is at least as complicated as the lattice of Turing
degrees which can be seen as follows. With every subset P of N we associate
the proposition AP =

(

N, {0, 1}, {(n,m) | n ∈ N and (m = 0 ⇐⇒ n ∈ P )}
)

in
Σd.

Lemma 1.6. For P,Q ⊆ N from AP `1 AQ it follows that P ≤T Q.

Proof. Suppose AP `1 AQ. Then there exist f : N ⇒ N and F : N ⊗ {0, 1} ⇒
P≤1({0, 1}) such that ∀n ∈ N, i ∈ {0, 1}.

(

∀j ∈ F (n, i). AP (n, j)
)

⊃ AQ(fn, i)
and thus (where χP and χQ are the characteristic predicates of P and Q, re-
spectively)

∀n ∈ N. ∃j ∈ F (n, 1−χQ(fn)). j = 1−χP (n)

from which it folds that there is a program for χP in terms of χQ, i.e. that
P ≤T Q as desired.

From this lemma it follows that there exists at least as many propositions in
ΩDia as there are Turing degrees.

Finally in this section we show that quantification in the canonically pre-
sented tripos d is not standard in the sense of [HJP80]. First we recall the
respective definitions from [HJP80]. Let C(−,Σ) be a canonically presented tri-
pos. Let I = Σ/a` and q : Σ → I be the quotient map. The tripos is called
∃-standard iff q ◦ ∃q(idΣ) = idI and it is called ∀-standard iff q ◦ ∀q(idΣ) = idI .

Proposition 1.7. The canonically presented Dialectica tripos d is neither ∃-
standard nor ∀-standard.

Proof. For n,m ∈ N let An,m be the proposition
(

{n}, {m}, ∅}
)

. All these
propositions are equivalent but none of them is equivalent to >.

Let i0 := [A0,0]a`. One easily sees that ∃q(idΣ)(i0) = (N, {0},N×{0}) which
is true and thus its equivalence class w.r.t. a` is different from i0 showing that
d is not ∃-standard.

One easily sees that ∀q(idΣ)(i0) = (∅,N, ∅) which is not equivalent to any of
the An,m showing that d is not ∀-standard.
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1.1 Relation of Dia to Eff2

We first briefly recall the definition of m, the modified realizability tripos, from
which the modified realizability topos Mod is obtained via the tripos-to-topos
construction. The propositions of m are given by

Σm = {(Aa, Ap) ∈ P(N)2 | Aa ⊆ Ap 3 0}

i.e. a proposition is given by a set Ap of potential realizers containing 0 and
a subset Aa ⊆ Ap of actual realizers. For I ∈ Set the fibre mI is defined as
(ΣI

m,`I), where ΣI
m is the set of all functions from I to Σm and with pre-order

ϕ `I ψ (for ϕ, ψ ∈ mI) if
⋂

i∈I (ϕa
i ⇒ ψa

i ) ∩ (ϕp
i ⇒ ψp

i ) is inhabited. The set of
propositions of m has a pre-Heyting structure with constants and operations

> = ({0}, {0})

⊥ = (∅, {0})

A→ B =
(

(Aa ⇒ Ba) ∩ (Ap ⇒ Bp), Ap ⇒ Bp
)

A ∧B = (Aa ⊗Ba, Ap ⊗Bp)

A ∨B = (Aa ⊕Ba, Ap ⊕Bp) .

The propositional structure is on an arbitrary (ΣI
m
,`I) is given by component-

wise application of the operations on Σm. The quantifiers are given by

∀u(ϕ)j =
(

⋂

i∈u−1(j){0} ⇒ ϕa
i ,

⋂

i∈u−1(j){0} ⇒ ϕp
i

)

∃u(ϕ)j =
(

succ
(
⋃

i∈u−1(j) ϕ
a
i

)

, {0} ∪ succ
(
⋃

i∈u−1(j) ϕ
p
i

) )

for u : I → J and ϕ ∈ mI . Notice that this description of quantifiers is easily
seen to be equivalent to the one of [vO97].

Van Oosten also showed that there is a localic connected geometric morphism
v : m → e, defined by

v∗(A
a, Ap) = Aa v∗(A) = (succ(A), succ(A) ∪ {0})

which lifts to a localic surjective geometric morphism from the modified realiz-
ability topos Mod to the effective topos, Eff .

See [vO97] for a definition of the injective geometric morphisms e : e ↪→ e2

and m : m ↪→ e2 giving rise to the complemented subtoposes Eff and Mod of
Eff2.

Proposition 1.8. There is a fibred adjunction p : d → e2 given by

p∗(A1, A0) = (A0, {0}, A1×{0}) p∗(A) = ({u ∈ A+ | ∀x ∈ A−. A(u, x)}, A+)

and p∗ is full and faithful.

Proof. It is straight forward to show that p is a fibred adjunction and that p∗

is full and faithful.

Remarks 1.9.

(i) The functor p∗ does not preserve existential quantification, so it does not
have any right adjoints.
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(ii) The functor p∗ : e2 → d does not preserve conjunction so p is not a
geometric morphism of triposes hence, presumably, p∗ does not lift to a
functor between the induced toposes. To show this claim suppose that p∗

does preserve conjunction, that is, for (Ua, Up) and Va, Vp in e2,

p∗(Ua × V a, Up × V p) = p∗(Ua, Up) ∧dm p∗(V a, V p) i.e.
(Up ⊗ V p, {0}, Ua ⊗ V a ⊗ {0}) = (Up ⊗ V p, {0, 1}, R) where

R = (Ua ⊗ V p ⊗ {0}) ∪ (Up ⊗ V a ⊗ {1})

and
(Up ⊗ V p, {0, 1}, R) ` (Up ⊗ V p, {0}, Ua ⊗ V a ⊗ {0})

in d, so there exists f, F ∈ N such that,

f : Up ⊗ V p ⇒ Up ⊗ V p and F : Up ⊗ V p ⊗ {0} ⇒ {0, 1}

and, for all u ∈ Up, v ∈ V p,

R((u, v), F (u, v)) ⊃ (u, v) ∈ Ua ⊗ V a

that is,
F (u, v) = 0 ∧ u ∈ Ua ⇒ v ∈ V a

F (u, v) = 1 ∧ v ∈ V a ⇒ u ∈ Ua

Now let I be the index set {1, 2}, and let Up
i = V p

i = N, V a
1 = {0},

Ua
1 = N, V a

2 = {1}, and Ua
2 = N \ {k}. Then for all i ∈ {1, 2}, for all

u ∈ N, v ∈ N,

u ∈ Ua
i ∧ v /∈ V

a
i ⇒ F (u, v) = 1 and u /∈ Ua

i ∧ v ∈ V
a
i ⇒ F (u, v) = 0.

Since Ua
1 = N and 1 /∈ V a

1 , we get ∀u ∈ N, F (u, 1) = 1 and since k /∈ Ua
2

and 1 ∈ V a
2 we also get F (k, 1) = 0; contradiction.

The subtoposes Eff and Mod of Eff2 are induced by the local operators
oU (P ) = U → P and cU (P ) = U ∨ P where U = (∅, {0}).

The local operators op∗(U) and cp∗(U), where p∗(U) = ({0}, {0}, ∅) give rise
to the open subtripos de and the closed subtripos dm of d, respectively. We
denote the corresponding open and closed subtoposes of Dia by Diae and Diam,
respectively. For more details see [Bie08, Chapter 1].

de e dm m

d p
e2 d p

e2

Diae Eff Diam Mod

Dia Eff2 Dia Eff2

Notice that p∗(U) ∨ A `I A iff p∗(U) `I A iff
⋂

i∈I A
+
i 6= ∅. Thus, up to

isomorphism we may define dm as canonically presented via Σdm
= {(U,X,R) ∈

Σd | 0 ∈ U}. The logical operations for dm are defined as for d, only for ⊥, ∨
and ∃ we have to correct the constructions by finally applying the local operator
cp∗(U).
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1.2 Relation of Dia to Number Realizability

Theorem 1.10. Let f = (f∗, f∗) : P → Q be a connected geometric mor-
phism of triposes, the induced geometric morphism f̄ : C[P ] → C[Q] is then a
surjection, i.e., f̄∗ is faithful.

For a proof see [Bie08, Chapter 1].
There is a connected geometric morphism r : d → e giving rise to a surjective

geometric morphism from Dia to Eff , given by:

r∗(U,X,A) = {u ∈ U | ∀x ∈ X.A(u, x)} r∗(A) = (A, {0}, A× {0}).

Natural Number Object Since inverse image parts of geometric morphisms
preserve natural number objects the nno of Dia is given by NDia = r∗(NEff ) =
(N,≈N ) where [n ≈N m] = ({n | n = m}, {0}, {(n, 0) | n = m}).

Next we will show that d contains as subtripos the number realizability
tripos e from which the effective topos Eff = Set[e] arises via the tripos-to-
topos construction. Recall that Σe = P(N) and ϕ `I ψ iff

⋂

i∈I [ϕi⇒ψi] is
inhabited. We can draw the following diagram:

Dia

r

' Dia

Eff

j

Proposition 1.11. There is an injective geometric morphism j : e → d and,
accordingly, Eff is a subtopos of Dia. This geometric inclusion arises from the
open topology p∗(U) → (−) on Dia where p∗(U) = ({0}, {0}, ∅). Moreover, one
obtains Set as the subtopos of ¬¬-sheaves of Dia.

Proof. We define j : e → d as the fibred adjunction

j∗(A+, A−, A) = A+ and j∗(X) = (X, ∅, ∅)

and one easily checks that j∗ preserves > and also conjunction in each fibre.
One easily checks that j∗j

∗(A+, A−, A) = (A+, ∅, ∅) ∼= p∗(U) → (A+, A−, A)
from which it follows that the geometric inclusion j is induced by the topology
p∗(U) → (−) on Dia. Thus the open subtripos de of d as induced by op∗(U) is
isomorphic to e.

Hence we have

Eff ∼= Diae

Dia

Notice that p∗(U) → A in d is given (up to isomorphism) by

(p∗(U) → A)+ = A+ ⊗
(

A− ⇒ P≤1({0})
)

(p∗(U) → A)− = A−

(p∗(U) → A)(〈u, f〉, x) ≡ f(x) = ∅ ⊃ A(u, x)
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which in turn is isomorphic to (A+, ∅, ∅). Thus it is easy to see that ¬¬(p∗(U) →
A) = ¬¬A.

It is well known that Set ' Eff¬¬. Thus, since ¬¬(p∗(U) → A) = ¬¬A it
follows that Set ' Eff¬¬ ' Dia¬¬.

In general direct image parts of geometric morphisms do not preserve natural
numbers objects. But in the particular case j : Eff → Dia one readily checks
that j∗(N) = (N, EN ) with EN (n,m) = ({n | n = m}, ∅, ∅) happens to be
isomorphic to the natural numbers object in Dia.

Proposition 1.12. The direct image functor j∗ : Eff → Dia preserves the
finite type structure of the natural numbers object in Eff .

Proof. We have already seen that j∗(NEff ) ∼= NDia, and since j∗ preserves
products, the statement obviously holds for products. To see that j∗(X

Y ) ∼=
(j∗X)(j∗Y ) consider the following string of bi-implications:

A ` j∗(X
Y )

j∗(A) ` XY

j∗(A)× Y ` X

j∗(A)× j∗j∗(Y ) ` X

A× j∗(Y ) ` j∗(X)

A ` j∗(X)j∗(Y )

So in particular we have NNDia

Dia
∼= j∗(N

NEff

Eff
).

Proposition 1.13. The inverse image j∗ preserves first-order logic and the
finite type structure of the natural number object in Dia.

Proof. By the above proposition the inclusion is open, i.e., the inverse image
preserves first-order logic. It thus suffices to show that the inverse image also
preserves the finite type structure, which obviously holds for products. We prove
inductively the stronger statement that the inverse image functor j∗ preserves
the finite type structure over the natural numbers, and that every such type
in Dia is (up to isomorphism) in the image of the direct image functor, which
completes the proof.

The statement is obviously true in the base case, which is the type of nat-
ural numbers. Moreover, since both inverse image and direct image preserve
finite products, the statement holds true for products. For exponentials we
consider X and Y in Eff , and note that j∗((j∗X)(j∗Y )) ∼= j∗j∗(X

Y ) ∼= XY ∼=
(j∗j∗X)(j

∗j∗Y ), which completes the proof.

1.3 First Order Logic in Dia

In this section we record some results about the logic in Dia.

11

33



Proposition 1.14. Dia |= φ implies Eff |= φ for φ a formula of HA.

Proof. This follows immediately from Proposition 1.13.

Recall that a formula is called negative if it is built up from atomic formulas
using ∧,→, ∀. Following results in [Hyl82] we have

Theorem 1.15. If equality on an object (I,') in Dia is j-closed (where j =
p∗(U) → (−)) and φ is a negative formula of first order logic with ‖φ‖Dia →
(I,'), then interpretation of φ in Eff agrees with the interpretation of φ in Dia
in the sense that

j∗(‖φ‖Eff ) = ‖φ‖Dia

2 Modified Dialectica Tripos Diam

As we saw in Section 1.1 we have a modified version of the Dialectica tripos, dm

which may be defined as canonically presented via Σdm
= {(U,X,R) ∈ Σd | 0 ∈

U}. The logical operations for dm are defined as for d, only for ⊥, ∨ and ∃ we
have to correct the constructions by finally applying the local operator cp∗(U).

For convenience we now give the concrete definition of dm, for those logical
operations that differ from d.

Over set I, the preorder is defined to consist of families of triples (Ui, Xi, Ai)
satisfying that 0 ∈ Ui ⊆ N, Xi ⊆ N, and Ai ⊆ Ui ×Xi. We declare that

(Ui, Xi, Ai) ` (Vi, Yi, Bi)

iff there exist f, F ∈ N such that, for all i ∈ I,

f ∈ Ui ⇒ Vi and F ∈ Ui ⊗ Yi ⇒ P≤1(Xi)

and, moreover, for all u ∈ Ui, y ∈ Yi,

(∀z ∈ F (u, y)Ai(u, z) ⊃ Bi(f · u, y).

Falsity
The initial object ⊥ is given by

⊥ = i 7→
(

{0}, {0}, ∅
)

.

Disjunction
For A0, A1 ∈ Σd their disjunction A0 ∨A1 is given by (A0 ∨A1)

+ =
A+

0 ⊕A
+
1 , (A0 ∨A1)

− = A−0 ⊕A
−
1 and (A0 ∨A1)(〈i, n〉, 〈j,m〉) ≡ i =

j ⊃ Ai(n,m).

Existential Quantification
Suppose h : I → J in Set is epic. Then
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∃h(A)+j =
⋃

i∈h−1(j)

A+
i

∃h(A)−j =
⋂

i∈h−1(j)

(

A+
i ⇒ P≤1(A

−
i )

)

∃h(A)j(u, f) ≡ ∃i ∈ h−1(j).(u ∈ A+
i ∧ ∀x ∈ f(u). Ai(u, x))

In case h is not epic,

∃h(A)+j = {0} ∪ succ
(

⋃

i∈h−1(j)

A+
i

)

∃h(A)−j =
⋂

i∈h−1(j)

(

A+
i ⇒ P≤1(A

−
i )

)

∃h(A)j(u, f) ≡ u 6= 0 and ∃i ∈ h−1(j).(u − 1 ∈ A+
i ∧ ∀x ∈ f(u− 1). Ai(u− 1, x))

Lawvere Equality
We have for every set I, Lawvere equality, eqi ≡ ∃δI

(>), which can
be simplified as follows

eqI(i, j) =
(

{0} ∪ succ([i = j]), {0}, succ([i = j])⊗ {0}
)

The generic object is, of course, the identity function on the set

Σ = { (X,Y,A) | A ⊆ X × Y, and X,Y ⊆ N, 0 ∈ X }.

We also have

Tensor Product The tensor is given by

(Ui, Xi, Ai)⊗ (Vi, Yi, Bi) = (Ui ⊗ Vi, Xi ⊗ Yi, Ai ⊗Bi),

where

(Ai ⊗Bi)(〈u, v〉, 〈x, y〉) ⇐⇒ Ai(u, x) ∧Bi(v, y).

Tensor is symmetric monoidal with

Unit I = ({0}, {0}, {(0, 0)}).

Closed Structure The closed structure is given by

(Ui, Xi, Ai) ( (Zi,Wi, Ci) = ((Ui ⇒ Zi)⊗(Ui⊗Wi ⇒ Xi), Ui⊗Wi, Ai ( Ci),

where

(Ai ( Ci)(〈f, F 〉, 〈u,w〉) ⇐⇒ Ai(u, F 〈u,w〉) ⊃ Ci(fu,w).

Remark 2.1. There is no diagonal (U,X,A) ` (U,X,A) ⊗ (U,X,A), but we
do have projections.
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Proposition 2.2. The Dialectica tripos is a BI-hyperdoctrine. BI-hyperdoctrines
were introduced in [BBTS05]. It is affine, i.e., I ≡ >.

Lemma 2.3. The negation of (Xi, Yi, Ai), defined by

¬(Xi, Yi, Ai)
def
= (Xi, Yi, Ai) → ⊥I ,

is isomorphic to

(

{F : Xi ⇒ 1⊕ Yi | ∀x ∈ Xi. π(F (x)) = 1 ⊃ ¬Ai(x, π
′(F (x))) }, Xi, Ai → ∅

)

,

where
(Ai → ∅)(F, x) ⇐⇒ π(F (x)) = 1.

It is easy to see that, over 1, a predicate (X,Y,A) is (isomorphic to) true just
in case there exists an x in X such that for all y in Y we have that (x, y) ∈ A
and that a predicate (X,Y,A) is (isomorphic to) false just in case there exists
an f ∈ N such that f ∈ X ⇒ Y and such that for all x ∈ X , (x, f · x) /∈ A. We
now characterize when a predicate (Xi, Yi, Ai) in the fibre over I in d is true
(for I 6= ∅). That holds iff

∀I(Xi, Yi, Ai) = >1,

i.e., iff
(

⋂

i

Xi,
⋃

i

Yi, Ã
)

= >1,

where
Ã(x, y) iff for all i ∈ I.y ∈ Yi ⇒ Ai(x, y)

i.e., iff

∃x ∈
⋂

i

Xi. ∀i ∈ I. ∀y ∈ Yi. y ∈ Yi ⇒ Ai(x, y).

Lemma 2.4. Let p = (X,U,R) be a proposition with U = {0} and R a decidable
predicate on X × {0}. Then ¬¬p ` p

Proof. Due to the above explicitation of negation we have that (¬p)+ consists
e : p+ → {0} + {0} such that ∀a ∈ p+. π(ea) = 1 ⇒ ¬p(a, 0), (¬p)− = p+

and (¬p)(e, a) ≡ π(ea) = 1. Accordingly, (¬¬p)+ consists of all f ∈ (¬p)+ →
{0}+ p+ such that ∀e ∈ (¬p)+. π(fe) = 1 ⇒ π(e·π′(f ·e)) = 0, (¬¬p)+ = (¬p)+

and (¬¬p)(f, e) ≡ π(f ·e) = 1.
Let n0 ∈ p+ → {0}+ {0} with π(n0·a) = 1 iff p(a, 0) for all a ∈ p+. Such an

n0 exists as p( , 0) is decidable by assumption and, obviously, it is an element
of (¬p)+ by construction. Now ¬¬p ` p is realized by

e+ = Λf. π′(f ·n0) and e− = Λz. n0

as it holds that

∀f ∈ (¬¬p)+. π(f ·n0) = 1 ⇒ p(π′(f ·n0), 0)

which follows immediately from the expansions of the statements f ∈ (¬¬p)+

and n0 ∈ (¬p)+.
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Definition 2.5. The Modified Dialectica Topos, denoted Diam, is the topos
Set[dm] obtained by the tripos-to-topos construction (see [HJP80]) from the
tripos dm.

Lemma 2.6. The Dialectica tripos is not 2-valued. Hence the Dialectica topos
is not 2-valued either.

Proof. Then (N,N, A) with

A = { (n,m) | n ∈ N ∧m =

{

1 if n · n ↓

0 if n · n ↑
}

∪ { (n,m) | n ∈ N ∧m ≥ 2 }

is neither true, nor false.

Indeed, we can show that the structure of the subobject classifier Ω in Diam

is very rich: all many-one reducibility degrees are represented. To see this, let
us, for an α ⊂ N, set

Aα = Graph(χα) ∪ { (n,m) | m ≥ 2 },

where χα is the characteristic function of α.

Proposition 2.7. If α ≤m β ( i.e., α is m-reducible to β), then (N,N, Aα) `
(N,N, Aβ).

Proof. By definition (N,N, Aα) ` (N,N, Aβ) iff there exist f ∈ N ⇒ N and
F ∈ N⊗ N ⇒ N such that

Aα(n, F 〈n,m〉) ⊃ Aβ(fn,m),

which amounts to

F 〈n,m〉 ≥ 2 ⊃ (m ≥ 2 ∨m = χβ(fn))

or
F 〈n,m〉 = χα(n) ⊃ (m ≥ 2 ∨m = χβ(fn))

By the assumption α ≤m β there exists a g ∈ N ⇒ N such that χα(n) = χβ(gn).
Hence we can simply let f = g and F 〈n,m〉 = m.

From the proof it is easy to see that, if α ≤m β, we will in general not have
the converse of (N,N, Aα) ` (N,N, Aβ), i.e., the many-one reducibility degrees
are not collapsed when viewed as global elements of Ω.

Lemma 2.8. The dm tripos is not ∃-standard.

Proof. By the definition of ∃-standard, d is such iff, for all ϕ ∈ Σ, ϕ a`
∃q(ϕ′)=q(ϕ)ϕ

′. Now consider ϕ = (N, {1}, ∅), which is not true. Then, for all
n ∈ N, ϕ a` ϕn with ϕn = (N, {n}, ∅). But ∃q(idΣ)(φ) = (N, {0},N ⊗ {0}) ,
which is true, and if there are more elements ϕ′′ ∈ Σ for which ϕ a` ϕ′′, then
∃q(ϕ)=q(ϕ′)ϕ

′ will still be (N, {0},N⊗ {0}). Thus ∃q(ϕ′)=q(ϕ)ϕ
′ is true, but ϕ is

not and hence the tripos is not ∃-standard.

Lemma 2.9. The dm tripos is not ∀-standard.

Proof. Consider ψn = ({0, n}, {0, n}, {(n, 0), (n, n)}), which is true for all n,
but (

⋂

{0, n},
⋃

{0, n}, ψ̃) = ({0},N, ∅), which is equivalent to ⊥. So a[>] =
({0},N, {(0, 0)}) 6a` >.
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2.1 Relation of Diam to Number Realizability

Proposition 2.10. There is a connected geometric morphism from dm to e.
Hence, by Theorem 1.10 there is a surjective geometric morphism from Diam

to Eff .

Proof. By composition of the adjunction from Proposition 2.23 and the geo-
metric morphism v : m → e from [vO97]. Explicitly, the geometric morphism
H = (H∗, H∗) : dm → e is defined over 1 by

H∗(A) = (succ(A) ∪ {0}, {0}, succ(A)× {0}),

H∗(X,Y,A) = { x ∈ X | ∀y ∈ Y. A(x, y) }.

We have to check that H∗ preserves finite limits. It is straight forward to verify
that it preserves >, we now show that H∗ preserves conjunction. Let Ai, Bi in
e be given, we must show that

H∗(Ai ∧
e Bi) a` H

∗(Ai) ∧
dm H∗(Bi)

in dm. We have

H∗(Ai ∧Bi) = (succ(Ai ⊗Bi) ∪ {0}, {0}, succ(Ai ⊗Bi)× {0}) (1)

and

H∗(Ai) ∧H
∗(Bi) = ((succ(Ai) ∪ {0})⊗ (succ(Bi) ∪ {0}), {0, 1}, Ri), (2)

where

Ri = (succ(Ai)⊗ ({0} ∪ succ(Bi))⊗{0})∪ (({0}∪ succ(Ai))⊗ succ(Bi)⊗{1}).

To see that 1 ` 2, we must find

f : succ(Ai ⊗Bi) ∪ {0} ⇒ (succ(Ai) ∪ {0})⊗ (succ(Bi) ∪ {0}) and
F : (succ(Ai ⊗Bi) ∪ {0})⊗ {0, 1} ⇒ P≤1({0})

such that, for all i, n ∈ succ(Ai ⊗Bi) ∪ {0}, j ∈ {0, 1},

n ∈ succ(Ai ⊗Bi) ⊃ Ri(f〈n〉, j).

Define f as follows:

f(〈a, b〉+ 1) = 〈a+ 1, b+ 1〉
f(0) = 0.

And
F (〈a, b〉, i) = {0}.

To see that (2) ` (1), we must find

g : (succ(Ai) ∪ {0})⊗ (succ(Bi) ∪ {0}) ⇒ succ(Ai ⊗Bi) ∪ {0} and
G : (succ(Ai) ∪ {0})⊗ (succ(Bi) ∪ {0}) ⇒ {0, 1}

such that for all i,

Ri(〈n,m〉, G(〈n,m〉)) ⇒ g(〈n,m〉) ∈ succ(Ai ⊗Bi).
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To this end, we define

g(〈n,m〉) =

{

〈n− 1,m− 1〉+ 1 if n 6= 0, and m 6= 0
0 otherwise

and

G(〈n,m〉) =

{

1 if n 6= 0, and m = 0
0 otherwise

Natural Number Object Since inverse image parts of geometric morphisms
preserve natural number objects the nno of Diam is given byNDiam

= H∗(NEff ) =
(N,≈N ) where [n ≈N m] = ({0} ∪ {n+ 1 | n = m}, {0}, {(n+ 1, 0) | n = m}).

Here comes a useful observation about strict predicates over Nk
Diam

.

Proposition 2.11. Let A be a strict predicate over NDiam
. Then there are

recursive functions

µ :
⋂

n:N

(A+
n ⇒ {0, n+ 1}) δ :

⋂

n:N

(A+
n ⇒ A−n )

such that

• If µ(u) = n+ 1 then

– u ∈ A+
n and u /∈ A+

k for k 6= n

– ¬Ak(u, δ(u)) for all k 6= n.

• If µ(u) = 0 then ¬An(u, δ(u)) for all n.

• An(u, δ(u)) implies µ(u) = n+ 1.

Proof. That An is strict means that (A+
n , A

−
n , An) ` [n = n] in dm, and this

means that there are recursive functions

µ :
⋂

n:N

(A+
n ⇒ {0, n+ 1}) δ :

⋂

n:N

(A+
n ⇒ A−n )

such that
∀n : N, u ∈ A+

n . AN (u, δ(u)) ⊃ µ(u) = n+ 1.

It is a well known fact that any geometric morphism f : P → Q of C-triposes
P and Q lifts to a geometric morphism f̄ : C[P ] → C[Q] (see [HJP80]). It is
also known that if f is an inclusion, then so is f̄ (see e.g. [vO08]). In his thesis
[Bir99], Lars Birkedal shows that if f is connected and if f∗ preserves ∃, then
f̄ is also connected. It is not in general the case that a connected geometric
morphism of triposes lifts to a connected geometric morphism of toposes. For
a counter example, see [Fre07].

In [Bie08, Section 2] a “local” version of this result is shown, local in the
sense that if f∗ only preserves ∃h for certain morphisms h, then f∗ is fully
faithful for certain homsets.
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Definition 2.12. Let C,D be categories and X,Y objects of C. We say
that a functor H : C → D is fully faithful on (X,Y ) if there is a bijection
HomC(X,Y ) ∼= HomD(HX,HY ).

Theorem 2.13. Suppose f : P → Q is a connected geometric morphism of
C-triposes and let π : X × J → J be a projection in C. Suppose further that
for any strict predicate φ(x) over an object f̄∗(X,∼), (X,∼) in C[Q], we have
f∗∃P

π (φ(x)) ∼= ∃Q
π f∗(φ(x)). Then the induced geometric morphism f̄ : C[P ] →

C[Q] satisfies that f̄∗ is fully faithful on ((Y,∼), (X,∼)) for any object (Y,∼)
in C[Q].

For a proof, see [Bie08, Chapter 1].

Lemma 2.14. Let π : N× J → J , and let A ∈ dm(N) be a strict predicate over
(N,∼) = NDiam

, then
H∗∃

d

π(A) ∼= ∃e

πH∗(A).

Proof. Let A = (U,X,A), then

(H∗∃
d

π(U,X,A))j = {u ∈
⋃

n∈N

U(n, j) | ∀f ∈
⋂

N

(U(n, j) ⇒ P≤1(X(n, j)).Âj(u, f))}

where

Âj(u, f) ≡ ∃n : N.(u ∈ U(n, j) ∧ ∀x ∈ f(u).A(n, j)(u, x)).

= u ∈
⋃

n∈N
U(n, j).∀x ∈

⋂

{n|u∈U(n,j)}X(n, j).∃n : N.(u ∈ U(n, j) ∧A(n, j)(u, x)).

On the other hand

(∃e

πH∗(U,X,A))j =
⋃

n∈N

{u ∈ U(n, j) | ∀x.X(n, j).A(n, j)(u, x)}

Clearly
(∃e

πH∗(U,X,A))j ` (H∗∃
d

π(U,X,A))j

to show the other direction we use the fact that A is strict over (N,∼) so
that for u ∈

⋃

n∈N
U(n, j), µ(u) = n + 1 implies u ∈ U(n, j) and for for all

k 6= n, u /∈ U(k, j). And µ(u) = 0 implies for all n. ¬A(n, j)(u, δ(u)). Now
suppose u ∈ (H∗∃d

π(U,X,A))j , if µ(u) = n + 1, then u ∈ U(n, j) for n only, so
⋂

{k|u∈U(k,j)}X(k, j) = X(n, j), so u ∈ (∃e
πH∗(U,X,A))j . If µ(u) = 0 we have

δ ∈
⋂

n∈N
(U(n, j) ⇒ X(n, j)) with ¬Âj(u, δ(u)), so u /∈ (H∗∃d

π(U,X,A))j .

Corollary 2.15. Maps F : H̄∗(X,∼) → H̄∗(N,∼) = NDiam
in Diam are in

bijective correspondence with maps from (X,∼) to (N,∼) in Eff .

2.2 Decidable Predicates in the Modified Dialectica Topos

In the Dialectica interpretation there is a side condition saying that atomic
(and hence all quantifier-free) predicates must be decidable. We do not have
this condition as part of the tripos. It is the (⊗,() structure of the tripos
that corresponds to Gödel’s interpretation of conjunction and implication. In
this section we show that when restricting to the decidable fragment of NDiam

,

18

40



(⊗,() coincides with (∧,→), so that conjunction and implication is exactly
like Gödel’s definition.

Recall that a predicate x : X | ϕ : Prop is decidable if > ` ϕ ∨ ¬ϕ holds in
the fibre over X .

Proposition 2.16. Let (X,≈) be an object of Eff . There is an isomorphism
between decidable subobjects of H∗(X,≈) in Diam and decidable subobjects of
(X,≈) in Eff .

Proof. The object 2 acts as a classifier for decidable subobjects, so decidable
subobjects of (X,≈) are in one-to-one correspondence with maps from (X,≈)
to 2. Now 2dm

= H∗(2e), and so the proposition holds because 2e satisfies the
condition of Theorem 2.13, so that H∗ is full and faithful on ((X,≈), 2e) for any
object (X,≈) of Eff .

A subobject in the Dialectica topos on an object (X,≈) is a strict and exten-
sional predicate in the Dialectica tripos in the fibre over X . Thus a predicate
(Xn, Yn, An)n∈N in the fibre over the natural numbers object N in Diam is
decidable iff

n : N | EN (n) ` (Xn, Yn, An) ∨ ¬(Xn, Yn, An) (3)

holds in dm in the fibre over N. Recalling the definitions we see that, for a given
n ∈ N, the left hand side in (3) is equal to

(

{n+ 1, 0}, {0}, {(n+ 1, 0)}
)

,

and the right hand side is equal to

(Zn, Yn ⊕Xn, C),

where

Zn = Xn ⊕ Z ′n

Z ′n = {F ∈ Xn ⇒ 1⊕ Yn | ∀x ∈ Xn. π(Fx) = 1 ⊃ ¬An(x, π′(Fx)) }

Cn = { 〈0, x〉, 〈o, y〉 | An(x, y) }

∪ { 〈1, F 〉, 〈1, x′〉 | π(Fx′) = 1 ∧ ¬An(x′, π′(Fx′)) }.

Thus (3) holds iff there exist g,G ∈ N, such that for all n ∈ N,

g ∈ {n+ 1, 0} ⇒ Zn

G ∈ {n+ 1, 0} ⊗ (Yn ⊕Xn) ⇒ {0}

and
π(gn) = 0 ∧ ∀y ∈ Yn. An(π′(gn), y)

or
π(gn) = 1 ∧ ∃F ∈ Xn ⇒ Yn. ∀x0 ∈ Xn. ¬(An(x0, Fx0)).

In words, (Xn, Yn, An)n∈N is decidable in the Dialectica topos just in case there
is a g which, for all n, gives a pair 〈0, x0〉 or 〈1, F 〉, with x0 a witness for the
predicate being true at n, and F a witness for the predicate being false at n.

19

41



Remark 2.17. For a any predicate ψ : I → Σ in dm in the fibre over I, we can
associate the subset S(ψ) = { i ∈ I | ψ(i) a` >} of I. For predicates over the
natural numbers, we note that if ψ is decidable then S(ψ) is a recursive set.

Recall that the Dialectica tripos has an additional fibred closed symmetric
monoidal structure, defined as follows (compare the work on Dialectica cate-
gories by de Paiva and Hyland [dP89]), making the Dialectica tripos into a
BI-hyperdoctrine, see [BBTS05]. The tensor is given by

(Xi, Yi, Ai)⊗ (Ui, Vi, Bi) = (Xi ⊗ Ui, Yi ⊗ Vi, Ai ⊗Bi),

where (Ai ⊗ Bi)(〈x, u〉, 〈y, v〉) is defined by Ai(x, y) ∧ Bi(u, v). Tensor is sym-
metric monoidal with I = > as the unit. The closed structure is given by

(Xi, Yi, Ai) ( (Zi,Wi, Ci) = ((Xi ⇒ Zi)⊗ (Xi⊗Wi ⇒ Yi), Xi⊗Wi, Ai ( Ci),

where (Ai ( Ci)(〈f, F 〉, 〈x,w〉) is defined by Ai(x, F 〈x,w〉) ⊃ Ci(fx,w). It is
easy to see that tensor has projections. However, there are no diagonals.

Proposition 2.18. Let (Xn, Yn, An) and (Un, Vn, Bn) be decidable predicates
over the NNO N in Diam. Then

(Xn, Yn, An)⊗ (Un, Vn, Bn) a` (Xn, Yn, An) ∧ (Un, Vn, Bn)

(Xn, Yn, An) ( (Un, Vn, Bn) a` (Xn, Yn, An) → (Un, Vn, Bn)

both hold in the topos Diam (in the fibre over N).

Proof. The truth of the bi-implications in the topos reduce to the truth of the
following bi-implications in the dm tripos (in the fibre over N):

n ≈N n ` (Xn, Yn, An)⊗ (Un, Vn, Bn) ↔ (Xn, Yn, An) ∧ (Un, Vn, Bn) (4)

n ≈N n ` (Xn, Yn, An) ( (Un, Vn, Bn) ↔ (Xn, Yn, An) → (Un, Vn, Bn). (5)

Since (Xn, Yn, An) and (Un, Vn, Bn) are strict predicates over the natural num-
bers object, there exists a function F :

⋂

n(Xn ⇒ Yn), so F (0) ∈ Yn for all n,
this is needed to show the implication from left to right of (4) and (5), so it
suffices to show

n ≈N n ∧ (Xn, Yn, An) ∧ (Un, Vn, Bn) ` (Xn, Yn, An)⊗ (Un, Vn, Bn) (6)

n ≈N n ∧ (Xn, Yn, An) ( (Un, Vn, Bn) ` (Xn, Yn, An) → (Un, Vn, Bn). (7)

One easily sees that (6) implies (7), so it is enough to show that (6) holds.
Unpacking the definitions, (6) holds iff

(

{n+1, 0}⊗Xn⊗Un, {0}⊕Yn⊕Vn, {(n+1, 0)}∧An∧Bn

)

`
(

Xn⊗Un, Yn⊗Vn, An⊗Bn

)

.

That this holds is witnessed by

f ∈ {n+ 1, 0} ⊗Xn ⊗ Un ⇒ Xn ⊗ Un,

and
F ∈ {n+ 1, 0} ⊗Xn ⊗ Un ⊗ Yn ⊗ Vn ⇒ {0} ⊕ Yn ⊕ Vn,
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where

f〈n, x, u〉 = 〈x, u〉

F 〈n, x, u, y, v〉 =

{

(2, v) if π(g(n+ 1)) = 0,

(1, y) if π(g(n+ 1)) = 1,

where g is witnessing the decidability of An (see the discussion in the beginning
of this section).

Remark 2.19. Note that the above proposition shows that for decidable pred-
icates over N , our interpretation of conjunction and implication coincides with
the one directly inspired by Gödel’s Dialectica interpretation.

2.3 First Order Logic in Diam

For Diam there does not seem to be the same easy results about first order logic
that we have for the non-modified Dia. As already mentioned, there are two
closed structures in Diam: (⊗,() correspond to Gödel’s interpretation, and
(∧,→) gives a new variant. This new variant bas been described in [Bie07b] and
is called the Copenhagen interpretation. It is a variant of Dialectica that does
not have any requirements about decidable predicates. In this section we show
that first order logic of NDiam

corresponds to the Copenhagen interpretation in
the standard model HRO.

We are going to compare the interpretation of formulas φ of first order
logic over the natural numbers in Diam with the Copenhagen translated (see
[Bie07b]) formulas φC in the standard model HRO. The formulas φC have the
form ∃u∀xφC(n, u, x), where n : Nk and φC is an atomic formula of HA. The
interpretation of φC in HRO is denoted ∃u : tp1(φ)∀x : tp2(φ).RC(φ)(n)(u, x),
where RC(φ)(n)(u, x) ⊆ tp1(φ)× tp2(φ) is defined inductively as follows:

φ ≡ t = s:

tp1(φ) = tp2(φ) = {0}, RC(φ)(n)(0, 0) iff t(n) = s(n).

φ ≡ α ∧ β:

tp1(φ) = tp1(α)⊗ tp1(β), tp2(φ) = tp2(α) ⊕ tp2(β),

RC(φ)(n)((u, v), κ(x)) iff RC(α)(n)(u, x) and
RC(φ)(n)((u, v), κ′(y)) iff RC(β)(n)(v, y).

φ ≡ α→ β:

tp1(φ) = {m,h,H : Nk ⊗ (tp1(α) ⇒ tp2(β))⊗
(tp1(α)⊗ tp2(β) ⇒ tp2(α) + 1) |
∀a, b ∈ tp1(α)⊗ tp2(β).caseH(a, b) ∈ tp2(α).
RC(α)(m)(a,H(a, b)) ⊃ RC(β)(m)(ha, b)}

tp2(φ) = tp1(α)⊗ tp2(β)
RC(φ)(n)(m,h,H, a, b) ≡ n = m and

(

caseH(a, b) ∈ tp2(α). >,
caseH(a, b) ∈ 1. RC(β)(n)(ha, b)

)
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φ ≡ ∃z.α(z):
tp1(φ) = N ⊗ tp1(α), tp2(φ) = tp2(α),

RC(φ)(n)(k, a, b) ≡ RC(α)(n, k)(a, b).

φ ≡ ∀z.α(z):
tp1(φ) = N ⇒ tp1(α), tp2(φ) = tp2(α)⊗N,

RC(φ)(n)(h, a, k) = RC(α)(n, k)(h(k), a).

Lemma 2.20. Any map G : Nk
Diam

→ NDiam
in Diam has the form H∗(F )

for F : Nk
Eff

→ NEff in Eff , and G is represented by H∗([n = n] ∧ [s(n) = m])
where s : Nk → N is a function.

Proof. By Corollary 2.15, H∗ is fully faithful on NEff , and from [vO08] we know
that any map F : Nk

Eff
→ NEff in Eff is represented by [n = n] ∧ [s(n) = m])

where s : Nk → N is a function. Thus G is represented by H∗([n = n] ∧ [s(n) =
m]) where s : Nk → N is a function.

Recall that a formula φ(x1, . . . , xk) with xk : Nk is interpreted as a subobject
of Nk

Diam
, i.e., a strict predicate over (Nk,≈). We denote this interpretation by

‖φ‖(n̄) = (‖φ‖+(n̄), ‖φ‖−(n̄), ‖φ‖(n̄)).

Proposition 2.21. For every formula φ(x1, . . . , xk) of HA and for every k-tuple
n̄ = n1, . . . , nk, there are primitive recursive functions

tφ(n̄) : tp1(φ) → ‖φ‖+(n̄), Tφ(n̄) : tp1(φ)× ‖φ‖−(n̄) → tp2(φ)
sφ(n̄) : ‖φ‖+(n̄) → tp1(φ), Sφ(n̄) : ‖φ‖+(n̄)× tp2(φ) → ‖φ‖−(n̄)

such that the following holds:

1. for all a ∈ tp1(φ), x ∈ ‖φ‖−(n̄).

RC(φ)(n̄)(a, Tφ(n̄)(a, x))

implies
‖φ‖(n̄)(tφ(n̄)(a), x).

2. For all u ∈ ‖φ+(n̄)‖, b ∈ tp2(φ).

‖φ‖(n̄)(u, Sφ(n̄)(u, b))

implies
RC(φ)(n̄)(sφ(n̄)(u), b).

Proof. By induction on the structure of φ.

φ ≡ t = s:
Let s, t : (Nk,') → (N,') be terms. By Lemma 2.20 s is represented by the
functional relation

S(n,m) = H∗([n̄ = n̄] ∧ [s(n̄) = m])
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where s : Nk → N is a function, and similar for t. By definition,

‖s = t‖(n̄) = ∃m : N.H∗(S(n̄,m) ∧ T (n̄,m))

=

{

H∗(〈n̄, s(n̄), t(n̄)〉) if s(n̄) = t(n̄)
H∗(∅) = ⊥ otherwise.

We can define

tφ(n̄)(0) =

{

〈n̄, s(n̄), t(n̄)〉 if s(n̄) = t(n̄),
0 otherwise,

Tφ(n̄)(0, 0) = 0,

sφ(n̄)(u) = 0,

Sφ(n̄)(u, 0) = 0.

φ ≡ α ∧ β:
We define

tφ(n̄)(a, b) = 〈tα(n̄)(a), tβ(n̄)(b)〉

Tφ(n̄)(a, b, (i, z)) =

{

κ ◦ Tα(n̄)(a, z) if i = 0
κ′ ◦ Tβ(n̄)(b, z) if i = 1

sφ(n̄)(u, v) = 〈sα(n̄)(u), sβ(n̄)(v)〉

Sφ(n̄)(u, v, (i, c)) =

{

κ ◦ Sα(n̄)(u, c) if i = 0
κ′ ◦ Sβ(n̄)(v, c) if i = 1

We now show that these functions satisfy the requirements of the proposition.

1. Let a ∈ tp1(φ) and x ∈ ‖φ‖−(n̄), suppose RC(φ)(n̄)(a, b, Tφ(n̄)(a, b, (i, z))),
that is,

≡

{

RC(α)(n̄)(a, Tα(n̄)(a, z)) if i = 0
RC(β)(n̄)(b, Tβ(n̄)(b, z)) if i = 1

which by induction entails

{

‖α‖(n̄)(tα(n̄)(a), z) if i = 0
‖β‖(n̄)(tβ(n̄)(b), z) if i = 1

≡ ‖φ‖(n̄)(tφ(n̄)(a, b), (i, z))

2. This case is identical.

φ ≡ α→ β:
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tφ(n̄)(m,h,H) = 〈g,G〉 where
g = λu : ‖α‖+(n̄). tβ · h · sα(n̄)(u),
G = λu, y : ‖α‖+(n̄)⊗ ‖β‖−(n̄).
{

Sα(n̄)(u,H(sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y))) if H(sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y)) ∈ tp2(α)
∗ ∈ 1 if H(sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y)) ∈ 1 or n 6= m

Tφ(n̄)(m,h,H, u, y) = 〈sα(n̄)(u), Tβ(n̄)(h · sα(u), y)〉

sφ(n̄)(f, F ) = 〈n, k,K〉 where
k = λa : tp1(α).sβ · f · tα(n̄)(a),
K = λa, b : tp1(α)⊗ tp2(β).
{

Tα(n̄)(a, F (tα(n̄)(a), Sβ(n̄)(f · tα(n̄)(a), b))) if F (tα(n̄)(a), Sβ(n̄)(f · tα(n̄)(a), b)) ∈ ‖α‖−(n̄)
∗ ∈ 1 if F (tα(n̄)(a), Sβ(n̄)(f · tα(n̄)(a), b)) ∈ 1

Sφ(n̄)(f, F, a, b) = 〈tα(n̄)(a), Sβ(n̄)(f · tα(n̄)(a), b)〉

Next we type check tφ (the type checking for sφ is similar, so we leave that
out). Let (u, y) ∈ ‖α‖+(n̄) ⊗ ‖β‖−(n̄), and suppose G(u, y) ∈ ‖α‖−(n̄) by the
definition ofG, this implies that n = m andH(sα(n̄)(u), Tβ(n̄)(h·sα(n̄)(u), y)) ∈
tp2(α), we need to show that

‖α‖(n̄)(u,G(u, y)) → ‖β‖(n̄)(gu, y).

To that end suppose

‖α‖(n̄)(u, Sα(n̄)(u,H(sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y))))

by induction we get

RC(α)(n̄)(sα(n̄), H(sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y)))

and since H(sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y)) ∈ tp2(α) and by definition of
tp1(φ), we get

RC(β)(n̄)(h · sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y))

which by induction implies

‖β‖(n̄)(tβ · h · sα(n̄)(u), y) = ‖β‖(n̄)(gu, y)

and finally we show the two conditions of the Proposition

1. Let (m,h,H) ∈ tp1(φ), (u, y) ∈ ‖φ‖−(n̄).

RC(φ)(n̄)(m̄, h,H, Tφ(n̄(m̄, h,H, u, y))) ≡
RC(φ)(n̄)(h,H, sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y)) ≡
{

> if H(sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y)) ∈ tp2(α)
RC(β)(n̄)(h · sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y)) if H(sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y)) ∈ 1

We must show that
‖φ‖(n̄)(tφ(n̄)(h,H), u, y)

but this follows from the observation that G(u, y) ∈ 1 iff n̄ 6= m̄ or
H(sα(n̄)(u), Tβ(n̄)(h · sα(n̄)(u), y)) ∈ 1.
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2. The other direction is similar.

φ ≡ ∀y : N.α(n̄,y):

First recall that the interpretation ‖∀y : N.α(n̄, y)‖ in the topos is defined in
the tripos logic as follows:

‖∀y : N.α(n̄, y)‖ = [n̄ = n̄] ∧ ∀y : N.([y = y] → ‖α‖(n̄, y)).

We have

(∀y : N.([y = y] → ‖α‖(n̄, y)))+(n̄) =

⋂

y∈N
{(f, F ) : ({0, y + 1} → ‖α‖+(n̄, y))⊗ ({0, y + 1} ⊗ ‖α‖−(n̄, y) → 2) |

∀u, x ∈ {0, y + 1} ⊗ ‖α‖−(n̄, y). F (u, x) = 0 ⊃ u = y + 1 ⊃ ‖α‖(n̄, y)(fu, y)},

(∀y : N.([y = y] → ‖α‖(n̄, y)))−(n̄) =
⋃

y∈N
{0, y + 1} ⊗ ‖α‖−(n̄, y),

(∀y : N.([y = y] → ‖α‖(n̄, y)))(n̄)(f, F, u, x) ≡ caseF (u, x) = 1. ‖α‖(n̄, u− 1)(fu, x),
caseF (u, x) = 0.>.

We define functions as follows:

tφ(n̄)(h) = 〈n̄+ 1, g, G〉 where

g = λy : N, u : {0, y + 1}.

{

0 if u = 0
tα(n̄, u− 1)(hu) otherwise

G = λy : N, u : {0, y + 1}, x : ‖α‖−(n̄, y).

{

0 if u = 0
1 otherwise

Tφ(n̄)(h, u, x) =

{

〈0, 0〉 if u = 0
〈Tα(n̄, u− 1)(hu, x), u〉 if u 6= 0

sφ(n̄)(f, F ) = λk. sα(n̄, k)(f(k + 1))

Sφ(n̄)(f, F, b, k) = 〈k + 1, Sα(n̄, k)(f(k + 1), b)〉

We show that the two conditions are satisfied:

1. Suppose h ∈ tp1(φ), (u, x) ∈ ‖φ‖−(n̄). And suppose that

RC(φ)(n̄)(h, Tφ(n̄)(h, u, x))

holds, i.e., if u 6= 0 this is

RC(φ)(n̄)(h, Tα(n̄, u− 1)(hu, x), u))
≡ RC(α)(n̄, u− 1)(h(u), Tα(n̄, u− 1)(hu, x))
⇒ ‖α‖(n̄, u− 1)(tα(n̄, u− 1)(hu), x)
≡ ‖φ‖(n̄)(tφ(n̄)(h), u, x)

In case u = 0 we get

RC(φ)(n̄)(h, Tφ(n̄)(h, u, x))
≡ RC(φ)(n̄)(h, (0, 0))
≡ RC(α)(n̄, 0)(h(0), 0)
⇒ ‖φ‖(n̄)(tφ(n̄)(h), u, x)
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where the last implication holds because when u = 0 we have G(u, x) = 0,
hence ‖φ‖(n̄)(tφ(n̄)(h), u, x) ≡ ‖φ‖(n̄)(n̄+ 1, g, G, u, x) ≡ >.

2. If (f, F ) ∈ ‖φ‖+(n̄) and (b, k) ∈ tp2(φ), we have

‖φ‖(n̄)(f, F, Sφ(n̄)(f, F, b, k))
≡ ‖φ‖(n̄)(f, F, k + 1, Sα(n̄, k)(f(k + 1), b))
≡ ‖α‖(n̄, k)(f(k + 1), Sα(n̄, k)(f(k + 1), b))
⇒ RC(α)(n̄, k)(sα(n̄, k)(f(k + 1)), b)
≡ RC(φ)(n̄)(λk.sα(n̄, k)(f(k + 1)), b, k)
≡ RC(φ)(n̄)(sφ(n̄)(f, F ), b, k)

φ ≡ ∃y.α:
For this case we use µ and δ from Proposition 2.11.

tφ(n̄)(k, a) = tα(n̄, k)(a)
Tφ(n̄)(k, a,H) = Tα(n̄, k)(a,H(tα(n̄, k))(a))
sφ(n̄)(x) = (µ(x) − 1, sα(n̄, µ(x)− 1)(x))

Sφ(n̄)(x, b) =

{

λv : ‖α‖+(n̄, µ(v)− 1). Sα(n̄, µ(v) − 1)(v, b) if µ(v) = m+ 1
δ if µ(v) = 0

Now we can show

1. If (k, a) ∈ tp1(φ), H ∈ ‖φ‖−(n̄), we have

RC(φ)(n̄)(k, a, Tφ(n̄)(k, a,H))
≡ RC(α)(n̄, k)(a, Tα(n̄, k)(a,H(tα(n̄, k)(a))))
⇒ ‖α‖(n̄, k)(tα(n̄, k)(a), H(tα(n̄, k))(a))
≡ ‖φ‖(n̄)(tφ(n̄)(k, a))

2. If x ∈ ‖φ‖+(n̄), b ∈ tp2(α) then if µ(x) = y + 1 we have

‖φ‖(n̄)(x, Sφ(n̄)(x, b))
≡ ‖alpha‖(n̄, y)(x, Sα(n̄, y)(x, b))
⇒ RC(α)(n̄, y)(sα(n̄, y)(x), b)
≡ RC(φ)(n̄)(y, sα(n̄, y)(x), b)
≡ RC(φ)(n̄)(sφ(n̄)(x), b)

And if µ(x) = 0 we get

‖φ‖(n̄)(x, Sφ(n̄)(x, b))
≡ ‖α‖(n̄, y)(x, δ(x)) for some y ∈ N

but since by Proposition 2.11 we have

∀y : N.¬‖α‖(n̄, y)(x, δ(x))

we conclude that in case µ(x) = 0,

‖φ‖(n̄)(x, Sφ(n̄)(x, b)) ≡ ⊥

so the implication we needed to show holds trivially.
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Theorem 2.22. For all formulas φ of HA,

HRO |= ‖φC‖ iff Diam |= ‖φ‖.

Proof. HRO |= ‖φC‖means that there is a natural number a ∈ tp1(φ) such that
∀b : tp2.RC(φ)(n̄)(a, b). And Diam |= ‖φ‖ means that there is a u ∈ ‖φ‖+(n̄)
such that ∀x : ‖φ‖−(n̄). ‖φ‖(n̄)(u, x). Suppose ∀b : tp2.RC(φ)(n̄)(a, b) then
by Proposition 2.21 we have ∀x : ‖φ‖−(n̄). ‖φ‖(n̄)(tφ(n̄)(a), x). On the other
hand, suppose ∀x : ‖φ‖−(n̄). ‖φ‖(n̄)(u, x) then by Proposition 2.21 we have
∀b : tp2.RC(φ)(n̄)(sφ(n̄)(u), b).

2.4 Relation of Diam to Modified Realizability and to Set

Proposition 2.23. There is a fibred adjunction p from dm to m. The functor
p∗ is full and faithful. Moreover, it satisfies p∗(A ∧B) a` p∗(A)⊗ p∗(B).

Proof. Over 1 the fibred adjunction is defined by

p∗(Ua, Up) = (Up, {0}, Ua × {0}),

p∗(X,Y,A) = ({ x ∈ X | ∀y ∈ Y. A(x, y) }, X).

The functor p∗ is full and (necessarily) faithful. Verification of the equivalence
p∗(A ∧B) a` p∗(A)⊗ p∗(B) is straight forward.

Remarks 2.24.

(i) The functor p∗ does not preserve existential quantification, so it does not
have any right adjoints.

(ii) The functor p∗ : m → dm does not preserve conjunction so p is not a
geometric morphism of triposes hence, presumably, p∗ does not lift to a
functor between the induced toposes. The proof that p does not preserve
conjunction is precisely as the proof in 1.9.

Recall from [vO97] that there are two embeddings, denoted ∆ and ∇, of
Set into Mod, with ∆ the constant objects functor and ∇ the inclusion of ¬¬-
sheaves with left adjoint the global sections functor. Composing with G∗, we
also get two embeddings at the tripos level (both full and faithful since G∗ is
also so) ∆dm

= G∗ ◦∆ and ∇dm
= G∗ ◦∇ of Set into dm. When there is no risk

of confusion, we often leave out the subscripts of ∆dm
and ∇dm

. ∆dm
is indeed

the constant-objects functor associated with the modified Dialectica tripos.
Explicitly, the constant-objects functor ∆: Set → Diam is, as usual, given

by ∆X = (X, ∃δ(X)(>)) = (X,≈∆), where δ(X) is the diagonal 〈idX , idX〉 : X →
X ×X , and where

x ≈∆ x′ =

{

({0, 1}, {0}, {(1, 0)}) if x = x′,

({0}, {0}, ∅) if x 6= x′.

At the level of the underlying triposes, ∆ is a indexed functor from the subset-
tripos to dm, given over I by

∆(I ′ ⊆ I)(i) =

{

({0, 1}, {0}, {(1, 0)}) if i ∈ I ′

⊥ otherwise.
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Since ∆ does not preserve ∧, it does not have a left adjoint. Further, since ∆
does not preserve ∨, it does not have a right adjoint (if it had a right adjoint, it
would have been strange indeed, since then Diam would have been localic over
Set).

At the level of the underlying triposes, ∇ is a indexed functor from the
subset-tripos, Set(−, 2) to dm, given over I by

∇(I ′ ⊆ I)(i) =

{

(N, {0},N× {0}) if i ∈ I ′

(N, {0}, ∅) otherwise.

or, equivalently:

∇(I ′ ⊆ I)(i) =

{

({0, 1}, {0}, {(1, 0)}) if i ∈ I ′

({0, 1}, {0}, ∅) otherwise.

Notice that though ∆ and ∇ are pointwise equivalent, they are not so uniformly.
∇ has an indexed right adjoint, F : dm → Set(−, 2) given by

F (Xi, Yi, Ai)(i) =

{

1 if ∃x ∈
⋂

i∈I Xi.∀y ∈ Yi.Ai(x, y)

0 otherwise.

The adjunction is not a geometric morphism of triposes since ∇ does not pre-
serve ∧.

So far, we have the following diagram of fibred adjunctions, where, however,
only some give rise to geometric morphisms:

dm

H∗p∗

F

Set
∇

m
v∗

p∗

Γ

e
v∗

H∗

Γ

j∗

Set

∆

∼=
Set

∆

d
j∗

where H, v, are connected geometric morphisms, so they lift to surjective geo-
metric morphisms on the induced toposes, and j is an open geometric inclusion,
so it lifts to an open geometric inclusion. The left adjoints of the adjunctions
! a id , ∇ a F and p∗ a p∗ are all full and faithful. At topos level we have the
following geometric morphisms

Diam

H

Mod v Eff

j

Mod¬¬
∼=

Eff¬¬ Dia
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3 The Diller-Nahm Tripos

According to Gödel’s original Dialectica Interpretation from 1958 a proposition
is a pair of types X and Y together with a decidable relation A ⊆ X×Y between
them. For our purposes we assume that types are subsets of N and (constructive)
functionals between them are total recursive functions between sets of natural
numbers. Entailment between propositions (X,Y,A) and (U, V,B) is given by
a pair of (constructive) functionals f : X → U and F : X × V → Y such that

∀x ∈ X.∀v ∈ V. A(x, F (x, v)) ⇒ B(f(x), v) .

However, if relations are not required to be decidable1 one usually considers the
Diller-Nahm variant of the Dialectica interpretation where entailment is defined
in a somewhat different way: (X,Y,A) ` (U, V,B) if there are (constructive)
functionals f : X → U and g : X × V → Pf(Y ) such that

∀x ∈ X.∀v ∈ V. [∀y ∈ g(x, v).A(x, y)] ⇒ B(f(x), v) .

Here m ∈ n stands for m ∈ en (where e is some standard Gödel numbering of
finite sets of natural numbers) and Pf(Y ) is a shorthand for {n ∈ N | en ⊆ Y }.

Motivated by these considerations we are now going to define the Diller-
Nahm Dialectica tripos dn over Set. Let

Σdn = {(X,Y,A) ∈ P(N)2 × P(N× N) | A ⊆ X × Y }

be the “set of truth values of dn”. If p = (X,Y,A) ∈ Σdn we write p+, p−,
p(x, y) for X , Y , A(x, y), respectively. For I ∈ Set the fibre dn

I is defined as
the preorder (Σdn

I ,`I), where Σdn
I is the set of all functions from I to Σdn and

ϕ `I ψ if there exist

e+ ∈
⋂

i∈I

[ϕ+
i ⇒ ψ+

i ] and e− ∈
⋂

i∈I

[ϕ+
i ⊗ψ

−
i ⇒ Pf(ϕ

−
i )]

such that

∀i ∈ I. ∀a ∈ ϕ+
i , b ∈ ψ

−
i . [∀c ∈ e

−〈a, b〉. ϕi(a, c)] ⊃ ψi(e
+a, b) .

Terminal Object
The terminal object is given by > = ({0}, ∅, ∅). Notice that > ∼=
({0}, {0}, {〈0, 0〉}).

Products
The conjunction p ∧ q is given by

(1) (p ∧ q)+ = p+ ⊗ q+

(2) (p ∧ q)− = p− ⊕ q−

(3) (p ∧ q)(〈n,m〉, 〈i, k〉) iff (i = 0 ∧ p(n, k)) ∨ (i = 1 ∧ q(m, k)) .

1Which is impossible as for quantification we have to take into account arbitrary unions
and intersections of relations.
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Exponentials
The implication p→ q is given by

(1) (p→ q)+ = (p+ ⇒ q+)⊗ (p+ ⊗ q− ⇒ Pf(p
−))

(2) (p→ q)− = p+ ⊗ q−

(3) (p→ q)(〈e+, e−〉, 〈a, b〉) iff
[

∀c ∈ e−〈a, b〉. p(a, c)] ⊃ q(e+a, b) .

Next we consider quantification in dn. In the following we write
[i = j] for {0 | i = j}.

Universal Quantification
For u : I → J and ϕ ∈ dn

I we construct ∀u(ϕ) ∈ dn
J as follows

(1) ∀u(ϕ)+j =
⋂

i∈I [u(i) = j] ⇒ ϕ+
i

(2) ∀u(ϕ)−j =
⋃

i∈u−1(j) ϕ
−
i

(3) ∀u(ϕ)j(a, b) iff ∀i ∈ u−1(j).
(

b ∈ ϕ−i ⊃ ϕi(a · 0, b)
)

.

Notice that in case u : I → J is epic one may simplify the construc-
tion of ∀u(ϕ) by putting ∀u(ϕ)+j =

⋂

i∈u−1(j) ϕ
+
i and

∀u(ϕ)j(a, b) iff ∀i ∈ u−1(j).
(

b ∈ ϕ−i ⊃ ϕi(a, b)
)

.

Existential Quantification
For u : I → J and ϕ ∈ dn

I existential quantification is given by

(1) ∃u(ϕ)+j =
⋃

i∈u−1(j) ϕ
+
i

(2) ∃u(ϕ)−j =
⋂

i∈u−1(j)[ϕ
+
i ⇒Pf(ϕ

−
i )]

(3) ∃u(ϕ)j(a, b) ⇔ ∃i ∈ u−1(j).
(

a ∈ ϕ+
i ∧ ∀c ∈ ba. ϕi(a, c)

)

.

Notice that in case u : I → J is epic one may simplify the construc-
tion of ∃u(ϕ) by putting ∃u(ϕ)−j =

⋂

i∈u−1(j) Pf(ϕ
−
i ) and

∃u(ϕ)j(a, b) iff ∃i ∈ u−1(j).
(

a ∈ ϕ+
i ∧ ∀c ∈ b. ϕi(a, c)

)

.

Generic Predicate
The generic predicate is given by the identity function on Σdn con-
sidered as an element of dn(Σdn).

Disjunction
For A0, A1 ∈ Σd their disjunction A0 ∨A1 is given by (A0 ∨A1)

+ =
A+

0 ⊕A+
1 , (A0 ∨A1)

− = A−0 ⊕A−1 and (A0 ∨A1)(i, 〈k, n〉, 〈j,m〉) ≡
k = j ⊃ Ak(i, n,m).

Falsity
Falsity is given by ⊥ = (∅, ∅, ∅). Notice that ⊥ ∼= (∅, {0}, ∅).
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Negation
For a proposition p its negation ¬p is given by

¬p =

{

(N, ∅, ∅) if p+ = ∅
(∅, ∅, ∅) otherwise.

Accordingly, double negation is given by

¬¬p =

{

(∅, ∅, ∅) if p+ = ∅
(N, ∅, ∅) otherwise.

As (N, ∅, ∅) ∼= > we have that ¬p is > if p+ = ∅ and ⊥ otherwise.

Lawvere Equality
For a set I the equality predicate eqI ∈ dn

I×I is given by

eqI(i, j)
+ = {0 | i = j} and eqI(i, j)

− = ∅

for i, j ∈ I. One easily shows that eqI a` ∃δ(I)(>I), i.e. that eqI

coincides with Lawvere’s notion of equality.

As dn is a tripos one may consider the associated Diller-Nahm topos DN =
Set[dn] obtained by the tripos-to-topos construction. Due to the particular na-
ture of (double) negation the ¬¬–sheaves of dn are equivalent to Set. However,
the sheafification functor for the ¬¬-topology is not given by the global sec-
tions functor. The reason is that dn is not ∃-standard as can be seen from the
following counterexample:

Proposition 3.1. dn is not ∃-standard.

Proof. Consider p ∈ dn
N as given by p+

n = ({0}, {0, n+ 1}, {〈0, 0〉}) all whose
items pn are not valid whereas ∃N(p) = ({0}, {0}⇒Pf({0}), {0}×({0}⇒Pf({0})))
is valid.

3.1 Relation of DN to Eff2

Just as for d we have a connected geometric morphism from dn to e2 which,
moreover, is given by the same recipe as p : d → e2.

Proposition 3.2. There is a connected geometric morphism q : dn → e2 given
by

q∗(Aa, Ap) =
(

Ap, {0}, Aa × {0}
)

q∗(X,Y,R) =
(

{x ∈ X | ∀y ∈ Y.R(x, y)} , X
)

.

As already mentioned, the subtoposes Eff and Mod of Eff2 are induced by
the local operators oU (P ) = U → P and cU (P ) = U ∨ P where U = (∅, {0}).
Since pullbacks along geometric morphisms preserve open and closed subtoposes
(Lemma C.1.2.10 of [Joh02]) the pullback of e : e ↪→ e2 along q is given by the
local operator oq∗(U) and the pullback of m : m ↪→ e2 along q is given by the
local operator cq∗(U), where, obviously, q∗(U) = ({0}, {0}, ∅).

The local operators oq∗(U) and cq∗(U), give rise to the open subtripos dne

and the closed subtripos dnm of dn, respectively. We denote the corresponding
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open and closed subtoposes of DN by DNe and DNm, respectively. For more
details see [Bie08, Chapter 1]. We the pullback diagrams:

DNe Eff DNm Mod

DN q Eff2 DN q Eff2

Notice that q∗(U) `I A iff
⋂

i∈I A
+
i 6= ∅. Thus, up to isomorphism we may

define dnm as canonically presented via Σdnm
= {(U,X,R) ∈ Σdn | 0 ∈ U}. The

logical operations for dnm are defined as for dn, only for ⊥, ∨ and ∃ we have to
correct the constructions by finally applying the local operator cq∗(U).

3.2 Relation of DN to Number Realizability

Next we will show that dn contains as subtripos the number realizability tripos
e from which the effective topos Eff = Set[e] arises via the tripos-to-topos
construction. Recall that Σe = P(N) and ϕ `I ψ iff

⋂

i∈I [ϕi⇒ψi] is inhabited.

Proposition 3.3. There is an injective geometric morphism i : e → dn and,
accordingly, Eff is a subtopos of DN. This geometric inclusion arises from the
open topology u → (−) on DN where u = ({0}, {0}, ∅). Moreover, one obtains
Set as the subtopos of ¬¬-sheaves of DN.

Proof. We define i : e → dn as the fibred adjunction

i∗(X,Y,R) = X and i∗(X) = (X, ∅, ∅)

and one easily checks that i∗ preserves > and also conjunction in each fibre.
One easily checks that i∗i

∗(X,Y,R) = (X, ∅, ∅) ∼= u→ (X,Y,R) from which
it follows that the geometric inclusion i is induced by the topology u→ (−) on
DN.

It is well known that Set ' Eff¬¬. Thus, since ¬¬(u → (X,Y,R)) =
¬¬(X,Y,R) it follows that Set ' DN¬¬.

In general direct image parts of geometric morphisms do not preserve natural
numbers objects. But in the particular case i : Eff → DN one readily checks
that i∗(N) = (N, EN ) with EN (n,m) = ({k ∈ N | n = k = m}, ∅, ∅) happens to
be a natural numbers object in DN.

Proposition 3.4. The inverse image i∗ preserves first-order logic and the finite
type structure of the natural number object in DN.

Proof. As the proof of proposition 1.13.

3.3 First Order Logic in DN

Section 1.3 applies here as well.
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4 Modified Diller-Nahm Tripos

We now investigate the subtopos of DN which is the complement of Eff , i.e.
the subtopos of DN induced by the topology u ∨ (−).

Notice that p∗(U) `I A iff
⋂

i∈I A
+
i 6= ∅. Thus, up to isomorphism we may

define the tripos dnm as canonically presented via Σdnm
= {(U,X,R) ∈ Σdn |

0 ∈ U}. The subtopos DNm of DN arises via the tripos-to-topos construction
from the tripos dnm. The logical operations for dnm are defined as for dn, only
for ⊥, ∨ and ∃ we have to correct the constructions by finally applying the local
operator cp∗(U).

The set of truth values of the Modified Diller-Nahm tripos dnm over Set is
thus

Σdnm
= {(X,Y,A) ∈ P0(N)× P(N)× P(N× N) | A ⊆ X × Y }

where P0(N) is the set of all subsets of N containing 0 as an element.
For I ∈ Set the fibre dnm

I is defined as the preorder (ΣI
dnm

,`I), where

ΣI
DmT the set of all functions from I to Σdnm

and ϕ `I ψ iff there exist e+ ∈
⋂

i∈I [ϕ
+
i ⇒ ψ+

i ] and e− ∈
⋂

i∈I [ϕ
+
i × ψ−i ⇒ Pf(ϕ

−
i )] such that

∀i ∈ I. ∀a ∈ ϕ+
i , b ∈ ψ

−
i . [∀c ∈ e

−〈a, b〉. ϕi(a, c)] ⊃ ψi(e
+a, b) .

In many cases the verification of the tripos requirement is the same as for dn to-
gether with the observation that 0 shows up in the positive part of propositions.
Sometimes, however, the 0 has to be added after “shifting by 1”.

Existential Quantification
For u : I → J and ϕ ∈ dnm

I existential quantification is given by

(1) ∃u(ϕ)+j = {0} ∪ succ
(
⋃

i∈u−1(j) ϕ
+
i

)

(2) ∃u(ϕ)−j =
⋂

i∈u−1(j)

[

ϕ+
i ⇒Pf(ϕ

−
i )

]

(3) ∃u(ϕ)j(a+ 1, b) iff ∃i ∈ u−1(j).
(

a ∈ ϕ+
i ∧ ∀c ∈ ba. ϕi(a, c)

)

and ∃u(ϕ)j(0, b) never holds.

Notice that ∃u(ϕ)+j contains 0 by construction and ∃u(ϕ)−j contains

0 as all Pf(ϕ
−
i ) and thus all [ϕ+

i ⇒ Pf(ϕ
−
i )] contain 0.

Notice that in case u : I → J is epic the construction of ∃u(ϕ) can
be simplified by putting ∃u(ϕ)+j =

⋃

i∈u−1(j) ϕ
+
i and

∃u(ϕ)j(a, b) iff ∃i ∈ u−1(j).
(

a ∈ ϕ+
i ∧ ∀c ∈ b. ϕi(a, c)

)

.

Generic Predicate
The generic predicate is given by the identity function on Σ consid-
ered as an element of dnm

Σ.

The structure exhibited so far guarantees dnm to be tripos.
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Disjunction
For A0, A1 ∈ Σd their disjunction A0 ∨A1 is given by (A0 ∨A1)

+ =
A+

0 ⊕A+
1 , (A0 ∨A1)

− = A−0 ⊕A−1 and (A0 ∨A1)(i, 〈k, n〉, 〈j,m〉) ≡
k = j ⊃ Ak(i, n,m).

Falsity
Falsity is given by ⊥ = ({0}, {0}, ∅).

Negation
For a proposition p its negation ¬p is given by

(¬p)+ = p+ ⇒ Pf(p
−) (¬p)− = p+ (¬p)(a, b) iff ∃c ∈ ab.¬p(b, c)

Accordingly, double negation of p is given by

(¬¬p)+ = [p+ ⇒ Pf(p
−)] ⇒ Pf(p

+) (¬¬p)− = p+ ⇒ Pf(p
−)

(¬¬p)(a, b) ⇔ ∃c ∈ ab. ∀d ∈ bc. p(c, d)

because (¬¬p)(a, b) ⇔ ∃c ∈ ab.¬(¬p)(b, c) ⇔ ∃c ∈ ab.¬
(

∃d ∈

bc.¬p(c, d)
)

.

Lawvere Equality
For a set I the equality predicate eqI ∈ dnm

I×I is given by

eqI(i, j)
+ = {0} ∪ {1 | i = j} eqI(i, j)

− = {0}

eqI(i, j)(a, 0) iff (a = 1 ∧ i = j)

for all i, j ∈ I as one easily shows that eqI a` ∃δ(I)(>). Notice that,
alternatively, one may define eqI as eqI(i, j)

+ = {0} = eqI(i, j)
−

and eqI(i, j) ≡ i = j.

Definition 4.1. The modified Dialectica Topos DNm is defined as Set[dnm],
the topos obtained from dnm by the tripos-to-topos construction.

Lemma 4.2. The tripos dnm is not 2-valued, i.e. there are propositions which
are neither true nor false. Consequently, the topos DNm is not 2–valued either.

Proof. A proposition p is true iff ∃a ∈ p+.∀b ∈ p−. p(a, b) and p is false iff
∃e ∈ p+→Pf(p

−).∀a ∈ p+.∃b ∈ e · a.¬p(a, b).
Let f be a function growing faster than any total recursive function2. Ob-

viously, the proposition p = (N,N, {〈n,m〉 | f(n) 6= m}) is neither true nor
false. The latter follows since for sufficiently big a ∈ N all elements of e · a are
< f(a).

For DNm this is not the case as its ¬¬-sheaves are not equivalent to Set.
Actually, it is not clear how to provide a sufficiently simple characterization of
the ¬¬–sheaves of DNm avoiding the intricacies of double negation.

2Let (fn | n ∈ N) be some enumeration of all total recursive functions and define f(n) =
1 + maxi≤n fi(n).
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4.1 Relation of DNm to Number Realizability

We will define a connected geometric morphism from dnm to m. Let the maps
q∗ : Σm → Σdnm

and q∗ : Σdnm
→ Σm be defined as

q∗(Aa, Ap) =
(

Ap, {0}, Aa × {0}
)

q∗(X,Y,R) =
(

{x ∈ X | ∀y ∈ Y.R(x, y)} , X
)

.

composing q with the connected geometric morphism v : m → e yields a con-
nected geometric morphism from dnm to e.

Natural Number Object Since inverse image parts of geometric morphisms
preserve natural number objects the nno of DNm is given byNDNm

= q∗v∗(NEff ) =
(N,≈N ) where [n ≈N m] = ({0} ∪ {n+ 1 | n = m}, {0}, {(n+ 1, 0) | n = m}).

Proposition 4.3. Maps F : q∗v∗(X,∼) → q∗v∗(N,∼) in DNm are in bijective
correspondence with maps from (X,∼) to (N,∼) in Eff .

The proof is similar to that of Corollary 2.15.

4.2 First Order Logic in DNm

We are going to compare the interpretation of formulas φ of first order logic over
the natural numbers in DNm with the Diller-Nahm translated (see [DN74])
formula φDN in the standard model HRO. The formula φDN has the form
∃u∀xφDN (n, u, x), where n : Nk and φDN is an quantifier-free formula of HA.
The interpretation of φDN in HRO is denoted ∃u : tp1(φ)∀x : tp2(φ).RDN (φ)(n)(u, x),
where RDN (φ)(n)(u, x) ⊆ tp1(φ)× tp2(φ), and is defined inductively as follows:

φ ≡ t = s: tp1(φ) = tp2(φ) = {0}, RDN (φ)(n)(0, 0) iff t(n) = s(n).

φ ≡ α ∧ β: tp1(φ) = tp1(α)⊗tp1(β), tp2(φ) = tp2(α)⊕tp2(β), RDN (φ)(n)((u, v), κ(x))
iff RDN (α)(n)(u, x) and RDN (φ)(n)((u, v), κ′(y)) iff RDN (β)(n)(v, y).

φ ≡ α→ β:

tp1(φ) = tp1(α) ⇒ tp2(β)
tp2(φ) = tp1(α)⊗ tp2(β)
RDN (φ)(n)(f, F, a, b) ≡ (∀x ∈ F (a, b).RDN (α)(n)(a, x)) ⊃ RDN (β)(n)(fa, b)

φ ≡ ∃z.α(z): tp1(φ) = N ⊗ tp1(α), tp2(φ) = tp2(α), RDN (φ)(n)(k, a, b) ≡
RDN (α)(n, k)(a, b)

φ ≡ ∀z.α(z): tp1(φ) = N ⇒ tp1(α), tp2(φ) = tp2(α)⊗N , RDN (φ)(n)(h, b, k) ≡
RDN (α)(n, k)(h(k), b).

Lemma 4.4. Any map G : Nk
DNm

→ NDNm
in DNm has the form q∗v∗(F ) for

F : Nk
Eff

→ NEff in Eff . And G is represented by q∗v∗([n = n] ∧ [s(n) = m])
where s : Nk → N is a function.

Proof. By Proposition 4.3 we have that q∗v∗ is fully faithful. Maps F : Nk
Eff

→
NEff in Eff are represented by [n = n] ∧ [s(n) = m] where s : Nk → N is a
function. Thus G is represented by q∗v∗([n = n]∧ [s(n) = m]) where s : Nk → N

is a function.
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Recall that a formula φ(x1, . . . , xk) with xk : Nk is interpreted as a subobject
of Nk

DNm
, i.e., a strict predicate over (Nk,≈). We denote this interpretation by

‖φ‖(n̄) = (‖φ‖+(n̄), ‖φ‖−(n̄), ‖φ‖(n̄)).

Proposition 4.5. For every formula φ(x1, . . . , xk) of HA and for every k-tuple
n̄ = n1, . . . , nk, there are primitive recursive functions

tφ(n̄) : tp1(φ) → ‖φ‖+, Tφ(n̄) : tp1(φ)× ‖φ‖− → Pf (tp2(φ))
sφ(n̄) : ‖φ‖+ → tp1(φ), Sφ(n̄) : ‖φ‖+(n̄)× tp2(φ) → Pf (‖φ‖−(n̄))

such that the following holds:

1. for all a ∈ tp1(φ), x ∈ ‖φ‖−(n̄).

∀c ∈ Tφ(n̄)(a, x). RDN (φ)(n̄)(a, c)

implies
‖φ‖(n̄)(tφ(n̄)(a), x).

2. For all u ∈ ‖φ+(n̄)‖, b ∈ tp2(φ).

∀z ∈ Sφ(n̄)(u, b). ‖φ‖(n̄)(u, z)

implies
RDN (φ)(n̄)(sφ(n̄)(u), b).

Proof. Proof is by induction on the structure of φ.

Corollary 4.6. For all formulas φ of HA,

HRO |= ‖φDN‖ iff DNm |= ‖φ‖.

Proof. HRO |= ‖φDN‖ means that there is a natural number a ∈ tp1(φ) such
that ∀b : tp2.RDN (φ)(n̄)(a, b). And DNm |= ‖φ‖ means that there is a u ∈
‖φ‖+(n̄) such that ∀x : ‖φ‖−(n̄). ‖φ‖(n̄)(u, x). Suppose ∀b : tp2.RDN (φ)(n̄)(a, b)
then by Proposition 4.5 we have ∀x : ‖φ‖−(n̄). ‖φ‖(n̄)(tφ(n̄)(a), x). On the
other hand, suppose ∀x : ‖φ‖−(n̄). ‖φ‖(n̄)(u, x) then by Proposition 4.5 we have
∀b : tp2.RDN (φ)(n̄)(sφ(n̄)(u), b).

4.3 Relation of DNm to Modified Realizability

Recall that we have already defined a geometric morphism q from dnm to m:

q∗(Aa, Ap) =
(

Ap, {0}, Aa × {0}
)

q∗(X,Y,R) =
(

{x ∈ X | ∀y ∈ Y.R(x, y)} , X
)

.

We also write q∗ : m → dnm and q∗ : dnm → m for the morphisms of triposes
induced by component-wise application.

Proposition 4.7. The tripos morphisms defined above give rise to a connected
geometric morphism q : dnm → m as given by the adjunction q∗ a q∗ where q∗

preserves finite limits and is full and faithful.
q∗ does not have a right adjoint as q∗ does not preserve existential quantifi-

cation.
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Proof. It is a straight forward exercise to show that q is a geometric morphism
and that q∗ is full (it is faithful anyway!).

That q∗ does not preserve existential quantification can be seen from the
following counterexample. Let p ∈ dnm

N be defined as

p+
n = {0} p+

n = {0, n+ 1} pn = {〈0, 0〉}

for n ∈ N. We write ∃N for existential quantification along the terminal projec-
tion N ⇒ 1. We have ∃Np = ({0, 1}, {0, 1}→{0}, {1}⊗({0, 1}⇒{0})) and, ac-
cordingly, q∗∃Np = ({1}, {0, 1}). On the other hand (q∗p)n = q∗(pn) = (∅, {0})
for all n ∈ N and accordingly ∃N q∗p = (∅, {0, 1}). Thus, q∗∃Np and ∃Nq∗p are
not equivalent as the former is true and the latter is false.

5 Relation Between the Triposes d/dn and dm/dnm

Recall that dm is the closed subtripos of d that we get from cp∗(U)(A) = p∗(U)∨
A, where p∗(U) = ({0}, {0}, ∅), which corresponds to the closed subtripos Mod
of Eff2.

Diam Mod

Dia Eff2

and that dnm is the closed subtripos of dn from the pullback

DNm Mod

DN q Eff2

We now show that there is a fibred adjunction between d and dn and between
dm and dnm.

For the fibred adjunction between the modified Diller Nahm tripos and the
modified Dialectica tripos we first note that the underlying generic sets Σdnm

and Σdm
are the same. Over 1, the fibred adjunction is given by the pair of

maps

id : Σdm
→ Σdnm

(X,Y,A) 7→ (X,Y,A) ,

! : Σdnm
→ Σdm

(X,Y,A) 7→!(X,Y,A) = (X,PfY, !A)

where !A(x, s) if ∀y ∈ s. A(x, y) (here we assume a standard encoding of finite
sets of natural numbers by natural numbers and just write ∈ for the encoded
membership operation).

Lemma 5.1. The above two maps induce a fibred adjunction between the mod-
ified Diller-Nahm tripos dnm and the modified Dialectica tripos dm, with ! a id.
Moreover, !(p ∧ q) a`!p⊗!q for all p, q ∈ Σ

Proof. Straightforward verification.
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To sum up, we have the following diagram of fibred adjunctions, where,
however, only some give rise to geometric morphisms:

dnm

!

q∗

dm
id

H∗p∗

F

Set
∇

m

q∗

v∗

p∗

Γ

e
v∗

H∗

Γ

i∗

j∗

dn
i∗

Set

∆

∼=
Set

∆

d
j∗

where H, v, and q all are connected geometric morphisms, so they lift to sur-
jective geometric morphisms on the induced toposes, and i and j are open
geometric inclusions, so they lift to open geometric inclusions. The left adjoints
of the adjunctions ! a id , ∇ a F and p∗ a p∗ are all full and faithful. At topos
level we have the following geometric morphisms

DNm

q

Diam

H

Mod v Eff
i

j

DN

Mod¬¬
∼=

Eff¬¬ Dia

with i, j open inclusions.

6 A Fibration for the Standard Interpretation
of Dialectica

We have presented four triposes/toposes, and we have seen that first order logic
of DNm corresponds exactly to the Diller-Nahm interpretation, but the logic
of Diam is that of the Copenhagen interpretation, and not that of Dialectica.
The reason is that when we drop the requirement of decidability, a different
conjunction and implication are forced upon us. And if we want to have a tripos
(which we would like because it is higher order) we have to drop decidability,
it seems. So we argue that: If we want a tripos we have to drop decidability.
If we drop decidability it has already been made clear that conjunction and
implication are different from those of Gödel. In this section we briefly describe
what kind of fibration would correspond exactly to the Dialectica interpretation.

We have previously defined the standard interpretationsRC(φ) for the Copen-
hagen interpretation andRDN (φ) for the Diller-Nahm interpretation and showed
how they correspond to first order Heyting arithmetic in the toposes Diam and
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DNm. The question is: is there a similar topos for the standard interpretation
RD (which we define in Section 6.2) of the Dialectica interpretation? We haven’t
got an answer for this question, but in the following we argue that RD does not
correspond to a subtopos or fragment of Diam as one might have thought. We
then go on and describe a fibration that provides a first order structure for RD

(but not higher order, as a tripos is, and not even higher typed).
It is a condition of the Dialectica interpretation that atomic formulas must

be recursively decidable, one might therefore try to find a subtripos of dm that
satisfies this. The obvious thing to try is

Σdm,rec
= {(U,X,R) ∈ Σd | 0 ∈ U, R recursive}

however, it is not hard to see that that the quantifiers do not preserve the
property that the predicates are decidable. Hence, we do not get a subtripos
in this way. One could define a tripos by FinSet(−,Σdm,rec

) but this does not
have a natural numbers object. Since we are interested in the logic of nno, we
will now take a closer look at this part of the topos.

6.1 Logic of the Natural Numbers Object in Diam

Lemma 6.1. For a strict predicate An = (A+, A−, A), if A is recursive then
∧ ≡ ⊗ hence →≡(.

Proof. We need to show that ⊗ has both projections and diagonal, then ⊗ ≡ ∧
and since adjoints are unique up to iso, we then get →≡(. Diagonal: Let
f : A+

n ⇒ A+
n ⊗A+

n . be f(u) = (u, u) and define F : A+
n ⊗A−n ⊗A−n ⇒ A−n by

F (u, x, x′) =







δ(u) if µ(u) = 0
x if µ(u) = n+ 1 and ¬An(u, x)
x′ if µ(u) = n+ 1 and An(u, x)

where δ and µ are the functions defined in Proposition 2.11.
Projections: We show that A ⊗ B ` A. Define f : A+

n ⊗ B+
n ⇒ A+

n by
f(u, v) = u, and define F : A+

n ⊗B
+
n ⊗A

−
n ⇒ A−n ⊗B

−
n by F (u, v, x) = (x, δ(0)).

Notice that we use the fact that A is strict to get a dummy element in A−n .

Proposition 6.2. Recursiveness for strict predicates over N is preserved by
∧,→,∨ and ∀.

Proof. Clearly recursiveness is preserved by the propositional connectives, we
just need to show ∀. Suppose A,B are recursive, then A → B ≡ A ( B.
Suppose A is a strict predicate over Nk+1 then

‖∀y : N.A(n̄, y)‖ = [n̄ = n̄] ∧ ∀y ∈ N.[y = y] ( A(n̄, y) =
[n̄ = n̄] ∧ ∀y : N.

(

{(f, F ) : {0, y + 1} ⇒ A+(n̄, y)⊗ {0, y + 1} ×A−(n̄, y) ⇒ {0}},
{0, y + 1} ×A−(n̄, y),
u = y + 1 ⊃ A(n̄, y)(fu, x)

)

so the predicate part is

γ(n̄, y)(f, F, u, x) ≡ ∀y ∈ N.(u = y + 1 ⊃ A(n̄, y)(fu, x))

which is clearly recursive.
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Remark 6.3. Recursiveness for strict predicates over N does not seem to be
preserved by ∃.

Remark 6.4. If A and B are decidable predicates over N in Diam, then A ∧
B,A→ B,A∨B are also decidable (by a purely logical argument). However, it
does not seem to be the case that decidability is preserved by ∀, ∃ in the topos.

6.2 A First order Fibration

We are going to compare the interpretation of formulas φ of first order logic
over the natural numbers in a fibration Dialrec with the Dialectica translated
formulas φD in the standard model HRO. The formulas φD has the form
∃u∀xφD(n, u, x), where n : Nk and φD is quantifier-free formula of HA. The
interpretation of φD in HRO is denoted ∃u : tp1(φ)∀x : tp2(φ).RD(φ)(n)(u, x),
where RD(φ)(n)(u, x) ⊆ tp1(φ) × tp2(φ) is a recursive subset. We define φD

inductively as follows:

φ ≡ t = s: tp1(φ) = tp2(φ) = {0}, RD(φ)(n)(0, 0) iff t(n) = s(n).

φ ≡ α ∧ β:

tp1(φ) = tp1(α)⊗ tp1(β), tp2(φ) = tp2(α) ⊕ tp2(β),
RC(φ)(n)((u, v), κ(x)) iff RC(α)(n)(u, x) and
RC(φ)(n)((u, v), κ′(y)) iff RC(β)(n)(v, y).

Notice that conjunction may also be constructed in a different way corre-
sponding exactly to Gödel’s Dialectica interpretation:
tp1(φ) = tp1(α)⊗ tp1(β), tp2(φ) = tp2(α)⊗ tp2(β),
RD(φ)(n)((u, v), (x, y)) iff
RD(α)(n)(u, x) and RD(β)(n)(v, y).

φ ≡ α→ β:

tp1(φ) = {h,H : (tp1(α) ⇒ tp1(β)) ⊗ (tp1(α) ⊗ tp2(β) ⇒ tp2(α)}
tp2(φ) = tp1(α) ⊗ tp2(β)
RD(φ)(n)(h,H, a, b) ≡ RD(α)(n)(a,H(a, b)) ⊃ RD(β)(n)(fa, b)

φ ≡ ∃z.α(z):
tp1(φ) = N ⊗ tp1(α), tp2(φ) = tp2(α),
RD(φ)(n)(k, a, b) ≡ RD(α)(n, k)(a, b).

φ ≡ ∀z.α(z):

tp1(φ) = N ⇒ tp1(α), tp2(φ) = tp2(α)⊗N,
RD(φ)(n)(h, a, k) ≡ RD(α)(n, k)(h(k), a).

The following is already described in [Hyl02]. We now define the fibration
Dialrec over P(N)0. In the fibre over I, we have objects: triples (U,X, α) with
0 ∈ U,X ⊆ N and α ⊆ I × U ×X , where α is recursive. Maps from (U,X, α)
to (V, Y, β) are diagrams in the simple slice category of P(N)0 over I: f, F ∈ N

such that
f : I ⊗ U ⇒ V, F : I ⊗ U ⊗ Y ⇒ X
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and such that for all i : I, u : U, y : Y ,

α(i, u, F (i, u, y)) ⊃ β(i, f(i, u), y)

In case there exist such f, F ∈ N we say that (U,X, α) ` (V, Y, β), and we have
a preordered fibration.

Truth and Falsity
The terminal object and the initial object are given by

> =
(

{0}, {0}, I ⊗ {(0, 0)}
)

and ⊥ =
(

{0}, {0}, ∅
)

respectively.

Conjunction
For A0, A1 ∈ Dialrec(I) their conjunction A0∧A1 is given by (A0∧A1)

+ = A+
0 ⊗

A+
1 , (A0∧A1)

− = A−0 ⊗A
−
1 and (A0∧A1)(i, 〈n0, n1〉, 〈m0,m1〉) ≡ A0(i, n0, n1)∧

A1(i, n1,m1).

Implication
For A,B ∈ Dialrec(I) their implication A→ B is given by

(A→ B)+ =
{

〈f, F 〉 ∈ (A+ ⇒ B+)⊗ (A+ ⊗B− ⇒ (A−)
}

(A→ B)− = A+ ⊗B−

(A→ B)(i, 〈f, F 〉, 〈u, y〉) ≡ A(i, u, F (u, y) ⊃ B(i, f(u), y)

Disjunction
For A0, A1 ∈ Σd their disjunction A0 ∨ A1 is given by (A0 ∨A1)

+ = A+
0 ⊕ A+

1 ,
(A0 ∨A1)

− = A−0 ⊕A−1 and (A0 ∨A1)(i, 〈k, n〉, 〈j,m〉) ≡ k = j ⊃ Ak(i, n,m).

Universal Quantification
We only have quantifiers for projections. Suppose A ∈ Dialrec(I × J) and
π : I × J → J in P(N)0. Then ∀π(A) ∈ Dialrec(J) is given by

∀π(A)+ = I ⇒ A+

∀π(A)− = I ⊗A−

∀π(A)(j, f, i, x) ≡ A(i, j, f(i), x)

Existential Quantification
Suppose A ∈ Dialrec(I × J) and π : I × J → J in P(N)0. Existential quantifica-
tion of A along π is given by

∃π(A)+ = I ⊗A+

∃π(A)− = A−

∃π(A)(j, (i, u), x) ≡ A(i, j, u, x)
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Equality
We have for each I, J ∈ P(N)0,

EqI,J a δ(I, J)∗

where δ(I, J) = 〈id , π′〉 : I⊗J → (I⊗J)⊗J and where EqI,J : Dialrec(I⊗J) →
Dialrec((I ⊗ J)⊗ J) is defined by

EqI,J(A) = (A+, A−, Â(i, j, j′, u, x))

where

Â(i, j, j′, u, x) =

{

A(i, j, u, x) if j = j′

⊥ if j 6= j′.

Notice that Â is recursive because equality on N is recursive, i.e., this is inten-
sional equality. It is straight forward to verify that Eq satisfy the Beck-Chevalley
condition: For each map h : K → I

EqK,J(h× J)∗ ∼= ((h× J)× J)∗EqI,J

and also the Frobenius property:

EqI,J(δ∗(A) ∧B) ∼= A ∧ EqI,J(B)

for all A ∈ Dialrec((I⊗J)⊗J) and B ∈ Dialrec(I⊗J). Now for a type I ∈ P(N)0
we derive the equality predicate eqI ∈ Dialrec(I ⊗ I):

eqI(i, j) = Eq1,I(>) =

{

> if i = j
⊥ if i 6= j

Proposition 6.5. For all formulas φ of HA we have ‖φD‖ in HRO is precisely
‖φ‖ in Dialrec.

Proof. By induction on the structure of φ.
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Chapter 3

A Unified View on the Dialectica
Triposes

This short note is only the beginning of a story. The initial ideas are due to Martin Hyland. It can be read
independently, though it refers to the triposes introduced in Chapter 2.

In Chapter 2 we described realizability triposes for various functional interpretations and their relation-
ships via geometric morphisms or indexed adjunctions. We use these adjunctions to define comonads on
Girard categories, and we show that each of the triposes in Chapter 2 is isomorphic to a Kleisli category for
a comonad on a Girard category. We also show that if the comonad is Girardian, then the Kleisli category
is a tripos.

The Girard categories were first introduced in [dP91]. In [Oli08], Paulo Oliva presents a unifying
framework for functional interpretations which has some similarities with our work. In Chapter 4 the
non-Girardian comonad is studied in a more general setting.
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A Unified View on the Dialectica Triposes

Bodil Biering

This is a brief note in which we explain how to get a unified view of the
realizability triposes introduced in [Bie08, Chapter 2] via comonads on indexed
Girard categories. We show how this setting may be used to prove that the
triposes from [Bie08, Chapter 2] indeed are triposes, without actually calculating
the structure. In [dP91] it is explained how to get model of linear logic with
modality by using a (Girardian) comonad on a Dialectica category. In this note
we start our with a Girard category instead of a Dialectica category, and we give
several Girardian comonads and one non-Girardian comonad, and thus we get
several different realizability models of linear logic with modality. The idea of
unifying functional interpretations via comonads on a Girard category has been
introduced independently and in a very different (syntactic) setting in [Oli08].

1 Indexed Preordered Girard Categories

We define an indexed preordered Girard category G over Set as follows. In
the fibre over I, the objects are the objects of d(I) that is, I-indexed triples
Ai = (Ui, Xi, Ai), where Ai ⊆ Ui ×Xi ⊆ N× N. The order is defined by

(Ui, Xi, Ai) ` (Vi, Yi, Bi) iff

there exists f, F ∈ N with f ∈
⋂

i(Ui ⇒ Vi) and F ∈
⋂

i(Yi ⇒ Xi) such that for
all i ∈ I, u ∈ Ui, y ∈ Yi we have

Ai(u, F (y)) ⊃ Bi(f(u), y).

We also define a modified version of the indexed Girard category G, which we
call Gm. Gm is the subcategory of G satisfying 0 ∈ Ui for all objects (Ui, Xi, Ai).

We now give the closure properties of G and Gm.

Proposition 1.1. All fibres of the indexed preorders G and Gm have finite limits
and are symmetric monoidal closed, i.e., we have ⊗, (,∧,>. Furthermore G

and Gm have products (∀).

Proof. All of the structure that we are interested in is defined similarly in G

and in Gm.

Symmetric Monoidal Closed Structure

The tensor is defined pointwise as

(U, X, A)⊗ (V, Y, B) = (U ⊗ V, XV ⊗ Y U , A⊗B)

1
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where A⊗B(u, v, f, g) ≡ A(u, fv) and B(v, gu). The unit I is

({0}, {0}, {(0, 0)})

The tensor product has a right adjoint ( defined by

(V, Y, B) ( (Z, W, C) = (ZV ⊗ Y W , V ⊗W, B ( C)

where (B ( B)(f, F, v, w) ≡ B(v, F (w)) ⊃ C(f(v), w).

Conjunction

(U, X, A) ∧ (V, Y, B) = (U ⊗ V, X ⊕ Y, A ∧B)

where A ∧B(u, v, (i, z)) ≡

{

A(u, z) if i = 0
B(v, z) if i = 1

Truth

We have > = ({0}, ∅, ∅).

Universal Quantification

For a function u : I → J we have

(∀uA)j = (
⋂

i∈u−1(j)

A+
i ,

⋃

i∈u−1(j)

A−
i , Ãj)

where Ãj(a, b) iff ∀i ∈ u−1(j).b ∈ A−
i ⇒ Ai(a, b).

2 Comonads and Triposes

Let P = Set(−Σ) be a canonically presented preordered fibration. An indexed
comonad on P then amounts to a comonad 〈L, µ, ε〉 on P (1), i.e., a functor
L : P (1) → P (1) such that, for all p ∈ P (1)

Lp ` p and Lp ` LLp

hold in P (1).

Theorem 2.1. Let P = Set(−Σ) be a canonically presented preordered fibra-
tion. Suppose P is a fibred smcc with fibred finite limits and products. let L be
a comonad on P satisfying

L(p ∧ q) a` Lp⊗ Lq

in P (1). Then PL, the Kleisli category for the comonad L is a canonically
presented Set-tripos.

Proof. It suffices to show that PL has >,∧,→, ∀ and a generic object. >,∧ in
PL are inherited from P because p `PL > iff Lp `P >. And p `PL q ∧ r iff
Lp `P q ∧ r iff Lp `P q and Lp `P r iff p `PL q and p `PL r.

→PL is given by q →PL r := Lq ( r since p ∧ q `PL r iff L(p ∧ q) `P r iff
Lp⊗ Lq `P r iff Lp `P Lq ( r iff p `PL Lq ( r. Universal quantifications in
PL is as in P since u∗p `PL q iff L(u∗p) `P q iff u∗(Lp) `P q iff Lp `P ∀uq iff
p `PL ∀uq. The generic object is idΣ.
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Theorem 2.2 (Factorization Theorem). Suppose f = (f∗, f∗) : P → Q is an
adjunction of canonically presented indexed preorders and f∗ is full and faithful.
Then L = f∗f∗ is a comonad on P with Kleisli category PL and f can be factored
as

PL

K

P

g

f
Q

where g∗ = L, g∗ = id, and the comparison functor K is an iso, so we get
Q ∼= PL.

Proof. It is well-known that when f∗ a f∗, f∗f∗ defines a comonad. From the
definition of a Kleisli category for a comonad we know that there is a diagram

PL

K

P

g

f
Q

where g = (g∗, g∗) is an L-adjunction, i.e., g∗g∗ = L, and K is unique with the
properties

Kg∗ = f∗, f∗K = g∗

We also know that on objects g is defined by g∗(A) = LA, g∗(A) = A We now
show that K has an inverse K−1 = g∗f

∗. First we notice that g∗g
∗ ∼= idPL

,
since g∗g

∗A = LA and in PL we have A a` LA. Now using the above equations
for K we get

Kg∗f
∗ = f∗f

∗ ∼= idQ,

g∗f
∗K = g∗g

∗ ∼= idPL
,

showing that K is an iso.

Corollary 2.3. Let P be an indexed preorder satisfying the requirements of
Theorem 2.1. And let f = (f∗, f∗) : P → Q be an adjunction with f∗ full and
faithful and such that L = f∗f∗ satisfy L(p ∧ q) a` Lp⊗ Lq, then Q is a tripos
and Q ∼= PL.

From [Bie08, Chapter 2] we the following indexed adjunctions and geometric
morphisms:

Set(−, 2)

∇

dn

!

d
id

p∗
r∗

S

F

G
I

e

r∗

e2

p∗

(1)
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For convenience we give the definition of the adjunctions her:

• S a I. Where I : G → d is the identity on objects and I(f, F ) = (f, Fπ).
And the functor S : d → G is defined by S(U, X, A) = (U, (X + 1)U , SA),
where SA(u, h) iff Â(u, hu), and

Â(u, x) ≡

{

A(u, x) if x ∈ X

> if x ∈ 1.

For morphisms we have S(f, F ) = (f, G), where G : (Y +1)V → (X +1)U

is given by G(h) = λu.F (u, h(g(u))). The functor S is full and faithful.

• p∗ a p∗.

p∗(A, B) = (B, {0}, A×{0}) p∗(A) = ({u ∈ A+ | ∀x ∈ A−.A(u, x)}, A+)

The functor p∗ is full and faithful.

• r∗ a r∗.

r∗(A) = (A, {0}, A× {0}) r∗(A) = {u ∈ A+ | ∀x ∈ A−.A(u, x)}.

r is a connected geometric morphism from d to e.

• ! a id .

!(A) = (A+,Pf (A−), !A) where !A(u, s) ≡ ∀x ∈ s.A(u, x).

The functor ! is full and faithful.

• ∇ a F .

∇(I ′ ⊆ I)(i) =

{

({0, 1}, {0}, {(0, 1)}) if i ∈ I

({0, 1}, {0}, ∅) o.w.

F (Ai)(i) =

{

1 if ∃u ∈ ∩iA
+
i .∀x.A−

i .A(u, x)
0 o.w.

The functor ∇ is full and faithful.

Composing the adjunctions we get five adjunctions going from G to each
of the other indexed categories. Now, each of these adjunctions give rise to a
comonad on G. We give the definitions of the five comonads:

• Ld(U, X, A) = SI(U, X, A) = (U, (X + 1)U , SA)
where SA(u, h) ≡ Â(u, hu).

• Ls(U, X, A) = S∇FI(U, X, A) = ({0, 1}, ({0}+ 1){0,1}, LsA)
≡ ({0, 1}, {0}, LsA)
where LsA(n, 0) iff (n, 0) = (1, 0) and ∃u ∈ U.∀x ∈ X.A(u, x).

• Ldn(U, X, A) = (S!idI(U, X, A) = (U, (Pf(X)+1)U , Ldn(A)) ≡ (U,Pf (X)U , Ldn(A))
where Ldn(A)(u, h) ≡ ∀x ∈ h(u).A(u, x).

• Le(U, X, A) = Sr∗r∗I(U, X, A) =
({u ∈ U | ∀x ∈ X.A(u, x)}, ({0}+ 1){u∈U|∀x∈X.A(u,x)}, Le(A))
≡ ({u ∈ U | ∀x ∈ X.A(u, x)}, {0}, {u ∈ U | ∀x ∈ X.A(u, x)} ⊗ {0}).

4
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• Le2(U, X, A) = Sp∗p∗I(U, X, A) = (U, ({0}+ 1)U , Le2(A))
≡ (U, {0}, {u ∈ U | ∀x ∈ X.A(u, x)} ⊗ {0})

We now turn to the modified Girard category Gm, for which we have a
similar situation. Notice that instead of e2 we have m and for dn we have dnm.
This is exactly as one would expect, since m is the ”modified version” of e2

and dnm the modified version of dn. We have the following diagram of indexed
adjunctions and geometric morphisms:

Set(−, 2)

∇

dnm

!

dm
id

p∗
H∗

S

F

Gm
I

e

H∗

m

p∗

(2)

Most of functors of this diagram have been defined above, we just need to add
the following definitions: H∗ a H∗.

H∗(A) = (succ(A)∪{0}, {0}, succ(A)⊗{0}) H∗(A) = {u ∈ A+ | ∀x ∈ X.A(u, x)}

H is a connected geometric morphism.
Again we can compose the adjunctions to get five comonads on Gm, the

comonads are defined as follows:

• Kdm
(U, X, A) = SI(U, X, A) = Ld(U, X, A) = (U, (X + 1)U , SA)

where SA(u, h) ≡ Â(u, h(u)).

• Ks(U, X, A) = S∇FI(U, X, A) = Ls(U, X, A) = ({0, 1}, {0}, KsA)
where KsA(n, 0) iff (n, 0) = (1, 0) and ∃u ∈ U.∀x ∈ X.A(u, x).

• Kdnm
(U, X, A) = (S!idI(U, X, A) = Ldn(U, X, A) = (U, (Pf(X)+1)U , Kdnm

(A)) ≡
(U,Pf(X)U , Kdnm

(A))
where Kdnm

(A)(u, h) ≡ ∀x ∈ h(u).A(u, x).

• Ke(U, X, A) = SH∗H∗I(U, X, A) =
(succ({u ∈ U | ∀x ∈ X.A(u, x)}) ∪ {0}, {0}, Ke(A))
where Ke(A)(u, 0) iff u 6= 0.

• Km(U, X, A) = Sp∗p∗I(U, X, A) = Le2(U, X, A) =
(U, {0}, {u ∈ U | ∀x ∈ X.A(u, x)} ⊗ {0})

Proposition 2.4. All the comonads L(−) and K(−) except for Ld and Kdm

satisfy the condition L(p ∧ q) a` Lp⊗ Lq.

Proof. Easy verification.
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Proposition 2.5. The Kleisli category for each comonad LX and KY , where
X ∈ {d, s, dn, e, e2} and Y ∈ {dm, s, dnm, e, m} is a tripos, and it is isomorphic
to X or Y respectively.

Proof. By Proposition 2.4 and Corollary 2.3 and using that the comonads are
defined form the adjunctions in the diagrams (1) and (2). For the comonads Ld

and Kdm
we can not use Theorem 2.1 (nor Corollary 2.3) to conclude that the

Kleisli categories are triposes. This must be shown by hand, but it follows from
Theorem 2.2 that the Kleisli category for Ld is d and for Kdm

is dm.

We collect all the results in a neat table.

G Gm

comonad Kleisli L(p ∧ q) ≡ Lp⊗ Lq comonad Kleisli K(p ∧ q) ≡ Kp⊗Kq

Ld d No Kdm
= Ld dm No

Ls Set(−, 2) Yes Ks = Ls Set(−, 2) Yes
Ldn dn Yes Kdnm

= Ldn dnm Yes
Le e Yes Ke e Yes
Le2 e2 Yes Km = Le2 m Yes

Remark 2.6. Instead of working with the indexed categories, one may take
on an internal view of things, and show that all of the indexed categories are
externalizations of internal categories in Eff . The comonads and Kleisli con-
structions could then also be done internally. Seeing the indexed categories as
externalizations of internal categories (or preorders) of Eff also explains why
the ordering in the fibres of the Girard categories and of the triposes is uniform.

Future Work In [Bie08, Chapter 2] there is a precise relationship between d

and dm (dm is a closed subtripos of d) and similarly between dn and dnm. At
the moment it is not clear if there is a similar relationship between G and Gm.

In [Oli08], Paulo Oliva treats Stein’s interpretation and Bounded functional
interpretation in a setting that seems to correspond to our comonadic setting.
It is very likely that those two interpretations also fit into our comonadic frame-
work.

The whole story of Girard categories and comonads could be lifted from the
preordered setting to categories.
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Chapter 4

Cartesian Closed Dialectica Categories

This paper has been submitted for publication in Annals of Pure and Applied Logic. Most of the research
for this paper was conducted during my stay in Cambridge in the Spring of 2006 with Martin Hyland as
advisor. The only background that is really needed for this paper, is some basic knowledge about fibrations,
as can be found in [Jac99]. It may also be nice to have a look in [Hyl02].

In this paper we extend the Dialectica categories to cloven fibrations, and we analyse how to obtain
weakly Cartesian closed and Cartesian closed (variants of) Dialectica categories.

The idea for the exponent construction arose from the Dialectica tripos in Chapter 2, and the same
constructions has since been used to define a new variant of the Dialectica interpretation, called the Copen-
hagen Interpretation (see Chapter 5). The work in this paper is also related to the work on comonads in
Chapter 3.
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Cartesian Closed Dialectica Categories

Bodil Biering, IT University of Copenhagen,
biering@itu.dk

Abstract

When Gödel developed his functional interpretation, also known as the Dialectica
interpretation, his aim was to prove (relative) consistency of first order arithmetic by re-
ducing it to a quantifier-free theory with finite types. Like other functional interpretations
(e.g. Kleene’s realizability interpretation and Kreisel’s modified realizability) Gödel’s Di-
alectica interpretation gives rise to category theoretic constructions that serve both as
new models for logic and semantics and as tools for analysing and understanding various
aspects of the Dialectica interpretation itself.

Gödel’s Dialectica interpretation gives rise to the Dialectica categories (described by
V. de Paiva in [dP89] and J.M.E. Hyland in [Hyl02]). These categories are symmetric
monoidal closed and have finite products and weak coproducts, but they are not Cartesian
closed in general. We give an analysis of how to obtain weakly Cartesian closed and
Cartesian closed Dialectica categories, and we also reflect on what the analysis might tell
us about the Dialectica interpretation.

1 Introduction

In this paper we analyse how to obtain Cartesian Closed Dialectica categories. The inspiration
for exponent construction that we will give comes from a structure closely related to the
Dialectica categories, namely the Dialectica tripos [BBLBCB07] (which is actually an indexed,
preordered reflection of a Dialectica category). In order to do this analysis and also to find out
whether the construction of the exponential in the tripos can be carried over to the Dialectica
categories to give some sort of exponential in these, we first generalise the original Dialectica
categories to include fibrations for type theory. In [dP89], Valeria de Paiva explores the
Dialectica categories using the subobject fibration, Martin Hyland generalises the definition
of a Dialectica category in [Hyl02] to include other preordered fibrations. In this paper we also
include fibrations for type theory, that is, fibrations where the fibres are general categories
instead of preorders. We will focus on a case study, namely the codomain fibration. The
main reason for considering Dialectica categories over general fibrations is that when we start
out with more structure, we are forced to be less flexible and the nature of the structures
we are studying will reveal themselves. As a spin-off we get a whole new class of Dialectica
categories. The analysis shows that both the original Dialectica categories and the Dialectica
categories for type theory have a weak exponential, so together with the Cauchy completion
we get Cartesian closed Dialectica categories.

Outline of the paper: We start by recalling the definition and closure properties of V. de
Paiva’s and J.M.E. Hyland’s Dialectica categories. We then indicate three different approaches
to obtain classes of Cartesian closed Dialectica categories one of which will be studied in this
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2 THE DIALECTICA CATEGORIES

paper. Next we define a generalised version of Dialectica categories and show that they
have products. In Section 4 we study monads leading to comonads on Dialectica categories,
and we describe the Kleisli category in the general setting. If a comonad is Girardian, we
automatically get a Cartesian closed Kleisli category for the comonad. In the most technical
part of the paper we show that for a particular non-Girardian comonad, L+ applied to a
Dialectica category Dial(cod(C)), gives a Kleisli category, Dial+ with weak exponentials. This
result also holds for the original Dialectica categories, Dial(Sub(C)) (Dialectica categories over
the subobject fibration). This implies that the Cauchy completion of Dial+ is Cartesian closed
and also that the preordered reflection of Dial+ is a Heyting algebra. Finally, we spell out the
details of an example that might be of particular interest since it corresponds to an extensional
version of Dialectica.

2 The Dialectica Categories

In this section we recall the definition of Dialectica categories and their closure properties as
given in [dP89] and [Hyl02]. The following is quoted from [Hyl02]: Suppose that we have a
category T which we can think of as interpreting some type theory; and suppose that over
the category T we have a preordered fibration p : E → T , which we can regard as providing
for each I ∈ T a preordered collection of (possibly non-standard) predicates E(I) = (E(I),`).
Starting with this data we construct a new category Dial(p) which we regard as a category
of propositions and proofs.

We do this as follows.

• The objects A of Dial(p) are U,X ∈ T together with α ∈ E(U × X). We write this

as A = U p X
αoo . Our understanding of the predicate α is not symmetric as

regards U and X: we read U p X
αoo as ∃u.∀x.α(u, x), in accord with the form

of propositions in the image of the Dialectica interpretation.

• Maps of Dial(p) from A = U p X
αoo to B = V p Y

β
oo are diagrams

of the form

U

f

�� <<
<<

<<
<<

<<
<<

<<
<<

<<
p X
αoo

F

@@���������
with α(u, F (u, y)) ` β(f(u), y) in E(U × Y ).

V p Y
β

oo

Thus maps A → B of Dial(p) consists of maps f : U → V and F : U × Y → X in T
such that α(u, F (u, y)) ` β(f(u), y) holds in E(U × Y ).

Proposition 2.1. Dial(p) forms a category

The original Dialectica categories described in [dP89] were defined only with p being the
subobject fibration. And here comes the closure properties:

2
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3 DIALECTICA CATEGORIES FOR CLOVEN FIBRATIONS 2.1 Cartesian Closed Dialectica Categories

Proposition 2.2. If p : E → T is a product fibration, i.e., T has finite products and the
fibres E(I) have finite products preserved by reindexing then Dial(p) is a symmetric monoidal
category.

Proposition 2.3. If T is ccc and p is fibered Cartesian closed then Dial(p) is symmetric
monoidal closed.

Proposition 2.4. If T has finite, distributive coproducts and E(0) ∼= 1 and the injections
X → X + Y and Y → X + Y induce an equivalence E(X + Y ) ≡ E(X) × E(Y ) then Dial(p)
has finite products.

2.1 Cartesian Closed Dialectica Categories

We now describe three different approaches to obtain Cartesian closed Dialectica categories.
We have seen that the natural structure of the category Dial(p) is smcc with finite products.
One way to obtain Cartesian closure is by adding structure that will make ⊗ a product, that
is, making sure we get projections and diagonals for ⊗. This approach has been studied
briefly in [Hyl02]. Another way of obtaining Cartesian closed Dialectica categories is by
altering the definition slightly to get variations like the Diller-Nahm Dialectica category (see
[dP89]). There are actually several variants constructed in the same manner as the Diller-
Nahm category, that is, by a Girardian comonad on the Dialectica category. First steps in
this direction has been made in [Bie08], and also implicitly in [Oli08]. The third approach
that one might think of is to add enough structure to define an exponent (without making
⊗ = ∧). The rest of this paper is devoted to analysing under what circumstances we can get
a Cartesian closed Dialectica category using the third approach.

3 Dialectica Categories for Cloven Fibrations

In this section we define a more general version of the Dialectica categories and show that
they have finite products.

Given a cloven fibration p : E → T , if T has binary products, we can construct the
Dialectica category for types over p, written Dial(p) as follows:

• Objects are triples (U,X,α), where U,X ∈ T and α ∈ E is an object in the fibre over
U ×X.

• A map from (U,X,α) to (V, Y, β) is a triple (f, F, ϕ), where f : U → V , F : U ×Y → X
and ϕ(u, y) : α(u, F (u, y)) → β(f(u), y) in the fibre over U × Y .

We can think of T as our types and α ∈ E(U ×X) as a dependent type over U ×X. Maps
are written

U

f

�� <<
<<

<<
<<

<<
<<

<<
<<

<<
p X
αoo

F

@@���������
φ(u, y) : α(u, F (u, y)) → β(fu, y)

V p Y
β

oo

This forms a category, with

3
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3 DIALECTICA CATEGORIES FOR CLOVEN FIBRATIONS 3.1 Products in Dial(p)

• identity arrows: (idU , π2, idα(u,x)).

• Composition works as follows: Given (f, F, φ(u, y)) : (U,X,α) → (V, Y, β) and (g,G, ψ(v,w)) :
(V, Y, β) → (Z,W, γ), the composite is

(gf, F (u,G(f(u), w)), ψ(f(u), w) ◦ φ(u,G(f(u), w))),

where F (u,G(f(u), w)) is the arrow U ×W
〈U,f×W 〉

// U × (V ×W )
U×G // U × Y

F // X ,

and φ(u,G(f(u), w)) is reindexing of φ(u, y) along the arrow (U ×G) ◦ 〈U, f ×W 〉.

Since reindexing in a fibration is up to isomorphism, we need the fibration to be cloven in
order for composition to be associative. Associativity is then a a consequence of the coherence
conditions for a cloven fibration. Note that this only regards the third component of the arrows
in Dial(p).

3.1 Products in Dial(p)

Definition 3.1. A category C has finite, distributive coproducts if it has finite coproducts and
products, and the product functor preserves coproducts, that is, for objects A,X, Y there is
a natural isomorphism δ : A × (X + Y ) ∼= A × X + A × Y such that the following diagram
commutes:

A×X
A×ιX //

ιA×X
''PPPPPPPPPPPP

A× (X + Y )

δ
��

A× Y
A×ιYoo

ιA×Y
wwnnnnnnnnnnnn

A×X +A× Y

Fact: In a distributive category, 0 is a strict initial object.
Of course, any Cartesian closed category with finite coproducts is distributive.
Let q : E → T be a preordered fibration and let E(X) denote the fibre overX. From [Hyl02]

we know that, if T has finite, distributive coproducts, and it also holds that E(0) ∼= 1E and
that the injectionsX → X+Y and Y → X+Y induce an equivalence E(X+Y ) ≡ E(X)×E(Y ),
then Dial(q) has finite products. We now show that this also holds in the general case, where
the fibres E(X) are not preorders, but categories.

Proposition 3.2. Let p : E → T be a cloven fibration.

1. Suppose T has finite, distributive coproducts and products, and that the injections X →
X + Y and Y → X + Y induce an equivalence µ : E(X)×E(Y ) ≡ E(X + Y ), natural in
X,Y , then Dial(p) has binary products.

2. Suppose that E(0) ∼= 1, then Dial(p) has a terminal object.

Proof: This is a straightforward generalization of the proof found in [Hyl02]. First note that
since the equivalence µ is induced by the injections, we have µ−1 = 〈ι∗X , ι

∗
Y 〉 and so

ι∗Xµ(φ,ψ) ∼= φ (1)

for φ ∈ E(X) and ψ ∈ E(Y ). The product A×B of A = ( U X
αoo ) and B = ( V Y

β
oo )

is

A×B = ( U × V p X + Y
α&β

oo )

4
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3 DIALECTICA CATEGORIES FOR CLOVEN FIBRATIONS 3.1 Products in Dial(p)

where α&β ∈ E(U × V × (X + Y ))
µ−1◦(δ−1)∗

∼= E(U × V × X) × E(U × V × Y ) is given
by δ∗µ(α(πU (u, v), x), β(πV (u, v), y)). The projections are (πU , κX ◦ πX , idα(πU (u,v),x)) and
(πV , κY ◦ πY , idβ(πV (u,v),y)).

Let C be the object ( Z W
γ

oo ). Given morphisms

(f, F, φ(z, x)) : C → A and
(g,G, ψ(z, y)) : C → B,

the universal map from C to A×B is

(〈f, g〉, [F,G], δ∗µ(φ(z, x), ψ(z, y))),

where δ∗µ(φ(z, x), ψ(z, y))) ∈ E(Z × (X + Y )) is reindexing of µ(φ(z, x), ψ(z, y))) ∈ E(Z ×
X + Z × Y ) along the isomorphism δ : Z × (X + Y ) → Z ×X + Z × Y .

The composite of
(〈f, g〉, [F,G], δ∗µ(φ(z, x), ψ(z, y)))

with the projection
(πU , ιX ◦ πX , idα(πU (u,v),x))

is the arrow

(πu◦〈f, g〉, [F,G](z, ιXπX(〈f, g〉z, x)), idα(πU (u,v),x)(〈f, g〉z, x)◦(〈z, ιXπX(〈f, g〉z, x)〉)∗(δ∗µ(φ,ψ))).

Strictly speaking, we must also compose δ∗µ(φ,ψ) with the appropriate coherence maps
and the (unique) iso which is part of the equivalence µ, but the notation is already heavy, so
we leave those implicit.

Now 〈z, ιXπX(〈f, g〉z, x)〉 = Z × ιX(x) : Z×X → Z× (X +Y ); by (1), and again keeping
the coherence maps that are part of the composition implicit, we get,

(Z × ιX)∗(δ∗µ(φ,ψ)) = ι∗Z×X(µ(φ,ψ)) = φ,

moreover
idα(πU (u,v),x)(〈f, g〉z, x) = idα(πU (fz,gz),x) = idα(fz,x),

since reindexing is functorial, so the composite is (f, F, φ) as needed. Uniqueness is clear by
inspection.

The terminal object of Dial(p) is ( 0 1
!oo ), where ! is the unique object of E(0).

The product functor works as follows: Given

(f, F, φ(u, x′)) : A = ( U X
αoo ) → A′ = ( U ′ X ′α′oo )

(g,G, ψ(v, y′)) : B = ( V Y
β

oo ) → B′ = ( V ′ Y ′
β′

oo )

The product (f, F, φ(u, x′))× (g,G, ψ(v, y′)) : A×B → A′ ×B′ is

(f × g, F (πU (u, v), x′) +G(πV (u, v), y′), δ∗µ[φ(πU (u, v), x′), ψ(πV (u, v), y′)]).

5
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3 DIALECTICA CATEGORIES FOR CLOVEN FIBRATIONS 3.1 Products in Dial(p)

Example 3.3. Examples of fibrations satisfying Proposition 3.2 (which are actually equivalent
to codomain fibrations) are the split fibrations Fam(Set) → Set For set-indexed families of sets
we have µ((Ai)i∈I , (Bi)i∈I) = (Cz)z∈X+Y , where

Cz =

{

Ax if z = (0, x)
By if z = (1, y)

and UFam(PER) → PER (for a description of this fibration, see Section 5). For per-indexed
families of pers, µ((A[n])[n]∈N/R, (B[m])[m]∈N/S) = (C[k])[k]∈N/R+S, where

(C[k])[k]∈N/R+S =

{

A[n] if pk = 0 and [p′k] = [n]

B[m] if pk = 1 and [p′k] = [m]

We now show under which conditions our case study, the codomain fibration, satisfies the
assumptions of Proposition 3.2

Definition 3.4. A category is said to have stable coproducts, if for A =
∐

i∈I Ai and any map
f : B → A,

∐

i∈I f
−1(Ai) ∼= B, where f−1(Ai) is the pullback of the injection Ai →

∐

i∈I Ai
along f .

Definition 3.5. A category is said to have disjoint coproducts if each of the injections ιi :
Ai → A is mono and for each pair of distinct injections ιi, ιj , the pullback of the two is the
initial object.

The following fact is well known (see, e.g., [CLW93])

Proposition 3.6. A category that has finite limits and finite, stable, disjoint coproducts is
distributive.

Now let C be a category with finite products and coproducts, and assume that the
coproducts are stable and disjoint, then cod(C) is a cloven fibration with an equivalence
µ : C/X × C/Y → C/(X + Y ) given by µ(α, β) = α + β and µ−1(γ) = (ι∗X(γ), ι∗Y (γ)). This
means that Dial(cod(C)) has products.

We sum up the results in the following proposition:

Proposition 3.7. Let C be a category with finite limits and finite coproducts, and assume
that the coproducts are stable and disjoint, then Dial(cod(C)) has finite products.

Martin Hyland came up with the following construction, which we shall see gives us a
variant of a Dialectica category with a weak exponent.

Let C be a category with finite products and stable, disjoint coproducts. The functor
− + 1 : C → C together with families of maps ι : X → X + 1 and X + (1 + 1) → X + 1 is
a monad on C. In the same way that the monad defined from the free commutative monoid
monad gives us a comonad ! : Dial(Sub(C)) → Dial(Sub(C)) (see [dP89]), we can define a
comonad L+ on Dial(Sub(C)) using the monad − + 1 as follows. Let α be a subobject of
U ×X in C, then

L+(α � U ×X) = α̂ � U × (X + 1)

where α̂ is reindexing of α along the arrow

U ×X+!U : U × (X + 1) ∼= U ×X + U → (U ×X) + 1.

6
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3 DIALECTICA CATEGORIES FOR CLOVEN FIBRATIONS 3.1 Products in Dial(p)

Using the internal language, this means that

α̂(u, x) =

{

α(u, x) if x ∈ X
> if x ∈ 1.

And
L+(f, F ) = (f, F̂ ),

where F̂ is the composite

U × (Y + 1)
(U×Y )+!U // (U × Y + 1)

F+1 // X + 1

In the internal language this becomes

F̂ (u, y) =

{

F (u, y) if y ∈ Y
∗ ∈ 1 if y ∈ 1.

Now, it is the Kleisli category DialL+ for this comonad that we are really interested in.
In the case of the free commutative monoid monad, there is an isomorphism

X∗ × Y ∗ ∼= (X + Y )∗ (2)

which induces an isomorphism
!(A×B) ∼=!A⊗!B (3)

in Dial(Sub(C)). A comonad L satisfying L(A × B) ∼= LA⊗ LB will be called Girardian. If
a comonad is Girardian, the isomorphism in 3 gives us a Cartesian closed structure on the
Kleisli category by the following string of equivalences:

HomDial!(A×B,C) = HomDial(!(A×B), C) ∼= HomDial(!A⊗!B,C)
∼= HomDial(!A, [!B,C]Dial) = HomDial!(A, [!B,C]Dial) = HomDial!(A, [B,C]Dial!)

(4)

Now, for the monad −+ 1 we do not have such an isomorphism, because

(X + 1)× (Y + 1) ∼= X + Y + 1 + (X × Y ) 6= X + Y + 1

So the monad − + 1 does not satisfy the distributive law in 2, and one readily sees that the
comonad L+ does not satisfy the distributive law in 3. However, we shall see that what we
do have is a natural retraction

HomDial(L
+(A×B), C) → HomDial(L

+(A), B ⊃ C),

so B ⊃ C is the weak exponent, that we will define in the next section. Notice that B ⊃ C is
not simply [LB,C]Dial. Hence for the Kleisli category DialL+ , we will have a natural retraction

HomDialL+ (A×B,C) → HomDialL+ (A,B ⊃ C).

And then the Cauchy completion (see Appendix A) will give a Cartesian closed category.

Definition 3.8 (Weak exponential). Let C be a category with finite products. C has weak
exponentials [B,C], if there is a retraction

C(A×B,C)
I //

C(A, [B,C])
R

oo

onto C(A×B,C) (that is, RI = id), natural in A.

7
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4 A NON-GIRARDIAN COMONAD ON Dial(P )

4 A non-Girardian comonad on Dial(p)

In this section we study which conditions are needed on the monad and the fibration to give
a well-defined comonad on Dial(p).

Recall the definition of a strong monad on a category with finite products.

Definition 4.1. Let C be a category with finite products. A strong monad on C is a monad
(T, η, µ) together with a natural transformation

CX,Y : X × TY → T (X × Y )

called strength, such that the diagrams

X × Y
X×ηY //

ηX×Y
((RRRRRRRRRRRRRR
X × TY

CX,Y ,

��

X × T 2Y
CX,TY

//

X×µY

��

T (X × TY )
T (CX,Y )

// T 2(X × Y )

µX×Y

��
T (X × Y ) X × TY

CX,Y
// T (X × Y )

(X × Y )× TZ
CX×Y,Z

//

∼=
��

T ((X × Y )× Z)

∼=
��

X × (Y × TZ)
X×CY,Z

// X × T (Y × Z)
CX,Y×Z

// T (X × (Y × Z))

commute for all objects X,Y and Z.

We aim to use a monad to define a comonad on Dial(p) for p a cloven fibration, for that
we require the monad to be fibred. A fibred monad (T, T ′) on a fibration p : E → T is a
morphism of fibrations (T,T’):

E
T //

p

��

E

p

��
T

T ′
// T

together with 2-cells µ = (µ, µ′) and η = (η, η′):

E ⇓η

Id
((

T

66

p

��

E

p

��

E ⇓µ

T 2

((

T

66

p

��

E

p

��
T ⇓η′

Id
))

T ′
55 T T ⇓µ′

(T ′)2

))

T ′
55 T

where η is above η′, that is, for X ∈ E , p(ηX) = η′pX , and similar for µ. (T, T ′) commutes
with reindexing in the sense that for u : X → Y in T , we have T ◦ u∗ ∼= (T ′u)∗ ◦ T as fibred
functors from E(Y ) → E(T ′X). For more details, see e.g. [Jac99].

Suppose we have a fibred monad (T, T ′), where T ′ is strong, then we are able to define a
comonad L on Dial(p) by

8
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• L(U,X,α) = (U, T ′X,C∗
U,X(Tα) = α̂) and

• L(f, F, φ) = (f, T ′(F ) ◦ CU,Y , C
∗
U,Y (Tφ)) = (f, F̂ , φ̂).

For the arrow part of the functor L to be well-defined we must show that C∗
U,Y T commutes

with reindexing, that is,

C∗
U,Y T (α(u, F (u, y))) = (C∗

U,Y T (α))(u, F̂ (u, y)) = α̂(u, F̂ (u, y)). (5)

and
C∗
U,Y T (β(fu, y)) = (C∗

V,Y T (β))(fu, y) = β̂(fu, y). (6)

Equation (6) holds because (T, T ′) is a morphism of fibrations and therefore commutes with
reindexing, and because of naturality of C:

C∗
U,Y T (β(fu, y)) = C∗

U,Y T ((f × Y )∗β)
∼= C∗

U,Y (T ′(f × Y ))∗(Tβ)

= (f × T ′Y )∗C∗
V,Y (Tβ)

= β̂(fu, y).

To see that (5) holds, consider

C∗
U,Y T (α(u, F (u, y))) = C∗

U,Y T (〈πU , F 〉
∗(α))

∼= C∗
U,Y (T ′(〈πU , F 〉)

∗(T (α))) T commutes with reindexing

= (T ′(〈πU , F 〉) ◦ CU,Y )∗(Tα)
= (CU,X ◦ 〈πU , T

′(F ) ◦ CU,Y 〉)
∗(Tα) see diagram below

= α̂(u, F̂ (u, y))

We must show that the following diagram commutes in T :

U × T ′Y
CU,Y

//

〈πU ,T
′F◦CU,Y 〉

��

T ′(U × Y )

T ′〈πU ,F 〉
��

U × T ′X
CU,X

// T ′(U ×X)

(7)

The diagram (7) can be decomposed as:

U × T ′Y

(1)

CU,Y
//

δU×T
′Y

��

T ′(U × Y )

T ′(δU×Y )
��

U × U × T ′Y
CU×U,Y

//

U×CU,Y
��

(2)

T ′(U × U × Y )

id
��

U × T ′(U × Y )

U×T ′F

��

CU,U×Y
//

(3)

T ′(U × U × Y )

T ′(U×F )
��

U × T ′X
CU,X

// T ′(U ×X)

9
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where (1) and (3) commute by naturality of C, and (2) commutes by properties of strength
of T ′.

Assume the following extra requirements on (T, η, µ):

α(u, x) = η∗U×X(Tα) and
T 2(α) = µ∗U×X(Tα)

(8)

Using the properties of strength one can show that the equations in (8) imply the following
equations:

α̂(u, ηX(x)) = α(u, x) and

α̂(u, µX(x′)) = ˆ̂α(u, x′).
(9)

We now use these assumptions to show that L is a comonad:

L is a comonad on Dial(p): For every (U,X,α) we have a map

U

id

�� BB
BB

BB
BB

BB
BB

BB
BB

B
p TX
α̂oo

ηXπX

<<zzzzzzzz

U p Xα
oo

with

α̂(u, η(x)) = α(u, x)
id // α(u, x).

since from (9) we have α̂(u, η(x)) = α(u, x). We define

ε(U,X,α) = (idU , ηXπX , idα).

And for every (U,X,α) we have a map

U

id

�� BB
BB

BB
BB

BB
BB

BB
BB

B
p TX
α̂oo

µXπ

<<zzzzzzzz

U p X
ˆ̂α

oo

with

α̂(u, µX(x′)) = ˆ̂α(u, x′)
id // ˆ̂α(u, x′),

where x′ : TT (X). Again we are using (9) to get α̂(u, µX(x′)) = ˆ̂α(u, x′). We define

δ(U,X,α) = (idU , µXπ, id ˆ̂α).

We have shown the following.

Proposition 4.2. Let ((T, T ′), (η, η′), (µ, µ′)) be a fibred monad with T ′ a strong monad on
a cloven fibration p : E → T , and with T ccc. If (T, η, µ) also satisfies the equations in (8),
we can define a comonad L on Dial(p) by

L(U,X,α) = (U, TX,C∗
U,X(Tα) = α̂) and L(f, F, φ) = (f, TF◦CU,Y , C

∗
U,Y (T (φ))) = (f, F̂ , φ̂).

10
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The Comonad L+ Our leading example is the comonad L+ on Dial(cod(C)) based on the
monad TX = X + 1, which is strong and induces a fibred monad on cod(C). We have

Lemma 4.3. For a Cartesian closed category C with finite coproducts, the functor TX = X+1
together with the obvious natural transformations µX : X+1+1 → X+1 and ηX : X → X+1
is a strong monad. The maps CX,Y are defined by

X × (Y + 1) ∼= X × Y +X
X×Y+! // X × Y + 1

Assuming C has stable, disjoint coproducts, it is not hard to see that the equations in (8)
are met by the monad −+ 1. We collect the facts:

Proposition 4.4. Suppose C has finite limits and coproducts, and that coproducts are stable
and disjoint. Then the monad −+ 1 gives rise to a comonad on Dial(cod(C)).

Some examples:

Example 4.5. Examples that satisfy Proposition 4.2 are the codomain fibration together with
the monads −+1 and strings; and the subobject fibration together with the monads multisets,
powersets, finite powersets and the free commutative monoid monad. The Kleisli category for
the latter is the Diller-Nahm Dialectica category. The comonad based on − + 1 is the only
non-Girardian among these examples.

4.1 The Kleisli Category DialL(p)

We now write out some details about the category DialL(p) for a comonad L on Dial(p).
DialL has products inherited from Dial. For the record:

Proposition 4.6. The Kleisli category DialL(p) has products inherited from Dial(p).

Proof:
DialL(α, β) ×DialL(α, γ) = Dial(α̂, β)×Dial(α̂, γ)

∼= Dial(α̂, β × γ)
= DialL(α, β × γ).

Composition in the Kleisli category DialL(p) Given two maps (f, F, φ(u, y)) : (U, TX, α̂) →
(V, Y, β) and (g,G, ψ(v,w)) : (V, TY, β̂) → (Z,W, γ) the composite is

U

gf

�� BB
BB

BB
BB

BB
BB

BB
BB

B
p TX
α̂oo

µX◦F̂ (u,G(fu,w))

<<zzzzzzzz

Z p Wγ
oo

with

α̂(u, µX ◦ F̂ (u,G(fu,w))) = ˆ̂α(u, F̂ (u,G(fu,w)))
φ̂(u,G(fu,w))

// β̂(fu,G(fu,w))
ψ(fu,w)

// γ(gfu,w).
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4 A NON-GIRARDIAN COMONAD ON Dial(P ) 4.2 The Kleisli category Dial+ has a weak exponent.

Product functor in the Kleisli category DialL(p) Given maps

U ′

f

�� CC
CC

CC
CC

CC
CC

CC
CC

C
p TX ′α̂′oo φ(u′, x) : α̂′(u′, F (u′, x)) // α(fu′, x)

F

==zzzzzzzz

U p Xα
oo

and

V ′

g

�� BB
BB

BB
BB

BB
BB

BB
BB

B
p TY ′
β̂′

oo ψ(v′, y) : β̂′(v′, F (v′, y)) // α(gv′, y)

G

==|||||||||

V p Y
β

oo

The product is

U ′ × V ′

f×g

�� JJJJJJJJJJJJJJJJJJJJJ
p T (X ′ + Y ′)
ˆα′&β′

oo φ(π(u′, v′), x) + ψ(π′(u′, v′), y)

µX+Y ◦(Fπ+Gπ)

99ssssssssss

U × V p X + Y
α&β

oo

For a Girardian comonad, the Kleisli category is automatically Cartesian closed (see (4)).
We now show that for the non-Girardian comonad L+ constructed from −+ 1, we can define
a weak exponent in the Kleisli category. Notice that the weak exponent is not simply the
usual [L+A,B]Dial.

4.2 The Kleisli category Dial+ has a weak exponent.

From this point we only consider the comonad L+ which was defined on the basis of the
monad −+ 1. Let C be a ccc with stable, disjoint coproducts, and which is locally Cartesian
closed. We have already seen that the monad − + 1 satisfies the requirements needed to
construct a comonad L+ on Dial(cod(C)). Let Dial+ denote the Kleisli category for L+ on
Dial(cod(C)). We are going to show that Dial+ has weak exponentials. That is,

Theorem 4.7. Let C be a ccc with finite limits, and stable, disjoint coproducts, and which is
locally Cartesian closed, then the Dialectica-Kleisli category, DialL+(cod(C)), which we denote
by Dial+, and also DialL+(Sub(C)) has finite products and weak exponentials.

First some notation that we shall be using.
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4 A NON-GIRARDIAN COMONAD ON Dial(P ) 4.2 The Kleisli category Dial+ has a weak exponent.

Notation Let C be a ccc with stable, disjoint coproducts and consider a pullback of the
form:

F−1(α+ β) //

��

α+ β

a+b

��
U × V

F
// X + Y

Since we have stable, disjoint coproducts, we have

U × V ∼= F−1(X) + F−1(Y )

F=FX+FY
��

X + Y

and pullback preserves coproducts, so

F−1(α+ β) ∼= F−1(α) + F−1(β)

which, because of the stable, disjoint coproducts is the same as

F−1
X (α) + F−1

Y (β)

Note that this holds in any fibration over C where reindexing preserves coproducts.
We will use the following notation for F−1

X (α) + F−1
Y (β) in this situation:

F (u, v) ∈ X.α(F (u, v)) + F (u, v) ∈ Y. β(F (u, v))

or sometimes, when convenient:

F (u, v) = x ∈ X.α(x) + F (u, v) = y ∈ Y. β(y)

indicating that α is being reindexed along those (u, v) such that F (u, v) ∈ X and β along
those (u, v) such that F (u, v) ∈ Y .

In case α (or β) is the terminal object of the fibre, in this case if α = X, a = id, the
pullback will be the type

F (u, v) ∈ X.>X(F (u, v)) + F (u, v) ∈ Y. β(F (u, v)) =
F (u, v) ∈ X.>F−1(X) + F (u, v) ∈ Y. β(F (u, v))

By abuse of notation we will sometimes leave out the first part and just write this type as

F (u, v) ∈ Y. β(F (u, v)).

We are now able to give the proof of the Theorem 4.7:

Proof. First we define an object corresponding to

2 ={(g,G) : (V ⇒W )× (V × Z ⇒ 1 + Y ), (v, z) : V × Z,

k(g,G, v, z) : G(v, z) = y ∈ Y.[β(v,G(v, z)), γ(gv, z)]}

where [β, γ] is the fibred exponential, and G(v, z) = y ∈ Y.[β(v,G(v, z)), γ(gv, z)] means
(informally) that we reindex the fibred exponent [β, γ] along those (G, g, v, z) such that
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88



4 A NON-GIRARDIAN COMONAD ON Dial(P ) 4.2 The Kleisli category Dial+ has a weak exponent.

G(v, z) ∈ Y , which makes sense since we have disjoint, stable coproducts. In our case study,
the codomain fibration, this is the dependent type defined by the pullback:

2

��

// W × V × Z + [W × Z × β, V × Y × γ]

id+b

��
(V ⇒W )× (V × Z ⇒ 1 + Y )× V × Z

〈ev,V ×Z〉◦((π⇒W )×id)
// W × V × Z +W × V × Z × Y

where (π ⇒ W )×id : (V ⇒W )×(V ×Z ⇒ 1+Y )×V ×Z → (V ×Z ⇒W )×(V ×Z ⇒ 1+Y )×V ×Z.
Since B is lcc we have a right adjoint to reindexing π∗ a Ππ. Let π : (V ⇒ W )× (V × Z ⇒
1 + Y )× V × Z → (V ⇒W )× (V × Z ⇒ 1 + Y ) then we have

(Ππ2)× V × Z
ε //

++WWWWWWWWWWWWWWWWWWWW
2

��
(V ⇒W )× (V × Z ⇒ 1 + Y )× V × Z

where ε is the counit for the adjunction π∗ a Ππ. We have

Ππ2 = {(g,G) : (V ⇒W )×(V×Z ⇒ 1+Y ), λv, z.K(g,G, v, z) : Πv, z.G(v, z) = y ∈ Y.[β(v,G(v, z)), γ(g(v), z)]}

Now the exponent in Dial+, which we will denote β ⊃ γ, is the dependent type over
(Ππ2)× V × Z corresponding to

(β ⊃ γ)((g,G, k), (v, z)) := G(v, z) ∈ 1.γ(g(v), z)

defined by the pullback:

β ⊃ γ //

��

(γ × V ) + [W × Z × β, V × Y × γ]

c+id

��
(Ππ2)× V × Z

ε
// 2 // W × V × Z + [W × Z × β, V × Y × γ]

In the type theoretic language this is

β ⊃ γ = {(g,G, λv, z.k(g,G, v, z)) : Ππ2, v, z ∈ V × Z, h(g,G, λv, z.k, v, z) : G(v, z) ∈ 1.γ(g(v), z)}

Before we show that there is a natural retraction

Dial+(α× β, γ)
I //

Dial+(α, β ⊃ γ),
R

oo

we will characterize the homsets. A map from α&β to γ in Dial+:

U × V

f

�� IIIIIIIIIIIIIIIIIIIII
p X + Y + 1
ˆα&β

oo φ(u, v, z) : ˆα&β(u, v, F (u, v, z)) → γ(f(u, v), z)

F

99ttttttttttt

W p Zγ
oo
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4 A NON-GIRARDIAN COMONAD ON Dial(P ) 4.2 The Kleisli category Dial+ has a weak exponent.

Now because we have stable and disjoint coproducts, we can write φ(u, v, z) as

φ(u, v, z) =
φX(u, v, z) : F (u, v, z) = x ∈ X. α(u, x) → γ(f(u, v), z)

+ φY (u, v, z) : F (u, v, z) = y ∈ Y. β(v, y) → γ(f(u, v), z)
+ φ1(u, v, z) : F (u, v, z) = ∗ ∈ 1. > → γ(f(u, v), z)

where the maps φX , φY , φ1 are the results of pulling back φ along respectively F−1(X) →
U × V × Z, F−1(Y ) → U × V × Z, and F−1(Z) → U × V × Z.

A map from α to β ⊃ γ in Dial+:

U

(f,H,k(f,H))

�� DD
DD

DD
DD

DD
DD

DD
DD

DD
p X + 1
α̂oo ψ(u, v, z) : α̂(u,K(u, v, z)) → (β ⊃ γ)(f(u),H(u), k(f(u),H(u)), v, z)

K

<<yyyyyyyyy

Π2 p V × Z
β⊃γ

oo

Again we use the coproduct properties to get:

ψ(u, v, z) =
ψX(u, v, z) : K(u, v, z) = x ∈ X. α→ (β ⊃ γ)(f(u),H(u), k(f(u),H(u)), v, z)

+ ψ1(u, v, z) : K(u, v, z) = ∗ ∈ 1. >K−1(1) → (β ⊃ γ)(f(u),H(u), k(f(u),H(u)), v, z)

Spelling out what this means:

α̂(u,K(u, v, z))
ψ

++WWWWWWWWWWWWWWWWWWWW

**

(β ⊃ γ)(f(u),H(u), k(f(u),H(u)), v, z)

��

// γ × V + [β, γ]

��
U × V × Z

(f,H,k(f,H))
// 2 // W × V × Z + [β, γ]

where the square is a pullback. Notice that U × V × Z ∼= H−1(1) +H−1(Y ) and

(β ⊃ γ)(f,H, k(f,H), v, z) ∼= γ(f(u, v), z) +H−1(Y ),

so the triangle in the diagram can be written

α̂(u,K(u, v, z))
ψ

//

))TTTTTTTTTTTTTTT
γ(f(u, v), z) +H−1(Y )

��
H−1(1) +H−1(Y )

Since pullbacks preserves coproducts and

U×V×Z ∼= (K−1(X)∧H−1(1))+(K−1(X)∧H−1(Y ))+(K−1(1)∧H−1(1))+(K−1(1)∧H−1(Y )).
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4 A NON-GIRARDIAN COMONAD ON Dial(P ) 4.2 The Kleisli category Dial+ has a weak exponent.

where K−1(1) ∧H−1(1) means pullback of K−1(1) → U × V ×Z and H−1(1) → U × V ×Z.
We then get

ψX = ψX,1 : K(u, v, z) = x ∈ X ∧H(u, v, z) = ∗ ∈ 1. α(u, x) → γ(f(u, v), z)
+ ψX,Y : K(u, v, z) = x ∈ X ∧H(u, v, z) = y ∈ Y. α(u, x) → >

ψ1 = ψ1,1 : K(u, v, z) = ∗ ∈ 1 ∧H(u, v, z) = ∗ ∈ 1. > → γ(f(u, v), z)
+ ψ1,Y : K(u, v, z) = ∗ ∈ 1 ∧H(u, v, z) = y ∈ Y. > → >

So when H(u, v, z) ∈ Y we get no information from ψ, however,

˜(f,H, k(f,H)) : U × V × Z → 2

and in particular, we have, in the fibre over H−1(Y ),

k̃(f(u),H(u), v, z) : H(u, v, z) = y ∈ Y.[β(v,H(u, v, z), γ(f(u, v), z))].

Now we are ready to give the retraction.

I : Dial+(α&β, γ) → Dial+(α, β ⊃ γ)

I works as follows. Given f, F, φ we get

• f̃ , the transposed of f by the Cartesian closure of C.

• H = U × V × Z
F // X + Y + 1 // Y + 1,

• k(f̃(u),H(u), v, z) = φY (u, v, z) : F (u, v, z) = H(u, v, z) = y ∈ Y. β(v, y) → γ(f(u, v), z),

• K = U × V × Z
F // X + Y + 1 // X + 1

•

ψ(u, v, z) =
φX(u, v, z) : K−1(X) ∧H−1(1) = F−1(X). α(u, F (u, v, z)) → γ(f(u, v), z)

+ φ1(u, v, z) : K−1(1) ∧H−1(1) = F−1(1). > → γ(f(u, v), z)
+ id : K−1(1) ∧H−1(Y ) = F−1(Y ). > → >.

Note that K−1(X) ∧H−1(Y ) = 0 since F−1(X) ∧ F−1(Y ) = 0.

R : Dial+(α, β ⊃ γ) → Dial+(α&β, γ)

Given (f,H, k(f,H)),K, ψ, R returns

• f̂ , the transpose of f .

• F = H �H−1(Y ) +K �H−1(1),

• φ(u, v, z) : ˆα&β(u, v, F (u, v, z)) → γ(f(u, v), z) is defined by

φ(u, v, z) =
ψX,1 : F−1(X) = K−1(X) ∧H−1(1). α(u, F (u, v, z)) → γ(f(u, v), z)

+ ψ1,1 : F−1(1) = K−1(1) ∧H−1(1). > → γ(f(u, v), z)
+ k(f(u), h(u), v, z) : F (u, v, z) = H(u, v, z) = y ∈ Y. β(v, y) → γ(f(u, v), z)

which is the same as saying φ = ψ �H−1(1) +k.

It is now straightforward to verify that RI = id.
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4 A NON-GIRARDIAN COMONAD ON Dial(P ) 4.2 The Kleisli category Dial+ has a weak exponent.

Naturality of the retraction Let

U ′

t

�� DD
DD

DD
DD

DD
DD

DD
DD

DD
p X ′ + 1
α̂′oo θ(u′, x) : α̂′(u, v, F (u′, T (u′, x)) → α(t(u′), x)

T

;;xxxxxxxxx

U p Xα
oo

and (f, F, φ) : ˆα&β → γ, and (f,H, k,K,ψ) : α̂ → (β ⊃ γ). We know that idβ = (idV , µY ◦
πY , idβ) and

(t, T, θ)& idβ = (t× idV , µX+Y ◦ (T + πY ), θ(π(u′, v′), x) + idβ)

We must show that

I(f, F, φ) ◦ (t, T, θ) = I((f, F, φ) ◦ ((t, T, θ)& idβ)) (10)

and
R((f,H, k,K,ψ) ◦ (t, T, ψ)) = R(f,H, k,K,ψ) ◦ ((t, T, θ)& idβ) (11)

For (10) consider
I(f, F, φ) = (f,H, k = φY ,K, ψ = φX + φ1 + id)

so the left hand side of (10) becomes

I(f, F, φ) ◦ (t, T, θ) =

• (f,H, φY ) ◦ t = (f(t(u′), v),H(t(u′), v, z), φY (t(u′))) : U ′ → Ππ2,

• T̂ (u′,K(t(u′), v, z)) : U ′ × V × Z → X ′ + 1,

• the composite

α̂′(u′, T̂ (u′,K(t(u′), v, z)))

θ̂(u′,K(t(u′),v,z))

��
α̂(t(u′),K(t(u′), v, z))

ψ(t(u′),v,z)

��
(β ⊃ γ)(f(t(u′)), H(t(u′)), φY (t(u′)), v, z).

On the other hand

I((f, F, φ) ◦ (t, T, θ)& idβ) =

I[f(t(u′), v), ̂(T + πY )(u′, v, F (t(u′), v, z)), (φ(t(u′), v, z) ◦ (θ + idβ))(u
′, v, F (t(u′, v, z)))]

which yields

• f(t(u′), v),
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4 A NON-GIRARDIAN COMONAD ON Dial(P ) 4.2 The Kleisli category Dial+ has a weak exponent.

• H = U ′ × V × Z
〈u′,v,F (t(u),v,z)〉

// U ′ × V × (X + Y + 1)
̂(T+πY )

// X ′ + Y + 1 // Y + 1

• k(ft(u′), H(t(u′)), v, z) =

φY (t(u′), v, z) : F (t(u′), v, z) = y ∈ Y.β̂(v, y)
id // β̂(v, y)

φY (t(u′),v,z)
// γ(t(u′), v, z)

• K = U ′ × V × Z
〈u′,v,F (t(u),v,z)〉

// U ′ × V × (X + Y + 1)
T̂+πY // X ′ + Y + 1 // X ′ + 1

•

ψ =

φX(t(u′), v, z) ◦ θ̂(u′, x) : F (t(u′), v, z) = x ∈ X. α̂′(u′, T (u′, x)) → α̂(t(u′), x) → γ(t(u′), v, z)
+ φ1(t(u

′), v, z) : F (t(u′), v, z) ∈ 1.> → γ(t(u′), v, z)
+ id : F (t(u′), v, z) = y ∈ Y.> → >.

which is easily seen to be equal.
To see that (11) holds, recall that

R(f,H, k,K,ψ) = (f, F = H �H−1(Y ) +K �H−1(1), ψ �H−1(1) +k)

Now, the right hand side of 11 is

• f(t(u′), v),

• T̂ + πY (u′, v, F (t(u′), v, z)),

•

ψ �H−1(1) (t(u′), v, z) + k(t(u′)) ◦ θ̂ + idβ(u
′, v, F (t(u′), v, z))

= ψ �H−1(1) (t(u′), v, z) + k(t(u′)) ◦ θ̂(u′, FX+1(t(u
′), v, z) + idβ(v, FY (t(u′), v, z)))

= ψ �H−1(1) (t(u′), v, z) + k(t(u′)) ◦ θ̂(u′,K �H−1(1) (t(u′), v, z) + idβ(v,HY (t(u′), v, z)))

= (ψ �H−1(1) (t(u′), v, z) ◦ θ̂(u′,K �H−1(1) (t(u′), v, z)) + k(t(u′))

= (ψ �H−1(1) (t(u′), v, z) ◦ θ̂(u′,K(t(u′), v, z)) �H−1(1) +k(t(u′))

On the other hand

(f,H, k,K,ψ)◦(t, T, φ) = (f(t(u′)),H(t(u′)), k(t(u′)), T̂ (u′),K(t(u′), v, z), ψ(t(u′), v, z)◦θ̂(t(u′), v, z))

applying R to this gives

• f(t(u′), v)

• H(t(u′), v, z) �H−1(Y ) +T̂ (u′,K(t(u′), v, z)) �H−1(1)

• (ψ(t(u′), v, z) ◦ θ̂(u′,K(t(u′), v, z))) �H−1(1) +k(t(u′)).
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5 EXAMPLES

It seems clear that this proof can be carried out in the general case of cloven fibrations
with the appropriate structure, but we leave that for another occasion.

One way of thinking of a map (f, F, φ) in Dial(p)(A,B) is the following: given a witness
u of ∃u∀x.α(u, x), f provides a witness fu of ∃v∀y.β(v, y), and given a counter example y of
∀y.β(fu, y), F (u, y) is a counter example of ∀x.α(u, x), and φ is a proof of this. Now, for the
Kleisli category Dial+, the difference is that given a counter example of ∀y.β(fu, y), F (u, y)
may either give a counter example of ∀x.α(u, x) or raise an exception.

In the same spirit, one may give the following intuitive characterization of the homsets
Dial+(A×B,C) and Dial+(A,B ⊃ C): The counter example part of Dial+(A×B,C) gives a
counter example of α or β exclusively provided a counter example of γ. The counter example
part of Dial+(A,B ⊃ C) gives a counter example of α or β or both provided a counter example
of γ. This gives some intuition as to why Dial+(A,B ⊃ C) is “bigger” than Dial+(A×B,C).

5 Examples

Examples of fibrations that meet the conditions of Theorem 4.7 are, cod(PER) → PER
(equivalently, the split fibration UFam(PER) → PER), cod(Set) → Set (equivalently, the
split fibration Fam(Set) → Set), and for a topos C, the codomain fibration cod(C) → C, and
the subobject fibration Sub(C) → C.

5.1 A modest example

We will now spell out the details of one of the examples, namely the fibration

UFam(PER)

��
PER

This example is important because it may provide us with the insight to give an extensional
version of the Dialectica interpretation (corresponding to extensional realizability). Also some
readers might like a concrete example.

Objects of UFam(PER) are collections (A[n])[n]∈N/R of partial equivalence relations (pers)
indexed by a per R.

Morphisms from (A[n])[n]∈N/R to (B[m])[m]∈N/S are pairs (u, f), where u : N/R → N/S
is a morphism in PER (that is, it is tracked by some eu ∈ N; u([n]) = [eu · n]) and
f = (f[n] : A[n] → Bu([n])) which is tracked uniformly, i.e., there is an ef ∈ N such that
for all [n] ∈ N/R and for all m ∈ [n], ef ·m tracks f[n]: f[n]([a]) = [(ef ·m) · a] for all
m ∈ [n].

We now describe some well-known closure properties for the category PER of partial
equivalence relation (also known as the category of modest sets).

The category PER has finite limits. The terminal object is given by {(0, 0}), the product
of two pers R and S is given by

R× S = {(n,m) | pnRpm and p′nSp′m}.
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5 EXAMPLES 5.1 A modest example

The pullback of

S

f
��

R g
// T

is
{[n] ∈ N/(R× S) | g([pn]) = f([p′n])}

The initial object in PER is the empty set. The coproduct of R and S is

R+ S = {(n,m) | (pn = pm = 0 and p′nRp′m) or (pn = pm = 1 and p′nSp′m)}.

Proposition 5.1. Coproducts in PER are stable and disjoint.

Furthermore, PER has exponentials

R⇒ S = {(n, n′) | ∀mm′.mRm′ ⇒ n ·mSn′ ·m′}

We also have simple products, that is, for projections π : I × J → I in PER, there is a right
adjoint Ππ to π∗, it is defined as follows: For (Ri,j)(i,j)∈I×J ,

(ΠπR)[i] = (
⋂

j∈|J |

{c | ∀n ∈ [j].c·n ∈ Ri,j},∼), where c ∼ c′ iff for all j ∈ |J |.∀n ∈ [j].c·nRi,jc
′·n.

Now we will turn to the Dialectica-Kleisli category Dial+(UFam(PER)), for which we will
describe the weak exponential in details. The product: (U,X,α) × (V, Y, β) = (U × V,X +
Y, α&β), where for n ∈ X + Y ,

(α&β)(u, v, n) =

{

α(u,p′n) if pn = 0
β(v,p′n) if pn = 1

Now 2 in the fibre over V ⇒W × V × Z ⇒ 1 + Y × V × Z is defined by

2(g,G, v, z) =

{

β(v, y) ⇒ γ(gv, z) if G(v, z) = y ∈ Y
{(g,G, v, z) | G(v, z) ∈ 1} if G(v, z) ∈ 1

And Ππ2 in the fibre over V ⇒W × V × Z ⇒ 1 + Y is

(Ππ2)(g,G) = (
⋂

v,z{k(g,G) ∈ N | ∀n ∈ [(v, z)].k(g,G) · n ∈ 2(g,G, v, z),∼)

where k(g,G) ∼ k′(g,G) iff ∀v, z ∈ |V × Z|
∀n ∈ [v, z].k(g,G) · n2(g,G, v, z)k′(g,G) · n

And, finally β ⊃ γ in the fibre over (Π2) × V × Z is

(β ⊃ γ)(k(g,G) : (Π2)(g,G), v, z) =

{

γ(gv, z) if G(v, z) ∈ 1
{(k(g,G), v, z) | G(v, z) ∈ Y } if G(v, z) ∈ Y

20

95



7 ACKNOWLEDGEMENT

6 Conclusion and Future Work

We have shown that Dialectica categories can be generalized to cloven fibrations and how,
starting with a monad, one can construct comonads on the Dialectica category. We have
shown how one particular non-Girardian comonad constructed from a monad gives rise to a
weakly Cartesian closed Dialectica-Kleisli category.

The ideas presented in this paper suggest two new Dialectica variants. The first one based
on the new exponent as first presented in the tripos version in [BBLBCB07]. One can expand
Gödel’s system T with stable, disjoint coproducts and subset types and then we can interpret
implication as the new exponent. This has the advantage that we do not need the condition
that primitive formulas have to be decidable (in the recursion theoretic sense). By now, this
variant is described in [Bie07].

The second Dialectica variant that falls out of this work is a type theoretic one: instead of
having formulas over Heyting arithmetic (this more or less corresponds to de Paiva’s original
Dialectica categories) we have dependent types over some type system, and the Dialectica
interpretation turns the dependent type system into a lambda calculus without the η-rule.

There seem to be at least two monads that give rise to comonads with interesting Kleisli
categories, the free commutative monoid monad gives rise to the Diller-Nahm category and
the monad − + 1 gives a weakly Cartesian closed Dialectica category. One may ask if there
are other comonads on Dialectica categories that gives interesting Kleisli categories. And in
fact there is; this is studied in a realizability setting in [Bie08] and in a syntactical setting in
[Oli08].

The PER example that we gave in Section 5.1 gives a model for an extensional version
of the Dialectica interpretation, it would be interesting to describe this extensional version
in details. Also the type theoretic variant of the Dialectica interpretation mentioned above
deserves to be studied.

It would also be natural to find out what the closure properties are for the generalised
Dialectica categories, to see if they are symmetric monoidal closed like the original ones.
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A CARTESIAN CLOSURE OF THE CAUCHY COMPLETION

A Cartesian closure of the Cauchy completion

In this appendix we include a proof of a folklore theorem:

Theorem A.1. Let C be a category with finite products and a weak closed structure [B,C],
then the Cauchy completion C̄ is Cartesian closed.

Let C be a category with finite products and a weak closed structure [B,C], that is, we
have a retraction

C(A×B,C)
I //

C(A, [B,C])
R

oo

onto C(A×B,C) (that is, RI = id), natural in A.
In the internal language, having a weak exponent like this corresponds to having λ-calculus

with the β-rule, but without the η-rule. The rule corresponding to the morphism R is

Γ ` N : A→ B
Γ, x : A ` Nx : B

R

and the rule corresponding to I is

Γ, x : A `M : B

Γ ` λx : A.M : A→ B
I

Consider
Γ, x : A `M : B

Γ ` λx : A.M : A→ B
I

Γ, x : A ` (λx : A.M)x : B
R

Since RI = id we get M : B
β
= (λx : A.M)x : B, substituting the free variable x for a term

N : A we get the β-rule

(λx : A.M)N : B
β
= M [N/x]

On the other hand, consider

Γ ` N : A→ B
Γ, x : A ` Nx : B

R

Γ ` λx : A.(Nx) : A→ B
I

Since IR 6= id we can conclude that

N : A→ B
η

6= λx : A.(Nx) : A→ B,

so we have no η-rule in the internal language. That is, not all terms of function type can be
constructed by λ abstraction.

Naturality of I in A is: given a : A′ → A, f : A×B → C,

I(f ◦ (a×B)) = I(f) ◦ a

Naturality of R in A is: given a : A′ → A, g : A→ [B,C],

R(g ◦ a) = R(g) ◦ (a×B).
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A CARTESIAN CLOSURE OF THE CAUCHY COMPLETION

Write ev : [A,B]×A→ B for R(id[A,B]) and e : [A,B] → [A,B] for I(ev) = IR(id[A,B]).
Note that

ev ◦ g ×B = R(id[B,C]) ◦ (g ×B) = R(id ◦g) = R(g)

and
IR(g) = I(ev ◦ g ×B) = I(ev) ◦ g = eg

It follows that
ev ◦ (I(f)×B) = RI(f) = f

i.e.,
f̃(a)(b) = f(a, b).

Definition A.2 (Notation). For u : A1 → A, x : B → B1, define

[u, x] : [A,B] → [A1, B1]

to be

I([A,B] ×A1
[A,B]×u

// [A,B]×A
ev // B

x // B1)

Observe that [idA, idB] = e : [A,B] → [A,B].

Proposition A.3. Let g : A→ [B,C], b : B′ → B, c : C → C ′. Then

[b, c] ◦ g = I(c ◦ ev ◦ [B,C]× b) ◦ g
= I(c ◦ ev[B,C]× b ◦ g ×B′)
= I(c ◦ ev ◦ g ×B ◦A× b)
= I(c ◦R(g) ◦ A× b).

Proposition A.4. Take A2
v // A1

u // A and B
x // B1

y
// B2 . Then

[v, y] ◦ [u, x] = I(y ◦R([u, x]) ◦ [A,B]× v)
= I(y ◦ ([A,B] ◦ u ◦ ev ◦ x) ◦ [A,B]× v) as RI = id
= I((yx) ◦ ev ◦ ([A,B]× uv))
= [uv, yx].

We define C̄ to be the category of idempotents in C. The objects are (A, a) with a = a2

an idempotent on A. The maps (A, a) → (B, b) are the maps f : A→ B with bfa = f . This
is called the Cauchy completion of C.

C̄ has products. Take (A, a), (B, b) in C̄, and consider (A × B, a × b). For (C, c) in C̄
consider f = (f1, f2) : C → (A×B). We see that

a× b ◦ fc = f

if and only if
af1c = f1 and bf2c = f2.

Thus (A×B, a× b) is the product as required.
Now take (B, b), (C, c) in C̄. We have

[b, c]2 = [b, c] ◦ [b, c] = [b2, c2] = [b, c].
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A CARTESIAN CLOSURE OF THE CAUCHY COMPLETION

So [b, c] is an idempotent and ([B,C], [b, c]) is in C̄.
Suppose g : A→ [B,C] satisfies g = [b, c] ◦ g. Then

eg = e[b, c]g = [idB , idC ][b, c]g = [b, c]g = g.

So g = IR(g). Also
R(g) = R([b, c]g)

= R([b, c]) ◦ g ×B
= (c ◦ ev ◦ [B,C]× b) ◦ g ×B
= cR(id)(g ×B)(A× b)
= cR(g)(A × b)

That is R(g) satisfies R(g) = cR(g)(A × b). Conversely suppose f : A×B → C satisfies

cf(A× b) = f.

Then
[b, c] ◦ I(f) = I(c ◦RI(f) ◦ (A× b))

= I(cf(A× b))
= I(f).

That is, I(f) satisfies I(f) = [b, c]I(f). it follows that I and R induce an isomorphism
between maps

g : (A, idA) → ([B,C], [b, c])

and
f : (A, idA)× (B, b) → (C, c)

in C̄. This is natural in A and the extension to an isomorphism between

g : (A, a) → ([B,C], [b, c])

and
f : (A, a) × (B, b) → (C, c)

follows from: Suppose g = [b, c]ga then ga = [b, c]ga2 = [b, c]ga = g. It follows that

R(g) = R(ga) = cR(ga)(A × b)
= cR(g)(a ×B)(A× b)
= cR(g)(a × b).

and conversely suppose f = cf(a×b) then f(a×B) = cf(A×b)(a2×B) = cf(A×b)(a×B) = f
and also f ◦ (a×B) = c(f ◦ a×B)(A× b). It follows that

I(f) = I(f ◦A× b) = [b, c]I(f ◦ a×B)
= [b, c]I(f)a.

Thus ([B,C][b, c]) is the function space of (B, b) to (C, c) in C̄ and C̄ is Cartesian closed.
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Chapter 5

The Copenhagen Interpretation

This paper has been submitted for publication in Annals of Pure and Applied Logic. The reader should
have a look at [Göd90] or the more recent survey paper [AF98], and [DN74]. Some readers may find it
helpful to first have a look at the constructions in Chapters 2 and 4.

In this paper we present a new functional interpretation called the Copenhagen interpretation. The
Copenhagen interpretation is a generalization of Dialectica which is not limited to decidable atomic for-
mulas, thus it soundly interprets higher typed Heyting arithmetic, HAω, whereas the original Dialectica
interpretation only interprets first order Heyting arithmetic, HA. Generalizing the Dialectica interpretation
to higher types has been one of the aims for our research. With the Copenhagen interpretation, we reach
this goal, though it is perhaps not as simple as one would have liked. Very recently, we have discovered a
much simpler variant, which we believe also interprets HAω. This new variant will be presented in a future
paper, but we give a rough sketch of the idea in an appendix of the this paper.

The Copenhagen interpretation is the direct result of the categorical analysis of the Dialectica and
Diller-Nahm interpretations in [dP89, Hyl02], and the papers in Chapters 2 and 4. The basic structure was
discovered during the research for the material in Chapter 2 and refined by Martin Hyland at a meeting in
Copenhagen1 in 2006, hence the name “Copenhagen interpretation”. A thorough analysis of the clause for
implication can be found in Chapter 4.

Apart from presenting the precise definition of the Copenhagen interpretation, there are two main re-
sults in this paper, namely the Soundness Theorem and the Axiomatization Theorem. Moreover, we state
and prove precisely in what sense the Copenhagen interpretation (and in fact also the Diller-Nahm inter-
pretation) is a generalization of Gödel’s Dialectica interpretation, and finally we give a classical version of
the Copenhagen interpretation.
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The Copenhagen Interpretation

Bodil Biering

1 Introduction

We present a new functional interpretation, called the Copenhagen interpretation. Like the
Diller-Nahm interpretation [DN74], the Copenhagen interpretation generalizes Gödel’s Dialec-
tica interpretation [Göd90, AF98, Sch06] from first order Heyting arithmetic HA to higher
typed Heyting arithmetic HA ω, or to be precise, the Dialectica interpretation requires atomic
formulas to be decidable because otherwise it cannot interpret contraction, the Diller-Nahm
and Copenhagen interpretations do not have this limitation. The Diller-Nahm and Copen-
hagen interpretations are two different ways of coping with the problem. The Diller-Nahm
interpretation avoids choosing by using list types, whereas for the Copenhagen interpreta-
tion contraction is validated because the Copenhagen interpretation of conjunction is defined
differently. Where the Diller-Nahm interpretation uses list types, the Copenhagen interpre-
tation requires subset types, because the new interpretation of conjunction also forces a new
interpretation of implication, and for that subset types are needed. Beside their apparent
difference, the two generalizations, Diller-Nahm and Copenhagen, differs in interesting ways
and this is illustrated by a detailed example.

The Copenhagen interpretation is the direct result of the categorical analysis of the Di-
alectica and Diller-Nahm interpretations in [dP89, Hyl02, BBLBCB07, Bie07]. The basic
structure was presented in [BBLBCB07] and refined by Martin Hyland at a meeting in Copen-
hagen1 in 2006, hence the name “Copenhagen interpretation”. A analysis of the clause for
implication can be found in [Bie07].

Apart from presenting the precise definition of the Copenhagen interpretation, there are
two main results in this paper, namely the Soundness Theorem and the Axiomatization
Theorem. Moreover, we state and prove precisely in what sense the Copenhagen interpretation
(and in fact also the Diller-Nahm interpretation) is a generalization of Gödel’s Dialectica
interpretation, and finally we give a classical version of the Copenhagen interpretation.

2 Definition of Interpretation

In this section we give a complete description of the logical system that we shall use, and we
also provide some models for the system. We then define the Copenhagen interpretation and
illustrate the difference between the Dialectica, Diller-Nahm and Copenhagen interpretations
by a detailed example.

1The authors of [BBLBCB07] have held two “Dialectica meetings” the first in Copenhagen in September
2006, the second in Genoa, June 2007
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2 DEFINITION OF INTERPRETATION 2.1 Higher Typed Heyting Arithmetic with Sum Types and Subset Types

2.1 Higher Typed Heyting Arithmetic with Sum Types and Subset Types

We now describe the system HA ω
+. It is essentially Gödel’s system T (as described in [AF98]

and in [Str01]) with the addition of quantifiers and sum types and subset types. For conve-
nience we give the full definition.

Types: The set T of types is defined inductively as follows

• N ∈ T (type of natural numbers)

• 1 ∈ T (unit or terminal type)

• U,X ∈ T then U ×X ∈ T .

• U,X ∈ T then U ⇒ X ∈ T .

• If X and U are types of T , then X + U is a type.

• If α(u, x), β(v, y) are formulas of HA ω
+, then {(f, F ) : U ⇒ V × (U ×Y ⇒ X+1) |

∀u, y. caseF (u, y) ∈ X.αC(u, F (u, y)) → βC(f(u), y)} is a type.

• If s, t are closed terms of type U , then 1 + {∗ : 1 | s =U t} is a type.

When we write
caseF (u, y) ∈ X.αC(u, F (u, y)) → βC(f(u), y)

it is short for
(

caseF (u, y) ∈ X. αC(u, F (u, y)) → βC(f(u), y)
caseF (u, y) ∈ 1. >

)

The reason for only allowing certain kinds of subset types is that we want to ensure that
all types are non-empty. This rather ugly form of subset types is motivated by the fact
that full subset types are not C-interpreted, this restricted form is both C-interpreted
and enables us to prove the Axiomatization Theorem 5.1

Language : Countably many variables x : U for each type U ∈ T . The following constant
symbols:

0 : N, succ : N → N, RU : U → (N → U → U) → N → U,

pU,X : U → X → U ×X, pr
U,X
0 : U ×X → U, pr

U,X
1 : U ×X → X,

inlU,X : U → U +X, inrU,X : X → U +X, ∗ : 1.

An equality predicate =U for each type U . For each U,X ∈ T an application operation
appU,X from (U → X)× U → X.

Terms

t, s ::= x : U | f : U | appU,X(t : U → X, s : U) : X | λx : U.(t : X) : U → X

where f is a constant symbol, appU,X(t, s) is often written t(s). We also have term
constructors i and o for subset types: if φ[t/x] is provable then i(t) : {x : X | φ} is a
term. If s : {x : X | φ} is a term, then o(t) : X is a term.

Formulas φ ::= s =U t | ⊥ | > | φ ∧ φ | φ ∨ φ | φ→ φ | ∀x.φ | ∃x.φ |

(

case t ∈ U. φ
case t ∈ X. φ

)

2
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2 DEFINITION OF INTERPRETATION 2.1 Higher Typed Heyting Arithmetic with Sum Types and Subset Types

By abuse of notation we will write

(

case z ∈W. φ(z)
case z ∈ R. ψ(z)

)

for

(

case z = inl(w). φ(w)
case z = inr(r). ψ(r)

)

.

We notice that for every type U there is a distinguished closed term 0U : σ, defined as follows:

0N = 0, 0U×X = p(0U , 0X ), 0U→X = λu : U.0X , 0U+X = inl(0U ),
0{(f,F ):U⇒V×(U×Y⇒X+1)|∀u,y. caseF (u,y)∈X.αC(u,F (u,y))→βC(f(u),y)} = p(λu : U.0V , λu, y.inr(∗))

The logical system for HA ω
+ is:

Propositional connectives Rules have the form

premiss

conclusion

and
P
Q is short for

P
Q and

Q

P
,

P ≡ Q is short for P ` Q and Q ` P

φ ` φ
(1)

φ ` >
(2)

⊥ ` φ
(3)

φ ` ψ ψ ` θ

φ ` θ
(4)

φ ∧ ψ ` φ
(5)

φ ∧ ψ ` ψ
(6)

φ ` ψ φ ` χ

φ ` ψ ∧ χ
(7)

φ ` φ ∨ ψ
(8)

ψ ` φ ∨ ψ
(9)

φ ` χ ψ ` χ

φ ∨ ψ ` χ
(10)

φ ` ψ → θ

φ ∧ ψ ` θ
(11)

(12) ∃f : V U , F : (X + 1)U×Y ∀u, y.

(

caseF (u, y) ∈ X. αC(u, F (u, y)) → βC(f(u), y)
caseF (u, y) ∈ 1. βC(f(u), y)

)

≡

∃(f, F ) : {f : V U , F : (X + 1)U×Y | ∀u, y.caseF (u, y) ∈ X.αC(u, F (u, y)) → βC(f(u), y)}

∀u, y.

(

caseF (u, y) ∈ X. >
caseF (u, y) ∈ 1. βC(f(u), y)

)

(13)

(

case z = inl(w). φ(w)
case z = inr(r). ψ(r)

)

≡ (z = inl(w) → φ(w)) ∧ (z = inr(r) → ψ(r))

Quantifiers
φ ` ψ

φ ` ∀x.ψ
x 6∈ FV(φ) (14)

φ ` ψ

∃x.φ ` ψ
x 6∈ FV(ψ) (15)

3
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2 DEFINITION OF INTERPRETATION 2.1 Higher Typed Heyting Arithmetic with Sum Types and Subset Types

Induction scheme
` φ(0) ` ∀n.(φ(n) → φ(succ(n)))

` ∀n.φ(n)
(16)

Defining equations for the constants

¬0 = succ(x), (λx : σ.t)(s) = t[s/x],
pr0(p(x, y)) = x, pr1(p(x, y)) = y, p(pr0(z), pr1(z)) = z,
R(x, y, 0) = x, R(x, y, succ(z)) = y(z, R(x, y, z)),
io(t) = t, oi(t) = t.

We write z ∈ X for ∃x : X.z = inl(x), where z : X + Y .

z : X + Y ` ¬(z ∈ X ∧ z ∈ Y )
,

z : X + Y ` z ∈ X ∨ z ∈ Y

Equality Axioms

` x =U x
,
x =U y ` y =U x

,
x =U y ∧ y =U z ` x =U z

,
s = r ` app(t, s) = app(t, r)

Substitution 2

φ ` ψ

φ[t/x] ` ψ[t/x]
t free for x in φ,ψ

t = s ` ψ[t/x]

t = s ` ψ[s/x]
t, s free for x in ψ.

Models of HA ω
+ Examples of models for the system HA ω

+ are HRO, hereditary recursive
operations, HEO, hereditary effective operations. Any subobject fibration over a category
C, where C is regular (=,∃,∧), ccc (×,⇒) and lccc (→,∀) and has finite, stable, disjoint
coproducts (needed for the case construction), and has a natural numbers object. Note that
the Dialectica tripos defined in [BBLBCB07] is not a model of the system HA ω

+ because it
doesn’t validate the rule (12).

Definition 2.1 (Copenhagen Interpretation). Suppose α and β are formulas of HA
ω and

αC = ∃u∀x.αC(u, x) and βC = ∃v∀y.βC(v, y).

α ∈ {>,⊥}, αC = αC = α.

(s =U t)C = ∃u : 1 + {∗ : 1 | s =U t}.

(

case u = inl(∗). ⊥
case u = inr(∗). >

)

(α ∧ β)C = ∃u, v∀z : X + Y.

(

case z ∈ X. αC(u, z)
case z ∈ Y. βC(v, z)

)

(α→ β)C =
∃〈f, F 〉 : {U ⇒ V × (U × Y ⇒ X + 1) |

∀u, y.caseF (u, y) ∈ X.αC(u, F (u, y)) → βC(f(u), y)}

∀u, y.

(

caseF (u, y) ∈ 1. βC(fu, y)
caseF (u, y) ∈ X. >.

)

(∀z.α(z))C = ∃f : Z → U∀z, x.αC(z, f(z), x)
(∃z.α(z))C = ∃z, u∀x.αC(z, u, x)

(α ∨ β)C = ∃z ∈ U + V ∀x, y.

(

case z ∈ U. αC(z, x)
case z ∈ V. βC(z, y)

)

(

case z ∈W. α(z)
case z ∈ R. β(z)

)C

= ∃u, v∀x, y.

(

case z ∈W. αC(z, u, x)
case z ∈ R. βC(z, v, y)

)

2The second, and somewhat unusual substitution rule is provably equivalent to the standard substitution
rule: t = s ∧ φ[t/x] ` ψ[s/x].
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2 DEFINITION OF INTERPRETATION 2.1 Higher Typed Heyting Arithmetic with Sum Types and Subset Types

If we add other predicate symbols P , these are interpreted as PC = PC = P .

Note that
caseF (u, y) ∈ X.αC(u, F (u, y)) → βC(f(u), y)

is short for
(

caseF (u, y) ∈ X. αC(u, F (u, y)) → βC(f(u), y)
caseF (u, y) ∈ 1. >

)

The Copenhagen interpretation translates a formula α of HA ω
+ into a formula of the form

∃u∀x.αC(u, x), where αC(u, x) is a quantifier-free formula. As for the Dialectica interpreta-
tion, the most complicated case is implication. Recall that for the Dialectica interpretation
we have

(α→ β)D = ∃f : U ⇒ V, F : (U × Y ) ⇒ X∀u, y.αD(u, F (u, y)) → βD(f(u), y)

and the intuition is that given a realizer u for ∃u∀x.αD(u, x), f provides a realizer f(u) for
∃v∀y.βD(v, y). At the same time, if y is a counterexample of ∀y.βD(f(u), y) then F (u, y) is a
counterexample for ∀x.αD(u, x).

For the C-interpretation we have a similar situation except here, F can either send a
counterexample to a counterexample or F (u, y) = ∗ ∈ 1, in which case we can think of F as
raising an exception, and F can do this when we know that the conclusion, βC(fu, y) is true.

Definition 2.2. A formula φ is said to be C-stable respectively D-stable whenever φC = φ,
respectively φD = φ, where (−)D is the Dialectica interpretation and where = means that they
are syntactically equal.

One important observation to make about the Copenhagen interpretation is that it is not
the case that quantifier-free formulas are C-stable. The Dialectica interpretation enjoys the
property that quantifier-free formulas are D-stable, and one can exploit that to conclude that
whenever a formula has the form φ = ∃u∀x.α(u, x) where α is quantifier-free, then φD = φ,
so in particular the D-interpretation is idempotent. For the C-interpretation we have the
following for formulas A,B of the form A = αC and B = βC :

(A ∧B)C = ∀z : 2.

(

case z = 0. A
case z = 1. B

)

(A→ B)C = ∃F : {F : 1 → 2 | caseF (∗) = 0.A→ B}.

(

caseF (∗) = 0. >
caseF (∗) = 1. B

)

(A ∨B)C = ∃z : 2.

(

case z = 0. A
case z = 1. B

)

(

case z ∈ X. A(z)
case z ∈ Y. B(z)

)C

=

(

case z ∈ X. A(z),
case z ∈ Y. B(z)

)

(¬A)C = ∃F : {F : 1 → 2 | caseF (∗) = 0.¬A}.

(

caseF (∗) = 0. >
caseF (∗) = 1. ⊥

)

Proposition 2.3. The C-interpretation is idempotent, i.e., for all formulas φ, (φC)C = φC .

Proof: By induction on the structure of formulas, we easily show that for all α, where
αC = ∃u∀x.αC(u, x), we have αC(u, x)C = αC(u, x), so

(αC)C = (∃u∀x.αC(u, x))C

= ∃u∀x.αC(u, x)C

= ∃u∀x.αC(u, x)
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2.2 Example

In the following we give a detailed example of a formula that have different C-, D-, and
DN -interpretations.

We shall look at the formula

ψ = ∀f : N → N∃x : N(P (x) → P (f(x)))

Assuming that P is a new predicate symbol over the type N , which is undecidable, we show
that for the D-interpretation we are unable to define a realizer for ψ, and that the two
generalizations of Dialectica, namely the Diller-Nahm and the Copenhagen interpretations
give very different realizers. The point is not to try to show superiority of one interpretation
over the others, but merely to illustrate the differences. Very informally, one might say that
this example illustrates that while the Dialectica interpretation forces us to provide a realizer
right away - whether needed or not, the Copenhagen interpretation postpones this to the
very last moment. One may therefore think of the Copenhagen interpretation as a sort of
call-by-name Dialectica, again this is very informal.

Classically, ψ is true, because

• If P (f(0)) = >, then we put x := 0

• If P (f(0)) = ⊥, then we put x := f(0)

The negative translation of ψ is

ψN = ∀f : N → N¬¬∃x : N(¬¬P (x) → ¬¬P (f(x)))

which is intuitionistically equivalent 3 to

ψN = ∀f : N → N¬¬∃x : N¬¬(¬P (x) ∨ P (f(x)))

so this holds for intuitionistic logic, HA ω. Before we go on with the various functional
interpretations of ψN , we need to consider:

Markov’s principle The Dialectica interpretation validates the following version of Markov’s
Principle:

MPDia (∀yθ(y) → ψ) → ∃y.(θ(y) → ψ)

where θ and ψ are quantifier-free. In case θ is ¬φ and ψ is ⊥ we have

¬∀y¬φ→ ∃¬¬φ

and since intuitionistic logic validates

¬∃yφ↔ ∀y¬φ

we get
¬¬∃yφ→ ∃y¬¬φ

3In classical logic we have (A→ B) ↔ (¬A∨B). Suppose A and B are atomic formulas, then the negative
translation of this is (¬¬A→ ¬¬B) ↔ ¬(¬¬A ∧ ¬B) and the latter is equivalent in HA to ¬¬(¬A ∨B).

6
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2 DEFINITION OF INTERPRETATION 2.2 Example

Thus if φ is double negation closed, we have

HA ω + MPDia ` ¬¬∃yφ→ ∃yφ

Hence MPDia gives us that
∀f.∃x.¬¬(¬P (x) ∨ P (f(x)))

holds in HA ω + MPDia. The Dialectica interpretation of φN is thus

∃F : NN → N∀f : NN .¬¬(¬P (F (f)) ∨ P (f(F (f))))

Now the term F that one would like to define is

F (f) =

{

0 if P (f(0))
f(0) if ¬P (f(0))

But since P is not recursive, F is not either.
The Diller-Nahm interpretation4 validates another version of MP (see [DN74]):

MPDN : (∀yA→ B) → ∃W : Pf (Y )(∀w : WA→ B)

Put B = ⊥ and A = ¬φ then we get

¬∀y¬φ→ ∃W : Pf (Y ).¬(∀w : W¬φ)

Since W is a finite set, ∀w : W¬φ is a conjunction:
∧

w∈W ¬φ(w), and in intuitionistic logic
we have

¬(
∧

w∈W

¬φ(w)) a` ¬¬(
∨

w∈W

φ(w))

We are now able to deduce

¬¬∃yφ→ ∃W : Pf (Y ).¬¬(
∨

w∈W

φ(w))

We now turn to the Diller-Nahm interpretation of φN . Let

Q(f, x) = ¬P (x) ∨ P (f(x)).

We have
HA ω + MPDN ` ∀f : NN∃W : PN .¬¬

∨

w∈W ¬¬Q(f,w)
` ∀f : NN∃W : PN .¬¬

∨

w∈W Q(f,w)

The Diller-Nahm interpretation of this is

∃F : (NN ) → Pf (N).∀f : NN .¬¬
∨

w∈F (f)

Q(f,w).

We define the realizer F as
F (f) = {0, f(0)}

4We have not defined the type Pf (N) in our formal system, since it is used only for the Diller-Nahm
interpretation, which is not our main focus. Pf (N) is the inductively defined type consisting of codes of finite
sets of natural numbers by natural numbers.
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and we have

HA ω ` ∀f : NN .¬¬(¬P (f(0)) ∨ P (f(0)))
` ∀f : NN .¬¬(¬P (0) ∨ P (f(0)) ∨ P (f(0)) ∨ Pf(f(0))))
a` ∀f : NN .¬¬(Q(f, 0) ∨Q(f, f(0))).

For the Copenhagen interpretation, things get a bit more elaborate, let us first consider
the interpretation of ¬¬∃u.φC(u).

(∃u.φC(u) → ⊥)C = ∃F : {F : U ⇒ 2 | ∀u.caseFu = 0.¬φC(u)}∀u : U.γ(F, u)

where

γ(F, u) =

(

case Fu = 1.⊥
case Fu = 0.>

)

Let
2 = {F : U ⇒ 2 | ∀u.caseFu = 0.¬φC(u)}

Intuitively, F ∈ 2 is a partial characteristic function for φC(u) in the sense that F might give
us some information of φC , but not necessarily all. Note that, if φC is recursive, then there
is a characteristic function χφC

∈ 2.

(¬¬∃u.φC(u))C =
∃G : {G : 2 ⇒ U + 1 | ∀F ∈ 2.caseG(F ) ∈ U.¬γ(F,G(F )))} ∀F ∈ 2.α(G,F ) =
∃G : {G : 2 ⇒ U + 1 | ∀F ∈ 2.caseG(F ) ∈ U.F (GF ) = 1} ∀F ∈ 2.α(G,F )

where

α(G,F ) =

(

case G(F ) ∈ 1.⊥
case G(F ) ∈ U.>

)

Intuitively this holds if there is a G : 2 ⇒ U + 1 such that for all partial characteristic
functions F , G provides a point u ∈ U that satisfies Fu = 1, i.e., u is not a counter example
of φC .

We are now ready to give the Copenhagen interpretation of ψN :

(∀f : NN¬¬∃x : N¬¬(¬P (x) ∨ P (f(x))))C =
∃H : NN → {G : 2 ⇒ N + 1 | ∀F ∈ 2.caseG(F ) ∈ N.F (G(F )) = 1}
∀f : NN .∀F ∈ 2.α(H(f), F, f)

where

α(H,F, f) =

(

case H(f)(F ) ∈ 1.⊥
case H(f)(F ) ∈ N.>

)

So we to show that this holds, we must find a realizer H which for all f : NN provides a
G : 2 ⇒ N + 1 satisfying ∀F ∈ 2.F (G(F )) = 1. We define H by:

H(f)(F ) =

{

0 if F (0) = 1
f(0) if F (0) = 0

To see that this H works we reason as follows: if F (0) = 1 we have found our point
G(F ) ∈ N with F (G(F )) = 1. If F (0) = 0, then by definition of the type 2, we have that
¬(¬(P (0) ∨ P (f(0)))) = ¬Q(f, 0). Now we have HA ω

+ ` F (n) = 0 ∨ F (n) = 1 for all n : N ,

8
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and by definition of 2, we have F (f(0)) = 0 → ¬(¬(P (f(0)) ∨ P (ff(0)))) = ¬Q(f, f(0)).
Recall that we have

HA ω
+ ` ¬¬(Q(f, 0) ∨Q(f, f(0)))

which is equivalent to
HA ω

+ ` (¬Q(f, 0) ∧ ¬Q(f, f(0))) → ⊥

So assuming F (0) = 0 we get HA ω
+ ` F (f(0)) = 0 → ⊥ hence HA ω

+ ` F (f(0)) = 1.

3 Soundness

The soundness Theorem is the first of our two main results. It states that if a formula φ is
provable in HA ω

+ then the C-interpreted formula φC is also provable in HA ω
+, which in turn

means that there is a term t (which is actually a primitive recursive function in the standard
model) of HA ω

+ such that
HA ω

+ ` ∀x.φC(t, x).

Lemma 3.1. HA
ω
+ ` (α→ β)C iff there exists terms g : U ⇒ V, G : (U ×Y ) ⇒ X in HA

ω
+

such that HA
ω
+ ` ∀u, y.αC(u,G(u, y)) → βC(gu, y).

Proof: Assume HA ω
+ ` (α→ β)C this means that we have terms

(f, F ) : {f : V U , F : (X + 1)U×Y | ∀u, y.caseF (u, y) ∈ X.αC(u, F (u, y)) → βC(f(u), y)}

such that

HA ω
+ ` ∀u, y.

(

caseF (u, y) ∈ X. >
caseF (u, y) ∈ 1. βC(fu, y)

)

Let g = f and

G(u, y) =

{

F (u, y) if F (u, y) ∈ X
0X if F (u, y) ∈ 1

Clearly we have
HA ω

+ ` ∀u, y.αC(u,G(u, y)) → βC(gu, y)

On the other hand assume we are given g,G as above, then f = g, F = inl ◦ G have type
{f : V U , F : (X + 1)U×Y | ∀u, y.caseF (u, y) ∈ X.αC(u, F (u, y)) → βC(f(u), y)} and so we
get

HA ω
+ ` ∃(f, F ) : {f : V U , F : (X + 1)U×Y | ∀u, y.caseF (u, y) ∈ X.αC(u, F (u, y)) → βC(f(u), y)}

∀u, y.

(

caseF (u, y) ∈ X. >
caseF (u, y) ∈ 1. βC(fu, y)

)

Theorem 3.2 (Soundness). If HA
ω
+ ` α then HA

ω
+ ` αC

Proof: By induction on length of proofs in HA ω. We show a few of the more interesting
cases.

9
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Equality We show that the transitivity rule for equality is C-interpreted, i.e., that HA ω
+ `

(x = y ∧ y = z → x = z)C . To do this we must find realizers

f : (1 + {∗ : 1 | x = y})× (1 + {∗ : 1 | y = z}) → (1 + {∗ : 1 | x = z})

and
F : (1 + {∗ : 1 | x = y})× (1 + {∗ : 1 | y = z}) ⇒ 2

such that for all u : 1 + {∗ : 1 | x = y}, v : 1 + {∗ : 1 | y = z},








caseF (u, v) = 0.

(

caseu = inl(∗). ⊥
caseu = inr(∗). >

)

caseF (u, v) = 1.

(

case v = inl(∗). ⊥
case v = inr(∗). >

)









implies
(

case f(u, v) = inl(∗). ⊥
case f(u, v) = inr(∗). >

)

This holds for the following definitions of f, F :

f(u, v) =

{

inr(∗) if u = inr(∗) and v = inr(∗)
inl(∗) otherwise

F (u, v) =

{

0 if u = inl(∗)
1 otherwise.

(11) We show that the rule
φ ` ψ → θ

φ ∧ ψ ` θ
(11)

is C-interpreted.
HA ω

+ ` (φ→ (ψ → θ))C (1)

holds if and only iff

∃(g1, g2) : U ⇒ {(f, F ) : W V × (V × Z)Y +1 | ∀v, z.caseF (v, z) ∈ Y.ψC(v, F (v, z) → θC(fv, z))}
∃G : U × V × Z ⇒ X

∀u, v, z. φC(u,G(u, v, z)) →

(

case g2(u)(v, z) ∈ 1. θC(g1(u)(v), z)
case g2(u)(v, z) ∈ Y. >

)

HA ω
+ ` (φ ∧ ψ → θ)C (2)

holds if and only iff

∃h : U × V ⇒ W, H : U × V × Z ⇒ X + Y

∀u, v, z.

(

caseH(u, v, z) ∈ X. φC(u,H(u, v, z))
caseH(u, v, z) ∈ Y. ψC(v,H(u, v, z))

)

→ θC(h(u, v), z).

Assume (1) holds, then we define

h(u, v) = g1(u)(v), H(u, v, z) =

{

g2(u)(v, z) if g2(u)(v, z) ∈ Y
G(u, v, z) otherwise.

Assume (2) holds then we define

g1(u)(v) = h(u, v), g2(u)(v, z) =

{

H(u, v, z) if H(u, v, z) ∈ Y
∗ ∈ 1 otherwise,

G(u, v, z) =

{

H(u, v, z) if H(u, v, z) ∈ X
0X otherwise.
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(14) We show that the rule number (14)

φ ` ψ

φ ` ∀x.ψ
x 6∈ FV(φ)

is C-interpreted. HA ω
+ ` (φ→ ∀z.ψ(z))C is equivalent to

∃g : U ⇒ V Z , G : Z × U × Y ⇒ X.∀z, u, y.φC (u,G(z, u, y)) → ψC(z, g(u, z), y)

and HA ω
+ ` (φ→ ψ(z))C is equivalent to

∃h : Z × U ⇒ V, H : Z × U × Y ⇒ X.∀z, u, y.φC (u,H(z, u, y)) → ψC(h(z, u), y, z)

and these two are clearly equivalent.

(16) This is the induction scheme. Suppose that we have u0 : U such that ∀x.φC(0, u0, x)
and

(f, F ) : N ⇒ {(U ⇒ U)× (U ×X ⇒ X + 1) | ∀u, x.caseF (n)(u, x) ∈ X.
φC(n, u, F (n)(u, x)) → φC(succ(n), f(n)(u), x)}

such that

∀n, u, x.

(

caseF (n)(u, x) ∈ X. >
caseF (n)(u, x) ∈ 1. φC(succ(n), f(n)(u), x)

)

We must provide a term g : N → U such that ∀n, x.φC(n, g(n), x). We define g by
recursion as follows:

g(0) = u0, g(succ(n)) = f(n)(g(n)),

to be precise we use the recursion operator R to define g:

g(n) := R(u0, f, n).

(7)

φ ` ψ φ ` χ

φ ` ψ ∧ χ Suppose we are given f : U ⇒ V, F : U × Y ⇒ X with

∀u, y.φC(u, F (u, y)) → ψC(fu, y)

and g : U ⇒W, G : U × Z ⇒ X with

∀u, z.φC(u,G(u, z)) → χC(gv, z)

we must define h : U ⇒ V ×W, H : U × (Y + Z) ⇒ X with

∀u : U, q : Y + Z.φC (u,H(u, q)) →

(

case q ∈ Y. φC(π1h(u), q)
case q ∈ Z. χC(π2h(u), q)

)

Clearly the following realizers satisfy the requirement:

h(u) = (f(u), g(u)) H(u, q) =

{

F (u, y) if q = inl(y)
G(u, z) if q = inr(z)

11
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(13)

(

case z = inl(w). φ(w)
case z = inr(r). ψ(r)

)

≡ (z = inl(w) → φ(w)) ∧ (z = inr(r) → ψ(r))

(

case z = inl(w). φ(w)
case z = inr(r). ψ(r)

)C

= ∃u, v.∀x, y.

(

case z = inl(w). φC(w, u, x)
case z = inr(r). ψC(r, v, y)

)

and

((z = inl(w) → φ(w)) ∧ (z = inr(r) → ψ(r)))C =
∃(u, F ) : {u : U,F : X ⇒ 2 | ∀x : X.caseFx = 0.z = inl(w) → φC(w, u, x)}
∃(v,G) : {v : V,G : Y ⇒ 2 | ∀y : Y.caseGy = 0.z = inr(r) → ψC(r, v, y)}

∀q : X + Y.









case q ∈ X.

(

caseFx = 0. >
caseFx = 1. φC(w, u, x)

)

case q ∈ Y.

(

caseGy = 0. >
caseGy = 1. ψC(r, v, y)

)









Showing that the former C-implies the latter, we define h(z)(u, v) = (u, F, v,G) where
Fx = 1 = Gy for all x, y. And

H(z)(u, v, q) =

{

(x, 0Y ) if q = inl(x)
(0X , y) if q = inr(y)

The other direction: k(z)(u, F, v,G) = (u, v), and

K(z)(u, F, v,G, x, y) =

{

inl(x) if z ∈W
inr(y) if z ∈ R.

(12)

∃f : V U , F ′ : (X + 1)U×Y ∀u, y.

(

caseF (u, y) ∈ X. αC(u, F (u, y)) → βC(f(u), y)
caseF (u, y) ∈ 1. φC

)

≡

∃(f, F ) : {f : V U , F : (X + 1)U×Y | ∀u, y.caseF (u, y) ∈ X.αC(u, F (u, y)) → βC(f(u), y)}

∀u, y.

(

caseF (u, y) ∈ X. >
caseF (u, y) ∈ 1. φC

)

In order to show that

∃f : V U , F ′ : (X + 1)U×Y ∀u, y.

(

caseF (u, y) ∈ X. αC(u, F (u, y)) → βC(f(u), y)
caseF (u, y) ∈ 1. φC

)

(3)
is C-equivalent to

∃(h,H) : {h : V U ,H : (X + 1)U×Y | ∀u, y.caseH(u, y) ∈ X.αC(u,H(u, y)) → βC(h(u), y)}

∀u, y.

(

caseH(u, y) ∈ X. >
caseH(u, y) ∈ 1. βC(hu, y)

)

(4)

we first show HA ω
+ ` (3 → 4)C and then HA ω

+ ` (4 → 3)C . We start by calculating
3C :

3C = ∃f : V U , F : (X + 1)U×Y , G : U × Y ⇒ {z : 2 | case z = 0.αC(u, F (u, y)) → βC(f(u), y)}

∀u, y.





caseF (u, y) ∈ X.

(

caseG(u, y) = 0. >
caseG(u, y) = 1. βC(fu, y)

)

caseF (u, y) ∈ 1. βC(fu, y)




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HA ω
+ ` (3 → 4)C : We define K(f, F,G, u, y) = u, y and k(f, F,G) = (h,H) where

h = f and

H(u, y) =

{

F (u, y) if F (u, y) ∈ X and G(u, y) = 0
∗ ∈ 1 otherwise.

HA ω
+ ` (4 → 3)C : Define J(h,H, u, y) = u, y and j(h,H) = (f, F,G) where f = h, F =

H and

G(u, y) =

{

0 if F (u, y) ∈ X
1 if F (u, y) ∈ 1.

4 Which Principles are Validated

In this section we show some important non-constructive principles which are validated by the
Copenhagen interpretation (then they are said to be C-interpreted). In the next section we will
use this to give an axiomatization (sometimes called a characterization) of the Copenhagen
interpretation.

Definition 4.1. A formula φ in the language of HA
ω
+ is said to be validated by the Copen-

hagen interpretation or C-interpreted if HA
ω
+ ` φC .

Independence of Premiss

IP (∀yφ→ ∃u∀vψ) → ∃u(∀yφ→ ∀vψ)

where φ,ψ are of the form φ = φC and ψ = ψC . First consider the premiss and conclusion of
the outer →:

(∀yφ(y) → ∃u∀vψ(u, v))C =
∃(f, F ) : 2 = {(f, F ) : (1 ⇒ U)× (V ⇒ Y + 1) | ∀v ∈ V.caseFv ∈ Y.φ(Fv) → ψ(f(∗), v)}
∀v.α(f, F, v)

where

α(f, F, v) =

(

caseFv ∈ Y. >
caseFv ∈ 1. ψ(f(∗), v)

)

And
(∃u(∀yφ→ ∀vψ))C =
∃u : U,G : † = {V ⇒ Y + 1 | ∀v.caseGV ∈ Y.φ(Gv) → ψ(u, v)}
∀v.β(u,G, v)

where

β(u,G, v) =

(

caseGv ∈ Y. >
caseGv ∈ 1. ψ(u, v)

)

Now we can interpret IP:

(IP)C =
∃(h,H) : {(h,H) : (2 ⇒ U × †)× (2× V ⇒ V + 1) |

∀(f, F ), v : 2× V.caseH(f, F, v) ∈ V.α((f, F ),H(f, F, v)) → β(h(f, F ), v)}

∀(f, F ), v : 2× V.

(

caseH(f, F, v) ∈ V. >
caseH(f, F, v) ∈ 1. β(h(f, F ), v)

)
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5 AXIOMATIZATION

This is realized by
h(f, F ) = (f(∗), F ), H(f, F, v) = v.

Axiom of Choice
AC (∀x∃yφ(x, y) → ∃F∀xφ(x, Fx))

where again we assume that φ is of the form φ = φC .

(AC)C = (∃F∀xφ(x, Fx)C → ∃F∀x.φ(x, Fx)C)C

which obviously holds.

A Generalized Markov Principle MPDia is also validated by the C-interpretation.

MPC (∀φ(y) → ψ) → ∃y(φ(y) → ψ)

where φ,ψ are of the form φ = φC and ψ = ψC . First consider

(∀yφ(y) → ψ)C = ∃z : 2 = {z : Y + 1 | case z ∈ Y.φ(z) → ψ}.α(z)

where

α(z) =

(

case z ∈ Y. >
case z ∈ 1. ψ

)

And

((∀yφ(y) → ψ) → ∃(φ(y) → ψ))C =
∃(f, F ) : {(f, F ) : (2 → Y )× (2 → 2) | ∀z : 2.Fz = 0.α(z) → φ(fz) → ψ}

∀z : 2.

(

caseFz = 0. >
caseFz = 1. φ(fz) → ψ

)

This is realized by

fz =

{

z if z ∈ Y
0 if z ∈ 1

, Fz = 0,

since, if z ∈ 1, we have α(z) = ψ and ψ → φ(0) → ψ, and if z ∈ Y , then because z : 2, we
have φ(z) → ψ and α(z) = >, so α(z) → φ(fz) → ψ.

5 Axiomatization

The axiomatization Theorem is our second main result. It states under certain non-constructive
principles (but still in a system much more constructive than classical logic) any formula φ
of HA ω

+ is provably equivalent to it’s C-interpretation φC . Moreover, φ is provable in the
stronger system if and only if φC is provable in HA ω

+. The combination of the two results
of the axiomatization Theorem tells us that if a formula φ then we can find a realizer for the
equivalent formula φC .

We have the following axiomatization of the functional interpretation C:

Theorem 5.1 (Axiomatization). Let X = {MPDia,AC, IP}, then

1. HA
ω
+ + X ` φ↔ φC for all formulas φ of the language of HA

ω
+.
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5 AXIOMATIZATION

2. HA
ω
+ + X ` φ iff HA

ω
+ ` φC .

Proof: We show 1 by induction on formulas. For φ ∈ {α atomic , (α ∧ β), α ∨ β,∀z.α,∃z.α}
it is not hard to see that HA ω

+ ` φ↔ φC . For example, let us show that

HA ω
+ ` α ∧ β ↔ (α ∧ β)C .

By induction we have HA ω
+ ` α ↔ αC and HA ω

+ ` β ↔ βC , so HA ω
+ ` α ∧ β ↔ αC ∧ βC .

And clearly

HA ω
+ ` ∃u, v∀αC(u, x) ∧ βC(v, y)

↔ ∃u, v∀z : X + Y.

(

case z ∈ x. αC(u, z),
case z ∈ Y. βC(v, z)

)

For φ =

(

case z ∈W. α(z),
case z ∈ R. β(z)

)C

we must use the principle IP as well:

(

case z ∈W. α(z),
case z ∈ R. β(z)

)

≡

(

case z ∈W. ∃u∀x.αC(z, u, x),
case z ∈ R. ∃v∀y.βC(z, v, y)

)

≡

(z ∈W → ∃u∀x.αC) ∧ (z ∈ R→ ∃v∀y.βC) ≡ IP
∃u(z ∈W → ∀x.αC) ∧ ∃v(z ∈ R→ ∀y.βC) ≡
∃u∀x(z ∈W → αC) ∧ ∃v∀y(z ∈ R→ βC) ≡
∃u, v∀x, y.(z ∈W → αC) ∧ (z ∈ R→ βC) ≡

∃u, v∀x, y.

(

case z ∈W. αC(z, u, x),
case z ∈ R. βC(z, v, y)

)

And for φ = α→ β we have the following string of equivalences:

∃u∀xαC(u, x) → ∃v∀y.βC(v, y) ≡ HA ω
+

∀u(∀xαC(u, x) → ∃v∀y.βC(v, y)) ≡ IP
∀u∃v(∀xαC(u, x) → ∀y.βC(v, y)) ≡ HA ω

+

∀u∃v∀y(∀xαC(u, x) → βC(v, y)) ≡ MPDia

∀u∃v∀y∃x(αC(u, x) → βC(v, y)) ≡ AC
∃f : V U , F : XU×Y ∀u, y.αC(u, F (u, y)) → βC(f(u), y) ≡ HA ω

+

∃f : V U , F ′ : (X + 1)U×Y ∀u, y.

(

caseF (u, y) ∈ X. αC(u, F (u, y)) → βC(f(u), y)
caseF (u, y) ∈ 1. βC(fu, y)

)

≡ HA ω
+

∃(f, F ) : {f : V U , F : (X + 1)U×Y | ∀u, y.caseF (u, y) ∈ X.αC(u, F (u, y)) → βC(f(u), y)}

∀u, y.

(

caseF (u, y) ∈ X. >
caseF (u, y) ∈ 1. βC(fu, y)

)

Where the last two equivalences follows from 3.1.
In the previous section we showed that HA ω

+ ` (MPDia)
C , (IP)C , (AC)C , and by the

Soundness Theorem 3.2, we have HA ω
+ ` φ implies HA ω

+ ` φC , so it follows that

HA ω
+ +X ` φ⇒ HA ω

+ ` φC
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5 AXIOMATIZATION 5.1 Copenhagen Interpretation Generalizes Dialectica Interpretation

To see that
HA ω

+ ` φC ⇒ HA ω
+ + X ` φ,

assume HA ω
+ ` φC then also HA ω

+ + X ` φC , so together with 1 of Theorem 5.1 we get
HA ω

+ + X ` φ.

5.1 Copenhagen Interpretation Generalizes Dialectica Interpretation

We now show that the C-interpretation is a generalization of the D-interpretation in the sense
that if require atomic formulas to be recursively decidable, then they have the same axioma-
tization. Moreover, φC and φD are both C- and D-equivalent, i.e., within the interpretations
we can’t tell the difference, assuming atomic formulas are recursively decidable.

Lemma 5.2.
HA

ω
+ + X ` φD ↔ φC

for all formulas φ in the language of HA
ω
+.

Proof: We have
HA ω

+ + X ` φ↔ φC

by Theorem 5.1. And
HA ω

+ + X ` φ↔ φD.

Theorem 5.3. Assuming that atomic formulas are recursively decidable, the D- and C-
interpretations have the same axiomatization.

Proof: First we must expand the D-interpretation to HA ω
+ by adding one clause, namely:

(

case z ∈W. α(z)
case z ∈ R. β(z)

)D

= ∃u, v∀x, y.

(

case z ∈W. αD(z, u, x)
case z ∈ R. βD(z, v, y)

)

We have (by axiomatization of Dialectica):

HA ω
+ + X ` φ↔ φD

and by soundness of D, under the assumption that atomic formulas are recursive,

HA ω
+ +X ` φ⇒ HA ω

+ ` φD.

Notice that soundness of D usually is shown only for the system HA ω + X , i.e., without
the rules (12) and (13) and it only holds under the assumption that atomic formulas are
recursively decidable. Rule (12) is validated by D iff atomic formulas are recursive.

This theorem tells us that in the system HA ω
+ we might as well define the Dialectica inter-

pretation (still under assumption that atomic formulas are recursive) as the C-interpretation,
since it has the same axiomatization.

Corollary 5.4. 1.
HA

ω
+ ` (φD ↔ φC)D

when atomic formulas are recursively decidable.
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6 A CLASSICAL VERSION OF THE COPENHAGEN INTERPRETATION

2.
HA

ω
+ ` (φD ↔ φC)C .

Proof: By Theorem 5.3

HA ω
+ + IP + AC + MPDia ` φ

D ↔ φC

so it follows from soundness of the two functional interpretations that

HA ω
+ ` (φD ↔ φC)D and HA ω

+ ` (φD ↔ φC)C

where we recall that soundness of D-interpretation only holds under the assumption that all
atomic formulas are recursively decidable.

6 A Classical Version of the Copenhagen Interpretation

A classical version of the C-interpretation is the double negation translation followed by the
C-interpretation and then re-arranged in a way so that it becomes more simple. The classical
version that we give here builds on a classical version of the D-interpretation given in [SK07].
We admit that not all of the clauses look simple, but others really are simplifications of double
negation followed by C-interpretation.

We first define a negative translation (−)′, which was presented in [SR98] and in [SK07].

Definition 6.1. The negative translation A′ = ¬A∗, where A∗ is defined inductively as
follows:

P ∗ = ¬P if P is prime
(¬A)∗ = ¬A∗

(A ∨B)∗ = A∗ ∧B∗

(∀xA)∗ = ∃xA∗

(A→ B)∗ = A′ ∧B∗

(∃xA)∗ = ¬∃x¬A∗

(A ∧B)∗ = A∗ ∨B∗

Notice that the last three clauses can be defined by the others since the source is classical
(PA). Shoenfield introduced a functional interpretation for Peano arithmetic PA, associating
to every formula A a formula AS = ∀u∃x.AS(u, x), with AS quantifier-free. Shoenfield’s
interpretation is defined inductively as follows:

Definition 6.2.

PS = P = PS for P atomic
(¬A)S = ∀f∃u.¬AS(u, fu)
(A ∨B)S = ∀u, v∃x, yAS(u, x) ∨BS(v, y)
(∀z.A)S = ∀z, u∃x.AS(z, u, x)
(A→ B)S = ∀f, v∃u, yAS(u, f(u)) → BS(v, y)
(∃zA)S = ∀U∃z, f.AS(z, U(z, f), f(U(z, f)))

(A ∧B)S = ∀z : U + V ∃x, y.

(

case z ∈ U. AS(z, x)
case z ∈ V. BS(z, y)

)

Let (−)′ be the negative translation defined in [SK07], then
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A SKETCH OF A SIMPLE, HIGHER TYPED VARIANT OF DIALECTICA

Theorem 6.3. HA
ω
+ + X ` (A′)C ↔ (AS)C , and PA ` A⇒ HA

ω
+ ` (AS)C .

Proof: From [SK07] we know that (A′)D = ∃f∀uA′D(f, u), where A′D(f, u) ↔ AS(u, f(u)) in
HA ω. So

HA ω ` (A′)D ↔ ∃f∀uAS(u, f(u))

Notice that ∃f∀uAS(u, f(u)) = (AS)D, so in fact

HA ω ` (A′)D ↔ (AS)D

By Lemma 5.2 we have for all formulas A of HA ω
+,

HA ω
+ + X ` AD ↔ AC

so
HA ω

+ + X ` (A′)C ↔ (A′)D and HA ω
+ + X ` (AS)C ↔ (AS)D

it follows that
HA ω

+ + X ` (AS)C ↔ (A′)C

and (AS)C is of course C-stable. Now from [SK07] we know that 5

PA ` A⇒ HA ω ` (AS)D

hence, by the above equivalences, HA ω
+ + X ` (AS)C so it follows from Theorem 5.1 that

PA ` A⇒ HA ω
+ ` (AS)C

because ((AS)C)C = (AS)C .
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A Sketch of a Simple, Higher Typed Variant of Dialectica

Just to indicate the ideas, we now give a rough sketch of a simpler variant of Dialectica, which
soundly interprets HA ω. The details will be worked out in a future paper.

In the setting of Definition 2.1, if we allow only closed atomic formulas, e.g., s =U t with
s, t closed terms, then we may give the following higher typed variant of Dialectica:

5notice that to show this result one uses the fact that atomic formulas of PA are recursive, since atomic
formulas of PA are equality between terms of type N .

18

120



A SKETCH OF A SIMPLE, HIGHER TYPED VARIANT OF DIALECTICA

Definition A.1. Suppose α and β are formulas of HA
ω and αC = ∃u∀x.αC(u, x) and

βC = ∃v∀y.βC(v, y).

α ∈ {>,⊥}, αC = αC = α.

α atomic, αC = ∃u : 1 + {∗ : 1 | α}.

(

case u = inl(∗). ⊥
case u = inr(∗). >

)

(α ∧ β)C = ∃u, v∀x, y.αC(u, x) ∧ βC(v, y)

(α→ β)C = ∃f : V U , F : XU×Y .∀u, y.αC(u, F (u, y)) → βC(fu, y)

(∀z.α(z))C = ∃f : Z → U∀z, x.αC(z, f(z), x)

(∃z.α(z))C = ∃z, u∀x.αC(z, u, x)

(α ∨ β)C = ∃z ∈ U + V ∀x, y.

(

case z ∈ U. αC(z, x)
case z ∈ V. βC(z, y)

)

(

case z ∈W. α(z)
case z ∈ R. β(z)

)C

= ∃u, v∀x, y.

(

case z ∈W. αC(z, u, x)
case z ∈ R. βC(z, v, y)

)

That is, it works precisely like the original Dialectica interpretation except for the inter-
pretation of atomic formulas, and the use of subset types. Notice that the quantifier-free part
αC is recursive by construction! This version of Dialectica works without the assumption of
decidable atomic formulas, hence equality at higher types does not have to be intensional.

If we want to allow open atomic formulas P (x) as well, types will become dependent, e.g.,
{x : X | P (x)} depends on the free variable x : X, so if α(z) has a free variable z : Z, then

(α(z))C = ∃u : U(z)∀x : X(z).αC (z, u, x)

and
(∀z.α(z))C = ∃f : Z → U(z).∀z : Z, x : X(z).αC (z, f(z), x).
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Chapter 6

BI Hyperdoctrines and Higher Order
Separation Logic

The following paper was published in ACM Transactions on Programming Languages and Systems, Vol-
ume 29, Issue 5, Article 24 (2007), Special Issue ESOP’05. Sections 5,6 and 7 were written by Birkedal
and Torp-Smith. Basic knowledge of tripos theory or hyperdoctrines is assumed, see e.g. [Pit02]. An
introduction to separation logic can be found in [Rey02].

The main results in this paper are: The simple definition of predicate BI (logic of bunched implications).
The introduction of BI hyperdoctrines as sound and complete models for first- and higher-order predicate
BI. A precise correspondence between separation logic and predicate BI, which leads to an easy extension
of first-order separation logic to higher-order separation logic. The result that any BI hyperdoctrine which
satisfies the rules for full subset types is trivial. This rules out all topos models (since the subobject fibration
has full subset types).

The Dialectica tripos is an instance of a BI-hyperdoctrine, hence it is a model of separation logic,
which is very different from the standard models of separation logic. Following the idea that the structure
of the tripos contains an implicit soundness proof, it should be possible to give a Dialectica or Copenhagen
interpretation of separation logic, thus counter examples from Heyting arithmetic would (by the soundness
theorem) yield counter examples for separation logic.
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We present a precise correspondence between separation logic and a simple notion of predicate BI,
extending the earlier correspondence given between part of separation logic and propositional BI.
Moreover, we introduce the notion of a BI hyperdoctrine, show that it soundly models classical
and intuitionistic first- and higher-order predicate BI, and use it to show that we may easily
extend separation logic to higher-order. We also demonstrate that this extension is important for
program proving, since it provides sound reasoning principles for data abstraction in the presence of
aliasing.
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and Enhancement—Documentation; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Assertions, logics of programs, specification techniques

General Terms: Reliability, Theory, Verification

Additional Key Words and Phrases: Separation logic, hyperdoctrines, abstraction

ACM Reference Format:
Biering, B., Birkedal, L., and Torp-Smith, N. 2007. BI-Hyperdoctrines, higher-order separation
logic, and abstraction. ACM Trans. Program. Lang. Syst. 29, 5, Article 24 (August 2007), 34 pages.
DOI = 10.1145/1275497.1275499 http://doi.acm.org/10.1145/1275497.1275499

1. INTRODUCTION

Variants of the recent formalism of separation logic [Reynolds 2002; Ishtiaq
and O’Hearn 2001] have been used to prove correct many interesting algo-
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2004; Yang 2001; Birkedal et al. 2004]. Separation logic is a Hoare-style
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program logic, and its main advantage over traditional program logics is that
it facilitates modular reasoning, that is, local reasoning, about programs with
shared mutable data. Different extensions of core separation logic [Reynolds
2002] have been used to prove correct various algorithms. For example, Yang
[2001] extended the core logic with lists and trees and in Birkedal et al. [2004]
the logic was extended with finite sets and relations. Thus, it is natural to ask
whether one has to make a new extension of separation logic for every proof
one wants to make. This would be unfortunate for formal verification of proofs
in separation logic, since it would make the enterprise of formal verification
burdensome and dubious. We argue in this article that there is a natural sin-
gle underlying logic in which it is possible to define the various extensions and
prove the expected properties thereof; this is then the single logic that should
be employed for formal verification.

Part of the pointer model of separation logic, namely, that given by heaps (but
not stacks, i.e., local variables), has been related to propositional BI, the logic
of bunched implications introduced by O’Hearn and Pym [1999]. In this article
we show how the correspondence may be extended to a precise correspondence
between all of the pointer model (including stacks) and a simple notion of pred-
icate BI. We introduce the notion of a BI hyperdoctrine, a simple extension of
Lawvere’s notion of hyperdoctrine [Lawvere 1969], and show that it soundly
models predicate BI. The notion of predicate BI we consider is different from
the one studied in Pym [2004, 2002], which has a bunched structure on variable
contexts. However, we believe that our notion of predicate BI with its class of BI
hyperdoctrine models is the right one for separation logic (Pym aimed to model
mulitiplicative quantifiers; separation logic only uses additive quantifiers). To
make this point, we show that the pointer model of separation logic exactly
corresponds to the interpretation of predicate BI in a simple BI hyperdoctrine.
This correspondence also allows us to see that it is simple to extend separation
logic to higher-order separation logic. Now we briefly explain this extension and
outline why it is important for program proving.

The force of separation logic comes from both its language of assertions—
which is a variant of propositional BI [Pym 2002]—and its language of speci-
fications, or Hoare triples. In the present work, we extend both of these. First,
we introduce an assertion language which is a variant of higher-order predi-
cate BI. The extension from the traditional assertion language of separation
logic simply allows function types, has a type Prop of proposition, and allows
quantification over variables of all types. Thus, the assertion language is higher
order in the usual sense that it allows quantification over predicates. Next, we
present a specification logic for a simple second-order programming language.
We provide models for both the new assertion language and the specification
logic, and provide inference rules for deriving valid specifications. As it turns
out, it is technically straightforward to do so; this emphasizes that our notion
of higher-order predicate BI is the correct one for separation logic.

Next we consider the expressiveness of higher-order separation logic and
argue, with the use of examples, that it is quite expressive. In particular, we
show that higher-order separation logic can be used in a natural way to model
data abstraction via existential quantification over predicates corresponding to
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abstract resource invariants. The main formal rule in this development is

� � P̂ :τ

�, �x1; � � {P1[P̂/x]} c1 {Q1[P̂/x]}
...

�, �xn; � � {Pn[P̂/x]} cn {Qn[P̂/x]}
�; �, ∃x:τ.({P1}k1( �x1){Q1} ∧ · · · ∧ {Pn}kn( �xn){Qn}) � {P} c {Q}

�; � � {P} let k1(�x1) = c1, . . . , kn(�xn) = cn in c end {Q} x �∈ FV({P} c {Q}).

Here one may think of x as a predicate describing a resource invariant used
by an abstract data type with operations k1, . . . , kn. If a client c has then been
proved correct under the assumption that such a predicate exists, it is possible
to use the client with any concrete resource invariant P̂ and implementations
c1, . . . , cn.

Moreover, we show that, using universal quantification over predicates, we
can prove correct polymorphic operations on polymorphic data types, for exam-
ple, reversing a list of elements described by an arbitrary predicate. For this
to be useful, however, it is clear that a higher-order programming language
would be preferable (such that one could program many more useful polymor-
phic operations, e.g., the map function for lists); we have chosen to stick with
the simpler second-order language here to communicate more easily the ideas
of higher-order separation logic.

Before proceeding with the technical development, we give an intuitive jus-
tification of the use of BI hyperdoctrines to model higher-order predicate BI.
A powerful way of obtaining models of BI is by means of functor categories
(presheaves), using Day’s construction to obtain a doubly closed structure on
the functor category [Pym et al. 2004]. Such functor categories can be used to
model propositional BI in two different senses: In the first sense, one models
provability, that is, entailment between propositions, and it works because the
lattice of subobjects of the terminal object in such functor categories forms a BI
algebra (a doubly Cartesian closed preorder). In the second sense, one models
proofs, and this works because the whole functor category is doubly Cartesian
closed. Here we seek models of provability of predicate BI. Since the considered
functor categories are toposes and hence model higher-order predicate logic,
one might think that a straightforward extension is possible. But, alas, it is
not the case. In general, for this to work, every lattice of subobjects (for any
object, not only the terminal object) should be a BI algebra and, moreover, to
model substitution correctly, the BI algebra structure should be preserved by
pulling back along any morphism. We show this can only be the case if the BI
algebra structure is trivial, that is, coincides with the Cartesian structure (see
Theorem 2.7). Our theorem holds for any topos, not just for the functor cate-
gories just mentioned. Hence, we need to consider a wider class of models for
predicate BI than just toposes and this justifies the notion of a BI hyperdoc-
trine. The intuitive reason at BI hyperdoctrines work is that predicates are not
required to be modeled by subobjects, but they can be something more general.
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Another important point of BI hyperdoctrines is that they are easy to come
by: Given any complete BI algebra B, there is a canonical BI hyperdoctrine in
which predicates are modeled as B-valued functions; this is explained in detail
in Example 2.6.

The rest of the article is organized as follows. In Section 2, we first recall
Lawvere’s notion of a hyperdoctrine [Lawvere 1969] and briefly recall how it
can be used to model intuitionistic and classical first- and higher-order predi-
cate logic. More details about this can be found in the handbook chapter [Pitts
2001] and the book [Jacobs 1999]. We then introduce the concept of a BI hyper-
doctrine and show that it models BI. In Section 3, we show that the standard
pointer model of BI is an instance of our class of models. The new class of models
provides a straightforward way to give semantics to a higher-order extension
of BI, and we discuss ramifications of this extension for separation logic in
Section 4. In Section 5, we introduce the programming language considered in
this work. It is a simple extension of the standard programming language of
separation logic with simple procedures and calls to these. We use the higher-
order logic just introduced to give a specification logic for the programming
language. In Section 6, we present examples which illustrate how this speci-
fication logic can be used to reason about data abstraction, using existential
quantification over predicates. In Section 7 we present some simple applica-
tions of universal quantification over predicates in program proving. In the last
section we discuss related and future work.

This article is the full version of an extended abstract presented at the
ESOP 2005 conference. Compared to the conference version, this work in-
cludes more detailed proofs and a much more extensive discussion of appli-
cations of higher-order separation logic in program proving, in particular for
data abstraction.

2. BI HYPERDOCTRINES

We first introduce Lawvere’s notion of a hyperdoctrine [Lawvere 1969] and
briefly recall how it can be used to model intuitionistic and classical first-
and higher-order predicate logic (see, e.g., the handbook chapter [Pitts 2001]
and book [Jacobs 1999] for more explanations). We then define the notion of
a BI hyperdoctrine, which is a straightforward extension of the standard no-
tion of hyperdoctrine, and explain how it can be used to model predicate BI
logic.

2.1 Hyperdoctrines

A first-order hyperdoctrine is a categorical structure tailored to model first-
order predicate logic with equality. The structure has a base category C for
modeling the types and terms, and a C-indexed category P for modeling formu-
las. Recall that a Heyting algebra is a bi-Cartesian closed partial order, that is,
a partial order which, when considered as a category, is Cartesian closed (	, ∧,
→) and has finite coproducts (⊥, ∨).

Definition 2.1. Let C be a category with finite products. A first-order hyper-
doctrine P over C is a contravariant functor P : Cop → Poset from C into the
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category of partially ordered sets and monotone functions, and has the following
properties.

(1) For each object X , the partially ordered set P(X ) is a Heyting algebra.
(2) For each morphism f : X → Y in C, the monotone function P( f ) : P(Y ) →

P(X ) is a Heyting algebra homomorphism.
(3) For each diagonal morphism �X : X → X ×X in C, the left adjoint toP(�X )

at the top element 	 ∈ P(X ) exists. In other words, there is an element =X

of P(X × X ) satisfying that for all A ∈ P(X × X ),

	 ≤ P(�X )(A) iff =X ≤ A.

(4) For each product projection π : � × X → � in C, the monotone function
P(π ) : P(�) → P(� × X ) has both a left adjoint (∃X )� and a right adjoint
(∀X )�.

A ≤ P(π )(A′) if and only if (∃X )�(A) ≤ A′

P(π )(A′) ≤ A if and only if A′ ≤ (∀X )�(A)

Moreover, these adjoints are natural in �, that is, given s : � → �′ in C,

The elements of P(X ), where X ranges over objects of C, are referred to as
P-predicates.

Interpretation of first-order logic in a first-order hyperdoctrine. Given a
(first-order) signature with types X , function symbols f : X 1, . . . , X n → X , and
relation symbols R ⊂ X 1, . . . , X n, a structure for the signature in a first-order
hyperdoctrine P over C assigns an object [[X ]] in C to each type, a morphism
[[ f ]] : [[X 1]] × · · · × [[X n]] → [[X ]] to each function symbol, and a P-predicate
[[R]] ∈ P([[X 1]] × · · · × [[X n]]) to each relation symbol. Any term t over the sig-
nature, with free variables in � = {x1:X 1, . . . , xn:X n} and of type X , say, is
interpreted as a morphism [[t]] : [[�]] → [[X ]], where [[�]] = [[X 1]] × · · · × [[X n]],
by induction on the structure of t (in the standard manner in which terms are
interpreted in categories).

Each formula ϕ with free variables in � is interpreted as a P-predicate [[ϕ]] ∈
P([[�]]) by induction on the structure of ϕ using the properties given in Definition
2.1. For atomic formulas R(t1, . . . , tn), the interpretation is given by

P(〈[[t1]], . . . , [[tn]]〉)([[R]]).

In particular, the atomic formula t =X t ′ is interpreted by the P-predicate

P(〈[[t]], [[t ′]]〉)(=[[X ]]).

The interpretation of other formulas is defined by structural induction. Assume
ϕ, ϕ′ are formulas with free variables in � and that ψ is a formula with free
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variables in � ∪ {x:X }. Then,

[[	]] = 	H

[[⊥]] = ⊥H

[[ϕ ∧ ϕ′]] = [[ϕ]] ∧H [[ϕ′]]

[[ϕ ∨ ϕ′]] = [[ϕ]] ∨H [[ϕ′]]

[[ϕ → ϕ′]] = [[ϕ]] →H [[ϕ′]]

[[∀x:X .ψ]] = (∀[[X ]])[[�]]([[ψ]]) ∈ P([[�]])

[[∃x:X .ψ]] = (∃[[X ]])[[�]]([[ψ]]) ∈ P([[�]]),

where ∧H , ∨H , etc., is the Heyting algebra structure on P([[�]]). Finally, one
may show that [[ϕ[ f (x)/ y]]] is interpreted by P([[ f ]])([[ϕ]]), so one should think
of P(g ) as the interpretation of substitution.

A formula ϕ with free variables in � is said to be satisfied if [[ϕ]] is the top el-
ement of P([[�]]). This notion of satisfaction is sound for intuitionistic predicate
logic in the sense that all provable formulas are satisfied. Moreover, it is com-
plete in the sense that a formula is provable if it is satisfied in all structures in
first-order hyperdoctrines. A first-order hyperdoctrine P is sound for classical
predicate logic in case all the fibers P(X ) are Boolean algebras.

Definition 2.2 (Hyperdoctrine). A (general) hyperdoctrine is a first-order
hyperdoctrine with the following additional properties: C is Cartesian closed,
and there is an internal Heyting algebra H (for the definition of internal Heyt-
ing algebra, see e.g., MacLane and Moerdijk [1994]) and a natural bijection
�X : Obj (P(X )) � C(X , H).

Higher-order intuitionistic predicate logic is first-order intuitionistic predi-
cate logic extended with a type Prop of propositions and with higher types. See,
for instance Jacobs [1999] for a formal presentation. A hyperdoctrine is sound
for higher-order intuitionistic predicate logic: The Heyting algebra H is used to
interpret the type Prop of propositions and higher types (e.g., PropX , the type
for predicates over X ), are interpreted by exponentials in C. The natural bijec-
tion �X is used to interpret substitution of formulas in formulas: Suppose ϕ is
a formula with a free variable q of type Prop and with remaining free variables
in �, and that ψ is a formula with free variables in �. Then [[ψ]] ∈ P([[�]]),
[[ϕ]] ∈ P([[�]] × H), and ϕ[ψ/q] (ϕ with ψ substituted in for q) is interpreted by
P(〈id, �([[ψ]])〉)([[ϕ]]). For more details see, for instance the handbook chapter
[Pitts 2001].

Again it is the case that a hyperdoctrine P is sound for classical higher-order
predicate logic in case all the fibers P(X ) are Boolean algebras.

Example 2.3 (Canonical Hyperdoctrine Over a Topos). Let E be a topos. It
is well-known that E models higher-order, intuitionistic predicate logic. In ad-
dition, a topos also models full subset types and extensionality (see, e.g., Jacobs
[1999]). The interpretation is given by interpreting types as objects in E , terms
as morphisms in E , and predicates as subobjects in E . The topos E induces a
canonical E-indexed hyperdoctrine SubE : Eop → Poset, which maps an object
X in E to the poset of subobjects of X in E and a morphism f : X → Y to
the pullback functor f ∗ : Sub(Y ) → Sub(X ). Then the standard interpretation
of predicate logic in E coincides with the interpretation of predicate logic in
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the hyperdoctrine SubE . Compared to the standard interpretation in toposes,
however, hyperdoctrines do not require that predicates are always modeled by
subobjects, but can come from some other universe. This means that hyperdoc-
trines describe a wider class of models than do toposes.

2.2 BI Hyperdoctrines

We now present a straightforward extension of first-order hyperdoctrines which
models first and higher-order predicate BI. Recall that a BI algebra is a Heyt-
ing algebra which has an additional symmetric monoidal closed structure
(I, ∗, −∗) [Pym 2002].

Definition 2.4 (Bi Hyperdoctrine).

—A first-order hyperdoctrine P over C is a first-order BI hyperdoctrine in the
case where all the fibers P(X ) are BI algerbras and the reindexing functions
P( f ) are BI algebra homomorphisms.

—A BI hyperdoctrine is a first-order BI hyperdoctrine with the additional prop-
erties that C is Cartesian closed, and there is a BI algebra B and a bijection
�X : Obj (P(X )) � C(X , B), natural in X . In other words, Obj (P(−)) and
C(−, B) are isomorphic as objects in the functor category SetC

op
.

First-order predicate BI is first-order, intuitionistic predicate logic with
equality, extended with formulas I, ϕ ∗ ψ , ϕ −∗ψ satisfying the following rules
(in any context � including the free variables of the formulas).

(ϕ ∗ ψ) ∗ θ �� ϕ ∗ (ψ ∗ θ ) ϕ ∗ (ψ ∗ θ ) �� (ϕ ∗ ψ) ∗ θ �� ϕ ↔ ϕ ∗ I

ϕ ∗ ψ �� ψ ∗ ϕ

ϕ �� ψ θ �� ω

ϕ ∗ θ �� ψ ∗ ω

ϕ ∗ ψ �� θ

ϕ �� ψ −∗θ

Our notion of predicate BI should not be confused with the one presented in
Pym [2002]; the latter seeks to include a BI structure on contexts but we do not
attempt to do that here, since this is not what is used in separation logic. In
particular, weakening at the level of variables is always allowed.

ϕ �� ψ

ϕ ��∪{x:X } ψ

We interpret first-order predicate BI in a first-order BI hyperdoctrine simply by
extending the interpretation of first-order logic in the first-order hyperdoctrine
defined before by

[[I]] = IB

[[ϕ ∗ ψ]] = [[ϕ]] ∗B [[ψ]]
[[ϕ −∗ψ]] = [[ϕ]] −∗B[[ψ]],

where IB, ∗B, and −∗B comprise the monoidal closed structure in the BI algebra
P([[�]]). We then have

THEOREM 2.5.

(1) The interpretation of first-order predicate BI given previously is sound and
complete.
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(2) The interpretation of higher-order predicate BI given previously is sound
and complete.

PROOF. Soundness is proved by straightforward induction and completeness
is proved by forming the Lindenbaum-Tarski algebra over each context � of
variables, and showing that this gives a first-order BI hyperdoctrine in the first
case, and a BI hyperdoctrine in the second. The proof is a simple extension of
the proof of the corresponding result for intuitionistic predicate logic given in
Jacobs [1999].

Of course, a first-order BI hyperdoctrine is sound for classical BI in the case
where all the fibers P(X ) are Boolean BI algebras and all the reindexing func-
tionsP( f ) are Boolean BI algebra homomorphisms. The following is a canonical
example of a BI hyperdoctrine, which we will use later in Section 3.2 to show
that the pointer model is actually an instance of a BI hyperdoctrine.

Example 2.6 (Bi Hyperdoctrine Over a Complete Bi Algebra). Let B be a
complete BI algebra, namely, it has all joins and meets. It determines a BI
hyperdoctrine over the category Set as follows. For each set X , let P(X ) = BX ,
that is, the set of functions from X to B, be ordered pointwise. Given f : X → Y ,
P( f ) : BY → BX is the BI algebra homomorphism given by composition with f .
For example if s, t ∈ P(Y ), that is, s, t : Y → B, then P( f )(s) = s ◦ f : X → B
and s ∗ t is defined pointwise as (s ∗ t)( y) = s( y) ∗ t( y). Equality predicates =X

in BX ×X are defined by

=X (x, x ′) def=
{

	 if x = x ′

⊥ if x �= x ′ ,

where 	 and ⊥ are the greatest and least elements of B, respectively. The
quantifiers use set-indexed joins (

∨
) and meets (

∧
). Specifically, given A ∈

B�×X , one has

(∃X )�(A) def= λi ∈ �.
∨
x∈X

A(i, x) (∀X )�(A) def= λi ∈ �.
∧
x∈X

A(i, x)

in B�. The conditions in Definition 2.2 are trivially satisfied (� is the identity).

This example can be stated more generally by replacing Set with any Carte-
sian closed category C and let B be an internal, complete BI algebra, that is,
B is a BI algebra object in C which is complete as an internal Heyting algebra.
There are plenty of examples of complete BI algebras: For any Grothendieck
topos E with an additional symmetric monoidal closed structure, SubE (1) is a
complete BI algebra, and for any monoidal category C such that the monoid is
cover preserving with respect to the Grothendieck topology J , SubSh(C, J )(1) is
a complete BI algebra [Biering 2004; Pym et al. 2004]. For a different kind of
example based on realizability, see Biering et al. [2006].

The following theorem shows that to get interesting models of higher-order
predicate BI, it does not suffice to consider BI hyperdoctrines arising as the
canonical hyperdoctrine over a topos (as in Example 2.3). Indeed, this is the
reason for introducing the more general BI hyperdoctrines.
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THEOREM 2.7. Let E be a topos and suppose SubE : Eop → Poset is a BI
hyperdoctrine. Then the BI structure on each lattice SubE (X ) is trivial, that is,
for all ϕ, ψ ∈ SubE (X ), ϕ ∗ ψ ↔ ϕ ∧ ψ .

PROOF. Let E be a topos and suppose SubE : Eop → Poset is a BI hyper-
doctrine. Let X be an object of E and let ϕ, ψ, ψ ′ ∈ SubE (X ). Furthermore, let
Y be the domain of the mono ϕ, and notice that the lattice SubE (Y ) can be
characterized by

SubE (Y ) = {ψ ∧ ϕ | ψ ∈ SubE (X )}. (1)

Moreover, notice that the order on SubE (Y ) is inherited from SubE (X ), that is,

for all χ , χ ′ ∈ SubE (Y ), χ �Y χ ′ iff χ �X χ ′. (2)

Since ∧ is modeled by pullback which by assumption preserves ∗, the following
equations hold in SubE (Y ) (and therefore also in SubE (X )).

(ϕ ∧ ψ) ∗Y (ϕ ∧ ψ ′) ↔ ϕ ∧ (ψ ∗X ψ ′) (3)

and

(ϕ ∧ ψ) −∗Y (ϕ ∧ ψ ′) ↔ ϕ ∧ (ψ −∗X ψ ′) (4)

By assumption, SubE (Y ) forms a BI algebra with connectives ∗Y , −∗Y , and IY , so
using the characterization of subobjects of Y given in Eq. (1) yields the following
rule for each χ ∈ SubE (X ):

(ϕ ∧ ψ) ∗Y (ϕ ∧ ψ ′) �Y χ ∧ ϕ

ϕ ∧ ψ �Y (ϕ ∧ ψ ′) −∗Y (χ ∧ ϕ)

Using (2), (3), and (4), we deduce that

ϕ ∧ (ψ ∗X ψ ′) �X χ ∧ ϕ

ϕ ∧ ψ �X ϕ ∧ (ψ ′ −∗X χ )

for all ϕ, ψ, ψ ′, χ ∈ SubE (X ), which implies

ϕ ∧ (ψ ∗X ψ ′) �X χ ∧ ϕ

ϕ ∧ ψ �X ψ ′ −∗X χ

(ϕ ∧ ψ) ∗X ψ ′ �X χ
.

(5)

Inserting ϕ ∧ (ψ ∗X ψ ′) for χ into (5) yields

ϕ ∧ (ψ ∗X ψ ′) �X ϕ ∧ (ψ ∗X ψ ′)
(ϕ ∧ ψ) ∗X ψ ′ �X ϕ ∧ (ψ ∗X ψ ′) . (6)

Since the entailment preceding the line in Eq. (6) always holds,

(ϕ ∧ ψ) ∗X ψ ′ �X ϕ ∧ (ψ ∗X ψ ′).

This gives us projections for ∗X by letting ψ be 	.

(ϕ ∗X ψ ′) ��X (ϕ ∧ 	) ∗X ψ ′ �X ϕ ∧ (	 ∗X ψ ′) �X ϕ
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Now, let χ be the subobject (ϕ ∧ ψ) ∗X ψ ′, then χ ↔ χ ∧ ϕ due to the projections
for ∗X . Using (5) in bottom-up fashion gives

(ϕ ∧ ψ) ∗X ψ ′ �X (ϕ ∧ ψ) ∗X ψ ′

ϕ ∧ (ψ ∗X ψ ′) �X (ϕ ∧ ψ) ∗X ψ ′ .
(7)

By Eqs. (6) and (7) we conclude that for all ϕ, ψ, ψ ′ ∈ SubE (X ),

ϕ ∧ (ψ ∗X ψ ′) ↔ (ϕ ∧ ψ) ∗X ψ ′. (8)

We already noted the projections for ∗X , so 	∗X IX �X IX , which entails 	 ↔ IX .
Let ψ be 	 in (8), then ϕ ∧ (	 ∗X ψ ′) ↔ (ϕ ∧ 	) ∗X ψ ′, and so ϕ ∧ ψ ′ ↔ ϕ ∗X ψ ′,
as claimed.

In fact, it is possible to slightly strengthen Theorem 2.7. We say that a logic
has full subset types [Jacobs 1999] if the following conditions are satisfied:

—For each formula ϕ(x1, . . . , xn), there is a type {x1:τ1, . . . , xn:τn | ϕ(x1, . . . , xn)}.
—For a term N of type {x1:τ1, . . . , xn:τn | ϕ(x1, . . . , xn)}, in a context �, there is

a term o(N ) of type τ1 × · · · × τn in �.
—The rule

�, y :{x:X | ϕ} | θ [o( y)/x] � ψ[o( y)/x]
�, x:X | θ , ϕ � ψ (9)

is valid. Here � | ϕ � ψ is an alternative notation for ϕ �� ψ to make the
previous formula more readable.

One can then show

PROPOSITION 2.8. Adding the aforementioned rules for full subset types to our
notion of predicate BI yields a logic where for all formulas ϕ, ψ in a context �,

ϕ ∧ ψ ��� ϕ ∗ ψ.

The proof may be found in Appendix A. The following is an easy consequence.

COROLLARY 2.9. Any BI hyperdoctrine which satisfies the rules for full subset
types is trivial.

The BI hyperdoctrine S, which we define next and which corresponds to
the standard pointer model of separation logic, satisfies all of the preceding
except the downward direction of (9). When this is the case, we say that the
logic has subset types, but not full subset types [Jacobs 1999]. In fact, any
BI hyperdoctrine over a complete BI algebra, that is, following the recipe of
Example 2.6, has subset types but not necessarily full subset types.

3. SEPARATION LOGIC MODELED BY BI-HYPERDOCTRINES

We briefly recall the standard pointer model of separation logic (for a more
thorough presentation, see, e.g., Reynolds [2002]) and then show how it can be
construed as a BI hyperdoctrine over Set.

The core assertion language of separation logic (which we will henceforth
also call separation logic) is often defined as follows. There is a single type Val
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of values. Terms t are defined by a grammar

t ::= x | n | t + t | t − t | · · · ,

where n : Val are constants for all integers n. Formulas, also called assertions,
are defined by

ϕ ::= 	 | ⊥ | t = t | t �→ t | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | ϕ ∗ϕ | ϕ −−∗ ϕ | emp | ∀x.ϕ | ∃x.ϕ.

The symbol emp is used in separation logic for the unit of BI.
Note that the aforementioned is just another way of defining a signature (i.e.,

specification of types, function symbols, and predicate symbols) for first-order
predicate BI with a single type Val, function symbols +, −, . . . : Val, Val → Val,
constants n : Val, and relation symbol �→ ⊆ Val × Val.

3.1 The Pointer Model

The standard pointer model of separation logic is usually presented as follows.
It consists of a set [[Val]] interpreting the type Val, a set [[Loc]] of locations such
that [[Loc]] ⊆ [[Val]], and binary functions on [[Val]] interpreting the function
symbols +, −. The set H = [[Loc]] ⇀ f in [[Val]] of finite partial functions from
[[Loc]] to [[Val]], ordered discretely, is referred to as the set of heaps. The set of
heaps has a partial binary operation ∗ defined by

h1 ∗ h2 =
{

h1 ∪ h2 if h1#h2

undefined otherwise,

where # is the binary relation on heaps defined by h1#h2 iff dom(h1)∩dom(h2) =
∅. The interpretation of the relation �→ is the function [[Val]] × [[Val]] → P (H)
given by h ∈ [[v1 �→ v2]] iff dom(h) = {v1} and h(v1) = v2. To define the stan-
dard interpretation of terms and formulas, one assumes a partial function
s : Var ⇀ f in [[Val]], called a stack (also called a store in the literature). The
interpretation of terms depends on the stack and is defined by

[[x]]s = s(x)
[[n]]s = [[n]]
[[t1 ± t2]]s = [[t1]]s ± [[t2]]s.

The interpretation of formulas is standardly given by a forcing relation s, h |= ϕ,
where FV(ϕ) ⊆ dom(s), as follows:

s, h |= t1 = t2 iff [[t1]]s = [[t2]]s
s, h |= t1 �→ t2 iff dom(h) = {[[t1]]s} and h([[t1]]s) = [[t2]]s
s, h |= emp iff h = ∅
s, h |= 	 always
s, h |= ⊥ never
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s, h |= ϕ ∗ ψ iff there exists h1, h2 ∈ H such that h1 ∗ h2 = h, and
s, h1 |= ϕ, and s, h2 |= ψ

s, h |= ϕ −−∗ ψ iff for all h′, h′#h, and s, h′ |= ϕ implies s, h ∗ h′ |= ψ

s, h |= ϕ ∨ ψ iff s, h |= ϕ or s, h |= ψ

s, h |= ϕ ∧ ψ iff s, h |= ϕ and s, h |= ψ

s, h |= ϕ → ψ iff s, h |= ϕ implies s, h |= ψ

s, h |= ∀x.ϕ iff for all v ∈ [[Val]], s[x �→ v], h |= ϕ

s, h |= ∃x.ϕ iff there exists v ∈ [[Val]], such that s[x �→ v], h |= ϕ

Remark 3.1. The pointer model has a single-sorted signature (the only type
is Val), and to get a many-sorted or higher-order version of the pointer model,
we add appropriate types to the signature. Variables come with a type x : X ,
and we require that s(x : X ) ∈ [[X ]] for all variables x ∈ dom s. The last two
rules of the forcing relation, become typed.

s, h |= ∀x : X .ϕ iff for all v ∈ [[X ]], s[x �→ v], h |= ϕ

and similar for the exists rule.

We now show how this pointer model is an instance of a BI-hyperdoctrine of
a complete Boolean BI algebra (compare with Example 2.6).

3.2 The Pointer Model as a BI Hyperdoctrine

Let (H⊥, ∗) be the discretely ordered set of heaps with a bottom element added
to represent undefined, and let ∗ : H⊥ × H⊥ → H⊥ be the total extension of
∗ : H × H ⇀ H satisfying ⊥ ∗ h = h ∗ ⊥ = ⊥, for all h ∈ H⊥, and h ∗ h′ = ⊥
if h and h′ are not disjoint. This defines an ordered, commutative monoid with
the empty heap ∅ as the unit for ∗. The powerset of H, P(H) (without ⊥) is
a complete Boolean BI algebra ordered by inclusion and with monoidal closed
structure given by (for U, V ∈ P(H)):

—I is {∅};
—U ∗ V := {h ∗ h′ | h ∈ U ∧ h′ ∈ V } \ {⊥}; and
—U −−∗ V := ⋃{W ⊆ H | (W ∗ U ) ⊆ V }.

It can easily be verified directly that this defines a complete Boolean BI
algebra; it also follows from more abstract arguments in Pym et al. [2004] and
Biering [2004].

Let S be the BI hyperdoctrine induced by the complete Boolean BI algebra
P(H), as in Example 2.6. To show that the interpretation of separation logic
in this BI hyperdoctrine exactly corresponds to the standard pointer model
presented earlier, we spell out the interpretation of separation logic in S.

A term t in a context � = {x1 : Val, . . . , xn : Val} is interpreted as a morphism
between sets:

—[[xi : Val]] = πi, where πi : Valn → Val is the ith projection;
—[[n]] is the map [[n]] : [[�]] → 1 → [[Val]] which sends the unique element of

the one-point set 1 to [[n]]; and
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—[[t1±t2]] = [[t1]]±[[t2]] : [[�]] → [[Val]]×[[Val]] → [[Val]], where [[ti]] : [[�]] → [[Val]],
for i = 1, 2.

The interpretation of a formula ϕ in a context � = {x1 : Val, . . . , xn : Val} is
given inductively as follows. Let [[�]] = [[Val]] × · · · × [[Val]] = [[Val]]n and write v
for elements of [[�]]. Then ϕ is interpreted as an element of P[[�]] as follows:

[[t1 �→ t2]](v) = {h | dom(h) = {[[t1]](v)} and h([[t1]](v)) = [[t2]](v)}
[[t1 = t2]](v) = H if [[t1]](v) = [[t2]](v), ∅ otherwise
[[	]](∗) = H
[[⊥]](∗) = ∅
[[emp]](∗) = {h | dom(h) = ∅}
[[ϕ ∧ ψ]](v) = [[ϕ]](v) ∩ [[ψ]](v)
[[ϕ ∨ ψ]](v) = [[ϕ]](v) ∪ [[ψ]](v)
[[ϕ → ψ]](v) = {h | h ∈ [[ϕ]](v) implies h ∈ [[ψ]](v)}
[[ϕ ∗ ψ]](v) = [[ϕ]](v) ∗ [[ψ]](v)

= {h1 ∗ h2 | h1 ∈ [[ϕ]](v) and h2 ∈ [[ψ]](v)} \ {⊥}
[[ϕ −−∗ ψ]](v) = [[ϕ]](v) −−∗ [[ψ]](v)

= {h | [[ϕ]](v) ∗ {h} ⊆ [[ψ]](v)}
[[∀x : Val.ϕ]](v) = ⋂

vx∈[[Val]]([[ϕ]](vx , v))
[[∃x : Val.ϕ]](v) = ⋃

vx∈[[Val]]([[ϕ]](vx , v))

Now it is easy to verify, by structural induction on formulas ϕ, that the inter-
pretation given in the BI hyperdoctrine S corresponds exactly to the forcing
semantics given earlier.

THEOREM 3.2. h ∈ [[ϕ]](v1, . . . , vn) iff [x1 �→ v1, . . . , xn �→ vn], h |= ϕ.

As a consequence, we of course obtain the well-known result that separation
logic is sound for classical first-order BI. But, more interestingly, the correspon-
dence also shows that we may easily extend separation logic to higher-order,
since the BI hyperdoctrine S soundly models higher-order BI. We expand on
this in the next section, which also discusses other consequences of the afore-
mentioned correspondence. First, however, we explain that one can also obtain
such a correspondence for other versions of separation logic.

3.3 An Intuitionistic Model

Consider again the set of heaps (H⊥, ∗) with an added bottom ⊥, as before. We
now define the order by

h1 � h2 iff dom(h1) ⊆ dom(h2) and for all x ∈ dom(h1). h1(x) = h2(x).

Let I be the set of sieves on H, that is, downwards closed subsets of H, ordered
by inclusion. This is a complete BI algebra, as can be verified directly or by
abstract argument [Biering 2004; Pym et al. 2004].

Now let T be the BI hyperdoctrine induced by the complete BI algebra I ,
as in Example 2.6. The interpretation of predicate BI in this BI hyperdoctrine
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corresponds exactly to the intuitionistic pointer model of separation logic, which
is presented using a forcing-style semantics in Ishtiaq and O’Hearn [2001].

3.4 The Permissions Model

It is also possible to fit the permissions model of separation logic from Bornat
et al. [2005] into the framework presented here. The main point is that the set
of heaps (which in that model map locations to values and permissions) has a
binary operation ∗, that makes (H⊥, ∗) a partially ordered commutative monoid.

Remark 3.3. The correspondences between separation logic and BI hyper-
doctrines given previously illustrate that what matters for the interpretation
of separation logic is the choice of BI algebra. Indeed, the main relevance of the
topos-theoretic constructions in Pym et al. [2004] for models of separation logic
is that they can be used to construct suitable BI algebras (as subobject lattices
in categories of sheaves).

4. SOME CONSEQUENCES FOR SEPARATION LOGIC

We have shown earlier that it is completely natural and straightforward to
interpret first-order predicate BI in first-order BI hyperdoctrines and that the
standard pointer model of separation logic corresponds to a particular case of
BI hyperdoctrine. Based on this correspondence, in this section we draw some
further consequences for separation logic.

4.1 Formalizing Separation Logic

The usefulness of separation logic has been demonstrated in numerous papers
before. It has been shown that it can handle simple programs for copying trees,
deleting lists, etc. The first proof of a more realistic program appeared in Yang’s
thesis [Yang 2001], in which he showed correctness of the Schorr-Waite graph
marking algorithm. Later, a proof of correctness of Cheney’s garbage collection
algorithm was published in Birkedal et al. [2004], and other examples of cor-
rectness proofs of nontrivial algorithms may be found in Bornat et al. [2004].
In all of these papers, different simple extensions of core separation logic were
used. For example, Yang [2001] used lists and binary trees as parts of his term
language, and Birkedal et al. [2004] introduced expression forms for finite sets
and relations. It would seem a weakness of separation logic that one has to come
up with suitable extensions of it every time one has to prove a new program
correct. In particular, it would make machine-verifiable formalizations of such
proofs more burdensome and dubious if one would have to alter the underlying
logic for every new proof.

The right way to look at these “extensions” is that they are really trivial
definitional extensions of one and the same logic, namely, the internal logic of
the classical BI hyperdoctrine S presented in Section 3. The internal language
of a BI hyperdoctrine P over C is formed as follows: To each object of C one
associates a type, to each morphism of C one associates a function symbol, and
to each predicate in P(X ) one associates a relation symbol. The terms and
formulas over this signature (considered as a higher-order signature [Jacobs
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1999]) form the internal language of the BI hyperdoctrine. There is an obvious
structure for this language in P.

Let 2 = {⊥, 	} be a two-element set (the subobject classifier of Set). There is
a canonical map ι : 2 → P(H) which maps ⊥ to {} (the bottom element of the
BI algebra P(H)) and 	 to H (the top element of P(H)).

Definition 4.1. Let ϕ be an S-predicate over a set X , namely, a function
ϕ : X → P(H). Call ϕ pure if ϕ factors through ι.

Thus ϕ : X → P(H) is pure if there exists a map χϕ : X → 2 such that

commutes. This corresponds to the notion of pure predicate traditionally used
in separation logic [Reynolds 2002].

The sublogic of pure predicates is simply the standard classical higher-order
logic of Set, and thus is sound for classical higher-order logic. Hence one can
use classical higher-order logic for defining lists, trees, finite sets, and relations
in the standard manner using pure predicates and can also prove the standard
properties of these structures, as needed for the proofs presented in the afore-
mentioned papers. In particular, notice that recursive definitions of predicates,
which in the papers [Yang 2001; Birkedal et al. 2004; Bornat et al. 2004] are
defined at the meta level, can be defined inside the higher-order logic itself, as
detailed in Section 4.3. For machine verification one thus need only formalize
the same exact logic, namely, a sufficient fragment of the internal logic of the
BI hyperdoctrine (with obvious syntactic rules for when a formula is pure). The
internal logic itself is “too big” (e.g., it can have class-many types and function
symbols); hence the need for a fragment thereof, say, classical higher-order logic
with natural numbers.

4.2 Logical Characterizations of Classes of Assertions

Different classes of assertions, precise, monotone, and pure, are introduced by
Reynolds [2002], who notices that special axioms for these classes of assertions
are valid. Such special axioms are exploited in the proof of Cheney’s garbage
collector [Birkedal et al. 2004], where pure assertions are moved in and out of
the scope of iterated separating conjunctions, and in the paper O’Hearn et al.
[2004], where properties of precise assertions are crucially applied to verify
soundness of the hypothetical frame rule. The different classes of assertions are
defined semantically and the special axioms are validated using the semantics.
We show how the higher-order features of higher-order separation logic allow
a logical characterization of the classes of assertions, as well as logical proofs
of the properties earlier taken as axioms. This is, of course, important for ma-
chine verification, since it means that the special classes of assertions and their
properties can be expressed in the logic.
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To simplify notation we just present the characterizations for closed asser-
tions, the extension to open assertions begin straightforward. Recall that closed
assertions are interpreted in S as functions from 1 to P(H), that is, as subsets
of H.

In the proofs to follow, we use assertions which describe heaps in a canonical
way. Since a heap h has finite domain, there is a unique (up to permutation)
way to write an assertion ph ≡ l1 �→ n1 ∗ . . . ∗ lk �→ nk such that [[ph]] = {h}.

Precise assertions. The traditional definition of a precise assertion is se-
mantic inasmuch as an assertion q is precise if and only if for all states (s, h),
there is at most one subheap h0 of h such that (s, h0) |= q. The following propo-
sition logically characterizes closed precise assertions (at the semantic level,
this characterization of precise predicates has been mentioned before [O’Hearn
et al. 2003]).

PROPOSITION 4.2. The closed assertion q is precise if and only if the assertion

∀p1, p2 : Prop. (p1 ∗ q) ∧ (p2 ∗ q) ↔ (p1 ∧ p2) ∗ q (10)

is valid in the BI hyperdoctrine S.

PROOF. The “only-if” direction is trivial, so we focus on the other implication.
Thus suppose (10) holds for q, and let h be a heap with two different subheaps
h1, h2 for which hi ∈ [[q]]. Let p1, p2 be canonical assertions describing the heaps
h\h1 and h\h2, respectively. Then h ∈ [[(p1 ∗q)∧ (p2 ∗ p)]], so h ∈ [[(p1 ∧ p2)∗q]],
whence there is a subheap h′ ⊆ h with h′ ∈ [[p1 ∧ p2]]. This is a contradiction.

One can verify properties for precise assertions in the logic without using
semantical arguments. For example, one can show that q1 ∗ q2 is precise if q1
and q2 are by the following logical argument: Suppose (10) holds for q1, q2. Then,

(p1 ∗ (q1 ∗ q2)) ∧ (p2 ∗ (q1 ∗ q2)) ⇒ ((p1 ∗ q1) ∗ q2) ∧ ((p2 ∗ q1) ∗ q2))
⇒ ((p1 ∗ q1) ∧ (p2 ∗ q1)) ∗ q2 ⇒ ((p1 ∧ p2) ∗ q1) ∗ q2
⇒ (p1 ∧ p2) ∗ (q1 ∗ q2),

as desired.

Monotone assertions. A closed assertion q is defined to be monotone if and
only if whenever h ∈ [[q]], then also h′ ∈ [[q]], for all extensions h′ ⊇ h.

PROPOSITION 4.3. The closed assertion q is monotone if and only if the asser-
tion ∀p:Prop. p ∗ q → q is valid in the BI hyperdoctrine S.

This is easily verified, and again, one can show the usual rules for
monotone assertions in the logic (without semantical arguments) using this
characterization.

Pure assertions. Recall from before that an assertion q is pure iff its inter-
pretation factors through 2. Thus, a closed assertion is pure iff its interpretation
is either ∅ or H.
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PROPOSITION 4.4. The closed assertion q is pure if and only if the assertion

∀p1, p2:Prop. (q ∧ p1) ∗ p2 ↔ q ∧ (p1 ∗ p2) (11)

is valid in the BI hyperdoctrine S.

PROOF. Again, the interesting direction here is the “if” implication. Sup-
pose (11) holds for the assertion q, and that h ∈ [[q]]. For any heap h0, we must
show that h0 ∈ [[q]]. This is done via the verification of two claims.

Fact 1: For all h′ ⊆ h, h′ ∈ [[q]]. Proof: Let p1 be a canonical description of
h′, and p2 a canonical description of h \ h′. Then h ∈ [[q ∧ (p1 ∗ p2)]], so by 11,
h ∈ [[(q ∧ p1) ∗ p2]]. This means there is a split h1 ∗ h2 = h with h1 ∈ [[q ∧ p1]]
and h2 ∈ [[p2]]. But then, h2 = h \ h′, so h1 = h′, and thus, h′ ∈ [[q]].

Fact 2: For all h′ ⊇ h, h′ ∈ [[q]]. Proof: Let p1 and p2 be canonical descriptions
of h and h′ \h, respectively. Then, h′ ∈ [[(q∧ p1)∗ p2]], so by 11, h′ ∈ [[q∧(p1 ∗ p2)]],
and in particular, h′ ∈ [[q]], as desired.

Using Facts 1 and 2, we deduce that h ∈ [[q]] ⇒ emp ∈ [[q]] ⇒ h0 ∈ [[q]].

4.3 Predicates via Fixed Points

Consider the following predicate clist taken from Parkinson and Bierman
[2005]. It is required to satisfy the recursive equation

clist = λ(x, s).x = null ∨ (∃ j , k. x �→ j , k ∗ P ( j , s) ∗ clist(k, s)),

for some specific P . Solutions to such equations are definable in higher-order
separation logic. Indeed, we may define both minimal and maximal fixed points
for any monotone operator on predicates, using standard encodings of fixed
points (due to Prawitz and Scott, independently). To wit, consider for notational
simplicity an arbitrary predicate

q : Prop � ϕ(q) : Prop

satisfying that q only occurs positively in ϕ. Then

μq.ϕ(q) = ∀q.(ϕ(q) → q) → q

is the least fixed point for ϕ in the obvious sense that ϕ(μq.ϕ(q)) → μq.ϕ(q) and
∀p.(ϕ(p) → p) → (μq.ϕ(q) → p) holds in the logic. Note that the latter is the
corresponding induction principle. Likewise,

νq.ϕ(q) = ∃q.(q → ϕ(q)) ∧ q

is the maximal fixed point for ϕ.

5. HIGHER-ORDER SEPARATION LOGIC

We present a programming language and use the higher-order assertion lan-
guage of the pointer-model BI hyperdoctrine S to give a specification logic for it.
The programming language is a simple extension of that of standard separation
logic with simple call-by-value procedures, and the program logic includes stan-
dard rules for these. The logic is for partial correctness and absence of pointer
errors.
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Programming language. The programming language uses a restricted set of
terms of type Int, referred to as expressions, and uses Booleans, which consist of
a restricted (heap-independent) set of terms of type Prop. E ranges over the set
of terms of type Int, and B ranges over the Boolean terms. They are generated
by the grammar.

E ::= n | x | E + E | E − E | E × E | null
B ::= E = E | E ≤ E | B ∧ B | · · ·

Formally, Booleans have type Prop in our system, but we sometimes write B :
Bool if they can be generated from this grammar (i.e., Boolean expressions
are pure assertions). Moreover, officially we always consider expressions and
formulas in context and thus write � � E:Int, � � B:Bool, and � � P :Prop
for expressions, Booleans, and general assertions, respectively. A context � is a
pair �l ; �p of contexts for logical and program variables (i.e., finite maps from
variables to types).

The syntax of the programming language is given by the following grammar.
Here, k ranges over a set of function names and x ranges over a set of program
variables.

c ::= skip
| x := ki(E1, . . . , Emi )
| newvar x; c
| x := E
| x := [E]
| [E] := E ′

| x := cons(E1, . . . , Em)
| dispose(E)
| if B then c else c fi
| while B do c od
| c; c
| let k1(x1, . . . , xm1 ) = c1

...
kn(x1, . . . , xmn) = cn

in c end
| return e

There are some restrictions on the programs, and a program is called well
formed if it meets them. The restrictions include:

—There is always a return at the end of a function body.
—A function name is declared at most once in a let.
—There are the right number of parameters in function calls.
—Function bodies modify neither nonlocal variables nor parameters.

The semantics is mostly standard; we specify it formally in the following.
Note that the language includes a declaration of new local variables, as well as
operations for reading from the heap (x := [E]), updating the heap [E] := E ′,
allocating new cells in the heap (x := cons(E1, . . . , Em)), and disposing cells in
the heap (dispose(E)). Functions are first order and call-by-value.
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Function specifications. There is a judgment

� � γ :FSpec

stating that γ is a well-formed function specification in context �.
Function specifications are used to record assumptions about the functions

used in programs. The judgment is given by

� � P :Prop � � Q :Prop

� � {P} k(x1, . . . , xn) {Q}:FSpec

� � γ :FSpec � � γ ′:FSpec

� � γ ∧ γ ′:FSpec

�, x:τ � γ :FSpec

� � �x:τ. γ :FSpec
where � ∈ {∃, ∀}.

The set of free variables for a function specification is defined as the free vari-
ables in the assertions occurring in it.

Specifications. We introduce syntax for commands and specifications. There
is a judgment � � c:comm which asserts that the program c is well formed in
the context �. We omit the formal definition here.

The specification of higher-order separation logic is given by a judgment

� � δ:Spec

which asserts that δ is a well-formed specification in the context �. This judg-
ment is given by

� � c:comm � � P :Prop � � Q :Prop

� � {P} c {Q}:Spec

� � δ:Spec � � δ′:Spec

� � δ ∧ δ′:Spec

�, x:τ � δ:Spec

� � �x:τ. δ:Spec
� ∈ {∃, ∀}.

The set FV(δ) of free variables of a specification δ is the set of free variables in
the assertions and variables in the commands occurring in δ. The set Mod(δ)
of modified variables of δ is the set of modified variables in the commands
occurring in δ.

Operational semantics. The operational semantics of the programming lan-
guage is given by a judgment

(�, c, s, h) ⇓ (s′, h′), (12)

where � is a well-formed semantic function environment. A semantic function
environment maps function names k to pairs (�x, c), where �x is a vector of in-
teger variables and c a command from the programming language. Such an
environment is well formed if the function bodies only modify local variables
(and ret, by the return command).

� ok iff ∀(x, c) ∈ cod (�). Mod(c) = ∅
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We write SemFunEnv for the set of all well-formed semantic function
environments.

Intuitively, the judgment (12) says that the state (s, h) is transformed to the
state (s′, h′) by the program c. The judgment is given by the clauses in Figure 1.
We occasionally use �p for the domain of s in the definition of the judgment, for
example, in the second rule (for assignment). Furthermore, the notation h−{n}
is used to denote the heap which is like h, but with n taken out of its domain.
In the evaluation of a function call x = k(E), a designated variable ret is used
to transfer the return value of the function call via the stack to x.

The configuration (�, c, s, h) is called safe if (�, c, s, h) �⇓ wrong. A configu-
ration may terminate in a state (s′, h′), diverge, or go wrong.

Note that since this semantics is the same as the operational semantics of
the language of Parkinson and Bierman [2005], the properties needed to prove
the frame rule, namely, safety monotonicity and the frame property [Yang and
O’Hearn 2002], are valid for all programs of the language. These properties are:

—Safety monotonicity. For all well-formed semantic function environments �,
programs c, stacks s, and heaps h, if (�, c, s, h) is safe, then for all heaps h′

disjoint from h, (�, c, s, h ∗ h′) is also safe.
—The frame property. For all well-formed semantic function environments �,

programs c, stacks s, and heaps h, if (�, c, s, h) is safe and h′ is disjoint from
h, then (�, c, s, h ∗ h′) ⇓ (s′, h′′) implies that there is h0 disjoint from h′ such
that h′′ = h0 ∗ h′ and (�, c, s, h) ⇓ (s′, h0).

5.1 Program Logic Judgments

A list � of function specifications is called an environment. We shall define the
judgment

�l ; �p; �| |= δ:Spec

which states that in the context �l used for logical variables, and context �p

used for program variables, given the assumptions about functions recorded
in �, the specification δ holds. This judgment is defined in several straightfor-
ward steps. First, we give the semantics of a triple, relative to a context. The
semantics of [[�l ; �p � δ:Spec]] is a map from SemFunEnv× [[�l ]] to the domain
{true, false}, and given by (some obvious type annotations are omitted):

[[�l ; �p � {P} c {Q}]](�, sl ) iff ∀sp ∈ [[�p]].∀h ∈ [[�l , �p � P ]](sl , sp).
− (�, c, sp, h) is safe, and
− (�, c, sp, h) ⇓ (s′

p, h′) implies
h′ ∈ [[� � Q]](sl , s′

p)

[[�l ; �p � δ ∧ δ′]](�, sl ) iff [[�l ; �p � δ]](�, sl ) and [[�l ; �p � δ′]](�, sl )
[[�l ; �p � ∃x:τ. δ]](�, sl ) iff [[�l x : t; �p � δ]](�, (sl )[x �→v]) for some v ∈ [[τ ]]
[[�l ; �p � ∀x:τ. δ]](�, sl ) iff [[�l x : t; �p � δ]](�, (sl )[x �→v]) for all v ∈ [[τ ]].

We call �l ; �p � δ valid and write �l ; �p| |= δ iff [[�l ; �p; � δ]](�, sl ) = true for
all � and all sl ∈ [[�l ]].
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Fig. 1. Operational semantics of the programming language.

LEMMA 5.1. Let δ be a specification, x:τ a variable, and �l � t:τ a term such
that (FV(t) ∪ {x}) ∩ Mod(δ) = ∅. Further, let sl ∈ [[�l ]], and � be well formed.
Then,

[[�l ; �p � δ[t/x]]](�, sl ) iff [[�l ; �p, x:τ � δ]](�, (sl )[x �→v]),

where v = [[�l � t:τ ]]sl .
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There is a similar semantics for function specifications. This semantics is a
map

[[�l ; �p � γ :FSpec]] : SemFunEnv × [[�l ]] �→ {true, false}
and given in much the same way as the corresponding map for specifications.
The only difference is the base case, which is given by

[[�l ; �p � {P} km {Q}]](�, sl ) iff [[�l ; �′
p � {P} cm {Q}]](�, sl )

where �(km) = ((x1, . . . , xnm), cm),

where �′
p is �p with the xi ’s added (with type Int).

As mentioned, an environment is a list of function specifications. The seman-
tics of an environment is given componentwise.

[[�l ; �p � �]](�, sl ) iff [[�l ; �p � γ ]](�, sl ) for all γ ∈ �

Finally, the semantics of specifications, relative to a context and an environ-
ment, is defined by

�l ; �p; � |= δ iff for all well-formed � and all sl ∈ [[�l ]],
[[�l ; �p � �]](�, sl ) implies [[�l ; �p � δ]](�, sl ).

5.2 Inference Rules

We define a judgment

�l ; �p; � � δ

for deriving valid specifications. The inference rules are given in Figure 2. For
brevity, we have omitted obvious rules for conjunctions of specifications and
some structural rules for weakening and strengthening of variable contexts. We
first explain some of the rules at an intuitive level, and then show soundness.

5.3 Informal Explanation of Rules

The first two rules are the usual ones for skip and assignment from Hoare
logic. The rule for return is similar to that for assignment, since return simply
amounts to an assignment to the special variable ret.

The rule

{P} k(�x) {Q} ∈ �

�l ; �p; � � {P [ �E/�x]} y := k( �E) {Q[ �E, y/�x, ret]} , Y �∈ FV(Q) ∪ FV(E)

for a function call says that in order to call a function, the precondition for the
function must be satisfied. This precondition is recorded in the environment,
along with the corresponding postcondition.

The next four rules, which involve the heap-manipulating constructs of the
programming language, are the standard rules of separation logic, adapted to
our setting. Note that the specifications are “tight” in the sense that they only
mention those heap cells that are actually manipulated by the commands. For
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Fig. 2. Program logic.

example, the rule

�l ; �p; � � {emp ∧ x = m}x := cons( �E){x �→ �E[m/x]}
for cons produces a new cell when run in an empty heap. Note that this does
not mean that cons can only be executed in an empty heap. The last rule of the
system

�l ; �p; � � {P} c {Q}
�l ; �p; � � {P ∗ P ′} c {Q ∗ P ′} Mod(c) ∩ FV(P ′) = emp,
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called the frame rule, implies that one can infer a global from a local
specification, like the one for cons. Hence, cons can be executed in any heap,
described by the predicate P (in which x does not occur freely), by the following
instance of the frame rule.

�l ; �p; � � {emp ∧ x = m}x := cons( �E){x �→ �E[m/x]}
�l ; �p; � � {P ∧ x = m}x := cons( �E){P ∗ (x �→ �E[m/x])}

The rule
�l ; �p, �x1; � � {P1} c1 {Q1}

...
�l ; �p, �xn; � � {Pn} cn {Qn}

�l ; �p; �, {P1} k1(�x1) {Q1}, · · · , {Pn} kn(�xn) {Qn} � {P} c {Q}
�l ; �p; � � {P} let k1(�x1) = c1, . . . , kn(�xn) = cn in c {Q}

for function definitions is the usual one from Hoare logic with procedures [Hoare
1971]. The rules for while and if-then-else are also standard. The rule of
consequence is standard, and the rules

�l , x:τ ; �p; �, γ � δ

�l ; �p; �, ∃x:τ. γ � δ
x �∈ FV(�)

�l , x:τ ; �p; � � δ

�l ; �p; � � ∀x:τ. δ
x �∈ FV(�)

are straightforward adaptations of standard rules of predicate logic. (Note that
by the convention that variables in contexts �l ; �p are all distinct, x /∈ FV(δ)
in the first rule and x /∈ FV(�) in the second.) They are used later for reasoning
about data abstraction. Note here that x may be of any type τ , including higher
types for predicates (see the examples in Sections 6 and 7).

5.4 Soundness

THEOREM 5.2. If a specification

�l ; �p; � � δ

can be derived from the rules in Figure 2, then it is valid.

PROOF. By induction. For each rule of form

�l ; �p; � � δ

�′
l ; �

′
p; �′ � δ′ ,

(13)

we check that �′
l ; �

′
p; �′ |= δ′, under the assumption �l ; �p; � |= δ. For axioms

of the form

�l ; �p; � � δ
,

the proof obligation is to show �l ; �p; � |= δ.
Consider the rule for skip:

�l ; �p; � � {P} skip {P}
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Although trivial, we show soundness of this rule to exercise the definitions. Let
� be a well-formed semantic function environment. It suffices to show that

[[�l ; �p � {P} skip {P}]](�, sl )

for all sl ∈ [[�l ]]. Let sp ∈ [[�p]] and let h ∈ [[P ]](sl , sp). Then,

(�, skip, sp, h) ⇓ (sp, h)

and clearly, h ∈ [[P ]](sl , sp), so this rule is sound.
The soundness of the rule for assignment

�l ; �p; � � {P [E/x]} x := E {P}
depends, as usual, on the standard substitution lemma for assertions (not in-
cluded in the review in Section 3).

Now consider the rule for function calls.
{P} ki(x1, . . . , xni ) {Q} ∈ �

�l ; �p; � � {P [E1/x1 · · · Eni/xni]} y = ki(E1, . . . , Eni) {Q[E1/x1 · · · Eni/xni , y/ret]}
To show soundness, suppose {P} ki(x1, . . . , xni ) {Q} ∈ �. Let sl ∈ [[�l ]], and let
� be a well-formed semantic function environment with [[�l ; �p|= �]](�, sl ). In
particular,

[[�l ; �p � {P} ki(x1, . . . , xni ) {Q}]](�, sl ),

so if �(ki) = ((x1, . . . , xni ), ci), then [[�l ; �p � {P} ci {Q}]](�, sl ). Now, suppose
that sp ∈ [[�p]] and

h ∈ [[P [E1/x1 · · · Eni /xni ]]](sl , sp) = [[P ]](sl , (sp)[x1 �→v1,...,xni �→vni ]),

where vj = [[�l ; �p � E j :Int]](sl , sp) and j ∈ {1, . . . , ni}, by the substitution
lemma. This means that if

(�, ci, (sp)[x1 �→v1,...,xni �→vni ], h) ⇓ (s′
p, h′),

then h′ ∈ [[Q]](sl , s′
p). Since � is well formed, ci does not modify any variables,

so s′
p is of the form

s′
p = (sp)[x1 �→v1,...,xni �→vni ,ret �→s′(ret)]

and by the substitution lemma, h′ ∈ [[Q[E1/x1 · · · Eni /xni , s′
p(ret)/ret]]](sl , sp).

By the operational semantics for function calls,

(�, y = ki(E1, . . . , Eni ), sp, h) ⇓ ((sp)[ y �→s′
p(ret)], h′)

and thus, the rule holds.
The first rule for existentials is

�, x:τ ; �p; �, γ � δ

�l ; �p; �, ∃x:τ. γ � δ
x /∈ FV(�).

Suppose that for all well-formed � and sl ∈ [[�l , x:τ ]],

[[�l , x:τ ; �p � �, γ ]](�, sl ) implies[[�l , x:τ ; �p � δ]](�, sl )

and let [[�l ; �p � �]](�, sl ) and [[�l ; �p � ∃x:τ. γ ]](�, s). This means that
[[�l , x:τ ; �p � γ ]](�, (sl )[x �→v]) for some v ∈ [[τ ]]. Since x /∈ FV(�), [[�l , x:τ ; �p �
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�]](�, (sl )[x �→v]). This implies [[�l , x:τ ; �p � δ]](�, (sl )[x �→v]), and since x /∈ FV(δ),
we have [[�l ; �p � δ]](�, s).

The other rule for existentials is

�l ; �p; �, ∃x:τ. γ � δ

�l , x:τ ; �p; �, γ � δ
.

For soundness, first suppose τ is inhabited and that for all well-formed � and
sl ∈ [[�l ]],

[[�l ; �p � �, ∃x:τ. γ ]](�, sl ) implies [[�l ; �p � δ]](�, sl )

and suppose [[�l , x:τ ; �p � �, γ ]](�, sl ). Since τ is inhabited, this means that

[[�l , x:τ ; �p � �, γ ]](�, (sl )[x �→sl (x)])

and since x /∈ FV(�), this implies

[[�l , x:τ ; �p � �, ∃x:τ. γ ]](�, sl )

and thus, [[�l ; �p � δ]](�, sl ), as desired. If τ is an empty type, one can make an
easy case analysis on whether x occurs in γ .

Soundness of the downwards rule for universals is easy. For soundness of the
upwards rule,

�l ; �p; � � ∀x:τ. δ

�l , x:τ ; �p; � � δ
,

suppose that for all well-formed � and sl ∈ [[�l ]],

[[�l ; �p � �]](�, sl ) implies [[�l ; �p � ∀x:τ. δ]](�, sl )

and let s′
l ∈ [[�l , x:τ ]]. Suppose [[�l , x:τ ; �p � �]](�, s′

l ). Since x /∈ FV(�),

[[�l ; �p � �]](�, (s′
l − x)),

and this implies

[[�l , x:τ ; �p � δ]](�, (s′
l − x)[x �→v]), for all v ∈ [[τ ]].

This means in particular that

[[�l , x:τ ; �p � δ]](�, (s′
l )[x �→s′

l (x)]),

which shows the desired result.
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5.5 A Derived Rule

There is an important rule abstract function definition that is derivable from
the rules in Figure 2. The rule is

�l � P̂ :τ

�l ; �p, �x1; � � {P1[P̂/x]} c1 {Q1[P̂/x]}
...

�l ; �p, �xn; � � {Pn[P̂/x]} cn {Qn[P̂/x]}
�l ; �p; �, ∃x:τ.({P1}k1(�x1){Q1} ∧ · · · ∧ {Pn}kn(�xn){Qn}) � {P} c {Q}

�l ; �p; � � {P} let k1(�x1) = c1, . . . , kn(�xn) = cn in c end {Q}
x �∈ FV({P} c {Q}).

(14)

Here one may think of x as a predicate describing a resource invariant used by
an abstract data type with operations k1, . . . kn.

We show how this rule can be derived; for simplicity, we assume n = 1 and
that there are no parameters. The proof of the more general case is essentially
the same. First, by the function definition rule,

�l ; �p, y ; � � {P1[P̂/x]} c1 {Q1[P̂/x]}
�l ; �p; �, {P1[P̂/x]} k1( y) {Q1[P̂/x]} � {P} c {Q}

�l ; �p; � � {P} let k1( y) = c1 in c {Q}
.

The rule for existentials gives us

�l ; �p; �, ∃x:τ. {P1} k1( y) {Q1} � {P} c {Q}
�l , x:τ ; �p; �, {P1} k1( y) {Q1} � {P} c {Q}

,

so we need to establish

�l ; �p; �, {P1[P̂/x]} k1( y) {Q1[P̂/x]} � {P} c {Q},
given

�l ; x:τ ; �p; �, {P1} k1( y) {Q1} � {P} c {Q}.
But this follows from a substitution lemma, since x is not free in {P} c {Q}.

6. DATA ABSTRACTION VIA EXISTENTIAL QUANTIFICATION

We present an example that demonstrates how one may use the program logic
for reasoning using data abstraction. The example involves two implementa-
tions of a priority queue, and the intention is, of course, that the client programs
which use these implementations should be unaware of and unable to exploit
details of the particular implementation used. Data abstraction is modeled via
existential quantification over predicates, corresponding to the slogan “abstract
types have existential type” [Mitchell and Plotkin 1985].
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6.1 Reasoning using Abstract Priority Queues

Priority queues are used frequently in programming, for example, in scheduling
algorithms for processes in operating systems [Silberschatz and Galvin 1998].
These consist of pairs (p, v), where v is a stored value and p is the priority
associated with v. In such a structure, one can then enqueue such pairs and
extract an element with the highest priority. Some operations and relations on
such queues are needed:

MaxPri(ε) = −1
MaxPri((p, v) ∪ Q) = Max(p, MaxPri(Q))
MaxPair(Q , (p, v)) ⇔ (p, v) ∈ Q ∧ p = MaxPri(Q)

We assume a base type PriQ, whose values are priority queues. These types and
operations are only used in the logic, not in programs. Observe that the type
PriQ is, of course, definable in the higher-order logic.

We now discuss how to reason about client code which uses an abstract pri-
ority queue. First, since client programs cannot modify abstract values, we’ll
use a predicate stating that there is a “handle” to a priority queue. Hence, we
introduce the predicate

repr(q, Q)

which asserts that the integer denoted by q is a handle to the priority queue
Q , but does not say anything about how Q is represented. Note that the type
of repr is (Int × PriQ) ⇒ Prop, a type of predicate.

This will be used as an abstract predicate in our proofs (thus playing the
role of x in the abstract function definition rule (14)). Given this predicate, the
following are reasonable specifications for the various operations on a priority
queue.

Creating a queue. There should be an operation which enables a client program
to create a priority queue. Its specification is

{emp} createqueue() {repr(ret, ε)},
which merely states that upon creation of a queue, a handle to an empty
priority queue is returned.

Enqueing. There should be an operation for storing elements in a queue. The
specification is

{repr(q, Q) ∗ v �→ } enqueue(q, (p, v)) {repr(q, (p, v) ∪ Q)}.
Note that ownership of the cell pointed to by v transfers from the client to
the module.

Dequeing. There should be an operation for dequeing. We make sure not to
dequeue from an empty queue via the specification

{repr(q, Q) ∧ Q �= ε}
dequeue(q)

{∃Q ′, p, v.( repr(q, Q ′) ∧ Q = (p, v) $ Q ′ ∧ MaxPair(Q , (p, v)) ∧ ret = v)
∗ v �→ }.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 5, Article 24, Publication date: August 2007.

151



BI-Hyperdoctrines, Higher-Order Separation Logic, and Abstraction • Article 24 / 29

Note that the ownership of the dequeued cell is now transferred back to the
client.

Disposing a queue. The specification for disposing a queue is

{repr(q, Q)} disposequeue(q) {emp}.
We can now show a specification for a client program c using the abstract spec-
ification of the priority queue.

∃repr : (PriQ × Int) ⇒ Prop.

{emp} createqueue() {repr(ret, ε)} ∧
· · ·
{repr(q, Q)} disposequeue(q) {emp}

�
{Pc}c{Qc}

Observe that a client may use multiple instances of priority queues, unlike
in O’Hearn et al. [2004], which only considers static modularity.

6.2 Implementations of Priority Queues

One can implement priority queues in many ways. We have verified two im-
plementations: one using sorted linked lists and the other doubly-linked lists.
The implementations and proofs make use of some of the properties shown
by Reynolds [2002], are fairly standard, and thus omitted. Of course, a client
may use either of the two implementations, and we expect that the behavior
of a client is independent of which implementation of priority queues is used.
The simple model we have devised in this article cannot be used to prove this
formally; for that we would need a relationally parametric model.

7. SOME APPLICATIONS OF UNIVERSAL QUANTIfiCATION

In the previous section we saw how to use existential quantification over predi-
cates to reason using data abstraction. In this section we present two examples
of how to apply universal quantification over predicates (in addition to the ex-
amples involving fixed points in Section 4.3).

7.1 Polymorphic Types via Universal Quantification

We show that universally quantified predicates may be used to prove correct
polymorphic operations on polymorphic data types.

The queue module example from O’Hearn et al. [2004] is parametric in a
predicate P at the metalevel. We show that in higher-order separation logic,
the parameterization may be expressed in the logic. To that end, consider the
following version of the parametric list predicate from O’Hearn et al. [2004].

list(P, β, i) =
{

i = null ∧ emp if β = ε

∃ j . i �→ x, j ∗ P (x) ∗ list(P, β ′, j ) if β = 〈x〉 · β ′

The predicate P is required to hold for each element of the sequence β involved.
Different instantiations of P yield different versions of the list, with different
amounts of data stored in the list. If P ≡ emp, then plain values are stored
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(i.e., no ownership transfer to the queue module in O’Hearn et al. [2004]), and
if P ≡ x �→ −, −, then the addresses of cells are stored in the queue (i.e.,
ownership of the cells is tranferred in and out of the queue [O’Hearn et al.
2004]).

Returning to our higher-order separation logic, the definition of list may be
formalized with

i : Int, β : seqInt, P : PropInt � list(P, β, i) : Prop.

Here we have used a type seqInt of sequences of integers which is easily de-
finable in higher-order separation logic, and the definition of list(P, β, i) can be
given by induction on β in the logic.

Suppose listRev is the list reversal program given in the Introduction
of Reynolds [2002]. Then one can easily show the specification

{list(P, β, i)} listRev {list(P, β†, j )}.
By the introduction rule for universal quantification, we obtain the specification

β : seqInt � ∀P : PropInt
. {list(P, β, i)} listRev {list(P, β†, j )}

which expresses that listRev is parametric in the sense that it, roughly speak-
ing, reverses singly-linked lists uniformly, independently of how much heap
storage is used for each element of the list.

Thus we have one parametric correctness proof of a specification for listRev,
which may then be used to prove correct different applications of listRev (to
lists of different types).

For such parametric operations on polymorphic data types to be really useful,
one would of course prefer a higher-order programming language instead of the
first-order language considered here. Then one could, for example, program the
usual map function on lists, and provide a single parametric correctness proof
for it. See our joint paper with Yang [Birkedal et al. 2005] for a proposal of
separation logic for a higher-order language.

7.2 Invariance

In this subsection we briefly consider an example, suggested to us by John
Reynolds, which demontrates that one may use universal quantification to spec-
ify that a command does not modify its input state. We disregard stacks here,
since they are not important for the argument.

Suppose that our intention is to specify that some command c takes any heap
h described by a prediate q, and produces a heap (we assume for simplicity that
c terminates) which is an extension of h. We might attempt to use a specification
of the form

{q} c {q′ ∗ q}. (15)

This does not work, however, unless q is strictly exact [Reynolds 2002], that is,
uniquely describes the heaps satisfying q (e.g., if q is ∃β:seqInt. list(emp, β, i),
then c may delete some elements from the list in the input heap h).

Instead, we may use the specification

∀p:Prop.{q ∧ p} c {q′ ∗ p}, (16)
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as we see by the following argument. Predicate q describes a set of heaps [[q]].
For each h ∈ [[q]], let ph = {h}. Suppose that c terminates in heap h′. Then
h′ = h1 ∗ h, for some h1. In other words, the heap h is invariant under the
execution of c, as intended.

8. RELATED AND FUTURE WORK

We have introduced the notion of a BI hyperdoctrine and showed that it soundly
and completely models intuitionistic and classical first- and higher-order BI. We
showed that the semantics for BI given by separation logic is an instance of our
class of models, and that interesting models for higher-order predicate BI cannot
exist in toposes. Several applications of higher-order BI in program proving,
and particularly separation logic, were illustrated. Specifically, we introduced
higher-order separation logic, and gave sound reasoning principles for data
abstraction in the presence of mutable pointer structures, using existential
quantification over predicates.

The idea of using data abstraction to reason about complex data struc-
tures goes back to Hoare [1972], who introduced the idea of using abstrac-
tion functions, namely, functions that map object structures to values of an ab-
stract domain. Modifications of object structures can then be described in terms
of their abstract values, which makes implementation-independent specifica-
tions possible. Hoare’s idea has been extended and applied in a variety of con-
texts (see, e.g., Leavans [1988], Liskow and Guttag [1986], Leino [1995], Müller
[2002], Leino and Müller [2004, 2006], Barnett et al. [2003], Barnett and Nau-
mann [2004], and Naumann and Barnett [2006]). In several of these papers,
abstraction functions are captured via so-called model fields and the data ab-
straction technique is combined with ownership-based invariants to deal with
mutable pointer structures. The model fields correspond very closely to (some
of) the arguments of our existentially quantified propositions, for example, the
PriQ argument of the repr predicate in Section 6.1. We believe that our approach
to data abstraction using standard higher-order existential quantification gives
a particularly clear account of data abstraction by employing standard logical
notions, rather than introducing additional new logical concepts. One could ar-
gue, however, that our logical approach to data abstraction comes at the price
that we move to higher-order logic, which poses difficulties for tool support.
More research is needed to evaluate how much of an issue this is in practice.
More research is also needed to evaluate how useful our approach is for practi-
cal verification; the examples we have considered in this article merely serve to
show that the approach is viable. In particular, it would be interesting to extend
the presented specification logic to richer programming languages with more of
the features found in modern programming languages. We are currently inves-
tigating extensions to higher-order programming languages [Nanevski et al.
2006; Krishnaswami et al. 2006] and hope in the future to extend it to object-
oriented languages.

In other work, we extended separation logic to a higher-order lan-
guage [Birkedal et al. 2005], a version of Algol with immutable variables and
a first-order heap. The system in loc. cit. doesn’t distinguish the type system
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from the specification language: Command types can contain pre- and postcon-
ditions written in separation logic in a fashion similar to refinement types. The
assertion logic is first order (i.e., no quantification over propositions) but in-
cludes a powerful kind of hypothetical frame rule, extending the second-order
frame rule of O’Hearn et al. [2004] to higher order. We have worked out a sim-
ple translation from hypothetical frame rules to higher-order separation logic,
which suggests that all uses of hypothetical frame rules can be represented in
higher-order separation logic, but more work is needed to properly analyze this
conjecture.

As mentioned in Section 6.2, we expect that one should be able to show
that clients cannot detect any differences between different implementations
of abstract data types. Such representation independence (i.e., relational para-
metricity) results have been shown for a Java-like language and for a semantic
notion of confinement by Banerjee and Naumann [2005a, b]. It is quite challeng-
ing to develop relationally parametric models for separation logic, even for a
simple first-order programming language like the one considered in this article.
The reason is that standard models of separation logic allow location identities
to be observed in the model. This means, in particular, that allocation of new
heap cells is not parametric because the location identity of the allocated cell
can be observed in the model. In very recent work, the second author and Yang
did, however, succeed in defining a relationally parametric model of separation
logic [Birkedal and Yang 2006]. However, the model in loc. cit. was only devel-
oped for a first-order logic with hypothetical frame rules, and thus it is still an
open question how to devise a relationally parametric model for higher-order
separation logic.

APPENDIX

A. PROOF OF PROPOSITION 2.8

For a term t with y :Y � t( y):X , we add the abbreviation

∃t . ϕ( y)
def= ∃ y :Y . t( y) = x ∧ ϕ( y).

The following rule can be deduced:

x:X | ∃t . ϕ( y) � ψ(x)

y :Y | ϕ( y) � ψ[t( y)/x]

In particular, for y :{x:X | ϕ} � o( y):X we have

x:X | ∃o. θ ( y) � ψ(x)

y :{x:X | ϕ} | θ ( y) � ϕ[o( y)/x]
.

Let ϕ, ψ, ψ ′, χ be formulas in a context {x:X } (for simplicity we just assume one
free variable, the general case is similar). First we show that

x:X | ϕ ∧ ψ �� ∃o. ψ[o( y)/x]. (17)
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This is done by

x:X | ∃o. ψ[o( y)/x] � ∃o. ψ[o( y)/x]

y :{x:X | ϕ} | ψ[o( y)/x] � (∃o. ψ[o( y)/x])[o( y)/x]

x:X | ψ ∧ ϕ � ∃o. ψ[o( y)/x]
,

where the last derivation is the rule for full subset types. For the other direction,
consider

y :{x:X | ϕ} | ψ[o( y)/x] � ψ[o( y)/x]

x:X | ∃o. ψ[o( y)/x] � ψ

and
x:X | ϕ ∧ ψ � ϕ

y :{x:X | ϕ} | ψ[o( y)/x] � ϕ[o( y)/x]

x:X | ∃o. ψ[o( y)/x] � ϕ
,

which imply that x:X | ∃o. ψ[o( y)/x] � ϕ ∧ ψ . We also need the following:

y :{x:X | ϕ} | χ [o( y)/x] � ψ[o( y)/x]

x:X | ∃o. χ [o( y)/x] � ∃o. ψ[o( y)/x]
,

(18)

which is shown by

y :{x:X | ϕ} | χ [o( y)/x] � ψ[o( y)/x]
x:X | χ ∧ ϕ � ψ

x:X | χ ∧ ϕ � ψ ∧ ϕ

x:X | ∃o. χ [o( y)/x] � ∃o. ψ[o( y)/x]
,

where the last derivation follows from Eq. (17). We then have

y :{x:X | ϕ} | ψ[o( y)/x] ∗ ψ ′[o( y)/x] � χ [o( y)/x]

y :{x:X | ϕ} | ψ[o( y)/x] � ψ ′[o( y)/x] −−∗ χ [o( y)/x]
,

namely,

y :{x:X | ϕ} | (ψ ∗ ψ ′)[o( y)/x] � χ [o( y)/x]

y :{x:X | ϕ} | ψ[o( y)/x] � (ψ ′ −−∗ χ )[o( y)/x]
.

By (18) we then get

x:X | ∃o. (ψ ∗ ψ ′)[o( y)/x] � ∃o. χ [o( y)/x]

x:X | ∃o. ψ[o( y)/x] � ∃o. (ψ ′ −−∗ χ )[o( y)/x]
,

which by (17) gives us

x:X | ϕ ∧ (ψ ∗ ψ ′) � ϕ ∧ χ

x:X | ϕ ∧ ψ � ϕ ∧ (ψ ′ −−∗ χ )
.
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This entails the following:
x:X | ϕ ∧ (ψ ∗ ψ ′) � χ

x:X | ϕ ∧ (ψ ∗ ψ ′) � χ ∧ ϕ

x:X | ϕ ∧ ψ � ϕ ∧ (ψ ′ −−∗ χ )
x:X | ϕ ∧ ψ � ψ ′ −−∗ χ

x:X | (ϕ ∧ ψ) ∗ ψ ′ � χ

Letting χ be (ϕ ∧ ψ) ∗ ψ ′, respectively ϕ ∧ (ψ ∗ ψ ′), we read off the equivalence
x:X | ϕ ∧ (ψ ∗ ψ ′) �� (ϕ ∧ ψ) ∗ ψ ′. Now, let ϕ and ψ be I, and ψ ′ be 	; this gives
I ∧ (I ∗ 	) �� (I ∧ I) ∗ 	, that is, I �� 	, which in return yields ϕ ∧ (	 ∗ ψ ′) ��
(ϕ ∧ 	) ∗ ψ ′, namely, ϕ ∧ ψ ′ �� ϕ ∗ ψ ′.
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