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Abstract
Guarded type theory extends type theory with a handful of modalities and constants to encode
productive recursion. While these theories have seen widespread use, the metatheory of guarded
type theories, particularly guarded dependent type theories remains underdeveloped. We show that
integrating Löb induction is the key obstruction to unifying guarded recursion and dependence in a
well-behaved type theory and prove a no-go theorem sharply bounding such type theories.

Based on these results, we introduce GTT: a stratified guarded type theory. GTT is properly
two type theories, sGTT and dGTT. The former contains only propositional rules governing Löb
induction but enjoys decidable type-checking while the latter extends the former with definitional
equalities. Accordingly, dGTT does not have decidable type-checking. We prove, however, a novel
guarded canonicity theorem for dGTT, showing that programs in dGTT can be run. These two type
theories work in concert, with users writing programs in sGTT and running them in dGTT.
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1 Introduction

It is well-known that a fixed-point combinator fix : (A→ A)→ A wreaks havoc within type
theory by rendering the theory unsound and making type-checking undecidable. Instead
of a unified concept of recursion therefore, type theory is extended with sound induction
and coinduction principles with implementations using syntactic checks to ensure that
recursively-defined functions can be elaborated into these tamer principles.

Unfortunately, these syntactic checks are brittle, often forcing an artificial restructuring of
a program. In order to obtain a type-theoretic account of recursion, [20] introduced guarded
recursion. Instead of ensuring a posteriori that recursive calls occur after progress has been
made, guarded recursion changes the type of recursive calls to prevent non-productive use.

Concretely, guarded type theory extends type theory with a modality—a unary type
constructor—�A (pronounced “later A”). This modality is cartesian and comes with a point
next : A→ �A. It does not, however, have an operator �A→ A; once data enters the �
modality, it cannot be extracted again. The fixed-points are then restored by Löb induction:

lob : (�A→ A)→ A lob(f) = f(next(lob(f)))

While Löb induction was introduced in the context of provability, the � modality has
a temporal intuition: �A contains elements of A available one step in the future. As it
stands, however, lob prevents non-productive usage a little too well and there are no types
with non-constant maps �A→ A which renders lob induction useless. In order to rectify
this, guarded type theories introduce variants of common types instrumented with �s. The
perennial example of this is the guarded stream type:

GStrA = A×� GStrA (1)
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After isolating the tail of the stream under �, stream processors are defined using Löb:

map(f) = lob(λr. λs. (f(pr1(s)), r ~ pr2(s)))

Here (~) : �(A→ B) → �A → �B is an operator which witnesses the fact that � is
cartesian. A non-productive stream processor such as filter cannot be defined: any attempt
to define filter leaves us with � StrA in a place where we require StrA.

On top of this substrate, many variants of guarded type theory have been proposed [1,
2, 4, 5, 7, 13, 19, 22]. These extend the theory with guarded recursive types, more intricate
combinations of modalities, or more flexible notions of time. In particular, extending the
theory with an idempotent comonad 2 such that 2�A ' 2A allows guarded type theories
to encode coinductive types through guarded recursive types [7].

Unfortunately, attempts to extend guarded type theory to dependent types have been met
with mixed success. On one hand they escape the inconsistencies of an unguarded fixed-point
combinator, but on the other this alone does not make type-checking decidable.

1.1 Modal dependent type theory
In prior work [4, 5, 19], the precise cause of this undecidability issue was muddied. Type
theorists had only just begun to understand modalities in dependent type theory, and the
inclusion of any modality was apt to break properties such as decidability of type-checking.
Independent of guarded type theories, modal type theory have been the subject of intense
focus and recently [11] has proposed MTT, a calculus which enjoys normalization, canonicity,
and decidable type-checking [10] and which can support � and 2 (but not lob).

MTT is a Fitch-style modal type theory [3] parameterized by a 2-category of modes,
modalities, and coercions between them. In this theory, modalities (written 〈µ | A〉) are
equipped with an ‘adjoint’ action on contexts Γ.{µ}. The introduction rules for modalities
are given by tranposition along the ‘adjunction’ −.{µ} a 〈µ | −〉:

Γ.{µ} `M : A
Γ ` modµ(M) : 〈µ | A〉

MTT can be instantiated with two modalities ` and e along with equations forcing ` to model
� while 〈e | −〉 becomes its left adjoint. The left adjoint to �, written � by [4], can be used
to encode the more familiar 2 modality as the limit of �, �2, etc., as in PSh(ω).

Even with these advances, however, a comprehensive guarded dependent type theory
has remained out of reach. Adding Löb induction directly to MTT disrupts canonicity
and normalization, and other proposed guarded type theories either fail to support crucial
reasoning principles [2] or lack a proof of canonicity or normalization [17].

In fact, Löb induction has proven to be a far more serious obstacle to a well-behaved
guarded type theory than the modal apparatus. We will prove a ‘no-go’ result that shows
that including a definitional equality allowing Löb induction to unfold nearly always results
in undecidable type-checking. This effectively rules out a theory which naïvely includes lob.

1.2 Stratifying guarded type theory
Given the complications of including Löb induction into guarded type theory, we propose a
novel approach to the problem with a type theory GTT stratified into two layers: static and
dynamic. Both of the two layers of the theory exhibit one of the two key properties of a type
theory (normalization and canonicity), but neither satisfies both.
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The static layer of our system does not include any definitional equalities for Löb induction
and only supplies the user with propositional equalities. This layer includes not only � and
lob, but an � modality which enables the user to encode coinductive types. Traditionally,
the inclusion of � and � satisfying the correct properties has been a significant source of
difficulty for type theorists, but the aforementioned advances in modal type theory ensure
that this static system enjoys decidable type-checking. Moreover, even without definitional
equalities for Löb induction we have shown the static layer to be highly usable.

By including these axioms without the corresponding definitional equalities, however, the
static layer does not validate canonicity; there are closed terms of type nat which are not
convertible to numerals. Our ‘no-go’ theorem implies that rectifying this problem would
require a radical restructuring of GTT. Accordingly, we introduce a second ‘dynamic’ layer
to our theory. The dynamic system is an extension of the static theory by definitional
equalities making lob compute and forcing the propositional equality governing Löb induction
to collapse to reflexivity. The dynamic theory does not enjoy decidable type-checking, but
the additional equalities cause previously stuck terms to compute which we have proven via
a novel ‘guarded’ canonicity theorem.

In total, a user may write a term in the static theory and type-check it as expected and
then extract it to the dynamic theory for computation. By a careful analysis of the models
of these theories, we show that computation can be used as a valid reasoning principle when
viewing the type theory as the internal language of a model such as the topos of trees.

1.3 Guarded canonicity
Typically, canonicity states that a closed term in type theory is convertible with a canonical
form. In guarded type theory, this is complicated by two factors.

The first is the presence of modal types like �A: what are the canonical forms of �A?
The answer depends on the precise formulation of modalities, but existing solutions from
MTT [10] apply. Specifically, we prove a canonicity result not just for terms in context 1, but
in contexts 1.{µ} for all µ. This generalization makes it easy to state the canonical forms of
〈µ | A〉 in context 1.{ν}: they are terms modµ(M) such that M is canonical in 1.{ν ◦ µ}.

More seriously, in the presence of Löb induction canonical elements of some types must be
infinite. In order to tame this non-termination, we adopt an idea common in guarded recursion
and allow only finite approximations of infinite canonical forms [13]. dGTT is extended with
a special context 0 under which all judgments collapse. By indexing 0 with a modality and
ensuring 0[µ].{µ} ∼= 0, we can prove canonicity only to a certain ‘depth’, without counting
steps or otherwise imposing any rewriting system on our type theory. We prove guarded
canonicity through an adaptation of multimodal synthetic Tait computability [10, 27].

1.4 Contributions
We prove the first ‘no-go’ theorem bounding the possibilities for including Löb induction in a
type theory with decidable type-checking. As an answer to this result, we contribute GTT, a
guarded type theory stratified into static and dynamic layers. We show that the static layer
has decidable type-checking and that the dynamic layer satisfies a novel form of canonicity.

In Section 2 we motivate and prove the no-go theorem for Löb induction. In Section 3 we
introduce GTT and prove that the static layer enjoys decidable type-checking. In Section 4
we state and prove the first guarded canonicity result for a guarded type theory. Finally, in
Section 5 we show that even without certain definitional equalities the static layer is highly
usable and formalize a model of idealized synchronous programming within sGTT.
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2 A no-go theorem for Löb induction

Consider the essential ingredients of a guarded type theory specified above: Martin-Löf
type theory equipped with a pointed cartesian modality (�, next,~) and a constant lob :
(�A→ A)→ A satisfying the following definitional equality:

lob(f) = f(next(lob(f)))

We show that under two minor additional assumptions, definitional equality—and there-
fore type-checking—is undecidable in this system. Our first assumption is the existence of a
non-trivial guarded type. Specifically, a type S equipped with a definitional isomorphism:

cons : S ∼= nat×� S (2)

In the presence of universes and a suitable dependent version of later �̂ : �U → U, we
can define S = lob(x. nat× �̂x). In order to make this counter-example as broad as possible,
however, we have chosen to explicitly isolate S.

The second assumption is that next must be suitably injective with respect to definitional
equality. In particular, 1 ` next(M) = next(N) : �A must be equivalent to 1 `M = N : A.
This second requirement is more onerous than the first, and it does not follow directly from
the existence of a familiar structure like universes. It does hold, however, in the standard
model of guarded recursion PSh(ω) [4]. Additionally, in a guarded type theory extended
with 2 or �, this bi-implication is derivable. In fact, while initially surprising, this second
assumption is satisfied by all guarded type theories in the literature.

With these requirements, we show that deciding conversion would entail deciding the
extensional equality of functions nat→ nat.

I Lemma 1. There exists a function tabulate : (nat→ nat)→ S such that the nth element
of tabulate(f) is nextn(f(n̄)) : �n nat.

Proof. We define tabulate by means of a helper function using Löb induction:

go : (nat→ nat)→ nat→ S

go(f) = lob(λr, n. cons(f(n), r ~ next(n+ 1)))

tabulate(f) = go(f, 0) J

I Theorem 2. Given two closed functions f, g : nat → nat, the streams tabulate(f) and
tabulate(g) are convertible if and only if f(n̄) = g(n̄) for all n : N.

Proof. The definitional isomorphism cons together with the η principle for dependent sums
ensure that it is both necessary and sufficient to show that the two streams are pointwise
equal, but Lemma 1 together with the injectivity of next on closed terms reduces this condition
to the extensional equality of f and g. J

I Corollary 3. Conversion is undecidable in a guarded type theory satisfying the following
requirements:

there is a type S equipped with a definitional isomorphism S ∼= nat×�S.
next : A→ �A is injective on closed terms,
the lob operator unfolds.
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` : m m e : m m

id = e ◦ ` id ≤ ` ◦ e id ≤ `

Figure 1 M: a mode theory for guarded recursion.

3 GTT: a stratified guarded type theory

Corollary 3 places firm bounds on how much a guarded type theory can hope to achieve
while maintaining decidable type-checking. Including an unconditional unfolding rule for Löb
induction makes this goal nearly untenable, but without the ability to unfold lob there is no
hope for any canonicity or computational adequacy result. While some guarded type theories
have approached this problem by attempting to restrict the behavior of Löb induction to
compute only in certain situations [2, 17], GTT takes a more radical approach.

Instead of considering a single theory which is carefully crafted to enjoy both computational
adequacy and decidable type-checking simultaneously, GTT is split into a pair of type theories:
sGTT and dGTT. The first enjoys decidable type-checking and the second satisfies (guarded)
canonicity, but neither type theory has both properties.

Both type theories are extensions of MTT [11] with a mode theory M for guarded
recursion detailed in Figure 1. For compatibility with MTT, this mode theory is presented
as a 2-category, but contains only one object and is poset-enriched, so that all 2-cells are
uniquely determined by their boundaries. In fact,M could equivalently be described as a
monoidal partial order with two generating modalities ` and e. The inequalities governing
these modalities force ` (respectively e) to behave like � (resp. �) on PSh(ω).

3.1 Posetal MTT
Given that both sGTT and dGTT are based around this instantiation of MTT, we briefly review
some of the key rules of MTT specialized to this mode theory. We refer the reader to [11] for
a more comprehensive introduction to MTT. As a Fitch-style type theory, each modality in
MTT behaves like an adjoint—in fact, a dependent right adjoint [3]—with the left adjoint
acting on contexts. For a given modality µ, we write the action of this left adjoint Γ.{µ} and,
following [3, 12], we refer to −.{µ} as a “lock”. In fact, this action extends to a 2-functor
fromMcoop to the category of contexts and substitutions,1 complete with a functorial action
γ 7→ γ.{µ} on substitutions and definitional equalities Γ.{ν ◦ µ} = Γ.{ν}.{µ}. Moreover, an
inequality of modalities µ ≤ ν induces a natural transformation −.{ν} −.{µ}.
I Remark 4. While formally we follow [10] and work with MTT, sGTT, and dGTT as
generalized algebraic theories—complete with explicit substitutions, de Bruijn indices, etc.—
for exposition’s sake with work with a more familiar informal syntax in examples.

The introduction rule for the modality 〈µ | −〉 is then inspired by transposition:

Γ.{µ} `M : A
Γ ` modµ(M) : 〈µ | A〉

Here we already have taken advantage of the particulars ofM to simplify the rules of
MTT; in general, a mode theory might contain multiple modes (multiple objects in the

1 Mcoop is a 2-category with the same objects as M, but with the directions of 1 and 2-cells reversed.
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2-category) which would require us to annotate all the judgments of the type theory by a
mode. Given that we work with only one mode, however, we omit these annotations.

The elimination rule is more complex; adding the inverse direction of transposition would
disrupt the substitution properties of the type theory. Instead, each entry in the context is
annotated by a modality Γ, x : (µ | A). The rule for accessing variables is then tweaked to
factor in both the annotation on a variable and the locks following it in the context:

µ ≤ mods(Γ1)
Γ0, x : (µ | A),Γ1 ` x : A

Here mods(Γ1) is the composition of all modalities {ν} occurring in Γ1. Unlike full MTT,
variables are not annotated by 2-cells. AsM is merely enriched over posets, at most one
2-cell can exist for any given pair of modalities. Accordingly, we remove these annotations
on variables and replace them with the premise µ ≤ ν in the variable rule. In fact, given an
inequality µ ≤ ν we will silently coerce from terms and types in context Γ.{µ} to terms and
types in context Γ.{ν}. No ambiguity can arise from this becauseM is poset-enriched.

Dependent products are in turn generalized to allow for abstraction over elements of A
annotated with a modality other than id:

Γ, x : (µ | A) `M : B
Γ ` λx. M : (µ | x : A)→ B

Finally, the addition of annotations for variables in the context introduces some redundancy
in the system: what is the relationship between a variable of type 〈µ | A〉 annotated with ν
and a variable of type A annotated with ν ◦ µ. The role of the elimination rule for 〈µ | −〉 is
to address this mismatch and patch the difference between Γ.(ν | 〈µ | A〉) and Γ.(ν ◦ µ | A):

Γ.{ν ◦ µ} ` A Γ, x : (ν | 〈µ | A〉) ` B
Γ.{ν} `M0 : 〈µ | A〉 Γ, x : (ν ◦ µ | A) `M1 : B[modµ(x)/x]

Γ ` letν modµ(x)←M0 in M1 : B[M0/x]

These primitives combine to ensure that e.g. modal types become a “pseudofunctor”
so that comp[µ; ν] : 〈µ ◦ ν | A〉 ' 〈µ | 〈ν | A〉〉 and an inequality µ ≤ ν induces a coercion
coe[µ ≤ ν] : 〈µ | A〉 → 〈ν | A〉. We introduce some shorthand for this instantiation of MTT:

�A , 〈` | A〉 �A , 〈e | A〉

The pseudofunctorial structure of modalities quickly yields the standard operations of a
guarded type theory e.g. now : ��A ' A and next : A→ �A. For instance,

nextA = λx. mod`(x)

3.2 Crisp identity induction principles
In MTT, the elimination principles for types like IdA(M,N) or bool are mode-local and
therefore can only be applied to a variable if it is annotated with id. This restriction is vital
for soundness; the intended model of GTT does not validate 〈` | bool〉 ' bool and allowing
if x then M0 else M1 when x is under an ` annotation is equivalent to such an identification.

The intended model does, however, validate such an equivalence for the identity type.
Intuitively, the typical models of GTT are extensional and accordingly IdA(M,N) is realized
by an equalizer (a limit) which is therefore preserved by all modalities (right adjoints):

Id〈µ|A〉(modµ(M),modµ(N)) ' 〈µ | IdA(M,N)〉 (3)
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As it turns out, this equivalence is crucial in practice. While we will see specific examples
in Section 5, informally any proof of equality between programs defined via Löb induction
requires Equation (3). In order to prove e.g. that two stream processors are equal, we must
show that they produce streams which have identical heads and tails. Löb induction gives a
proof under a later that the two tails are equal, but without Equation (3) we cannot parlay
this into an equality between next applied to the two tails.

In prior guarded variants of MTT, this was circumvented by adopting equality reflection,
but GTT takes a more refined approach and adds a stronger variant of the elimination
principle for identity types inspired by Shulman’s crisp induction principles [25]:

Γ, a0 : (µ | A), a1 : (µ | A), p : (µ | IdA(a0, a1)) ` B
Γ, x : (µ | A) `M : B[x, x, refl(a)/a0, a1, p]

Γ.{µ} ` N0, N1 : A Γ.{µ} ` P : IdA(N0, N1)
Γ ` Jµ(B, a.M,P ) : B[N0, N1, P/a0, a1, p]

Jµ(B, x.M, refl(N)) = M [N/x]

Importantly, [10] has shown that extending MTT with these rules preserves both canonicity
and normalization. This, together with the fact that all intended models of GTT validate the
equivalent Equation (3), ensures that adding these rules to guarded MTT has no downside.

3.3 sGTT: The static fragment of GTT
The ‘static’ fragment of the guarded calculus adds Löb induction to guarded MTT. It enjoys
decidable type-checking but escapes Corollary 3 by not including any definitional equalities for
the lob operator. Concretely, sGTT is the instantiation of MTT described above supplemented
with the following pair of axioms:

Γ, x : (` | A) `M : A
Γ ` lob(x.M) : A

Γ, x : (` | A) `M : A
Γ ` unfold(M) : IdA(lob(x.M),M [lob(x.M)/x])

A term in sGTT is then precisely a term in MTT in a context extended by these two
constants, so we may immediately deduce the following results from [10]:

I Theorem 5. Conversion and type-checking in sGTT are both decidable sGTT.

Proof. Corollaries 8.8 and 8.10 of [10] show that conversion and type-checking are decidable
if the equality of 1- and 2-cellsM enjoy decidable conversion. This problem is easily seen to
be equivalent to the decidability of the ≤ relation presented in Figure 1. We first observe
that every 1-cell can be uniquely presented as ln ◦ em for some pair (n,m). Next, because
ln0 ◦ em0 ≤ ln1 ◦ em1 if and only if n0 ≤ n1 and m1 − n1 ≤ m0 − n0, the equality of 1-cells
and existence of 2-cells are both decidable as required. J

3.4 dGTT: the dynamic fragment of GTT
The dynamic half of GTT is an extension of sGTT, supplementing the static theory with a
pair of definitional equalities:

Γ, x : (` | A) `M : A
Γ ` lob(x.M) = M [lob(x.M)/x] : A

Γ ` unfold(x.M) = refl(lob(x.M)) : IdA(lob(M),M [lob(x.M)/x])

Notice that Corollary 3 applies to dGTT and so type-checking dGTT is undecidable.
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We also equip dGTT with a new form of context 0[µ], which will prove crucial to
understanding its computational behavior. The context 0 = 0[id] acts like an initial object
in the category of contexts so that all judgments 0 ` J hold, and the more general 0[µ]
intuitively represents the application of the modality µ to this initial object. The rules
for these contexts are presented in Figure 2, but we postpone further discussion of 0 until
Section 4 where its role can be fully motivated.

Henceforth, it will become important to distinguish between which judgments hold in
sGTT and which hold in dGTT. We write Γ `s M : A if M : A is derivable with only the
rules of sGTT and Γ `d M : A for the corresponding notion for dGTT. As dGTT is a strict
extension of sGTT, the following is immediate:

I Theorem 6. If a judgment is derivable in sGTT, the same judgment holds in dGTT.

3.5 The semantics of GTT
A priori, of course, Theorem 6 could hold even if dGTT included all manner of extensions
to sGTT. The fact that it only extends sGTT with two additional equations means that
all models of dGTT are models of sGTT and all ‘natural’ semantic models of sGTT are
also model of dGTT. Concretely, the category of models of sGTT is precisely the category
of models of MTT [11] with mode theory M together with constants for lob and unfold.
Unfolding these definitions, a model of sGTT is a category with families [8] equipped with
functors interpreting −.{µ} and structure for interpreting modal types.

A model of dGTT is a model of sGTT satisfying a pair of additional equalities and with
structure interpreting 0[µ]. In practice these additional requirements are easily satisfied:

I Theorem 7. A model of sGTT satisfying the following extends to a model of dGTT:
1. the category of contexts and substitutions has an initial object
2. the interpretation of Id validates equality reflection
3. the model is democractic; every context can be realized as a type
4. the modalities are realized by dependent right adjoints [3, Definition 2]

In particular, the standard models of guarded recursion in sheaves over complete Heyting
algebras with a well-founded basis such as PSh(ω) are models of both sGTT and dGTT [4].
See Appendix A for a full definition of models of sGTT and dGTT.

4 Guarded canonicity

We have shown that sGTT enjoys decidable type-checking. In this section we establish that
the twin theory dGTT is computationally effective, i.e. that programs in this theory can run.
Typically, a canonicity theorem for type theory states that any closed boolean is convertible
with either true or false. For dGTT, this result would be unsatisfactory because it would
not give information about terms of � bool and therefore could not shed light on executing
guarded programs. We therefore characterize canonical forms in a class of contexts C other
than the empty context. By ensuring that C is closed under −.{µ}, canonicity applies to
programs executing under a �, but this raises a further complication in the presence of Löb
induction: programs like tabulate(id) (Lemma 1) with infinite canonical forms. Rather
than allowing the canonical forms themselves to be infinite, we use a novel type-directed
form of “fuel” in our statement of canonicity.

Prior to formulating this more refined notion, recall from Section 3.4 that dGTT has a
distinguished context 0 which is initial in the category of contexts and substitutions (Figure 2).
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0 cx 0[µ] cx 0 ` � : A 0 ` � 0.{µ} ` � : Γ

Γ ` γ : 0
Γ `M = N : A Γ ` A = B Γ ` δ0 = δ1 : ∆

Γ ` γ : 0[µ]
Γ.{µ} ` γ← : 0

Γ.{µ} ` γ : 0
Γ ` γ→ : 0[µ]

γ←→ = γ γ→← = γ γ← ◦ δ = (γ ◦ δ.{µ})←

Figure 2 The vacuous context.

For each modality µ, there exists an additional context 0[µ]—intuitively this is the context
0 under the modality µ—whose behavior is fully captured by a natural isomorphism of
hom-sets in the category of contexts: hom(Γ,0[µ]) ∼= hom(Γ.{µ},0). With this additional
structure, we then characterize the canonical forms in programs in context 0[µ].{ν} so that
(µ, ν) serves as an abstracted form of fuel:

I Theorem 19 (Guarded canonicity). Given a term 0[µ].{ν} `d M : A, the following holds
If A = nat then there exist a numeral k such that M = k̄

If A = 〈ξ | B〉 then M = modξ(N) for some 0[µ].{ν ◦ ξ} `d N : B.
We pause for a moment to consider the consequences of Theorem 19 for various types

and pairs (µ, ν). First, if µ = ν then there is a canonical substitution 0[µ].{ν} ` id← : 0 and
canonicity trivializes—all types are inhabited and all terms are equal in such a context.

Suppose instead, therefore, we have a term 0[` ◦ `].{id} `d M : 〈` | 〈` | A〉〉. Guarded
canonicity then ensures that M = mod`(M0) for some 0[` ◦ `].{`} `d M0 : 〈` | A〉. The
theorem then applies to M0, yielding M0 = mod`(M1) for some 0[` ◦ `].{` ◦ `} `d M1 : A
but the process stops here; the context is now isomorphic to 0 and so M1 = �.

Informally, in a context 0[µ].{ν} the modality µ represents the initial fuel given to
evaluate a program, while ν signifies the fuel expended thus far in the process. The analogy is
imperfect—the presence of the earlier modality allows for ‘negative’ fuel to be spent—but it
does make it clear how one might use Theorem 19: to evaluate a closed program M : �n nat,
one begin by weakening the program into the context 0[`n+1] and then repeatedly apply
guarded canonicity to deduce that M = mod`(mod`(. . . (k̄))) for some numeral k. Crisply, in
order to extract a numeral from 〈µ | nat〉 one must evaluate it with more than µ fuel.

Unlike other canonicity results based on fuel [13], our guarded canonicity result does not
depend on a fixed operational semantics or presentation of the equality judgment. The fuel is
a purely type-directed notion and throughout the statement and proof of guarded canonicity
we manipulate only equivalence classes of terms up to definitional equality.

4.1 Proving guarded canonicity
In order to prove Theorem 19, we use a modified variant of multimodal synthetic Tait
computability [10,27], a refinement of gluing proofs. Rather than fixing a rewriting system
presenting the equational theory of dGTT, we construct a model of dGTT lying over the
syntactic model comprised essentially of terms equipped with a guarded canonical form. The
initiality of syntax then guarantees that every term has a guarded canonical form.

Several caveats complicate this simple picture. In the first instance, it is frequently
difficult to construct a model of dGTT lying over the syntactic model due to the number
of strict equations involved. We therefore follow the approach taken by [10]: we begin by
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defining a relaxed category of Löb cosmoi and show that there is an appropriate syntactic
Löb cosmos which enjoys a suitable weakening of initiality. From there, we construct a glued
Löb cosmos which supports a rich model of MTT complete with several new primitives. We
call the resultant language multimodal synthetic Tait computability (MSTC) and use this
language to to construct the interpretation of types and terms internally. In fact, because the
model construction takes place within MSTC, once this language is in place the construction
of the actual model is mutatis mutandis the one given in [10].

For the sake of space, therefore, we trace through the aspects of the proof which differ
significantly from the normalization proof for MTT. In particular, we show how we construct
the glued cosmos necessary to prove guarded canonicity and gloss the interpretation of
Löb induction within MSTC. The remaining details—such as the interpretation of all the
connectives of MTT—are deferred to Appendices B and C.

I Definition 8. A Löb cosmos is a strict 2-functor G :M Cat such that G(m) (which
we abusively write G) is a locally Cartesian closed category with an initial object and each
G(µ) is a right adjoint. We require the following additional structure:
1. A morphism τG : ṪG TG in G representing the universe of types and closed under all

the connectives of MTT e.g. for each µ a map G(µ)(TG) TG encoding the formation
rule for modal types.

2. An element lob with the appropriate type and necessary equation.
A morphism of Löb cosmoi is a 2-natural transformation of LCC functors satisfying Beck-
Chevalley which preserves all structure.

While in [10], syntax could be organized into a cosmos enjoying a property akin to
initiality by taking presheaves on the category of contexts and substitutions Cx, the same
maneuver is not available here: the vacuous context 0 would no longer be initial when
embedded into PSh(Cx). We therefore localize at 0PSh(Cx) y(0) and consider sheaves
over the category of contexts. Explicitly, we equip Cx with a Grothendieck topology J :

J(Γ) =
{
{hom(−,Γ), ∅} if there exists a substitution Γ 0
{hom(−,Γ)} otherwise

The rules in Figure 2 ensure that this Grothendieck topology is subcanonical and that
the presheaves of types and terms are in fact sheaves for this topology. It is also easily seen
that the precomposition functors induced by −.{µ} restrict to right adjoints on sheaves and
that Sh(Cx) is closed under finite limits and dependent products in PSh(Cx).

I Theorem 9. There is a Löb cosmos S(m) = Sh(Cx) where T (respectively Ṫ) are realized
by the sheaves of types (respectively terms) and S(µ) is given by precomposition with −.{µ}.

Passing to sheaves enables us to recover the quasi-projectivity property described by [10]:

I Theorem 10. Given a Löb cosmos G and a map π : G S, the following holds:
1. For every context Γ cxd, there exists an object JΓK : G and αΓ : π(JΓK) ∼= y(Γ).
2. For every type Γ `d A, there is a morphism JAK : JΓK TG such that π(JAK) ◦ αΓ = bAc.
3. For every Γ `d M : A, there exists JMK : JΓK ṪG over JAK such that π(JMK)◦αΓ = bMc.
Here b−c is half of the isomorphism induced by the Yoneda lemma.

We can now revise our original proof strategy for guarded canonicity: we will construct a
particular Löb cosmos and use Theorem 10 to derive the theorem. We now turn to constructing
this Löb cosmos by gluing the syntactic cosmos along a functor to a Grothendieck topos.
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As in all gluing proofs, the choice of functor to glue along is crucial. For instance, when
proving a standard canonicity result one glues along PSh(Cx) Set = PSh(1) given by
precomposition with 1 Cx. For normalization, one wishes to work with arbitrary contexts
but normal forms are stable under a limited class of renamings. Accordingly, one glues along
PSh(Cx) PSh(Ren) given by precomposing with the inclusion Ren Cx.

In our case, because we wish to prove a result about terms in context 0[µ].{ν} we will
take a category spanned by contexts of this form. Moreover, because guarded canonical
forms are stable under the natural transformations 0[µ].{ν0} 0[µ].{ν1}, we can recast this
subcategory Cx spanned by contexts 0[µ].{ν} as a partial order:

I Definition 11. Define (P,≤) to be a partial order whose elements are pairs of modalities
(µ, ν) such that (µ0, ν0) ≤ (µ1, ν1) if µ0 = µ1 and ν1 ≤ ν0. There is a functor i : P Cx
sending (µ, ν) to 0[µ].{ν}

Unlike in prior gluing proofs, we represent syntax with Sh(Cx) rather than PSh(Cx).
Accordingly, we must impose a Grothendieck topology on P so that the inclusion P Cx
induces a functor Sh(Cx) Sh(P ) and it is this functor that we will glue along.

I Definition 12. Transporting the Grothendieck topology on Cx along the functor i : P Cx
yields a new topology on P covering (µ, ν) with the empty family if ∃ξ. µ ◦ ξ ≤ ν.

I Lemma 13. Precomposition by (µ, ν) 7→ (µ, ν ◦ ξ) induces a right adjoint Rξ : Sh(P ) Sh(P ).

I Lemma 14. Recalling S(ξ) = (−.{ξ})∗ from Theorem 9, i∗ ◦ S(ξ) = Rξ ◦ i∗.

Observe that for any pair (µ, ν), there exists n such that ∃ξ. µ ◦ ξ ≤ ν ◦ `n. Accordingly,
given X : Sh(P ) and (µ, ν) : P there exists n such that Rn` (X)(µ, ν) = {?}. This eventual
trivialization ensures that Sh(P ) satisfies Löb induction:

I Lemma 15. For any X : Sh(P ) there is a morphism lobX : XR`(X) X satisfying the
unfolding equation for Löb induction.

I Lemma 16. Precomposition with i induces a right adjoint i∗ : S = Sh(Cx) Sh(P ).

Gluing along i∗, we obtain a Grothendieck topos G = Gl(i∗) whose objects are triples(
X : Sh(Cx), Y : Sh(P ), f : Y i∗X

)
. Intuitively, these are proof-relevant predicates on

syntax so that constructing a Löb cosmos in G is akin to a proof-relevant logical relation.

I Lemma 17. There is a strict 2-functor G :M Cat sending G(m) = Gl(i∗) and G(µ)
is determined component-wise by S(µ) and Rµ. Furthermore, π : G S is a 2-natural
transformation spanned by LCC functors and satisfying Beck-Chevalley.

Proof. This follows from Theorem 4.13 of [10] and Lemma 13 J

It remains only to equip G with the structure of a Löb cosmos i.e. a universe τG : ṪG TG
closed under various connectives. In fact, this process is remarkably routine. G is a
Grothendieck topos and therefore models extensional Martin-Löf type theory with a hierarchy
of cumulative universes [24] satisfying the internal realignment principle formulated by [21].2
Moreover, G is a model of extensional MTT with a pair of complementary idempotent monads
# and  presenting Sh(Cx) (respectively Sh(P )) as an open (resp. closed) subtopos.

2 Unlike the well-known construction of universes in presheaf topoi set forth by [16], [24] gives a construction
which applies in arbitrary arbitrary Grothendieck topoi using a small-object argument. This construction
requires the axiom of choice and it is currently open whether a constructively acceptable analog exists.
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This combination of modalities shapes G into a model of multimodal synthetic Tait
computability. While there are minor differences in the precise properties of multimodal
synthetic Tait computability, this interpretation ensures that we can virtually replay the
construction of a universe closed under the connectives of MTT given by [10]. Given this
essential similarity, we gloss only Löb induction: the last novelty of this construction.

Interpreting lob hinges on the fact that Sh(P ) and R` satisfy Löb induction. Lifting
Lemma 15 this into the internal language of G gives us a variant of Löb induction:∏

A:U(〈` |  A〉 →  A)→  A

This limited constant is sufficient to construct the proper interpretation of Löb induction,
which in turn yields the following cousin of the fundamental lemma of logical relations:

I Theorem 18. There is a Löb cosmos in G such that π : G S is a map of Löb cosmoi.

Finally, from Theorems 10 and 18 combined with the definition of terms in G we conclude:

I Theorem 19 (Guarded canonicity). Given a term 0[µ].{ν} `d M : A, the following holds
If A = nat then there exist a numeral k such that M = k̄

If A = 〈ξ | B〉 then M = modξ(N) for some 0[µ].{ν ◦ ξ} `d N : B.

5 Proving and programming with guarded streams

While Theorems 5 and 19 ensures that each half of GTT satisfies one of the two theorems
typically used to evaluate usability of a type theory, neither satisfies both. It unclear,
therefore, whether or not sGTT can really be used to write guarded programs. This is an
empirical question, but we argue the affirmative by showing an encoding of synchronous
programming [6] in sGTT and capitalize on Theorems 6 and 19 to compute with the results.

5.1 A warmup: defining guarded streams
To begin with, we define the type of guarded streams Str : U → U in sGTT:

Str : U → U ι : (A : U)→ IdU(Str(A), A× 〈` | Str(A)〉)
Str(A) = lob(S. A× 〈` | S〉) ι = unfold(S. A× 〈` | S〉)

We can define the usual operations on streams using this equivalence. For instance, cons
(respectively head and tail) is given by transporting along ι−1 (resp. ι). The functoriality
of transports then yields an identification IdStr(A)(cons(head(s), tail(s)), s).

Fix types A,B : U and a map f : A→ B, we extend this map to a map of streams:

map(f) = lob(g. λs. cons(f(head(s)),mod`(g) ~ tail(s)))

I Lemma 20. Given s : Str(A), there is an identification IdStr(A)(map(id, s), s).

Proof. We prove this by Löb induction so we are given an induction hypothesis:

r :
(
`
∣∣∣ (s : Str(A))→ IdStr(A)(map(id, s), s)

)
Now fix s : Str(A). We have an identification between s and cons(head(s), tail(s)). The

left-hand side is identified with cons(id(head(s)), next(map(id)) ~ tail(s)) via unfold(. . . ).
It then suffices to construct an element of Id〈`|Str(A)〉(next(map(id)) ~ tail(s), tail(s)). To
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this end, we use the elimination rule for modal types: Applying this rule to tail(s), it
suffices to construct the following identification for an arbitrary x : (` | Str(A)):

Id〈`|Str(A)〉(mod`(map(id, x)),mod`(x))

The result is now an immediate consequence of r(x) combined with Equation (3). J

I Lemma 21. Given functions f : A → B, g : B → C, for each s : Str(A) there is an
identification IdStr(C)(map(g ◦ f, s), map(g, map(f, s))).

The proofs of the above lemmas (see the one for Lemma 20), show how several features of
sGTT are crucial for programming. In particular, we have made heavy use of the propositional
unfolding rules for Löb induction to manipulate a definition using lob, and we rely on crisp
identity induction principles to use Löb induction to prove an equality.

5.2 A logical foundation for synchronous programming
In order to test the limits of sGTT, we revisit the abstract encoding of synchronous program-
ming [15] (as implemented by e.g. Lustre [14]) in dependent type theory with coinductive
streams given by [6]. We repeat their construction with the guarded streams defined in
Section 5.1. Intuitively, we interpret a type τ of their calculus as guarded stream of values in
GTT. By using guarded streams, however, we are able to simplify the construction of this
model and eliminate the need to manually ensure well-formedness of various constructions.
Moreover, we show that propositional Löb is sufficient for guarded programming.

We first define a type of clocks or warps which dictate the rate at which a stream is
expected to produce values. As in [6], these are realized by streams of booleansW = Str(bool).
The primitive objects of our encoding are specialized streams indexed by a warp:

WStr(A) = lob(B. λw. let modµ(u)← tail(w) in if head(w) then A× 〈` | B(u)〉 else 〈` | B(u)〉)

So a WStr is indexed by a type A and warp w, and contains values of A only when w is
true. This is similar to the model of Lustre detailed by [6], but in contrast to loc. cit., which
uses coinductive streams, our use of guarded streams facilitates a number of conceptual
simplifications while immediately guaranteeing some theorems.

Henceforth we will stop explicitly using lob to define guarded recursive functions, and
adopt the more typical informal style so that the above definition could be written

WStr(A, cons(b,mod`(w))) = if b then A× 〈` | WStr(A,w)〉 else 〈` | WStr(A,w)〉

We also adopt pattern-matching syntax for modal types and equivalences like cons as
well as a rewrite based on the available operation in Agda. We further avail ourselves of
cons, head, and tail for WStr. These have slightly unusual types to account for the presence
of warps and the potential absence of data at a given step.

cons : (b : bool)(` | w : W )
→ (if b then A× 〈` | WStr(A,w)〉 else 〈` | WStr(A,w)〉)→ WStr(A, cons(b,mod`(w)))

head : (` | w : W )→ WStr(A, cons(tt,mod`(w)))→ A

tail : (b : bool)(` | w : W )→ WStr(A, cons(b,mod`(w)))→ 〈` | WStr(A,w)〉

We use this new surface syntax to define the constant stream of values:

const : A→ (w : W )→ WStr(A,w)
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const(x, cons(b,mod`(w))) = if b then cons(x,mod`(const(x,w))) else cons(mod`(const(x,w)))

Next, we define a combinator allowing us to zip two streams and combine their values:

zip : (w : W )→ WStr(A→ B,w)→ WStr(A,w)→ WStr(B)
zip(cons(b,mod`(w)), s1, s2) =

if b
then cons(head(s1)(head(s2)),mod`(zip(w)) ~ tail(s1) ~ tail(s2))
else cons(mod`(zip(w)) ~ tail(s1) ~ tail(s2))

While we omit the definitions, we also can define a variant of Lustre’s fby operator, which
delays a stream by one and replaces the first element:

fby : (w : W )→ A→ WStr(A, cons(ff,mod`(w)))→ WStr(A, cons(tt,mod`(w)))

In fact, we have provided definitions of all the combinators presented by [6], including
several which further exercise the dependent types of sGTT.

5.3 Running an example program
Thus far we have carefully worked in sGTT, so our programs can be type-checked. Unfor-
tunately, the lack of canonicity in sGTT means that they cannot be run. The split nature
of GTT, however, guarantees equivalent programs in dGTT which can be executed. To
concretize this discussion, consider the following the stream of natural numbers in sGTT:

nats : WStr(nat, lob(cons(tt,mod`(−))))
nats rewrite unfold(. . . ) = fby(0, zip(cons(next(const(λn. suc(n)))), cons(mod`(nats))))

While this program is relatively simple, we can already detect something unsatisfactory:
it is hard to verify that the second element of this stream is 1. Using Theorem 6, we interpret
nats as a program in dGTT where the corresponding equality follows from computation:

next(head) ~ tail(nats) = next(head) ~ mod`(zip(const(λn. suc(n))), nats)
= mod`(head(zip(const(λn. suc(n))), nats))
= mod`(1)

These equalities are definitional; in dGTT our stream combinators reduce on-the-nose.
Moreover, Theorem 7 ensures that if we were to interpret the original sGTT program into
e.g., the topos of trees, the second element would indeed be 1.

This example is indicative of a general phenomenon: we can always program in sGTT
to type-check a program and switch to dGTT to execute it and obtain a concrete result.
Theorem 19 guarantees that this always yields a numeral, and Theorem 7 ensures that we
obtain the expected results in standard models of sGTT such as the topos of trees.

6 Related work

GTT is closely related to a number of modal and guarded type theories. Most directly, GTT
refines guarded recursion in MTT and improves upon the proposed guarded MTT presented
by [11] by avoiding equality reflection. By replacing this rule with propositional Löb induction
as well as a crisp identity induction principle, the theory remains practicable. Moreover, by
extending with only these well-behaved principles we are able to benefit from the metatheory
of MTT and its prototype proof assistant, which implements sGTT [26].
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Clocked Type Theory

Clocked Type Theory (CloTT) [2, 17,18] is a family of closely related guarded type theories
which also rely on dependent right adjoints to structure the later modality. Like sGTT, CloTT
escapes Corollary 3 by preventing Löb induction in most circumstances. Rather than having
a separate type theory where Löb induction does compute, CloTT carefully allows lob to
unfold only when at the ‘top-level’. In particular, if we were to construct the gadget used by
Corollary 3 in CloTT, only the outer application of Löb would unfold.

Unfortunately, the additional definitional equality provided CloTT cannot be used in
most circumstances; whenever a user is manipulating terms in a non-trivial context, Löb
induction unfolds only up to a propositional equality, just as with sGTT. Moreover, in the
existing formulation of CloTT in Agda [28], Löb induction is added as an axiom without
even the definitional equality unfolding it at the top-level. The fact that CloTT has been
used to formalize substantial arguments under these circumstances serves as further evidence
for the practicability of propositional Löb induction as available in sGTT.

Finally, the metatheory of GTT is more developed than CloTT; the decidability of type-
checking of GTT is proven— with a prototype implementation [26]—and an appropriate
canonicity theorem is proven for the full system. Both of these results are conjectured for
CloTT, but neither have been proven for a complete version of the system.

Synthetic Tait computability

We have proven Theorem 19 by adapting (multimodal) synthetic Tait computability (STC) [10,
27]. This is the first application of STC—multimodal or not—which takes full advantage of
the fact that STC applies to arbitrary sheaf topoi rather than just presheaf topoi. Moreover,
this result expands the reach of STC to yet another class of languages: guarded recursion.
Theorem 19 therefore opens the door to applying STC to guarded programming languages.

7 Conclusions

We contribute GTT, a type theory for guarded recursion featuring a novel decomposition into
‘static’ and ‘dynamic’ fragments. We prove that the static fragment enjoys normalization and
decidability of type-checking and formulate and prove a guarded canonicity result for the
‘dynamic’ fragment. In so doing, we escape a no-go theorem (Corollary 3) showing that the
presence of Löb induction is all but certain to disrupt the decidability of conversion. Finally,
we have shown that this dichotomy between static and dynamic results in a usable system
by carrying out a case-study based on synchronous programming.

In the future, we hope to further develop a prototype implementation of GTT based
on [26] and potentially extend GTT with a richer mode theory for guarded recursion to
permit more flexible guarded programming.
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A Models of GTT
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those types with a crisp induction principle.
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two elements of Ṫ witnessing lob and unfold.
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lob satisfies the expected definitional equality
unfold is precisely interpreted by reflexivity
There is a chosen initial object 0 in F (m) which is preserved by each F (µ)
Ṫ(0) = T(0) = {?}
A choice of objects representing the functors hom(−.{µ},0) for each µ.

http://arxiv.org/abs/1712.04864
https://doi.org/10.23638/LMCS-14(4:23)2018
https://doi.org/10.23638/LMCS-14(4:23)2018
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https://doi.org/10.1145/1925844.1926403
http://arxiv.org/abs/1706.07526
http://arxiv.org/abs/1203.3253
https://doi.org/10.1017/S0960129514000565
https://doi.org/10.1017/S0960129514000565
https://doi.org/10.5281/zenodo.5709838
https://doi.org/10.5281/zenodo.5709838
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B Löb cosmoi

Here we give a more precise definition of Löb cosmoi. We presuppose knowledge with Section
3 of [10] which introduces the notion of MTT cosmoi.

I Definition 25. A Löb cosmos is a strict 2-functor G :M Cat such that G(m) (which
we abusively write G) is a locally Cartesian closed category with an initial object and each
G(µ) is a right adjoint. We require the following additional structure:
1. A morphism τG : ṪG TG in G
2. A choice of codes ensuring that τG is closed under dependent sums, weak natural numbers,

identity types with a crisp induction principle and a weak Tarski universe. The last is
itself closed under all connectives except the universe.

3. A choice of code making τG closed under modal dependent products: a code for PG(µ)τG
(τG)

for each µ : m m.
4. An element lob with the appropriate type and necessary equation.
5. For each µ, there exists a chosen commuting square

G(µ)(Ṫn)

G(µ)(Tn)

Ṫm

Tm (4)

6. For each µ : m m and ν : m m, there is a chosen lifting structure G(µ)(m) t
G(µ ◦ ν)(TG) × τG, where m : G(ν)(Ṫo) G(ν)(TG)×TG

ṪG is the comparison map
induced by Diagram 4.

I Definition 26. A morphism of Löb cosmoi is a 2-natural transformation whose components
are LCC functors preserving the initial object up to isomorphism and all structure strictly.

We can form a Löb cosmos in Sh(Cx): sheaves over contexts and substitutions localizing
the map 0PSh(Cx) y(0).

I Theorem 27. This topology is subcanonical.

The universe of types and terms is taken is given by the standard representable universe
(it is a map of sheaves by the η-laws governing 0) which we write τSh(Cx):

TSh(Cx)(Γ) = {A | Γ `d A}
ṪSh(Cx)(Γ) = {(A,M) | Γ `d M : A}

We must show that τ is closed under the various required connectives. These proofs are
based on the following observation.

I Lemma 28. Viewed as a subcategory of PSh(Cx), Sh(Cx) is closed under limits and
dependent products.

I Remark 29. A type-theoretic proof of this the second half of this lemma follows from
Lemma 1.26 of [23].

Proof. First consider a diagram J : I Sh(Cx), we wish to show that lim i ◦ J is a sheaf.
As i is a right adjoint, it preserves limits and so lim i ◦ J = i(lim J) which is clearly a sheaf.
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Next consider a pair of morphisms of sheaves f : F G and g : G H. We wish
to show that i(g)∗(i(f)) = i(g∗f). It suffices to show that they satisfy the same universal
property, so fix h : P i(H). Write h′ for the unique induced map a(P ) H extending h
and compute:

homPSh(Cx)/i(H)(h, i(g∗f)) ∼= homSh(Cx)/H(h′, g∗f)
∼= homSh(Cx)/G(h′ × g, f)
∼= homPSh(Cx)/i(G)(i(h′)× i(g), i(f))
∼= homPSh(Cx)/i(G)(h× i(g), i(f))
∼= homPSh(Cx)/i(H)(h, i(g)∗i(f)) J

We already know that τ is closed under dependent sums and products in PSh(Cx) so
that there is a Cartesian square

∑
A:i(TSh(Cx)) i(ṪSh(Cx))

i(τSh(Cx)[A])

∑
A:i(TSh(Cx)) i(TSh(Cx))i(τSh(Cx)[A])

i(ṪSh(Cx))

i(TSh(Cx))

However, sheaves are closed under the formation of finite limits and dependent products, so
this is already a Cartesian square in Sh(Cx). A similar argument holds for dependent sums
and natural numbers.

It remains to describe the interpretations of modalities on this category. Given a modality
µ we define Fµ = (−.{µ})∗. We first must show that this sends sheaves to sheaves: there is
an isomorphism 0.{µ} ∼= 0 so if Γ is covered by the empty sieve so too is Γ.{µ}. This functor
also preserves all limits (they are computed pointwise in sheaves) so it is a right adjoint.
We must show that it is weakly representable, but we already have such a representation in
presheaves and it again descends.

I Theorem 30. There is a Löb cosmos S sending m to Sh(Cx) and each modality µ to Fµ.
The universe of types and terms is interpreted by τ and all the connectives descend from
PSh(Cx) in the manner described above.

C The canonicity cosmos

In this appendix we highlight the novel constructions of the canonicity cosmos. As with
Appendix B, we again presuppose some familiarity with [10]. Specifically, we make use of the
internal presentation of cosomoi discussed in Section 6, the language of multimodal synthetic
Tait computability introduced in Section 6, and the construction of the normalization cosmos
from Section 7.

As with the construction of the normalization cosmos of [10], we now construct a Löb
cosmos in G which lies strictly over the syntactic Löb cosmos S. We proceed internally to
G, using the language of multimodal synthetic Tait computability to define a sequence of
constants.

I Definition 31. The language of multimodal synthetic Tait computability consists of exten-
sional MTT together with a universe of strict propositions, a distinguished proposition syn : Ω
inducing a pair of complementary lex idempotent monads # = syn→ − and  = syn ∨ −.
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Furthermore, each universe of MTT satisfies the internal realignment axiom of [21] and both
lex monads commute with 〈µ | −〉.

A word of caution is required as—unlike in [10]—〈µ | syn〉 6= syn. This divergence stems
essentially from the fact that 〈` | −〉 does not preserve 0. However, this is immaterial as
〈µ | −〉 does commute with both # and  .

When interpreted into G, the #-modal correspond to objects in S. Accordingly, the
syntactic model is manifested as a series of #-modal types (Ty, Tm, etc.) and constants as
in [10]. We then must construct a series of types and constants in MTT which collapse to
the syntactic model under syn.

I Remark 32. We write #zA(z) as shorthand for the dependent open modality
∏
z:syn A(z).

I Remark 33. We write {A | z : φ 7→ a(z)} for the type of elements of A which are equal
to a(z) under the assumption z : φ. We treat the coercion from {A | z : φ 7→ a(z)} to A as
silent.

I Remark 34. As a convention, we will write foo∗ for the constant lying over the element
foo of the syntactic model.

We begin by defining the following type and using realignment to ensure that it lies
strictly over Ty:

record Ty∗ : {U2 | z : syn 7→ Ty(z)} where
code : #zTy(z)
pred : {U1 | z : syn 7→ Tm(z, code)}

(5)

We further define Tm∗ : {Ty∗ → U1 | z : syn 7→ Tm(z)} to send A to pred(A).

I Lemma 35. The gluing model supports dependent products and sums.

Proof. This follows more-or-less immediately by choosing the computability structures of
a dependent product (respectively, sum) to be the dependent product (resp. sum) of the
component computability structures. J

I Lemma 36. The gluing model supports weak natural numbers.

Proof. We begin by defining Nat∗:

code(Nat∗) = Nat

pred(Nat∗) =
∑
M :#zNat(z) 

[∑
n:nat n̄ = M

]
The two introduction forms deviate only slightly from the standard definitions:

zero∗ = (zero, η(0, ?))
succ∗ = λM. (succ(M), (n, ?)← π1(M); η(n+ 1, ?))

We finally define rec∗:

rec∗(A,Mz,Ms, N) =
{

rec∗(z,Mz,Ms, N) π1(N) = ι0(z)
Mn
s (Mz) π1(N) = ι1(n, ?) J

I Lemma 37. The gluing model supports a weak Tarski universe.
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Proof. The construction of the universe follows the construction given in [10] without
variation. As to be expected, code(Uni∗) = Uni. The predicate is only slightly more
complext:

pred(Uni∗) =
∑
A:#zTm(z,Uni){U0 | z : syn 7→ Tm(z,El(z,A(z)))}

We must also define the type family El∗:

code(El∗(M)) = λz. π0(M)

It remains to associate the computability data:

pred(El∗(M)) = π1(M)

The construction of various elements in this universe is routine. J

I Lemma 38. The gluing model supports identity types with crisp induction principles.

Proof. We define Id∗(A, a0, a1):

code(Id∗(A, a0, a1)) = λz. Id(z,A, a0, a1)
pred(Id∗(A, a0, a1)) =

∑
p:#z Id(z,A,a0,a1) [(a0 = a1)× (p = λz. refl(z, a0))]

It remains to define the introduction and elimination forms for identity types. First,
introduction:

refl∗(a) = (λz. refl(z, a), (?, ?))

The elimination rule is complicated by the necessity to account for crisp induction.
Therefore, we follow the definition given by [9], not the simpler version presented by [10]. In
particular, we must define a constant of the following type:

J∗µ : (µ | A : Ty∗)(B : (µ | a0, a1 : Tm∗(A))(µ | p : Tm∗(Id∗(A, a0, a1)))→ Ty∗m)→
(b : (µ | a : Tm∗(A))→ Tm∗(B(a, a, refl∗(a))))→
(µ | a0, a1 : Tm∗(A))(µ | p : Tm∗(Id(A, a0, a1)))→
{Tm∗(B(a0, a1, p)) | z : syn 7→ Jµ(A,B, b, p)}

To this end, assume that we are given B, b, a0, a1, and p with the appropriate types. We
can commute 〈µ | −〉 past part of the definition of Tm∗(A, a0, a1) and assume that p = (l, r)
belongs to the following type:∑

p:#z〈µ|Id(z,A,a0,a1)〉 [(a0 = a1)× (p = λz. modµ(refl(z, a0)))]

We therefore proceed by case analysis on r:{
J(z,B, b, a0, a1, p) q = in0(z)
b(a0) q = in1(?, ?) J

I Lemma 39. The gluing model supports modal types.

Proof. We begin by defining the Mod∗[µ](A):

code(Mod∗[µ](A)) = λz. Mod[µ](z,A)
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pred(Mod∗[µ](A)) =
∑
M :#zMod[µ](z,A) 

[∑
N :〈µ|Tm∗(A)〉m[µ](N) = M

]
The introduction form is defined as follows:

m∗[µ](m) = (λz. m[µ](z,m), η(m, ?))

Most involved is modal elimination:

letmod∗[µ; ν](B, b,m) =
{

letmod[µ; ν](z,B, b,m) π1(m) = ι0(z)
b(a) π1(m) = ι1(a, ?)

That this satisfies the required β rule and alignment conditions follows immediately from
calculation. J

I Lemma 40. There is a constant lob∗ : (〈` | Tm∗(A)〉 → Tm∗(A))→ Tm∗(A) lying strictly
over lob and satisfying the unrolling rule.

Proof. Let us fix f : 〈` | Tm∗(A)〉 → Tm∗(A). We must construct lob∗(f). We now use the
fracture theorem:

A ∼= #A× #A  A

We have the left component of this pullback already: λz. lob(z, f). It remains to construct
an element of  Tm∗(A) which coheres appropriately with lob. Here we use lob induction
with the target  Tm∗(A). We must produce a function 〈` |  Tm∗(A)〉 →  Tm∗(A). We
have g =  f : 〈` |  A〉  A. Therefore lob (g) :  Tm∗(A). We must show the following:

( η#)(lob (g)) = η (λz. lob(z, f)) (6)

Let us prove this through Löb induction, available because equality of terms of  -modal type
is a  -modal type. We then assume Equation (6) under 〈` | −〉. Taking advantage of 〈` | −〉
as a fully-fledged dependent right adjoint, we rephrase this assumption as the equality

next( η#(lob (g))) = next(η (λz. lob(z, f)))

We may simplify this by taking advantage of our ability to commute MTT modalities past
those induced by gluing:

 (η# ◦ next)(lob (g)) = η (λz. next(lob(z, f))) :  #〈` | Tm∗(A)〉

Returning now to our goal, after applying both computation rules for the different forms
of Löb induction, we are left with the following:

 η#(g(( next)(lob (g)))) = η (λz. f(next(lob(z, f))))

Rewriting, we obtain

 (#f ◦ η# ◦ next)(lob (g)) = ( #f)(η λz. next(lob(z, f)))

The result now follows from our induction hypothesis. J

I Theorem 41. G supports a Löb cosmos equipped with a projection onto S.

We shown the existence of a model in G lying over the syntactic Löb cosmos in S. From
this we aim to extract canonicity.
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I Theorem 19 (Guarded canonicity). Given a term 0[µ].{ν} `d M : A, the following holds
If A = nat then there exist a numeral k such that M = k̄

If A = 〈ξ | B〉 then M = modξ(N) for some 0[µ].{ν ◦ ξ} `d N : B.

Proof. Fix a term 0[µ].{ν} `d M : A. By Theorem 10 we obtain an element of M∗ : A∗
which lies over M up to isomorphism of contexts. We have the following commutative square
in Sh(P )

(Fµ)!(Fν(0Sh(P )))

i∗y(0[µ].{ν})

(τG [A∗])0

i∗(τS [A])

τG [A∗]

i∗y(M)
(7)

We instantiate this diagram of sheaves at (µ, ν). Let us construct an (µ, ν)-point of
(Fν)!(Fµ(0Sh(P ))). By functoriality, it suffices to construct a (µ, id) point of Fµ(0). Transpos-
ing, it is sufficient to construct a (µ, µ)-point of 0, which exists uniquely (it is a map between
initial objects). Calculating, this lies over id : i∗y(0[µ].{ν})(µ, ν). This, together with the
construction of the computability data for nat and 〈ξ | −〉, yields the desired result. J
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