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Automatic Program
Verification

A Dissertaion
Presented to the Faculty of Science and Technology

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Kristoffer Just Arndal Andersen

September 2019





Abstract

The expressive power of program logics for formal verification has
risen explosively over the last three decades, as witnessed by the
proliferation of separation logic variants for proving properties of non-
trivial concurrent and distributed code. The complexity of abstractions
and formal tools grows to match, and the return of investment in
automated tool assistance becomes ever more evident.

Modern program logics like CAP and its descendants hone the
insights of resource logics: that ownership of resources is key to building
modular programs and proofs; and, that protocols describing how
ownership is transferred between processes is a meaningful abstraction
for describing systems with multiple concurrent actors, like shared-
memory concurrency and distributed systems.

This thesis presents two approaches to adapting ideas from CAP-
like program logics – frameworks for manual proofs of correctness –
to tools for automatic verification, programs that assist the programmer
in proving properties of their program.

We present Caper, the first tool of its kind to provide fully automatic
proof-search for a CAP based program logic, providing static guaran-
tees that a program conforms to its specification. A novel approach to
interference reasoning based on guard algebras is key to enabling this
tool, and we demonstrate its viability on a number of concurrent data
structures and synchronization mechanisms.

The second half of the this thesis presents Distributed Protocol Com-
binators (DPC), a framework for disciplined dynamic testing, informed
in design by techniques from program logics for distributed systems,
specifically Disel. It represents a novel approach to describing pro-
tocols for distributed systems in a composable manner. The modular
assembly of protocols inspire a methodology of specification develop-
ment, analogous to programming, exploiting that specifications can
be given an executable semantics and run like any other program. We
demonstrate the approach on a number of case studies adapted from
the literature on verification of distributed programming.
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Resumé

Matematiske beskrivelser af programmers opførsel er grundstenen i
formel verifikation – det at bevise at et program opføre sig som forven-
tet under alle tænkelige forhold. Dette er idealet hvorefter al software
udvikles, men oftest tyes der til uformel testing, der blot kan påvise
fejl under enkelte omstændigheder. Grundig verifikation er arbejdsin-
tensivt og fejlbehæftet, og investeringen af mandetimer ses oftest kun
som investeringen værd i højrisiko foretagender hvor menneskeliv og
mange års arbejde er på spil, som i rum- og luftfartsindustrien.

Programlogikker er regelsystemer der indfanger essencen af det ma-
tematiske argument der skal til for at vise korrektheden af et program,
og i trit med at programmeringssprog er blevet mere avanceret har
udviklerne af programlogikker mødt udfordringen med til stadighed
mere avancerede teknikker.

Særligt flertrådet og distribuerede systemer har set store fremskridt
i blot de seneste 5 år, og der er set større gennembrud i omfanget
af programmer det nu er muligt at verificere. Der er dog tydeligt et
behov for computerassistance i verifikationsopgaven. Det kan sænke
adgangsbarrieren for hvornår det kan betale sig at benytte verifikation,
og løfte niveauet for hvad der overhovedet er muligt at verificere.

I denne afhandling introducerer vi to værktøjer til automatisk verifi-
kation af programmer i moderne programlogikker.

Caper er et værktøj der automatisk beviser korrektheden af flertrå-
det programmer der gør brug af såkaldte “fine-grained” operationer,
frem for klassiske synkroniseringsmekanismer som låse. Det lader sig
gøre via en ny teknik til at argumentere, at interaktionen mellem flere
tråde ikke er ondartet. Vi demonstrerer effektiviteten af værktøjet på
realistiske datastrukturere og synkroniseringsmekanismer.

I den anden halvdel af denne afhandling introduceres Distributed
Protocol Combinators, et software bibliotek til programmeringsspro-
get Haskell der gør det muligt at eksperimentere med specifikation af
distribueret software på en let og billig, men formelt talt grundig facon.
Ved at udnytte designprincipper fra programlogikker introducerer vi
en ny, modulær måde at udtrykke protokoller: mønstre for kommuni-
kation og samarbejde i systemer med flere aktøre. Modulariteten af
disser inviterer til en oplagt måde at bygge testsscenarier, og vi kan
udnytte den øvrige tradition for testing af Haskell programmer til at
generere tests af distribuerede systemer. I visse tilfælde kan vi løfte ek-
sisterende testingteknikker til decideret verifikation. Vi demonstrerer
perspektiverne i metodikken på udvalgte eksempler på distribuerede
systemer fra litteraturen.
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1
Introduction

This section is adapted from the unpublished report "Automatic
Verification of Fine-Grained Concurrency" by the author [7].

The work in this thesis hangs from a very sturdy family tree. It stems
from research in program logics for verification, in particular the
tradition of separation logic.

Program verification is the problem of proving properties about com-
puter program behaviors, expressed in terms of mathematical descrip-
tions of program behavior, their semantics. Early efforts in assigning
mathematical meaning to programs were driven precisely by the pos-
sibility of reasoning formally about programs, as envisioned by e.g.
Floyd, McCarthy and Hoare[33, 38, 55].

Program logics are mathematical frameworks founded on these
precise formulations of programming language semantics. They codify
semantic arguments about program behavior as inference rules, a
format familiar to any computer scientists. A rule describing the
behavior of a conditional statement of a simple imperative language
might be presented as follows:{

P ∧ e
}
s1

{
Q
} {

P ∧ ¬e
}
s2

{
Q
}

{
P
}
if(e) then {s1} else {s2}

{
Q
}

This rule states the following:

A computer about to execute the program

if(e) then {s1} else {s2}

enters a state described by the assertion Q if it starts in a state
described by P provided that s1 could take the machine from
states P ∧ e to Q and s2 could take the machine from states
P ∧ ¬e to Q.

Throughout this thesis, program execution is described by small-step
structural operational semantics, and program states will be, depend-
ing on the exact setting, an abstraction of shared data.

When “syntax directed” like the conditional rule (provided it is
the only such rule describing the behavior of conditionals) they leave
only decision of logical entailments to the verifier of the program -
that is, the structure of the proof is unambiguously dictated by the
syntactic structure of the program. Program logics for even the most
basic of interesting programs, however, will involve human intuition

1



2 Introduction

e. g.loop invariants must still be divined, as exemplified by a classic
presentation of the While-rule for a simple imperative language:

P⇒ I
{

I ∧ e
}
s
{

I
}

I ∧ ¬e⇒ Q{
P
}
while(e){s}

{
Q
}

The choice of I is not inherent in the conclusion of the rule, and
must be chosen by some method of deduction. This exact problem has
spawned entire research areas of its own, which we will not dwell on
in this thesis.

However, modern program logics are yet more sophisticated.
As any student tasked with showing an in-place linked list reversal

algorithm correct by means of Hoare-style logic for an imperative
programming language with pointers will attest to, the amount of
bookkeeping required is prohibitive. In fact, the threshold for tool
assistance to make an impact is very low, and recent advances in
mechanization of such logics[16, 41] have proven incredibly fruitful in
scaling more or less manual proofs to very large developments.

Separation logic[68] broke through around the turn of the millen-
nium as a solution to the anguish faced by provers of imperative
programs with mutable state: the bookkeeping was required in or-
der to maintain that a local update by a program did not invalidate
the global state of the program. This had previously been vaguely
conventionalized by a framing principle: a program alters only the
state its contract mentions, and everything else remains the same. By
introducing a new connective, the separating conjunction, which formal-
ized the otherwise by-convention maintained frame rule, separation
logic allowed proofs of local program correctness to be composed in a
modular way.

The introduction of concurrent execution followed a similar develop-
ment in terms of program logics, but saw great leaps from the insights
gained by the advances in separation logic. One of the earliest logics
for concurrency is the Owicki-Gries logic, which formulated a correct-
ness condition for concurrent programs as a global property, that every
execution step had to maintain. As with imperative programs, global
properties interfere with the ability to build proofs at scale as they
do not allow for modular proofs of local correctness that can then be
composed, and even reused, to argue global correctness.

The ideas from separation logic have evolved in the context of
concurrent programming, where separating conjunction describes
disjointness and ownership of program resources, and these, in turn,
provide the right abstractions for expressing composable proofs of
correctness for concurrent programs. The recent proliferation in con-
current separation logics (see Figure 1.1) all make use of the key
insight that disjointness of resources enable safe parallel execution of
programs, and exchange of resources is mediated through protocols
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that describe how ownership of resources changes throughout the
execution.

In recent years, the insights gained in tackling the problem of
concurrent execution has been lifted to the domain of distributed
computation. In many ways, the settings are similar: both involve non-
deterministic interleaving of computation, one as threads on a single
machine, another as processes running on separate machines. Both
involve the interaction of processes, one via shared memory, the other
via message passing modeling the interaction of machines across a
network. They can in fact model each other: the heap can be regarded
as an actor on a network, and the network can be modeled as a collec-
tion of messages stored in a suitable data structure on the heap. The
closeness of the domains helped the transfer of tools and techniques,
resulting in e. g.modular verification of consensus algorithms using
essences of frameworks developed for concurrent programs[34].

As pointed out, verifying that a program meets its specification
can be a laborious process, and often involves a costly, human effort.
Developing tools and techniques for alleviating this effort is therefore
a project with a clear return of investment.

The earliest approaches to computer assisted verification was based
on the “weakest precondition calculus” arising from the predicate
transformer semantics of Dijkstra[22]. For example, the verification
condition generation approach translates a program into a single logical
formula, the validity of which implies the correctness of the source
program. This is still the logical foundation for formal developments
of program logics like Iris[41].

Deciding whether a program meets its specification very quickly
becomes an undecidable problem. Modern programming languages
includes facilities for unbounded loops and recursion, higher-order
functions and other abstraction mechanisms that lead to undecidability
in computationally viable fragments of logic. Here, tools assisting
human provers operate in a very interesting space, as it can draw
on the user as an oracle, to divine answers to undecideable problem,
precisely like the inference of loop invariants as suggested earlier.

The key contribution of separation logic to the field of automated
tools for program verification is the introduction of separation logic
assertions as a symbolic representation of program state, enabling
symbolic execution of resource manipulating programs, a technique
solidified by the SmallFoot project[8]. This work spawned a whole
family of tools, extending and varying the approach, and it is also in
this branch of the program logic tree that we find this thesis rooted.

As we look ahead, I personally perceive the field of computer-
assisted verification in general, and area of automation specifically, as
the toolmakers of Theoretical Computer Scientist across disciplines.
With evergrowing complexity of computer architectures and comput-
ing systems, the formalization efforts of algorithmics, cryptography,
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1.1 Research Hypothesis & Objectives 5

distributed systems design grow from valiant through heroic to infea-
sible. As recent as the 15th of August, 2019, Jens Palsberg remarked in
a lecture on Quantum Computing that the current state of the art in
quantum computers (∼ 72 qubits) is at the very limit of what we can
simulate with classical computers. Beyond that, no meaningful amount
of testing, simulation or debugging is possible, by the very nature of
quantum of computation. We absolutely need mature verification tools
to handle programming for quantum computers.

With computer systems growing ever larger, the prospects of making
an impact with advances in automatic verification beyond the research
field itself are looking ever more promising.

1.1 Research Hypothesis & Objectives

This project begins as the field of program logics for concurrency is
rapidly gaining in activity. The time was ripe to experiment with the
transfer of insights from formal frameworks into tools. CAP-like logics
introduced very abstract protocols into the mix of program logics, and
this project started with the aim of taking this idea to completion and
produce a prototype implementation of tool-supported verification in
a CAP-like logic.

The central idea of this work is that, however much human inge-
nuity is needed in formal verification with program logics, there is a
structure to the proofs derived from the program and its specification,
and this begs the research question:

To what extent can we automate the work involved in using
program logics for verification of modern programs using
fine-grained concurrency and distributed computing?

1.2 Scientific Contributions & Artifacts

The scientific body of work and their key contributions to this ph.d.
project is outlined below. The final versions of manuscripts make
up the technical content of this thesis, and forward references are
provided. Their inclusion in the thesis is prefaced by a description of
their differences from the published versions.

Software – Caper Tool

Thomas Dinsdale-Young, Pedro da Rocha Pinto, and Kristof-
fer Just Andersen. Caper (Source Code). url: https : / /

github.com/caper-tool/caper

As suggested in a CACM survey and position paper from 2013 [12],
symbolic execution in the context of verifying concurrent code is an
important open challenge for the state of the art, which Caper tackled

https://github.com/caper-tool/caper
https://github.com/caper-tool/caper
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head-on with beginnings around the same time. Caper is the first fully
automatic prover for a modern CAP-like program logic. The key novelty
of the tool setting it apart from the state-of-the-art at the time was the
treatment of high-level protocols for shared memory, in Caper called
regions. As highlighted in the accompanying paper, the key insights
that facilitate this reasoning is:

• guard algebras for describing abstract resources used to facili-
tate interaction between threads according to protocols. Guard
algebras land in a sweet-spot in terms of design for expressive-
ness and usability, being quite intuitive while still facilitating
interesting concurrency patterns.

• techniques for reasoning about interference of threads, specif-
ically facilitated by guards. In particular, Caper computes a
sound interference relation based on a collection of simple tran-
sitions enabled by resources of the guard algebra.

• Backtracking proof search. Caper eschews computing abstrac-
tions at join-points or other state-space reducing techniques in
favor of guided search, employing heuristics, including a novel
use of abduction, to infer where to perform actions in protocols,
create new instances of protocols etc.

The Caper project demonstrates the success of the approach, and
the repository includes many interesting case studies.

I joined the project in early 2015, and helped bring the tool from a
sketch to a full working prototype. The workings of Caper is described
in the accompanying publication, included in Chapter 2.

Conference Publication – Caper: Fine-Grained Verification of Concurrent
Programs

Thomas Dinsdale-Young et al. “Caper.” In: ESOP: Proceed-
ings of the 26th European Symposium on Programming. 2017

The primary publication describing the motivation, design and utility
of the Caper tool for verification of fine-grained concurrent programs.
The paper illustrates the verification approach with a sequence of
increasingly sophisticated examples of fine-grained data structures
and concurrency primitives, and illustrates the modularity of the
approach by showing that client programs of such library code can be
verified, as well.

The paper is included in its entirety in Chapter 2, with expository
sentences cut from the original to space limitations reintroduced in the
presentation here. Additionally, a postscript has been added in Section
2.9, detailing the efforts on improving the tool made since the time of
publication.
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Technical Report – Caper Program Logic

Thomas Dinsdale-Young et al. Caper: Automatic Verification
with Concurrent Abstract Predicates. Technical Appendix: Pro-
gram Logic. 2016. url: http://cs.au.dk/~kja/papers/
caper-esop17/techreport.pdf

To make precise the guarantees provided by the Caper tool we
needed to develop a formal model of the object programming language
and relate it to the specifications proven by Caper. As an investment
in the foundations of this effort and my personal development as
a student of logic and programming language semantics, the first
substantial artifact produced by this project is this formalization of the
CAP-like program logic in which Caper is conceptually seen to search
for a proof. In some sense, this can be seen as the "specification" for
the symbolic execution based technique employed by Caper: given
a program that Caper deems valid, the evidence produced by the
tool should be relatable to this program logic. This final link between
tool and formal framework is left as future work, started by Thomas
Dinsdale-Young as detailed in Section 2.9.

The object language of Caper is a procedural imperative program-
ming language, with a standard structured call/return discipline, with
local variables operating on a first-order store of single and contiguous
memory cells.

Concurrency is thread-based with fine-grained operations perform-
ing atomic updated to the shared store, and the operational semantics
are given as a standard thread-local small-step semantics that are then
lifted to a thread-pool.

The logic is in many ways standard, but the development here
stands apart from other efforts in that care has been taken to mimic
the object language of Caper. "Cumbersome" features like non-local
returns and local variables have been included, and a distinction of
specification language syntax and semantics has been included, in that
Caper programs include a syntax for specifications.

The report develops the precise semantics of shared regions, and
includes a substantial soundness proof of the logic showing that
a valid proof implies safety: all terminating executions run without
faults to the end of a procedure or return a value according to the
post-condition.

The soundness result is established by constructing a semantic
model of the program logic. Assertions are given the interpretation of
upwards-closed subsets of heaps paired with a region assignment, an
“instrumentation” of the concrete state with a “ghost” state, describing
the currently allocated regions, analogous to the role of a memory for
currently allocated addresses. Heaps and region assignments form
partial commutative monoids, and thus their up-closed subsets are
a model of intuitionistic separation logic, in addition to assertions
unique to Caper.

http://cs.au.dk/~kja/papers/caper-esop17/techreport.pdf
http://cs.au.dk/~kja/papers/caper-esop17/techreport.pdf
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Specifications are then interpreted as down-closed sets of natural
numbers, corresponding to the number of steps a statement is guaran-
teed safe.

The report is included in its entirety in Chapter 3.

Software – DPC

Kristoffer Just Arndal Andersen and Ilya Sergey. DPC
Haskell Package. url: https://github.com/kandersen/dpc

Distributed Protocol Combinators (DPC) is an approach to disciplined
testing founded on insights from program logic.

The problem inspiring the work grew as I tried to formalize a greater
case study for the Disel framework in the proof assistant Coq. Disel

is a fully mechanized program logic for reasoning about distributed
systems. It is a large, complicated system, with the additional barrier
to entry of being encoded in Coq. Disel uses a notion of network
transitions to describe global protocols for communication, and the
examples worked so far in the project were small, although sophisti-
cated, protocols not involving more than 2 actors in a fairly shallow
communication pattern.

I set out to formalize the pattern of distributed locking[43], and
found the boilerplate definitions required for interacting with the
example in the Disel framework prohibitively large. Many thousands
of lines of well-formedness definitions, lemmas stating preservation of
properties... all proof (code) that followed straight from the definitions
of the fairly regular protocols.

This led to the formulation of protocols in terms of protlets, a novel
formulation of primitive interaction patterns that can be composed
freely to express sophisticated communication patterns.

Their definition lends itself naturally to implementation, and I did
so in the programming language Haskell. What we obtain is a disci-
plined testing framework for imperative programming on distributed
systems. By exploiting the abstraction mechanisms of Haskell we
can instantiate the framework with various notions of semantics for
protlets, essentially plugging in different language run-times. A partic-
ularly interesting construction is when we insert a run-time that treats
that performs a kind of symbolic execution, letting us express traces
of distributed system executions as computational objects that can be
queried and tested.

The essential design principle is the underlying theoretical frame-
work of program logics, namely that of program refinement. The tech-
nique dates back to Abadi and Lamports work on refinement map-
pings [1], and expresses a program behavior as relative to the behavior
of some other program, possibly in some other notion of computation.
This approach is then used to relate the behavior of complicated pro-
grams, regarded as implementations, to other, simpler programs taken
as specifications – perhaps programs for which static properties are

https://github.com/kandersen/dpc
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known, or perhaps trivially conform to "business logic" requirements.
Relational logics, for example Iris, are then formal frameworks for
proving this relationship.

Fundamentally, every possible execution of the implementation
must be "expressible" by some execution of the specification. In this
sense, the implementation is richer, allowing for more executions than
the specification (e.g. by allowing concurrent interleaving of program
actions).

As with every verification effort, this can be difficult or labor inten-
sive. But the same set-up can be used to express the presence of a bug:
if we can identify an execution of the implementation that is not in the
set of executions expressible in the specification, we have found a bug!

This is the basic methodology of testing, and DPC provides the
toolkit for doing this in a disciplined fashion, where the implemen-
tation is the monadic language of Haskell and the specification is
provided by the protlet language.

The implementation is freely available for experimentation.
I was the primary author of this work.

Conference Publication – Distributed Protocol Combinators

Kristoffer Just Arndal Andersen and Ilya Sergey. “Dis-
tributed Protocol Combinators.” In: Practical Aspects of
Declarative Languages - 21th International Symposium, PADL.
2019

The primary publication on DPC, detailing the motivation, design
and use of DPC as a testing and, in the right circumstances, a veri-
fication tool. A handful of case studies are described, and empirical
comparisons are made.

I was the primary author of this publication.

Journal Publication – Protocol Combinators for Modeling, Testing, and
Execution of Distributed Systems

Kristoffer Just Arndal Andersen and Ilya Sergey. “Proto-
col Combinators for Modeling, Testing, and Execution of
Distributed Systems.” In: Journal of Functional Programming
(2019). In Submission.

Extended version of [5], included in its entirety in Chapter 4.
I was the primary author of this publication.

1.3 Change of Research Environment

I visited Dr Ilya Sergey at University College London’s Department
of Computer Science during the spring of 2018, more specifically
the Principles of Programming, Logic & Verification research group.
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Dr Sergey and his team was investigating blockchain and cyptocur-
rency technologies, founded on prior work on formal verification of
programs in general.

We identified excellent synergy in the origins of our work, both
having grown from the study of separation logic and its applications
in machine-aided verification.

The relationship was very fruitful, with the DPC framework being
born from our discussions during my time physically at the depart-
ment, and the two publications concerning it subsequently completed
upon my return to the Department at Aarhus University.

1.3.1 Leave of Absence

I spent 6 months in the fall of 2017 on leave in Berlin, Germany, to
accompany my wife during her own change of research environment,
see [3] for more details. During my time there I worked as a Game
Engineer at Wooga GmbH.

1.4 Co-Supervisory Roles

Anders Lindkvist & Troels Jensen Master’s Students at the Department
of Computer Science, Aarhus University, investigating denotational
semantics of reactive programming with the aim of establishing contex-
tual equivalence results for (the reactive version of) the Elm language.
See [53].

Jonathan Sutton Master of Engineering Student at Imperial College
London’s Department of Computer Science. Extended the Caper tool
for verification with mechanisms for verifying fault-tolerant code. The
project is described in more detail in the Postscript added to the
publication on Caper, Section 2.9.

1.5 Thesis Outline

The rest of the thesis consists of the manuscripts of the papers cited
above.

Part i details the design and workings of the Caper tool for verifi-
cation in Chapter 2 and the design of the underlying program logic
in Chapter 3. They are reproduced with minor alterations from their
state at publication, with the notable inclusion of a postscript detailing
work performed on the project since the publication in Section 2.9.

Part ii consists wholly of Chapter 4 and describes the design and
use of the DPC framework for modeling distributed system. The
chapter consists of the manuscript of the invited extended journal
version of our PADL 2019 submission, in consideration at the Journal
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of Functional Programming at the time of writing. It is reproduced
here faithfully.





Part I

Caper





2
Caper: Automatic Verification for Fine-grained Concurrency

The content of this chapter is adapted from [27]. Expository sec-
tions elided due to space limitations for publications have been
included throughout, and a post-script, Section 2.9, has been in-
cluded, detailing work on the project since time of publication.

2.1 Introduction

In recent years, much progress has been made in developing pro-
gram logics for verifying the functional correctness of concurrent
programs [24, 41, 72, 75, 81], with emphasis on fine-grained concur-
rent data structures. Reasoning about such programs is challenging
since data is concurrently accessed by multiple threads: the reasoning
must correctly account for interference between threads, which can
often be subtle. Recent program logics address this challenge by using
resources that are associated with some form of protocol for accessing
shared data.

The concept of heap-as-resource was a fundamental innovation of
separation logic [68]. It is possible to specify and verify a piece of code
in terms of the resources that it uses. Further resources, which are
preserved by the code, can be added by framing, provided that they are
disjoint. Concurrent separation logic (CSL) [61] uses the observation
that threads operating on disjoint resources do not interfere. This is
embodied in the disjoint concurrency proof rule:{

p1

}
c1

{
q1

} {
p2

}
c2

{
q2

}
{

p1 ∗ p2

}
c1‖c2

{
q1 ∗ q2

}
The separating conjunction connective ‘∗’ in the assertion p1 ∗ p2 asserts
that both p1 and p2 hold but for disjoint portions of the heap. In
separation logic, the primitive resources are heap cells, represented
x 7→ y, meaning the heap at address x holds value y. A thread that
owns a heap cell has an exclusive right to read, modify or dispose of
it. The separating conjunction x 7→ y ∗ y 7→ z enforces disjointness: it
requires x and y to be different addresses in the heap.

In fine-grained concurrent algorithms, however, threads use shared
data, so a more flexible concept of resources is required. Shared re-
gions [24] are one approach to this. A shared region encapsulates some
underlying (concrete) resources, which may be accessed by multiple
threads when they perform atomic operations. The region enforces a
protocol that determines how threads can mutate the encapsulated re-
sources. The region is associated with abstract resources called guards

15
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that determine the role that a thread can play in the protocol. Im-
portantly, these resources determine what knowledge a thread can
have about the region that is stable — i.e., continues to hold under the
actions of other threads.

For example, consider a region that encapsulates a heap cell at
address x. Associated with this region are two guards Inc and Dec.
The protocol states that a thread with the Inc guard can increase
the value stored at x, and a thread with the Dec guard can decrease
the value stored at x. A thread holding the Inc guard can know that
the value at x is at most the last value it observed; without the Dec

guard, a thread cannot know that the value will not be decreased by
another thread. Conversely, a thread holding the Dec guard can know
a lower bound on the value at x. A thread that holds both guards can
change the value arbitrarily and know it precisely, much as if it had
the resource x 7→ y itself.

In this chapter we present Caper, a novel tool for automatic veri-
fication of fine-grained concurrent programs using separation logic.
To verify a program, the user specifies the types of shared regions,
defining their guards and protocols, and provides specifications for
functions (and loop invariants) that use these regions. Caper uses
a region-aware symbolic execution (§2.3.3) to verify the code, in the
tradition of SmallFoot [8]. The key novelties of Caper’s approach are:

• the use of guard algebras (§2.3.1) as a mechanism for representing
and reasoning automatically about abstract resources, while
supporting a range of concurrency verification patterns;

• techniques for automatically reasoning about interference on
shared regions (§2.3.2), in particular, accounting for transitivity;
and

• heuristics for non-deterministic proof search (§2.3), including
the novel use of abduction to infer abstract updates to shared
regions and guards.

We introduce our approach by considering a number of examples
in §2.2. We emphasize that these examples are complete and self-
contained — Caper can verify them without additional input. In §2.6
we evaluate Caper, reporting results for a range of examples. We
discuss related work in §4.5 before concluding with remarks on future
directions in §2.8.

The Caper tool is implemented in Haskell, and uses Z3 [19] and
(optionally) E [69] to discharge proof obligations. The source code and
examples are available [23], as is a soundness proof of the separation
logic underlying Caper [26].
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region SLock(r,x) {

guards %LOCK * UNLOCK;

interpretation {

0 : x 7→ 0 &*& r@UNLOCK;

1 : x 7→ 1;

}

actions {

LOCK[_] : 0  1;

UNLOCK : 1  0;

}

}

function makeLock()

requires true;

ensures SLock(r,ret,0) &*& r@LOCK[1p]; {

v := alloc(1);

[v] := 0;

return v;

}

function acquire(x)

requires SLock(r,x,_) &*& r@LOCK[p];

ensures SLock(r,x,1) &*& r@(LOCK[p] * UNLOCK); {

b := CAS(x, 0, 1);

if (b = 0) {

acquire(x);

}

}

function release(x)

requires SLock(r,x,1) &*& r@UNLOCK;

ensures SLock(r,x,_); {

[x] := 0;

}

Figure 2.1: Caper listing for a spin lock implementation.

2.2 Motivating Examples

We begin by considering a series of examples that illustrate the pro-
grams and specifications that Caper is designed to prove. In each case,
we discuss how Caper handles the example and why. In later sections,
we will describe the rules and algorithms that underlie Caper in more
detail. For each example, we give the complete source file, which Caper

verifies with no further annotation.

2.2.1 Spin Lock

Figure 2.1 shows a typical annotated source file for Caper, which
implements a simple fine-grained concurrent data structure: a spin
lock. Note that &*& is Caper syntax for ∗ — separating conjunction.
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Lines 1–11 define a region type, SLock, for spin locks. There are two
kinds of assertions associated with regions, and their shape is dictated
by region type definitions. SLock(r,x,s) is the assertion representing
knowledge of a region r of type SLock with parameter x in abstract
state s. The second are guard assertions of the form r@(G), meaning
we hold the guard G for region r.

Line 2 is a guard algebra declaration, indicating the guards associated
with a given region type, and how they compose. There are two kinds
of guard associated with SLock regions: LOCK guards, which are used
to acquire the lock, and may be subdivided to allow multiple threads
to compete for the lock (indicated by % in the guards declaration); and
UNLOCK guards, which are used to release the lock, and are exclusive —
only a thread holding the lock owns the UNLOCK guard.

Lines 3–6 declare a region interpretation: the resources held by the
region when in each abstract state. SLock regions have two states: 0

represents that the lock is available, which is indicated concretely by
the heap cell x 7→ 0; 1 represents that the lock has been acquired, which
is indicated concretely by the heap cell x 7→ 1. In the available state the
UNLOCK guard belongs to the region — a thread that transitions to the
acquired state obtains this guard.

Finally, lines 7–10 declare the actions — the protocol governing
the shared region. This embodies both the updates allowed for a
given thread and the interference a thread must anticipate from the
environment. A thread can transition an SLock region from abstract
state 0 (available) to 1 (acquired) if it holds the LOCK[p] guard for any
p. Similarly, a thread can transition an SLock region from acquired to
available if it holds the UNLOCK guard.

The makeLock function allocates a new spin lock. It has the precondi-
tion true since it does not require any resources. In the postcondition,
the function returns an SLock region with full permission to its LOCK

guard (expressed by r@(LOCK[1p])). The logical variable r holds the
identifier for the region, which is used to relate assertions that refer to
the same region; it is implicitly existentially quantified as it occurs in
the postcondition but neither in the precondition nor as a parameter
to the function. The logical variable ret binds the return value, which
is the address of the lock. When Caper symbolically executes the
function body, at the return it has the resource v 7→ 0 but requires
SLock(r, v, 0). This missing resource is abduced: Caper backtracks
searching for a place where it could have obtained the missing re-
source. Caper thus tries to construct the region before executing the
return statement. Constructing the region consists of creating a fresh
region identifier and adding the full guards for the region to the sym-
bolic state (in this case LOCK[1p] * UNLOCK); the resources belonging
to the region according to the interpretation are consumed (removed
from the symbolic state). This is successful for the interpretation 0,
leaving the guard LOCK[1p] for the new region. Caper can then suc-
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cessfully symbolically execute the return statement, since it has the
resources required by the postcondition.

The acquire function attempts to acquire the lock. The precondition
asserts that the spin lock is in an unknown state and that we have
permission to acquire the lock in the form of the LOCK[p] guard. The
postcondition asserts that the lock is in the acquired state (indicated
by the 1 in the SLock predicate) and that we retain the LOCK[p] guard
but have also acquired the UNLOCK guard.

The lock is acquired by performing an atomic compare-and-set
(CAS) operation, which attempts to set the value stored at address
x from 0 to 1. In symbolically executing the CAS, Caper determines
that it needs to open the region because it does not have x 7→ −.
In opening the region, Caper branches on the interpretation of the
region; it must show that both cases are correct. The CAS itself also
introduces branches depending on whether it failed; these are quickly
pruned as the CAS cannot fail if the region is in state 0, nor succeed if
it is in state 1. Immediately after the atomic CAS, Caper must close
the region. It does so by non-deterministically choosing among the
interpretations.

If the initial state was 1, the CAS fails and Caper closes with state
1. Since the state is unchanged, this ‘update’ is permitted. After the
atomic operation, Caper must stabilize the region; since the thread
does not own the UNLOCK guard, another thread could transition the
region to state 0. Consequently, after the CAS, Caper does not know
which state the region is in. Since the CAS fails, the if condition
succeeds. Caper then makes the recursive call to acquire using the
specification, which allows it to obtain the postcondition in the end.

If the initial state was 0, the CAS succeeds and Caper closes with
state 1. In doing so, the UNLOCK guard is acquired, since it is part of
the interpretation of state 0, but not of state 1. Caper must then check
that the update from state 0 to 1 is permitted by the available guards,
LOCK[p] * UNLOCK, which it is. After the CAS, the thread owns the
UNLOCK guard so no other thread can change the state of the region,
and so it is stable in state 1. The result of a successful CAS is 1, so
Caper does not symbolically execute the body of the if in this case,
and proceeds to check the postcondition, which is successful.

The verification of the release function proceeds along similar lines.

2.2.2 Ticket Lock

Figure 2.2 shows a Caper listing for a ticket lock. A ticket lock com-
prises two counters: the first records the next available ticket and the
second records the ticket which currently holds the lock. (Note that
the lock is “available” when the two counters are equal — i.e. the
ticket holding the lock is the next available ticket.) To acquire the lock,
a thread obtains a ticket by incrementing the first counter and waiting
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until the second counter reaches the value of the ticket it obtained. To
release the lock, a thread simply increments the second counter.

In Caper, a ticket lock is captured by a TLock region, defined in
lines 1–9 of Figure 2.2. In contrast to the SLock region, a TLock region
has an infinite number of states: there is an abstract state for each
integer n. The abstract state n of a TLock region represents the ticket
that currently holds the lock. The guards associated with a TLock

region represent the tickets: there is a unique guard TICKET(n) for
each integer n. (This is indicated by the # in the guards declaration.)
The region interpretation of state n ensures that:

• the first counter (x) is the next available ticket number, m, which
is at least n;

• the second counter (x+1) is n, the lock-holding ticket number;

• all TICKET resources from m up belong to the region. (A set of
indexed resources is expressed with a set-builder-style notation,
as in TICKET{k|k≥m}.)

Note that m is implicitly existentially quantified in the interpretation.
A thread may acquire a ticket by incrementing the next-available-

ticket counter and removing the corresponding TICKET guard from
the region. Doing so does not affect the abstract state of the region,
and can, therefore, happen at any time (no guards are required to do
so). In order to increment the lock-holding-ticket counter, a thread
must hold the TICKET(n) resource for the current value of the counter,
n. We might, therefore, expect the actions declaration to be:

actions {

TICKET(n) : n  n + 1;

}

This action declaration is, however, problematic for automation. Be-
tween symbolically executing atomic actions, Caper widens the set of
possible abstract states for each region according to the rely relation
for that region type. Suppose a TLock region is initially in state 0. If
the thread does not hold the TICKET(0) guard, Caper must add the
state 1 to the possible state set. If the thread does not hold TICKET(1),
Caper must add the state 2, and so on. In general, we cannot expect
this widening process to terminate, so we must consider a transitively-
closed rely relation. Caper cannot, in general, compute the transitive
closure, but it is possible to check that a given actions declaration
is transitively closed. We address this in §2.3.2. The proposed action
declaration is, however, not transitive, since transitions from 0 to 1 and
from 1 to 2 are possible, but the transitive transition from 0 to 2 is not
possible in one step.

Instead, we use the actions declaration in Figure 2.2, which is
transitively closed. It remedies the problem with the simple version
by generalizing from a single increment to allow multiple increments.
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region TLock(r,x) {

guards #TICKET;

interpretation {

n : x 7→ m &*& (x + 1) 7→ n &*& r@TICKET{ k | k ≥ m } &*& m ≥
n;

}

actions {

n < m | TICKET{ k | n ≤ k, k < m } : n  m;

}

}

function acquire(x)

requires TLock(r,x,_);

ensures TLock(r,x,n) &*& r@TICKET(n); {

do {

t := [x + 0];

b := CAS(x + 0, t, t + 1);

}

invariant TLock(r,x,ni) &*& (b=0 ? true : r@TICKET(t) &*& t

≥ ni);

while (b = 0);

do {

v := [x + 1];

}

invariant TLock(r,x,ni) &*& r@TICKET(t) &*& t ≥ ni &*& ni ≥
v;

while (v < t);

}

function release(x)

requires TLock(r,x,n) &*& r@TICKET(n);

ensures TLock(r,x,_); {

v := [x + 1];

[x + 1] := v + 1;

}

Figure 2.2: Caper listing for a ticket lock implementation.
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This is achieved by placing a condition on the transition that n m is
only permitted when n<m, enforcing that the counter can only increase,
as indicated before the vertical bar in the actions declaration. The
guard TICKET{k|n≤k,k<m} denotes the set of all guards TICKET(k)

for k between n and m-1 inclusive. This ensures that a thread can
increment the counter past k only when it holds the TICKET(k) guard.
For example, a thread holding TICKET(n) can transition the TLock

region from abstract state n to n+1.
The precondition of acquire asserts that the ticket lock exists in

some arbitrary abstract state. The postcondition ensures that the lock
is in some state n and that the guard TICKET(n) has been acquired.
The function contains two loops and Caper requires that we provide
an invariant for each. The first loop, lines 13–18, increments the next
available ticket. The invariant states that the region is in some state ni

and that once the CAS succeeds (b = 1) we have the TICKET(t) guard
and t is at least ni; the conditional is expressed using the C-like _?_:_

notation. Similarly to the acquire operation for the spin lock, Caper

opens the region when symbolically executing the CAS operation.
Since there is only one clause in the TLock region interpretation, Caper

considers one generic case, rather than branching as in the spin lock.
Immediately after symbolically executing the CAS operation, Caper

needs to close the region. If the CAS succeeds Caper knows that
the next available ticket m is t+1. Hence the guard TICKET(t) is not
included in the set of guards TICKET{k|k≥m} needed for closing the
region, so Caper can transfer the guard TICKET(t) out of the TLock

region. The next loop, lines 19–23, spins until the acquired ticket
becomes the lock-holding ticket. Caper proceeds similarly to the first
loop. After the loop, the invariant and failed loop test are sufficient to
establish the postcondition.

The precondition of the release function expresses that the lock-
holding ticket of the region is n and that we hold that ticket. Because
we hold the guard TICKET(n), we can make a transition from abstract
state n to abstract state n+1. No other thread can make a transition,
since to transition from n to m one needs to hold all the guards from n

to m-1. Therefore, there is no interference from other threads on the
second counter and we can update it without using a CAS loop. After
the read on line 28, Caper knows that v holds value n by opening the
region. To execute the write on line 29, Caper again opens the region
in state n. Caper closes the region in a new state n1, which must be the
value of the x+1 counter, i.e. n1 = n+ 1. The value of m is unchanged,
but Caper must establish that m ≥ n1 = n+ 1, which follows from the
fact that m ≥ n and that TICKET(n) (from the thread) is disjoint from
TICKET{k|k≥m} (from the region). Caper must also establish that the
transition n n+1 is permitted by the actions for the available guards,
which it is.
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region Client(r,x,s,z) {

guards 0;

interpretation {

0 : TLock(s,z,k) &*& (x 7→ a &*& (x+1) 7→ a ∨ s@TICKET(k));

}

actions {}

}

function set(x,z,w)

requires Client(r,x,s,z,0) &*& TLock(s,z,_);

ensures Client(r,x,s,z,0) &*& TLock(s,z,_); {

acquire(z);

[x] := w;

[x + 1] := w;

release(z);

}

Figure 2.3: A Caper listing of a client of the ticket lock.

2.2.2.1 Client.

Figure 2.3 shows an implementation of a simple client using the
ticket lock. Here, the Client(r,x,s,z) region uses a ticket lock region
TLock(s,z) to maintain the lock invariant that two cells, x and x+1,
have the same value. The disjunction with the guard s@TICKET(k)

makes it possible to temporarily break the invariant. The function
set(x,z,w) sets the value of the two shared memory cells to w. Lines
12–13 are a critical section protected by the ticket lock. Note that the
invariant is temporarily broken between the two writes.

In symbolically executing the call to acquire in line 11, Caper uses
the postcondition of acquire to obtain s@TICKET(k) and TLock(s,z,k)

for some k. When Caper symbolically executes line 12, it opens the
Client region and must consider each of the disjuncts of the inter-
pretation. It finds that the right-hand disjunct is not possible as we
already hold the TICKET guard for the current abstract state k of the
lock. Hence it obtains the points-to assertions for x and x+1, and can
perform the write to x. Since the values stored at x and x+1 are now dif-
ferent, Caper can only close the region by transferring s@TICKET(k) to
the region. When Caper symbolically executes line 13, it again opens
the Client region. This time it finds that the region holds s@TICKET(k)
since we have the points-to predicates. After the assignment, the val-
ues stored at x and x+1 are the same, and Caper can close the region
while leaving us with the s@TICKET(k) resource which Caper then
uses to satisfy the precondition of release.

2.2.3 Stack-based Bag

Figure 2.4 shows a Caper implementation of a concurrent bag based
on Treiber’s stack [74]. The stack is lock-free, and uses CAS operations
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predicate bagInvariant(v);

region Bag(r,x) {

guards 0;

interpretation {

0 : x 7→ y &*& BagList(s,y,_,_,0) &*& s@OWN;

}

actions {}

}

region BagList(s,y,v,z) {

guards OWN;

interpretation {

0 : y = 0 ? true : y 7→ v &*& y+1 7→ z

&*& BagList(t,z,_,_,0) &*& t@OWN &*& bagInvariant(v);

1 : s@OWN &*& y 7→ v &*& y+1 7→ z &*& BagList(t,z,_,_,_);

}

actions {

OWN : 0  1;

}

}

function push(x,v)

requires Bag(r,x,0) &*& bagInvariant(v);

ensures Bag(r,x,0); {

y := alloc(2); [y] := v;

innerPush(x,y);

}

function innerPush(x,y)

requires Bag(r,x,0) &*& y 7→ v &*& y+1 7→ _ &*& bagInvariant(v)

;

ensures Bag(r,x,0); {

t := [x];

[y + 1] := t;

cr := CAS(x,t,y);

if (cr = 0) {

innerPush(x, y);

}

}

function pop(x)

requires Bag(r,x,0);

ensures ret = 0 ? Bag(r,x,0) : Bag(r,x,0) &*& bagInvariant(ret)

; {

t := [x];

if (t = 0) { return 0; }

t2 := [t + 1];

cr := popCAS(x,t,t2);

if (cr = 0) { ret := pop(x); return ret; }

ret := [t];

return ret;

}

function popCAS(x,t,t2)

requires Bag(r,x,0) &*& BagList(rt,t,v,t2,_)

&*& BagList(rt2,t2,_,_,_) &*& t != 0;

ensures ret = 0 ∨ bagInvariant(v); {

cr := CAS(x,t,t2); return cr;

}

Figure 2.4: Caper listing for a concurrent bag implementation.
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to manipulate the head of a linked-list structure. To push a new item,
a thread constructs a new head node and atomically updates the
head pointer of the bag. When popping an item, a thread anticipates
what the head node is before atomically updating the head pointer. In
both cases, the function of the atomic compare-and-swap operation
is to ensure that no other thread has manipulated the bag between
operations. Unlike the preceding examples, the heap is fundamental
to the implementation.

The specification is parametrised by an abstract predicate [9, 64]
bagInvariant (line 1). The idea is that adding an item v to the bag
requires transferring ownership of the predicate bagInvariant(v) to
the bag, which is returned when the item is removed. Clients can
decide how to instantiate bagInvariant.

In Caper, the head pointer and the linked-list nodes are encapsu-
lated by separate regions: Bag and BagList, respectively. Note that
there is an apparent hierarchy between Bag and BagList regions: a
Bag refers to a BagList, which may, in turn, refer to another BagList
and so on. In this way, we can use regions to model inductive data
structures such as linked lists. While regions can fulfill a similar role to
inductive predicates, they are semantically distinct. Regions are shared
globally, and so may refer to each other in arbitrary, even cyclical ways.
Although it appears as though the regions are nested, semantically all
regions exist at the same level. In this example, we achieve a hierarchy
through ownership of guards: the top-level Bag holds the OWN guard
for the first BagList, which holds the OWN guard for the second, and
so on.

A Bag region is simple, in that it has no guards and is always in one
abstract state. It simply permits sharing of the resources it holds. The
interpretation of abstract state 0 of a region Bag(r,x) holds a pointer
to the first, possibly null, linked-list node at x in addition to its OWN

guard.
The BagList(s,y,v,z) region type represents a list node (or a null

terminator) with payload value v at address y and a pointer to the
successor z at y+1. A BagList region is in one of two states, depending
on whether it belongs to the bag or not. Abstract state 0 means that
the region belongs to the bag, in which case it can represent either
a null-pointer terminating the list or a list node with a value and
successor, represented by another BagList region. The region also
holds the OWN guard to the successor and the bagInvariant predicate
for its value. The abstract state 1 represents a list node that has been
popped. The interpretation therefore includes the region’s own OWN

guard and knowledge of the successor, but not the successor’s OWN

guard or the bagInvariant predicate.
Since the bag can be used concurrently, we do not specify exactly

which elements it contains at a given time. Instead, our specification
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of push and pop focuses on ownership transfer of elements pushed to
and popped from the bag.

The precondition of push asserts only knowledge of the bag and
ownership of the bagInvariant for the value v to be put in the bag.
In the postcondition, the bagInvariant resource is absent, as it is
transferred to the bag. The push function allocates a new list node and
then delegates to a CAS loop in innerPush.

The specification of innerPush is similar to that of push, but the
precondition requires the list node that is to be pushed. Note that the
successor of the node, y+1, is initially undetermined. In lines 29–30,
innerPush loads the current head of the list into the tail pointer of the
new node via the variable t. To do so, Caper opens the Bag region,
getting access to x, and closes it again. The observed value is then
written as the successor of the new node, at address y+1, without
opening any regions. To account for the head of the stack having
changed since it was read, a CAS is used to update the head pointer.
To symbolically execute the CAS in line 31, Caper again opens the
Bag region. If successful, it must close and restore the Bag region. This
means a new BagList region in state 0 must be created for the new
head. Upon creation, Caper creates the OWN guard for the new region,
which is given to the Bag region, closing it in state 0. If the CAS does
not succeed, it means another thread updated the stack between lines
29 and 31, and innerPush recursively tries again.

The specification of the pop function states that, from a Bag, pop pro-
duces either null (0), in case the bag is empty, or a value satisfying the
bagInvariant predicate. The idea is that the concrete value comes from
the underlying linked list, and the corresponding bagInvariant(v)

predicate is removed from a BagList region. The pop function attempts
to CAS the head pointer of the bag to the successor of the first link,
effectively removing the first element from the bag. It first reads the
head pointer into t, which requires opening the Bag region. At this
point, we obtain the BagList region, which can be freely duplicated,
although the OWN guard remains in the Bag region. After the Bag region
is closed again, we must stabilize the BagList region to account for
the fact that another thread could remove the head node from the
stack. That is, its abstract state could now be 0 or 1. If the head pointer
was 0, then the bag was empty and so 0 is returned. Otherwise, t
points to a node, and line 41 reads its successor pointer into t2. This
involves opening the BagList region previously obtained. It is not
necessary to open the Bag region again at this stage. The call to popCAS

at line 42 attempts to update the head node to the successor of the
head node. We give this CAS operation a specification (lines 48–50)
to assist Caper. To symbolically execute that CAS, Caper opens the
Bag region containing x and the OWN guard for the BagList region
for the head of the stack. The BagList region for the previously seen
head (with region identifier rt) and the BagList region for the current
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head (if it is different) are also opened. Caper determines that the
CAS can only succeed if these two regions are the same. In this case,
the bagInvariant is transferred to the thread, the OWN guard for the
successor is transferred to the Bag region, and the OWN guard for the
head is transferred to its own BagList region. In this process, the state
of the BagList region for the old head is updated from 0 to 1. This is
allowed since we have access to its OWN guard. If the CAS fails, nothing
is changed and the pop is retried. On success, the return value is read
from the BagList region that is now in state 1. This value corresponds
to the previously-obtained bagInvariant predicate.

2.3 Proof System

Caper’s proof system is based on the logic of CAP [24], using im-
provements from iCAP [72] and TaDA [81]. The logic is a separation
logic with shared regions.

Each shared region has a unique region identifier. A region has an
associated region type, which determines the resources and protocol
associated with the region. Region types T(r, x̄) are parametrised,
with the first parameter (r) always being the region identifier. A region
also has an abstract state. In Caper’s logic, region assertions describe
the type and state of a region. The region assertion T(r, x̄, y) asserts
the existence of a region with identifier r and type T(r, x̄) in abstract
state y. Region assertions are freely duplicable; i.e., they satisfy the
equivalence: T(r, x̄, y) ⇐⇒ T(r, x̄, y) ∗ T(r, x̄, y). Moreover, region as-
sertions with the same region identifier must agree on the region type
and abstract state: T(r, x̄, y) ∗ T′(r, x̄′, y′) =⇒ (T, x̄, y) = (T′, x̄′, y′).

Shared regions are also associated with (ghost) resources called
guards. Which guards can be associated with a region, as well as their
significance and behavior is determined by the type of the region.
Guards are interpreted as elements of a partial commutative monoid
(PCM), referred to as a guard algebra. That is, they have a partial
composition operator that is associative, commutative and has a unit.
This is sufficient for them to behave as separation logic resources (see
e.g. [25]). In Caper’s logic, guard assertions assert ownership of guard
resources. The guard assertion r@(G1 ∗ . . . ∗ Gn) asserts ownership
of the guards G1, . . . , Gn associated with region identifier r. Guard
assertions are not in general duplicable, but they distribute with
respect to ∗: r@(G1 ∗ G2) ⇐⇒ r@G1 ∗ r@G2.

The region type determines how a shared region is used. A region
type definition determines the following properties of regions of that
type: the guard algebra associated with the region; the abstract states
of the region and their concrete interpretation; and the actions that
can be used to update the state of the region, and which guards are
required in order to perform each action. Region type definitions
determine two derived relations, Rely and Guar (for guarantee), which
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(P(z̄)|G : e1(z̄) e2(z̄)) ∈ Actions(T(r, x̄)) P(w̄)

(e1(w̄), e2(w̄)) ∈ Guar(T(r, x̄), G)

(x, x) ∈ Guar(T(r, x̄), G)

(x, y), (y, z) ∈ Guar(T(r, x̄), G)

(x, z) ∈ Guar(T(r, x̄), G)
(†)

(x, y) ∈ Guar(T(r, x̄), G)

(x, y) ∈ Guar(T(r, x̄), G ∗ G′)

(P(z̄)|G : e1(z̄) e2(z̄)) ∈ Actions(T(r, x̄)) P(w̄) G ∗ G′ defined

(e1(w̄), e2(w̄)) ∈ Rely(T(r, x̄), G′)

(x, y), (y, z) ∈ Rely(T(r, x̄), G)

(x, z) ∈ Rely(T(r, x̄), G)
(†)

(x, y) ∈ Rely(T(r, x̄), G ∗ G′)
(x, y) ∈ Rely(T(r, x̄), G)

(x, x) ∈ Rely(T(r, x̄), G)

Figure 2.5: Rules defining the Guar and Rely relations.

are defined in Figure 2.5, based on the actions for the region types. The
relation Rely(T(r, x̄), G) consists of all state transitions that a thread’s
environment may make to a region of type T(r, x̄), if the thread owns
guard G. The relation Guar(T(r, x̄), G) consists of all state transitions
that a thread itself may make to a region of type T(r, x̄), if it owns
guard G.

2.3.1 Guards

The underlying logic of Caper permits the guard algebra for a region
to be an arbitrary PCM. However, in order to reason automatically
about guards, Caper must be able to effectively compute solutions
to certain problems within the PCM. To this end, Caper provides a
number of constructors for guard algebras for which these problems
are soluble. These constructors are inspired by common patterns in
concurrency verification, and are useful for many examples. The three
automation problems are as follows.

Frame Inference. Given guard assertions A and B, find a C (if it exists)
such that A ` B ∗ C. This problem has two applications:

• Computing the Guar relation requires determining if the guard
currently available to the thread (A) entails the guard required to
perform some action (B);

• At call sites, returns and when closing regions, symbolic execu-
tion consumes assertions (i.e. checks that the assertion holds and



2.3 Proof System 29

removes the corresponding resources from the symbolic state).
Frame inference (for guards) does this for guard assertions.

Composition and Compatibility. Given guard assertions A and B, de-
termine their composition A ∗ B and the condition for it being defined.
Whether it is defined will be a pure assertion on the free variables of A
and B. This also has two applications:

• Computing the Rely relation requires determining when the
guard currently owned by the thread (A) is compatible with the
guard required to perform some action (B);

• At entry points, after calls and when opening regions, sym-
bolic execution produces assertions (i.e. adds resources and as-
sumptions corresponding to the assertion to the symbolic state).
Composition does this for guards.

Least Upper-bounds. Given guard assertions A and B, compute C such
that C ` A, C ` B and for any D with D ` A and D ` B, D ` C. This
is used to compose two actions, which will be guarded by the least
upper-bound of the two guards.

2.3.1.1 Supported Guard Algebras.

We present the guard algebras that are supported by Caper. Each
guard algebra has a maximal element, the full guard, which is gener-
ated for a region when it is initially created.

Trivial guard algebra. The trivial guard algebra, 0 in Caper syntax,
consists of one element which is the unit. This algebra is used when a
region has no roles associated with it: it can be used in the same way
by all threads at all times.

All-or-nothing guard algebra. An all-or-nothing guard algebra consists
of a single element distinct from the unit, which is the full guard. In
Caper syntax, this algebra is represented by the name chosen for the
point; for instance, GUARD would be the all-or-nothing algebra with
point GUARD.

Permissions guard algebra. A permissions guard algebra %GUARD has
the full resource GUARD[1p] which can be subdivided into smaller
permissions GUARD[π]. The typical model for permissions is as frac-
tions in the interval [0, 1]. This allows for (non-zero) permissions to be
split arbitrarily often. Caper implements a different theory of permis-
sions. This theory also allows arbitrary splitting, but also requires that
GUARD[π] ∗ GUARD[π] is undefined for any non-zero π.

The theory can be encoded into the theory of atomless Boolean alge-
bras — a Boolean algebra is said to be atomless if for all a > ⊥ there
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exists a′ with a > a′ > ⊥. The encoding defines the PCM operator as
p1 ∗ p2 = p1 ∨ p2 if p1 ∧ p2 = ⊥ (and undefined otherwise). Conve-
niently, the first-order theory of atomless Boolean algebras is complete
and therefore decidable (initially reported by Tarski [73], proved by
Ershov [31], and see e.g. [15] for details).

Caper implements three different proof procedures for the theory of
permissions. One uses the encoding with Boolean algebras and passes
the problem to the first-order theorem prover E [69]. A second checks
for the satisfiability of a first-order permissions formula directly. The
third encodes the satisfiability problem with bit-vectors and passes it to
the SMT solver Z3 [19]. Dockins et al. [28] previously proposed a tree-
share model of permissions, which is also a model of this theory. Le
et al. [50] have developed decision procedures for entailment checking
based on this model, which could also be used by Caper.

Counting guard algebra. A counting guard algebra |GUARD| consists
of counting guards similar to the counting permissions of Bornat et
al. [10]. For n ≥ 0, GUARD|n| expresses n counting guards. An authority
guard tracks the number of counting guards that have been issued. For
n ≥ 0, GUARD|-1− n| expresses the authority guard with n counting
guards issued. The PCM operator is defined as:

GUARD|n| ∗ GUARD|m| = GUARD|n + m| if (n ≥ 0∧m ≥ 0) ∨
(n < 0∧m ≥ 0∧ n + m < 0) ∨ (n ≥ 0∧m < 0∧ n + m < 0).

This ensures that the authority is unique (e.g. GUARD|-1| ∗ GUARD|-2|
is undefined) and that owning GUARD|-1|, which is the full guard,
guarantees that no other thread may have a counting guard.

Indexed guard algebra. An indexed guard algebra #GUARD consists of
sets of individual guards GUARD(n) where n ranges over integers. A
set of such individual guards is expressed using a set-builder notation:
GUARD{x | P} describes the set of all guards GUARD(x) for which P
holds of x. The full guard is GUARD{x | true}. The notation GUARD(n)
is syntax for GUARD{x | x = n}. The PCM operator is defined as
GUARDS1 ∗ GUARDS2 = GUARD(S1 ∪ S2) if S1 ∩ S2 = ∅.

The automation problems reduce to testing conditions concerning
sets, specifically set inclusion. Sets in Caper are not first-class entities:
they are always described by a logical predicate that is a (quantifier-
free) arithmetic formula. For sets characterized in this way, set in-
clusion can be characterized as: {x | P} ⊆ {x |Q} ⇐⇒ ∀x. P ⇒ Q.
Advanced SMT solvers, such as Z3 [19], have support for first-order
quantification, and Caper exploits this facility to handle the verifica-
tion conditions concerning set inclusion.

Product guard algebra construction. Given guard algebras M and N,
the product construction M * N consists of pairs (m, n) ∈ M × N,
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where the PCM operation is defined pointwise: (m1, n1) ∗ (m2, n2) =

(m1 ∗m2, n1 ∗ n2). The unit is the pair of units and the full resource is
the pair of full resources.

Sum guard algebra construction. Given guard algebras M and N, the
sum construction M + N is the discriminated (or disjoint) union of M
and N, up to identifying the units and identifying the full resources of
the two PCMs. The PCM operation embeds the operations of each of
the constituent PCMs, with composition between elements of different
PCMs undefined.

Within the Caper implementation, guards are represented as maps
from guard names to parameters that depend on the guard type. For
this to work, Caper disallows multiple guards with the same name in
a guard algebra definition. For instance, INSERT * %INSERT is not legal.
The sum construction is implemented by rewriting where necessary
by the identities the construction introduces.

2.3.2 Interference Reasoning

There are two sides to interference: on one side, a thread should only
perform actions that are anticipated by the environment, expressed
by the Guar relation; on the other, a thread must anticipate all actions
that the environment could perform, expressed by the Rely relation.
Each time a thread updates a region, it must ensure that the update
is permitted by the Guar with respect to the guards it owns (initially)
for that region. Moreover, the symbolic state between operations and
frames for non-atomic operations must be stabilized by closing the
set of states they might be in under the Rely relation. Caper must
therefore be able to compute with these relations effectively.

The biggest obstacle to effective computation is that the relations
are transitively closed. Transitivity is necessary, at least for Rely, since
the environment may take arbitrarily many steps in between the
commands of a thread. However, computing the transitive closure
in general is a difficult problem. For instance, consider a region that
has the (unguarded) action : n  n + 1. From this action, we should
infer the relation {(n, m) | n ≤ m}, as the reflexive-transitive closure of
{(n, n + 1) | n ∈ Z}. It is generally beyond the ability of SMT solvers
to compute transitive closures, although some (limited) approaches
have been proposed [30].

Caper employs two techniques to deal with the transitive closure
problem. This first is that, if the state space of the region is finite, then
it is possible to compute the transitive closure directly. Caper uses a
variant of the Floyd-Warshall algorithm [32] for computing shortest
paths in a weighted graph. The ‘weights’ are constraints (first-order
formulae) with conjunction as the ‘addition’ operation and disjunction
as the ‘minimum’ operation.
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The second technique is to add composed actions until the set
of actions is transitively closed. When the actions are transitively
closed, the Rely and Guar relations can be computed without further
accounting for transitivity (i.e. the (†) rules in Figure 2.5 can be
ignored). For two actions P | G : e1  e2 and P′ | G′ : e′1  e′2
(assuming the only common variables are region parameters) their
composition is P, P′, e2 = e′1 | G t G′ : e1  e′2 where t is the least-
upper-bound operation on guards. Using frame inference for guards,
we can check if one action subsumes another — that is, whether any
transition permitted by the second is also permitted by the first.

Caper uses the following process to reach a transitive set of actions.
First, consider the composition of each pair of actions currently in
the set and determine if it is subsumed by any action in the set.
If all compositions are already subsumed then the set is transitive.
Otherwise, add all compositions that are not subsumed and repeat.
Since this process is not guaranteed to terminate (for example, for
n  n + 1), Caper will give up after a fixed number of iterations fail
to reach a transitive set. Note that adding composite actions does
not change the Rely and Guar relations, since these are defined to be
transitively closed.

If Caper is unable to reach a transitive set of actions, the Rely
relation is over-approximated by the universal relation, while the
Guar is under-approximated. This is sound, since Caper can prove
strictly less in such circumstances, although the over-approximation is
generally too much to prove many examples.

It is often practical to represent the transition system for a region
type in a way that Caper can determine its transitive closure. For
example, instead of the action : n  n + 1 we can give the action
n < m | : n  m, which Caper can prove subsumes composition with
itself. Since Caper tries to find a transitive closure, it is often unneces-
sary to provide a set of actions that is transitively closed. For instance,
given the actions 0 ≤n, n <m | A : n  -m and 0 <n | B : -n  n,
Caper adds the following actions to reach a transitive closure:

0 ≤ n, n < m | A * B : n  m;

0 < n, n < m | A * B : -n  -m;

0 < n, n < m | A * B : -n  m;

2.3.3 Symbolic Execution

Caper’s proof system is based on symbolic execution, where programs
are interpreted over a domain of symbolic states. Symbolic states
represent separation logic assertions, but are distinct from the syntactic
assertions of the Caper input language. To verify that code satisfies a
specification, the code is symbolically executed from a symbolic state
corresponding to the precondition. The symbolic execution may be
non-deterministic — for instance, to account for conditional statements
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— and so produces a set of resulting symbolic states. If each of these
symbolic states entails the postcondition, then the code satisfies the
specification.

A symbolic state S = (∆, Π, Σ, Ξ, Υ) ∈ SState consists of:

• ∆ ∈ VarCtx = SVar
fin
⇀ Sort, a variable context associating logical

sorts with symbolic variables;

• Π ∈ Pure = Cond∗, a context of pure conditions (over the symbolic
variables) representing logical assumptions;

• Σ ∈ Preds = Pred∗, a context of predicates (over the symbolic
variables) representing owned resources;

• Ξ ∈ Regions = RId
fin
⇀ RType⊥ × Exp⊥ × Guard, a finite map

of region identifiers to an (optional) region type, an (optional)
expression representing the state of the region, and an guard
expression representing the owned guards for the region;

• Υ ∈ ProgVars = ProgVar
fin
⇀ Exp, a map from program variables

to expressions representing their current values.

We take the set of symbolic variables SVar to be countably infi-
nite. Symbolic variables are considered distinct from program vari-
ables (ProgVar), which occur in the syntax of the program code
(Stmt), and assertion variables (AssnVar), which occur in syntactic
assertions (Assn). Currently, the set of sorts supported by Caper is
Sort = {Val, Perm, RId}. That is, a variable can represent a program
value (i.e. an integer), a permission, or a region identifier.

We do not formally define the syntax of (symbolic) expressions (Exp)
and conditions (Cond). Expressions include symbolic variables, as well
as arithmetic operators and operators on permissions. Conditions
include a number of relational propositions over expressions, such as
equality and inequality (<). They can also express rely and guarantee
relations and inclusions between sets. A context of pure conditions
is a sequence of conditions, interpreted as a conjunction. Symbolic
execution generates entailment between contexts of conditions as
verification conditions. The practical limitation on conditions is that
these entailments should be checkable automatically by means of
provers such as SMT solvers.

A (spatial) predicate P(ē) ∈ Pred consists of a predicate name P
and a list of expressions ē. Two types of predicates are given special
treatment and have their own syntax: individual heap cells a 7→ b
(where a is the address and b the value stored), and blocks of heap cells
a 7→ #cells(n) (where a is the starting address and n is the number of
consecutive heap cells). All other predicates are abstract.

A region map associates region identifiers with knowledge and
resources for the given region. The knowledge consists of the type of
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dom(γ) = S
range(γ) = Γ ∀x, y ∈ S. γ(x) = γ(y) =⇒ x = y ∆ ∩ Γ = ∅

freshSub(∆, Γ, S, γ)

s′1, . . . , s′n /∈ ∆ Ξ = [r1 7→ (t1, s1, G1), . . . , rn 7→ (tn, sn, Gn)]

P = (s1, s′1) ∈ Rely(t1, G1); . . . ; (sn, s′n) ∈ Rely(tn, Gn)

Ξ′ = [r1 7→ (t1, s′1, G1), . . . , rn 7→ (tn, s′n, Gn)]

stabilise(∆, Ξ, s′1 : Val; . . . ; s′n : Val, P, Ξ′)

Φ( f ) = (x̄, Apre, Apost) freshSub(ε, ∆, vars(Apre) ∪ x̄, γ)

produce(Apre, γ) : (∆, ε, ε, ∅) S0

∀(∆0, Π0, Σ0, Ξ0) ∈ S0. ∃S1. ` C : (∆0, Π0, Σ0, Ξ0, [x̄ 7→ γ(x̄)]) S1

∀(∆1, Π1, Σ1, Ξ1, Υ1) ∈ S1. ∃∆′1, Π′1, Ξ′1. stabilise(∆1, Ξ1, ∆′1, Π′1, Ξ′1)
∃Γ1, γ′. freshSub(∆1; ∆′1, Γ1, vars(Apost) \ (vars(Apre) ∪ x̄), γ′)

∃S2. consume(Apost, γ ∪ γ′) : (∆1; ∆′1, Π1; Π′1, Γ1, ε, Σ1, Ξ′1) S2

∀(∆2, Π2, Γ2, P2, Σ2, Ξ2) ∈ S2. ∆2, Π2 ` Γ2, P2

Ψ, Φ ` function f (x̄){C}

Figure 2.6: Function correctness judgement.

the region, which is a pair of a region type name and list of expressions
representing the parameters, and an expression describing the current
state of the region. The resources consist of a guard. It is possible to
have a guard for a region without knowing the type or state of the
region, so these two components can be unspecified (⊥).

Figure 2.6 gives the correctness judgment for functions that forms
the basis of Caper’s proof system. The judgment is parametrised by
a context of region declarations Ψ, and a context of function specifi-
cations Φ. (Both contexts are left implicit in the sub-judgments.) The
conditions break down into four key steps:

1. A symbolic state is generated corresponding to the function’s
precondition Apre. This is captured by the judgment

produce(Apre, γ) : (∆, ε, ε, ∅) S0

which adds resources and assumptions to an initially empty
symbolic state.

2. The body of the function is symbolically executed. This is cap-
tured by the judgment

` C : (∆0, Π0, Σ0, Ξ0, [x̄ 7→ γ(x̄)]) S1.

3. The regions of the resulting symbolic states are stabilized to
account for possible interference from other threads. This is
captured by the judgment

stabilise(∆1, Ξ1, ∆′1, Π′1, Ξ′1).
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(Note that stabilization also occurs at each interleaving step in
the symbolic execution.)

4. Each final symbolic state is checked against the postcondition.
This is captured by the judgment

consume(Apost, γ ∪ γ′) : (∆1, Π1, Γ, ε, Σ1, Ξ1) S2

which removes resources and generates verification conditions
that are sufficient for the symbolic state to entail the postcondi-
tion. These verification conditions are checked by the judgment
∆2, Π2 ` Γ2, P2.

Step 1 uses the judgment produce ⊆ (Assn× (AssnVar ⇀ Exp))×
SState× P(SState), where SState = VarCtx× Pure× Preds× Regions.
The produce judgment (we adopt the produce/consume nomenclature
of Verifast [39]) adds resources and assumptions to the symbolic state
corresponding to a given syntactic assertion. It is parametrised by a
substitution from assertion variables to expressions. In producing the
precondition, this substitution maps the assertion variables occurring
in the precondition and the function parameters (treated as assertion
variables) to fresh symbolic variables. This is captured by the freshSub
judgment. These fresh symbolic variables are bound in the initial
variable context (∆), while the initial context of conditions (ε), context
of predicates (ε) and region map (∅) are all empty. The judgment
produces a set of symbolic states (sans program variable context). This
set should be interpreted disjunctively: each of the symbolic states is
possible after producing the assertion.

Step 2 uses the symbolic execution judgment: (` − : −  −) ⊆
Stmt× SState×P(SState). This judgment updates the symbolic state
according to the symbolic execution rules for program statements.
The initial program variable context is given by mapping the function
parameters x̄ (treated as program variables) to the corresponding
logical expressions γ(x̄).

Step 3 uses the judgment stabilise ⊆ VarCtx× Regions× VarCtx×
Pure× Regions. This judgment relates an initial region map (in a given
context) with a new region map that accounts for interference, with
an extended context and additional pure conditions. The judgment
is defined by the rule given in Figure 2.6. This rule creates a fresh
variable (s′i) to represent the new state of each region and asserts that
it is related to the old state (si) in accordance with the rely relation
for the given region. To account for the region type or state being
unknown, we extend the definition of Rely with the following two
rules:

(x, y) ∈ Rely(⊥, G) (⊥, y) ∈ Rely(T(r, x̄), G)

Step 4 uses the judgment consume ⊆ (Assn× (AssnVar ⇀ Exp))×
ŜState×P(ŜState), where ŜState = VarCtx× Pure× VarCtx× Pure×
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Preds× Regions. The consume judgment removes resources and adds
assertions to the symbolic state. The symbolic state is extended with a
second variable context representing existentially quantified variables
and a second context of pure conditions representing logical assertions.
As an example, consuming the assertion x 7→2 where the predicates
include a 7→ b can remove that predicate, adding the assertions JxKγ =

a and 2 = b (where γ is the assertion variable substitution). Any
assertion variables occurring in the postcondition that are neither
parameters of the function nor occur in the precondition are treated
as existentially quantified. The freshSub judgment is used again to
generate a context and substitution for these variables.

It remains to check that the assertions arising from consuming the
postcondition follow from the assumptions. This is achieved with the
entailment judgment: (−,− ` −,−) ⊆ VarCtx× Pure× VarCtx× Pure.
The judgment is defined by:

∆, Π ` Γ, P def⇐⇒ ∀δ ∈ J∆K . JΠKδ =⇒ ∃δ′ ∈ JΓK . JPKδ∪δ′

Here, J∆K is the set of variable assignments agreeing with context ∆
and JΠKδ is the valuation of the conjunction of the conditions Π in the
variable assignment δ.

The produce judgment. The rules for the produce judgment are given in
Figure 2.7. The rules follow the syntax of the assertion to be produced.
For a separating conjunction (&*&), first the left assertion is produced
and then the right. Producing a conditional expression (?:) introduces
non-determinism: we generate cases for whether the condition is true
or false. For the true case, the first assertion is produced together
with the condition; for the false case, the second assertion is produced
together with the negated condition. Note that this non-determinism is
demonic, in that the proof must deal with all cases. Producing a pure
assertion simply adds it to the logical assumptions (interpreting the
assertion variables through the substitution γ). Producing a predicate
assertion adds it to the predicate context. As a special case, the points-
to predicate also adds logical assumptions, expressed by Ccell, which
express that addresses must be positive and no two cells can have the
same address (we elide the formal definition here).

The remaining two rules concern regions: producing a region and
a guard assertion respectively. In each case, a region descriptor r0 is
created — in the first case, including the region type and state but the
empty guard, and in the second case, including a guard but no region
type or state. We non-deterministically consider two cases: when the
region identified by z already exists in the symbolic state, and when
it represents a completely fresh region. The first case is handled by
rmerge, which non-deterministically merges the region with one of the
existing regions. The second case is handled by rnew, which associates
the region with a fresh identifier (i) and adds assumptions that this
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produce(A1, γ) : S {Si}i∈I
∀i ∈ I. produce(A2, γ) : Si  

{
Si,j
}

j∈Ji

produce(A1 &*& A2, γ) : S 
{

Si,j
∣∣ i ∈ I, j ∈ Ji

}
produce(A1, γ) : (∆, Π; JpKγ , Σ, Ξ) S1

produce(A2, γ) : (∆, Π;¬ JpKγ , Σ, Ξ) S2

produce(p ? A1 : A2, γ) : (∆, Π, Σ, Ξ) S1 ∪ S2

produce(p, γ) : (∆, Π, Σ, Ξ) (∆, Π; JpKγ , Σ, Ξ)

produce(P(ē), γ) : (∆, Π, Σ, Ξ) (∆, Π, Σ; P(JēKγ), Ξ)

produce(e1 7→ e2, γ) : (∆, Π, Σ, Ξ) (∆, Π; Ccell(Je1Kγ , Σ), Σ; Je1Kγ 7→ Je2Kγ , Ξ)

r0 = (T(Jz, ēKγ), JsKγ , 0) S1 = rmerge(∆, Π, Σ, Ξ, JzKγ , r0)

i /∈ dom(Ξ) S2 = rnew(∆, Π, Σ, Ξ, JzKγ , r0, i)

produce(T(z, ē, s), γ) : (∆, Π, Σ, Ξ) S1 ∪ S2

r0 = (⊥,⊥, JGKγ) S1 = rmerge(∆, Π, Σ, Ξ, JzKγ , r0)

i /∈ dom(Ξ) S2 = rnew(∆, Π, Σ, Ξ, JzKγ , r0, i)

produce(z@(G), γ) : (∆, Π, Σ, Ξ) S1 ∪ S2

rmerge(∆, Π, Σ, Ξ, a, r0) ={
(∆, Π; a = i′; Π′, Σ, Ξ[i′ 7→ r′])

∣∣ ∃r. Ξ(i) = r ∧mergeRegion(r, r0, Π′, r′)
}

rnew(∆, Π, Σ, Ξ, a, r0, i) = {(∆, Π; a = i;
∧
{i 6= i′ | i′ ∈ dom(Ξ)} , Σ, Ξ[i 7→ r0])}

Figure 2.7: Selected rules for the produce judgment.
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(A, q) ∈ {(A1, JpKγ), (A2,¬ JpKγ)}
consume(A, γ) : (∆, Π, Γ, P; q, Σ, Ξ) S

consume(p ? A1 : A2, γ) : (∆, Π, Γ, P, Σ, Ξ) S

fv(JpKγ) ⊆ ∆ consume(A1, γ) : (∆, Π; JpKγ , Γ, P, Σ, Ξ) S1

consume(A2, γ) : (∆, Π;¬ JpKγ , Γ, P, Σ, Ξ) S2

consume(p ? A1 : A2, γ) : (∆, Π, Γ, P, Σ, Ξ) S1 ∪ S2

Ξ(i) = ((R, x̄), s, G) s 6= ⊥
consume(R(r, ē, a), γ) : (∆, Π, Γ, P, Σ, Ξ)

 {(∆, Π, Γ, P; JrKγ = i; Jr, ēKγ = x̄; JaKγ = s, Σ, Ξ)}

Ξ(i) = (t, s, H) takeGuard(∆, t, H, JGKγ , Γ′, F, P′)

consume(r@G, γ) : (∆, Π, Γ, P, Σ, Ξ)
 
{
(∆, Π, Γ; Γ′, P; P′, Σ, Ξ[i 7→ (t, s, F)])

}
Figure 2.8: Selected rules for the consume judgment.

is distinct from all other identifiers. Merging regions is governed by
the mergeRegion judgment, which combines two region descriptors
into one, producing a series of assumptions that are necessary for the
merger to be well-defined. We elide the details here.

While producing a region or guard assertion can introduce a lot
of non-determinism, it is typically the case that most of the non-
deterministic choices will have inconsistent assumptions. For example,
when producing an assertion that corresponds to an already known
region, it would be inconsistent to merge that with a different region,
or treat it as a completely new one. Since anything follows from
inconsistent assumptions, we can immediately prune such cases.

The consume judgment. A selection of rules for the consume judgment
are given in Figure 2.8. Unlike with produce, the syntax of the asser-
tion may not uniquely determine which rule to apply. For instance,
there are two rules for consuming a conditional assertion. The first
rule consumes the conditional by consuming either the condition and
the first assertion or the negated condition and the second assertion.
(This are somewhat analogous to the ∨-introduction rules of natural
deduction.) The second rule non-deterministically assumes the truth
or falsity of the condition, consuming the first or second assertion
in the respective case. This requires that only assumption variables
can occur in the condition (fv(JpKγ) ⊆ ∆), since otherwise the context
of assumptions would be ill-formed. Here, we are exploiting the law
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Ξ(r) = (T(x̄), s, G)

ΨI(T) = {(Pi, ei, Ai)}i∈I ∀i ∈ I. freshSub(∆, Γi, vars(Pi, ei, Ai), γi)

∀i ∈ I. produce(Ai, γi) : (∆; Γi, Π; JΨP(T)Kγi
= x̄; s = JeiKγi

; JPiKγi
, Σ, Ξ) Si

open(r) : (∆, Π, Σ, Ξ) 
⋃
{Si}i∈I

Ξ(r) = (T(x̄), s, G)

s′ /∈ ∆ Γ = (s′ : Val) P = ((s, s′) ∈ GuarΨ(T(x̄), G))

update(r, ∆, Ξ, Γ, P, Ξ[r 7→ (T(x̄), s′, G)])

Ξ(r) = (T(x̄), s, G)

(P0, e0, A0) ∈ ΨI(T) freshSub(∆; Γ, Γ0, vars(P0, e0, A0), γ)

consume(A0, γ) : (∆, Π, Γ; Γ0, P; JΨP(T)Kγ = x̄; s = Je0Kγ ; JP0Kγ , Σ, Ξ) S

close(r) : (∆, Π, Γ, P, Σ, Ξ) S

openRegions : (∆, Π, Σ, Ξ, ε) S

∀(∆1, Π1, Σ1, Ξ1, r̄) ∈ S. ∃S1. atomic(α) : (∆1, Π1, Σ1, Υ) S1

∀(∆2, Π2, Σ2, Υ2) ∈ S1. ∃Γ2, P2, Ξ2. updateRegions(r̄, ∆2, Ξ1, Γ2, P2, Ξ2)

∃s̄, Γ′2, P′2, Ξ′2. createRegions(s̄, ∆2; Γ2, Ξ2, Γ′2, P′2, Ξ′2)
∃S2. closeRegions(s̄, r̄) : (∆2, Π2, Γ2; Γ′2, P2; P′2, Σ2, Ξ′2) S2

∀(∆3, Π3, Γ3, P3, Σ3, Ξ3) ∈ S3. (∆3, Π3 ` Γ3, P3) ∧ (∆3; Γ3, Π3; P3, Σ3, Ξ3, Υ2) ∈ S3

` 〈α〉 : (∆, Π, Σ, Ξ, Υ) S3

Figure 2.9: Symbolic execution rule for atomic statements.

of the excluded middle for pure assertion p: that is p ∨ ¬p holds. 1

Consuming a region assertion asserts that there is a corresponding
region with the specified type and state. Consuming a guard asser-
tion makes use of the judgment takeGuard(∆, t, H, G, Γ, P, F), which
expresses that guard G can be removed from guard H leaving the
frame F, under conditions P, given the region type t. Frame inference
is used to discharge takeGuard obligations.

The symbolic execution judgment. The symbolic execution judgment
expresses how executing a program statement affects the symbolic
state. Most of the symbolic execution rules are standard, except that
when statements are sequenced together, the intermediate symbolic
state is stabilized (using the stabilise judgment). The other novelty is
the symbolic execution of atomic statements (read, write and CAS
operations), which require access to the shared regions. The symbolic
execution rule is given in Figure 2.9. It consists of six steps:

1. Regions are opened with the openRegions judgment. This is based
on the open judgment, which opens a single region by producing

1 N.B. since our assertion language is limited, this does not require a classical meta-
logic.
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its interpretation (by case analysis on the possible interpreta-
tions).

2. The atomic statement is symbolically executed with the atomic
judgment. This cannot affect the shared regions.

3. The regions are updated with the updateRegions judgment. This
applies the update judgment to each of the regions, updating the
state arbitrarily in a manner that is consistent with the guarantee
for the available guard.

4. New regions may be created with the createRegions judgment.
These regions must be distinct from the existing ones, and will
be created along with the full guard for the region type. At this
point, these new regions are open.

5. All of the open regions are closed with the closeRegions judg-
ment. This applies close for each region, which consumes the
interpretation.

6. The generated assertions are checked to follow from the assump-
tions, and the assertions are treated as assumptions in the new
symbolic state.

2.4 Guard Reasoning

As we have seen, each region in Caper is associated with guards,
which are ghost resources that are used to control how the region is
accessed. In CAP [24], guards (or tokens) have the form [Guard(x̄)]π.
That is, a guard is a parametrised name with an associated (non-
zero) fractional permission. The parametrised name determines some
actions on the region, and any thread owning a non-zero fraction of
the corresponding guard can perform those actions.

In TaDA [81], guards are generalized. Each region type is associated
with a guard algebra, which is a partial commutative monoid (PCM).
The PCM determines how the guards for a region can be composed.
Actions can then be associated with arbitrary guards to enforce the
desired protocol.

The benefit from this is that it is often easier to express protocols.
For example, consider a concurrent set where either all threads are
inserting elements or all threads are removing elements. In CAP, this
protocol can be enforced by allowing the full permission for inserting,
[Insert]1, to be traded for the full permission for removing, [Remove]1,
(and vice-versa) by performing an action on the region. Requiring full
permission (represented by 1) ensures that all threads must agree to
the change between insert and remove modes; no thread can have
an outstanding fraction when the change occurs. This approach was
adopted in [82], and requires a significant amount of bookkeeping to
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manage the trades. By contrast, with an ad-hoc guard algebra we can
choose to identify [Insert]1 and [Remove]1 (although not [Insert]π
and [Remove]π for π < 1). This means that no actions are required to
change mode, so there is no bookkeeping overhead.

2.4.1 Automation Problems

To automate reasoning about guards in Caper, we must be able to
solve three problems: entailment with framing, composition and com-
patibility, and least upper-bounds. Entailment in Caper is intuitionistic:
if A ` B then A ∗C ` B. This means that it is always sound to discard
resources. Because of this, we can view entailment as inducing an
ordering on guards, where A ` B is interpreted as “B is at most A”.

The problem of entailment with framing is: given guards A and
B, find a guard C, if it exists, such that A ` B ∗C. This problem has
two key applications. The first is in determining if an action for a
region is applicable in order to compute the Guarantee relation. For
this, we do not need to know what the frame C is, but only if the
entailment holds. The second is in computing entailments and frames
for symbolic execution. If we currently have guard A as an available
resource and we make a function call which requires guard B in its
precondition, then a positive solution is necessary to make the call.
Moreover, since the guard C is not required by the call, we can treat
it as a frame. Note that for both of these applications it is sound to
under-approximate the solution; that is, an implementation could say
no frame exists, or find a non-maximal frame, and we would only be
able to prove less as a consequence.

The problem of composition and compatibility is: given guards A
and B, determine the composition A ∗ B if it is defined. The problem
also has two key applications. The first is in determining if an action
for a region is applicable in order to compute the Rely relation. For this
we need to know if the guard associated with the action is compatible
with the guard that we hold; if so, then another thread could have
it and hence perform the action, so it should be accounted for in
the Rely. The second is in combining resources that are obtained
during symbolic execution. For instance, if we have a frame A and the
postcondition of a call gives B then we would continue with the guard
A ∗ B. If the combination is not defined, then we can stop the symbolic
execution at this point, since the state is unreachable. Note that it is
sound to over-approximate compatibility — it is sound to include more
actions in the Rely relation, and to continue symbolic execution from
an unreachable state. It is sound to under-approximation composition
— that is, return a guard that is smaller than the actual composition —
since it is sound to discard resources.

The problem of least upper-bounds is: given guards A and B, find
the least guard C such that C ` A and C ` B. The purpose of com-
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puting least upper-bounds is to determine if the system of actions
for a region is transitive. That is, if guard A permits the transition
from x to y according to some action, and guard B permits the tran-
sition from y to z, then the least upper-bound C of A and B should
permit the transition directly from x to z. Note that it is sound to
under-approximate the least upper-bound, since it is not necessary to
know that the system of actions is transitive, although we should only
conclude that it is transitive when it truly is.

2.4.2 Guard Implementation

In Caper, guard algebras are constructed from a number of simple
combinators. While this does not allow a fully general choice of guard
algebra, the combinators are sufficiently flexible to express useful
patterns, and will be extended to include further combinators in
future (e.g. to support counting permissions [10]). The combinators
also provide a concise way of expressing guard algebras.

In addition to the PCM structure, a guard algebra is equipped with
a designated point representing the full resource. This full resource
is provided when a region is created; moreover, it plays a significant
role in some of the constructions.

Trivial guard algebra. The trivial guard algebra, 0 in Caper syntax,
consists of a single element which is both the unit and the full resource.
This algebra is used when a region does not have any roles associated
with it: it can be used in the same way by all threads at all times.

All-or-nothing guard algebra. An all-or-nothing guard algebra consists
of a single element distinct from the unit, which is the full resource.
In Caper syntax, this algebra is represented by the name chosen for
the point; for instance, GUARD would be the all-or-nothing algebra with
point GUARD.

Permissions guard algebra. A permissions guard algebra %GUARD has
the full resource GUARD[1p] which can be subdivided into smaller
permissions GUARD[π]. The typical model for permissions is as frac-
tions in the interval [0, 1]. This allows for (non-zero) permissions to be
split arbitrarily often. Caper implements a different theory of permis-
sions. This theory also allows arbitrary splitting, but also requires that
GUARD[π] ∗ GUARD[π] is undefined for any non-zero π.

The theory can be encoded into the theory of atomless Boolean alge-
bras — a Boolean algebra is said to be atomless if for all a > ⊥ there
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exists a′ with a > a′ > ⊥. The encoding defines the PCM operator as
follows:

p1 ∗ p2 =

p1 ∨ p2 if p1 ∧ p2 = ⊥

undefined otherwise.

A benefit of this encoding is that the first-order theory of atomless
Boolean algebras is well known to be complete and therefore decidable
(initially reported by Tarski [73], proved by Ershov [31], and see
e.g. [15] for details).

Caper implements three different proof procedures for the theory of
permissions. One uses the encoding with Boolean algebras and passes
the problem to the first-order theorem prover E [69]. A second checks
for the satisfiability of a first-order permissions formula directly. The
third encodes the satisfiability problem with bit-vectors and passes it
to the SMT solver Z3 [19].

Dockins et al. [28] previously proposed a tree-share model of per-
missions, which is also a model of this theory. Le et al. [50] have
developed decision procedures for entailment checking based on this
model, which could also be used by Caper.

Indexed guard algebra. An indexed guard algebra #GUARD consists of
sets of individual guards GUARD(n) where n ranges over integers. A
set of such individual guards is expressed using a set-builder-style
notation: GUARD{x | P} describes the set of all guards GUARD(x) for
which P holds of x. The full guard is GUARD{x | true}, and officially
GUARD(n) is syntax for GUARD{x | x = n}. The PCM operator on the
indexed guard algebra can be defined as:

GUARDS1 ∗ GUARDS2 =

GUARD(S1 ∪ S2) if S1 ∩ S2 = ∅

undefined otherwise

The automation problems reduce to testing conditions concern-
ing sets, specifically set inclusion. Sets in Caper are not first-class
entities: they are always described by a logical predicate that is a
(quantifier-free) arithmetic formula. For sets characterised in this way,
set inclusion can be characterised as:

{x | P} ⊆ {x |Q} ⇐⇒ ∀x. P⇒ Q

Advanced SMT solvers, such as Z3 [19], have support for first-order
quantification, and Caper exploits this facility to handle the verifica-
tion conditions concerning set inclusion.

Product guard algebra construction. Given guard algebras M and N,
the product construction M * N consists of pairs (m, n) ∈ M × N,
where the PCM operation is defined pointwise: (m1, n1) ∗ (m2, n2) =

(m1 ∗m2, n1 ∗ n2). The unit is the pair of units and the full resource is
the pair of full resources.
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Sum guard algebra construction. Given guard algebras M and N, the
sum construction M + N is the discriminated (or disjoint) union of M
and N, up to identifying the units and identifying the full resources of
the two PCMs. The PCM operation embeds the operations of each of
the constituent PCMs, with composition between elements of different
PCMs undefined.

With these combinators, the guard algebra proposed for the set
could be defined as %INSERT + %REMOVE.

Within the Caper implementation, guards are represented as maps
from guard names to parameters, which at present are either a unit
(for all-or-nothing guards) or a permission expression (for permission
guards). The unit is represented as the empty map. For this repre-
sentation to work, Caper disallows multiple guards with the same
name in a guard algebra definition. For instance, INSERT * %INSERT

is not legal. The sum construction is implemented by rewriting where
necessary by the identities the construction introduces.

The Road not Taken.

An alternative approach to that taken in Caper would be to specify
guard algebras by defining their constituents together with equations
for rewriting them. Where possible, these equations could be used to
generate a confluent rewriting system (via the Knuth-Bendix comple-
tion algorithm [44]), which could be used for solving the automation
problems.

This approach could allow more flexibility in defining guard alge-
bras. However, it may be more difficult or even impossible to define
some algebras, such as permissions, in this way. Moreover, it would
allow the user to specify guard algebras that cannot be computed
with effectively. This would make it more difficult for users to specify
appropriate guard algebras. By contrast, the combinators are succinct
and effective, so they are easier for a user to work with.

2.5 Interference Reasoning

There are two sides to interference: on one side, a thread should
only perform actions that are anticipated by the environment; on
the other, a thread must anticipate all actions that the environment
could perform. In the logic of Caper, the actions that a thread can
perform and must anticipate are captured by the Guarantee and Rely
relations respectively. Each time a thread updates a region, it must
ensure that the update is permitted by the Guarantee with respect to
the guards it owns (initially) for that region. Moreover, the symbolic
state between operations and frames for non-atomic operations must
be stabilized by closing the set of states they might be in under the
Rely relation. Caper must therefore be able to compute with these
relations effectively.
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The biggest obstacle to effective computation is that the relations
are transitively closed. Transitivity is necessary, at least for Rely, since
the environment may take arbitrarily many steps in between the
commands of a thread. However, computing the transitive closure in
general is a difficult problem. For instance, consider a region that has
the following action

0 : n  n + 1;

From this action, we should infer the relation {(n, m) | n ≤ m}, as
the reflexive-transitive closure of {(n, n + 1) | n ∈ Z}. It is generally
beyond the ability of SMT solvers to compute transitive closures. El
Ghazi et al. [30] have proposed an approach to encoding transitive
closure problems so that they can be handled by SMT solvers; however,
there are limits to what this can achieve.

Caper employs two techniques to deal with the transitive closure
problem. This first is that, if the state space of the region is finite, then
it is possible to compute the transitive closure directly. Caper uses a
variant of the Floyd-Warshall algorithm [32] for computing shortest
paths in a weighted graph. The ‘weights’ are constraints (first-order
formulae) with conjunction as the ‘addition’ operation and disjunction
as the ‘minimum’ operation.

The second technique is to check if the set of actions for a region
are already transitive. In such a case, the relations will be transitive
immediately, so no effort is required to compute the closure. In Caper,
this is implemented by showing that for any pair of actions that can be
sequenced there is a third action that permits this sequence directly. If
the two sequenced actions have guards A and B respectively, then the
guard for the third action should be at most the least guard that entails
both A and B. This is why we need to solve the least upper-bound
problem for guards.

For the action 0 : n  n + 1, Caper can accurately determine
the relations if it knows the state space is finite. (Currently, Caper

only knows this if all the state interpretations are for constant values.
In practice, we would not expect the direct computation approach
to work well with large finite state spaces.) Otherwise, Caper over-
approximates the Rely relation as the universal relation (which is
essentially useless, but sound). To get the desired result in the infinite-
state case, the user could instead specify the action

n < m | 0 : n  m;

Caper can determine that if this action is sequenced with itself then
the resulting transition (from n to m′ with n < m = n′ < m′) is
permitted by the same action. Consequently, it knows that the actions
are transitive and thus can compute the Rely and Guarantee relations
exactly.

An approach (not yet implemented in Caper) that would allow
more flexibility would be to automatically add a limited number
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of actions to a region in order to achieve transitivity. Essentially, if
it is determined that the sequencing of two actions is not already
covered by an existing action, that action can be added and the process
repeated. The number of iterations should be bounded, since this will
not terminate in general. As an example, consider the following actions

0 ≤ n, n < m | A : n  -m;

0 < n | B : -n  n;

It should be possible to determine that the following actions can be
obtained by sequencing these:

0 ≤ n, n < m | A * B : n  m;

0 < n, n < m | A * B : -n  -m;

0 < n, n < m | A * B : -n  m;

After adding these, the set of actions is transitively closed.

The Road not Taken.

An alternative to computing the transitive closure of the relations
would be to use their transitive interior. (The transitive interior of a
relation is the greatest transitive relation included within the relation.)
It is not immediately clear if this would be any simpler to automate,
however, it would at the very least be unintuitive from a user’s per-
spective. For instance, the transitive interior of {(n, n + 1) | n ∈ Z} is
the empty relation, so the action 0 : n n + 1 would not actually
permit any updates to the region.

Another alternative would be for the user to specify stable sets of
abstract states for a region, instead of the actions for the region. For
example, to specify that a thread holding the guard A can only see the
state of the region increase, we might write:

A : { m | m ≥ n };

It may be easier to stabilize assertions in such a setting, since one need
only widen the set of states for a region to one that is known to be
stable. Conversely, determining which transitions are permitted by
the Guarantee relation may be more difficult, since a transition is only
permitted if it preserves all sets that another thread may consider to
be stable. This approach in some ways resembles that of the Views
Framework [25], where the stable assertions are determined a priori
and updates are only permitted if they preserve all stable frames.
This alternative approach to specifying regions would be compatible
with Caper’s existing approach, and may therefore be an interesting
extension for future investigation.

2.6 Evaluation

We have successfully applied Caper to verify a number of concurrent
algorithms. In §2.2, we discussed the spin lock and ticket lock, whose
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Name Code (lines) Annotations (lines) Time (s)

SpinLock 17 / 17 17 / 18 0.21 / 0.35

TicketLock(Client) 33 (41) / 24 (32) 19 (29) / 17 (27) 0.77 (0.82) / 2.22 (2.23)

ReadWriteLock 36 / 37 25 / 28 3.32 / 15.98

BoundedReadWriteLock 55 / 57 36 / 41 31.01 / 127.34

CASCounter 20 / 20 15 / 16 0.08 / 0.14

BoundedCounter 25 / 25 20 / 21 4.01 / 20.14

IncDec 29 / 29 19 / 21 0.10 / 0.36

ReferenceCount 31 / 30 22 / 24 0.22 / 0.73

ForkJoin(Client) 17 (32) / 17 (32) 16 (30) / 17 (31) 0.05 (0.07) / 0.07 (0.09)

Barrier(Client∗) 71 (127) / 77 (130) 31 (60) / 35 (67) 28.22 (30.50) / 26.96 (31.44)

BagStack†
35 / 30 26 / 26 3.22 / 11.98

Queue‡
60 / 58 37 / 38 177.33 / 179.82

∗ flags: -c 0 † flags: -c 1 -o 3 ‡ flags: -c 2 -o 3

Table 2.1: Examples (recursive/iterative).
specifications guarantee mutual exclusion. We have verified a reader-
writer lock, whose specification permits multiple readers or a single
writer to enter their critical sections concurrently. This example uses
counting permissions, but we have also verified a bounded version
that does not. We have also verified a number of counter implemen-
tations with specifications that enforce monotonicity (CASCounter,
BoundedCounter and IncDec), and an atomic reference counter (Ref-
erenceCount). We have verified a library for joining on forked threads
and a client that waits for the child thread to terminate before present-
ing the work done by the child. We have also verified a synchronization
barrier and a client that uses it to synchronize threads incrementing
and decrementing a counter. Finally, we have verified two implemen-
tations of a bag: the stack of §2.2.3, and a concurrent queue. We
summarize these examples in Table 2.1, which shows the number of
lines of code and annotation and verification times for recursive and
iterative versions of each example. By default, Caper can create up to
two regions at a time (-c 2) and open up to two regions (-o 2). The
BagStack and Queue examples require opening up to three regions.
The BarrierClient requires creating no regions, because of an issue
with Caper’s failure handling implementation.

From the verification times, we can observe that the versions that
use loops tend to take longer than the recursive versions. This is due
to case analysis which propagates through loops, but is abstracted in
function calls. The high verification times for the bounded examples
are largely due to Caper computing transitive closures for finite-state
regions. The barrier example also takes significant time to compute the
transitive closure of an infinite-state region. The BagStack and Queue
use nested regions, and Queue has a complicated transition system,
which combine to give a long verification time.

There are three key areas where Caper could use significant im-
provement. Firstly, proof search could be improved, for instance by di-
recting the choice of regions to open and abstracting multiple branches
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into one. Currently, successful proofs may take some time and failing
proofs take even longer. Secondly, Caper heuristics used in abduction
require improvement, including loop invariants, this should allow
more algorithms to be proved. Thirdly, Caper’s annotations limit the
expressivity of specifications to some extent. For instance, there is no
support for regions with abstract states other than integers. Despite
these limitations, we believe that Caper demonstrates the viability of
our approach, and provides a good basis for further investigation.

2.7 Related Work

Caper is a tool for automating proofs in a concurrent separation
logic with shared regions, aimed at proving functional correctness
for fine-grained concurrent algorithms. The logic is in the spirit of
concurrent abstract predicates (CAP) [24] taking inspiration from
recent developments in concurrent separation logic such as iCAP [72],
TaDA [81], Views [25], CaReSL [75], FCSL [58] and Iris [41].

Smallfoot [8] pioneered symbolic execution for separation logic.
While it can prove functional correctness, it has limited support for
concurrency and so cannot prove fine-grained concurrent algorithms.

SmallfootRG [13] extended Smallfoot to the more expressive logic
RGSep [76]. The tool uses shared resources that are annotated with
invariants and actions that can be performed over these resources. The
actions that can be performed are not guarded, which leads to very
weak specifications: it can prove memory safety, but not functional cor-
rectness. The abstraction of stabilization employed by SmallfootRG is
different than the transitivity-based technique of Caper. SmallfootRG
uses abstract interpretation to weaken assertions such that they are
stable, where the abstract domain is based on symbolic assertions.
Requiring (or ensuring) that a set of actions is transitively closed can
be seen as an abstraction that terminates in a single step.

CAVE [77] built on SmallfootRG’s action inference to prove linearis-
ability [37] of concurrent data structures. That is, CAVE can prove that
the operations of a concurrent data structure are atomic with respect
to each other, and satisfy an abstract functional specification. Caper

cannot yet prove linearisability, although it could in future support
abstract atomicity in the style of TaDA [81]. On the other hand, CAVE
cannot prove functional correctness of non-linearisable examples such
as a spin lock.

Other mechanized — but not automatic — approaches based on
separation logic include Verifast [39] and the Coq mechanization of
fine-grained concurrent separation logic [58, 70]. Both approaches sup-
port an expressive assertion language, including higher-order pred-
icates. They are able to prove functional correctness properties for
fine-grained concurrent programs. Direct comparisons are, however,
difficult. Programs and specifications need adaptation, often more
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than simple translation, resulting in different and sometimes weaker
specifications. This is due in part to a smaller core set of operations
and in part to a lack of features and expressivity of logic. However,
when examples are comparable, the annotation overhead of the Ca-
per examples is lower, often significantly. For example, the spin lock
requires 87 lines of annotation in Verifast, compared to 18 in Caper,
while the ticket lock requires 123 lines compared to 17. Verifast takes
0.11s to check each of these examples.

Viper [56] is a verification infrastructure for program verification
based on permissions. It supports an expressive permission model that
includes fractional permissions and symbolic permissions. It would be
interesting to develop a front end for Viper that implements Caper’s
verification approach. A challenging issue is whether (and how) the
non-deterministic proof search can be encoded in Viper’s intermediate
language.

2.8 Conclusions

We have presented Caper, the first automatic proof tool for a separa-
tion logic with CAP-style shared regions, and discussed the significant
innovations that it involves. As a prototype, Caper provides a founda-
tion for exploring the possibilities for automation with such a logic.
Support for a number of different features will significantly increase
the scope of examples that Caper can handle. We anticipate adding
support for the following: additional guard algebra constructions;
richer logical data types, such as sets and inductive data types; sup-
port for abstract and inductive predicates; and support for separation
at the level of abstract states in the spirit of FCSL [58] and CoLoSL [66].
We would like to investigate inferring loop invariants and other an-
notations. We would like to make Caper more usable by providing
proofs and failed proofs in a format that can easily be navigated and
interpreted by a user. To this end, Caper already provides an inter-
active proof mode that allows a user to drive the proof search. This
enables exploration of, in particular, failing proofs, which has proven
valuable in development of the tool and the accompanying examples.
A further goal is to put Caper on a rigorous footing by formalizing its
logic in a proof assistant (such as Coq) and using Caper to generate
program proofs that can be checked in the proof assistant or by a
verified checker.

2.9 Postscript

Since the publication of the conference paper, work proceeded on
the tool itself. As remarked in the conclusion above, we had several
visions for the progress of Caper as a verification tool. By the nature



50 Caper: Automatic Verification for Fine-grained Concurrency

of research and research groups, the project proceeded along a course
shaped by the circumstances of the people involved.

2.9.1 Fault-Tolerant Programming

Caper as a software project is fairly well-developed. The architecture
of the program and the sub-problems are fairly well delineated using
the various abstraction and organizational techniques of Haskell, the
implementation language. The code is accompanied by an extensive
automated test suite, and it is easy to add more, the testing harness is
built with auto-discoverability of tests in mind.

This extensibility proved fruitful for Jonathan Sutton, MEng, of Im-
perial College London, who undertook the project of extending Caper

with facilities for reasoning about fault-tolerant code, leveraging the
work by Ntzik, Rocha Pinto, and Gardner[60]. The work formed the
substance of his MEng thesis, supervised by Prof Philippa Gardner
with support from Julian Sutherland and myself.

Fault-tolerant reasoning is a departure from an underlying assump-
tion in most program logics: that computers do not crash. Ntzik and
collaborators enhanced a program logic in the Views family of con-
current separation logics[25] with notions of machine crash to model
power failures, disc malfunction etc. Data-centers and highly available
distributed systems are natural examples of systems designed around
the possibility of hardware malfunction, and the main case study of
the work by Ntzik[60] is indeed the ARIES recovery algorithm, a form
of error recovery using write-ahead logging known from the world of
data bases.

Concretely, the machine model is generalized to distinguish two
notions of state: volatile and durable. Volatile state does not persist
across machine crashes while the durable state does. This models the
distinction between e.g. RAM and disk. Assertions are then general-
ized to describe a volatile and a durable component. Finally, triples
are generalized to account for an invariant of the durable state at any
given execution point, and a recovery handler CR for a given statement
C, a piece of code that ensures restoring the machine to a valid state
upon restarting from a fault. The entire construction is summarized
by and put to work in the gault abstraction rule from [60]:

S `
{

PV | PD

}
C
{

QV | QD

}
S `

{
true | S

}
CR

{
true | R

}
R `

{
PV | PD

}
[C]

{
QV | QD

}
It is easy to see that it concretizes to the familiar Views-style concurrent
separation logic that we also find in Caper by taking the durable state
PD, QD as true, the invariants as true and the recovery code CR as skip
as the function itself.

The key observation here that makes this work interesting in relation
to Caper, is that there is nothing inherent in the choice of assertion
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language, or even programming language. The generalization to fault-
tolerant code is a construction on the program logic, proven sound wrt
to the Views-framework, of which the logic of Caper is an instance
in spirit. Moreover, the proof-burden – the actual verification work
– reduces to simple triples, cf. the above abstraction rule. The thesis
of Sutton’s work is that Caper as a software platform for verification can
be leveraged to prove specifications of fault-tolerant fine-grained concurrent
code.

Concretely, the work resulted in a branch of Caper with the modifi-
cations outlined above. The assertion language was enriched to speak
of volatile and durable resources, and function-level specifications was
given recovery-code annotations and durable resource invariants. The
symbolic execution engine was extended to verify that every execu-
tion step preserved the durable resource invariants. Furthermore, the
programming language of Caper was enriched with primitives for
manipulating durable state in the form of a simple file-based logging
system, with primitives like "append to log" and "read last log entry".
Finally, an encoding of the ARIES write-ahead recovery algorithm was
used to verify a fault-tolerant bank transfer scenario.

The missing ingredient is some preprocessing of specifications in
order to have Caper perform the necessary proof burdens: as it stands,
there is no tool-enforced connection between recovery code and the
code it recovers. As such, a user needs to manually construct the
proof-obligations by creating copies of the recovery function with
every durable state invariant as a pre-condition.

Finally, a graceful up-stream merge of the work with a user-friendly
support for opting into the functionality remains.

2.9.2 Region-Levels

TaDA, a logic for "Time and Data Abstraction"[81] is another Views-
Style program logic, that, similarly to fault-tolerant concurrent separa-
tion logic, has verification burdens similar to those of Caper.

The key addition to the traditional program logic is the "atomic
triple", which bakes in the notion of linearizability. Operationally,
the atomic triple encodes the proof-obligation of identifying the lin-
earization point of a procedure. The linearization point is the atomic
operation after which the procedure being verified is said to logi-
cally take place. Linearizability is a well-studied correctness condition
for abstraction preservation in concurrent implementations of data-
structures[37].

From a symbolic execution perspective, the atomic triples of TaDA
is a generalization of the atomic primitives of Caper. The proof system
of Caper allows access to shared resources via these operations. In
terms of spec, this means that a program can access resources held
by regions precisely during the (symbolic) execution of an atomic
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primitive. A proof can open any number of regions at once, perform
the operation, and close all regions again, providing proofs that the
updates lie within the Guarantee relation implied by the specifications
of these regions.

Opening the same region twice leads to logical inconsistencies, but
this is avoided in Caper as any given symbolic state maintains the
invariant that all region identifiers at hand are distinct, and, if they
are not, merges the information in their associated region assertions
to make it so. Regions can contain yet more regions, but these are
not allowed to be opened by the same atomic operation, preventing
cyclical references in regions letting Caper open the same region
twice.

The situation, however, is more subtle in TaDA. The atomic triples
allow for multiple openings of regions in several steps of execution,
precisely enabling the problematic behaviours outlined above. To
counter this, TaDA instruments symbolic states with region levels, a
partial order on regions. Every region identifier is associated with an
element of the order, and opening that region bounds the open regions
by that element. Any new regions encountered through this action
is added to the symbolic state at the next higher level. Finally, the
proof system of TaDA ensures that only regions of higher levels than
the open regions are opened. This prevents the logical inconsistencies
resulting from opening regions twice.

This functionality was identified as the groundwork for introducing
atomic triples to the specification language of Caper in the wake of
the publication at ESOP. A branch of the Caper project exists with
a sketch of extending the specification language with primitives for
expressing constraints on levels. These are modeled as real numbers at
the level of the underlying SMT constraint language, giving a partially
ordered set with constants as desired. The symbolic execution engine
adds the desired constraints at the appropriate places, namely when
opening, creating and closing regions. This is a special case of the
atomic triples of TaDA, where it spans but a single atomic operation.

What remains for this feature to be complete is an effort to figure
out to what extent the tool can alleviate the burden of annotating all
regions with levels. In many (if not all) instances, at least the collection
of use-cases that the Caper project contains, the region structure is
"well-behaved". In the spirit of automatic verification, it is apparent
that the syntactic structure of the specification can hint at the appropri-
ate level annotations for the proof. Or, perhaps, with the backtracking
mechanisms of Caper at hand, that an appropriate annotation can be
searched for: there are only so many possible orderings of for a finite
set of regions.
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2.9.3 Proof generation

Verification of a program is an absolute guarantee of correctness with
respect to the formal framework in which the proof is made. It is,
however, important to remember that ultimately these methods are
tools for real people to solve problems. The human aspect of the
process is important to consider when we move from considering
program verification an academic discipline, and promote it to an
aspect of software engineering.

Formal frameworks for verification, like the program logics on
which Caper and many other tools are founded, leave room for human
"errors". Wrong assumptions or misunderstandings on the part of
the user can result in improper use e. g.assuming totality from a
partial correctness proof, or race freedom from a simple type checker’s
acceptance of a concurrent program. Specification of programs is
inherently a modeling exercise and can also leave room for "errors"
as the requirements for a piece of code are interpreted and translated
into the specification language of the verification framework. What
might appear to be a correct specification might not capture subtleties
of functional requirements e. g.does a sorting algorithm need to be
stable, or does a a collection data structure need to be thread safe?

In turn, the user of the formal framework rely on its soundness and
proper construction. For formal frameworks like program logics, this
means logical consistency and proofs of soundness: everything proven
correct is true, or, conversely, false things cannot be proven correct.
Modern solutions to ensuring this can be found in Iris and the Views
frameworks for constructing program logics.[25, 41]. They are in some
sense schemas for forming verification frameworks, with sufficient
conditions for ensuring correctness of the resulting logic. Moreover,
the correctness of these constructions, given the assumptions of the
correctness conditions, have been formalized in the proof assistant
Coq for complete certainty.

What e. g.Views and Iris (and Coq, for that matter) achieve, is a small
trusted kernel, a well-defined collection of assumptions or constructions
that are well understood and proven correct. Then, rules for combining
or using these primitives are proven sound, with the implication that
anything built from these is a sound program logic.

Caper is a tool for essentially finding proofs of correctness within a
program logic. Its search is inspired by the rules of the program logic,
but there is no formal connection between the behavior of the tool and
the formal program logic that it supposedly embodies. This means
that Caper, as a component of the verification framework, must be
trusted.

Caper is by many measures a complex piece of software, handling
much bookkeeping in the symbolic execution engine: backtracking,
scoping of variables, bindings with SMT solver libraries and plumbing
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of data between all these components. More than a few bugs discov-
ered by the authors of the tool amounted to simple typos, omissions
and copy/paste errors in seemingly innocuous glue code, that mar-
shaled data between e.g. the symbolic state and the layer interacting
with the underlying solver.

To reduce the amount of code that needs to be trusted, Caper was
built from the start with certificate generation in mind. The symbolic
execution engine produces a proof-tree as a certificate of acceptance
of a specification. The certificate is in practice a formal statement
of the correctness proof in Coq, drawing on a library containing a
formalization of the Caper program logic, and a proof script that
guides the Coq proof checker to successful completion. Where the
Caper tool consulted SMT solvers, it can leave holes for the user of the
certificate to complete e.g. tricky existential reasoning, if the standard
arithmetic and order theoretic tactics in Coq cannot discharge the
proof obligation.

A prototype of this system was developed by Thomas Dinsdale-
Young, is in basic working order and available as a branch of the
Caper repository[23].
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3.1 Introduction

This chapter contains a formal development of the program logic
on which the Caper tool for automatic verification of fine-grained
concurrent programs is built.

The chapter is structured as follows: Sections 3.2 and 3.2.3 gives
an overview of how the concrete syntax used in Caper source files
translate to the abstract syntax of the program logic used in the formal
development. The abstract syntax and the operational semantics are
detailed in Sections 3.3 and 3.4. The assertion logic to 3.6. The seman-
tics of the program logic are developed in 3 stages. Section 3.7 details
the semantic model that the interpretation of Section 3.8 translates the
abstract syntax into. This translation is finally proven sound in Section
3.9.

The object language features a few things that are non-standard in
the sense of a core, imperative calculus for developing program logics.
Really, only the heap commands and basic control flow constructs are
important.

But, as a tool for automating verification of programs, it is reasonable
to push the object language closer to “the real thing”: modern impera-
tive programming languages and hence the algorithms designed for
them make use of local variables and local returns to structure and
organize code.

The way that ownership of capabilities is modeled is different from
the literature. E.g. Iris is essentially a framework parameterized by
choice of a partial commutative monoid that, for a given program or
problem can be instantiated “large enough” to model the relationships
between capability resources that is desired.

The model of Caper makes a different choice based on two ideas:
by not having a parameterized framework of a model, but instead a
“large enough” model once and for all, we achieve true modularity of
verification. Morally, if two modules are proven correct using Iris, but
on two different sets of assumptions, they are not directly composable.
This is avoided in Caper.

In addition we have the issue of automation and implementability
(and to a lesser extent usability). Products, sums, parameters and per-
missions give an expressive and convenient vocabulary for expressing
many protocols on shared state.

Immediately, the combinators provided do not allow for higher
order monoid expressions like Iris.

55
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3.2 Syntax Summary

In this section we give a brief overview of how the concrete syntax of
Caper corresponds to the abstract syntax of the program logic.

3.2.1 Object Language

The object language is a core imperative language with first-order dy-
namically allocated heap storage in addition to mutable local variables
and multiple return points. The latter two features sets Caper apart
from standard core imperative languages used in the literature, but is
more representative of modern imperative languages.

s ∈ Stmt ::= s1;s2 sequencing

| if(e) then {s1} else {s2} conditional branch

| while(e){s} zero-or-more iteration

| x := e local assignment

| x := alloc(e) allocation

| x := CAS(e1,e2,e3) compare-and-swap

| [e1] := e2 heap write

| x := [e] heap read

| x := f(~e) function call

| return e value return

| fork f(~e) spawn thread

| skip no-op

FunDef ::= function f(~x){s}

Program ::= FunDef∗; function main(){s}

3.2.2 Specification Language

The assertion language is a standard, first-order intuitionistic sep-
aration logic extended with resources representing knowledge and
ownership of shared state and permissions to update that state. Shared
state is modeled by “regions”, and permissions to manipulate the state
is expressed through “guards”. A region declaration consists of a
guard algebra declaration (GAD), a region interpretation declaration
(ID) and an action declaration (AD). The guard algebra describes
which permissions can be owned for a particular region, and how
those permissions may be shared, split and combined. The region
interpretation describes by way of a “state variable” the configuration
of the heap owned by the region. The action interpretation describes
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the protocol governing the shared state by assigning legal updates to
the state variable to guards.

The P in the grammar ranges over assertions in first-order separation
logic extended with guard and region assertions as detailed later in
this appendix.

GAD g ::= G Indivisible Guard

| %G Divisible Guard

| #G Parameterized Guard

| g ∗ g Product Construction

| g + g Sum Construction

| 0 Nil Guard

ID i ::= ·
| i, (∆).Π | e : P

AD a ::= ·
| a, (∆).Π | G : e1  e2

Well-specified programs and individual functions are specified with
respect to a region declaration context:

RegionContext R ::= • | R, T(r,~x)(g, i, a)

The variable r binds the name of the region itself (think this from
mainstream OO programming languages) and the variables ~x bind
the names of the resources held by the region. These names are bound
in the region interpretation and action declaration.

Well-specified programs are also specified with respect to a function
specification context, assigning pre- and postconditions to function
names, expressed as assertions ranging over the parameters of the
function and its return value.

SpecCtxt Φ ::= • | Φ, f : (Γ,~x){P}{r.Q}

Individual functions and fragments of code are verified “Hoare
style”, demonstrating that programs run from states satisfying a pre-
condition P either run to completion, reaching a state satisfying Q, or
return locally a value satisfying U:

R; Φ; Γ `
{

P
}
s
{

Q | r.U
}

There is no surface syntax for this judgment as constructing them is
precisely the function of Caper.
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3.2.3 Spin Lock Example

In order to demonstrate the specification syntax of Caper we here
describe a fully verified program, relating it to the surface syntax in
the process. The following listing demonstrates a simple spin-lock,
for simplicity, but it will exercise most all the features of the program
logic.

First, the surface syntax of the region declarations for the spin-lock:

region SLock(r,x) {

guards %LOCK * UNLOCK;

interpretation {

0 : x 7→ 0 &*& r@UNLOCK;

1 : x 7→ 1;

}

actions {

LOCK[_] : 0  1;

UNLOCK : 1  0;

}

}

The set of primitive guards is {LOCK, UNLOCK}, and the guard alge-
bra declaration, call it GSL, %LOCK ∗ UNLOCK, describing that the LOCK

resource is divisible, while the UNLOCK resource is not.
The region interpretation, ISL, is described by two clauses, in abstract

syntax written as

(·).> | 0 : x 7→ 0 ∗ r@UNLOCK,

(·).> | 1 : x 7→ 1

Hence, the region declaration context for this example consists of
the single SLock declaration:

R := SLock(r, x)(GSL, ISL, ASL)

The concrete syntax for the unlock implementation is as follows:

function unlock(x)

requires SLock(r,x,1) &*& r@UNLOCK;

ensures SLock(r,x,_); {

[x] := 0;

}

This represents the function specification written as follows:

unlock :

(r : Region, x : Val){SLock(r, x, 1) ∗ r@UNLOCK}{ret.∃s.SLock(r, x, s)}

3.3 Syntax of Object Language

Convention 1 (Sets). Sets are typeset with capitalized italicized font
when there is no canonical name, e.g. Type, Heap but N and Z.
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Convention 2 (Sets of Syntax). We typeset sets of syntax with capital-
ized teletype, e.g. Fun.

Definition 3 (Var, Variable Names). We suppose a set Var ranged over
by x, y etc.

Definition 4 (Fun, Function Names). We suppose a set Fun, ranged
over by f, g etc.

Definition 5 (Expr, Syntactic Expressions). We define Expr as arith-
metic and boolean expressions over integer literals and variables
drawn from Var. We let e range over syntactic expressions.

e ∈ Expr ::= x variables

| n constants

| e+ e arithmetic operations

| e− e

| e ∗ e
| e/e

| e = e integer comparisons

| e 6= e

| e < e

| e ≤ e

| e ≥ e

| e > e

Definition 6 (FunDef, Syntactic Function Definitions). We define FunDef

by the following grammar:

FunDef ::= function f(~x){s}

Definition 7 (Program, Caper Programs). The set of syntactic Caper
Programs is defined as the set of sequences of function definitions
with a designated main function as the entry point, i.e.

Program := FunDef∗; function main(){s}

3.4 Operational Semantics

Definition 8 (Addr, Machine Addresses).

n ∈ Addr := N

Definition 9 (Val, Program Values).

n ∈ Val := Z

Note that Addr ⊆ Val. We can distinguish valid addresses in our
meta-mathematics simply by considering n ∈ Addr versus n 6∈ Addr.
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Definition 10 (Heap, Global Machine Memory).

h ∈ Heap := Addr fin
⇀ Val

Heaps form a partial commutative monoid with the empty heap,
written ∅ as unit and disjoint union, written ], as composition, defined
as follows:

h1 ] h2 =

⊥ dom(h1) ∩ dom(h2) 6= ∅

lookup(h1, h2) otherwise

lookup(h1, h2) = λa.


h1(a) a ∈ dom(h1)

h2(a) a ∈ dom(h2)

⊥ otherwise

As always, a partial commutative monoid is partially ordered by
the canonical extension order:

h1 v h2
def⇐⇒ ∃h3. h1 ] h3 = h2

Observe that v is both

1. reflexive, as ∅ ] h = h ]∅ = h for all h;

2. transitive, as if we have heaps to extend h1 to h2 and h2 to h3, the
composition of the two pieces will extend h1 to h3, since ] is
associative;

3. anti-symmetric, as having heaps to extend h1 to h2 and vice versa
implies that the pieces are empty, hence h1 = h2. That is, if
h1 · h′1 = h2 and h2 · h′2 = h1 it means that (h2 · h′2) · h′1 = h2. If
h2 · (h′2 · h′1) = h2 then it must be that h′2 · h′1 = ∅, meaning so
must both of h′2 and h′1.

Definition 11 (Stack, Thread Local Stack).

σ ∈ Stack := Var→ Val

We silently lift the action of stacks on variables to sequences of vari-
ables when the intention is clear, e.g. σ(~x) = σ(x1), σ(x2)..., σ(xn) for
a sequence ~x of length n.

Definition 12 (Cont, Continuations). We define the set of continuations
by the following grammar, where σ ∈ Stack, s ∈ Stmt and x ∈ Var:

κ ∈ Cont ::= s | x:=(σ, κ)

We use the second construction to represent the frames of the call
stack.



3.4 Operational Semantics 61

Definition 13 (ThreadId, Thread Identifiers). We suppose a set ThreadId
of thread identifiers, ranged over by id.

Definition 14 (Thread, Threads).

t ∈ Thread := Stack× Cont

Definition 15 (ThreadPool, Thread pools).

T ∈ ThreadPool := ThreadId fin
⇀ Thread

Definition 16 (Program, Machine Configurations). We enrich machine
configurations with a distinguished faulting state denoted  :

Program := (Heap] { })× ThreadPool

Definition 17 (Env, Function Environments). Function environments
are partial mappings from function names to parameters and bodies.
The set of function environments are generated by the following
grammar, where f ∈ Fun,~x ∈ Var∗ and s ∈ Stmt:

E ∈ Env ::= · | E, f : (~x, s)

where f does not appear in the E it extends. An environment E induces
a partial map

Fun
fin
⇀ (Var∗, Stmt)

and we denote a well-defined lookup as E(f) = (~x, s).

Definition 18 (J−K−, Expression Evaluation). We define a total inter-
pretation of expressions with regards to a stack as follows:

J−K− : Expr× Stack→ Val

JxKσ = σ(x)

Je1 + e2Kσ = Je1Kσ + Je2Kσ

Je1/e2Kσ =

Je1Kσ / Je2Kσ if Je2Kσ 6= 0

0 otherwise

Je1 ≤ e2Kσ =

1 if Je1Kσ ≤ Je2Kσ

0 otherwise

We omit the remaining, straightforward cases.
Notice that uninitialized variables are not handled exceptionally as

the stack is a total function. Intuitively, referencing uninitialized local
variables returns an arbitrary but consistent value - multiple accesses
of the same variables returns the same value.
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We present the operational semantics as a Views-style labeled tran-
sition system, with a label interpretation providing the semantics of
atomic actions: heap operations and faulting.

Definition 19 (Action, Atomic Action Labels). The set of atomic action
labels is described by the following grammar, where n ranges over
Addr and v ranges over Val.

α ∈ Action ::= id

|  

| alloc(n, v)

| read(n, v)

| write(n, v)

| CAS(n, v, v, v)

Convention 20 (− 7→ −, Map Extension). We denote the extension
of maps by the usual m[k 7→ v] notation, and lift it to sequences of
matching lengths, using m[~k 7→ ~v] to stand for m[k1 7→ v1]...[kn 7→ vn],
with circumstances ensuring matching lengths.

Definition 21 (J−K, Atomic Action Interpretation). We interpret atomic
action labels as functions from atomic action labels to heaps or a
designated faulting element  .

J−K : Action→ Heap→ P(Heap] { })

JidK (h) = {h}
J K (h) = { }

Jread(x, v)K (h) =


{h} if x ∈ dom(h) and h(x) = v

∅ if x ∈ dom(h) and h(x) 6= v

{ } if x 6∈ dom(h)

Jwrite(x, v)K (h) =

{h[x 7→ v]} if x ∈ dom(h)

{ } otherwise

q
CAS(x, v, v′, b)

y
(h) =



{h[x 7→ v′]} if x ∈ dom(h), h(x) = v and b 6= 0

{h} if x ∈ dom(h), h(x) 6= v and b = 0

∅ if x ∈ dom(h) and h(x) = v but b = 0, or

h(x) 6= v and b 6= 0

{ } if x 6∈ dom(h)

Jalloc(v, n)K (h) =



{h[n 7→ _]...[n + (v− 1) 7→ _]} if n, ..., n + (v− 1) 6∈ dom(h)

and v > 0

∅ if n or n + 1 or ... or n + (v− 1)

∈ dom(h) and v > 0

{ } if v < 1
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We lift a function

JαK : Heap→ P(Heap] { })

to

(Heap] { })→ P(Heap] { })

by letting JαK ( ) = { }.

Definition 22 (− ` − −−→ −, Thread Semantics). We define the seman-
tics of individual threads as a labeled transition relation, with the set
of labels consisting of atomic action labels extended by a designated
fork(f,~v) label; letting

{Label} := Action + {fork(f,~v) | f ∈ Fun,~v ∈ Val∗}

we define the relation

− ` − −−→ − ⊂ Env× Thread× {Label} timesThread
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Seq

E ` (σ, s1)
α−→ (σ′, s′1)

E ` (σ, s1;s2)
α−→ (σ′, s′1;s2)

Skip

E ` (σ, skip;s) id−→ (σ, s)

IfTrue

JeKσ 6= 0

E ` (σ, if(e) then {s1} else {s2})
id−→ (σ, s1)

IfFalse

JeKσ = 0

E ` (σ, if(e) then {s1} else {s2})
id−→ (σ, s2)

WhileTrue

JeKσ 6= 0

E ` (σ, while(e){s}) id−→ (σ, s;while(e){s})

WhileFalse

JeKσ = 0

E ` (σ, while(e){s}) id−→ (σ, skip)

FunctionCall

E(f) = (~x, s) σ′(~x) = J~eKσ

E ` (σ, x:=f(~e))
id−→ (σ, x:=(σ′, s))

FunctionCallStep

E ` κ
α−→ κ′

E ` (σ, x:=κ)
α−→ (σ, x:=κ′)

LocalReturn

E ` (σ, x:=(σ′, return e;s)) id−→ (σ[x 7→ JeKσ′ ], skip)

Return

E ` (σ, x:=(σ′, return e))
id−→ (σ[x 7→ JeKσ′ ], skip)

DefaultReturn

E ` (σ, x:=(σ′, skip)) id−→ (σ[x 7→ v], skip)
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LocalAssign

E ` (σ, x := e)
id−→ (σ[x 7→ JeKσ], skip)

Fork

E ` (σ, fork f(~e))
fork(f,J~eKσ)−−−−−−→ (σ, skip)

AtomicWrite

Je1Kσ = n n ∈ Addr

E ` (σ, [e1] := e2)
write(n,Je2Kσ)−−−−−−−−→ (σ, skip)

AtomicWriteFault

Je1Kσ 6∈ Addr

E ` (σ, [e1] := e2)
 −→ (σ, skip)

AtomicRead

JeKσ = n n ∈ Addr

E ` (σ, x := [e])
read(n,v)−−−−−→ (σ[x 7→ v], skip)

AtomicReadFault

JeKσ 6∈ Addr

E ` (σ, [x] := e)
 −→ (σ, skip)

CAS
Je1Kσ = n n ∈ Addr

E ` (σ, x := CAS(e1,e2,e3))
CAS(n,Je2Kσ ,Je3Kσ ,b)−−−−−−−−−−→ (σ[x 7→ b], skip)

CASFault

Je1Kσ 6∈ Addr

E ` (σ, x := CAS(e1,e2,e3))
 −→ (σ, skip)

Alloc

JeKσ = n 1 ≤ n

E ` (σ, x := alloc(e))
alloc(n,v)−−−−−→ (σ[x 7→ v], skip)

AllocFault

JeKσ < 1

E ` (σ, x := alloc(e))
 −→ (σ, skip)

Lemma 23 (Determinism of Thread Semantics). For any thread (σ, s),

if E ` (σ, s) α−→ (σ1, s1) and E ` (σ, s) α′−→ (σ2, s2) then s1 = s2.

Definition 24 (− ` − −−→ −, Threadpool Semantics). We define the
operational semantics of a thread pool as a atomic action labeled
transition relation.

− ` − −−→ − ⊆ Env× ThreadPool×Action× ThreadPool
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E ` t
fork(f,~v)−−−−−→ t′ E(f) = (~x, s) σ(~x) = ~v

E ` T || t id−→ T || t′ || (σ, s)

E ` t α−→ t′ α ∈ Action

E ` T || t α−→ T || t′

Definition 25 (− ` − −−→ −, Program Semantics). We define the
operational semantics of programs as a single step transition relation

− ` − −→ − ⊆ Env× Program× Program

E ` T α−→ T′ h′ ∈ JαK (h)
E ` (h, T) −→ (h′, T′)

3.5 Assertion Logic

Definition 26 (Type, Logical Types). We define a set of primitive types
over which we will allow quantification:

Type τ ::= Val | Perm | Region

Definition 27 (LVar, Logical Variables). We suppose a set LVar ranged
over by x, y etc.

Definition 28 (Context, Logical Contexts). Well-formed logical con-
texts binds logical variables to primitive types:

Γ ::= · | Γ, x : τ

where x does not occur in the Γ it extends. A context Γ induces a
partial map from variables to types, and we denote a defined look-up
by Γ(x) = τ.

Definition 29 (RegionTypeName, Region Type Names). We suppose a
set of region type names ranged over by T.

Definition 30 (RegionType, Region Types). We define the set of region
types as parameterized region type names, according to the following
definition:

RegionType := {T(r,~x : ~τ) | r ∈ LVar,~x ∈ LVar∗,~τ ∈ Type∗}

Definition 31 (PrimitiveGuard, Primitive Guard Symbols). We suppose
an infinite set of primitive guard symbols, usually ranged over by G.

Definition 32 (Term, Assertion Logic Terms). We define the syntax of
assertions with the following grammar. The types τ described in the
grammar are simple types over which we allow quantification; this is
not a higher-order logic.
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M, N, O ∈ Term ::= x logical variables

| > | ⊥ | M ∧ N | M ∨ N propositional formulae

| M⇒ N | ¬N

| M ? N : O conditionals

| ∀x : τ.M | ∃x : τ.M quantification

| M =τ N primitive equality

| M ∗ N | emp separating conjunction

| M 7→ N | M 7→ [N] points-to assertions

| M@(N) | T(M, N, O) region assertions

| G | G[M] | G(M) guard resources

| 0p | 1p |∼ M | M · N permission expressions

| compatible(M, N)

| x | n | M + N program expressions

| M− N | M ∗ N | M/N

| M ≤ N | M < N

| M ≥ N | M > N

| ε | M, N list expressions

Definition 33 (− ` − : Val, Program Value Expressions). Program
value expressions precisely reflect arithmetic expressions and com-
parisons as per the object language. We do not distinguish between
expressions in the assertion logic and expressions in programs; the
only difference is that assertions additionally allow for logical vari-
ables.

Well-typed program value expressions are given by the following
rules:

− ` − : Val ⊆ Context× Term

Γ(x) = Val

Γ ` x : Val Γ ` x : Val Γ ` n : Val

Γ ` M : Val Γ ` N : Val op ∈ {+,−, ∗, /}
Γ ` M op N : Val

Γ ` M : Val Γ ` N : Val comp ∈ {<,≤,≥,>}
Γ ` M comp N : Val

Definition 34 (− ` − : Perm, Permission Assertions). Well-typed
permission expression are given by the following rules:

− ` − : Perm ⊆ Context× Term
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Γ(x) = Perm

Γ ` x : Perm Γ ` 0p : Perm Γ ` 1p : Perm

Γ ` M : Perm

Γ `∼ M : Perm

Γ ` M : Perm Γ ` N : Perm

Γ ` M · N : Perm

Definition 35 (− ` − : Pure, Pure Assertions). Well-typed pure asser-
tions are given by the following rules. They are “pure” in that they do
not contain spatial or region assertions.

− ` − : Pure ⊆ Context× Term

Γ ` ⊥ : Pure Γ ` > : Pure

Γ ` M : Pure Γ ` N : Pure

Γ ` M ∧ N : Pure

Γ ` M : Pure Γ ` N : Pure

Γ ` M ∨ N : Pure

Γ ` M : Pure Γ ` N : Pure

Γ ` M⇒ N : Pure

Γ ` M : Pure

Γ ` ¬M : Pure

Γ ` M : τ Γ ` N : τ

Γ ` M =τ N : Pure

Γ, x : τ ` M : Pure

Γ ` ∀x : τ.M : Pure

Γ, x : τ ` M : Pure

Γ ` ∃x : τ.M : Pure

Γ ` M : Perm Γ ` N : Perm

Γ ` compatible(M, N) : Pure

Definition 36 (− ` − : Guard, Guard Expressions). Well-typed guard
expressions are given by the following rules, wherein G ranges over
the set of primitive guards:

− ` − : Guard ⊆ Context× Term

Γ ` G : Guard

Γ ` M : Perm

Γ ` G[M] : Guard

Γ ` M : Val

Γ ` G(M) : Guard

Γ ` M : Guard Γ ` N : Guard

Γ ` M ∗ N : Guard

Definition 37 (− ` − : Region, Region Identifiers).

− ` − : Region ⊆ Context× Term

Γ(x) = Region

Γ ` x : Region

Definition 38 (−;− ` − : Assn, Assertions). Well-typed assertions are
given by the following rules.

−;− ` − : Assn ⊆ P(RegionType)× Context× Term
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Γ ` M : Pure

R; Γ ` M : Assn

Γ ` M : Pure R; Γ ` N : Assn dom(R); Γ ` O : Assn

R; Γ ` M ? N : O : Assn

R; Γ ` M : Assn R; Γ ` N : Assn

R; Γ ` M ∗ N : Assn

Γ ` M : Val Γ ` N : Val

R; Γ ` M 7→ N : Assn

Γ ` M : Val Γ ` N : Val

R; Γ ` M 7→ [N] : Assn

R; Γ ` emp : Assn

Γ ` x : Region Γ ` M : Guard

R; Γ ` x@(M) : Assn

T(r,~x : ~τ) ∈ R
Γ ` x : Region | ~M| = |~τ| Γ ` Mi : τi Γ ` N : Val

R; Γ ` T(x, ~M, N) : Assn

Assertions also contain the usual first order logic connectives:

R; Γ ` M : Assn R; Γ ` N : Assn op ∈ {∨,∧,⇒}
R; Γ ` M op N : Assn

R; Γ, x : τ ` M : Assn quan ∈ {∀, ∃}
R; Γ ` quan x.M : Assn

c ∈ {>,⊥}
R; Γ ` c : Assn

Γ ` M : τ Γ ` N : τ

R; Γ ` M =τ N : Assn

R; Γ ` M : Assn

R; Γ ` ¬M : Assn

3.5.1 Entailment Logic

Definition 39 (Syntactic Entailment of Assertions). We define syntactic
entailment on those as a relation:

−;− | − ` − ⊆ P(RegionType)× Context×P(Assn)× Assn

An entailment R; Γ | P1, ..., Pn ` Q is well-formed when

R; Γ ` Pi : Assn R; Γ ` Q : Assn

The rules of the entailment logic are a standard first-order intuitionistic
separation logic.
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3.6 Specification Logic

3.6.1 Specification Syntax

Definition 40 (GAD, Guard Algebra Declaration). A guard algebra
declaration is an expression from the following grammar of guard
algebra combinators, where G ranges over primitive guard symbols:

GAD g ::= G Indivisible Guard

| %G Divisible Guard

| #G Parameterized Guard

| g ∗ g Product Construction

| g + g Sum Construction

| 0 Nil Guard

A guard algebra declaration is well-formed when a primitive guard
symbol G occurs at most once in the declaration.

Definition 41 (ID, Region Interpretation Declaration). Region inter-
pretations are a collection of clauses of the form

(∆).Π | e : P

where ∆ is a logical context and Π, e and P are terms of the assertion
logic.

A single clause is well-formed with respect to a set of region types
R, variable r and variables ~x of types ~τ if

• r : Region,~x : ~τ, ∆ ` Π : Pure

• r : Region,~x : ~τ, ∆ ` e : Val

• R; r : Region,~x : ~τ, ∆ ` P : Assn

A whole region interpretation declaration is well-formed with re-
spect to a region declaration context R, identifier r and variables ~x of
types ~τ when, in addition to each clause being well-formed.

Definition 42 (AD, Region Action Declaration). A region action decla-
ration is a collection of clauses of the form

(∆).Π | G : e1  e2

where ∆ is a logical context, P, G, e1 and e2 are terms in the assertion
logic.

A single clause is well-formed with respect to a variable r and
variables ~x of types ~τ when

• r : Region,~x : ~τ, ∆ ` Π : Pure

• r : Region,~x : ~τ, ∆ ` G : Guard
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• r : Region,~x : ~τ, ∆ ` e1 : Val

• r : Region,~x : ~τ, ∆ ` e2 : Val

Definition 43 (RegionDecl, Region Declarations). A region declaration
is a triple of a guard algebra declaration, a region interpretation
declaration and a region action declaration:

RegionDecl := {(g, i, a) | g ∈ GAD, i ∈ ID, a ∈ AD}

A region declaration (g, i, a) is well-formed with respect to a col-
lection of region types R, logical variable r and logical variables ~x of
types ~τ when:

• g is a well-formed guard algebra declaration

• i is a well-formed region interpretation declaration with respect
to R, r and ~x : ~τ

• a is a well-formed action declaration with respect to r and ~x : ~τ

Definition 44 (RegionContext, Region Contexts). A region declaration
contexts is defined by the following grammar

R ::= · | R, T(r,~x : ~τ)(g, i, a)

We denote the set of region types associated in the region context R
as dom(R).

A region context R is well-formed when each individual region
declaration (g, i, a) is well-formed with respect to the associated region
type parameters r, ~x and ~τ, and the collection of all the region types
dom(R), and each region type is associated at most once.

These conditions are enough for a well-formed region context to
induce a partial mapping from region types to well-formed region
declarations, and we denote a well-defined lookup as follows:

R(T(r,~x : ~τ)) = (g, i, a)

Definition 45 (I(−), Interpretation Function). A well-formed region
context induces a function on well-typed region assertions to spatial
assertions, intuitively computing the “symbolic” interpretation of a
region assertion. The region context in question will be clear from
context.

For a region context R and a well-formed region assertion

dom(R); Γ ` T(x, ~M, N) : Assn

we define the interpretation as follows: Let T(r,~x : ~τ) be the associated
region type in R. Then, for each clause in the region interpretation,
say

(∆).Π | e : P
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We can build the assertion

dom(R); Γ ` (∃∆.Π ∧ N = e ∧ P)[x, ~M/r,~x] : Assn

where we close the assertions in the clause by the concrete parame-
ters at hand, and the local context is closed existentially. Then, the
interpretation is the disjunction of all such clauses:

I(T(x, ~M, N)) =
∨

(∆).Π|e:P

(∃∆.Π ∧ N = e ∧ P)[x, ~M/r,~x]

Definition 46 (SpecCtxt, Function Specification Context). Function
specification contexts assign specifications to function symbols. They
are generated by the following grammar, where Γ is a logical context,
and ~y is a sequence of logical variables:

Φ ∈ SpecCtxt ::= · | Φ, f : (Γ,~y){P}{r.Q}

A function specification context is well-formed with regards to a set
of region types R when

R; Γ,~y : Val ` P : Assn R; Γ,~y : Val, r : Val ` Q : Assn

where P and Q do not mention any program variables. Furthermore
we require that f occurs at most once in Φ.

These conditions are enough for a well-formed function specification
context to induce a partial mapping from function names to function
specifications, and we denote a successful lookup with

Φ(f) = (Γ,~y){P}{r.Q}

Definition 47 (Spec, Statement Specifications). The set of syntactic
statement specifications is defined by the following grammar, where
P, Q, U ∈ Term, r ∈ LVar and s ∈ Stmt.

s ∈ Spec ::= {P}s{Q | r.U}

A statement specification is well-typed wrt. a region context R, func-
tion specification context Φ (well-typed wrt. dom(R)) and logical
context Γ according to the following judgment:

dom(R); Γ ` P : Assn
dom(R); Γ ` Q : Assn
dom(R); Γ, r : Val ` U : Assn

R; Φ; Γ `
{

P
}
s
{

Q | r.U
}

: Spec

Definition 48 (− atomic, Atomic Statements). We declare a subset of
Stmt as atomic:

x := CAS(e1,e2,e3) atomic [e1] := e2 atomic

x := [e] atomic
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Definition 49 (Atomic Statement Specifications). The set of syntactic
atomic statement specifications is given by the following grammar
where P, Q ∈ Term, s ∈ Stmt with s atomic:

Atomic ::= 〈P〉s〈Q〉

An atomic statement specification is well-typed wrt. to collection of
region identifiers S, a region declaration R and a logical context Γ
according to the following judgment:

R; Γ ` P : Assn R; Γ ` Q : Assn ∀x ∈ S. Γ ` x : Region

R; Γ `S 〈P〉 s 〈Q〉 : Atomic

Definition 50 (Region Opening). We define a judgment for expressing
the opening of regions, given by the following grammar where I is
some finite index set P, Qi are assertions, ∆i are contexts and~ri are
sequences of region identifiers:

[P] open [{(∆i).(Qi,~ri}i∈I ]

An opening judgment is well-formed with regards to a set of region-
types R and a logical context Γ according to the following judgment:

R; Γ ` P : Assn
∀i ∈ I.R; Γ, ∆i,~ri : Region ` Qi : Assn

R; Γ ` [P] open [{(∆i).(Qi,~ri}i∈I ]

Definition 51 (Region Closing). We define a judgment for closing
regions, given by the following grammar where P, Q are assertions
and~r a sequence of region identifiers:

[P] close(~r) [Q]

A closing judgment is well-formed with regards to a set of region
types R and a logical context Γ according to the following judgment:

R; Γ ` P : Assn R; Γ ` Q : Assn

R; Γ ` [P] close(~r) [Q]

Convention 52. For two sequences of assertion logic expressions of
equal length n, ~x and ~y, we use the notation ~x = ~y as notation for the
assertion x1 = y1 ∗ . . . ∗ xn = yn.

Definition 53 (FunctionSpec, Function Specifications). The set of syn-
tactic function specifications is defined by the following grammar,
letting f ∈ Fun, ~x ∈ Var∗, P, Q ∈ Term are assertions that does not
mention program variables and s ∈ Stmt, Γ ∈ Context and ~y ∈ LVar∗.

FunctionSpec ::= f(~x)(Γ,~y){P}s{r.Q}
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A function specification is well-typed wrt. a region context R and a
function specification context Φ if its constituents form a well-typed
statement specification.

R; Φ; Γ,~y : Val `
{

P ∗~x = ~y
}
s
{
∀r.Q | r.Q

}
: Spec

R; Φ ` f(~x)(Γ,~y){P}s{r.Q} : FunctionSpec

Definition 54 (d−e, Function Specification Erasure (Specification)).
We define

d−e : FunctionSpec∗ → SpecCtxt

as follows:

dεe = ·⌈
~f, fi(~x)(Γ,~y){P}s{r.Q}

⌉
=
⌈
~f
⌉

, fi : (Γ,~y){P}{r.Q}

Definition 55 (ProgramSpec, Program Specifications). The set of syn-
tactic program specifications is defined as sequences of region declara-
tions and function specifications:

ProgramSpec := RegionDecl∗;FunctionSpec∗

A program specification is well-typed when each individual func-
tion specification is well-typed wrt. to the region and function spec-
ification contexts described by the region and function declarations,
respectively:

~r;
⌈
~f
⌉
` fi : FunctionSpec, ∀fi ∈~f
`~r;~f : ProgramSpec

3.6.2 Specification Rules

3.6.2.1 Program Specification

We say that we can derive a program specification when we can derive
each of the individual function specifications with respect to the region
and function contexts specified by the program specification.

~r;
⌈
~f
⌉
` fi, ∀fi ∈~f
`~r;~f

3.6.2.2 Function Specification

We say that we can derive a function specification when we can
derive its implementation with respect to the pre- and post-condition
imposed by the function specification.

R; Φ; Γ,~y : Val `
{

P ∗ (~x = ~y)
}
s
{
∀r.Q | r.Q

}
R; Φ ` f(~x)(Γ,~y){P}s{r.Q}
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3.6.2.3 Statement Specification

Definition 56 (mod(−), Modifies Sets). We define the set of local
variables modified by a given statement as follows:

mod : Stmt→ P(Var)
mod(s1;s2) = mod(s1) ∪mod(s2)

mod(if(e) then {s1} else {s2}) = mod(s1) ∪mod(s2)

mod(while(e){s}) = mod(s)

mod(x := alloc(e)) = {x}
mod(x := CAS(e1,e2,e3)) = {x}

mod(x := e) = {x}
mod([e1] := e2) = ∅

mod(x := [e]) = {x}
mod(x := f(~e)) = {x}
mod(return e) = ∅

mod(fork f(~e)) = ∅

mod(skip) = ∅
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Φ(f) = (Γ,~y){P}{r.Q}

R; Φ; Γ,~y : Val `
{

P ∗ (~e = ~y)
}
x:=f(~e)

{
∃r.x = r ∗Q | r.U

}

R; Φ; Γ `
{
>
}
return e

{
Q | r.e = r

}
R; Φ; Γ `

{
P ∗ e 6= 0

}
s1

{
Q | r.U

}
R; Φ; Γ `

{
P ∗ e = 0

}
s2

{
Q | r.U

}
R; Φ; Γ `

{
P
}
if(e) then {s1} else {s2}

{
Q | r.U

}
R; Φ; Γ `

{
I ∗ e 6= 0

}
s
{

I | r.U
}

R; Φ; Γ `
{

I
}
while(e){s}

{
I ∗ e = 0 | r.U

}

R; Φ; Γ `
{
e = v ∗ v > 0

}
x := alloc(e)

{
∃n.x = n ∗ n 7→ [v] | r.U

}

R; Φ; Γ `
{

P
}
skip

{
P | r.U

}
R; Φ; Γ `

{
P
}
s1

{
S | r.U

}
R; Φ; Γ `

{
S
}
s2

{
Q | r.U

}
R; Φ; Γ `

{
P
}
s1;s2

{
Q | r.U

}

R; Φ; Γ `
{
x = e0

}
x := e

{
x = e[e0/x] | r.U

}
Φ(f) = (Γ,~y){P}{r.Q}

R; Φ; Γ `
{

P ∗ (~e = ~y)
}
fork f(~e)

{
> | r.U

}
R; Φ; Γ `

{
P
}
s
{

Q | r.U
}

mod(s) ∩ F = ∅

R; Φ; Γ `
{

P ∗ F
}
s
{

Q ∗ F | r.U
}

R; Γ | P ` P′ R; Φ; Γ `
{

P′
}
s
{

Q′ | r.U′
}

R; Γ | Q′ ` Q R; Γ, r : Val | U′ ` U

R; Φ; Γ `
{

P
}
s
{

Q | r.U
}

R; Γ ` [P] open [{(∆i).(P′i ,~ri)}i∈I ]

∀i ∈ I.
R; Γ, ∆i `{~ri} 〈P

′
i 〉 s 〈Qi ∗ newRegion(~ni)〉

R; Γ, ∆i ` [Qi ∗ newRegion(~ni)] close(~ri,~ni) [Q]

R; Φ; Γ `
{

P
}
s
{

stabilize(Q) | r.U
}
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3.6.2.4 Atomic Statement Specifications

R; Γ `S 〈e1 7→ _〉 [e1] := e2 〈e1 7→ e2〉

R; Γ `S 〈e = n ∗ n 7→ v〉 x := [e] 〈x = v ∗ n 7→ v〉

R; Γ `S 〈e1 = a ∗ a 7→ v ∗ e2 = old ∗ e3 = new〉
x := CAS(e1,e2,e3)

〈(x 6= 0 ∗ v = old ∗ a 7→ new) ∨ (x = 0 ∗ v 6= old ∗ a 7→ v〉

3.7 Model

We here describe the constructions in Sets that we use to interpret the
specification logic.

Definition 57 (Perm, Permissions). We define the set of Perm as the
free atomless boolean algebra over an infinite set.

Definition 58 (RegionId, Region Identifiers). We assume a set of region
identifiers, RegionId.

Definition 59 (LVal, Logical Values). We define the set of logical values
to be the disjoint union of program values, permissions and region
identifiers:

LVal := Val + Perm + RegionId

recalling the definition of program values from Definition 9.

Definition 60 (AbstractState, Abstract States). We define the set of
abstract region states as the set of program values:

AbstractState := Val

Definition 61 (PCMZ, Partial Commutative Monoid with Zero). A
PCMZ M is a 4-tuple (|M|, ε, 0, ·) consisting of an underlying set |M|
with a distinguished element ε (the unit), a distinguished element
0 (the zero) and a partial composition on that set (multiplication or
simply ’composition’, noted ·) satisfying the following requirements
for all a, b, c ∈ |M|, where x ↓ y means ’x · y is defined’.

• a ↓ b implies (b ↓ a and a · b = b · a).

• ε ↓ a and ε · a = a.

• 0 ↓ a and 0 · a = 0.

• (b ↓ c and a ↓ (b · c)) implies (a ↓ b and (a · b) ↓ c and a · (b · c) =
(a · b) · c).
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We note that the free PCMZ over a set X is the usual, initial con-
struction of a structure over an underlying set. Note that by initiality,
any function f from X into the underlying set of another PCMZ, say
|M|, gives us a canonical PCMZ homomorphism from the free PCMZ
over X to M, denoted f̄ .

Definition 62 (Guard, The PCMZ of Primitive Guards). We define
Guard as the free PCMZ over a set of expressions over PrimitiveGuard,
call it |Guard|, built according to the following grammar wherein G
ranges over PrimitiveGuard, π ranges over Perm and x ranges over
LVar:

|Guard| ::= G

| G[π]

| G(x)

Definition 63 (GuardAlgebra, Guard Algebras).

∑
G:PCMZ

|Guard| → |G|

Definition 64 (GuardAlgebraAssignment, Guard Algebra Assignment).
We define a guard algebra assignment as a partial finite map from
region types to guard algebras,

GuardAlgebraAssignment := RegionType fin
⇀ GuardAlgebra

Definition 65 (RegionAssignment, Region Assignments). We define
region assignments as partial finite maps from region identifiers to
triples describing their (indexed) region type, state, and which guards
we have in possession.

RegionAssignment := RegionId fin
⇀

((RegionType× LVal∗)×AbstractState× |Guard|)

We refer to the first, second and third component of the codomain
as α(r).type, α(r).state and α(r).guards for α ∈ RegionAssignment, r ∈
dom(α).

Region assignments form a partial commutative monoid where
composition is defined as follows - we use ⊥ to denote undefined
values, i.e. f (a) = ⊥ if a 6∈ dom( f ).

(a1 · a2)(r) =

a1(r) a2(r) = ⊥

a2(r) a1(r) = ⊥

(a1(r).type, a1(r).state, a1(r).guards · a2(r).guards) a1(r).type = a2(r).type

∧ a1(r).state = a2(r).state

⊥ otherwise
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Observe that the empty map is a unit. Associativity and commutativity
is inherited by the properties of equality and the PCM Guard.

This gives rise to canonical partial order known as the extension
order, here written in full: we say a1 v a2 iff dom(a1) ⊆ dom(a2) and
for all r ∈ dom(a1):

1. a1(r).type = a2(r).type

2. a1(r).state = a2(r).state

3. a1(r).guards v a2(r).guards

Definition 66 (Abstract Configuration). Abstract machine configura-
tions consists of a heap and region assignment pair:

Heap× RegionAssignment

Abstract configurations form a partial commutative monoid by point-
wise lifting of both unit and composition. This also gives rise to the
pointwise extension order:

(h1, a1) ≤ (h2, a2)
def⇐⇒ ∃(h3, a3). h1 · h3 = h2 ∧ a1 · a3 = a2

Definition 67 (Assertion, Assertions). We define assertions as upwards
closed subsets of abstract configurations, ordered according to the
canonical extension order.

Assertion := P ↑ (Heap× RegionAssignment)

Definition 68 (RegionInterpretation, Region Interpretations).

RegionInterpretation := AbstractState±Assertion

Definition 69 (LTS, Labeled Transition Systems).

LTS := |Guard| mon−−→ P(AbstractState×AbstractState)

Definition 70 (RegionTypeAssignment, Region Type Assignments). A
region type assignment associates a region interpretation, labeled
transition system and guard algebra with each (instantiated) region
type.

RegionTypeAssignment :=(RegionType× LVal∗)±
RegionInterpretation× LTS×GuardAlgebra

We refer to the three components of the type assignment

ρ(T(r,~x : ~τ),~v)

as follows:

ρ(T(r,~x : ~τ),~v).int ρ(T(r,~x : ~τ),~v).lts ρ(T(r,~x : ~τ),~v).GA

The choice of guard algebra must be independent of the instantiated
values, i.e. for a given ρ ∈ RegionTypeAssignment, for any region type
T(r,~x : ~τ) and two choices of values ~v and ~u it must hold that

ρ(T(r,~x : ~τ),~v) = ρ(T(r,~x : ~τ),~u)
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Definition 71 (GA(−), RTA Algebra Assignment Erasure). We denote
the erasure of region interpretation and labeled transition system from
a region type assignment ρ as GA(ρ), erasing a

(RegionType× LVal∗) fin
⇀ RegionInterpretation× LTS×GuardAlgebra

to a

RegionType fin
⇀ GuardAlgebra

3.8 Interpretation

Definition 72 (Interpretation of Primitive Types). We interpret the
primitive types into the corresponding sets:

JValK = Val

JPermK = Perm

JRegionK = RegionId

Definition 73 (Interpretation of Logical Variable Contexts). We inter-
pret program variable contexts as substitutions, valuations or partial
maps to values of the appropriate type:

J·K = ∅

JΓ, x : τK = {γ[x 7→ v] | γ ∈ JΓK , v ∈ JτK}

Definition 74 (Interpretation of Program Expressions). We interpret
program expressions as functions from interpretations of their contexts
into Val.

JΓ ` M : ValK : JΓK× Stack→ Val

JΓ ` x : ValK (γ, σ) = γ(x)

JΓ ` x : ValK (γ, σ) = σ(x)

JΓ ` n : ValK (γ, σ) = n

JΓ ` M op N : ValK (γ, σ) = JΓ ` M : ValK (γ, σ) op JΓ ` N : ValK (γ, σ)

JΓ ` M ≺ N : ValK (γ, σ) =

1 if JΓ ` M : ValK (γ, σ) ≺ JΓ ` N : ValK (γ, σ)

0 otherwise

Definition 75 (Interpretation of Permission Expressions). We inter-
pret permission expressions as functions from interpretations of their
contexts into Perm.

JΓ ` M : PermK : JΓK→ Perm
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JΓ ` x : PermK (γ) = γ(x)

JΓ ` 0p : PermK (γ) = ⊥
JΓ ` 1p : PermK (γ) = >

JΓ `∼ M : PermK (γ) = (JΓ ` M : PermK (γ))C

JΓ ` M · N : PermK (γ) = JΓ ` M : PermK (γ) ∧ JΓ ` N : PermK (γ)

Definition 76 (Interpretation of Region Expressions). We interpret
region expressions as functions from interpretations of their contexts
to region identifiers:

JΓ ` M : RegionK : JΓK→ RegionId

JΓ ` x : RegionK (γ) = γ(x)

Definition 77 (Interpretation of Pure Assertions). We interpret pure
assertions as functions from interpretations of their contexts into 2.
The codomain 2 is a complete boolean algebra, so we omit the usual,
pointwise definitions of the standard logical connectives.

JΓ ` M : PureK : JΓK× Stack→ 2

JΓ ` M =τ N : PureK (γ, σ) ⇐⇒
JΓ ` M : τK (γ, σ) =τ JΓ ` N : τK (γ, σ)

JΓ ` ∀x : τ.M : PureK (γ, σ) ⇐⇒
∀v ∈ JτK . JΓ, x : τ; σ ` M : PureK (γ[x 7→ v], σ)

JΓ ` ∃x : τ.M : PureK (γ, σ) ⇐⇒
∃v ∈ JτK . JΓ, x : τ; σ ` M : PureK (γ[x 7→ v], σ)

JΓ ` compatible(M, N) : PureK (γ, σ) ⇐⇒
JΓ ` M : PermK (γ) ∧ JΓ ` N : PermK (γ) 6= ⊥

Definition 78 (Interpretation of Guard Expressions). We interpret
guard expressions as expressions in Guard, the free PCMZ over primi-
tive guard symbols:

JΓ ` G : GuardK : JΓK× Stack→ |Guard|

JΓ ` G : GuardK (γ, σ) = G

JΓ ` G[M] : GuardK (γ, σ) = G[JΓ ` M : PermK (γ)]

JΓ ` G(M) : GuardK (γ, σ) = G(JΓ ` M : ValK (γ, σ))

JΓ ` M ∗ N : GuardK (γ, σ) = JΓ ` M : GuardK (γ, σ) · JΓ ` N : GuardK (γ, σ)
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Definition 79 (Region Type Guard Algebra Assignment). We denote
the set of guard algebra assignments corresponding to a well-formed
region type context R as GA(R), and define it as follows:

GA(R) := {ρ | dom(ρ) = R}

Definition 80 (Interpretation of Assertions). We interpret assertions
as functions from interpretations of their contexts into upwards closed
subsets of heaps and region assignments. Upwards closed subsets
of elements drawn from a partial commutative monoid has enough
structure to support standard intuitionistic separation logic, so we
omit the standard, pointwise interpretations for now.

JR; Γ ` M : AssnK : GA(R)× JΓK× Stack→

P ↑ (Heap× RegionAssignment)
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JR; Γ ` M : AssnK (ρ, γ, σ) =

> if JΓ ` M : PureK (γ, σ)

⊥ otherwise

JR; Γ ` M ? N : O : AssnK (ρ, γ, σ) =

JR; Γ ` N : AssnK (ρ, γ, σ) if JΓ ` M : PureK (γ, σ)

JR; Γ ` O : AssnK (ρ, γ, σ) otherwise

JR; Γ ` x@(M) : AssnK (ρ, γ, σ) =

{(h, α) | ∀r, G, f .

f (JΓ ` M : GuardK (γ, σ)) vG f (α(r).guards)

∧ r = JΓ ` x : RegionK (γ)

∧ (G, f ) = ρ(π1(α(r).type))}
r

R; Γ ` T(x, ~M, N) : Assn
z
(ρ, γ, σ) =

{(h, α) | ∀r, s,~v. ∃~x,~τ.

α(r).type = (T(r,~x : ~τ),~v) ∧ α(r).state = s

∧ r = JΓ ` x : RegionK (γ)

∧ vi = JΓ ` Mi : τiK (γ, σ)

∧ s = JΓ ` N : ValK (γ, σ)}
JR; Γ ` M 7→ N : AssnK (ρ, γ, σ) = {(h, α) | x ∈ Addr ∧ h(x) = JΓ ` N : ValK (γ, σ)

∧ x = JΓ ` M : ValK (γ, σ)}
JR; Γ ` M 7→ [N] : AssnK (ρ, γ, σ) = {(h, α) | ∃~v. x ∈ Addr∧ n > 0∧ h(x, ..., x + (n− 1)) = ~v

∧ x = JΓ ` M : ValK (γ, σ)

∧ n = JΓ ` N : ValK (γ, σ)}
JR; Γ ` M ∗ N : AssnK (ρ, γ, σ) = JR; Γ ` M : AssnK (ρ, γ, σ) ∗ JR; Γ ` N : AssnK (ρ, γ, σ)

JR; Γ ` emp : AssnK (ρ, γ, σ) = {(emp, α) | ∀α}
JR; Γ ` M ∧ N : AssnK (ρ, γ, σ) = JR; Γ ` M : AssnK (ρ, γ, σ) ∩ JR; Γ ` N : AssnK (ρ, γ, σ)

JR; Γ ` M ∨ N : AssnK (ρ, γ, σ) = JR; Γ ` M : AssnK (ρ, γ, σ) ∪ JR; Γ ` N : AssnK (ρ, γ, σ)

Convention 81. For particular ρ and γ we write JR; Γ ` M : AssnK (ρ, γ)

to denote the function

λσ. JR; Γ ` M : AssnK (ρ, γ, σ)

Definition 82 (Interpretation of Entailments). We interpret a well-
typed derivation of entailment of assertions as functions from the
interpretations of their environment into 2. The domain of interpreta-
tion of assertions is a complete BI-algebra, and entailment corresponds
to subset inclusion.

JR; Γ | ∆ ` QK : GA(R)× JΓK× Stack→ 2

JR; Γ | ∆ ` QK (ρ, γ, σ) ⇐⇒∧
P∈∆

JR; Γ ` P : AssnK (ρ, γ, σ) ⊆ JR; Γ ` Q : AssnK (ρ, γ, σ)
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3.8.1 Interpretation of Specifications

We need some auxiliary definitions before we can define the interpre-
tation of specifications.

Definition 83 (GADef(−,−), Definedness of Guard w.r.t. Guard Alge-
bra).

GADef ⊆ GuardAlgebra×Guard

GADef((G; f ), gs) def⇐⇒ f̄ (gs) 6= ⊥G

Definition 84 (wf(−,−,−), Well-Formedness of Region Assignments).

wf ⊆ GuardAlgebraAssignment× RegionAssignment

wf(ρ, a) def⇐⇒ ∀r ∈ dom(a), GADef(ρ(π1(a(r).type)), a(r).guards)

Definition 85 (collapse−−(−,−), Abstract Configuration Collapse). Col-
lapsing combines the information in open regions and the current
heap into a single assertion. It uses a region type assignment to in-
terpret regions and a set of regions that are not opened in order to
collapse only the open regions.

collapseρ
s : (Heap× RegionAssignment)→ P(Heap× RegionAssignment)

collapseρ
s (h, a) = {(h, a)} ∗~r∈(dom(a)\s) ρ(r).int(a(r).type)

Definition 86 (b−c−−, Erasure). We define a notion of erasure - the
concrete heaps that are all described by the same abstract configuration.
It is defined with respect to a region type assignment and a collection
of region as that are not to be collapsed:

b−c−− :(Heap× RegionAssignment)

×RegionTypeAssignment

×P(RegionId)

→P(Heap)

b(h, a)cρs :={h′ | (h′, a′) ∈ collapseρ
s (h, a) ∧wf(GA(ρ), a′)}
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Definition 87 (Interpretation of Guard Algebra Declaration). We in-
terpret a guard algebra declaration as a guard algebra: a PCMZ M
and a function f : |Guard| → |M|, as follows:

J0K = (2, {}) (the empty function)

JGK = (3, {G 7→ 1})
J%GK = (Perm, {G[π] 7→ π})
J#GK = (3Val, {G(v) 7→ [v 7→ 1})

JX ∗YK = (M× N, (i ◦ f ) ∪ (j ◦ g))

where

i : M→ M× N

i(m) = (m, εN)

j : N → M× N

j(n) = (εM, n)

(M, f ) = JXK

(N, g) = JYK

and f and g have disjoint domains

JX + YK = (M + N, [ f , 0] ∪ [g, 1])

where

(M, f ) = JXK

(N, g) = JYK

and f and g have disjoint domains

We can extend f : |Guard| → |M| to a total function by mapping
everything else to zero. From this, we have a PCMZ homomorphism
f̄ : Guard→ M.

Moreover, if generated from the above constructions, it will be
surjective, and so im( f̄ ) ∼= M (as PCMZs). f̄ defines an equivalence
relation ker( f̄ ) on Guard, with Guard/ ker( f̄ ) ∼= im( f̄ ).

Definition 88 (Interpretation of Region Interpretation Declarations).
We interpret a region interpretation declaration, well-formed with
respect to a set of region types R, identifier r and variables ~x : ~τ as a
function from interpretations of these contexts, to region interpreta-
tions:

GA(R)× Jr : Region,~x : ~τK→ RegionInterpretation

Given a guard algebra assignment ρ ∈ GA(R), a substitution γ ∈
Jr : Region,~x : ~τK, for each clause (∆).Π | e : P we conditionally extend
the resulting map from AbstractState to Assertion by the following:

v 7→ JR; r : Region,~x : ~τ, ∆ ` P : AssnK (ρ, γ · δ, σ)

if there is a δ ∈ J∆K such that

JR; r : Region,~x : ~τ, ∆ ` Π : PureK (γ · δ, σ)
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and v = JΓ ` e : ValK (γ · δ, σ) hold, for any σ at all, as none of these
assertions can mention program variables.

Since no clause overlap, there will be at most one clause for which
the condition is satisfied, hence this is a well-defined partial map.

Definition 89 (Interpretation of Action Declarations). We can region
interpret an action declaration, well-formed with respect to a set of
region types R, identifier r and variables ~x : ~τ, as describing an LTS as
function of interpretations of its context:

GA(R)× Jr : Region,~x : ~τK→ LTS

Given a guard algebra assignment ρ ∈ GA(R), a substitution γ ∈
Jr : Region,~x : ~τK, for each clause (∆).P | G : e1  e2 we extend the
mapping as follows:

F 7→ {(JΓ ` e1 : ValK (γ · δ, σ), JΓ ` e2 : ValK (γ · δ, σ)) |

JΓ ` G : GuardK (ρ, γ · δ) = F}∗

if there exists a δ ∈ J∆K such that

JR; r : Region,~x : ~τ, ∆ ` P : AssnK (ρ, γ · δ, σ)

for any stack σ at all, where ∗ indicates the reflexive, transitive closure
of the set.

Definition 90 (Guard Compatibility Complement). We can define the
“compatible complement” to a collection of guards M ⊆ |Guard| with
respect to a particular guard algebra G as follows:

M =
{

g′ ∈ |Guard| | ∀g ∈ M, GADe f (G, g · g′)
}

Definition 91 (Rely(−), The Rely Relation). We can describe the inter-
ference allowed by other threads by help of a region type assignment
ρ, considering all the transitions allowed by guards compatible with
ours:

Rely(ρ) ⊆ (Heap× RegionAssignment)× (Heap× RegionAssignment)

We say two abstract configurations (h1, a1) and (h2, a2) are related iff

• h1 = h2

• dom(α1) ⊆ dom(α2)

• ∀r ∈ dom(a1).a1(r).guards = a2(r).guards

• ∀r ∈ dom(a1), (a1(r).state, a2(r).state) ∈ ρ(a1(r).type).lts(a1(r).guards),
where the guard compatibility complement is with respect to
the guard algebra ρ(a1(r).type).GA
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Definition 92 (Interpretation of Region Contexts). We interpret a well-
formed region context R into a region type assignment:

JRK : RegionTypeAssignment

For each associated T(r,~x : ~τ)(g, i, a), let JgK be the guard algebra
corresponding to g. Then, let JiK (JgK ,~v) and JaK (JgK ,~v) be the region
interpretation and LTS corresponding to i and a, respectively, under
valuation ~v, such that vi ∈ JτiK, of the region parameters. Then we
extend the resulting map as follows:

(T(r,~x : ~τ),~v) 7→ (JiK (JgK ,~v), JaK (JgK ,~v), JgK)

This definition is well-formed as a map as each region type is bound
once in the region context.

Definition 93 (Stabilization). We define the stabilization of an asser-
tion P as intuitively the strongest weaker stable assertion:

stabilizeρ(P) := {q | ∃p ∈ P. (p, q) ∈ Rely(ρ)}

We remark that by reflexivity of the rely relation, it is always the case
that P ≤ stabilizeρ(P).

Definition 94 (stable−(−), Assertion Stability). An assertion P is sta-
ble with respect to region type assignment ρ when

stabilizeρ(P) ≤ P

Hence, stable assertions are equivalent to their stabilizations.

Definition 95 (− − {−}{−}, Semantic Action Judgment). We define
α ρ {P}{Q} to hold if and only if, for all R ∈ Assertion such that
stable(R) we have JαK (bP ∗ Rcρ∅) ⊆ bQ ∗ Rcρ∅.

Lemma 96 (Locality of Action Judgment). For all stable assertions R,

α ρ {P}{Q} ⇒ α ρ {P ∗ R}{Q ∗ R}

Proof. Chose the frame in the assumption to be R ∗ R′ where R′ is
the given frame in the conclusion of the Lemma. Stable assertions are
closed under ∗.

Definition 97 (�, Semantic Entailment).

P � Q def⇐⇒ id ρ {P}{Q}

Lemma 98. Assertions ordered by semantic entailment forms a partial
order.

Proof. The action of the identity action on sets of heap is the identity.
Hence, assertions under semantic entailment forms a partial order
because sets ordered by set inclusion does.
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Lemma 99 (Frame Property of Semantic Entailment).

P � Q⇒ (∀R.stable(R)⇒ P ∗ R � Q ∗ R)

Proof. Directly from Lemma 96.

Lemma 100 (Entailment is Semantic Entailment).

R; Γ | ∆ ` Q⇒ ∀ρ ∈ JRK , ∀γ ∈ JΓK , ∀σ.∧
P∈∆

JR; Γ ` P : AssnK (ρ, γ, σ) � JR; Γ ` Q : AssnK (ρ, γ, σ)

Lemma 101 (�-Closure of Action Judgment). If

P � P′ α ρ {P′}{Q′} Q′ � Q

then

α ρ {P}{Q}

Proof. We proceed by direct proof. Suppose a stable frame R and
suppose a configuration (h, a) in the assertion P ∗ R. By the definition
of assertions, that means we can split (h, a) into (hP, aP) ∈ P and
(hR, aR) ∈ R. By P � P′, we get that (hP, aP) ∈ P′. Hence, by chosing
the frame R in the assumption, we get that JαK ((hP, aP)) ∈ Q′, and
again, in Q, precisely as desired.

Definition 102 (safe, Execution Safety). We define safe to be a recur-
sively defined relation on

RegionTypeAssignment×N× Env×Assertion× Stack×

Cont× (Stack→ Assertion)× (Stack→ Val→ Assertion),

with safeρ
n(E, P, σ, κ, Q, U) intuitively capturing that execution of κ in

stack σ satisfying P will run and, within n steps, safely halt execution
in a stack satisfying Q or return a value v satisfying U(v).

We say safe0(E, P, σ, κ, Q, U) always holds, and safen+1(E, P, σ, κ, Q, U)

holds iff ...

1. ... when κ = skip then

a) id ρ {P}{Q(σ)}

2. ... when κ = return e or κ = return e;s, for some e and s, then

a) id ρ {P}{U(σ)(JeKσ)}

3. ... when there is a forking step E ` (σ, κ)
fork(f,~v)−−−−−→ (σ′, κ′) for

some f and ~v, there exists P′, F : Assertion and (~x, s) such that,

a) E(f) = (~x, s)

b) id ρ {P}{P′ ∗ F}
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c) safeρ
n(E, P′, σ′, κ′, Q, U)

d) safeρ
n(E, F, [~x 7→ ~v], s, λ_.>, λ_.λ_.>)

4. ... when there is a non-forking step E ` (σ, κ)
α−→ (σ′, κ′) there is

a P′ : Assertion such that

a) α ρ {P}{P′}
b) safeρ

n(E, P′, σ′, κ′, Q, U)

We omit the super-script ρ when it is clear from context. At any one
time there will only be a single such region type assignment in play.

Definition 103 (Environment/Function Spec Agreement).

− �−− − : − ⊆ Env×RegionTypeAssignment×N× Fun× FunctionSpec

An environment implements a function specification of f for n steps,
noted

E �ρ
n f : (Γ,~y){P}{r.Q}

if and only if there exists~x ∈ Var∗ and s ∈ Stmt such that E(f) = (~x, s)
and, for all γ ∈ JΓ,~y : ValK, σ ∈ Stack,

safeρ
n(E, JR; Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ),

σ,

s,

λσ. JR; Γ,~y : Val ` ∀r.Q : AssnK (ρ, γ, σ),

λσ.λv. JR; Γ,~y : Val, r : Val ` Q : AssnK (ρ, γ[r 7→ v], σ))

Definition 104 (Environment/Specification Context Agreement).

− �−− − ⊆ Env× RegionTypeAssignment×N× SpecCtxt

An environment E implements a specification context Φ for n steps,
noted E �ρ

n Φ when, for each individual f ∈ dom(Φ), E �ρ
n f : Φ(f).

As with the safe predicate, we elide the region type assignment
when clear from the context.

Definition 105 (Interpretation of “Triples”). We define the interpreta-
tion of a Hoare “triple” as a function

r
R; Φ; Γ `

{
P
}
s
{

Q | r.U
}

: Spec
z

: JRK× JΓK→ P ↓ (N)

defined as follows:
r

R; Φ; Γ `
{

P
}
s
{

Q | r.U
}

: Spec
z
(ρ, γ) =

{n ∈N | ∀E : Env.(∀n′ < n.E �ρ
n′ Φ)⇒ ∀σ : Stack.

safeρ
n(E,

Jdom(R); Γ ` P : AssnK (GA(ρ), γ, σ),

σ,

s,

λσ. Jdom(R); Γ ` Q : AssnK (GA(ρ), γ, σ),

λσ.λv. Jdom(R); Γ, r : Val ` U : AssnK (GA(ρ), γ[r 7→ v], σ))}
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Lemma 106 (Interpretation of Triples is Well-Defined). For all ρ ∈ JRK,
γ ∈ JΓK,

r
R; Φ; Γ `

{
P
}
s
{

Q | r.U
}

: Spec
z
(ρ, γ)

is downwards closed.

Definition 107 (Interpretation of Atomic Triples). We define the in-
terpretation of atomic triples as a function of well-typed triples as
follows:

JR; Γ `S 〈P〉 s 〈Q〉 : AtomicK : JRK× JΓK× Stack→ 2

where JR; Γ `S 〈P〉 s 〈Q〉K (ρ, γ, σ) holds if and only if there is α, σ′

such that

1. E ` (σ, s) α−→ (σ′, skip)

2. For all~r ∈ JSK and stable assertions R,

JαK (bJR; Γ ` P : AssnK (ρ, γ, σ) ∗ Rcρ~r )

⊆⌊
JR; Γ ` Q : AssnK (ρ, γ, σ′) ∗ R

⌋ρ

~r

Definition 108 (Interpretation of Open Region Judgment). We define
the interpretation of open region judgments as a function of well-typed
judgments as follows:

JR; Γ ` [P] open [{(∆i).(Qi,~ri)}i∈I ]K : JRK× JΓK× Stack→ 2

where JR; Γ ` [P] open [{(∆i).(Qi,~ri)}i∈I ]K (ρ, γ, σ) holds if and only
if for all p ∈ JPK and frame r, there is an index i ∈ I with δ ∈ J∆iK and
q ∈ JQiK (γδ) with ~y ∈ J~riK (γδ) such that there is an updated frame r′

with

1. (r, r′) ∈ Rely(ρ)

2. bp · rcρ∅ ⊆ bq · r′c
ρ
~y

Definition 109 (Interpretation of Close Region Judgment). We define
the interpretation of close region judgments as a function of well-typed
judgments as follows:

JΓ ` [P] close(~r) [Q]K : JRK× JΓK× Stack→ 2

where JΓ ` [P] close(~r) [Q]K (ρ, γ, σ) holds if and only if, for all p ∈
JR; Γ ` P : AssnK (ρ, γ, σ) and any choice of frame r, there is a q ∈
JR; Γ ` Q : AssnK (ρ, γ, σ) and an updated frame r′ such that

1. (r, r′) ∈ Rely(ρ)
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2. bp · rcρ~r ⊆ bq · r
′cρ∅

Definition 110 (Interpretation of Function Specifications). We interpret
well-typed function specifications as functions from interpretations of
a function context into down-closed sets of natural numbers

JR; Φ ` f(~x)(Γ,~y){P}s{r.Q} : FunctionSpecK : JRK→ P ↓ (N)

JR; Φ ` f(~x)(Γ,~y){P}s{r.Q} : FunctionSpecK (ρ) =⋂
γ∈JΓ,~y:ValK

r
R; Φ; Γ,~y : Val `

{
P ∗ (~x = ~y)

}
s
{
∀r.Q | r.Q

}
: Spec

z
(ρ, γ)

Definition 111 (Interpretation of Program Specifications). We interpret
well-typed program specifications into 2:

q
`~r;~f : ProgramSpec

y
⇐⇒ ∀n ∈N.

⌊
~f
⌋
�J~rKn

⌈
~f
⌉

3.9 Soundness

3.9.1 Soundness of Specification Logic

3.9.1.1 Soundness of Statement Specifications

Lemma 112 (Required for “Soundness of Function Call”). Suppose
P : Assertion and Q : Term that does not mention program variables. If

safen(E, P, σ′, s,

Jdom(R); Γ ` ∀r : Val.Q : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` Q : AssnK (ρ, γ[r 7→ v]))

then, for any stack σ, program variable x and U : Stack → Val →
Assertion:

safen(E, P, σ, x:=(σ′, s), Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (ρ, γ), U).

Proof. Proceed by Induction on n; assume i.e. the lemma holds at all
n′ < n.

Suppose the antecedent along with a σ, x and U. We now have to
show.

safen(E, P, σ, x:=(σ′, s), Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (γ), U).

To show safe is to show the code in question safe when it halts,
returns and steps. We know that the code x:=(σ′, s) neither immedi-
ately returns or halts, it must take a (possibly forking) execution step.
By the operational semantics, which step depends on the shape of the
code of the running function, s. By case analysis of the operational
semantics, there are 4 cases, and we handle each in sequence.
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Halt Suppose s = skip. By assumption on s, we then know that

P � Jdom(R); Γ ` ∀r.Q : AssnK (ρ, γ, σ′)

We can now step

E ` (σ, x:=(σ′, skip)) id−→ (σ[x 7→ v], skip)

for some v and thus have to find a P′ : Assertion such that

(a) P � P′

(b) safen−1(E, P′, σ[x 7→ v], skip, Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (ρ, γ))

Pick P′ := Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (ρ, γ, σ[x 7→ v]), and
(b) is immediate. To show (a) is to show:

P � Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (ρ, γ, σ[x 7→ v])

By transitivity of � it suffices to show that

Jdom(R); Γ ` ∀r.Q : AssnK (ρ, γ, σ′) �

Jdom(R); Γ ` ∃r : Val.x = r ∗Q : AssnK (ρ, γ, σ[x 7→ v])

Since Q does not mention program variables,

Jdom(R); Γ ` ∀r.Q : AssnK (ρ, γ, σ′) = Jdom(R); Γ ` ∀r.Q : AssnK (ρ, γ, σ[x 7→ v])

and thus, by Lemma 100 it suffices to show that

R; Γ | ∀r.Q ` ∃r.x = r ∗Q,

which is a simple derivation:

R; Γ | ∀r.Q ` x = x R; Γ | ∀r.Q ` Q

R; Γ | ∀r.Q ` x = x ∗Q

R; Γ | ∀r.Q ` ∃r.x = r ∗Q

Return This case is completely analogous to the previous, except we
now have a specific value rather than v; observe the previous case
made no explicit use of v.

Non-forking step If s is such that

E ` (σ′, s) α−→ (σ′′, s′)

then we know from the safety of s that there is a P′ such that P � P′

and

safen−1(E,

P,′

σ′′,

s′,

Jdom(R); Γ ` ∀r.Q : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` Q : AssnK (ρ, γ[r 7→ v]))
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holds. Further, we know by the operational semantics that

E ` (σ, x:=(σ′, s)) α−→ (σ, x:=(σ′′, s′))

and thus we need to find a P′ such that

(a) P � P′

(b) safen−1(E, P′, σ, x:=(σ′, s′), J∃r : Val.x = r ∗QK (γ))

We choose the P′ given by assumption, and (a) is immediate.
(b) follows by induction hypothesis, with the necessary premise

given by the assumption on s.

Forking step The case of forking steps is analogous to non-forking
steps, and hinges on the same observations on the assumption that s
is safe and the hypothesis.

Lemma 113 (Argument-Parameter Substitution). For any P that does
not contain program variables, σ and σ′ such that σ′(~x) = J~eKσ it’s the
case that

JR; Γ ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ) �

JR; Γ ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ′)

Proof. First, we observe that by the interpretation of assertions, we can
compute on the left hand side:

JR; Γ,~y : Val ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ)

= JR; Γ,~y : Val ` P : AssnK (ρ, γ, σ) ∗ JR; Γ,~y : Val ` (~e = ~y) : AssnK (ρ, γ, σ)

and then the right:

JR; Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ′)

= JR; Γ,~y : Val ` P : AssnK (ρ, γ, σ′) ∗ JR; Γ,~y : Val ` (~x = ~y) : AssnK (ρ, γ, σ′)

Observing that

JR; Γ,~y : Val ` P : AssnK (ρ, γ, σ) = JR; Γ,~y : Val ` P : AssnK (ρ, γ, σ′)

since P does not refer to program variables, we now have an entailment
of the shape R ∗ P � R ∗Q, so by Lemma 99 it suffices to show that:

JR; Γ,~y : Val ` (~e = ~y) : AssnK (ρ, γ, σ) � JR; Γ,~y : Val ` (~x = ~y) : AssnK (ρ, γ, σ′)

By another appeal to Lemma 99 it suffices to show that

JR; Γ,~y : Val ` ei = yi : AssnK (ρ, γ, σ) �

JR; Γ,~y : Val ` xi = yi : AssnK (ρ, γ, σ′)
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for each i. This follows easily by computation, which reveals that this
indeed holds since � is reflexive:

JR; Γ,~y : Val ` ei = yi : AssnK (ρ, γ, σ)

= JeiKσ =Val γ(yi)

= JxiKσ′ =Val γ(yi)

= JR; Γ,~y : Val ` xi = yi : AssnK (ρ, γ, σ′)

and we are done.

Lemma 114 (Soundness of Function Call). Suppose that

Φ(f) = (Γ,~y){P}{r.Q}.

Then for any n ∈N, ρ ∈ JRK and γ ∈ JΓ,~y : ValK,

n ∈
r

R; Φ; Γ,~y : Val `
{

P ∗ (~e = ~y)
}
x:=f(~e)

{
∃r : Val.x = r ∗Q | r.U

}z
(ρ, γ).

Proof. Suppose an environment E such that for all n′ < n we have
E �ρ

n′ Φ. Suppose further a stack σ. We now need to show that

safen(E, JR; Γ,~y : Val ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ),

σ,

x:=f(~e),

JR; Γ,~y : Val ` ∃r.x = r ∗Q : AssnK (ρ, γ),

λv. JR; Γ,~y : Val, r : Val ` U : AssnK (ρ, γ[r 7→ v])

We thus need to show Case 4 of Definition 102, where we take a
regular execution step as the only applicable rule is

E(f) = (~x, s) σ′(~x) = J~eKσ

E ` (σ, x:=f(~e))
id−→ (σ, x:=(σ′, s))

for some σ′ : Stack such that σ′(~x) = J~eKσ.
Hence s′ = x:=(σ′, s) and α = id. We now need to choose a suitable

P′, such that

(a) JR; Γ,~y : Val ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ) � P′.

(b) safen−1(E, P′, σ, x:=(σ′, s)), J∃r.x = r ∗QK (ρ, γ), λv. JUK (ρ, γ[r 7→
v]))

We choose P′ := JR; Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ′).
The statement (b) follows by appeal to Lemma 112, where the

premise is obtained by instantiating ∀n′ < n.E � Φ at n− 1, giving
us that s is safe to run from JR; Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ′).
(b) is then immediate from the lemma.

(a) follows by Lemma 113.
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Lemma 115 (Soundness of Value Return). For all n ∈ N, ρ ∈ JRK,
γ ∈ JΓK and assertion Q,

n ∈
r

R; Φ; Γ `
{
>
}
return e

{
Q | r.e = r

}
: Spec

z
(ρ, γ)

Proof. Suppose an environment E such that for all n′ < n, E �ρ
n′ Φ.

Suppose furthermore a stack σ. We need to show that

safen(E, Jdom(R); Γ ` > : AssnK (ρ, γ, σ)

σ,

return e,

λσ′. Jdom(R); Γ ` Q : AssnK (γ, σ′)

λσ′.λv. JR; Γ, r : Val ` e = r : AssnK (ρ, γ[r 7→ v], σ′))

We thus need to show that

Jdom(R); Γ ` > : AssnK (ρ, γ, σ) �

JR; Γ, r : Val ` e = r : AssnK (ρ, γ[r 7→ JeKσ], σ)

which is immediate by calculation:

JR; Γ, r : Val ` e = r : AssnK (ρ, γ[r 7→ JeKσ], σ)

= JeKσ =Val JeKσ

which always holds.

Lemma 116 (Soundness of If). For all assertions P, Q, U, and for all
n ∈N, γ ∈ JΓK and ρ ∈ JRhoK, if

1. n ∈
r

R; Φ; Γ `
{

P ∗ e 6= 0
}
s1

{
Q | r.U

}z
(ρ, γ) and

2. n ∈
r

R; Φ; Γ `
{

P ∗ e = 0
}
s2

{
Q | r.U

}z
(ρ, γ)

then

n ∈
r

R; Φ; Γ `
{

P
}
if(e) then {s1} else {s2}

{
Q | r.U

}z
(ρ, γ)

Proof. Suppose an environment E such that for all n′ < n we have
E �ρ

n′ Φ. Suppose further a stack σ. We now need to show that

safen(E, Jdom(R); Γ ` P : AssnK (ρ, γ, σ),

σ,

if(e) then {s1} else {s2},
Jdom(R); Γ ` Q : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

Proceed by cases on the whether result of JeKσ is different from or
equal to zero.
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In either case we have to show Case 4 of Definition 102, where we
take a regular execution step.

In the case where JeKσ 6= 0, there is only one applicable rule,

JeKσ 6= 0

E ` (σ, if(e) then {s1} else {s2})
id−→ (σ, s1)

Hence, we need to show that there is a P′ such that

Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � P′

and

safen−1(E,P′,

σ,

s1,

Jdom(R); Γ ` Q : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

We chose P′ := Jdom(R); Γ ` P ∗ e 6= 0 : AssnK (ρ, γ, σ). To show the
entailment, we compute on both sides. First the right, exploiting that
e does not refer to logical variables.

Jdom(R); Γ ` P ∗ e 6= 0 : AssnK (ρ, γ, σ)

= Jdom(R); Γ ` P : AssnK (ρ, γ, σ) ∗ JeKσ 6=Val 0

Observing that > is unit to ∗, we can frame the interpretation of P
away by Lemma 99, and it remains to show that

> � JeKσ 6=Val 0

which holds as JeKσ 6= 0 by assumption.
The safety requirement on s1 follows precisely by the assumption

on s1.
The case of JeK = 0 is analogous.

Lemma 117 (Soundness of Sequencing). For all n ∈ N, if, for any
γ ∈ JΓK and ρ ∈ JRK,

n ∈
r

R; Φ; Γ `
{

P
}
s1

{
R | r.U

}
: Spec

z
(ρ, γ)

n ∈
r

R; Φ; Γ `
{

R
}
s2

{
Q | r.U

}
: Spec

z
(ρ, γ)

then

n ∈
r

R; Φ; Γ `
{

P
}
s1;s2

{
Q | r.U

}
: Spec

z
(ρ, γ)
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Proof. Proceed by induction: assume the lemma holds for all n′ < n.
We now show it holds for n.

Suppose an environment E such that for all n′ < n.E �ρ
n′ Φ. Suppose

further a stack σ. We now need to show that

safen(E, Jdom(R); Γ ` P : AssnK (ρ, γ),

σ,

s1;s2,

Jdom(R); Γ ` Q : AssnK (ρ, γ),

λv. JUK (ρ, γ[r 7→ v]))

We case on whether s1 = skip, s1 = return e or not; whether to skip,
return or step.

Skip If s1 = skip, we obtain from the first assumption that

Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � Jdom(R); Γ ` R : AssnK (ρ, γ, σ)

holds. We also observe that the only possible step is

E ` (σ, skip;s2)
id−→ (σ, s2)

We thus now need to show that there is a P′ : Assertion such that

(a) Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � P′

(b)

safen−1(E,

P′,

σ,

s2, Jdom(R); Γ ` Q : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

We chose P′ := Jdom(R); Γ ` R : AssnK (ρ, γ, σ) and we have both by
assumption.

Return If s1 = return e or return e;s′1, we obtain by assumption
on s1 that

Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ JeKσ], σ)

which is precisely the requirement for

safen(E,

Jdom(R); Γ ` P : AssnK (ρ, γ, σ),

σ,

return e;s2,

Jdom(R); Γ ` Q : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))
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Forking Step If

E ` (σ, s1)
fork(f,~v)−−−−−→ (σ′, s′1)

we obtain by assumption on s1 variables and code (~x, s), assertions P
and F′ such that

(a) E(f) = (~x, s)

(b) Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � P′ ∗ F

(c)

safen−1(E,

P′,

σ′,

s′1,

Jdom(R); Γ ` Q : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

(d) safen−1(E, F, [~x 7→ ~v], s, λ_.>, λ_.λ_.>)

Hence, the compound statement can step as follows:

E ` (σ, s1)
fork(f,~v)−−−−−→ (σ′, s′1)

E ` (σ, s1;s2)
fork(f,~v)−−−−−→ (σ′, s′1;s2)

and by the definition of safety we now have to show the existence of
(~x, s) and P, F′ such that

(a) E(f) = (~x, s)

(b) Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � P′ ∗ F

(c)

safen−1(E,

P′,

σ′,

s′1;s2,

Jdom(R); Γ ` Q : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])

(d) safen−1(E, F, [~x 7→ ~v], s, λ_.>, λ_.λ_.>)

We choose precisely the givens obtained by the assumption s1. Items
(a), (b) and (d) are thus given directly. (c) follows by the induction
hypothesis.
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Non-Forking Step If s1 can step according to

E ` (σ, s1)
α−→ (σ′, s′1)

we obtain by assumption on s1 an assertion P′ such that

(a) α ρ {Jdom(R); Γ ` P : AssnK (ρ, γ, σ)}{P′}

(b)

safen−1(E,

P′,

σ′,

s′1,

Jdom(R); Γ ` R : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

That s1 can step implies that the compound statement can step accord-
ing to

E ` (σ, s1)
α−→ (σ′, s′1)

E ` (σ, s1;s2)
α−→ (σ′, s′1;s2)

and hence we need to show the existence of P′ such that

(a) α ρ {Jdom(R); Γ ` P : AssnK (ρ, γ, σ)}{P′}

(b)

safen−1(E,

P′,

σ′,

s′1;s2,

Jdom(R); Γ ` Q : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

We chose P′ obtained before and get (a) immediately. (b) follows by
the induction hypothesis.

Lemma 118 (Soundness of While). For all n ∈N, ρ ∈ JRK and γ ∈ JΓK,
if

n ∈
r

R; Φ; Γ `
{

P ∗ e 6= 0
}
s
{

I | r.U
}z

(ρ, γ)

then

n ∈
r

R; Φ; Γ `
{

I
}
while(e){s}

{
I ∗ e = 0 | r.U

}z
(ρ, γ)
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Proof. Proceed by Induction. Assume that the lemma as stated holds
for all n′ < n. We now show it holds for n.

Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ.

Suppose further a stack σ. We now need to show that

safen(E, Jdom(R); Γ ` I : AssnK (ρ, γ, σ),

σ,

while(e){s},
Jdom(R); Γ ` I ∗ e = 0 : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])).

Proceed by cases on the whether result of JeKσ is different from or
equal to zero. In either case we have to show Case 4 of Definition 102,
where we take a regular execution step.

Non-Zero In the case where JeKσ 6= 0, there is only one applicable
rule,

JeKσ 6= 0

E ` (σ, while(e){s}) id−→ (σ, s;while(e){s})

Hence, we need to show that there is a P′ such that

Jdom(R); Γ ` I : AssnK (ρ, γ, σ) � P′

and

safen−1(E,P′

σ,

s;while(e){s},
Jdom(R); Γ ` I ∗ e = 0 : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])).

We chose P′ := Jdom(R); Γ ` I ∗ e 6= 0 : AssnK (ρ, γ, σ). We thus need
to show that

Jdom(R); Γ ` I : AssnK (ρ, γ, σ) � Jdom(R); Γ ` I ∗ e 6= 0 : AssnK (ρ, γ, σ)

Which follows knowing JeKσ 6= 0. Finally we need to show that

safen−1(E, Jdom(R); Γ ` I ∗ e 6= 0 : AssnK (ρ, γ, σ),

σ,

s;while(e){s},
Jdom(R); Γ ` I ∗ e = 0 : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])).

which precisely corresponds to showing that

n− 1 ∈
r

R; Φ; Γ `
{

I ∗ e 6= 0
}
s;while(e){s}

{
I ∗ e = 0 | r.U

}z
(ρ, γ)
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We have by assumption on s that

n− 1 ∈
r

R; Φ; Γ `
{

I ∗ e 6= 0
}
s
{

I | r.U
}z

(ρ, γ)

and the induction hypothesis gives us

n− 1 ∈
r

R; Φ; Γ `
{

I
}
while(e){s}

{
I ∗ e = 0 | r.U

}z
(ρ, γ)

The two preceding statements are by the Soundness of Sequencing
enough to give us precisely the desired conclusion.

Zero In the case where JeKσ = 0, there is only one applicable rule,

JeKσ = 0

E ` (σ, while(e){s}) id−→ (σ, skip)

Hence, we need to show that there is a P′ such that JIK (ρ, γ, σ) � P′

and

safen−1(E,P′,

σ,

skip,

Jdom(R); Γ ` I ∗ e = 0 : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]).

We chose P′ := JI ∗ e = 0K (ρ, γ, σ), and the safety requirement holds
by reflexivity of �. To show the entailment we argue as in the the
looping case: We can frame I on each side of the entailment by Lemma
99, and it remains to show that

> � Jdom(R); Γ ` e = 0 : AssnK (ρ, γ, σ)

which always holds as JΓ ` e : ValK (γ, σ) = JeKσ when e is free of
program variables, as here.

Lemma 119 (Soundness of Skip). For all assertions P and U and
ρ ∈ JRK and γ ∈ JΓK, for all n ∈N,

n ∈
r

R; Φ; Γ `
{

P
}
skip

{
P | r.U

}
: Spec

z
(ρ, γ)

Proof. Suppose an environment E such that for all n′ < n we have
E �ρ

n′ Φ. Suppose further a stack σ. We now need to show that

safen(E, Jdom(R); Γ ` P : AssnK (ρ, γ, σ)

σ,

skip,

Jdom(R); Γ ` P : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))
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which means we need to show that

Jdom(R); Γ ` P : AssnK (ρ, γ, σ) � Jdom(R); Γ ` P : AssnK (ρ, γ, σ).

This follows by reflexivity of �.

Lemma 120 (Soundness of Local Assignment). For all n, ρ ∈ JRK,
γ ∈ JΓK,

n ∈
r

R; Φ; Γ `
{
x = n

}
x := e

{
x = e[n/x] | r.U

}
: Spec

z
(ρ, γ).

Proof. Suppose an environment E such that for all n′ < n we have
E �ρ

n′ Φ. Suppose further a stack σ. We now need to show

safen(E, Jdom(R); Γ ` x = n : AssnK (ρ, γ, σ),

σ,

x := e,

Jdom(R); Γ ` x = e[n/x] : AssnK (ρ, γ),

λv. JUK (ρ, γ[r 7→ v])).

There is only one applicable transition,

E ` (σ, x := e)
id−→ (σ[x 7→ JeKσ], skip)

So we pick P′ := Jdom(R); Γ ` x = e[n/x] : AssnK (ρ, γ, σ[x 7→ JeKσ])

and have to show that

(a)

Jdom(R); Γ ` x = n : AssnK (ρ, γ, σ)

� Jdom(R); Γ ` x = e[n/x] : AssnK (ρ, γ, σ[x 7→ JeKσ])

(b)

safen−1(E,

Jdom(R); Γ ` x = e[n/x] : AssnK (ρ, γ, σ[x 7→ JeKσ]),

σ[x 7→ JeKσ],

skip,

Jdom(R); Γ ` x = e[n/x] : Assn[n/x]K (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

(b) is immediate by Lemma 119.
(a) follows by computation; first on the left hand side:

Jdom(R); Γ ` x = n : AssnK (ρ, γ, σ)

⇐⇒ σ(x) =Val n



3.9 Soundness 103

Then on the right hand side:

Jdom(R); Γ ` x = e[n/x] : AssnK (ρ, γ, σ[x 7→ JeKσ])

⇐⇒ JeKσ =Val JΓ ` e[n/x] : ValK (γ, σ[x 7→ JeKσ)

Hence, by definition of semantic entailment, it suffices to show that,
assuming σ(x) = n, for any expression e and any value v it holds that

JeKσ =Val JΓ ` e[n/x] : ValK (γ, σ[x 7→ v])

We proceed by induction on the structure of e:

Constant If e = m, for a constant m, the result is immediate.

Variable If e = y for some program variable y, there are two cases: if
x = y, we calculate

JΓ ` e[n/x] : ValK (γ, σ[x 7→ v]) = JΓ ` x[n/x] : ValK (γ, σ[x 7→ v])

= n

= σ(x)

= JxKσ

= JeKσ

as desired. If x 6= y we calculate

JΓ ` e[n/x] : ValK (γ, σ[x 7→ v]) = JΓ ` y[n/x] : ValK (γ, σ[x 7→ v])

= JΓ ` y : ValK (γ, σ[x 7→ v])

=σ(y)

= JyKσ

= JeKσ

Binary Operator If e = e1 ~ e2 for some binary operation, we can
calculate as follows:

JΓ ` e : Val[n/x]K (γ, σ[x 7→ v]) = JΓ ` e1~ e2 : Val[n/x]K (γ, σ[x 7→ v])

= JΓ ` e1[n/x] : ValK (γ, σ[x 7→ v])

~ JΓ ` e2 : Val[n/x]K (γ, σ[x 7→ v])

= Je1K (σ)~ Je2K (σ)

= Je1~ e2Kσ

= JeKσ

where the third equality holds by the induction hypotheses of e1 and
e2.
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Lemma 121 (Soundness of Frame). For any ρ ∈ JRK, γ ∈ JΓK and
σ ∈ Stack, assuming mod(s) ∩ F = ∅, if

n ∈
r

R; Φ; Γ `
{

P
}
s
{

Q | r.U
}

: Spec
z
(ρ, γ, σ)

then

n ∈
r

R; Φ; Γ `
{

P ∗ F
}
s
{

Q ∗ F | r.U
}

: Spec
z
(ρ, γ, σ).

Proof. We proceed by strong induction on n. Suppose an n such that it
lies in the interpretation of R; Φ; Γ `

{
P
}
s
{

Q | r.U
}

We now have to

show that n lies in the interpretation of R; Φ; Γ `
{

P ∗ F
}
s
{

Q ∗ F | r.U
}

,
which we proceed to do so according to definition:

Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ.

Suppose further a stack σ. We now need to show

safen(E, JR; Γ ` P : AssnK (ρ, γ, σ),

σ,

s,

JR; Γ ` Q : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))

There are 4 cases, according to the definition of safe:

Skip If s = skip, then we must show that

id ρ {JR; Γ ` P ∗ F : AssnK (ρ, γ, σ)}{JR; Γ ` Q ∗ F : AssnK (ρ, γ, σ)}

but by the assumption on n, we also get that

id ρ {JR; Γ ` P : AssnK (ρ, γ, σ)}{JR; Γ ` Q : AssnK (ρ, γ, σ)}

By the semantics of assertions, the interpretation of assertions com-
mutes with ∗, and we then have by Lemma 99 precisely what we need
to show.

Return This case is analogous to the case of skip.

Forking Step In this case, we assume that E ` (σ, s)
fork((,) f ,~v)−−−−−−→ (σ′, κ′)

for some f and ~v. We now have to provide P′, F′ and (~x, s) such that

1. E(f) = (~x, s)

2. id ρ {JR; Γ ` P ∗ F : AssnK (ρ, γ, σ)}{P′ ∗ F′}

3. safen−1(E, P′, σ′, κ′, JR; Γ ` Q ∗ F : AssnK (ρ, γ), JUK)

4. safen−1(E, F, σ′, s, λ_.>, λ_.λ_.>)
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By appeal to the assumption on n, we get precisely the pieces we
need, however, we get that id ρ {JR; Γ ` P : AssnK}{P′ ∗ F′}. Here,
we instead of just P′, we chose P′ ∗ JR; Γ ` F : AssnK (ρ, γ, σ′), our orig-
inal frame. Hence, by Lemma 96 we get Item 2. Item 4 is then still
immediate by assumption. It remains to show Item 3, which now
amounts to showing that

safen−1(E, P′ ∗ JR; Γ ` F : AssnK (ρ, γ, σ′), κ′, JQ ∗ FK (ρ, γ), JUK)

which we get by assumption on n combined with the induction hy-
pothesis.

Non-Forking Step Analogous to the forking case without the compli-
cation of the forked thread.

Lemma 122. If for any σ, Q′(σ) � Q(σ) and safen(E, P, σ, s, Q′, U)

then safen(E, P, σ, s, Q, U).

Proof. Proceed by strong induction on n.

Skip If s = skip, we must show P � Q(σ) knowing P � Q′(σ) by
assumption. This follows by transitivity of �.

Return If s returns some expression e, we must show P � U(σ)(JeKσ),
but we get this immediately by assumption.

Forking Step Here we must find assertions P′, F such that

1. P � P′ ∗ F

2. safen−1(E, P′, σ′, s′, Q, U)

3. safen−1(E, F, [~x 7→ J~eKσ], s,>,>)

We get the choice of assertions by the assumption on s, and Items 1

and 3 are immediate while Item 2 follows by the induction hypothesis.

Non-forking step Here we must find assertion P′ such that

1. α ρ {P}{P′}

2. safen−1(E, P′, σ′, s′, Q, U)

Both again follow immediately by assumption and the induction
hypothesis.

Lemma 123 (Soundness of Consequence). For any ρ ∈ JRK, γ ∈ JΓK
and σ ∈ Stack, we have that, assuming

R; Γ | P ` P′ R; Γ | Q′ ` Q R; Γ | U′ ` U,
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then for any n and γ ∈ JΓK, if

n ∈
r

R; Φ; Γ `
{

P′
}
s
{

Q′ | r.U′
}

: Spec
z
(ρ, γ, σ)

then

n ∈
r

R; Φ; Γ `
{

P
}
s
{

Q | r.U
}

: Spec
z
(ρ, γ, σ)

Proof. We proceed according to the proof of the Soundness of Fork: by
strong induction on n, and then by case on the definition of safety.

In each case, we appeal Lemma 101 in order to weaken or strengthen
the assertions involved as needed, remarking that the assumed syntac-
tic entailments give us e.g.

JR; Γ ` P : AssnK (ρ, γ, σ) �
q

R; Γ ` P′ : Assn
y
(ρ, γ, σ).

Again, the return and skipping cases are alike, so we show one. The
same is true of the forking and the non-forking case so we show the
more complicated of the two.

Skip In the case of s = skip, we are to show that P � Q, knowing
P′ � Q′, P � P′ and Q′ � Q, which is directly the statement of Lemma
101.

Forking Step In the case that s = fork f(~e), we are to give an
implementation (~x, s) and assertions R and F such that

1. P � R ∗ F

2. safen−1(E, R, σ, s′, Q, U)

3. safen−1(E, F, [~x 7→ J~eKσ], s,>,>)

The choices of (~x, s), R and F are given by the assumption of the
lemma. The first item follows from transitivity of �, knowing P � P′

and P′ � R ∗ F. The remaining two items follow by assumption with
an appeal to Lemma 122.

Lemma 124 (Soundness of Fork). Assuming Φ(f) = (Γ,~y){P}{r.Q},
it is the case that, for all n, for all ρ ∈ JRK, γ ∈ JΓK:

n ∈
r

R; Φ; Γ,~y : Val `
{

P ∗ (~e = ~y)
}
fork f(~e)

{
> | r.U

}
: Spec

z
(ρ, γ)

Proof. Suppose an environment E such that for all n′ < n we have
E �ρ

n′ Φ. Suppose further a stack σ. We now need to show

safen(E, JR; Γ,~y : Val ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ),

σ,

fork f(~e),

JR; Γ,~y : Val ` > : AssnK (ρ, γ),

λv. JR; Γ,~y : Val, r : Val ` U : AssnK (ρ, γ[r 7→ v]))
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By case analysis of first the statement in question and then the opera-
tional rules, we see that the only applicable case of safen is the case
where

E ` (σ, fork f(~e))
fork(f,J~eKσ)−−−−−−→ (σ, skip).

This means showing that there exists a P′, F and (~x, s) such that the
following four items hold:

(a) E(f) = (~x, s).

(b) JR; Γ,~y : Val ` P ∗ (~e = ~y) : AssnK (ρ, γ, σ) � P′ ∗ F

(c)

safen−1(E,

P′,

σ,

skip,

JR; Γ,~y : Val ` > : AssnK (ρ, γ),

λv. JR; Γ,~y : Val, r : Val ` U : AssnK (ρ, γ[r 7→ v])

(d) safen−1(E, F, [~x 7→ J~eKσ], s, λ_.>, λ_λ_.>)

By assumption that f is specified by Φ, we obtain (~x, s) that satisfy
(a). We choose

P′ := > F := JR; Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, [~x 7→ J~eKσ])

(c) follows easily: the interpretation J>K (ρ, γ, σ) for any arguments
is >, and > � >, as required by safety of skip. (d) follows from the
assumption that E �ρ

n−1 Φ by appeal to weakening of the conclusions:
we can always weaken to >.

Left is (b), which follows precisely from 113.

Lemma 125 (Soundness of Allocation). For all ρ ∈ JRK, γ ∈ JΓK and σ,
for any n it holds that n lies in
r

R; Γ `
{
e = v ∗ v > 0

}
x := alloc(e)

{
∃n.x = n ∗ n 7→ [v] | r.U

}
: Spec

z
(ρ, γ, σ)

Proof. Suppose an environment E such that for all n′ < n we have
E �ρ

n′ Φ. Suppose further a stack σ. We now need to show

safen(E, JR; Γ ` e = v ∗ v > 0 : AssnK (ρ, γ, σ),

σ,

x := alloc(e),

JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v]))
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According to the operational semantics, the allocation can either
complete successfully or fault, depending on whether e denotes a
non-zero natural number.

If it does not, i.e. JeKσ < 1 it is the case that E ` (σ, x := alloc(e))
 −→

(σ, skip) and we have to pick a P′ according to Case 4 of the definition
of safen. We chose ⊥ and have to show:

1.  ρ {JR; Γ ` e = v ∗ v > 0 : AssnK (ρ, γ, σ)}{⊥}

2.

safen(E,

⊥,

σ,

skip,

JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])

Item 2 is vacuously true as ⊥ � P holds of any P. To argue Item 1 we
observe that any configuration in the in the interpretation of e = v and
v > 0 would contradict that v < 1, hence there are none. Therefore,
that interpretation is empty, and the inclusion required in Item 1 is
empty. (The action of faulting on a set of heaps is thus also irrelevant -
the lifting of actions to sets of heaps preserve the empty set).

If e > 0, it is the case that E ` (σ, x := alloc(e))
alloc(JeKσ ,n)−−−−−−−→

(σ[x 7→ n], skip) for some address n and we thus need to find a P′,
for which we pick the postcondition as stated in the lemma, such that

1.

alloc(JeKσ , n) ρ

{JR; Γ ` e = v ∗ v > 0 : AssnK (ρ, γ, σ)}
{JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK (ρ, γ, σ[x 7→ n])}

2.

safen(E,

JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK (ρ, γ, σ[x 7→ n]),

σ,

skip,

JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])

Item 2 holds by the definition of safety of skip. To show the first item,
we proceed directly by definition of the semantic action judgment:
suppose a stable frame, and suppose a heap h in the erasure of the



3.9 Soundness 109

conjunction of said frame and JR; Γ ` e = v ∗ v > 0 : AssnK (ρ, γ, σ).
For h we know that JeKσ = v and v > 0, consistent with the assumption
on e.

Any h′ in the result of applying the action of the allocation action
would satisfy that m ∈ dom(h′) if m is such that n <= m < n+(v− 1).
This is ensured knowing v > 0.

Finally, we need to show that h′ lies in the erasure of

JR; Γ ` ∃n.x = n ∗ n 7→ [v] : AssnK (ρ, γ, σ[x 7→ n]).

For this to be the case, there needs to be an n such n = n and n 7→ v
is satisfied by the heap. This is precisely the case for h′. Hence we are
done.

Lemma 126 (Soundness of Atomic Embedding). Assuming
q

R; Γ ` [P] open [{(∆i).(P′i ,~ri)}]
y
(ρ, γ, σ)

and, for all i ∈ I and δi ∈ J∆iK,
q

R; Γ, ∆i `{~ri} 〈P
′
i 〉 s 〈Qi ∗ newRegion(~ni)〉

y
(ρ, γδi, σ)

JR; Γ, ∆i ` [Qi ∗ newRegion(~ni)] close(~ri,~ni) [Q]K (ρ, γδi, σ)

then for all n ∈N,

n ∈
r

R; Φ; Γ `
{

P
}
s
{

stabilize(Q) | r.U
}z

(ρ, γ, σ)

Proof. Assume

1.
q

R; Γ ` [P] open [{(∆i).(P′i ,~ri)}]
y
(ρ, γ, σ)

2.
q

R; Γ, ∆i `{~ri} 〈P
′
i 〉 s 〈Qi ∗ newRegion(~ni)〉

y
(ρ, γ · δi, σ)

3. For all i ∈ I, JR; Γ, ∆i ` [Qi ∗ newRegion(~ni)] close(~ri,~ni) [Q]K (ρ, γ ·
δi, σ)

Suppose an environment E such that for all n′ < n we have E �ρ
n′ Φ.

Suppose further a stack σ. We now need to show that

safen(E, JR; Γ ` P : AssnK (ρ, γ, σ),

σ,

s,

JR; Γ ` stabilize(Q) : AssnK (ρ, γ),

λv. JR; Γ, r : Val ` U : AssnK (ρ, γ[r 7→ v])).

Since s is atomic by Assumption 2, there is only the possibility
that the code take a non-forking step according to the operational
semantics, one that immediately reaches the skip configuration.

Hence, we can only step according to

E ` (σ, s) α−→ (σ′, skip)

and we need to find a P′ such that
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1. α ρ {JR; Γ ` P : Assn(ρ, γ, σ)K}{P′}

2. safen−1(E, P′, σ′, skip, JR; Γ ` stabilize(Q) : AssnK (ρ, γ), JUK)

We chose P′ := JR; Γ ` stabilize(Q) : AssnK (ρ, γ, σ′), and 2 is imme-
diate. To show 1, assume a stable frame R. We now need to argue
that

JαK (bJPK (ρ, γ, σ) ∗ Rcρ∅) ⊆
⌊
Jstabilize(Q)K (ρ, γ, σ′) ∗ R

⌋ρ

∅

Suppose an abstract configuration (h, a) in JPK ∗ R. Hence, we can split
(h, a) into p = (hP, aP) · (hR, aR) = r. By Assumption 1, we thus get an
index i ∈ I, a δ ∈ J∆Ki and p′ ∈

q
P′i
y

and ~y ∈ J~riK and an r′ such that
(r, r′) ∈ Rely(ρ) and bp · rcρ∅ ⊆ bp′ · r′c

ρ
~y.

By Assumption 2 and since

p′ = (hP′ , aP′) ∈ JPiK ,

we get

(JαK (hP′), aP′) ∈ JQi ∗ newRegion(~ni)K .

By Assumption 3 we thus get that there is a frame r′′ and assertion
q ∈ JQK such that

b(JαK (hP′), aP′) · rc
ρ
~ri ,~ni
⊆
⌊
q · r′′

⌋ρ

∅ .

By the transitivity of the rely relation, we know that r′′ is in the
assertion R as R is stable, i.e. closed under the rely relation.

Since this is shown for any configuration in JPK ∗ R we have that
bJPK ∗ Rcρ∅ ⊆ bJQK ∗ Rcρ∅. It remains to observe that Q ⊆ stabilize(Q)

as remarked in Definition 93, and hence, by Lemma 99 we get

bJPK ∗ Rcρ∅ ⊆ bJstabilize(Q)K ∗ Rcρ∅
as desired.

3.9.1.2 Soundness of Atomic Statement Specifications

Lemma 127 (Soundness of Atomic Write). For all ρ ∈ R, γ ∈ Γ and σ,

JR; Γ `S 〈e1 7→ _〉 [e1] := e2 〈e1 7→ e2〉 : AtomicK (ρ, γ, σ)

Proof. There are two possible execution steps for the atomic write. If
e1 does not denote a valid address, the write does not succeed, and
the code steps according to

E ` (σ, [e1] := e2)
 −→ (skip, σ)

and we have to argue that for any s ∈ JSK and stable frame R

J K (bJR; Γ ` e1 7→ _ : AssnK (ρ, γ, σ) ∗ Rcρs ) ⊆

bJR; Γ ` e1 7→ e2 : AssnK (ρ, γ, σ) ∗ Rcρs
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which is trivial as any heap satisfying the precondition will satisfy
that Je1Kσ ∈ Addr, which is a contradiction. There are hence no heaps
satisfying the precondition, and the inclusion in the semantic action
judgment is thus vacuously satisfied.

Hence, there is only one transition allowed by the operational se-
mantics. The code [e1] := e1 can step according to

Je1Kσ ∈ Addr

E ` (σ, [e1] := e2)
write(Je1Kσ ,Je2Kσ)−−−−−−−−−−→ (σ, skip)

We thus have to argue that the following holds for all s ∈ JSK and
stable frames R:

Jwrite(Je1Kσ , Je2Kσ)K (bJR; Γ ` e1 7→ _ : AssnK (ρ, γ, σ) ∗ Rcρs ) ⊆

bJR; Γ ` e1 7→ e2 : AssnK (ρ, γ, σ) ∗ Rcρs

We proceed according to definition. Suppose a stable frame R. And
suppose a heap h in

bJe1 7→ _K (ρ, γ, σ) ∗ Rcρ∅ .

We now have to argue that

Jwrite(Je1Kσ , Je2K)K (h)

lies in

bJe1 7→ e2K (ρ, γ, σ) ∗ Rcρ∅ .

Since Je1Kσ is an address by assumption, we know that the heap update
is successful, and we know

h[Je1Kσ 7→ Je2Kσ]

is in the assertion

JR; Γ ` e1 7→ e2 : AssnK (ρ, γ, σ)

and hence in its erasure.

Lemma 128 (Soundness of Atomic Read). For all ρ ∈ JRK, γ ∈ JΓK and
σ,

JR; Γ `S 〈e = n ∗ n 7→ v〉 x := [e] 〈x = v ∗ n 7→ v〉 : AtomicK (ρ, γ, σ)

Proof. There are two possible transitions for an atomic write, depend-
ing on whether the expression e denotes a valid address or not.

In the case that JeKσ 6∈ Addr, the code transitions according to

E ` (σ, x := [e])
 −→ (skip, σ)
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and we have to argue that for any s ∈ JSK and stable frame R we have

J K (bJR; Γ ` e = n ∗ n 7→ v : AssnK (ρ, γ, σ) ∗ Rcρs ) ⊆

bJR; Γ ` x = v ∗ n 7→ v : AssnK (ρ, γ, σ) ∗ Rcρs

which is trivial as any heap satisfying the precondition will satisfy
that JeKσ ∈ Addr, which is a contradiction. There are hence no heaps
satisfying the precondition, and the inclusion in the semantic action
judgment is thus vacuously satisfied.

Hence, there is only one transition allowed by the operational se-
mantics. The code x := [e] can step as follows for some value v′:

JeKσ ∈ Addr

E ` (σ, x := [e])
read(JeKσ ,v′)−−−−−−−→ (σ[x 7→ v′], skip)

Now it remains to show that
q
read(JeKσ , v′)

y
(bJR; Γ ` e = n ∗ n 7→ v : AssnK (ρ, γ, σ) ∗ Rcρs ) ⊆

bJR; Γ ` x = v ∗ n 7→ v : AssnK (ρ, γ, σ) ∗ Rcρs

We proceed directly by definition of the semantic action judgment.
Suppose a stable R, and suppose further a heap h in

bJR; Γ ` e = n ∗ n 7→ v : AssnK (ρ, γ, σ) ∗ Rcρ∅ .

We know that

h(JeKσ) = v,

hence v′ = v. Then, by the action interpretation,

Jread(JeKσ , v)K (h) = {h}.

Hence it suffices to show that

h ∈ bJR; Γ ` x = v ∗ n 7→ v : AssnK (ρ, γ, σ[x 7→ v])cρ∅ .

By calculation, the semantics of the postcondition, it suffices to show
that h satisfies that σ[x 7→ v](x) = v, which is trivially satisfied by h,
and h(n) = v, which it does, as we know h(JeKσ) = v and JeKσ = n.

Hence, h is in the erasure of that assertion.

Lemma 129 (Soundness of CAS). For all ρ ∈ JRK, γ ∈ JΓK and σ,

JR; Γ `S 〈e1 = a ∗ a 7→ v ∗ e2 = old ∗ e3 = new〉
x := CAS(e1,e2,e3)

〈(x 6= 0 ∗ v = old ∗ a 7→ new)∨(x = 0 ∗ v 6= old ∗ a 7→ v)〉K(ρ, γ, σ)
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Proof. Whether the CAS operation succeeds or not is independent
of whether the CAS operation completes successfully or not. This
depends on whether e1 denotes a legal address.

In the case that Je1Kσ 6∈ Addr, the code transitions according to

E ` (σ, x := CAS(e1,e2,e3))
 −→ (skip, σ)

and we have to argue that for any s ∈ S and stable assertion R

J K (bJR; Γ ` e1 = a ∗ a 7→ v ∗ e2 = old ∗ e3 = new : AssnK (ρ, γ, σ) ∗ Rcρs ) ⊆

bJR; Γ ` (. . .) ∨ (. . .) : AssnK (ρ, γ, σ) ∗ Rcρs
which is trivial as any heap satisfying the precondition will satisfy

that JeKσ ∈ Addr, which is a contradiction. There are hence no heaps
satisfying the precondition, and the inclusion in the semantic action
judgment is thus vacuously satisfied.

Hence, there is only one transition allowed by the operational se-
mantics, namely that the CAS operation completes. The code can step
as follows for some value v′:

Je1Kσ ∈ Addr

E ` (σ, x := CAS(e1,e2,e3))
CAS(b,Je1Kσ ,Je2Kσ ,Je3Kσ)−−−−−−−−−−−−→ (σ[x 7→ b], skip)

for some value b. We proceed in two analogous cases according to
whether b = 0 - we show the negative case in which the CAS succeeds.

We have to show that for any s ∈ JSK and stable frames R

JCAS(b, Je1Kσ , Je2Kσ , Je3Kσ)K

(bJR; Γ ` e1 = a ∗ a 7→ v ∗ e2 = old ∗ e3 = new : AssnK (ρ, γ, σ) ∗ Rcρs )
⊆ bJR; Γ ` (. . .) ∨ (. . .) : AssnK (ρ, γ, σ) ∗ Rcρs

We proceed directly by definition of the semantic action judgment.
Suppose a heap h that lies in the initial assertion.

We know Je1Kσ ∈ Addr, and furthermore, we know that Je1Kσ ∈
dom(h). We also know that h(Je1Kσ) = v. Hence, the interpretation of
the heap effect depends on whether v = old or not. In this case it must
since we know by assumption that b 6= 0.

If it does, JCAS(Je1Kσ , Je2Kσ , Je3Kσ , b)K (h) = h[Je1Kσ 7→ Je2Kσ]. Hence,
we need to show that, knowing b 6= 0,

(h[Je1Kσ 7→ Je2Kσ], a) ∈

JR; Γ ` (x 6= 0 ∗ v = old ∗ a 7→ new) ∨ (x = 0 ∗ v 6= old ∗ a 7→ v) : AssnK

(ρ, γ, σ[x 7→ b])

By the semantics of assertions, it is sufficient to demonstrate that it
lies in one of the disjuncts, where we obviously choose to show

(h[Je1Kσ 7→ Je2Kσ], a) ∈ JR; Γ ` x 6= 0 ∗ v = old ∗ a 7→ new : AssnK

(ρ, γ, σ[x 7→ b])



114 Caper Tech Report

We know b 6= 0, Je1Kσ = a and Je2Kσ = v, hence the three constraints
are immediate.

The alternate case is analogous.

3.9.1.3 Soundness of Program Specifications

Lemma 130 (Soundness of Program Specifications). Given a well-
typed program specification ` ~r;~f, assume for each fi that, for all
n ∈N,

n ∈
q
~r;
⌈
~f
⌉
` fi : FunctionSpec

y
.

Then,
q
`~r;~f : ProgramSpec

y
holds.

Proof. We are to show that, for any given n ∈N,
⌊
~f
⌋
�n
⌈
~f
⌉
.

By assumption, for every function spec fi = g(~x)(Γ,~y){P}s{r.Q},
for any n and γ ∈ JΓ,~y : ValK, ρ ∈ JRK,

n ∈
r
~r;
⌈
~f
⌉

; Γ,~y : Val `
{

P ∗ (~x = ~y)
}
s
{
∀r.Q | r.Q

}
: Spec

z
(ρ, γ).

This in particular means that for any E such that for any n′ < n we
have E �ρ

n′
⌈
~f
⌉
, it holds for any σ ∈ Stack that

safen(E, Jdom(R); Γ,~y : Val ` P ∗ (~x = ~y) : AssnK (ρ, γ, σ),

σ,

s,

λσ′. Jdom(R); Γ,~y : Val ` ∀r.Q : AssnK (ρ, γ, σ′),

λσ′.λv. Jdom(R); Γ,~y : Val, r : Val ` Q : AssnK (ρ, γ[r 7→ v], σ′))

This is precisely Definition 103, of environment/function spec agree-
ment, and in summary we have

∀E.E �ρ
n′
⌈
~f
⌉
⇒ E �ρ

n g : (Γ,~y){P}{r.Q}

Since we have this for every g ∈ dom(
⌈
~f
⌉
), we have that

∀E.E �ρ
n′
⌈
~f
⌉
⇒ E �ρ

n
⌈
~f
⌉

.

If we instantiate E to
⌊
~f
⌋

we obtain precisely⌊
~f
⌋
�ρ

n′
⌈
~f
⌉
⇒
⌊
~f
⌋
�ρ

n
⌈
~f
⌉

.

Since we have this for any n′ < n, and for any n, we can generalize to

∀n.(∀n′ < n.
⌊
~f
⌋
�ρ

n′
⌈
~f
⌉
)⇒

⌊
~f
⌋
�ρ

n
⌈
~f
⌉

which by induction lets us conclude

∀n.
⌊
~f
⌋
�ρ

n
⌈
~f
⌉

as desired.

Theorem 131 (Soundness of Program Logic). If `~r;~f : ProgramSpec is
derivable in the program logic, then

q
`~r;~f : ProgramSpec

y
holds.
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4
DPC: Protocol Combinators for Modeling, Testing and Execution of
Distributed Systems

Distributed systems are hard to get right, model, test, de-
bug, and teach. Their textbook definitions, typically given
in a form of replicated state machines, are concise, yet
prone to introducing programming errors if naïvely trans-
lated into runnable implementations.

In this work, we present Distributed Protocol Combinators
(DPC), a declarative programming framework that aims
to bridge the gap between specifications and runnable im-
plementations of distributed systems, and facilitate their
modeling, testing, and execution. DPC builds on the ideas
from the state-of-the art logics for compositional systems
verification. The contribution of DPC is a novel family
of program-level primitives, which facilitates construction
of larger distributed systems from smaller components,
streamlining the usage of the most common asynchronous
message-passing communication patterns, and providing
machinery for testing and user-friendly dynamic verifica-
tion of systems. This paper describes the main ideas behind
the design of the framework and presents its implemen-
tation in Haskell. We introduce DPC through a series of
characteristic examples and showcase it on a number of
distributed protocols from the literature.

This paper extends our preceeding conference publica-
tion [5] with an exploration of randomised testing for
protocols and their implementations, and an additional
case study demonstrating bounded model checking of pro-
tocols.

4.1 Introduction

Distributed fault-tolerant systems are at the heart of modern electronic
services, spanning such aspects of our lives as healthcare, online
commerce, transportation, entertainment and cloud-based applications.
From engineering and reasoning perspectives, distributed systems
are amongst the most complex pieces of software being developed
nowadays. The complexity is not only due to the intricacy of the
underlying protocols for multi-party interaction, which should be
resilient to execution faults, packet loss and corruption, but also due
to hard performance and availability requirements [14].

117
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The issue of system correctness is traditionally addressed by employ-
ing a wide range of whole-system testing methodologies, with more
recent advances in integrating techniques for formal verification into
the system development process [29, 36, 59]. In an ongoing effort of
developing a verification methodology enabling the reuse of formal
proofs about distributed systems in the context of an open world, the
Disel logic, built on top of the Coq proof assistant [18], has been pro-
posed as the first framework for mechanised verification of distributed
systems, enabling modular proofs about protocol composition [71, 79].

The main construction of Disel is a distributed protocol P—an op-
erationally described replicated state-transition system (STS), which
captures the shape of the state of each node in the system, as well
as what it can or cannot do at any moment, depending on its state.
Even though a protocol P is not an executable program and cannot
be immediately run, one can still use it as an executable specification
of the system, in order to prove the system’s intrinsic properties. For
instance, reasoning at the level of a protocol, one can establish that
a property I : SystemState → Prop is an inductive invariant wrt. a
protocol P .1 A somewhat simplified main judgement of Disel, P ` c,
asserts that an actual system implementation c will not violate the
operational specification of P . Therefore, if this holds, one can infer
that any execution of a program c, will not violate the property I,
proved for protocol P . Disel also features a full-blown program logic,
implemented as a Hoare Type Theory [57], which allows one to ascribe
pre- and post-conditions to distributed programs, enforcing them via
Coq’s dependent types, at the expense of frequently requiring the user
to write lengthy proof scripts.

While expressive enough to implement and verify, for instance, a
crash-recovery service on top of a Two-Phase Commit [71], unfor-
tunately, Disel, as a systems implementation tool, is far from being
user-friendly, and is not immediately applicable for rapid prototyping
of composite distributed systems, their testing and debugging. Neither
can one use it for teaching without assuming students’ knowledge of
Coq and Separation Logic [62]. Furthermore, system implementations
in Disel must be encoded in terms of low-level send/receive primitive,
obscuring the high-level protocol design.

In this work, we give a practical spin to Disel’s main idea—disentangling
protocol specifications from runnable, possibly highly optimised, sys-
tems implementations, making the following contributions:

• We distil a number of high-level distributed interaction patterns,
which are common in practical system implementations, and
capture them in a form of a novel family of Distributed Protocol
Combinators (DPC)—a set of versatile higher-order programming
primitives. DPC allow one to implement systems concisely, while

1 Examples of such properties include global-systems invariants, used, in particular, to
reason about the whole system reaching a consensus [65, 67].
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still being able to benefit from protocol-based specifications for
the sake of testing and specification-aware debugging.

• We implement DPC in Haskell, providing a set of specification
and implementation primitives, parameterised by a monadic
interface, which allow for multiple interpretations of protocol-
oriented distributed implementations.

• We provide a rich toolset for testing, running, and visual debug-
ging of systems implemented via DPC:

– visual exploration tools for tracing protocol execution.

– tools for guided random execution of implementations, en-
abling testing implementations against their protocol speci-
fications as properties in the sense of Claessen and Hughes
[17].

– a language for expressing protocol invariants, and tools for
checking them on the (bounded) state space of the protocol.

• We showcase DPC on a variety of distributed systems, ranging
from a simple RPC-based cloud calculator and its variations,
to distributed locking [43], Two-Phase Commit [35], and Paxos
consensus [46, 47].

4.2 Specifying and Implementing Systems with DPC

In this work, we focus on message-passing asynchronous distributed
systems, where each node maintains its internal state while interacting
with others by means of sending and receiving messages. That is,
the messages, which can be sent and received at any moment, with
arbitrary delays, drops, and rearrangements, are the only medium of
communication between the nodes. DPC takes the common approach
of thinking of message-passing systems as shared-memory systems, in
which each message in transit is allocated in a virtual shared “message
soup”, where it lingers until it is delivered to the recipient [71, 80].

The exact implementation of the per-node internal state might differ
from one node to another, as it is virtually unobservable by other
participants of the system. However, in order for the whole system to
function correctly, it is required that each node’s behaviour would be
at least coherent with some notion of abstract state, which is used to
describe the interaction protocol.

In the remainder of this section, we will build an intuition of de-
signing a system “top-down”. We will start from its specification in
terms of a protocol that defines the abstract state and governs the
message-passing discipline, going all the way down to the implemen-
tation that defines the state concretely and possibly combines several
protocols together. For this, we use a standard example of a distributed
calculator.
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C

Compute_Request ([3, 100, 20])

Compute_Response ([123])

S

4.2.1 Describing Distributed Interaction

In a simple cloud calculator, a node takes one of two possible roles:
that of a client or that of a server. A client may send a request along
with data to be acted upon to the server (e. g., a list of numbers
[3, 100, 20] to compute the sum of), and the server in turn responds
with the result of the computation, as shown on the diagram on
the right. For uniformity of implementation, all message payloads,
including the response of the server, are lists of integers. Notice that
this description does not restrict e. g., the order in which a server must
process incoming requests from the clients, leaving a lot of room for
potential optimisations on the implementation side.

In order to capture the behavioural contract describing the interac-
tion between clients and servers, we need to be able to outlaw some
unwelcome communication scenarios. For instance, in our examples,
it would be out of protocol for the server to respond with a wrong
answer (in general an issue of safety) or to the wrong client (in general
an issue of security). A convenient way to restrict the communication
rules between distributed parties is by introducing the abstract state
describing specific “life stages” of a client and a server, as well as asso-
ciated messages that trigger changes in this state—altogether forming
an STS, a well-known way to abstractly describe and reason about
distributed protocols [48, 49].

Let us now describe our calculator protocol as a collection of coordi-
nated transition systems. The client’s part in the protocol originates in
a state ClientInit containing the input it is going to send to the server,
as well as the server’s identity. From this state, it can send a message
to server S with the payload [3, 100, 20]. It then must wait, in a blocking
state, for a response from the server.2 Upon having received the mes-
sage, the client proceeds to a third and final state, ClientDone. From here,
no more transitions are possible, and the client’s role in the protocol
is completed. A schematic outline of the client protocol is depicted in
Fig. 4.1 (a).

In our simplified scenario, the protocol for the server (Fig. 4.1, (b))
can be captured by just one state, ServerReady, so that receiving the re-
quest and responding to it with a correct result is observed as “atomic”
by other parties, and hence, is denoted by a single composite transition.
In other words, at the specification level, the server immediately reacts
to the request by sending a response.

2 Remember that this is a specification-level blocking, the implementation can actually
do something useful in the same time, just not (observably) related to this protocol!
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ClientInit (S, ns)

Blocking

ClientDone (xs)

send (Compute_Request, S, ns)

receive (Compute_Response, S, xs)

ServerReady

send (Compute_Response, S, sum(ns))

receive (Compute_Request, C, ns)

(a) (b)

Figure 4.1: State transitions for a client (a) and a server (b) in the calculator
protocol.

Notice that the protcol places no demands on the number of clients,
servers or unrelated nodes in the network, nor does it restrict the
number of instances of the protocol are running in a given network.
The specification is "local" to the parties involved (which in general
can number arbitrarily many).

This “request/respond” communication pattern is so common in
distributed programming that it is worth making explicit. We will
refer to this pattern as a pure remote procedure call (RPC) and take it as
our first combinator for protocol-based implementation of distributed
systems.

4.2.2 Specifying the Protocol

We can capture the RPC-shaped communication in DPC by first enu-
merating all possible states of nodes in the protocol in a single data
type. For the calculator, the states can be directly translated from the
description above to the following Haskell data type:

data S=ClientInit NodeID [Int]

| ClientDone [Int]

| ServerReady

NodeID is a type synonym for Int, but any type with equality would
serve. ClientInit contains the name of the server and the list to sum.
ClientDone contains the response from the server. Next, we describe the
only kind of exchange that takes place in a network of clients and
servers communicating by following the RPC discipline. We do so
by specifying when a client can produce a request in a protocol, and
how the server computes the response. Perhaps, a bit surprisingly,
no more information is needed, as the pattern dictates that clients
await responses from servers, and the server responds immediately.
This is the reason why we need only enumerate two states for the
client, eliding the one for blocking, as per Fig. 4.1 (a): the framework
adds the third during execution by wrapping the states in a type with
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an additional Blocking constructor.3 The following definition of compute

outlines the specification of the protocol’s STSs:

compute :: Alternative f⇒ ([Int]→ Int)→ Protlet f S

compute f= RPC "compute" clientStep serverStep

where

clientStep s= case s of

ClientInit server args→ pure (server, args, ClientDone)
_→ empty

serverStep args s= case s of

ServerReady→ pure ([f args], ServerReady)
_→ empty

As per its type, compute takes a client-provided function of type [Int]

→ Int, which is used by the server to perform calculations. The result
of compute is of type Protlet f S, where S is the data type of our STS states
defined just above and f is a type-former encapsulating possible non-
determinism in a protocol specification. This is is a standard pattern
for programming “with effects” in the pure fragment of Haskell. Later
constructions will make integral use of non-determinism to, e. g.,
decide on the next transition depending on the external inputs, and
the parameter f serves to restrict what notion of non-determinism is
used in the definition of protocols.4 For now, the result of compute is
entirely deterministic, but must still be “wrapped” in the constructors
of the non-deterministic effect, here pure and empty indicating a single
result and the absence of results, respectively.

Protlets (aka. “small protocols”) are the main building blocks of
our framework. A distributed protocol can be thought of as a family
of protlets, each of which corresponds to a logically independent
piece of functionality and can be captured by a fixed interaction
pattern between nodes. In a system, each node can act according
to one or more protlets, executing the logic corresponding to them
sequentially, or in parallel. For this example, there is just the one
exchange of messages, so a single protlet makes for the complete
protocol description.

Our framework provides several constructors to build protlets from
the data type description for the protocol state space and the opera-
tional semantics of its transitions. In the example above, RPC is a data
constructor, which encodes the protlet logic by means of two functions.
Its first argument, clientStep, prescribes that from ClientInit state, a node
can send args to node server, and the response payload is later wrapped
via ClientDone to form the succesor state. The second argument, serverStep,
says that the state ServerReady can serve a request in one step: receiving
args and responding with f args in a singleton list, continuing in the
same state. We have now completely captured the above intuitions
and transition system of the calculator in less than ten lines of Haskell.

3 See the discussion of executing specification in Section 4.3
4 One can think of any protocol, whose diagram has a fork, as non-deterministic.
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4.2.3 Executing the Specification

The immediate benefits of having an executable operational specifica-
tion of a protocol is to be able to run it, locally and without needing
full deployment across a network, ensuring that it satisfies basic sanity
checks and more complex invariants.

The execution model for protlets is a small-step operational seman-
tics, with the granularity of transitions being that of the involved
protlets. We take as machine configurations the entire network of
nodes and their abstract states.

In case several protlets of a similar shape are involved (e. g., a
node is involved in two or more RPCs), we distinguish them by
introducing protlet labels, a solution that is standard for program
logics for concurrency [24, 70]. Having introduced protlet labels, we
can logically partition the local state of each node along the protlet
instance space, maintaining a per protlet instance local state portion for
each node. We represent this operational machine configuration as the
datatype SpecNetwork, which is an instantiation of an abstract structure
of a network state NetworkState, representing the global environment and
a local state for each node in the network. The generality allows code
reuse across the framework. For execution, the global environment
is a protocol specification for each instance label. The per-node state
consists of a protlet state for each protocol instance, and a message
queue. The intention is that the operational semantics updates one
node’s one protlet’s state at a time.

data NetworkState global local=NetworkState {
_globalState :: global,
_localStates :: Map NodeID local

}

type SpecNetwork f s=
NetworkState (Map Label [Protlet f s])

(Map Label (NodeState s), [Message])

The following describes a network for the calculator protocol with two
nodes (identified by 0 and 1), both running just one protlet (labelled
with 0), for the input for the example from Section 4.2.1:

addNetwork :: Alternative f⇒ SpecNetwork f S

addNetwork=initializeNetwork nodeStates protocols

where

nodeStates= [ (server, [(0, ServerReady)])

, (client, [(0, ClientInit server [3, 100, 20])]) ]

protocols = [ (0, [compute sum]) ]

server, client :: NodeID

(server, client)= (0, 1)

Here, initializeNetwork is a convenience function to initialize the SpecNetwork

datastructures from human writeable descriptions in the form of
association lists.
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In any given network configuration, many actions can be possible.
A node may be ready to initiate an RPC, or it (or another node
entirely) might be ready to receive a message—many such actions
may be enabled and relevant at once.5 As the purpose of running
the specification is to trace the possible behaviors in the protocol,
we choose the next action to execute in the network by leaving the
resolution to the user of the semantics. To do so, we implement the
executable small-step relation as a monad-parameterised function
capturing the possibility of non-determinism (hence Alternative f). This
makes the implementation of the operational semantics simple, yet
general, as it just needs to describe an f-ary choice or f-full collection
of possible transitions at each step:

step :: (Monad f, Alternative f)⇒ SpecNetwork f s→ f (SpecNetwork f s)

The network can be “run” by iterating this small-step execution func-
tion with a suitable instance of f, a standard construction in imple-
mentation of a non-determinism in monadic interpreters.

For example, we can instantiate the non-determinism to the classic
choice of the list monad [52], which leads to enumerating every possi-
ble action. We can then iterate the function step by choosing an arbitrary
transition, as captured by the
simulateNetworkIO function used in the following interaction with the li-
brary, where we explore the "depth" of a single run of the protocol.

> length<$>simulateNetworkIO addNetwork

4

This is coherent with the first example we envisioned wrt. the
protocol: there is (1) the initial state; (2) the state with the client
awaiting response, but the message undelivered; (3) the state with the
client waiting and the server having sent a response; and finally, (4) a
terminal state with the client done.

The non-determinism can be similarly resolved by enumerating all
possible paths through a protocol, up to a certain trace length if the
execution space is not finite. If the state space of a network is finite,
this can yield actual finite-space model checking procedures. In the
following subsection, we will explore another alternative to resolving
the non-determinism, yielding an unusual yet very useful execution
method.

4.2.4 Interactive Exploration with GUI

By delegating the decision of which transition to follow to the user of
an application that performs this simulation, we can allow the client
of the framework to explore the network behaviour interactively. The
DPC library provides a command-line GUI application facilitating
interactive exploration of distributed networks step-by-step. Provided

5 And their abundance is precisely why reasoning about distributed systems is hard.
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Figure 4.2: The interactive exploration tool, loaded with the calculator proto-
col.

an initial network specification like the one described previously, one
can start the session by typing the following:

> runGUI addNetwork

This yields the interface displayed in Fig. 4.2. By choosing specific
transitions in sequence, the user can evolve and inspect the network at
each step of execution. This is useful for protocol design and debug-
ging, and can help understand the dynamics of a protocol, and the
kinds of communication patterns it describes.

For example, in Fig. 4.3 we show the subsequent prompt after
showing the selection of Option 1:

SentMessages 0 1 [Message {_msgFrom= 1, _msgTag= "compute__Request",...

SentMessages is a human readable piece of data that represents the option
of sending in protocol instance 0, from node 1 the message with sender
1 of tag "compute__Request".

The format chosen is the debug serialization format provided by
Haskell’s Show and Read type classes for ease of experimenting: any data
of the sort displayed to the user can be directly copied and used in
scripts or command prompts. Here, the recipient and message content
is elided for issues of screenspace, but as the window is enlarged, so
is the depth of information provided to the client of the framework.

The state view then shows that Node 0 now has said message
waiting for it in the soup, and Node 1 is now blocking. The user is then
presented with subsequent possible choices, here the option for the
calculator to receive the request and send the response in one atomic
action, as dictated by the protocol.

Additionally, as can be seen in Fig. 4.2, in the interactive tool we
enrich the possible transitions at every step with the possibility of a
node to go off-line. In effect, it means it will stop processing messages,
modelling a benign (non-byzantine) fault. Other nodes cannot observe
this and will “perceive” the node as not responding. It is implemented
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Figure 4.3: Choosing option 1 in the prompt from Fig. 4.2.

by eliding the actions performed by the off-line node when computing
the set of possible actions. This, however, becomes very useful when
we move to explore protocols that allow for partial responses among a
collection of nodes, as in the case of crash-resilient consensus protocols.

4.2.5 Protocol-Aware Distributed Implementations

Distributed systems protocols serve as key components of some of
the largest software systems in use. The actions taken in the protocol
are governed by programs outside the key protocol primitives, so it
is vital that implementations can integrate with software components
in real general-purpose languages. We here present such a language
with primitives for sending and receiving messages as an embedded
domain-specific language (EDSL) in Haskell. This allows use of the en-
tire Haskell toolkit in engineering efficient optimised implementations
relying on distributed interaction.

Naturally, as implementations deviate from the protocols (in the
way they, e. g., implement internal state), we want to ensure that
the they still adhere to the protocol as specified. To achieve this, we
introduce primitives for annotating implementations with protocol-
specific assertions. These annotations can be ignored by execution-
oriented interpretations aiming for efficiency rather than verification
guarantees.

The following code implements a calculator server in plain Haskell
using do-notation to sequence effectful computations. The effects are de-
scribed by type class constraints on m, the monad used for sequencing:
MessagePassing provides a send and receive primitive, and ProtletAnnotations S

provide the enactingServer primitive over the state-space S. The type S is
the data type defined in Section 4.2.2, and denotes the abstract state
space we wish to relate to sub-computations in our implementation,
as explained below.

addServer :: (ProtletAnnotations S m, MessagePassing m)⇒ Label→ m a

addServer label= loop
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where

loop= do

enactingServer (compute sum) $ do

Message client _ args _ _← spinReceive [(label, "Compute__Request")]
send client label "Compute__Response" [sum args]

loop

By using type classes describing operations, we allow for several
different interpretations of this code. For instance, by interpreting the
send and receive as POSIX Socket operations, we obtain a subroutine in
the IO Monad, Haskell’s effectful fragment, that we can integrate into
any larger development with no interpretive overhead. The spinReceive

operation is defined using recursion and a primitive receive operation
that attempts to receive an incoming message with a tag from amongst
a list of candidate message tags in a non-blocking manner.

The body of addServer is annotated with a (compute sum) protlet, enforcing
that the server responds to the client atomically (in terms of message
passing) and to perform the sum function (or something observationally
equivalent) on the supplied arguments. By bracketing the receive and
send in the enactingServer primitive, the implementation declares its intent
to conform to the server role of the RPC, as dictated by the protocol.
Once we have a client to play the other role in the protocol, we will
demonstrate how this intent can be checked dynamically. The message
tags that appear in the code are by convention the tags used in the RPC
protocol, i. e., the name of the protocol with a suffix indicating the role
in the RPC that the message plays.

In contrast Disel and other static verification frameworks that en-
force protocol adherence via (dependent) type systems (embedded in
Coq or other proof assistants) [45, 71], we verify protocol properties dy-
namically. The tradeoff is that of coverage versus annotation and proof
overhead. We can, through exploiting executable specifications, check
that a single run of a program adheres to a protocol. Notice that addServer
is, like the specification of the compute protlet, agnostic in the number
and kinds of other nodes in the network. Its behaviour is locally and
completely described by its implementation, and is segregated from
interfering with unrelated protlets via the label parameter. We refer
the reader to the development for a number of client component
implementations.

Let us now reap the benefits of protocol-aware distributed program-
ming enabled by DPC and dynamically check that the implementations
do indeed follow the abstract protocols. We achieve this by interpret-
ing the EDSL into a datatype of abstract syntax trees (AST) that makes it
possible to inspect their evaluations at run time. We give a small-step
structural operational semantics to this language, and, precisely like
the exectuable specifications, lift the evaluation of a single program to
that of an entire network of programs, by assigning each program a
node identifier in the network, as show below. Here, Node 1 runs the
client implementation and Node 0 runs the server.
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addConf :: (ProtletAnnotations S m, MessagePassing m)⇒ ImplNetwork m Int

addConf=initializeImplNetwork [

(1, addClient 0 20 3 0)

, (0, addServer 0)

]

The similarity to specification-level configurations is not incidental:
ImplNetwork is another instantiation of NetworkState:

type ImplNetwork m a=NetworkState [Message] (m a)

Here, the global state (of type ImplNetwork m Int, with m constrained as in
addServer/addClient) is just the message soup, and the node-local state is
the program itself. An interpreter for such configurations is imple-
mented by the following function:

traceRoundRobin :: ImplNetwork (AST s) a→ [TraceAction s]

Here, the AST data type is the HOAS AST for message-passing imple-
mentations to be interpreted in. The result of running the network
is a (possibly infinite but productive) list of TraceActions. Trace actions
describe “events” in the network: messages received and messages
sent. We can simulate a full run of the network by using the trace
actions to resolve the non-determinism of choices in the operational
semantics.

For utility we here bake in a round robin schedule to ensure fair
execution, but provide more general interpreters parametrised by a
schedule and returning richer results, e.g.

runWithSchedule :: [NodeID]→
ImplNetwork (AST s) a→
[(TraceAction s, ImplNetwork (AST s) a)]

We can verify that our implementation indeed adheres to the de-
sired protocol by the trace produced by traceRoundRobin on a network
configuration, ensuring that (a) every observable action is compatible
with the state that the node is supposed to be in, and (b) checking
the messages expected from these states. For this, we implement yet
another operational semantics, where the machine configuration is a
protocol state for every node id, and the program is a trace of primitive
actions. We here call it checkTrace. The interpreter faults if the current
action is not applicable to the state, or sends or receives messages not
prescribed by the specification. We can run the adherence checker on
a prefix (e. g., of length 15) of the infinite trace as follows:

>checkTrace addNetwork $ take 15 $ traceRoundRobin addConf

Right ()

The result of Right () indicates success: the trace did indeed conform
to the protlet annotations of the program, assuming the initial state
of the implementations in addConf conformed to an initial abstract state
corresponding to the the network state of addNetwork.
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What happens if we introduce a mistake in the implementation?
For instance, what if we run the client implementation twice? We can
illustrate this by altering addConf to demand the addClient to be run twice
in succession:

addConf=initializeImplNetwork [

(1, addClient 0 3 20 0 » addClient 0 100 11 0)

, (0, addServer 0)

]

The checker then reports an error, as this is not allowed by the protocol:
the client would have brought itself to the terminal state ClientDone by
the first RPC, and, hence, cannot proceed.

>checkTrace addNetwork $ take 30 $ traceRoundRobin addConf

∗∗∗ Exception: Node 1 expected to initiate rpc compute

Node is in state: ClientDone [23]

In a different scenario, if we erroneously annotate the server as in-
tending to serve a product function (instead of sum), we will fail protocol
adherence, because the specification does not agree on the content of
the messages.

addServer :: (ProtletAnnotations S m, MessagePassing m)⇒ Label→ m a

addServer label= loop

where

loop= do

enactingServer (compute product) {- !!ERROR!! -} $ do

...

>checkTrace addNetwork $ take 15 $ checkTrace addConf

∗∗∗ Exception: The server response did not follow the protocol from state

ServerReady

Expected: [60]

Got: [23]

Of course, here we only observe the error because our single instanti-
ation of the client’s payload, [20, 3], happened to disagree on the sum

and product function. What if the payload was [0,1]?
By enriching dynamic testing with protocol adherence checks we

believe we can achieve greater assurances of the correctness of our
implementations without resorting to use full-blown verification frame-
works [36, 71].

4.2.6 Introducing Randomised Testing to Distributed Systems

Naturally, the dynamic testing demonstrated in the preceeding section
is only as good as the creativity and insight of the developer. The
originators of QuickCheck observed that pure functional programs
with executable specifications acting on first-order data is a natural
setting for exploiting randomised testing: instead of carefully crafting
pathological cases to demonstrate absence of errors, carefully craft
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a generator for random program input and write more programs to
decide whether the program under test performs as expected [17].

DPC is a natural fit for this approach: we have an executable spec-
ification of a protocol, along with a re-interpretable DSL for imple-
menting these protocols. This suggests that we generate random input
data for the implementations, and use our executable specification as
ground truth for correctness of implementations.

First, we parameterise the initial configurations of the specification
and implementation execution configurations by the numbers that the
client want operated on.

addNetwork :: Int→ Int→ SpecNetwork f S

addConf :: Int→ Int→ ImplNetwork m [Int]

With this in hand we can formulate universally quantified boolean
properties (indexed boolean-valued expressions) that can then be
evaluated on randomly generated inputs. At it’s most basic, we wish
the evaluation of the implemantation to conform to the specification, a
property here formulated using checkTrace as described in Section 4.2.5:

prop_simpleAddNetwork :: Int→ Int→ Bool

prop_simpleAddNetwork x y=
let trace= take 100 $ traceRoundRobin (addConf x y) in

checkTrace (addNetwork x y) trace== Right ()

The prefix of prop_ is a convention that allows for discovery of prop-
erties by the QuickCheck toolset. The function traceRoundRobin is a pure
interpreter for the implementation language that schedules nodes in a
fair round-robin fashion. QuickCheck can now help us exorcise bugs
of the class previously identified as problematic for unit testing:

>quickCheck prop_simpleAddNetwork

∗∗∗ Failed! (after 2 tests and 2 shrinks):

Exception:

The server response did not follow the protocol from state: ServerReady

Expected: [0]

Got: [1]

0

1

QuickCheck reports that on payload [0, 1], the server implementation
violated the server specification: it replied to the client with 1 rather
than 0 as (erroneously) dictated by the specification.

QuickCheck can also help us with the problem of systematically
testing a class of errors unique to the setting of non-deterministic con-
current computation via message-passing, namely that of programs
not accounting for all possible schedules. As the number of instruc-
tions per process increases, the number of possible schedules grows
exponentially, and aggressively so. Corner cases are also difficult to
foresee, so in lieu of formal verification, the possibility of randomly
exercising possible schedules is worth pursuing. A schedule arises
from the non-deterministic interleaving of threads, but a concrete
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schedule can be represented by a sequence of integers, in Haskell a
value of type [NodeID], indicating the order of execution of the nodes
in the distributed system. We generalize roundRobinTrace to traceSchedule,
parametrised by the specific schedule to use.

arbitraryScheduleFor :: [NodeID]→ Gen [NodeID]

arbitraryScheduleFor s=infiniteListOf (elements s)

prop_simpleAddNetworkArbSchedule :: Int→ Int→ Property

prop_simpleAddNetworkArbSchedule x y=
forAll (arbitraryScheduleFor (nodes conf)) $ λschedule→
let trace= take 100 $ fst<$>runWithSchedule schedule conf in

checkTrace (addNetwork x y) trace== Right ()

where

conf= addConf x y

We use the forAll combinator to build a Property, in essence a generaliza-
tion of a boolean valued expression to a function taking a random seed
(and some additional configuration controlling the generation process).
Here, forAll is used to explicitly supply the generator arbitraryScheduleFor

to be used for generating traces as opposed to the implicit inference
of appropriate generators for x and y via type classes (The existing
instance for [Int] simple genereates a finite list of random integers).
QuickCheck uses the convention of naming generators ’arbitrary’.
This now let’s us exercise the implementation for bugs arising due to
pathological execution orders of each node in the network. It appears
robust to arbitrary interleavings of execution:

>quickCheck (withMaxSuccess 10000 prop_simpleAddNetworkArbSchedule)

+++ OK, passed 10000 tests.

We believe we here have illustrated the applicability of randomised
testing to build a dicipline of testing for distributed systems. By exploit-
ing that the specification language of DPC is executable, we leverage
existing technologies to give us a light-weight process for writing
convincingly correct implementations of distributed components.

4.3 Framework Internals

4.3.1 The Specification Language

A full distributed system specification consists of a collection of nodes,
each assigned a unique node identifier, and a collection of protlets for
each instance label. A node owns local state, partitioned according
to protocol instance labels. A protlet describes one exchange pattern
between parties. A collection of protlets over the same state space then
describe an entire protocol.

In the overview we saw the simplest protlet, the pure RPC, but
through exploration of examples and case studies, we have discovered
a number of such patterns, each more general than the previous. These
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are implemented as extensions to the Protlet data type. One such is
the broadcast protlet, integral for describing multi-party protocols.
We elide the other protlet constructors, which can be found in our
implementation.

data Protlet f s=
| RPC String (ClientStep s) (ServerStep s)

| Broadcast String (Broadcast s) (Receive f s) (Send f s)

| ...

The component functions of the protlets reuse a number of common
type abbreviations, here ClientStep, Send etc. All are at work in the above
listing. This common structure unifies their implementation in the
operational semantics. The expansion of, e. g., the Broadcast synonym is
as follows:

type Broadcast s= s→ Maybe ([(NodeID, [Int])], [(NodeID, [Int])]→ s)

This models a “partial” function on states s, saying under which con-
ditions a node can initiate a broadcast, by enumerating the recipients
and the body of the messages to them, along with a continuation
processing the received answers with their associated senders. This
continuation is stored in the implicit blocking state during actual
execution of the specification.

The specification language is given a non-deterministic operational
semantics as described in Section 4.2.3. Recall the network step func-
tion:

step :: (Monad f, Alternative f)⇒ SpecNetwork f s→ f (SpecNetwork f s)

It is implemented by computing an f-full of possible transitions for
every node in the network and combining the result of taking all
possible transitions on the current network. The key operation of step
is a dispatch on the current protocol state of a node:

case state of

BlockingOn _ tag f nodeIDs k→
resolveBlock label tag f nodeID inbox nodeIDs k

Running s→ do

protlet← fst<$> oneOf (_globalState Map.! label)

stepProtlet nodeID s inbox label protlet

The constructors BlockingOn and Running are supplied by the framework.
The first is used to track the terms under which a node is blocking:
what message(s) it needs to continue and from whom. resolveBlock

computes whether the conditions are met for the current node to
continue.

Here, _globalState is the mapping of collections of protlets (i. e., a
protocol) from instance labels. We then choose between protlets using
oneOf::[a]→ f a. The function stepProtlet dispatches control based on a
case distinction on the protlet constructor: for example, here is the
branch for the Broadcast protlet:
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stepProtlet :: (Monad m, Alternative m) =>

NodeID -> s -> [Message] -> Label -> Protlet m s -> m (

Transition s)

stepProtlet nodeID state inbox label protlet = case protlet of

...

Broadcast name broadcast receive respond ->

tryBroadcast label name broadcast nodeID state inbox <|>

-- (1)

tryReceive label (name ++ "__Broadcast") receive nodeID

state inbox <|> -- (2)

trySend label respond nodeID state inbox

-- (3)

...

A node attempting to advance a protocol using the Broadcast protlet can
do so if it is (1) a client ready to perform a broadcast; (2) a server
ready to receive such a broadcast; or (3) a server that is ready to
respond to a broadcast. The try functions all follow the same structure:
check that the user-provided protlet component functions apply, and
if so, generate an appropriate transition. The result of each call is
combined using<|>, the choice operator for the Alternative instance for m.
For instance, here is the signature of one such function for Broadcast:

tryBroadcast :: Alternative f⇒ Label→ String→ Broadcast s→
NodeID→ s→ [Message]→ f (Transition s)

There is one such function for every protlet component function,
five in total.

Interpretations of Protocols. As described in Section 4.2.3, the oper-
ational semantics of protocols can be instantiated to obtain different
interpretations. We here look at bounded model checking mentioned
in passing in the overview. We can use the List monad to enumerate
all execution paths in a breadth-first manner:

simulateNetworkTraces :: SpecNetwork [] s→ [[SpecNetwork [] s]]

This yields a list-of-lists where the nth list contains all possible states
after n steps of execution, in a breadth first enumeration of the state
space. Each constituent list of states is necessarily finite, but the list-of-
lists need not be in the case of infinite network executions. By virtue
of Haskell’s lazy evaluation, such a computational object is useful. We
can write a procedure that, given a trace, applies a boolean predicate
at every step of the trace.

checkTraceInvariant :: Invariant m s Bool→ m→ [SpecNetwork f s]→
Maybe Int

The Invariant data type is an abbreviation for a boolean predicate on
the type s that additionally takes some “meta-data” m, like “roles” in
a protocol, needed to express the invariant. The procedure checkTrace
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returns Nothing to signify that there were no violations of the invariant,
while it returns Just n to report that the nth state was the first state to
violate the invariant. With this language of predicates we can build
invariants and with the aforementioned checking procedure we can
perform (bounded) checking that an invariant is in fact inductive (i. e.,
holds for each state). In the case of a finite state space, this amounts
to real verification of inductive invariants. The most sophisticated
example we have successfully specified is an inductive invariant for
a Two-Phased Commit protocol [71], for which we refer the curious
reader to the implementation.

4.3.2 The Implementation Language

The monadic langugage for message-passing programs is imple-
mented as an EDSL in Haskell. This has the benefit of providing
all the standard tools for writing Haskell programs; all the abstraction
mechanisms and organisational principles are at hand to write sophis-
ticated software, including lazy evaluation, higher-order functions,
algebraic data types and more. By virtue of the modularity offered by
the approach of EDSLs, it is straightforward to give multiple interpre-
tations of such programs.

At the time of this writing DPC’s implementation fragment came
with three interpretations of the monadic interface:

1. The AST monad used for dynamic verification of implementation
adherence of the implementations to protocols, and covered in
detail in Section 4.2.5.

2. A shared-memory based interpretation where nodes are repre-
sented as threads, and message passing is performed by writing
to shared message queues using non-blocking concurrency prim-
itives.

3. An interpretation for distributed message passing.

In the third case (true distribution), we give an interpretation into
IO computations performing message passing through POSIX Sockets.
For this, each computation needs an “address book” mapping NodeIDs

to physical addresses (concretely, IP adresses and ports). Additionally,
each program will have access to a local mailbox, represented by a
message buffer being filled by a local thread whose only function
is to listen for messages. These two pieces of data are collected in a
record of type NetworkContext. Computations running in such a context
are idiomatically captured in a type synonym over the ReaderT monad
transformer:

newtype SocketRunnerT m a=SocketRunnerT {

runSocketRunnerT :: ReaderT NetworkContext m a }
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What follows is the implementation of the send primitive in this
particular instance of the message-passing interface:

instance MonadIO m⇒ MessagePassing (SocketRunnerT m) where

send to lbl tag body= do

thisID← this

let p= encode $ Message thisID tag body to lbl

peerSocket← (!to)<$> view addressBook

void . liftIO $ Socket.send peerSocket p mempty

The code for sending messages is, thus, implemented in a form of a
Reader-like computation over an IO-capable monad m as indicated by the
MonadIO constraint. It starts by building a Message containing the supplied
tag, body, receiver (to) and label, along with the executing nodes ID, as
supplied by another primitive, this. It then uses encode to serialize this
message into bytestring p. Then, p is sent to the appropriate peerSocket,
as resolved by the addressBook, using the System.Socket.Send operation from
the POSIX Socket library for Haskell. The monadic glue code (and the
rest of the Haskell toolkit) is interpreted by choosing an appropriate
base monad for the interpretation, e. g., the IO monad. Ultimately, we
build the following function for running the system:

defaultMain :: NetworkDescription→ NodeID→ SocketRunner a→ IO ()

It takes a NetworkDescription, which maps NodeIDs to physical addresses, a
NodeID with which to identify this node, and a computation in the above
described interpretation of message passing programs. The result is
an IO () computation that establishes (if run on each machine) a fully
connected mesh network with every node in the supplied network
description, and then proceeds to run the supplied computation, pass-
ing messages accordingly. This interpretation can be used to facilitate
integration of DPC-based implementations with real Haskell code
once they have been assured to comply with their protocols.

4.4 Evaluation

The implementation of DPC is publicly available online for extensions
and experimentation.6 We now report on our experience of using DPC
for implementing and validating some commonly used distributed
systems.

4.4.1 More Examples

In order to evaluate the framework, we have encoded a number of
textbook distributed protocols, translating their specifications to the
abstractions of DPC. By doing so, we were aiming to answer the
following research questions:

6 https://github.com/kandersen/dpc

https://github.com/kandersen/dpc
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Protocol Impl Protlets LOC RPC ARPC Notif Broad OneOf Quorum

Calculator X 1 10 X X X

Lock Server 4 73 X X X

Concurrent Database 3 23 X

Two-Phase Commit 2 43 X

Paxos X 2 42 X

Table 4.1: A summary for implemented systems: protocol, runnable imple-
mentation, count of constituent protlets, size of encoding (lines of
code), employed combinators.

1. Are our Protlet-based combinator sufficiently expressive to cap-
ture a variety of distributed systems from the standard literature
in a natural way?

2. Is it common to have realistic protocols that require more than
one combinator, i. e., can be efficiently decomposed into multiple
Protlets?

3. What is the implementation burden for encoding systems using
DPC?

The statistics for our experiments is summarised in Table 4.1.
The framework has been shaped by the explorations of protocols

that we have made, but we believe that the answer to Q1 is affirmative,
supported by the variety of protocols we have so far explored. The
answer to Q2 is also affirmative. Complex protocols from literature
decompose into interactions shaped as RPCs, notifications, etc., and we
manage to capture all of them in protlets. Simply put, for every arrow
in a diagram of the network indicating a communication channel, the
protocol has a protlet detailing the exchanges occuring across that
channel. For instance the two-phase protocols like Paxos and Two-
Phase Commit (2PC) naturally decompose into two broadcast/quorum
phases, while more asymmetric protocols like distributed locking [43]
requires as many as four protlets.

Regarding Q3, the lines of code versus complexity of protocol are
indicative of a positive relationship between complexity and effort to
encode a protocol, which is desireable. That is, a lot of complexity is
encapsulated by the treatment of combinators, so the coding effort in
the framework is very light.

The nature of the verification that the framework enables is natu-
rally not strictly sound (as it is dynamic), but techniques like bounded
model checking are readily explorable. With it, we have been able to
validate, e. g., correctness for the 2PC protocol [71], a not an insignifi-
cant proof burden.
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The framework also affords exploration in other directions than
we have mentioned so far. We have experimented with enriching
the message passing language with operations for shared-memory
concurrency and thread-based parallelism. The database example in
the table uses node-local threads to maintain a database that is served by
two different threads. Our approach to dynamic checking of protocol
adherance scales to concurrency, and we have a concurrent Calculator
server serving multiple arithmetic functions in parallel.

4.4.2 Case Study: Constructing and Running Paxos Consensus

For a representative exploration of the capabilities of DPC we turn to
a study of the Paxos Consensus [14, 34, 46]. Paxos solves a problem of
reaching a consensus on a single value agreed upon across multiple
nodes, of which a subset acts as proposers (who suggest the values)
and another, complementary subset acts as acceptors (who reach
an agreement). The nature of the Paxos algorithm lends itself well
to interactive exploration and the specification should be robust to
issues that appear specifically in distributed systems, like arbitrary
interleaving of messages, message reorderings, and nodes going offline.
The tools we have developed so far are enough to explore these aspects
of the protocol.

We can specify this protocol in DPC with relatively little code. We
further generalise the Broadcast combinator to “quorums” — broadcasts
that await only a certain number of responses before proceeding.
We introduce another entry in our Protlet datatype for capturing this
pattern.

data Protlet f s= ...

| Quorum String Rational (Broadcast s) (Receive s) (Send f s)

The Quorum protlet is and acts identical to the Broadcast protlet, but it
is further instrumented by a rational number indicating the number
of responses to await before proceeding. We encode the dissection of
nodes into proposers and acceptors directly in the state of the protocol,
similar to how we dissected the state space of the cloud server along
Client/Server lines. The proposer starts in (ProposerInit b v as) with the
desire to propose to acceptors as the value v with priority (ballot) b. We
encode this with a quorom protlet:

prepare :: Alternative f => Label -> Int -> Protlet f PState

prepare label n = Quorum "prepare" ((fromIntegral n % 2) + 1)

propositionCast ...

where

propositionCast = \case

ProposerInit b v as -> Just (zip as (repeat [b]),

propositionReceive b v as)
_ -> Nothing
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Here, prepare is parameterised by the number of participants. Hence,
the protlet dictates we should wait for a majority quorum, to avoid ties
in the system. The listing shows the initiation of the first broadcast as
representative of the rest of the implementation. The proposer starts
in an ProposerInit state, in which it initiates a broadcast poll of all as

acceptors, sending its ballot b.
The second phase of the protocol is encoded as another Quorum protlet,

where the proposers react to the outcome of the responses on the
first polling. The interactive exploration tool can be used to explore,
for instance, the robustness of the protocol with respect to crashing
participants versus crashing proposers, and why a quorum size of( n

2 + 1
)

acceptors is sufficient for reaching consensus.
The explored implementation demonstrates use of the state monad

to organise the acceptor as an effectful program, and a callback to
provide the ballot to the proposer, using features of Haskell, while
retaining the benefits of the framework. Neither effect is possible to
express at the protocol specification level.

4.4.3 Case Study 2: Specifying and Model Checking Two-Phased Commit

For a representative of the verification capabilities of DPC we turn to a
study of the Two-Phase Commit protocol encoded in Disel [71]. There,
it was properly formalized in the Disel framework, so it translates
readily to DPC. This case serves as a study of the same work done
using a light-weight, formally-guided approach, as opposed to a fully
formal framework.

The Disel encoding of the 2PC protocol as described by Weikum
and Vossen [78] assumes a single coordinator, often known as a “pro-
poser” in similar treatments, and a static collection of participants, or
acceptors. The coordinator asks the participants to agree or disagree
with a particular transaction, and the consensus is communicated back
to the acceptors once the coordinator has tallied all votes. The state
space of the nodes in the protocol is the most complicated we have
studied so far:

data State=CoordinatorInit [NodeID]

| CoordinatorCommit [NodeID]

| CoordinatorAbort [NodeID]

| ParticipantInit
| ParticipantGotRequest NodeID

| ParticipantRespondedYes NodeID

| ParticipantRespondedNo NodeID

| ParticipantCommit NodeID

| ParticipantAbort NodeID

The coordinator maintains a list of participants to poll for accep-
tance, and each participant records the server to respond to upon
contact. The server proceeds from CoordinatorInit to either CoordinatorCommit

or CoordinatorAbort depending on the outcome of the polling round, and
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from there back to CoordinatorInit upon sending the result of the poll
to all participants. Each participant starts in the ParticipantInit state,
and proceeds to ParticipantGotRequest upon being polled by a coordinator.
From here it can accept or reject the request as desired, this is left
up to the implementaion: it is however specified that it must move
to ParticipantRespondedYes or ParticipantRespondedNo, respectively. From there it
moves to ParticipantCommit or ParticipantAbort as appropriate when learning
of the outcome of the poll at large from the coordinator.

A safety specification of the protocol is traditionally given in a form
of inductive invariant—a property that is satisfied by the initial state
of the system and is preserved by each modification it undergoes—
ultimately implying that “nothing bad happens”. Finding an invariant
strong enough, so it would adequately capture the relevant properties
system, is a work of art, and inevitably requires a human prover’s as-
sistance [63]. However, once an invariant is defined, it can be checked
mechanically. Invariants are usually defined by conjoining global pred-
icates on the states of each node without regard for the specification
of the protocol. That is, they declaratively express the legal states of
the entire system without mention of legal ways to get there.

Invariants in DPC are expressed as predicates on the specification
level state space, and in particular, it was straight forward to adapt the
Coq-formulated inductive invariant of the 2PC system to a Haskell
function deciding the same property for a 2PC specification.

The invariant checker enabled by DPC appears to be a very useful
tool. In this particular case we can borrow an invariant from Disel

formalization that expresses full correctness of the 2PC protocol, but it
is conceivable that “smaller” properties might be of interest. For local
examples, that a particular state is never entered, or that the payload
of a particular state satisfies a predicate. For examples of more global
properties it might be that no two nodes are in a particular state at
once.

The entire invariant is specified as a disjunction:

tpcInvariant :: TPCInv

tpcInvariant=everythingInit

<| |> phaseOne

<| |> phaseTwo

The invariant asserts that all nodes in the system are either in the
initial state, the started phase one or all participants have been polled
and the system is in phase two. The type synonym TPCInv simply wraps
the Invariant type introduced in Section 4.3.1, instantiated by the State

type of this particular case study. The operator<| |>simply lifts boolean
disjunction to the Invariant type.

Let us illustrate the implementation details of the invariant looking
at the implementation the phaseOne invariant and its components.

phaseOne :: TPCInv

phaseOne=
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forCoordinator coordinatorPhaseOne<&&>
forallParticipants participantPhaseOne

We here use domain specific combinators that have been built to
make it convenient to refer to the nodes in the state space by their
roles as opposed to their NodeID. The predicate participantPhaseOne is a
large disjunction enumerating that a particular node is either in the
initial state because it hasn’t been polled by the coordinator; or it
is in the GotRequest state because it has been polled exactly once; or it
has responded yes or no, sending the appropriate messages to the
coordinator:

participantPhaseOne :: NodeID→ TPCInv

participantPhaseOne pt= do

cn← getCoordinator

foldOr [

runningInState ParticipantInit pt

<&&>noMessageFromTo pt cn

<&&> messageAt pt "Prepare__Broadcast" [] cn,

runningInState (ParticipantGotRequest cn) pt

<&&>noOutstandingMessagesBetween pt cn,

runningInState (ParticipantRespondedYes cn) pt

<&&>noMessageFromTo cn pt

<&&> messageAt cn "Prepare__Response" [1] pt,

runningInState (ParticipantRespondedNo cn) pt

<&&>noMessageFromTo cn pt

<&&> messageAt cn "Prepare__Response" [0] pt

]

The utility predicates like noMessageFromTo are “primitives” provided by
the Invariant library that are reusable across specifications. They express
general properties like state of the message soup pertaining to a
particular node or set of nodes.

With an invariant like this in hand, we can check that the specifi-
cation satisfies this property at every step, i. e., that the invariant is
inductive:

>checkInvariantTraces tpcInvariant initNetworkMetadata . take 15 $

simulateNetworkTraces initNetwork

Nothing

What we see is exhaustive bounded model checking of the specifi-
cation: the trace enumeration via simulateNetworkTraces evolves the net-
work in a breadth-first manner, returning a list of frontiers, while
checkInvariantTraces iterates through this “tree” and ensures that the sup-
plied invariant is never violated. Additionally, it is supplied with
protocol specific meta-data, some global context accessible to the in-
variant, which in this case includes the assignment of roles in the
protocol to the node identifiers used in initNetwork.
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Here, we look 15 frontiers deep, a grossly exponential number of
states, but enough for the protocol to have run at least once.

While by no means a wild feat of engineering, this brings hard veri-
fication to a very light-weight toolkit at very little cost to developers of
algorithms. By comparison, the equivalent formal verification in Disel

is more than 2,000 lines of definitions and well-formedness property
proofs, not counting the invariant it self, before the formalization begins
any proof-work. Here, we start exploring the behaviour and nuances
of the protocol of interest in as little as 75 lines in the case of 2PC.

4.5 Related Work

Declarative programming for distributed systems. In the past five years,
several works were published proposing mechanised formalisms for
scalable verification of distributed protocols, both in synchronous [29]
and asynchronous setting [71, 80]. All those verification frameworks
allow for executable implementations, yet the encoding overhead is
prohibitively high, and no abstractions for specific interaction patterns
are provided in any of them. Most of the DSLs for distributed systems
we are aware of are implemented by means of extracting code rather
than by means of a shallow DSL embedding [42, 51, 54]. Mace [42],
a C++ language extension and source-to-source compiler, provides a
suite of tools for generating and model checking distributed systems.
DistAlgo [54] and Splay [51] extract implementations from protocol
descriptions.

In a recent work, Brady [11] has described a discipline of protocol-
aware programming in Idris, in which adherence of an implementa-
tion to a protocol is ensured by the host language’s dependent type
system, similarly to Disel, but in a more lightweight form. That ap-
proach provides strong static safety guarantees; however, it does not
provide dedicated combinators for specific protocol patterns, e. g.,
broadcasts or quorums.

Similarly to our DPC-based language for defining protocol com-
binators, the P programming language by Desai et al. [20] has been
introduced as a way to facilitate modular construction of distributed
systems. In P, a program is a collection of machines. Machines com-
municate with each other asynchronously through events. In order to
implement a protocol, the programmer must specify the structure of
the machines and events. P programs can be verified via the built-in
PTester tool, and are compiled to C as a executables. Therefore, P
approach introduces a gap between the verified and the executable
artifacts.

More recently, the the ModP system [21] has been built on top of it.
ModP is an extension of P, which allows for more complex programs
to be built. In ModP, users can implement systems as individual
modules, and combine them into a larger module horizontally, i. e., by
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means of Disel-style Rely-Guarantee-based composition [40]. While
similar in spirit to DPC, ModP’s composition framework appears to be
more coarse-grained then what we have described. For instance, even
though ModP has been used to define and test a version of Paxos, it
is not clear how to implement a in it a combinator such as our Quorum,
which can be reused across multiple protocols.

Relation to Disel. DPC’s protlets adapt Disel’s protocols, that are
phrased exclusively in terms of low-level send/receive commands, which
should be instrumented with protocol-specific logic for each new con-
struction. While it is possible to derive DPC’s protlets in Disel, extract-
ing them and ascribing them suitable types requires large annotation
overhead. To wit, only the protocol description for Two-Phase Com-
mit in Disel takes nearly 400 LOC of Coq, while the entire protocol,
implementation and invariant for 2PC in DPC take only 243 LOC of
Haskell. We believe that providing a concise reusable specification to
advanced DPC protlets, such as Quorum, allowing for verification of, e. g.,
Paxos, would be an interesting research challenge by itself.

The idea of exploiting random exploration of process interleavings
in asynchrounous settings in general is not a new one. For instance,
generating and controlling schedules of execution have been central in
lines of work surrounding concurrency errors in web applications [2].
We here similarly demonstrate the applicability of the approach in a
lightweight framework inspired by a program logic.

4.6 Conclusion and Future Work

Declarative programming over distributed protocols is possible and,
we believe, can lead to new insights, such as better understanding
on how to structure systems implementations. Even though there
are several known limitations to the design of DPC (for instance, in
order to define new combinators, one needs to extend Protlet), we
consider our approach beneficial and illuminating for the purposes
of prototyping, exploration, and teaching distributed system design.
In the future, we are going to explore the opportunities, opened by
DPC, for randomised protocol testing and lightweight verification
with refinement types.
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