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Abstract—We present the topos S of trees as a model of
guarded recursion. We study the internal dependently-typed
higher-order logic of S and show that S models two modal
operators, on predicates and types, which serve as guards
in recursive definitions of terms, predicates, and types. In
particular, we show how to solve recursive type equations
involving dependent types. We propose that the internal logic
of S provides the right setting for the synthetic construction
of abstract versions of step-indexed models of programming
languages and program logics. As an example, we show how
to construct a model of a programming language with higher-
order store and recursive types entirely inside the internal logic
of S.

I. INTRODUCTION

Recursive definitions are ubiquitous in computer science.
In particular, in semantics of programming languages and
program logics we often use recursively defined functions
and relations, and also recursively defined types (domains).
For example, in recent years there has been extensive work
on giving semantics of type systems for programming lan-
guages with dynamically allocated higher-order store, such
as general ML-like references. Models have been expressed
as Kripke models over a recursively defined set of worlds (an
example of a recursively defined domain) and have involved
recursively defined relations to interpret the recursive types
of the programming language; see [4] and the references
therein.

In this paper we study a topos S, which we show models
guarded recursion in the sense that it allows for guarded
recursive definitions of both recursive functions and relations
as well as recursive types. The topos S is known as the topos
of trees (or forests); what is new here is our application of
this topos to model guarded recursion.

The internal logic of S is a standard many-sorted higher-
order logic extended with modal operators on both types
and terms. (Recall that terms in higher-order logic include
both functions and relations, as the latter are simply Prop-
valued functions.) This internal logic can then be used as
a language to describe semantic models of programming
languages with the features mentioned above. As an example
which uses both recursively defined types and recursively
defined relations in the S-logic, we present a model of Fµ,ref ,
a call-by-value programming language with impredicative
polymorphism, recursive types, and general ML-like refer-
ences.

To situate our work in relation to earlier work, we now
give a quick overview of the technical development of the
present paper followed by a comparison to related work. We
end the introduction with a summary of our contributions.

Overview of technical development: The topos S is the
category of presheaves on ω, the first infinite ordinal. This
topos is known as the topos of trees, and is one of the most
basic examples of presheaf categories.

There are several ways to think intuitively about this
topos. Let us recall one intuitive description, which can serve
to understand why it models guarded recursion. An object X
of S is a contravariant functor from ω (viewed as a preorder)
to Set. We think of X as a variable set, i.e., a family of sets
X(n), indexed over natural numbers n, and with restriction
maps X(n+1)→ X(n). Morphisms f : X → Y are natural
transformations from X to Y . The variable sets include the
ordinary sets as so-called constant sets: for an ordinary set
S, there is an object ∆(S) in S with ∆(S)(n) = S for all
n. Since S is a category of presheaves, it is a topos, i.e.,
a cartesian closed category with a subobject classifier Ω (a
type of propositions). The internal logic of S is an extension
of standard Kripke semantics: for constant sets, the truth
value of a predicate is just the set of worlds (downwards
closed subsets of ω) for which the predicate holds. This
observation suggests that there is a modal “later” operator
� on predicates Ω∆(S) on constant sets, similar to what
has been studied earlier [3, 9]. Intuitively, for a predicate
ϕ : Ω∆(S) on constant set ∆(S), �(ϕ) contains n + 1 if
ϕ contains n. (A future world is a smaller number, hence
the name “later” for this operator.) A recursively specified
predicate µr.ϕ(r) is well-defined if every occurrence of the
recursion variable r in ϕ is guarded by a � modality: by
definition of �, to know whether n + 1 is in the predicate
it suffices to know whether n is in the predicate. There is
also an associated Löb rule for induction, (�ϕ→ ϕ)→ ϕ,
as in [3].

Here we show that in fact there is a later operator not
only on predicates on constant sets, but also on predicates
on general variable sets, with associated Löb rule, and well-
defined guarded recursive definitions of predicates.

Moreover, there is also a later operator I (a functor) on
the variable sets themselves: I(X) is given by I(X)(1) =
{?} and I(X)(n + 1) = X(n). We can show the well-
definedness of recursive variable sets µX.F (X) in which



the recursion variable X is guarded by this operator I.
Intuitively, such a recursively specified variable set is well-
defined since by definition of I, to know what µX.F (X)
is at level n+ 1 it suffices to know what it is at level n.

In the technical sections of the paper, we make the above
precise. In particular, we detail the internal logic and the use
of later on functions / predicates and on types. We explain
how one can solve mixed-variance recursive type equations,
for a wide collection of types. We show how to use the
internal logic of S to give a model of Fµ,ref . The model,
including the operational semantics of the programming
language, is defined completely inside the internal logic;
we discuss the connection between the resulting model and
earlier models by relating internal definitions in the internal
logic to standard (external) definitions. Since S is a topos,
S also models dependent types. We give technical semantic
results as needed for using later on dependent types and
for recursive type-equations involving dependent types. We
think of this as a first step towards a formalized dependent
type theory with a later operator; here we focus on the
foundational semantic issues.

To explain the relationship to some of the related work,
we point out that S is equivalent to the category of sheaves
on ω, where ω is the complete Heyting algebra of natural
numbers with the usual ordering and extended with a top
element ∞. Moreover, this sheaf category, and hence also
S, is equivalent to the topos obtained by the tripos-to-topos
construction [19] applied to the tripos Set( , ω). The logic
of constant sets in S is exactly the logic of this tripos.1

In this paper we work with the presentation of S as
presheaves since it is the most concrete, but many of our
results generalize to sheaf categories over other complete
well-founded Heyting algebras.

Related work: Nakano presented a simple type theory
with a guarded recursive types [23] which can be modelled
using complete bounded ultrametric spaces [5]. We show in
Section V that the category BiCBUlt of bisected, complete
bounded ultrametric spaces is a co-reflective subcategory
of S. Thus, our present work can be seen as an extension of
the work of Nakano to include the full internal language of
a topos, in particular dependent types, and an associated
higher-order logic. Pottier [25] presents an extension of
System F with recursive kinds based on Nakano’s calculus;
hence S also models the kind language of his system.

Di Gianantonio and Miculan [8] studied guarded recursive
definitions of functions in certain sheaf toposes over well-
founded complete Heyting algebras, thus including S. Our
work extends the work of Di Gianantonio and Miculan by
also including guarded recursive definitions of types, by
emphasizing the use of the internal logic (this was suggested

1Recall that the tripos Set( , ω) is a model of logic in which types and
terms are interpreted as sets and functions, and predicates are interpreted
as ω-valued functions.

as future work in [8]), and by including an extensive example
application.

In our earlier work, we advocated the use of complete
bounded ultrametric spaces for solving recursive type and
relation equations that come up when modelling program-
ming languages with higher-order store [4, 6]. As mentioned
above, BiCBUlt is a subcategory of S, and thence our
present work can be seen as an improvement of this earlier
work: it is an improvement since S supports full higher-
order logic. In the earlier work, we had to show that the
functions we defined in the interpretation of the program-
ming language types were non-expansive. Here we take
the synthetic approach (cf. [18]) and place ourselves in the
internal logic of the topos when defining the interpretation of
the programming language, see Section III. This means that
there is no need to prove properties like non-expansiveness
since, intuitively, all functions in the topos are suitably non-
expansive.

Dreyer et al. [9] proposed a logic, called LSLR, for
defining step-indexed interpretations of programming lan-
guages with recursive types, building on earlier work by
Appel et al. [3] who proposed the use of a later modality
on predicates. The point of LSLR is that it provides for
more abstract ways of constructing and reasoning with step-
indexed models, thus avoiding tedious calculations with step
indices. The core logic of LSLR is the logic of the tripos
Set( , ω) mentioned above,2 which allows for recursively
defined predicates following [3], but not recursively defined
types. One point of passing from this tripos to the topos S
is that it gives us a wider collection of types (variable sets
rather than only constant sets), which makes it possible also
to have mixed-variance recursively defined types.3

Dreyer et al. developed an extension of LSLR called
LADR for reasoning about step-indexed models of the
programming language Fµ,ref with higher-order store [11].
LADR is a specialized logic where much of the world
structure used for reasoning efficiently about local state is
hidden by the model of the logic; here we are proposing
a general logic that can be used to construct many step-
indexed models, including the one used to model LADR.
In particular, in our example application in Section III, we
define a set of worlds inside the S logic, using recursively
defined types.

As part of our analysis of recursive dependent types, we
define a class of types, called functorial types, by a grammar
and some simple logical conditions. We show that functorial
types are closed under nested recursive types, a result
which is akin to results on nested inductive types [1, 12].

2Dreyer et al. [9] presented the semantics of their second-order logic
in more concrete terms, avoiding the use of triposes, but it is indeed a
fragment of the internal logic of the mentioned tripos.

3The terminology can be slightly confusing: in [3], our notion of
recursive relations were called recursive types, probably because the authors
of loc.cit. used such to interpret recursive types of a programming language.
Recursive types in our sense were not considered in [3].



The difference is that we allow for general mixed-variance
recursive types, but on the other hand we require that all
occurrences of recursion variables must be guarded.

Summary of contributions: We show how the topos S
provides a simple but powerful model of guarded recursion,
allowing for guarded recursive definitions of both terms and
types in the internal dependently-typed higher-order logic.
In particular, we
• show that the two later modalities are well-behaved on

slices;
• give existence theorems for fixed points of guarded

recursive terms and guarded nested dependent mixed-
variance recursive types;

• present, as an example application, a synthetic model
of Fµ,ref constructed internally in S.

For space reasons, more details can be found in the long
version, available at http://www.diku.dk/∼stovring/sgdt.pdf

II. THE S TOPOS

The category S is that of presheaves on ω, the preorder
of natural numbers starting from 1 and ordered by inclusion.
Explicitly, the objects of S = Setω

op
are families of sets

indexed by natural numbers together with restriction maps
rn : X(n + 1) → X(n). Morphisms are families (fn)n of
maps commuting with the restriction maps as indicated in
the diagram

X(1) � X(2) � X(3) � . . .

Y (1)

f1
?
� Y (2)

f2
?
� Y (3)

f3
?
� . . .

If x ∈ X(m) and n ≤ m we write x|n for rn◦· · ·◦rm−1(x).
As all presheaf categories, S is a topos, i.e., it is carte-

sian closed and has a subobject classifier. Moreover, it
is complete and cocomplete, and limits and colimits are
computed pointwise. The n’th component of the exponent
Y X(n) is the set of tuples (f1, . . . , fn) commuting with the
restriction maps, and the restriction maps of Y X are given
by projection.

A subobject A of X is a family of subsets A(n) ⊆ X(n)
such that rn(A(n+1)) ⊆ A(n). The subobject classifier has
Ω(n) = {0, . . . , n} and restriction maps rn(x) = min(n, x).
The characteristic morphism χA : X → Ω maps x ∈ X(n)
to the maximal m such that x|m ∈ A(m) if such an m exists
and 0 otherwise.

The natural numbers object N in S is the constant set of
natural numbers.

The I endofunctor: Define the functor I : S → S by
IX(1) = {?} and IX(n+1) = X(n). This functor, called
later, has a left adjoint (so I preserves all limits) given by
JX(n) = X(n+ 1). Since limits are computed pointwise,
J preserves them, and so the adjunction J a I defines a
geometric morphism, in fact an embedding. However, we
shall not make use of this fact in the present paper (because

J is not a fibred endo-functor on the codomain fibration,
hence is not a useful operator in the dependent type theory;
see Section IV).

There is a natural transformation nextX : X → IX
whose 1st component is the unique map into {?} and whose
(n+ 1)st component is rn.

Since I preserves finite limits, there is always a morphism

J : I(X → Y )→ (IX → IY ). (1)

An operator on predicates: There is a morphism
� : Ω → Ω mapping n ∈ Ω(m) to min(m,n + 1). By
setting χ�A = � ◦χA there is an induced operation on
subobjects, again denoted �. This operation, which we also
call “later,” is connected to the I functor, since there is a
pullback diagram

�m - IA

X
? nextX- IX

Im
?

for any subobject m : A→ X .
Recursive morphisms: We introduce a notion of con-

tractive morphism and show that these have unique fixed
points.

Definition II.1. A morphism f : X → Y is contractive if
there exists a morphism g : IX → Y such that f = g ◦
nextX . A morphism f : X×Y → Z is contractive in the first
variable if there exists g such that f = g ◦ (nextX × idY ).

For instance, contractiveness of � on Ω is witnessed by
succ : I Ω→ Ω with succn(k) = k+ 1.

If f : X → Y is contractive then the value of fn+1(x) can
be computed from rn(x) and moreover, f1 must be constant.
If X = Y we can define a fixed point x : 1→ X by defining
x1 = g1(?) and xn+1 = gn+1(xn). This construction can
be generalized to include fixed points of morphisms with
parameters as follows.

Theorem II.2. There exists a natural family of morphisms
fixX : (IX → X) → X , indexed by the collection of all
objects X , which computes unique fixed points in the sense
that if f : X×Y → X is contractive in the first variable as
witnessed by g, i.e., f = g ◦ (nextX × idY ), then fixX ◦ pgq
is the unique h : Y → X such that f ◦ 〈h, idY 〉 = h (here
pgq denotes the exponential transpose of g).

A. Internal logic

We start by calling to mind parts of the Kripke-Joyal forc-
ing semantics for S. For X ∈ S, ϕ : X1 × · · · ×Xm → Ω,
n ∈ ω, and α1 ∈ X1(n), . . . , αm ∈ Xm(n), we define
n |= ϕ(α1, . . . , αm) iff ϕn(α1, . . . , αm) = n.

The standard clauses for the forcing relation are as
follows [21, Example 9.5] (we write α for a sequence



α1, . . . , αm):

n |= (s = t)α⇔ [[s]]n(α) = [[t]]n(α)
n |= R(t1, . . . , tk)α⇔ n ≤ [[R]]n([[t1]]n(α), . . . , [[tk]]n(α))

n |= (ϕ ∧ ψ)(α)⇔ n |= ϕ(α) ∧ n |= ψ(α)
n |= (ϕ ∨ ψ)(α)⇔ n |= ϕ(α) ∨ n |= ψ(α)
n |= (ϕ→ ψ)(α)⇔ ∀k ≤ n. k |= ϕ(α|k)→ k |= ψ(α|k)
n |= (∃x:X.ϕ)(α)⇔ ∃α∈ [[X]](n). n |= ϕ(α, α)
n |= (∀x:X.ϕ)(α)⇔ ∀k ≤ n, α∈ [[X]](k). k |= ϕ(α|k, α)

Proposition II.3. � is the unique morphism on Ω satisfying
1 |= �ϕ(α) and n+ 1 |= �ϕ(α) ⇔ n |= ϕ(α|n).
Moreover, ∀x, y : X.�(x= y) ↔ nextX(x) = nextX(y)
holds in S.

The following definition will be useful for presenting facts
about the internal logic of S.

Definition II.4. An object X in S is total if all the restriction
maps rn are surjective.

Hence all constant objects ∆(S) are total, but the total
objects also include many non-constant objects, e.g., the
subobject classifier. The above definition is phrased in terms
of the model; the internal logic can be used to give a
simple characterization of when X is total and inhabited
by a global element: that is the case iff nextX is internally
surjective in S, i.e., iff ∀y : IX.∃x : X.nextX(x) = y
holds in S. The following proposition can be proved using
the forcing semantics; note that the distribution rules below
for � generalize the ones for constant sets described in [9]
(since constant sets are total).

Proposition II.5. In the internal logic of S we have:
1) (Monotonicity). ∀p : Ω. p→ � p.
2) (Löb rule). ∀p : Ω. (� p→ p)→ p.
3) � commutes with the logical connectives >, ∧, →, ∨,

but does not preserve ⊥.
4) For all X , Y , and ϕ, we have ∃y : Y.�ϕ(x, y) →

�(∃y : Y. ϕ(x, y)). The implication in the opposite
direction holds if Y is total and inhabited.

5) For all X , Y , and ϕ, we have �(∀y : Y. ϕ(x, y)) →
∀y : Y.�ϕ(x, y). The implication in the opposite
direction holds if Y is total.

We now define an internal notion of contractiveness in the
logic of S which implies (in the logic) the existence of a
unique fixed point for inhabited types.

Definition II.6. The predicate Contr on Y X is defined in
the internal logic by

Contr(f) def⇐⇒ ∀x, x′ : X.�(x = x′)→ f(x) = f(x′).

This notion of contractiveness generalizes the usual metric
notion of contractiveness for functions between complete
bounded ultrametric spaces; see Section V.

Theorem II.7 (Internal Banach Fixed-Point Theorem). The
following holds in S:

(∃x : X.>) ∧ Contr(f)→ ∃!x : X. f(x) = x.

For a morphism f : X → Y , corresponding to a global
element of Y X , we have that if f is contractive (in the
external sense of Definition II.1), then Contr(f) holds in the
logic of S. The converse is true if X is total and inhabited,
but not in general. We use both notions of contractiveness:
the external notion provides for a simple algebraic theory of
fixed points for not only morphisms but also functors (see
Section II-B), whereas the internal notion is useful when
working in the internal logic.

The above theorem (the Internal Banach Fixed-Point
Theorem) is proved in the internal logic using the following
lemma, which expresses a non-classical property. The lemma
can be proved using the Löb rule (and using that N is a total
object).

Lemma II.8. The following holds in S:

Contr(f)→ ∃n : N.∀x, x′ : X. fn(x) = fn(x′).

Recursive relations: As an example application of The-
orem II.7, we consider the definition of recursive predicates.
Let ϕ(r) : ΩX be a predicate on X in the internal logic
of S as presented above (over non-dependent types, but
possibly using �) with free variable r, also of type ΩX . Note
that ΩX is inhabited by a global element. If r only occurs
under a � in ϕ, then ϕ defines an internally contractive
map ϕ : ΩX → ΩX (proved by external induction on ϕ).
Therefore, by Theorem II.7, ∃! r : ΩX .ϕ(r) = r holds in S .
By description (aka axiom of unique choice), which holds
in any topos [21], there is then a morphism R : 1 → ΩX

such that ϕ(R) = R in S, and since internal and external
equality coincides, also ϕ(R) = R externally as morphisms
1→ ΩX . In summa, we have shown the well-definedness of
recursive predicates r = ϕ(r) where r only occurs guarded
by � in ϕ.

Note that we have proved the existence of recursive
guarded relations (and thus do not have to add them to the
language with special syntax) since we are working with a
higher-order logic.

Example II.9. Suppose R ⊆ X×X is some relation on a set
X . We can include it into S by using the functor ∆: Set→
S, obtaining ∆R ⊆ ∆X × ∆X . Consider the recursive
relation

Rω(x, y) def⇐⇒ (x = y) ∨ ∃z.(∆R(x, z) ∧�Rω(z, y)) .

Now, 1 |= Rω(x, y) always holds and n + 1 |= Rω(x, y)
iff (x, y) ∈ ∪0≤i<nR

i or there exists z such that Rn(x, z)
holds. If R is a rewrite relation then n+1 |= Rω(x, y) states
the extent to which we can determine if x rewrites to y by
inspecting all rewrite sequences of length at most n− 1.

A variant of Example II.9 is used in Section III.



B. Recursive domain equations

In this section we present a simplified version of our
results on solutions to recursive domain equations in S
sufficient for the example of Section III. The full results
on recursive domain equations can be found in Section IV.

Denote by pfq : 1→ Y X the curried version of f : X →
Y . Following Kock [20] we say that an endofunctor F : S →
S is strong if, for all X,Y , there exists a morphism
FX,Y : Y X → FY FX such that FX,Y ◦pfq = pFfq for all
f .

Definition II.10. A strong endofunctor on S is locally
contractive if each FX,Y is contractive.

This notion readily generalizes to mixed-variance endo-
functors on S. For example, I is locally contractive, and
one can show that the composition of a strong functor and
a locally contractive functor (in either order) is locally con-
tractive. As a result, one can show that any type expression
A(X,Y ) constructed from type variables X,Y using I and
simple type constructors in which X occurs only negatively
and Y only positively and both only under I gives rise to
a locally contractive functor.

Theorem II.11. Let F : Sop × S → S be a locally
contractive functor. Then there exists a unique X (up to
isomorphism) such that F (X,X) ∼= X .

Although there is no space for a full proof of Theo-
rem II.11 we sketch the construction to illustrate the use
of the locally contractive functors. We consider first the
covariant case.

Lemma II.12. Let F : S → S be locally contractive and
say that f : X → Y, g : Y → X is an n-isomorphism pair if
fi is inverse to gi for all i ≤ n. Then F maps n-isomorphism
pairs to n+ 1-isomorphism pairs for all n.

Construct morphisms p = F ! : F 21 → F1 and e as the
composition

F1
δ- F1× F1

st- 1× F 21 ∼= F 21

where δ is the diagonal and st is the strength correspond-
ing to F−,− [20]. By Lemma II.12 (Fnp, Fne) is an n-
isomorphism pair, and so intuitively one can construct a fixed
point for F by taking the n’th component to be Fn+11(n).
For our formal proof we derived a limit / colimit coincidence
of the sequence of injection / projection pairs

F1 �
p

e
- F 21 �

Fp

Fe
- F 31 �

F 2p

F 2e
- F 41 . . .

Any fixed point for such an F must be at the same time
an initial algebra and a final coalgebra: given any fixed
point f : FX ∼= X and algebra g : FY → Y a morphism
h : X → Y is a homomorphism iff phq is a fixed point of
ξ = λk :X → Y.g◦Fk◦f−1. Since F is locally contractive,

ξ is contractive and so must have a unique fixed point. The
case of final coalgebras is similar.

Thus, S is algebraically compact in the sense of Freyd
[13–15] with respect to locally contractive functors. The
solutions to general recursive domain equations can then be
established using Freyd’s constructions.

III. APPLICATION TO STEP-INDEXING

As an example, we now construct a model of a program-
ming language with higher-order store and recursive types
entirely inside the internal logic of S. There are two points
we wish to make here. First, although the programming
language is quite expressive, the internal model looks—
almost—like a naive, set-theoretic model. The exception
is that guarded recursion is used in a few, select places,
such as defining the meaning of recursive types, where the
naive approach would fail. Second, when viewed externally,
we recover a standard, step-indexed model. This example
therefore illustrates that the topos of trees gives rise to
simple, synthetic accounts of step-indexed models.

All definitions and results in Sections III-A to III-D are
in the internal logic of S. In Section III-E we investigate
what these results mean externally.

A. Language

The types and terms of Fµ,ref are as follows:

τ ::= 1 | τ1× τ2 | µα.τ | ∀α.τ | α | τ1→ τ2 | ref τ

t ::= x | l | () | (t1, t2) | fst t | snd t | fold t | unfold t |
Λα.t | t [τ ] | λx.t | t1 t2 | ref t | !t | t1 := t2

(The full term language also includes sum types, and can
be found in the long version.) Here l ranges over location
constants, which are encoded as natural numbers.

More explicitly, the sets OType and OTerm of possibly
open types and terms are defined by induction according
to the grammars above (using that toposes model W -
types [22]), and then by quotienting with respect to α-
equivalence.

The set OValue of syntactic values is an inductively
defined subset of OTerm:

v ::= x | l | () | (v1, v2) | fold v | Λα.t | λx.t

Let Term and Value be the subsets of closed terms and
closed values, respectively. Let Store be the set of finite
maps from natural numbers to closed values; this is encoded
as the set of those finite lists of pairs of natural numbers
and closed values that contain no number twice. Finally, let
Config = Term× Store.

The typing judgements have the form Ξ | Γ ` t : τ where
Ξ is a context of type variables and Γ is a context of term
variables. The typing rules are standard and can be found
in the long version of the paper. Notice, however, that there
is no context of location variables and no typing judgement



for stores: we only need to type-check terms that can occur
in programs.

B. Operational semantics

We define a standard one-step relation step: P(Config×
Config) on configurations by induction, following the usual
presentation of such relations by means of inference rules.
For simplicity, allocation is deterministic: when allocating
a new reference cell, we choose the smallest location not
already in the store. Notice that the step relation is defined
on untyped configurations. Erroneous configurations are
“stuck.”

So far, we have defined the language and operational
semantics exactly as we would in standard set theory. Next
comes the crucial difference. We use Theorem II.7 to define
the predicate eval : P(Term× Store× P(Value× Store)),

eval(t, s,Q)
def⇐⇒ (t ∈ Value ∧ Q(t, s)) ∨

(∃t1 : Term, s1 : Store.
step((t, s), (t1, s1)) ∧ � eval(t1, s1, Q))

Intuitively, the predicate Q is a post-condition, and
eval(t, s,Q) is a partial correctness specification, in the
sense of Hoare logic, meaning the following: (1) The con-
figuration (t, s) is safe, i.e., it does not lead to an error. (2)
If the configuration (t, s) evaluates to some pair (v, s), then
at that point in time (v, s) satisfies Q. We shall justify this
intuition in Section III-E below. The use of � ensures that
the predicate is well-defined; in effect, we postulate that one
evaluation step in the programming language actually takes
one unit of time in the sense of the internal logic. As we
shall see below, this “temporal” semantics is essential in the
proof of the fundamental theorem of logical relations.

Notice how guarded recursion is used to give a simple,
coinduction-style definition of partial correctness. The Löb
rule can then be conveniently used for reasoning about this
definition. For example, the rule gives a very easy proof that
if (t, s) is a configuration that reduces to itself in the sense
that step((t, s), (t, s)) holds, then eval(t, s,Q) holds for any
Q. The Löb rule also proves the following results, which are
used to show the fundamental theorem below.

Proposition III.1. Let Q,Q′ ∈ P(Value×Store) such that
Q ⊆ Q′. Then for all t and s we have that eval(t, s,Q)
implies eval(t, s,Q′).

Proposition III.2. For all stores s, all terms t, all evaluation
contexts E such that E[t] is closed, and all predicates Q ∈
P(Value × Store), we have that eval(E[t], s,Q) holds iff
eval(t, s, λ(v1, s1). eval(E[v1], s1, Q)) holds.

C. Definition of Kripke worlds

The main idea behind our interpretation of types is as
in [4, 7]: Since Fµ,ref includes reference types, we use a
Kripke model of types, where a semantic type is defined

to be a world-indexed family of sets of syntactic values.
A world is a map from locations to semantic types. This
introduces a circularity between semantic types T and
worlds W .

We solve the circularity using guarded recursion. More
precisely, we define the set

T̂ = µX. I((N →fin X)→mon P(Value)) .

Here N →fin X is the set
∑
A :Pfin(N)X

A where Pfin(N) =
{A ⊂ N | ∃m∀n ∈ A.n < m} ordered by graph inclusion
and →mon is the set of monotonic functions realized as a
subset type on the function space.

One way to see that T̂ is well-defined is to check that it
is a functorial type in the sense of Section IV. Alternatively,
observe that the corresponding functor is of the form F =
I ◦G. Here G is strong because its action on morphisms
can be defined as a term Y X → GY GX in the internal
logic. Now, since I is locally contractive so is F . Hence
by Theorem II.11, F has a unique fixed point T̂ , with an
isomorphism i : T̂ → F (T̂ ). We define

W = N →fin T̂ , T =W →mon P(Value) ,

and T c = W → P(Term). Notice that T̂ is isomorphic to
I T . We now define app: T̂ → T and lam: T → T̂ as
follows. First, app is the isomorphism i composed with the
operator d : I T → T given by

d(f) = λw.λv.succ(J(J(f)(nextw))(nextv)),

where J is the map in (1) and succ : I Ω→ Ω is as defined
on page 3. (This is a general way of lifting algebras for I
to function spaces.) Here one needs to check that d is well-
defined, i.e., preserves monotonicity. Second, lam: T → T̂
is defined by lam = i−1 ◦ nextT .

Define � : T → T as the pointwise extension of � :
Ω → Ω, i.e., for ν ∈ T , w ∈ W and v ∈ Value, we have
that (� ν)(w)(v) holds iff �(ν(w)(v)) holds.

Lemma III.3. app ◦ lam = � : T → T .

D. Interpretation of types

Let TVar be the set of type variables, and for τ ∈ OType,
let TEnv(τ) = {ϕ ∈ TVar →fin T | FV(τ) ⊆ dom(ϕ) }.
The interpretation of programming-language types is defined
by induction, as a function

[[·]] :
∏

τ∈OType

TEnv(τ)→ T .



We show some cases of the definition here; the complete
definition can be found in the long version.

[[α]]ϕ = ϕ(α)
[[τ1 × τ2]]ϕ = λw. {(v1, v2) | v1 ∈ [[τ1]]ϕ(w) ∧ v2 ∈ [[τ2]]ϕ(w)}

[[ref τ ]]ϕ = λw. { l | l ∈ dom(w) ∧ ∀w1 ≥ w.
app(w(l))(w1) = �([[τ ]]ϕ)(w1) }

[[∀α.τ ]]ϕ = λw. {Λα.t | ∀ν ∈ T .∀w1 ≥ w.
t ∈ comp([[τ ]]ϕ[α 7→ ν])(w1) }

[[µα.τ ]]ϕ = fix (λν. λw. { fold v | �(v ∈ [[τ ]]ϕ[α 7→ ν] (w))})
[[τ1→ τ2]]ϕ = λw. {λx.t | ∀w1 ≥ w.∀v ∈ [[τ1]]ϕ(w1).

t[v/x] ∈ comp([[τ2]]ϕ)(w1) }
Here the operations comp : T → T c and states : W →
P(Store) are given by

comp(ν)(w) = { t | ∀s ∈ states(w). eval(t, s,
λ(v1, s1).∃w1 ≥ w.
v1 ∈ ν(w1) ∧ s1 ∈ states(w1)) }

states(w) = { s | dom(s) = dom(w) ∧
∀l ∈ dom(w). s(l) ∈ app(w(l))(w) }.

Notice that this definition is almost as simple as an
attempt at a naive, set-theoretic definition, except for the
two explicit uses of �. In the definition of [[µα.τ ]], the use
of � ensures that the fixed point is well-defined according to
Theorem II.7. As for the definition of [[ref τ ]], the � is needed
because we have � instead of the identity in Lemma III.3. In
both cases, the intuition is the usual one from step-indexing:
since an evaluation step takes a unit of time, it suffices that
a certain formula only holds later.

Proposition III.4 (Fundamental theorem). If ` t : τ , then
for all w ∈ W we have t ∈ comp([[τ ]]∅)(w).

Proof: To show this, one first generalizes to open types
and open terms in the standard way, and then one shows
semantic counterparts of all the typing rules of the language.
See the long version of the article. To illustrate the use of
�, we outline the case of reference lookup: ` !t : τ . Here
the essential proof obligation is that v ∈ [[ref τ ]]∅(w) implies
!v ∈ comp([[τ ]]∅)(w). To show this, we unfold the definition
of comp. Let s ∈ states(w) be given; we must show

eval(!v, s, λ(v1, s1).∃w1 ≥ w.
v1 ∈ [[τ ]]∅(w1) ∧ s1 ∈ states(w1)) . (2)

By the assumption that v ∈ [[ref τ ]]∅(w), we know that
v = l for some location l such that l ∈ dom(w) and
app(w(l))(w1) = �([[τ ]]∅)(w1) for all w1 ≥ w. Since s ∈
states(w), we know that l ∈ dom(s) = dom(w) and s(l) ∈
app(w(l))(w). We therefore have step((!v, s), (s(l), s)).
Hence, by unfolding the definition of eval in (2) and using
the rules from Proposition II.5, it remains to show that

∃w1 ≥ w. �(s(l) ∈ [[τ ]]∅(w1)) ∧ �(s ∈ states(w1)).
We choose w1 = w. First, s ∈ states(w) and hence �(s ∈
states(w)). Second, s(l) ∈ app(w(l))(w) = �([[τ ]]∅)(w),
which means exactly that �(s(l) ∈ [[τ ]]∅(w)).

E. The view from the outside

We now return to the standard universe of sets and give
external interpretations of the internal results above. One
basic ingredient is the fact that the constant-presheaf functor
∆ : Set → S commutes with formation of W -types. This
fact can be shown by inspection of the concrete construction
of W -types for presheaf categories given in [22].

Let OType′ and OTerm′ be the sets of possibly open
types and terms, respectively, as defined by the grammars
above. Similarly, let Value′, Store′, Config′, and step′ be
the external counterparts of the definitions from the previous
sections.

Proposition III.5. OType ∼= ∆(OType′), and similarly for
OTerm, Value, Store, and Config. Moreover, under these
isomorphisms step corresponds to ∆step′ as a subobject of
Config × Config.

This result essentially says that the external interpre-
tation of the step relation is world-independent, and has
the expected meaning: for all n we have that n |=
step((t′, s′), (t′, s′)) holds iff (t, s) actually steps to (t′, s′)
in the standard operational semantics. We next consider the
eval predicate:

Proposition III.6. n |= eval(t, s,Q) iff the following prop-
erty holds: for all m < n, if (t, s) reduces to (v, s′) in m
steps, then (n−m) |= Q(v, s′).

Using this property and the forcing semantics from Sec-
tion II-A, one obtains that the external meaning of the in-
terpretation of types is a step-indexed model in the standard
sense. In particular, note that an element of P(Value)(n)
can be viewed as a set of pairs (m, v) of natural numbers
m ≤ n and values which is downwards closed in the first
component.

F. Discussion

For simplicity, we have just considered a unary model
in this extended example; we believe the approach scales
well to both relational models and also to more sophisticated
models for reasoning about local state [2, 6, 10]. In particu-
lar, we have experimented with an internal-logic formulation
of parts of [6], which involve recursively defined relations
on recursively defined types.

As mentioned in the Introduction, in [4] we solved the
recursive equation for T in the category CBUlt of ultra-
metric spaces. In loc. cit. we then moved back into the
usual universe of sets and defined the model in the standard,
explicit step-indexed style. Here instead we observe that
the relevant part of CBUlt is a full subcategory of S



(Section V), solve the recursive equation in S, and then stay
within S to give a simpler model that does not refer to step
indices. In particular, the proof of the fundamental theorem
is much simpler when done in S.

IV. DEPENDENT TYPES

Since S is a topos it models not only higher-order logic
over simple type theory, but also over dependent type
theory. The aim of this section is to provide the semantic
foundation for extending the dependent type theory with
type constructors corresponding to I and guarded recursive
types, although we postpone a detailed syntactic formulation
of such a type theory to a later paper.

Recall that dependent types in context are interpreted in
slice categories,4 in particular a type Γ ` A is interpreted as
an object of S/[[Γ]]. To extend the interpretation of dependent
type theory with a type constructor corresponding to I, we
must therefore extend the definition of I to slice categories.

Generalising I to slices: We first define II : S/I →
S/I . It acts on objects by mapping pY : Y → I to the
pullback

II Y - IY

I

pII Y
? next- I I

I pY
?

Define nextIpY
: pY → II pY as the morphism into the

pullback corresponding to the pair (pY ,nextY ).
The definition above allows us to consider I as a type

constructor on dependent types, interpreting [[Γ ` IA]] =
I[[Γ]]([[Γ ` A]]). The following proposition expresses that
this interpretation of I behaves well wrt. substitution.

Proposition IV.1. For every u : J → I in S there is a
natural isomorphism u∗ ◦II

∼= IJ ◦u∗. As a consequence,
the collection of functors (II)I∈S define a fibred endofunc-
tor on the codomain fibration. Moreover, next defines a
fibred natural transformation from the fibred identity on the
codomain fibration to I.

We remark that each II has a left adjoint, but since the
family of left adjoints does not commute with reindexing, it
does not define a well-behaved dependent type constructor.

Recursive dependent types: Since the slices of S are
cartesian closed, the notions of strong functors and locally
contractive functors from Definition II.10 also make sense
in slices. Indeed, the notion of local contractiveness can be
generalised to functors enriched over S, and one can talk
about enriched functors of several variables being locally
contractive in particular variables. The next two lemmas will
be used to construct families of locally contractive functors.

4We follow the practise of ignoring coherence issues related to the
interpretation of substitution in codomain fibrations since there are various
ways to avoid these issues, e.g. [17].

Lemma IV.2. The functor II : S/I → S/I is strong and
locally contractive.

Lemma IV.3. Let F : C→ D, G : D→ E be S/I-enriched
functors. If either F or G is locally contractive, so is GF .

For the statement of the general solutions to recursive
domain equations with parameters recall the symmetrization
F̆ : (Cop×C)n → Cop×C of a functor F : (Cop×C)n → C
defined as F̆ ( ~X, ~Y ) = 〈F (~Y , ~X), F ( ~X, ~Y )〉.

Theorem IV.4. Let F : ((S/I)op × S/I)n+1 → S/I be
locally contractive in the (n+1)st variable pair. Then there
exists a unique (up to isomorphism) FixF : ((S/I)op ×
S/I)n → S/I such that F ◦〈id, ˘FixF 〉 ∼= FixF . Moreover,
if F is locally contractive in all variables, so is FixF .

One can prove that the fixed points obtained by Theo-
rem IV.4 are initial dialgebras in the sense of Freyd [13–15].
This universal property generalises initial algebras and final
coalgebras to mixed-variance functors, and can be used to
prove mixed induction / coinduction principles [24].

The formation of recursive types is well-behaved wrt.
substitution:

Proposition IV.5. If

((S/I)op × S/I)n+1 F- S/I

((S/J)op × S/J)n+1

u∗
?

G- S/J

u∗
?

commutes up to isomorphism, so does

((S/I)op × S/I)n
FixF- S/I

((S/J)op × S/J)n

u∗
? FixG- S/J

u∗
?

Functorial types: We now define a collection of depen-
dent types A that induce locally contractive strong functors
on slices. First, consider the following grammar, in which
C and I range over arbitrary types.

A( ~X−, ~X+) ::=X+
i | C | A( ~X−, ~X+)×A( ~X−, ~X+) |

A( ~X+, ~X−)→ A( ~X−, ~X+) |∏
i : I A( ~X−, ~X+) |

∑
i : I A( ~X−, ~X+) |

{a : A( ~X−, ~X+) | φ ~X−, ~X+(a)} |

IA( ~X−, ~X+) | µX.A(( ~X−, X), ( ~X+, X))

Note that X is not allowed to appear free in the indexing
sets of the dependent sums or products. The type constructor
µX.(−) corresponds to recursive types.

Any dependent type Γ ` A( ~X−, ~X+) where ~X−, ~X+

do not appear in Γ, satisfying the grammar above and two
further requirements stated below, induces a strong functor

[[A]] : ((E/[[Γ]])op)n × (E/[[Γ]])m → E/[[Γ]]



where n is the length of ~X− and m is the length of ~X+.
The strength of this functor is the interpretation of a term

of type

Γ, ~f : ~X−1 → ~X−0 , ~g : ~X+
0 → ~X+

1 `
A(~f,~g) : A( ~X−0 , ~X

+
0 )→ A( ~X−1 , ~X

+
1 ),

and is defined by induction on the structure of A. To do this,
the type needs to satisfy two requirements. The first is that
subset types are only formed for predicates φ where

φ ~X−0 , ~X
+
0

(a)→ φ ~X−1 , ~X
+
1

(A(~f,~g)(a))

provably holds for all ~f,~g, a. The second requirement
is that the recursive types are only formed in the case
where A(( ~X−, Y −), ( ~X+, Y +)) is locally contractive in Y −

and Y +.
Define a functorial type to be a type formed using the

grammar above and satisfying the two requirements listed
above. We say that a functorial type A is contractive in
X if all occurrences of X in A occur under a I. If the
functorial type A is contractive, then, by Lemma IV.3, the
functor induced by A is locally contractive in the variable
corresponding to X . In particular, the type formation µX.A
is valid for all such A.

For example, the type T̂ from the previous section is
defined by a functorial type.

V. RELATION TO METRIC SPACES

Let CBUlt be the category of complete bounded ultramet-
ric spaces and non-expansive maps. In [4–7, 26] we only
used those spaces that were also bisected: a metric space
is bisected if all non-zero distances are of the form 2−n

for some natural number n ≥ 0. Let BiCBUlt be the full
subcategory of CBUlt of bisected spaces, and let BiUlt be
the category of all bisected ultrametric spaces (necessarily
bounded).

Let tS be the full subcategory of S on the total objects.

Proposition V.1. There is an adjunction between BiUlt
and S, which restricts to an equivalence between tS and
BiCBUlt , as in the diagram:

tS
�
> - S

BiCBUlt

6

∼=

? �
⊥- BiUlt

F

6

a

?

Proof sketch: The functor F : BiUlt → S is defined
as follows. A space (X, d) ∈ BiUlt gives rise to an indexed
family of equivalence relations by x =n x′ ⇔ d(x, x′) ≤
2−n, which can then be viewed as a presheaf: at index n, it
is the quotient X/(=n), see, e.g. [8]. One can check that F
in fact maps into tS and that F has a right adjoint that maps

into BiCBUlt . The right adjoint maps a variable set into a
metric space on the limit of the family of variable sets; the
metric expresses up to what level elements in the limit agree.
The left adjoint from BiUlt to BiCBUlt is then obtained
by composition of functors; it is the Cauchy-completion.

Proposition V.2. A morphism in BiCBUlt is contractive in
the metric sense iff it is contractive in the internal sense
of S.

The later operator on S corresponds to multiplying by 1
2 in

ultra-metric spaces, except on the empty space. Specifically,
F ( 1

2X) is isomorphic to I(FX), for all non-empty X . For
ultra-metric spaces, the formulation of existence of solutions
to guarded recursive domain equations has to consider the
empty space as a special case. Here, in S, we do not have
to do so, since I behaves better than 1

2 on the empty set.

VI. CONCLUSION AND FUTURE WORK

We have shown that the topos S of trees provides a model
of an extension of higher-order logic over dependent type
theory with guarded recursive types and terms. Moreover,
we have argued that this logic provides the right setting
for the synthetic construction of step-indexed models of
programming languages and program logics, by constructing
a model of the programming language Fµ,ref in the logic.

In this paper we have focused solely on guarded recursion.
As future work, it would be be interesting to study further
the connections between guarded and unguarded recursion
in S. For example, it might be possible to show the existence
of recursive types in which only negative occurrences of the
recursion variable were guarded.

We conjecture that other models can be constructed as
sheaf categories over other well-founded complete Heyting
algebras than ω, building on the work of Di Gianantonio and
Miculan [8]. However, the existence theorem for recursive
types would then have to be reproved (e.g., it might involve
taking a limit over a larger diagram in case the Heyting
algebra is larger than ω).

We plan to make a tool for formalized reasoning in the
internal logic of S. We have conducted some initial exper-
iments by adding axioms to Coq and used it to formalize
some of the proofs from [6] involving recursively defined
relations on recursively defined types. These experiments
suggest that it will be important to have special support for
the manipulation of the isomorphisms involved in recursive
type equations, such as the coercions and canonical struc-
tures of [16].
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