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Step-Indexed Logical Relations for Countable
Nondeterminism and Probabilistic Choice
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Developing denotational models for higher-order languages that combine probabilistic and nondeterministic

choice is known to be very challenging. In this paper, we propose an alternative approach based on operational

techniques. We study a higher-order language combining parametric polymorphism, recursive types, discrete

probabilistic choice and countable nondeterminism. We define probabilistic generalizations of may- and

must-termination as the optimal and pessimal probabilities of termination. Then we define step-indexed

logical relations and show that they are sound and complete with respect to the induced contextual preorders.

For may-equivalence we use step-indexing over the natural numbers whereas for must-equivalence we index

over the countable ordinals. We then show than the probabilities of may- and must-termination coincide with

the maximal and minimal probabilities of termination under all schedulers. Finally we derive the equational

theory induced by contextual equivalence and show that it validates the distributive combination of the

algebraic theories for probabilistic and nondeterministic choice.
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1 INTRODUCTION
Probabilistic programming languages are languages extended with commands that generate random

values by sampling them from a particular probability distribution. These can be used, for instance,

to write randomized algorithms, to implement encryption and decryption protocols, or to write

statistical models.

Nondeterminism is a behavior that arises when studying programs that depend on an unknown

external source, such as the user input or a scheduler that selects which thread of a concurrent

program to run. This is often modeled by a binary operator that chooses nondeterministically

between two programs. Countable nondeterminism, more concretely, arises in the setting of

concurrent execution under a fair scheduler, in which every thread will be eventually allowed to

run after a finite, but arbitrarily large number of cycles.

Consider for instance the following pseudocode:

𝑥 = 0; fork{while(true){x :=!x + 1}}; 𝑓 (!𝑥)
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This program first initializes a variable 𝑥 to 0. Then it forks a thread that loops while incrementing

𝑥 and at at some point calls 𝑓 with the value of 𝑥 at that point. Under a fair scheduler, this value of

𝑥 is arbitrarily large, but finite: the parent thread must be scheduled at some point.

In the sequential setting we will consider, this behavior can be captured by adding to our language

a nullary operator that evaluates in one step to any nondeterministically chosen natural number.

Note that binary nondeterminism does not suffice to capture this behavior, since a loop that chooses

between increasing a variable or stopping will also include the possibility of diverging.

The combination of probabilistic and nondeterministic choice has been the object of study of

many articles over more than three decades [Apt and Plotkin 1986; Bonchi et al. 2019; Jacobs

2021; Mio et al. 2021; Mislove 2000; Varacca and Winskel 2006]. In denotational semantics, it is

well-known that probabilistic and nondeterministic choice can be modeled by the probability and

the powerset monad, respectively, but there does not exist a distributive law between them that

allows us to form a combined monad [Varacca and Winskel 2006]. From an algebraic point of view,

the distributive law would correspond to the equation

𝑒1 ⊕ (𝑒2 or 𝑒3) = (𝑒1 ⊕ 𝑒2) or (𝑒1 ⊕ 𝑒3),

where ⊕ and or represent binary probabilistic and binary nondeterministic choice, respectively.

Varacca and Winskel [2006] propose two solutions to this problem. The first one consists of using

the monad of indexed valuations to model probabilistic choice. This monad has a distributive law

over the powerset monad, but it does not satisfy the equation 𝑒 ⊕ 𝑒 = 𝑒 . The second option consists

of identifying a monad that simultaneously models probabilistic and nondeterministic choice and

distributivity between them; this is the monad of nonempty convex sets of probability distributions.

In this work, rather than using denotational semantics, we instead study the combination of

probabilistic and nondeterministic choice from an operational point of view. Operational techniques

based on step-indexed logical relations have proven to be successful to study contextual equivalence

of higher-order programs in a variety of settings [Ahmed 2006; Birkedal et al. 2012; Pitts and

Stark 1998; Turon et al. 2013]. Generally, two expressions are considered contextually equivalent

if they exhibit the same termination behavior under any context. Step-indexed relations have

been extended to languages with probabilistic and countable nondeterminism separately. In the

probabilistic setting [Bizjak and Birkedal 2015; Wand et al. 2018; Zhang and Amin 2022] the

behavior used to define equivalence is the probability of termination. In the nondeterministic

setting [Birkedal et al. 2013], there are actually two notions of equivalence that are of interest:

one based on may-termination (i.e., there is a set of choices that makes the program evaluate to a

value) and another based on must-termination (there does not exist a set of choices that makes

the program diverge or get stuck); and whereas indexing over the natural numbers is adequate for

may-termination, for must-termination one must step-index over the countable ordinals.
1

Contributions.

• We define probabilistic versions of may- and must-termination for programs written in a

typed higher-order language that combines impredicative polymorphism, recursive types,

and probabilistic and countable nondeterministic choice.

• We define two logical relations to reason about probabilistic may- and must- contextual

equivalence. The former is step-indexed over the naturals, and the latter is step-indexed over

the countable ordinals. We prove that they are sound and complete, and we further show

that they extend the notions of contextual equivalence defined in previous work [Birkedal

et al. 2013; Bizjak and Birkedal 2015].

1
It is in fact sufficient to step-index up to the least nonrecursive ordinal
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• We define an alternative notion of probabilistic termination parametrized by a scheduler that

selects which nondeterministic choice to make. We show that probabilistic may- and must-

termination coincide, respectively, with the optimal and pessimal probability of termination

under all schedulers.

• We apply our contextual equivalence relation to case studies. In particular, we show that it

satisfies both the algebraic theories for probabilistic and nondeterministic choice, and the

distributive law between them.

Structure of the paper. This paper is structured as follows: we first introduce the syntax and

operational semantics of the language we study (§2). Then, we present the notions of observations

that we will use to define contextual equivalence (§3). After this, we define two notions of contextual

equivalence, and define two sound and complete step-indexed logical relations (§4). Then, we define

an alternate notion of observation based on schedulers, and show that it coincides with the one

defined earlier (§5). Afterwards, we study the algebraic theory induced by contextual equivalence,

and present other examples (§6). Finally, we discuss related work (§7), and conclude (§8). The full

version of the paper includes an Appendix with omitted proofs.
2

2 LANGUAGE
2.1 Syntax
We consider a version of System F with product, sum, universal, and recursive types, as well as a

native type of natural numbers (for simplicity we assume N starts at 1), which we extend with two

choice operators. The first choice operator “rand 𝑛” represents a uniform probabilistic choice over

the set {1, . . . , 𝑛}. The second choice operator, denoted “?”, represents a nondeterministic choice

over all the natural numbers. Although our language does not feature concurrency, this operator

captures the behavior of the concurrent increment loop presented in the introduction. The concrete

operational semantics of these operators is presented in the next subsection. While the main focus

of the present work is on the combination of probabilistic and nondeterministic choice, we include

universal and recursive types to make sure that the techniques we employ scale to those important

language features. This also makes our target language more expressive as a setting in which to

model other languages including features like concurrency.

The syntax of types, values, expressions and evaluation contexts are defined as follows:

𝜏, 𝜎 ::= 1 | nat | 𝛼 | 𝜏 → 𝜎 | 𝜏 × 𝜎 | 𝜏 + 𝜎 | ∀𝛼.𝜏 | 𝜇𝛼.𝜏
𝑣 ::= ⟨⟩ | 𝑥 | 𝑛 (𝑛 ∈ N) | 𝜆𝑥 .𝑒 | ⟨𝑣, 𝑣 ′⟩ | inl(𝑣) | inr(𝑣) | fold (𝑣) | Λ.𝑒
𝑒 ::= ⟨⟩ | 𝑥 | 𝑛 (𝑛 ∈ N) | 𝜆𝑥 .𝑒 | 𝑒 𝑒′ | ⟨𝑒, 𝑒′⟩ | 𝜋𝑖𝑒 | inl(𝑒) | inr(𝑒) | case(𝑒, 𝑥1 .𝑒1, 𝑥2.𝑒2)

| rand 𝑒 | ? | fold 𝑒 | unfold 𝑒 | Λ.𝑒 | 𝑒_ | S 𝑒 | P 𝑒

𝐸 ::= [ ] | 𝐸 𝑒 | 𝑣 𝐸 | ⟨𝐸, 𝑒⟩ | ⟨𝑣, 𝐸⟩ | inl(𝐸) | inr(𝐸) | fold𝐸 | unfold𝐸 | case(𝐸, 𝑥1.𝑒1, 𝑥2.𝑒2)
| rand 𝐸 | 𝐸_

A type formation context Δ is a finite set of type variables. A typing context Γ is a finite partial

map from term variables to types. A typing formation judgment is a tuple Δ ⊢ 𝜏 , where Δ is a type

formation context and 𝜏 is a type (by extension, we write Δ ⊢ Γ when every type in the codomain

of Γ is well-formed under Δ). A typing judgment is a tuple Δ | Γ ⊢ 𝑒 : 𝜏 , where Δ is a type formation

context, Γ is a typing context, 𝑒 is an expression and 𝜏 is a type. The set of valid typing formation

and typing judgments are defined inductively as usual; we show a few selected rules in fig. 1. We

let Type(Δ) denote the set of types 𝜏 such that Δ ⊢ 𝜏 , and Type denotes the set of closed types. For

2
https://cs.au.dk/ birke/papers/step-nondet-prob.pdf
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(𝑥 : 𝜏) ∈ Γ Δ ⊢ Γ

Δ | Γ ⊢ 𝑥 : 𝜏
Δ | Γ, 𝑥 : 𝜎 ⊢ 𝑒 : 𝜏

Δ | Γ ⊢ 𝜆𝑥 .𝑒 : 𝜎 → 𝜏

Δ | Γ ⊢ 𝑒1 : 𝜎 → 𝜏 Δ | Γ ⊢ 𝑒2 : 𝜎
Δ | Γ ⊢ 𝑒1 𝑒2 : 𝜏

Δ | Γ ⊢ 𝑒 : nat
Δ | Γ ⊢ rand 𝑒1 : nat Δ | Γ ⊢ ? : nat

Δ | Γ ⊢ 𝑒 : 𝜏 [𝜇𝛼.𝜏/𝛼]
Δ | Γ ⊢ fold 𝑒 : 𝜇𝛼.𝜏

Δ | Γ ⊢ 𝑒 : 𝜇𝛼.𝜏
Δ | Γ ⊢ unfold 𝑒 : 𝜏 [𝜇𝛼.𝜏/𝛼]

Δ, 𝛼 | Γ ⊢ 𝑒 : 𝜏
Δ | Γ ⊢ Λ.𝑒 : ∀𝛼.𝜏

Δ | Γ ⊢ 𝑒 : ∀𝛼.𝜏 Δ ⊢ 𝜎
Δ | Γ ⊢ 𝑒_ : 𝜏 [𝜎/𝛼]

Δ | Γ ⊢ 𝑒 : N
Δ | Γ ⊢ S 𝑒 : N

Δ | Γ ⊢ 𝑒 : N
Δ | Γ ⊢ P 𝑒 : N

Fig. 1. Selected typing rules

a type 𝜏 , Val(𝜏) is the set of values 𝑣 such that ∅ | ∅ ⊢ 𝑣 : 𝜏 ; Expr(𝜏) is the set of expressions 𝑒 such
that ∅ | ∅ ⊢ 𝑒 : 𝜏 ; and Ectx(𝜏) is the set of evaluation contexts 𝐸 ∈ Ectx such that for any 𝑒 ∈ Expr(𝜏),
there exists 𝜎 ∈ Type such that ∅ | ∅ ⊢ 𝐸 [𝑒] : 𝜎 (in which case we also write ⊢ 𝐸 : 𝜏 ⇒ 𝜎). We use

Val and Expr to denote the sets of all closed values and all closed expressions respectively, and we

embed Val into Expr as usual.
Given 𝛿 : Δ → Type and 𝜏 ∈ Type(Δ) we write 𝜏𝛿 for the usual capture-avoiding substitution

of every free type variable 𝛼 in 𝜏 by 𝛿 (𝛼). Given 𝛿 : Δ → Type, we will also use it to denote its

canonical extension to Type(Δ) → Type. A substitution for a context Γ of closed types is a map

𝛾 : dom(Γ) → Val such that, for every 𝑥 : 𝜏 in Γ, 𝛾 (𝑥) ∈ Val(𝜏). We use Subst(Γ) to denote the set
of substitutions for Γ, and 𝑒𝛾 to denote the substitution of every free variable 𝑥 in 𝑒 by 𝛾 (𝑥).

We also define some syntactic sugar to make writing programs easier. First, we use the type 1 + 1

to model Booleans, and we write if𝑏 then 𝑒 else 𝑒′ for case(𝑏, _.𝑒, _.𝑒′) (here underscore just denotes
an unimportant variable). If we have two expressions 𝑒, 𝑒′ we write let𝑥 = 𝑒 in 𝑒′ for (𝜆𝑥.𝑒′) 𝑒 , and
if 𝑥 is not free in 𝑒′, we will occasionally just write 𝑒; 𝑒′.

2.2 Operational Semantics
We define a call-by-value single step reduction relation −→ ⊆ Expr × Expr × [0, 1] × {𝐷, 𝑁, 𝑃}.
The index [0, 1] indicates the probability of the reduction taking place, while the letter indicates

the type of reduction (Deterministic, Nondeterministic or Probabilistic). If the probability of the

reduction is 1, we will often omit the index. The reduction rules are:

(𝜆𝑥 .𝑒)𝑣 −→𝐷 𝑒 [𝑣/𝑥] ? −→𝑁 𝑘 𝑘 ∈ N
𝜋𝑖 ⟨𝑣1, 𝑣2⟩ −→𝐷 𝑣𝑖 𝑖 ∈ {1, 2} (Λ.𝑒)_ −→𝐷 𝑒

case(inl(𝑣), 𝑥1 .𝑒1, 𝑥2.𝑒2) −→𝐷 𝑒1 [𝑣/𝑥1] rand 𝑛 −→1/𝑛
𝑃

𝑘 1 ≤ 𝑘 ≤ 𝑛

case(inr(𝑣), 𝑥1 .𝑒1, 𝑥2 .𝑒2) −→𝐷 𝑒2 [𝑣/𝑥2] S 𝑘 −→ 𝑘 + 1 𝑘 ∈ N
unfold fold 𝑣 −→𝐷 𝑣 P 𝑘 −→ max{1, 𝑘 − 1} 𝑘 ∈ N

𝑒 −→𝑞

𝑋
𝑒′

𝐸 [𝑒] −→𝑞

𝑋
𝐸 [𝑒′]

𝑋 ∈ {𝐷, 𝑁, 𝑃}

We write 𝑒 −→ 𝑒′ to denote that there exist 𝑟 ∈ [0, 1] and 𝑋 ∈ {𝐷, 𝑁, 𝑃} such that 𝑒 −→𝑟
𝑋
𝑒′. If

there exists a chain of deterministic reductions 𝑒 −→𝐷 𝑒1 −→𝐷 . . . −→𝐷 𝑒′, we will denote it by
𝑒 −→∗

𝐷
𝑒′.

These rules induce a Markov Decision Process where the set of states is Expr. However, we will
not define a multistep reduction relation. The property that we are interested in is the probability

of termination, which we will define in the next section as a fixed point of the single step reduction.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 2. Publication date: January 2023.
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3 NOTIONS OF OBSERVATIONS
In this section we make precise the observations we can make about the behavior of a program

containing probabilistic and nondeterministic choices. We will use these observations to define the

contextual equivalence relation. These notions will also be crucial in the construction of the logical

relations by biorthogonality.

In a deterministic setting [Pitts 2004] the observation used to define contextual equivalence

is termination. Note that this suffices to define interesting equivalence relations: if we have two

distinct values of a ground type, we can always define a context that makes only one of them

diverge. In languages with nondeterministic choice, there are usually two notions of observation

to consider [Birkedal et al. 2013; Lassen 1998]: may-termination (i.e., there are choices that make

the program terminate) or must-termination (every choice makes the program terminate). In

the probabilistic setting, quantitative notions of observations are used, namely the probability of

termination [Bizjak and Birkedal 2015].

3.1 Preliminaries: Order Theory
We review here some concepts that will be useful in defining the observations using fixed points.

We will not present here a formal definition of the ordinal numbers (see e.g. [Kunen 2011]). Suffices

to know that the set of countable ordinals (denoted by 𝜔1) is well-ordered (we use < and ∈
indistinctively) and (1) 0 ∈ 𝜔1, (2) for every 𝛽 ∈ 𝜔1, 𝛽 + 1 ∈ 𝜔1, and (3) for every countable family

{𝛽𝑖 }𝑖∈𝜔 ⊆ 𝜔1, sup𝑖∈𝜔 𝛽𝑖 ∈ 𝜔1. Here 𝜔 denotes the ordinal corresponding to the set of natural

numbers (0 included). A non-zero ordinal is a limit ordinal if it is the supremum of all the ordinals

below it. This can be used to define an induction principle known as ordinal induction.

Definition 3.1. A set 𝐿 equipped with a preorder relation (≤) ⊆ 𝐿 × 𝐿 is a complete lattice if for
every subset 𝑆 ⊆ 𝐿, sup 𝑆 ∈ 𝐿 and inf 𝑆 ∈ 𝐿.

Definition 3.2. Let 𝐿 be a complete lattice. An operator 𝐹 : 𝐿 → 𝐿 is 𝜔-continuous if for any
monotonically non-decreasing sequence {𝑥𝑖 }𝑖∈𝜔 , we have sup𝑖∈𝜔 𝐹 (𝑥𝑖 ) = 𝐹 (sup𝑖∈𝜔 𝑥𝑖 ).

A fixed point of an operator 𝐹 : 𝐿 → 𝐿 is an element 𝑥 ∈ 𝐿 such that 𝐹 (𝑥) = 𝑥 . A classical result

by Tarski gives sufficient conditions for the existence of a least fixed point:

Theorem 3.3 (Tarski’s fixed point theorem [Tarski 1955]). Let 𝐿 be a complete lattice and let
𝐹 : 𝐿 → 𝐿 be monotone. Then 𝐹 has a least fixed point lfp(𝐹 ).
Given a monotonically non-decreasing operator 𝐹 : 𝐿 → 𝐿 we can define its iterations up to

an arbitrary ordinal by ordinal induction: 𝐹 0 (𝑥) = 𝑥 , 𝐹 𝛽+1 (𝑥) = 𝐹 (𝐹 𝛽 (𝑥)) and for a limit ordinal

𝛼 , 𝐹𝛼 (𝑥) = sup𝛽<𝛼 𝐹
𝛽 (𝑥). The following result from [Cousot and Cousot 1979] states that this

iteration reaches the least fixed point at some ordinal.

Theorem 3.4 ([Cousot and Cousot 1979]). Let 𝐿 be a complete lattice with bottom element ⊥ and let
𝐹 : 𝐿 → 𝐿 be monotonically non-decreasing. Then there exists a (possibly uncountable) ordinal 𝜉 such
that lfp 𝐹 = 𝐹 𝜉 (⊥).
The following result, known as Kleene’s fixed-point theorem, gives us the value of this ordinal

for 𝜔-continuous operators.

Theorem 3.5 (Kleene’s fixed point theorem [Cousot and Cousot 1979]). Let 𝐿 be a complete lattice
with bottom element ⊥ and let 𝐹 : 𝐿 → 𝐿 be 𝜔−continuous. Then lfp 𝐹 = 𝐹𝜔 (⊥) = sup𝑖∈𝜔 𝐹 𝑖 (⊥).

3.2 Probabilistic May- and Must-Termination
In the probabilistic setting, the observable behavior of a program can be defined by a map of

type Expr → [0, 1] mapping an expression 𝑒 to the probability that it evaluates to a value. As a

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 2. Publication date: January 2023.



2:6 Alejandro Aguirre and Lars Birkedal

generalization of probabilistic termination, we will consider two quantitative observations, which

will induce two different (and in general incomparable) contextual equivalence relations.

First we consider the probability of may-termination, which is the maximal probability of

termination among all possible nondeterministic choices. We will define it as the least fixed point

of the following operator of type (Expr → [0, 1]) → Expr → [0, 1]:

Φ(𝑓 ) (𝑒) =



1 if 𝑒 ∈ Val
sup𝑛∈N 𝑓 (𝐸 [𝑛]) 𝑒 = 𝐸 [?]∑

1≤𝑛≤𝑘
1

𝑘
· 𝑓 (𝐸 [𝑛]) 𝑒 = 𝐸 [rand 𝑘]

𝑓 (𝑒′) 𝑒 −→𝐷 𝑒′

0 otherwise

Note that existence of the sup in the case for 𝐸 [?] is guaranteed because 𝑓 is bounded. Anal-

ogously, we define the probability of must-termination as the least fixed point of the operator

Ψ : (Expr → [0, 1]) → Expr → [0, 1] defined below:

Ψ(𝑓 ) (𝑒) =



1 if 𝑒 ∈ Val
inf𝑛∈N 𝑓 (𝐸 [𝑛]) 𝑒 = 𝐸 [?]∑

1≤𝑛≤𝑘
1

𝑘
· 𝑓 (𝐸 [𝑛]) 𝑒 = 𝐸 [rand 𝑘]

𝑓 (𝑒′) 𝑒 −→𝐷 𝑒′

0 otherwise

The set of functions (Expr → [0, 1]) ordered pointwise forms a complete lattice. The existence

of the least fixed points is therefore guaranteed by Tarski’s fixed point theorem, and by the fact

that the operators are monotonic:

Lemma 3.6. The operators Φ,Ψ are monotonically nondecreasing, that is, for 𝑓 , 𝑔 : Expr → [0, 1]
such that 𝑓 ≤ 𝑔 then Φ(𝑓 ) ≤ Φ(𝑔) and Ψ(𝑓 ) ≤ Ψ(𝑔).

The proof is by case analysis. Thus, both operators have least fixed points, so the concepts below

are well-defined:

Definition 3.7. Let 𝑒 ∈ Expr. The probability of may-termination of 𝑒 , denoted 𝔓↓ (𝑒) is defined
as 𝔓↓ (𝑒) = (lfp Φ) (𝑒). The probability of must-termination of 𝑒 , denoted 𝔓⇓ (𝑒) is defined as
𝔓⇓ (𝑒) = (lfp Ψ) (𝑒).

In order to connect the fixed point definition of the probabilities of termination to the operational

semantics of our language, we use the properties below. The proof follows by first using the facts

that𝔓↓ = Φ(𝔓↓),𝔓⇓ = Ψ(𝔓⇓), and then unfolding the definitions of Φ and Ψ.

Proposition 3.8. Let 𝑒 ∈ Expr. Then:
(1) If 𝑒 ∈ Val, then𝔓↓ (𝑒) = 𝔓⇓ (𝑒) = 1.
(2) If 𝑒 = 𝐸 [?] then𝔓↓ (𝑒) = sup𝑛∈N𝔓

↓ (𝐸 [𝑛]) and𝔓⇓ (𝑒) = inf𝑛∈N𝔓⇓ (𝐸 [𝑛]).
(3) If 𝑒 = 𝐸 [rand 𝑘] then𝔓↓ (𝑒) = ∑

1≤𝑛≤𝑘
1

𝑘
·𝔓↓ (𝐸 [𝑛]) and𝔓⇓ (𝑒) = ∑

1≤𝑛≤𝑘
1

𝑘
·𝔓⇓ (𝐸 [𝑛]).

(4) If 𝑒 −→∗
𝐷
𝑒′, then𝔓↓ (𝑒) = 𝔓↓ (𝑒′) and𝔓⇓ (𝑒) = 𝔓⇓ (𝑒′).

In section 4 we will define step-indexed logical relations to reason about these notions of

termination. Therefore, we develop a step-indexed version of the probability of termination. Let

𝑒 ∈ Expr. For any 𝑛 ∈ 𝜔 we use 𝔓
↓
𝑛 (𝑒) as shorthand for Φ𝑛 (⊥)(𝑒). For any 𝛽 ∈ 𝜔1 we use 𝔓

⇓
𝛽
(𝑒)
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to denote Ψ𝛽 (⊥)(𝑒) (the reason for using different indices for may- and must-termination will

become clear in short). Note that this makes the step-indexing count every operational steps.

Other work [Birkedal et al. 2013; Bizjak and Birkedal 2015] considers step-indexed notions of

termination that only increment the step-index on choices and on unfold-fold reductions. This

makes the resulting logical relation easier to use for some applications, for instance 𝛽-reduction is

an equivalence at the same step index, not just at the limit. However, for our intended purposes it

suffices to count every step.

We will use the following two results about the step-indexed probability of termination. First, it

is monotonically non-decreasing in the number of steps:

Proposition 3.9. Let 𝑒 ∈ Expr. Then, for any 𝑛 < 𝑚 < 𝜔 ,𝔓↓
𝑛 (𝑒) ≤ 𝔓

↓
𝑚 (𝑒), and for any 𝛽 < 𝜉 < 𝜔1,

𝔓
⇓
𝛽
(𝑒) ≤ 𝔓

⇓
𝜉
(𝑒).

This result is proven by (ordinal) induction. Second, we have a step-indexed version of proposi-

tion 3.8:

Proposition 3.10. Let 𝑒 ∈ Expr, 𝑛 ≤ 𝑚 < 𝜔 and 𝛽 ≤ 𝜉 < 𝜔1. Then:

(1) If 𝑒 ∈ Val, then𝔓
↓
𝑛 (𝑒) = 𝔓

⇓
𝛽
(𝑒) = 1.

(2) If 𝑒 = 𝐸 [?] then𝔓
↓
𝑛 (𝑒) ≤ sup𝑘∈N𝔓

↓
𝑚 (𝐸 [𝑘]) and𝔓⇓

𝛽
(𝑒) ≤ inf𝑘∈N𝔓

⇓
𝜉
(𝐸 [𝑘]).

(3) If 𝑒 = 𝐸 [rand 𝑘] then𝔓
↓
𝑛 (𝑒) ≤

∑
1≤𝑛≤𝑘

1

𝑘
·𝔓↓

𝑚 (𝐸 [𝑛]) and𝔓⇓
𝛽
(𝑒) ≤ ∑

1≤𝑛≤𝑘
1

𝑘
·𝔓⇓

𝜉
(𝐸 [𝑛]).

(4) If 𝑒 −→∗
𝐷
𝑒′, then𝔓

↓
𝑛 (𝑒) ≤ 𝔓

↓
𝑚 (𝑒′) and𝔓⇓

𝛽
(𝑒) ≤ 𝔓

⇓
𝜉
(𝑒′).

The logical relation for may-termination is going to be defined in terms of𝔓
↓
𝑛 , but in the end

we want to use it to reason about𝔓↓
, so we need to take our step indices from an ordinal 𝜉 large

enough so that sup𝛽<𝜉 𝔓
↓
𝛽
= 𝔓↓

. In the case of may-termination, it suffices to step-index up to 𝜔

due to the following result:

Proposition 3.11. Φ is 𝜔-continuous. In particular, for any 𝑒 ∈ Expr,𝔓↓ (𝑒) = sup𝑖∈𝜔 𝔓
↓
𝑖
(𝑒).

However, this is not the case for Ψ, due to the following counterexample:

Example 3.12. Consider the family {𝑓𝑖 : Expr → [0, 1]} where 𝑓𝑖 (𝑒) =
{
1 𝑒 = 𝑛 ∧ 𝑛 < 𝑖

0 otherwise

. Then

sup𝑖∈𝜔 (Ψ𝑖 (𝑓𝑖 ) (?)) = sup𝑖∈𝜔 (inf𝑛∈N 𝑓𝑖 (𝑛)) = 0, but (sup𝑖∈𝜔 Ψ𝑖 (𝑓𝑖 )) (?) = inf𝑛∈N sup𝑖∈𝜔 𝑓𝑖 (𝑛) = 1.

Therefore Ψ is not 𝜔-continuous.

We will show that the iterations of Ψ reach a fixed point in at most 𝜔1 steps, and there-

fore it suffices to step-index up to 𝜔1. This generalizes to the probabilistic setting a similar

result from [Birkedal et al. 2013] for must termination of programs with countable nondeter-

ministic choice. Concretely, we will prove that there exists a countable ordinal 𝛽 such that for

any 𝑒 ∈ Expr, 𝔓⇓ (𝑒) = Ψ𝛽 (⊥)(𝑒). In other words, we will show that the fixpoint iteration

Ψ(⊥)(𝑒),Ψ2 (⊥)(𝑒), . . . ,Ψ𝜔 (⊥)(𝑒), . . . eventually becomes constant at some ordinal below 𝜔1.

The following lemma is the key to our argument. It states that any non-decreasing 𝜔1-indexed

sequence in a closed interval must eventually become constant:

Lemma 3.13. Let 𝑓 : 𝜔1 → [0, 1] be a monotonic function. Then, there exist 𝑟 ∈ [0, 1] and 𝛽 < 𝜔1

such that for every 𝛼 , if 𝛽 < 𝛼 < 𝜔1 then 𝑓 (𝛼) = 𝑟 .

Proof. Let 𝑓 ∗ = sup𝛼<𝜔1

𝑓 (𝛼), which must exist since 𝑓 is bounded. By the definition of least

upper bound, for every 𝑖 ∈ N there exists 𝛽𝑖 < 𝜔1 such that 𝑓 ∗ − 2
−𝑖 < 𝑓 (𝛽𝑖 ) ≤ 𝑓 ∗. Then we can
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take 𝛽 = sup𝑖∈N 𝛽𝑖 which is a countable ordinal. Using monotonicity, we get that for every 𝛼 ≥ 𝛽

with 𝛼 < 𝜔1,

𝑓 ∗ ≥ 𝑓 (𝛼) ≥ 𝑓 (𝛽) ≥ sup

𝑖∈N
𝑓 (𝛽𝑖 ) ≥ sup

𝑖∈N
(𝑓 ∗ − 2

−𝑖 ) = 𝑓 ∗ .

□

Finally, we will prove:

Proposition 3.14. There exists a countable ordinal 𝛽 such that Ψ𝛽 (⊥) = lfp Ψ, and therefore,
lfpΨ = sup𝛽<𝜔1

Ψ𝛽 (⊥). In particular, for any 𝑒 ∈ Expr,𝔓⇓ (𝑒) = sup𝛽∈𝜔1

𝔓
⇓
𝛽
(𝑒).

Proof. For every 𝑒 , 𝐹𝑒 (𝛼) ≜ Ψ𝛼 (⊥)(𝑒) determines a monotonic map from 𝜔1 to [0, 1], so it must

be constant from some countable 𝛽𝑒 . Since the set of expressions is countable, 𝛽 = sup𝑒∈Expr 𝛽𝑒 is a

countable ordinal and for every 𝑒 , Ψ𝛽+1 (⊥)(𝑒) = Ψ𝛽 (⊥)(𝑒). □

3.3 Comparison to May- and Must-Termination
This work builds on two previous works that study contextual equivalence for probabilistic

choice [Bizjak and Birkedal 2015] and countable nondeterministic choice [Birkedal et al. 2013]. In

this section we argue how the notions of observation we have defined can be seen as generalizations

of the observations used in those works. From another point of view, the notions of termination we

have defined can also be seen as extensions to the higher-order setting of notions of probabilistic

test satisfaction from the literature of process algebra [Yi and Larsen 1992].

First, it is easy to see that if we remove nondeterministic choice from our language, the (may- and

must-) probabilities of termination collapse to the same one, which also coincides with the notion

of observation used in previous work for contextual equivalence for probabilistic programs [Bizjak

and Birkedal 2015]. This defines the probability of termination as the least fixed-point of the Φ
operator without the case for countable choice.

We will further justify our choice of observations by showing that, after removing probabilistic

choice from our language, they coincide with the notions of may- and must-termination for

languages with countable nondeterminism presented in [Birkedal et al. 2013].

Throughout this subsection, we will consider the fragment of the language without probabilistic

choice (we denote such expressions by ExprND). We recall here the definitions of may and must

convergence.

Definition 3.15 (May-convergence). Let Φ̂ : P(ExprND) → P(ExprND) defined by
Φ̂(𝑋 ) = {𝑒 ∈ ExprND | 𝑒 ∈ Val ∨ ∃𝑒′ ∈ ExprND .𝑒 −→ 𝑒′ ∧ 𝑒′ ∈ 𝑋 }.

We say that 𝑒 may-converges (denoted 𝑒 ↓) if 𝑒 ∈ lfp Φ̂, which exists by Tarski’s fixed point theorem.

Definition 3.16 (Must-convergence). Let Ψ̂ : P(ExprND) → P(ExprND) defined by
Ψ̂(𝑋 ) = {𝑒 ∈ ExprND | 𝑒 ∈ Val ∨ (∃𝑒′ .𝑒 −→ 𝑒′ ∧ ∀𝑒′ ∈ ExprND .𝑒 −→ 𝑒′ ⇒ 𝑒′ ∈ 𝑋 )}.

We say that 𝑒 must-converges (denoted 𝑒 ⇓) if 𝑒 ∈ lfp Ψ̂, which exists by Tarski’s fixed point theorem.

Technically, the definition of must-convergence is slightly different from [Birkedal et al. 2013]

which, unlike us, considers stuck terms to be must-convergent. This difference is minor, since it

only arises with ill-typed terms. Our choice of presentation also allows us to present both notions

of termination as particular cases of a scheduler-based notion of termination, see section 5.

Note that by considering the order isomorphism between P(ExprND), ordered by subset inclusion,
and ExprND → {0, 1}, ordered pointwise, Φ̂ and Ψ̂ can be seen as operators of type (ExprND →
{0, 1}) → (ExprND → {0, 1}). In particular, may- and must-convergence can be regarded as
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{0, 1}-valued functions. This provides the connection to the notions of termination studied in this

paper.

Proposition 3.17. Let 𝑒 ∈ ExprND , and 𝑓 ∈ Expr → {0, 1}. Then Φ(𝑓 ) (𝑒) = Φ̂(𝑓 ) (𝑒). In particular,
𝔓↓ (𝑒) = 1 if and only if 𝑒 ↓.

Proof. We do a case distinction on 𝑒 . If 𝑒 ∈ Val, then Φ(𝑓 ) (𝑒) = 1 = Φ̂(𝑓 ) (𝑒). If 𝑒 is stuck, then
Φ(𝑓 ) (𝑒) = 0 = Φ̂(𝑓 ) (𝑒). If 𝑒 = 𝐸 [?] then Φ(𝑓 ) (𝑒) = sup𝑛∈N 𝑓 (𝐸 [𝑛]). Since for every 𝑛, 𝑓 (𝐸 [𝑛])
is either 0 or 1 the sup can also only be 0 or 1. It is 1 iff there exists a particular 𝑚 for which

𝑓 (𝐸 [𝑚]) = 1, so Φ(𝑓 ) (𝑒) = Φ̂(𝑓 ) (𝑒). If 𝑒 −→𝐷 𝑒′, then there is no other reduction from 𝑒 , and

Φ̂(𝑓 ) (𝑒) = 1 iff 𝑓 (𝑒) = 1, so Φ(𝑓 ) (𝑒) = Φ̂(𝑓 ) (𝑒).
Then,𝔓↓ (𝑒) = 1 if and only if 𝑒 ↓ because both are least fixed points of isomorphic operators. □

Proposition 3.18. Let 𝑒 ∈ ExprND , and 𝑓 ∈ Expr → {0, 1}. Then Ψ(𝑓 ) (𝑒) = Ψ̂(𝑓 ) (𝑒). In particular,
𝔓⇓ (𝑒) = 1 if and only if 𝑒 ⇓.

Proof. We do a case distinction on 𝑒 . If 𝑒 ∈ Val, then Ψ(𝑓 ) (𝑒) = 1 = Ψ̂(𝑓 ) (𝑒). If 𝑒 is stuck, then
Ψ(𝑓 ) (𝑒) = 0 = Ψ̂(𝑓 ) (𝑒). If 𝑒 = 𝐸 [?], then Ψ(𝑓 ) (𝑒) = inf𝑛∈N 𝑓 (𝐸 [𝑛]), which can be 0 or 1. If it is

0, then there exists a particular𝑚 ∈ N such that 𝑒 −→ 𝐸 [𝑚] and 𝑓 (𝐸 [𝑚]) = 0, so Ψ̂(𝑓 ) (𝑒) = 0.

Otherwise it is 1 so for every 𝑒′ such that 𝑒 −→ 𝑒′, 𝑓 (𝑒′) = 1, and Ψ̂(𝑓 ) (𝑒) = 1. If 𝑒 −→𝐷 𝑒′, then
there is no other reduction from 𝑒 , and Ψ(𝑓 ) (𝑒) = 𝑓 (𝑒′) = Ψ̂(𝑓 ) (𝑒).
Then,𝔓⇓ (𝑒) = 1 if and only if 𝑒 ⇓ because both are least fixed points of isomorphic operators. □

4 TYPE-INDEXED RELATIONS
Contextual equivalence is a standard notion of equivalence between higher-order programs. In-

formally speaking, it states that two programs are equivalent if they have the same observable

behavior under any context. Alternatively, contextual equivalence may also be defined as the largest

equivalence relation that is adequate under some notion of observation and closed under the term

constructors of the programming language [Pitts 2004]. It is well-known that it is hard to reason

directly about contextual equivalence. To prove contextual equivalences, we will instead define a

step-indexed logical relation, and then show that it is sound for contextual equivalence (i.e., it is an

equivalence relation and it is closed under term constructors).

To show completeness of the logical relation, we will show that it coincides with CIU (Closed

Instantiation of Uses) equivalence, which is defined in terms of evaluation contexts, as opposed to

arbitrary contexts, and which also coincides with contextual equivalence.

4.1 Background
Definition 4.1. A type-indexed relation is a set R of tuples (Δ, Γ, 𝑒1, 𝑒2, 𝜏) such that Δ ⊢ Γ, Δ ⊢ 𝜏 ,
Δ | Γ ⊢ 𝑒1 : 𝜏 and Δ | Γ ⊢ 𝑒2 : 𝜏 . If (Δ, Γ, 𝑒1, 𝑒2, 𝜏) ∈ R, we also denote it by Δ | Γ ⊢ 𝑒1 R 𝑒2 : 𝜏 .

Definition 4.2 (May- and must-adequacy). Let R be a type-indexed relation. We say that R is may-
adequate if, for any ∅ | ∅ ⊢ 𝑒 R 𝑒′, then𝔓↓ (𝑒) ≤ 𝔓↓ (𝑒′). Analogously, we say that R is must-adequate
if, for any ∅ | ∅ ⊢ 𝑒 R 𝑒′ then𝔓⇓ (𝑒) ≤ 𝔓⇓ (𝑒′).

The following definitions are standard [Pitts 2004]:

Definition 4.3 (Precongruence). Let R be a type-indexed relation. We say that it is
• reflexive if Δ | Γ ⊢ 𝑒 : 𝜏 implies Δ | Γ ⊢ 𝑒 R 𝑒 : 𝜏 ,
• symmetric if Δ | Γ ⊢ 𝑒1 R 𝑒2 : 𝜏 implies Δ | Γ ⊢ 𝑒2 R 𝑒1 : 𝜏

• transitive if Δ | Γ ⊢ 𝑒1 R 𝑒2 : 𝜏 and Δ | Γ ⊢ 𝑒2 R 𝑒3 : 𝜏 imply Δ | Γ ⊢ 𝑒1 R 𝑒3 : 𝜏
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• compatible if it is closed under the typing rules. For instance in the case of abstraction and
application the following must hold:

Δ | Γ, 𝑥 : 𝜎 ⊢ 𝑒1 R 𝑒2 : 𝜏

Δ | Γ ⊢ 𝜆𝑥.𝑒1 R 𝜆𝑥.𝑒2 : 𝜎 → 𝜏

Δ | Γ ⊢ 𝑒1 R 𝑒2 : 𝜎 → 𝜏

Δ | Γ ⊢ 𝑒′
1
R 𝑒′

2
: 𝜎

Δ | Γ ⊢ 𝑒1 𝑒′1 R 𝑒2 𝑒
′
2
: 𝜏

We say that R is a precongruence if it is reflexive, transitive and compatible.

Definition 4.4 (Contextual approximation and equivalence). Contextual may-approximation (de-
noted ≲ctx↓ ) is the largest may-adequate precongruence. Contextual must-approximation (denoted ≲ctx⇓ )
is the largest must-adequate precongruence. Contextual may-equivalence (�ctx↓ ) and must-equivalence
(�ctx⇓ ) are defined respectively as the largest symmetric subrelations of contextual may- and must-
approximation.

The CIU relation is an alternative way to define equivalence between higher-order programs.

It is defined with respect with evaluation contexts instead of arbitrary contexts, which makes it

easier to use for some applications.

Definition 4.5 (CIU approximation and equivalence). The CIU may-approximation (resp. CIU
must-approximation) relation ≲CIU↓ (≲CIU⇓ ) is defined as follows: for every 𝑒, 𝑒′ such that Δ | Γ ⊢ 𝑒 : 𝜏
and Δ | Γ ⊢ 𝑒′ : 𝜏 we write Δ | Γ ⊢ 𝑒 ≲CIU↓ 𝑒′ : 𝜏 (Δ | Γ ⊢ 𝑒 ≲CIU⇓ 𝑒′ : 𝜏) if for every 𝛿 : Δ → Type,

𝛾 ∈ Subst(Γ𝛿), and 𝐸 ∈ Ectx(𝜏𝛿), we have that𝔓↓ (𝐸 [𝑒𝛾]) ≤ 𝔓↓ (𝐸 [𝑒′𝛾]) (𝔓⇓ (𝐸 [𝑒𝛾]) ≤ 𝔓⇓ (𝐸 [𝑒′𝛾])).
CIU may-equivalence (�CIU↓ ) and must-equivalence (�CIU⇓ ) are defined respectively as the largest
symmetric subrelations of CIU may- and must-approximation.

By definition, CIU approximation is reflexive, transitive and may-adequate. In fact we will show

that it is also compatible and it coincides with contextual approximation. However, a direct proof

of this fact is challenging. Instead we define a step-indexed logical relation, and we will show that

it coincides with both the CIU relation and contextual approximation.

4.2 Step-Indexed Logical Relations
Logical relations were introduced as a technique to prove properties of higher order programs,

such as strong normalization [Tait 1967] or contextual equivalence [Pitts and Stark 1998]. The idea

is to define an interpretation of a type by induction on the construction of the type ensuring that all

inhabitants satisfy a desired property. In the case of contextual approximation, every type is given

a (relational) interpretation as a set of pairs of related terms. Step-indexed logical relations are a

generalization of logical relations to avoid circularity issues when treating recursive types. They

index the interpretation of a type by a numerical value (the step-index) that morally corresponds

to the number of evaluation steps for which the terms are related. This allows the interpretation to

be well-defined by induction on both the structure of the type and the step-index.

In this work, we will use the countable ordinals as step indices, as indicated by the following

definition:

Definition 4.6 (𝜔1-indexed relation). Let 𝑆, 𝑆 ′ be two sets. An 𝜔1-indexed relation 𝑟 is a map
𝜔1 → P(𝑆 × 𝑆 ′) such that for every countable ordinal 𝜉 , 𝑟 (𝜉) ⊆ ∩𝛽<𝜉 𝑟 (𝜉) (note that this implies
𝑟 (0) ⊇ 𝑟 (1) ⊇ · · · ⊇ 𝑟 (𝜔) ⊇ . . . ). An 𝜔-indexed relation 𝑟 is an 𝜔1-indexed relation such that for
every 𝜉 > 𝜔 , 𝑟 (𝜉) = 𝑟 (𝜔).

Let 𝜏, 𝜎 ∈ Type(∅). A value relation between 𝜏 and 𝜎 is an𝜔1-indexed relation over Val(𝜏)×Val(𝜎).
An evaluation context relation between 𝜏 and 𝜎 is an 𝜔1-indexed relation over Ectx(𝜏) × Ectx(𝜎). An
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expression relation between 𝜏, 𝜎 is an 𝜔1-indexed relation over Expr(𝜏) × Expr(𝜎). We let RVal(𝜏, 𝜎),
REctx(𝜏, 𝜎), and RExpr(𝜏, 𝜎) denote the sets of value, evaluation context and expression relations

between 𝜏 and 𝜎 , respectively.

To define the interpretation of a type we also need to interpret each of the free type variables

that appear in it. Given a type context Δ, we let RVal(Δ) denote the set of interpretations of Δ
defined by:

RVal(Δ) =
{
(𝛿1, 𝛿2, 𝑟 )

���� 𝛿1, 𝛿2 : Δ → Type, 𝑟 : Δ → 𝜔1 → P(Val × Val),
∀𝛼 ∈ Δ.𝑟 (𝛼) ∈ RVal(𝛿1 (𝛼), 𝛿2 (𝛼))

}
In other words, a relation over Δ is a triple consisting of two substitutions 𝛿1 and 𝛿2 for Δ and a

map 𝑟 assigning to every 𝛼 ∈ Δ a value relation over 𝛿1 (𝛼), 𝛿2 (𝛼).
In the rest of the section, we will define two logical relations to reason about may- and must-

contextual approximation. The construction follows a similar pattern in both cases. Given a type

context Δ, a type 𝜏 ∈ Type(Δ), and a set of relations 𝜑 = (𝛿1, 𝛿2, 𝑟 ) ∈ RVal(Δ) giving an interpre-

tation to every type variable, a type 𝜏 can be given a relational interpretation ⟦Δ ⊢ 𝜏⟧(𝜑), which
is a relation in RVal(𝛿1 (𝜏), 𝛿2 (𝜏)). This can then be lifted to a relational interpretation over closed

expressions. Finally, we define a logical relation over open expressions by substituting every free

variable by a pair of related values.

The logical relations we define here can be seen as extensions of the ones in [Birkedal et al. 2013]

with probabilistic choice (see also the logical relation defined in [Bizjak and Birkedal 2015]). The

combination is smooth due to the use of biorthogonality, which allows us to prove adequacy and

compatibility of the logical relations from the convergence properties of𝔓
↓
𝑛 (·) and𝔓⇓

𝛽
(·), as well

as propositions 3.8 to 3.10.

4.3 Relation for May-Termination
The relational interpretation for values is defined in fig. 2. This definition is mostly standard, see

e.g. [Birkedal et al. 2013; Bizjak and Birkedal 2015]. To give some intuition, the inhabitants of

this relation should be the pairs of values of type 𝜏 such that the value on the left contextually

approximates the value on the right. Hence, for base types the relation is just equality. For a type

variable 𝛼 , its relational interpretation is given in 𝜑 . Two values of an arrow type 𝜏 → 𝜎 are related

if they map related values of type 𝜏 to related expressions of type 𝜎 . For product and sum types,

the relation is the respectively the product and the sum of the relations for the individual types. In

the case of a universal type ∀𝛼.𝜏 , we take the pairs (Λ.𝑒,Λ, 𝑒′) such that (𝑒, 𝑒′) are related at every

possible interpretation of the variable 𝛼 .

The case for recursive types is more interesting, and it justifies the use of step-indices. Two

values (fold 𝑣, fold 𝑣 ′) are in ⟦Δ ⊢ 𝜇𝛼.𝜏⟧ at a step index 𝑛 if (𝑣, 𝑣 ′) are in ⟦Δ ⊢ 𝜏 [(𝜇𝛼.𝜏)/𝛼]⟧ at a

smaller step-index (see also lemma 4.9). Circularity in the definition is avoided by requiring the

step index to strictly decrease.

The definition can be generalized to typing contexts ⟦Δ ⊢ Γ⟧ by taking the pointwise product.

For every 𝜑 ∈ RVal(Δ) and every natural number 𝑛, ⟦Δ ⊢ Γ⟧(𝜑) (𝑛) can be seen as a pair (𝛾,𝛾 ′) of
substitutions for the variables in Γ such that for every (𝑥 : 𝜏) ∈ Γ, (𝛾 (𝑥), 𝛾 ′ (𝑥)) ∈ ⟦Δ ⊢ 𝜏⟧(𝜑) (𝑛).
So far we have only defined the relational interpretation for values. We can then extend it to

a relational interpretation for expressions by using biorthogonality. This consists of lifting the

relational interpretation first from values to evaluation contexts and then to expressions using the

probability of may-termination as a dualizing observation. The two steps of the lifting are given by
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⟦Δ ⊢ 𝛼⟧(𝜑) (𝑛) = 𝑟 (𝛼) (𝑛) ⟦Δ ⊢ 1⟧(𝜑) (𝑛) = {(⟨⟩, ⟨⟩)} ⟦Δ ⊢ nat⟧(𝜑) (𝑛) = {(𝑘, 𝑘) | 𝑘 ∈ N}

⟦Δ ⊢ 𝜏 → 𝜎⟧(𝜑) (𝑛) =
⋂
𝑚≤𝑛

{(𝜆𝑥.𝑒, 𝜆𝑦.𝑒′) | ∀(𝑣, 𝑣 ′) ∈ ⟦Δ ⊢ 𝜏⟧(𝜑) (𝑚).(𝑒 [𝑣/𝑥], 𝑒′ [𝑣 ′/𝑦]) ∈ ⟦Δ ⊢ 𝜎⟧(𝜑)⊤⊤ (𝑚)}

⟦Δ ⊢ 𝜏 × 𝜎⟧(𝜑) (𝑛) = {(⟨𝑣1, 𝑣2⟩, ⟨𝑣 ′1, 𝑣
′
2
⟩) | (𝑣1, 𝑣 ′1) ∈ ⟦Δ ⊢ 𝜏⟧(𝜑) (𝑛) ∧ (𝑣2, 𝑣 ′2) ∈ ⟦Δ ⊢ 𝜎⟧(𝜑) (𝑛)}

⟦Δ ⊢ 𝜏 + 𝜎⟧(𝜑) (𝑛) = {(inl(𝑣), inl(𝑣 ′)) | (𝑣, 𝑣 ′) ∈ ⟦Δ ⊢ 𝜏⟧(𝜑) (𝑛)} ∪
{(inr(𝑣), inr(𝑣 ′)) | (𝑣, 𝑣 ′) ∈ ⟦Δ ⊢ 𝜎⟧(𝜑) (𝑛)}

⟦Δ ⊢ ∀𝛼.𝜏⟧(𝜑) (𝑛) = {(Λ.𝑒,Λ, 𝑒′) | ∀𝜎, 𝜎′ ∈ Type,∀𝑟 ∈ RVal(𝜎, 𝜎′) .
(𝑒, 𝑒′) ∈ (⟦Δ, 𝛼 ⊢ 𝜏⟧(𝜑 [𝛼 ↦→ (𝜎, 𝜎′, 𝑟 )]))⊤⊤ (𝑛)}

⟦Δ ⊢ 𝜇𝛼.𝜏⟧(𝜑) (0) = Val(𝛿1 (𝜇𝛼.𝜏)) × Val(𝛿2 (𝜇𝛼.𝜏))
⟦Δ ⊢ 𝜇𝛼.𝜏⟧(𝜑) (𝑛+1) = {(fold 𝑣, fold 𝑣 ′) | (𝑣, 𝑣 ′) ∈ ⟦Δ, 𝛼 ⊢ 𝜏⟧(𝜑 ′) (𝑛)}

where 𝜑 ′ ≜ 𝜑 [𝛼 ↦→ (𝛿1 (𝜇𝛼.𝜏), 𝛿2 (𝜇𝛼.𝜏), ⟦Δ ⊢ 𝜇𝛼.𝜏⟧(𝜑))]

Fig. 2. Definition of the logical relation on values for may-termination. We use 𝛿1, 𝛿2 and 𝑟 to denote the
three components of 𝜑 .

two operators (·)⊤ : RVal(𝜏, 𝜏 ′) → REctx(𝜏, 𝜏 ′) and (·)⊥ : REctx(𝜏, 𝜏 ′) → RExpr(𝜏, 𝜏 ′) defined as:

𝑟⊤ (𝑛) = {(𝐸, 𝐸′) | ∀𝑚 ≤ 𝑛,∀(𝑣, 𝑣 ′) ∈ 𝑟 (𝑚).𝔓↓
𝑚 (𝐸 [𝑣]) ≤ 𝔓↓ (𝐸′ [𝑣 ′])}

𝑟⊥ (𝑛) = {(𝑒, 𝑒′) | ∀𝑚 ≤ 𝑛,∀(𝐸, 𝐸′) ∈ 𝑟 (𝑚).𝔓↓
𝑚 (𝐸 [𝑒]) ≤ 𝔓↓ (𝐸′ [𝑒′])}

We write 𝑟⊤⊤ for (𝑟⊤)⊥. Biorthogonality is convenient because it ensures that the relational in-

terpretation of expressions is closed under evaluation contexts and may-adequate. The fact that

step-indices appear in the probability of termination only on the left is due to the fact that we

want the relation to coincide with approximation, and to show𝔓↓ (𝐸 [𝑒]) ≤ 𝔓↓ (𝐸′ [𝑒′]) it suffices

to show𝔓
↓
𝑚 (𝐸 [𝑒]) ≤ 𝔓↓ (𝐸′ [𝑒′]) at every index.

By closing the relation under substitutions and taking the limit over all step-indices, we can

define a type-indexed relation, that we call logical approximation:

Definition 4.7. We say that Δ | Γ ⊢ 𝑒 ≲
log
↓ 𝑒′ : 𝜏 if for all 𝜑 ∈ RVal(Δ), for all 𝑛 < 𝜔 , and all

(𝛾,𝛾 ′) ∈ ⟦Δ ⊢ Γ⟧(𝜑) (𝑛), we have (𝑒𝛾, 𝑒′𝛾 ′) ∈ ⟦Δ ⊢ 𝜏⟧(𝜑)⊤⊤ (𝑛).

We want to show that logical approximation coincides with contextual approximation. We begin

by showing that it is adequate.

Proposition 4.8. The relation ≲log↓ is may-adequate.

Proof. Assume ⊢ 𝑒 ≲
log
⇓ 𝑒′ : 𝜏 . Note that, for all 𝑛 < 𝜔 , ( [ ], [ ]) ∈ ⟦ ⊢ 𝜏⟧⊤ (𝑛). Then, we

have that, for all 𝑛 < 𝜔 , 𝔓
↓
𝑛 (𝑒) ≤ 𝔓↓ (𝑒′), so in particular, sup𝑛<𝜔 𝔓

↓
𝑛 (𝑒) ≤ 𝔓↓ (𝑒′). By definition,

𝔓↓ (𝑒) = sup𝑛<𝜔 Ψ𝑛 (⊥)(𝑒) = sup𝑛<𝜔 𝔓
↓
𝑛 (𝑒), so𝔓↓ (𝑒) ≤ 𝔓↓ (𝑒′). □

To show that it is compatible, we first need to show the so-called extension lemmas. Before

showing them, we state some useful results:

Lemma 4.9. Let Δ ⊢ 𝜏 , and Δ, 𝛼 ⊢ 𝜎 and 𝜑 = (𝛿1, 𝛿2, 𝑟 ) ∈ RVal(Δ), and define 𝜑 ′ = 𝜑 [𝛼 ↦→
(𝜏𝛿1, 𝜏𝛿2, ⟦Δ ⊢ 𝜏⟧(𝜑))]. Then ⟦Δ ⊢ 𝜎 [𝜏/𝛼]⟧(𝜑) = ⟦Δ, 𝛼 ⊢ 𝜎⟧(𝜑 ′).

Lemma 4.10. Let 𝜏, 𝜏 ′ ∈ Type, 𝑟 ∈ RVal(𝜏, 𝜏 ′). Then 𝑟 ⊆ 𝑟⊤⊤.
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Lemma 4.11. Let 𝜏, 𝜏 ′ ∈ Type, 𝑟 ⊆ 𝑠 ∈ RVal(𝜏, 𝜏 ′). Then 𝑟⊤⊤ ⊆ 𝑠⊤⊤.

The context extension lemmas, as the name suggests, show that the interpretation of evaluation

contexts ⟦Δ ⊢ 𝜎⟧(𝜑)⊤ is in a precise sense closed under evaluation context composition. To give a

flavor of how they look like, we state and prove here some representative cases:

Lemma 4.12. Let 𝑛 < 𝜔 , 𝜑 ∈ RVal(Δ), and (𝐸, 𝐸′) ∈ ⟦Δ ⊢ nat⟧(𝜑)⊤ (𝑛). Then
(𝐸 [rand [] ], 𝐸′ [rand [] ]) ∈ ⟦Δ ⊢ nat⟧(𝜑)⊤ (𝑛).

Proof. Let (𝑣, 𝑣 ′) ∈ ⟦Δ ⊢ nat⟧(𝜑) (𝑛). Then, there exists 𝑘 ∈ N such that 𝑣 = 𝑣 ′ = 𝑘 . We have

𝔓
↓
𝛼 (𝐸 [rand 𝑘]) ≤

∑︁
1≤𝑙≤𝑘

1

𝑘
·𝔓↓

𝛼 (𝐸 [𝑙]) ≤
∑︁

1≤𝑙≤𝑘

1

𝑘
·𝔓↓ (𝐸′ [𝑙]) = 𝔓↓ (𝐸′ [rand 𝑘])

Therefore, (𝐸 [rand [] ], 𝐸′ [rand [] ]) ∈ ⟦Δ ⊢ nat⟧(𝜑)⊤ (𝑛). □

Lemma 4.13. Let 𝑛 < 𝜔 , 𝜑 ∈ RVal(Δ), and (𝐸, 𝐸′) ∈ ⟦Δ ⊢ 𝜇𝛼.𝜏⟧(𝜑)⊤ (𝑛). Then we have that
(𝐸 [fold []], 𝐸′ [fold []]) ∈ ⟦Δ ⊢ 𝜏 [𝜇𝛼.𝜏/𝛼]⟧(𝜑)⊤ (𝑛).

Proof. Let (𝑣, 𝑣 ′) ∈ ⟦Δ ⊢ 𝜏 [𝜇𝛼.𝜏/𝛼]⟧(𝜑) (𝑛). By definition of the interpretation and applying

lemma 4.9, (fold 𝑣, fold 𝑣 ′) ∈ ⟦Δ ⊢ 𝜏 [𝜇𝛼.𝜏/𝛼]⟧(𝜑) (𝑛 + 1). Therefore, for all 𝑚 ≤ 𝑛 + 1 (and

in particular, 𝑚 ≤ 𝑛), 𝔓
↓
𝑚 (𝐸 [fold 𝑣]) ≤ 𝔓↓ (𝐸′ [fold 𝑣 ′]). Thus (𝐸 [fold []], 𝐸′ [fold []]) ∈ ⟦Δ ⊢

𝜏 [𝜇𝛼.𝜏/𝛼]⟧(𝜑)⊤ (𝑛). □

Now we are in shape to show that the logical relation is compatible. This is often known as the

fundamental property:

Proposition 4.14 (Fundamental property). The relation ≲log↓ is compatible. As a consequence, it
is reflexive: for any type context Δ, typing context Γ, expression 𝑒 and type 𝜏 , if Δ | Γ ⊢ 𝑒 : 𝜏 , then
Δ | Γ ⊢ 𝑒 ≲log↓ 𝑒 : 𝜏 .

Proof. We show here a couple of illustrative cases:

• If 𝑒 = ?. Let 𝑛 < 𝜔 , (𝐸, 𝐸′) ∈ ⟦Δ ⊢ nat⟧(𝑛)⊤. We have to show that for every 𝑚 ≤ 𝑛,

𝔓
↓
𝑚 (𝐸 [?]) ≤ 𝔓↓ (𝐸′ [?]). Note that𝔓↓

𝑚 (𝐸 [?]) ≤ sup𝑘∈N𝔓
↓
𝑚 (𝐸 [𝑘]) and ∀𝑘 ∈ N, (𝑘, 𝑘) ∈ ⟦∅ ⊢

nat⟧(𝑚), so𝔓↓
𝑚 (𝐸 [𝑘]) ≤ 𝔓↓ (𝐸′ [𝑘]), and𝔓↓

𝑚 (𝐸 [?]) ≤ sup𝑘∈N𝔓
↓ (𝐸′ [𝑘]) = 𝔓↓ (𝐸′ [?]).

• Assume Γ ⊢ 𝑒 ≲log↓ 𝑒′ : nat. We will show that Γ ⊢ rand 𝑒 ≲
log
↓ rand 𝑒′ : nat. By assumption,

for all 𝑛 < 𝜔 and all (𝛾,𝛾 ′) ∈ ⟦Δ ⊢ Γ⟧(𝑛), (𝑒𝛾, 𝑒′𝛾 ′) ∈ ⟦Δ ⊢ nat⟧⊤⊤ (𝑛). Now let (𝐸, 𝐸′) ∈
⟦Δ ⊢ nat⟧⊤ (𝑛). By lemma 4.12,

(𝐸 [rand [] ], 𝐸′ [rand [] ]) ∈ ⟦Δ ⊢ nat⟧⊤ (𝑛),
and therefore,

𝔓
↓
𝑛 (𝐸 [rand(𝑒𝛾)]) ≤ 𝔓↓ (𝐸′ [rand(𝑒′𝛾 ′)]),

so we can conclude

((rand 𝑒)𝛾, (rand 𝑒′)𝛾 ′) ∈ ⟦Δ ⊢ nat⟧⊤⊤ (𝑛).

• Assume Δ | Γ ⊢ 𝑒 ≲
log
↓ 𝑒′ : 𝜏 [𝜇𝛼.𝜏/𝛼]. We will show Δ | Γ ⊢ fold 𝑒 ≲log↓ fold 𝑒′ : 𝜇𝛼.𝜏 .

Let 𝑛 < 𝜔 , (𝛾,𝛾 ′) ∈ ⟦Δ ⊢ Γ⟧, (𝐸, 𝐸′) ∈ ⟦Δ ⊢ 𝜇𝛼.𝜏⟧(𝜑)⊤. By assumption, (𝑒𝛾, 𝑒′𝛾 ′) ∈ ⟦Δ ⊢
𝜏 [𝜇𝛼.𝜏/𝛼]⟧(𝜑)⊤⊤ (𝑛) and by lemma 4.13, (𝐸 [fold [ ]], 𝐸′ [fold [ ]]) ∈ ⟦Δ ⊢ 𝜏 [𝜇𝛼.𝜏/𝛼]⟧(𝜑)⊤ (𝑛),
so we can conclude

𝔓
↓
𝑛 (𝐸 [fold [𝑒]]) ≤ 𝔓↓ (𝐸′ [fold [𝑒′]]) . □
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As a consequence, we can show that the logical relation is a sound and complete method for

reasoning about contextual and CIU equivalence:

Theorem 4.15 (CIU-theorem). The relations ≲log↓ , ≲ctx↓ and ≲CIU↓ coincide.

Proof. (1) (≲CIU↓ ⊆≲log↓ ). Assume Δ | Γ ⊢ 𝑒 ≲CIU↓ 𝑒′ : 𝜏 . It suffices to note that by proposi-

tion 4.14, Δ | Γ ⊢ 𝑒 ≲
log
↓ 𝑒 : 𝜏 , and that together with Δ | Γ ⊢ 𝑒 ≲CIU↓ 𝑒′ : 𝜏 this implies

Δ | Γ ⊢ 𝑒 ≲log↓ 𝑒′ : 𝜏 . Indeed, let 𝜑 ∈ RVal(Δ), 𝑛 < 𝜔 , (𝛾,𝛾 ′) ∈ ⟦Δ ⊢ Γ⟧(𝜑) (𝑛). From the defi-

nition of ⟦Δ ⊢ 𝜏⟧⊤⊤ it follows that if (𝑒𝛾, 𝑒𝛾 ′) ∈ ⟦Δ ⊢ 𝜏⟧(𝜑)⊤⊤ (𝑛) and for every 𝐸 ∈ Ectx(𝜏),
𝔓↓ (𝐸 [𝑒𝛾 ′]) ≤ 𝔓↓ (𝐸 [𝑒′𝛾 ′]), then also (𝑒𝛾, 𝑒′𝛾 ′)⟦Δ ⊢ 𝜏⟧(𝜑)⊤⊤ (𝑛).

(2) (≲log↓ ⊆≲ctx↓ ). The transitive closure of ≲
log
↓ is reflexive, transitive, compatible and may-

adequate, so it is contained in ≲ctx↓ .

(3) (≲ctx↓ ⊆≲CIU↓ ). We show the case where both Δ and Γ contain a single variable, which can

then be generalized by induction on their length. Assume 𝛼 | 𝑥 : 𝜏1 ⊢ 𝑒 ≲ctx↓ 𝑒′ : 𝜏2, and

let 𝜎 ∈ Type, 𝑣 ∈ Val(𝜏1 [𝜎/𝛼]), and 𝐸 ∈ Ectx(𝜏2 [𝜎/𝛼]) such that ⊢ 𝐸 : 𝜏2 [𝜎/𝛼] ⇒ 𝜏3 for

some 𝜏3 ∈ Type. By reflexivity ∅ | ∅ ⊢ 𝑣 ≲ctx↓ 𝑣 : 𝜏1 [𝜎/𝛼]. By compatibility we can also show

that ∅ | ∅ ⊢ (Λ.𝜆𝑥 .𝑒) _ 𝑣 ≲ctx↓ (Λ.𝜆𝑥 .𝑒′) _ 𝑣 : 𝜏2 [𝜎/𝛼], and ∅ | ∅ ⊢ 𝐸 [(Λ.𝜆𝑥 .𝑒) _ 𝑣] ≲ctx↓
𝐸 [(Λ.𝜆𝑥 .𝑒′) _ 𝑣] : 𝜏3 By adequacy and the properties of deterministic reduction, we can con-

clude that𝔓↓ (𝐸 [𝑒 [𝑣/𝑥]]) = 𝔓↓ (𝐸 [(Λ.𝜆𝑥 .𝑒) _ 𝑣]) ≤ 𝔓↓ (𝐸 [(Λ.𝜆𝑥 .𝑒′) _ 𝑣]) = 𝔓↓ (𝐸 [𝑒′ [𝑣/𝑥]]).
□

4.4 Relation for Must-Termination
Analogously to the may-termination case, we build a relational interpretation of types that is

must-adequate. This relation, however, is indexed over the countable ordinals. The relational

interpretation of values can be found in fig. 3, which is essentially analogous to the relational

interpretation of values in the may-termination case, except for the fact that step indices are taken

from 𝜔1. In particular the interpretation of recursive types is defined by ordinal induction (and thus

it is well-founded), and at a limit ordinal it is defined as the intersection of the interpretation of the

type at all smaller ordinals. The other main difference lies in the way we use biorthogonality to lift

the relation to contexts and expressions, which is based on the probability of must-termination:

𝑟⊤ (𝜉) = {(𝐸, 𝐸′) | ∀𝛽 ≤ 𝜉,∀(𝑣, 𝑣 ′) ∈ 𝑟 (𝛽). 𝔓
⇓
𝛽
(𝐸 [𝑣]) ≤ 𝔓⇓ (𝐸′ [𝑣 ′])}

𝑟⊥ (𝜉) = {(𝑒, 𝑒′) | ∀𝛽 ≤ 𝜉,∀(𝐸, 𝐸′) ∈ 𝑟 (𝛽). 𝔓
⇓
𝛽
(𝐸 [𝑒]) ≤ 𝔓⇓ (𝐸′ [𝑒′])}

The logical relation for expressions in context is defined below:

Definition 4.16. We say that Δ | Γ ⊢ 𝑒 ≲
log
⇓ 𝑒′ : 𝜏 if for all 𝜑 ∈ RVal(Δ), for all 𝜉 < 𝜔1, and all

(𝛾,𝛾 ′) ∈ ⟦Δ ⊢ Γ⟧(𝜑) (𝜉), we have (𝑒𝛾, 𝑒′𝛾 ′) ∈ ⟦Δ ⊢ 𝜏⟧(𝜑)⊤⊤ (𝜉).

Proposition 4.17. The relation ≲log⇓ is must-adequate.

Proof. Assume ⊢ 𝑒 ≲
log
⇓ 𝑒′ : 𝜏 . Note that, for all 𝜉 , ( [ ], [ ]) ∈ ⟦𝜏⟧⊤ (𝜉). Then, we have that,

for all 𝜉 < 𝜔1, 𝔓
⇓
𝜉
(𝑒) ≤ 𝔓⇓ (𝑒′), so in particular, sup𝛽<𝜔1

𝔓
⇓
𝛽
(𝑒) ≤ 𝔓⇓ (𝑒′). On the other hand,

𝔓⇓ (𝑒) = sup𝛽<𝜔1

Ψ𝛽 (⊥)(𝑒) = sup𝛽<𝜔1

𝔓
⇓
𝛽
(𝑒), so𝔓⇓ (𝑒) ≤ 𝔓⇓ (𝑒′). □

This proof shows the need for step-indexing up to 𝜔1: to ensure that𝔓⇓ (𝑒) ≤ 𝔓⇓ (𝑒′), we need
to require that (𝑒, 𝑒′) is in the relational interpretation until a 𝛽 that makes𝔓

⇓
𝛽
reach the fixpoint.
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⟦Δ ⊢ 𝛼⟧(𝜑) (𝜉) = 𝑟 (𝛼) (𝜉) ⟦Δ ⊢ 1⟧(𝜑) (𝜉) = {(⟨⟩, ⟨⟩)} ⟦Δ ⊢ nat⟧(𝜑) (𝜉) = {(𝑘, 𝑘) | 𝑘 ∈ N}

⟦Δ ⊢ 𝜏→𝜎⟧(𝜑) (𝜉) =
⋂
𝛽≤𝜉

{(𝜆𝑥 .𝑒, 𝜆𝑦.𝑒′) | ∀(𝑣, 𝑣 ′) ∈ ⟦Δ ⊢ 𝜏⟧(𝜑) (𝛽).(𝑒 [𝑣/𝑥], 𝑒′ [𝑣 ′/𝑦]) ∈ ⟦Δ ⊢ 𝜎⟧(𝜑)⊤⊤ (𝛽)}

⟦Δ ⊢ 𝜏 × 𝜎⟧(𝜑) (𝜉) = {(⟨𝑣1, 𝑣2⟩, ⟨𝑣 ′1, 𝑣
′
2
⟩) | (𝑣1, 𝑣 ′1) ∈ ⟦Δ ⊢ 𝜏⟧(𝜑) (𝜉) ∧ (𝑣2, 𝑣 ′2) ∈ ⟦Δ ⊢ 𝜎⟧(𝜑) (𝜉)}

⟦Δ ⊢ 𝜏 + 𝜎⟧(𝜑) (𝜉) = {(inl(𝑣), inl(𝑣 ′)) | (𝑣, 𝑣 ′) ∈ ⟦Δ ⊢ 𝜏⟧(𝜑) (𝜉)} ∪
{(inr(𝑣), inr(𝑣 ′)) | (𝑣, 𝑣 ′) ∈ ⟦Δ ⊢ 𝜎⟧(𝜑) (𝜉)}

⟦Δ ⊢ ∀𝛼.𝜏⟧(𝜑) (𝜉) = {(Λ.𝑒,Λ, 𝑒′) | ∀𝜎, 𝜎′ ∈ Type,∀𝑟 ∈ RVal(𝜎, 𝜎′).
(𝑒, 𝑒′) ∈ ⟦Δ, 𝛼 ⊢ 𝜏⟧(𝜑 [𝛼 ↦→ (𝜎, 𝜎′, 𝑟 )])⊤⊤ (𝜉)}

⟦Δ ⊢ 𝜇𝛼.𝜏⟧(𝜑) (0) = Val(𝛿1 (𝜇𝛼.𝜏)) × Val(𝛿2 (𝜇𝛼.𝜏))
⟦Δ ⊢ 𝜇𝛼.𝜏⟧(𝜑) (𝑆𝛽) = {(fold 𝑣, fold 𝑣 ′) | (𝑣, 𝑣 ′) ∈ ⟦Δ, 𝛼 ⊢ 𝜏⟧(𝜑 ′) (𝛽)}

⟦Δ ⊢ 𝜇𝛼.𝜏⟧(𝜑) (𝜒) =
⋂
𝛽<𝜒

{(fold 𝑣, fold 𝑣 ′) | (𝑣, 𝑣 ′) ∈ ⟦Δ, 𝛼 ⊢ 𝜏⟧(𝜑 ′) (𝛽)}

where 𝜑 ′ ≜ 𝜑 [𝛼 ↦→ (𝛿1 (𝜇𝛼.𝜏), 𝛿2 (𝜇𝛼.𝜏), ⟦Δ ⊢ 𝜇𝛼.𝜏⟧(𝜑))]

Fig. 3. Definition of the logical relation on values for must-termination. We use 𝛿1, 𝛿2 and 𝑟 to denote the
three components of 𝜑 , 𝑆𝛽 to denote a successor ordinal, and 𝜒 to denote a limit ordinal sup𝛽<𝜒 𝛽 .

We can prove context extension lemmas analogous to the ones in the previous section. We show

here the case for unfolding, which illustrates how ordinals are used in the proof:

Lemma 4.18. Let 𝜉 < 𝜔1, 𝜑 ∈ RVal(Δ), and (𝐸, 𝐸′) ∈ ⟦Δ ⊢ 𝜏 [𝜇𝛼.𝜏/𝛼]⟧(𝜑)⊤ (𝜉). Then we have that
(𝐸 [unfold []], 𝐸′ [unfold []]) ∈ ⟦Δ ⊢ 𝜇𝛼.𝜏/𝛼⟧(𝜑)⊤ (𝜉).

Proof. Let (𝑣, 𝑣 ′) ∈ ⟦Δ ⊢ 𝜇𝛼.𝜏/𝛼⟧(𝜑)⊤ (𝜉). Then, 𝑣 = fold𝑤 , 𝑣 ′ = fold𝑤 ′
and for all 𝛽 < 𝜉 ,

(𝑤,𝑤 ′) ∈ ⟦Δ ⊢ 𝜏 [𝜇𝛼.𝜏/𝛼]⟧(𝜑)⊤ (𝑚). We will show that for every 𝛽 ≤ 𝜉 , 𝔓
⇓
𝛽
(𝐸 [unfold fold𝑤]) ≤

𝔓⇓ (𝐸′ [unfold fold𝑤 ′]). If 𝜉 = 0, then𝔓
⇓
0
(𝐸 [unfold fold𝑤]) = 0 and we are done. If 𝜉 = 𝜉 ′ + 1, then

let 𝛽 ≤ 𝜉 = 𝜉 ′ + 1. Then:

𝔓
⇓
𝛽
(𝐸 [unfold fold𝑤]) ≤ 𝔓

⇓
𝜉 ′+1 (𝐸 [unfold fold𝑤])

= 𝔓
⇓
𝜉 ′ (𝐸 [𝑤])

≤ 𝔓⇓ (𝐸′ [𝑤 ′]) = 𝔓⇓ (𝐸′ [unfold fold𝑤 ′]).

Otherwise, 𝜉 = sup𝛽<𝜉 is a limit ordinal. Then, let 𝛽 ≤ 𝜉 . We have:

𝔓
⇓
𝛽
(𝐸 [unfold fold𝑤]) ≤ 𝔓

⇓
𝜉
(𝐸 [unfold fold𝑤])

= sup

𝜁<𝜉

𝔓
⇓
𝜁
(𝐸 [unfold fold𝑤])

(proposition 3.10) ≤ sup

𝜁<𝜉

𝔓
⇓
𝜁
(𝐸 [𝑤])

≤ 𝔓⇓ (𝐸′ [𝑤 ′]) = 𝔓⇓ (𝐸′ [unfold fold𝑤 ′]).

Hence (𝐸 [unfold []], 𝐸′ [unfold []]) ∈ ⟦Δ ⊢ 𝜇𝛼.𝜏/𝛼⟧(𝜑)⊤ (𝜉). □
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As a consequence of the context extension lemmas, we have:

Proposition 4.19 (Fundamental property). The relation ≲log⇓ is compatible. As a consequence, it
is reflexive: for any type context Δ, typing context Γ, expression 𝑒 and type 𝜏 , if Δ | Γ ⊢ 𝑒 : 𝜏 , then
Δ | Γ ⊢ 𝑒 ≲log⇓ 𝑒 : 𝜏 .

Proof. The proof is analogous to the case of may-equivalence, after generalizing to the countable

ordinals. We show the case of countable nondeterministic choice. Let 𝑒 ≡ ?, and let 𝜉 < 𝜔1,

(𝐸, 𝐸′) ∈ ⟦Δ ⊢ nat⟧⊤ (𝜉). We have to show that for every 𝛽 ≤ 𝜉 , 𝔓
⇓
𝛽
(𝐸 [?]) ≤ 𝔓⇓ (𝐸′ [?]). Note

that 𝔓
⇓
𝛽
(𝐸 [?]) ≤ inf𝑘∈N𝔓

⇓
𝛽
(𝐸 [𝑘]) and that for all 𝑘 ∈ N, (𝑘, 𝑘) ∈ ⟦∅ ⊢ nat⟧(𝛽), so 𝔓

⇓
𝛽
(𝐸 [𝑘]) ≤

𝔓⇓ (𝐸′ [𝑘]), and therefore𝔓
⇓
𝛽
(𝐸 [?]) ≤ inf𝑘∈N𝔓

⇓ (𝐸′ [𝑘]) = 𝔓⇓ (𝐸′ [?]). □

Theorem 4.20 (CIU-theorem). The relations ≲log⇓ , ≲ctx⇓ and ≲CIU⇓ coincide.

5 CONNECTION TO SCHEDULER-BASED SEMANTICS
In the previous sections we have defined a way to resolve nondeterminism that consisted in taking

at every point either the supremum or the infimum over all possible choices of the probability of

termination of the continuation. In some sense, this is a global definition, since it needs to consider

all possible runs of the program.

An alternative way of resolving nondeterminism is by the use of a scheduler, that selects locally

on each nondeterministic choice a natural number. By parametrizing the reduction relation over

schedulers, it reduces to a Markov chain, and then we can reason about the probability that it

reaches a terminating state. This is analogous to the notion of schedulers used in concurrent

settings, that choose on each step which thread to execute.

In this section we will present a notion of observation for programs that depends on a scheduler,

and then show how it relates to may- and must-probabilistic termination.

Definition 5.1 (Scheduler). A scheduler is a tuple 𝜃 = (𝑋, 𝜃𝑜 , 𝜃𝑡 ) where 𝑋 is a countable space state,
𝜃𝑜 : 𝑋 → N is an output function and 𝜃𝑡 : 𝑋 × Expr → 𝑋 is a transition function. We let Sch denote
the set of all schedulers.

Morally, the scheduler is an automaton that can receive two kinds of queries. The output queries

select a natural number that can be used to resolve nondeterminism. The transition function can

be used to update the scheduler with information about the expression that is currently being

evaluated. This is similar to the notion of resolution employed e.g. by [Bonchi et al. 2019].

Other approaches [Tassarotti and Harper 2019] allow the scheduler to know the full trace before

resolving a nondeterministic choice. This is covered by our setting, since we can have a scheduler

whose set of states is the set of finite traces. However, as it will later become clear, a scheduler that

only knows the current term but not the full trace of execution cannot in general minimize the

probability of termination.

We will now define the probability of termination under a scheduler. As in section 3 we will

define it as the fixed point of an operator that computes the probability of termination after a single
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step. For a scheduler 𝜃 = (𝑋, 𝜃𝑜 , 𝜃𝑡 ) and a state 𝑥 ∈ 𝑋 , we define:

Ξ𝜃 : (𝑋 × Expr → [0, 1]) → (𝑋 × Expr → [0, 1])

Ξ𝜃 (𝑓 ) (𝑥, 𝑒) =



1 if 𝑒 ∈ Val
𝑓 (𝜃𝑡 (𝑥, 𝐸 [𝑚]), 𝐸 [𝑚]) 𝑒 = 𝐸 [?] ∧ 𝜃𝑜 (𝑥) =𝑚∑

1≤𝑚≤𝑘
1

𝑘
· 𝑓 (𝜃𝑡 (𝑥, 𝐸 [𝑚]), 𝐸 [𝑚]) 𝑒 = 𝐸 [rand 𝑘]

𝑓 (𝜃𝑡 (𝑥, 𝑒′), 𝑒′) 𝑒 −→𝐷 𝑒′

0 otherwise

Note that in particular, when resolving nondeterminism we make an output query, and that the

scheduler is updated with the expression we are reducing to.

We can show that this operator is 𝜔-continuous. Therefore, we can define:

Definition 5.2 (Probability of termination under a scheduler). Let 𝑒 ∈ Expr, 𝜃 = (𝑋, 𝜃𝑜 , 𝜃𝑡 ) be a
scheduler and 𝑥 ∈ 𝑋 be a state. The probability of termination of 𝑒 under the scheduler 𝜃 with initial
state 𝑥 ∈ 𝑋 , is denoted by𝔓↓

𝜃,𝑥
(𝑒), and defined as:

𝔓
↓
𝜃,𝑥

(𝑒) = sup

𝑛∈𝜔
Ξ𝑛
𝜃
(⊥)(𝑥, 𝑒)

We will now show that the probabilities of termination under the optimal and the pessimal

schedulers coincide with the probabilities of may- and must-termination respectively.

To show the coincidence in the case of may-termination, we first prove the following lemma:

Lemma 5.3. Let 𝑒 ∈ Expr, 𝜃 = (𝑋, 𝜃𝑜 , 𝜃𝑡 ), 𝑥 ∈ 𝑋 , 𝑛 ∈ N. Then, Ξ𝑛
𝜃
(⊥)(𝑥, 𝑒) ≤ Φ𝑛 (⊥)(𝑒).

An optimal scheduler does not exist in general. Consider for instance the following program,

which terminates with probability (𝑛 − 1)/𝑛 where 𝑛 is picked by the scheduler.:

𝑒 ≜ let𝑛 = ? in if (rand 𝑛) = 1 then diverge else ⟨⟩

Here,𝔓↓ (𝑒) = 1, but there does not exist a scheduler 𝜃 such that𝔓
↓
𝜃,𝑥

(𝑒) = 1. However, for any 𝜖

we can find a scheduler that is 𝜖-optimal, as stated by the following lemma:

Lemma 5.4. Let 𝑒 ∈ Expr. Then for all 𝑛 ∈ N, 𝜖 > 0 there exists 𝜃 = (𝑋, 𝜃𝑜 , 𝜃𝑡 ) and 𝑥 ∈ 𝑋 such that

Ξ𝑛
𝜃
(⊥)(𝑥, 𝑒) ≥ Φ𝑛 (⊥)(𝑒) − 𝜖

The proof is by induction on 𝑛. In particular, when resolving a nondeterministic choice 𝐸 [?], for
every 𝜖′ > 0 there is always some𝑚 ∈ N such that Φ𝑛 (⊥)(𝐸 [𝑚]) ≥ sup𝑘∈N Φ

𝑛 (⊥)(𝐸 [𝑘]) − 𝜖′, so
we can make the scheduler choose𝑚 in that step. For instance in the example program above, we

would make the scheduler choose the first integer larger than 1/𝜖′.
As a consequence, we get the following theorem:

Theorem 5.5. Let 𝑒 ∈ Expr. Then

𝔓↓ (𝑒) = sup

𝜃 ∈Sch,𝜃=(𝑋,𝜃𝑜 ,𝜃𝑡 ),𝑥∈𝑋
𝔓

↓
𝜃,𝑥

(𝑒)

An analogous result can be proven for the probability of must-termination. We begin by showing:

Lemma 5.6. Let 𝑒 ∈ Expr, 𝜃 = (𝑋, 𝜃𝑜 , 𝜃𝑡 ), 𝑥 ∈ 𝑋 , 𝛼 ∈ 𝜔1. Then, Ξ𝛼
𝜃
(⊥)(𝑥, 𝑒) ≥ Ψ𝛼 (⊥)(𝑒). In

particular,𝔓↓
𝜃
(𝑒) ≥ 𝔓⇓ (𝑒).
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Lemma 5.7. Let 𝑒 ∈ Expr. Then for all 𝑛 ∈ N, 𝜖 > 0 there exists 𝜃 = (𝑋, 𝜃𝑜 , 𝜃𝑡 ) and 𝑥 ∈ 𝑋 such that

𝔓
↓
𝜃
(𝑥, 𝑒) ≤ 𝔓⇓ (𝑒) + 𝜖

The proof constructs an 𝜖-pessimal scheduler 𝜃 such that

∀𝑒.∀𝑛.∀𝜖 > 0.∃𝑥 ∈ 𝑋𝜃 . sup
𝑛∈𝜔

Ξ𝑛
𝜃
(⊥)(𝑥, 𝑒) ≤ sup

𝛼∈𝜔1

Ψ𝛼 (⊥)(𝑒) + 𝜖 (1)

The idea is similar to the may-termination case, except than when resolving a nondeterministic

choice 𝐸 [?] we pick𝑚 ∈ N such that

𝔓⇓ (𝐸 [𝑚]) ≤ inf

𝑘∈N
𝔓⇓ (𝐸 [𝑘]) + 2

−|𝜋 | · 𝜖

where |𝜋 | is the length of the current trace. This implies that the scheduler needs to keep track not

only of the current term, but also of the length of the trace in order to minimize the probability of

termination after nondeterministic choices. Indeed, consider the following program (using syntactic

sugar for recursion):

letrec 𝑓 _ = (let𝑛 = ? in if (rand 𝑛) = 1 then ⟨⟩ else 𝑓 ⟨⟩) in 𝑓 ⟨⟩

This program iterates a fair random choice between 1 and 𝑛, where 𝑛 is chosen nondeterministically

by the scheduler. A scheduler that depends only on the current term will necessarily always pick

the same 𝑛 in the expression above every time the recursion is unfolded. Therefore the program will

terminate with probability 1. A scheduler that observes the trace can increase 𝑛 (e.g., duplicating it)

after every unfolding, and therefore the probability of termination can be made arbitrarily close to

zero.

From the previous two lemmas, we get:

Theorem 5.8. For any expression 𝑒 ∈ Expr, we have

𝔓⇓ (𝑒) = inf

𝜃 ∈Sch,𝜃=(𝑋,𝜃𝑜 ,𝜃𝑡 ),𝑥∈𝑋
sup

𝑛∈N
Ξ𝑛
𝜃
(⊥)(𝑥, 𝑒)

To summarize, Theorems 5.5 and 5.8 show that we can find schedulers that get as close as we

want to the probability of may-termination or the probability of must termination. The probability

of may-termination coincides with the supremum of the probabilities of termination over all

schedulers, and the probability of must-termination coincides with the infimum of the probabilities

of termination over all schedulers.

6 APPLICATIONS
We first define syntactic sugar for binary probabilistic and nondeterministic choice, which we will

use in the examples. Given two expressions 𝑒, 𝑒′ and a two naturals 𝑝, 𝑞 such that 𝑞 ≠ 0 and 𝑝 ≤ 𝑞,

we write 𝑒 ⊕𝑝/𝑞 𝑒
′
for if (rand 𝑞) ≤ 𝑝 then 𝑒 else 𝑒′. For the particular case of 𝑝 = 1, 𝑞 = 2 we simply

write 𝑒 ⊕ 𝑒′. Similarly, we write 𝑒 or 𝑒′ for if ? > 1 then 𝑒 else 𝑒′. Note that both in 𝑒 ⊕𝑝/𝑞 𝑒
′
and

𝑒 or 𝑒′ the order of evaluation dictates that first the probabilistic or nondeterministic choice is

made, and only then the corresponding subexpression is evaluated.

We can also define a call-by-value fixpoint operator in our system as below:

fix : ∀𝛼.∀𝛼 ′ .((𝛼 → 𝛼 ′) → (𝛼 → 𝛼 ′)) → 𝛼 → 𝛼 ′

fix = Λ.Λ.𝜆𝐹 .𝜆𝑧.𝑒𝐹 (fold 𝑒𝐹 ) 𝑧 (where 𝑒𝐹 = 𝜆𝑦.let𝑦′ = unfold 𝑦 in 𝐹 (𝜆𝑥.𝑦′ 𝑦 𝑥))

In particular, for every closed type 𝜏 , we can write a closed expression Ω𝜏 ≜ fix _ _ (𝜆𝑓 .𝑓 ) ⟨⟩ such
that Ω𝜏 : 𝜏 and𝔓

↓ (Ω𝜏 ) = 𝔓⇓ (Ω𝜏 ) = 0.
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6.1 Extensionality
As a first consequence of the CIU theorems, we obtain extensionality for values:

Proposition 6.1. Let Δ be a type formation context, Δ ⊢ Γ, 𝜎, 𝜏 ∈ Type(Δ) and suppose 𝑓 , 𝑓 ′ are
values such that Δ | Γ ⊢ 𝑓 : 𝜎 → 𝜏 and Δ | Γ ⊢ 𝑓 ′ : 𝜎 → 𝜏 . Then Δ | Γ ⊢ 𝑓 ≲ctx↓ 𝑓 ′ : 𝜎 → 𝜏 iff for all
values 𝑣 such that Δ | Γ ⊢ 𝑣 : 𝜎 , we have Δ | Γ ⊢ 𝑓 𝑣 ≲ctx↓ 𝑓 ′ 𝑣 : 𝜏 . The analogous holds for ≲ctx⇓ .

A similar extensionality result holds for types as well.

6.2 Fixpoint Combinator
We show helpful properties of the fixpoint combinator to use in further examples.

Definition 6.2. Let 𝜎, 𝜏 be types. We say that 𝑓 ∈ Val(𝜎 → 𝜏) is deterministic if for every 𝑣 ∈ Val(𝜎)
there exists𝑤 ∈ Val(𝜏) such that 𝑓 𝑣 �ctx↓ 𝑤 and 𝑓 𝑣 �ctx⇓ 𝑤 .

As a consequence of extensionality (proposition 6.1), we can show:

Proposition 6.3. Let 𝜎, 𝜏 be types, and 𝐺 ∈ Val((𝜎 → 𝜏) → 𝜎 → 𝜏) deterministic. Then
fix _ _ 𝐺 �ctx↓ 𝐺 (fix _ _ 𝐺) and fix _ _ 𝐺 �ctx⇓ 𝐺 (fix _ _ 𝐺).

Proof. By deterministic reduction, we can show

(fix _ _ 𝐺) 𝑣 �ctx↓ 𝐺 (𝜆𝑧.𝑒𝐺 (fold 𝑒𝐺 ) 𝑧) 𝑣

Since 𝐺 is deterministic, there exists𝑤 ∈ Val(𝜎 → 𝜏) such that𝐺 (𝜆𝑥.𝑒𝐺 (fold 𝑒𝐺 ) 𝑥) �ctx↓ 𝑤 , and

therefore, (fix _ _ 𝐺) 𝑣 �ctx↓ 𝑤 𝑣 . On the other hand by deterministic reduction we have

(fix _ _ 𝐺) �ctx↓ (𝜆𝑧.𝑒𝐺 (fold 𝑒𝐺 ) 𝑧)

so by transitivity and compatibility (𝜆𝑧.𝑒𝐺 (fold 𝑒𝐺 ) 𝑧) 𝑣 �ctx↓ 𝑤 𝑣 . Nowwe can apply proposition 6.1

(𝜆𝑧.𝑒𝐺 (fold 𝑒𝐺 ) 𝑧) �ctx↓ 𝐺 (𝜆𝑧.𝑒𝐺 (fold 𝑒𝐺 ) 𝑧)

and again by compatibility and transitivity (fix _ _ 𝐺) �ctx↓ 𝐺 (fix _ _ 𝐺). Analogously, we show
(fix _ _ 𝐺) �ctx⇓ 𝐺 (fix _ _ 𝐺). □

6.3 Algebraic Theory
First we study the algebraic theories induced by the contextual equivalence notions; see the

summary in fig. 4. We present only the results for may-equivalence, but analogous results hold for

must-equivalence. For the binary, non-deterministic choice, the language satisfies the equational

theory of a join semilattice (meet semilattice in the case of must-equivalence):

Proposition 6.4. Let 𝜏 ∈ Type, 𝑒1, 𝑒2, 𝑒2 ∈ Expr(𝜏). We have:

𝑒1 or 𝑒1 �ctx↓ 𝑒1, 𝑒1 or 𝑒2 �ctx↓ 𝑒2 or 𝑒1, 𝑒1 or (𝑒2 or 𝑒3) �ctx↓ (𝑒1 or 𝑒2) or 𝑒3

For the binary probabilistic choice we get the equational theory of a convex algebra:

Proposition 6.5. Let 𝜏 ∈ Type, 𝑒1, 𝑒2, 𝑒2 ∈ Expr(𝜏), and 𝑝, 𝑞 ∈ [0, 1] ∩ Q. We have:

𝑒1 ⊕𝑝 𝑒1 �
ctx
↓ 𝑒1, 𝑒1 ⊕𝑝 𝑒2 �

ctx
↓ 𝑒2 ⊕1−𝑝 𝑒1, (𝑒1 ⊕𝑝 𝑒2) ⊕𝑞 𝑒3 �

ctx
↓ 𝑒1 ⊕𝑝𝑞 (𝑒2 ⊕𝑞−𝑝𝑞

1−𝑝𝑞
𝑒3)

The combination of a join semilattice and a convex algebra together with a distributive law is

known as a convex semilattice [Mio et al. 2021]. The distributive law also holds here:
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𝑒1 ⊕𝑝 𝑒1 �
ctx
↓ 𝑒1 𝑒1 ⊕𝑝 𝑒1 �

ctx
⇓ 𝑒1

𝑒1 ⊕𝑝 𝑒2 �
ctx
↓ 𝑒2 ⊕1−𝑝 𝑒1 𝑒1 ⊕𝑝 𝑒2 �

ctx
⇓ 𝑒2 ⊕1−𝑝 𝑒1

(𝑒1 ⊕𝑝 𝑒2) ⊕𝑞 𝑒3 �
ctx
↓ 𝑒1 ⊕𝑝𝑞 (𝑒2 ⊕𝑞−𝑝𝑞

1−𝑝𝑞
𝑒3) (𝑒1 ⊕𝑝 𝑒2) ⊕𝑞 𝑒3 �

ctx
⇓ 𝑒1 ⊕𝑝𝑞 (𝑒2 ⊕𝑞−𝑝𝑞

1−𝑝𝑞
𝑒3)

𝑒1 or 𝑒1 �ctx↓ 𝑒1 𝑒1 or 𝑒1 �ctx⇓ 𝑒1

𝑒1 or 𝑒2 �ctx↓ 𝑒2 or 𝑒1 𝑒1 or 𝑒2 �ctx⇓ 𝑒2 or 𝑒1

𝑒1 or (𝑒2 or 𝑒3) �ctx↓ (𝑒1 or 𝑒2) or 𝑒3 𝑒1 or (𝑒2 or 𝑒3) �ctx⇓ (𝑒1 or 𝑒2) or 𝑒3
𝑒1 or Ω𝜏 �

ctx
↓ 𝑒1 𝑒1 or Ω𝜏 �

ctx
⇓ Ω𝜏

𝑒1 ⊕𝑝 (𝑒2 or 𝑒3) �ctx↓ (𝑒1 ⊕𝑝 𝑒2) or (𝑒1 ⊕𝑝 𝑒3) 𝑒1 ⊕𝑝 (𝑒2 or 𝑒3) �ctx⇓ (𝑒1 ⊕𝑝 𝑒2) or (𝑒1 ⊕𝑝 𝑒3)

Fig. 4. Equational theory for may- and must-equivalence. Here, 𝜏 ∈ Type and 𝑒1, 𝑒2, 𝑒3 ∈ Expr(𝜏).

Proposition 6.6. Let 𝜏 ∈ Type, 𝑒1, 𝑒2, 𝑒3 ∈ Expr(𝜏), and 𝑝 ∈ [0, 1] ∩ Q. Then
𝑒1 ⊕𝑝 (𝑒2 or 𝑒3) �ctx↓ (𝑒1 ⊕𝑝 𝑒2) or (𝑒1 ⊕𝑝 𝑒3)

The three propositions above are proven using the CIU relation. We show one of the cases below:

Proof of Proposition 6.6. To simplify the notation, we assume 𝑝 = 1/2, but the proof is

analogous for any other rational in [0, 1]. Consider a context 𝐸 ∈ Ectx(𝜏). By expanding the

definitions we get:

𝑒1 ⊕ (𝑒2 or 𝑒3) ≜ if (rand 2) ≤ 1 then 𝑒1 else (if ? > 1 then 𝑒2 else 𝑒3)
(𝑒1 ⊕ 𝑒2) or (𝑒1 ⊕ 𝑒3) ≜

if ? > 1 then (if (rand 2) ≤ 1 then 𝑒1 else 𝑒2) else (if (rand 2) ≤ 1 then 𝑒1 else 𝑒3)

Showing that the two expressions are contextually equivalent amounts to showing a commuting

conversion. That is, consider the context 𝐶𝑃 ≜ if (rand 2) ≤ 1 then 𝑒1 else [ ]. Then have to show:

𝐶𝑃 [if ? > 1 then 𝑒2 else 𝑒3] �log↓ if ? > 1 then𝐶𝑃 [𝑒2] else𝐶𝑃 [𝑒3]

By applying Proposition 3.8, we have:

𝔓↓ (𝐸 [𝐶𝑃 [if ? > 1 then 𝑒2 else 𝑒3]) = (1/2) ·𝔓↓ (𝐸 [𝑒1]) + (1/2) ·𝔓↓ (𝐸 [if ? > 1 then 𝑒2 else 𝑒3])
= (1/2) ·𝔓↓ (𝐸 [𝑒1]) + (1/2) · sup

𝑘∈N
𝔓↓ (𝐸 [if𝑘 > 1 then 𝑒2 else 𝑒3])

= (1/2) ·𝔓↓ (𝐸 [𝑒1]) + (1/2) ·max{𝔓↓ (𝐸 [𝑒2]),𝔓↓ (𝐸 [𝑒3])}
and

𝔓↓ (𝐸 [if ? > 1 then𝐶𝑃 [𝑒2] else𝐶𝑃 [𝑒3]])
= sup

𝑘∈N
𝔓↓ (𝐸 [if𝑘 > 1 then𝐶𝑃 [𝑒2] else𝐶𝑃 [𝑒3]])

= max{𝔓↓ (𝐸 [𝐶𝑃 [𝑒2]]),𝔓↓ (𝐸 [𝐶𝑃 [𝑒3]])}
= max{(1/2) ·𝔓↓ (𝐸 [𝑒1]) + (1/2) ·𝔓↓ (𝐸 [𝑒2]), (1/2) ·𝔓↓ (𝐸 [𝑒1]) +𝔓↓ (𝐸 [𝑒3])}
= (1/2) ·𝔓↓ (𝐸 [𝑒1]) + (1/2) ·max{𝔓↓ (𝐸 [𝑒2]),𝔓↓ (𝐸 [𝑒3])}
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Therefore, we can conclude that

𝔓↓ (𝐸 [𝐶𝑃 [if ? > 1 then 𝑒2 else 𝑒3]) = 𝔓↓ (𝐸 [if ? > 1 then𝐶𝑃 [𝑒2] else𝐶𝑃 [𝑒3]])

and thus 𝐶𝑃 [if ? > 1 then 𝑒2 else 𝑒3] �CIU↓ if ? > 1 then𝐶𝑃 [𝑒2] else𝐶𝑃 [𝑒3]. By the CIU theorem, we

can also show that the two expressions are contextually equivalent. This concludes the proof. □

Furthermore, the results can be extended to countable choice. Indeed,

Proposition 6.7. Let 𝜏 ∈ Type, 𝑒 ∈ Expr(𝜏), 𝑓 ∈ Val(nat → 𝜏) and 𝑝 ∈ [0, 1] ∩ Q. Then

𝑒 ⊕𝑝 (𝑓 ?) �ctx↓ (𝜆𝑛.𝑒 ⊕𝑝 𝑓 𝑛) ?

Proof. We assume w.l.o.g. 𝑝 = 1/2. Consider an evaluation context 𝐸 ∈ Ectx(𝜏). Then:

𝔓↓ (𝐸 [𝑒1 ⊕𝑝 (𝑓 ?)]) = (1/2) ·𝔓↓ (𝐸 [𝑒1]) + (1/2) ·𝔓↓ (𝐸 [(𝑓 ?)])
= (1/2) ·𝔓↓ (𝐸 [𝑒1]) + (1/2) · sup

𝑘∈N
𝔓↓ (𝐸 [𝑓 𝑘])

and

𝔓↓ (𝐸 [(𝜆𝑛.𝑒 ⊕𝑝 𝑓 𝑛) ?]) = sup

𝑘∈N
𝔓↓ (𝐸 [(𝜆𝑛.𝑒 ⊕𝑝 𝑓 𝑛) 𝑘])

= sup

𝑘∈N
𝔓↓ (𝐸 [𝑒 ⊕𝑝 𝑓 𝑘])

= sup

𝑘∈N

(
(1/2) ·𝔓↓ (𝐸′ [𝑒]) + (1/2) ·𝔓↓ (𝐸 [𝑓 𝑘])

)
= (1/2) ·𝔓↓ (𝐸 [𝑒]) + sup

𝑘∈N
(1/2) ·𝔓↓ (𝐸 [𝑓 𝑘])

Therefore, 𝔓↓ (𝐸 [𝑒1 ⊕𝑝 (𝑓 ?)]) = 𝔓↓ (𝐸 [(𝜆𝑛.𝑒 ⊕𝑝 𝑓 𝑛) ?]), so 𝑒1 ⊕𝑝 (𝑓 ?) �CIU↓ (𝜆𝑛.𝑒 ⊕𝑝 𝑓 𝑛) ?. By
applying the CIU theorem, we obtain that the two expressions are also contextually equivalent.

This concludes the proof. □

Example 6.8. Recall the example program from the introduction. We can write a similar program

that initializes 𝑥 to 0, and then chooses with equal probability between running 𝑒 (that does not

have 𝑥 as a free variable), or forking a thread that increments 𝑥 and then calling 𝑓 with 𝑥 :

𝑥 = 0; 𝑒 ⊕ {fork{while(true){x :=!x + 1}}; 𝑓 (!𝑥)}

Using countable nondeterministic choice, we can write this program in out language as 𝑒 ⊕ (𝑓 ?),
where we choose at random between running 𝑒 or running 𝑓 with a nondeterministically chosen

argument. The proposition above implies that this program should be contextually equivalent to

(𝜆𝑛.𝑒 ⊕ 𝑓 𝑛) ?, where an argument is chosen nondeterministically, and then we choose at random

between running 𝑒 or running 𝑓 with said argument. Morally, this corresponds to the concurrent

program below:

𝑥 = 0; fork{while(true){x :=!x + 1}}; 𝑒 ⊕ 𝑓 (!𝑥)
In other words, the programs are equivalent whether the thread that increments 𝑥 in a loop is

forked before or after the probabilistic choice is resolved.

Example 6.9. As observed by Varacca and Winskel [2006], if the distributive law holds, so does

the convexity law below: 𝑒1 or 𝑒2 �ctx↓ 𝑒1 or 𝑒2 or (𝑒1 ⊕ 𝑒2).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 2. Publication date: January 2023.



2:22 Alejandro Aguirre and Lars Birkedal

6.4 Guessing Coin Tosses
Consider the two programs of type 1 → nat below

toss ≜ 𝜆𝑥 .1 ⊕ 2 guess ≜ 𝜆𝑥.1 or 2

We then have:

if guess ⟨⟩ = toss ⟨⟩ then ⟨⟩ elseΩ1 �
ctx
↓ ⟨⟩ ⊕ Ω1

if guess ⟨⟩ = toss ⟨⟩ then ⟨⟩ elseΩ1 �
ctx
⇓ ⟨⟩ ⊕ Ω1

Here guess is evaluated before toss and thus guess provides the scheduler with a choice between

two programs that diverge with probability 1/2. Therefore, the best and the worst scheduler have

the same probability of termination. But if we reverse the order, the result of the toss has already

been fixed when guess is called and can be seen by the scheduler. Therefore, the scheduler can

choose between terminating with probability 1 or diverging with probability 1:

if toss ⟨⟩ = guess ⟨⟩ then ⟨⟩ elseΩ1 �
ctx
↓ ⟨⟩

if toss ⟨⟩ = guess ⟨⟩ then ⟨⟩ elseΩ1 �
ctx
⇓ Ω1

This result suggests that, in general, the order of probabilistic and nondeterministic choices

cannot be reversed, even though in this case it is tempting to. It could be interesting to study

equivalences under a more restricted class of schedulers that is not allowed to observe the entire

program as suggested in [Chadha et al. 2010]. We discuss this further in section 8.

6.5 Skip Lists
Following the example of Tassarotti and Harper [2019], we use nondeterminism to study the

concurrent behavior of skip lists. Skip lists are a probabilistic data structure to represent sets

of integers in such a way that checking membership has low expected cost. In their simplest

formulation they consist of two levels of lists: an ordered bottom list, and an ordered top list that is

a subset of the bottom list. When inserting an element, we always insert it (in a sorted manner)

in the bottom list, and then choose at random whether to insert it in the top list. When checking

membership, we will then search first in the top list, and if we fail, we will proceed to search in the

bottom list.

We will model the behavior of a skip list in a concurrent setting by assuming we have a list

of insertion operations that are nondeterministically ordered by a scheduler. We will then show

that the resulting top list is contextually equivalent to the top list resulting from running the

operations in a predetermined order. Morally this implies that for any client that uses the sequential

implementation, the concurrent implementation can be used in its place.

We can model lists in our language using the type [𝜏] = 𝜇𝛼.1 + 𝜏 × 𝛼 . As usual, we consider two

constructors nil : ∀𝛼.[𝛼] and cons : ∀𝛼.𝛼 → [𝛼] → [𝛼] (sometimes written :: and in infix position)

and an append function ++ : ∀𝛼.[𝛼] × [𝛼] → [𝛼]. To simplify notation, we will use syntactic sugar

to define recursive functions over lists by pattern matching.

The following is the model of the concurrent implementation of the skip list. We first define the

following function that nondeterministically splits the list in three parts: an initial segment, an

intermediate element, and the final segment:

split 𝑙 𝑥 nil ≜ ⟨𝑙, 𝑥, nil⟩
split 𝑙 𝑥 cons(𝑦,𝑦𝑠) ≜ ⟨𝑙, 𝑥, cons(𝑦,𝑦𝑠)⟩ or (split (𝑙++cons(𝑥, nil)) 𝑦 𝑦𝑠)
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Using this operation we implement the skiplist method; for simplicity we (1) return only the top

list, and (2) sort the list at the end, rather than maintaining a sorted list.

skiplist nil 𝑡𝑙 ≜ sort 𝑡𝑙

skiplist cons(𝑥, 𝑥𝑠) 𝑡𝑙 ≜ let (𝑙, 𝑦, 𝑟 ) = split nil 𝑥 𝑥𝑠 in let 𝑡𝑙 ′ = 𝑡𝑙 ⊕ cons(𝑦, 𝑡𝑙) in skiplist (𝑙++𝑟 ) 𝑡𝑙 ′

We also define another implementation where elements are inserted in the predetermined order:

skiplist′ nil 𝑡𝑙 ≜ sort 𝑡𝑙

skiplist′ cons(𝑥, 𝑥𝑠) 𝑡𝑙 ≜ let 𝑡𝑙 ′ = 𝑡𝑙 ⊕ cons(𝑥, 𝑡𝑙) in skiplist′ 𝑥𝑠 𝑡𝑙 ′

We now prove that both implementations are contextually equivalent, which intuitively expresses

that the (nondeterministic model of the) concurrent implementation is a refinement of a sequential

implementation. In the proof we assume the following facts about the ++ and the sort functions.
For all 𝑥,𝑦 ∈ Val(nat) and 𝑙1, 𝑙2, 𝑙3 ∈ Val( [nat]):

nil ++ 𝑙1 �
ctx
⇓ 𝑙1 ++ nil �ctx⇓ 𝑙1 (𝑥 :: 𝑙1) ++ 𝑙2 �

ctx
⇓ 𝑥 :: (𝑙1 ++ 𝑙2)

𝑙1 ++ (𝑙2 ++ 𝑙3) �ctx⇓ (𝑙1 ++ 𝑙2) ++ 𝑙3 sort(𝑙1 ++ 𝑥 :: 𝑙2) �ctx⇓ sort(𝑥 :: 𝑙1 ++ 𝑙2)
We also need the following lemmas:

Lemma 6.10. Let 𝜏 ∈ Type, 𝑥 ∈ Val(𝜏), 𝑙, 𝑟 ∈ Val( [𝜏]). Then
let (𝑦𝑠, 𝑧, 𝑧𝑠) = split 𝑙 𝑥 𝑟 in 𝑦𝑠++cons(𝑧, 𝑧𝑠) �ctx⇓ 𝑙++cons(𝑥, 𝑟 )

Lemma 6.11. Let 𝜏 ∈ Type, 𝑥,𝑦 ∈ Val(𝜏), 𝑙, 𝑦𝑠, 𝑧𝑠 ∈ Val( [𝜏]). Then
skiplist′ 𝑙 (𝑦𝑠 ++ (𝑧 :: 𝑧𝑠)) �ctx⇓ skiplist′ 𝑙 (𝑧 :: (𝑦𝑠 ++ 𝑧𝑠))

As a consequence, we get:

Lemma 6.12. Let 𝜏 ∈ Type, 𝑥,𝑦 ∈ Val(𝜏), 𝑙, 𝑡𝑙 ∈ Val( [𝜏]). Then
skiplist′ 𝑥 ::𝑦 :: 𝑙 𝑡𝑙 �ctx⇓ skiplist′ 𝑦 ::𝑥 :: 𝑙 𝑡𝑙

Lemma 6.13. Let 𝜏 ∈ Type, 𝑥 ∈ Val(𝜏), 𝑙, 𝑟 , 𝑡𝑙 ∈ Val( [𝜏]). Then
skiplist′ (𝑙 ++ cons(𝑥, 𝑟 )) 𝑡𝑙 �ctx⇓ skiplist′ (cons(𝑥, 𝑙 ++ 𝑟 )) 𝑡𝑙

Finally, we can prove:

Theorem 6.14. Let 𝜏 ∈ Type, 𝑙, 𝑡𝑙 ∈ Val( [𝜏]). Then skiplist 𝑥𝑠 𝑡𝑙 �ctx⇓ skiplist′ 𝑥𝑠 𝑡𝑙

Proof. By induction on the length of 𝑥𝑠 . If it is 0, then both sides reduce to sort 𝑡𝑙 . Otherwise,

skiplist cons(𝑥, 𝑥𝑠) 𝑡𝑙 �ctx⇓
let (𝑙, 𝑦, 𝑟 ) = split nil 𝑥 𝑥𝑠 in
let 𝑡𝑙 ′ = 𝑡𝑙 ⊕ cons(𝑦, 𝑡𝑙) in
skiplist (𝑙++𝑟 ) 𝑡𝑙 ′

(I.H.) �ctx⇓

let (𝑙, 𝑦, 𝑟 ) = split nil 𝑥 𝑥𝑠 in
let 𝑡𝑙 ′ = 𝑡𝑙 ⊕ cons(𝑦, 𝑡𝑙) in
skiplist′ (𝑙++𝑟 ) 𝑡𝑙 ′

(Def.) �ctx⇓
let (𝑙, 𝑦, 𝑟 ) = split nil 𝑥 𝑥𝑠 in
skiplist′ cons(𝑦, 𝑙++𝑟 ) 𝑡𝑙

(lemma 6.13) �ctx⇓
let (𝑙, 𝑦, 𝑟 ) = split nil 𝑥 𝑥𝑠 in
skiplist′ 𝑙++cons(𝑦, 𝑟 ) 𝑡𝑙

(lemma 6.10) �ctx⇓ skiplist′ (nil++cons(𝑥, 𝑥𝑠)) 𝑡𝑙
�ctx⇓ skiplist′ cons(𝑥, 𝑥𝑠) 𝑡𝑙 □
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7 RELATEDWORK
Denotational semantic models for probabilistic programming languages were introduced in Kozen’s

seminal paper [Kozen 1981]. Powerdomains, initially used to model nondeterminism [Plotkin 1976]

were later adapted to probabilistic languages [Jones and Plotkin 1989; Saheb-Djahromi 1980], but

extending this construction to higher-order is challenging [Jung and Tix 1998]. Semantics based on

measurable spaces are also hard to generalize to higher-order since the category of measurable

spaces is not Cartesian closed [Aumann 1961]. In recent years, Cartesian closed categories to denote

higher-order probabilistic languages have been proposed in [Ehrhard et al. 2018, 2014; Heunen

et al. 2017]. Later, these models were extended to support recursion [Ehrhard and Tasson 2019;

Vákár et al. 2019]. However, these models are fairly involved, and in general it is unclear how

to incorporate further extensions, such as countable nondeterministic choice, or impredicative

polymorphism into them.

Step-indexed logical relationswere introduced byAppel andMcAllester [2001] tomodel recursion,

and have been shown to scale well to higher-order languages that support recursive types and

polymorphism [Ahmed 2006], as well as a variety of effects, including concurrency [Birkedal et al.

2012; Turon et al. 2013]. Biorthogonality [Pitts and Stark 1998] is a method of constructing logical

relations from a notion of observation that simplifies the proof of completeness.

Step-indexed logical relations have been used to reason about higher-order probabilistic programs

with various features. They were first proposed for discrete probabilistic choice [Bizjak and Birkedal

2015], and then studied for continuous choice [Culpepper and Cobb 2017; Wand et al. 2018],

following the operational model from Borgström et al. [2016]. In a recent paper, Zhang and Amin

[2022] show how step-indexed logical relations can also be used to reason about higher-order

probabilistic programs with nested queries. Other techniques to reason about the relation between

probabilistic programs include contextual distance [Crubillé and Dal Lago 2017; Crubillé and

Dal Lago 2015], which is a metric generalization of contextual equivalence and measures the

probability that a context can distinguish two terms.

Apt and Plotkin [1986] observed that countable nondeterminism introduces non-continuous

behavior, and that iterating up to 𝜔 is not enough to model it. In his thesis, Lassen [1998] studies

contextual equivalence of programs with countable nondeterministic choice using operational

semantics. Later Birkedal et al. [2013] showed that step-indexed logical relations can be used to

model a language with countable nondeterminism and recursive types by using step-indexing over

the countable ordinals for must-termination.

The combination of probabilistic and nondeterministic choice has been studied in a variety of

settings. From a denotational point of view, it is known that probabilistic and nondeterministic

choice can be modeled by the distribution monad D and the powerset monad P, respectively,

but, as Varacca and Winskel [2006] point out, there does not exist a distributive law between

them. They propose two solutions: modeling probabilities by a monad I of indexed valuations,

which distributes over the powerset monad; or using the distributive combination of the algebraic

theories of probabilistic and nondeterministic choice to present a new monad C of convex sets

of distributions. Recently the latter monad has been extended to the category of metric spaces to

support metric reasoning [Mio and Vignudelli 2020] and nontermination [Mio et al. 2021]. Bonchi

et al. [2019] study the coalgebras of C to reason about trace equivalence for transition systems

combining probabilities and nondeterminism. Another approach [Goy and Petrişan 2020] shows

that C can be recovered by lifting P to the category of D-algebras.

Other techniques to reason about the combination of probabilistic and nondeterministic choice

include predicate transformers [Kaminski et al. 2016; Morgan and McIver 1999] in the setting

of first-order imperative languages. This combination also appears in the literature of transition
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systems to study different notions of probabilistic automata [Kwiatkowska et al. 2011; Segala 2006].

Nondeterminism is often resolved by using a scheduler (also called resolution or policy) that selects

which nondeterministic choices to make. Other approaches use coalgebraic techniques [Bonchi

et al. 2017] to define behavioral equivalence. In recent work, Bonchi et al. [2019] unify these views.

Analogously to our theorems 5.5 and 5.8 they prove that the maximal (resp. minimal) probability of

termination among all traces coincides with the maximal (resp. maximal) probability of termination

under all schedulers.

8 CONCLUSION AND FUTUREWORK
We have presented step-indexed logical relations for reasoning about contextual equivalence of

programs written in a typed higher-order language that combines impredicative polymorphism,

recursive types, and probabilistic and countable nondeterministic choice, and shown how to apply

them to reason about challenging examples, including a distributive law showing that probabilistic

choice distributes over nondeterministic choice. To the best of our knowledge, our work is the first

to study a language with such a combination of features, either using operational or denotational

methods.

We think our operational approach offers an interesting alternative to denotational models,

because (1) it is arguably quite simple; (2) it is adequate for the natural operational semantics, which

includes the distributive law, which is non-trivial to model denotationally; and (3) scales well to

languages with recursive types and parametric polymorphism (a combination which is challenging

to model denotationally, where one typically has to resort to some kind of model based on partial

equivalence relations over a universal domain).

There are multiple directions for future work. First, we could study other notions of contextual

equivalence for programs combining probabilities and nondeterminism. May- and must-contextual

equivalence are convenient to work with, but one could argue they are not fine-grained enough.

Instead, we could consider two expressions 𝑒, 𝑒′ to be equivalent if, under any context, they

have the same termination probability for any scheduler in some class S of schedulers, i.e. ∀𝜃 ∈
S.𝔓↓

𝜃
(𝐶 [𝑒]) = 𝔓

↓
𝜃
(𝐶 [𝑒′]). The class of schedulers we have considered here are, however, too

powerful for this purpose, and would induce the trivial equivalence relation, so we would have to

identify a restricted class of schedulers that cannot observe the whole program execution, similarly

to what is suggested by Chadha et al. [2010]. Second, we could extend the language to make it more

expressive. For instance, adding continuous probabilities and conditioning would enable to capture

higher-order probabilistic languages such as Anglican [Wood et al. 2014] or Hakaru [Narayanan

et al. 2016]. The line of work presented in [Culpepper and Cobb 2017; Wand et al. 2018] shows

how to prove contextual equivalence of programs with continuous probabilities, but extending

their framework with countable nondeterminism is challenging, particularly in the case of must-

termination, due to the interaction between integration and 𝜔1-indexed sequences. Finally, we also

wish to extend our model to reason about probabilistic concurrent programs. Concurrency already

has an inherent nondeterministic nature coming from the scheduler that selects which thread to

run, and we believe that the techniques introduced in this work constitute a first step towards

reasoning about contextual equivalence of concurrent probabilistic programs.
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