
Solving Domain Equations using Löb Induction

Julien Marquet-Wagner

August 11, 2025

Abstract

In the context of the theory of the Iris framework, we study the problem of solving recur-
sive domain equations. Throughout this note, we work with a simple such recursive domain
equation and build the necessary tools to state and solve it. Our approach follows previous
work by Birkedal and Møgelberg (2013), who show that recursive domain equations can be
solved by applying Löb induction on a suitable universe. This technique is especially relevant
in the context of synthetic guarded domain theory (Birkedal et al., 2012). The present note
is meant as a detailed illustration of this approach. Our development takes place within the
topos of trees.

Introduction
Guarded recursive types are useful to give semantics to programming languages and program
logics. In Iris (Jung et al., 2018), to define the semantics of a program logic, one defines weakest
precondition predicates by recursion (Jung et al., 2018, §6.3). This definition, however, is not
structurally recursive. This is where the guarded aspect comes into play. The definition of
weakest precondition predicates is self-referential, but all recursive references are guarded under
a modality called later. Similarly, the type of Iris propositions is defined recursively, where all its
recursive appearences in its defining equation are guarded under a similar later operator (Jung
et al., 2018, §4.6). This places the study of guarded recursive definitions at the very heart of Iris,
and twice so: once for the definition of certain types like that of Iris propositions, and a second
time for the definition of inhabitants of such types, like the weakest precondition predicates which
take values in Iris propositions.

Synthetic guarded domain theory (SGDT) (Birkedal et al., 2012) is the study of type theories
that feature such a later modality. This modality originates in the work of Nakano (2000) and its
core property is that it enables Löb induction, a general tool to construct fixed points of functions,
provided they satisfy a certain guardedness condition. In SGDT, one very desirable property is
the existence of fixed points of guarded recursive domain equations, i.e. type equations in which
recursive occurences of a type always appears under the later modality.

In this note, we illustrate the problem of solving guarded recursive domain equations by detailing
the example of the type Stream, which we mean to be the solution of the following equation

Stream ≃ ℕ × ▶Stream (∗)

To construct solutions to guarded recursive domain equations, Iris uses America and Rutten’s
Theorem (Jung et al., 2018, §4.6, Theorem 2, America and Rutten, 1989, Birkedal et al., 2010),
which is concerned with bifunctors that satisfy a certain technical condition. Birkedal and

1

Møgelberg (2013) provide an alternative to America and Rutten’s theorem and show that the
existence of solutions to recursive domain equations is a consequence of Löb induction and of the
existence of a universe. This is the technique we will use to solve equation (∗).

This comes at a cost. Löb induction can only produce elements of some object. Therefore, to feed
objects themselves into Löb induction, we need a way to transform objects into elements of some
larger object. This is exactly the purpose of universes. Universes were introduced in algebraic
geometry by Grothendieck as a tool to study category theory (Artin et al., 1971, Appendice).
This notion was later refined by Bénabou (1973), and Streicher (2005) recast it in the context of
the categorical semantics of type theory.

Another departure from the standard presentation of Iris is that we don’t use COFEs (Di Gi-
anantonio and Miculan, 2002, Jung et al., 2018, Fig. 7). The approach of Birkedal and Møgelberg
(2013) is in line with work on synthetic guarded domain theory, and we work with the topos of
trees (Birkedal et al., 2012).

Outline. This note is structured as follows.
— In section 1, we introduce the topos of trees. We explain the relevant category-theoretical
notions that will come into play in our study.

— In section 2, we introduce the later operator. This is where we introduce Löb induction
(theorem 2.3).

— In section 3, we introduce universes and construct one such universe in the topos of trees
(definition 3.10, proposition 3.25).

— In section 4, we apply our work to solving equation (∗).

Acknowledgements. This work was conducted from April to August 2025 during an intern-
ship at Aarhus University, as part of my Master’s degree at ENS Ulm. I was under the supervision
of Lars Birkedal and Daniel Gratzer. I would like to thank them for their time, encouragement,
and helpful guidance. I would also like to extend my thanks to everyone I met in the LogSem
team and in Aarhus University, for their warm welcome to Denmark.

Contents
1 The Topos of Trees 3
1.1 Pullbacks and Fibered Data . 5
1.2 Global and Local Elements . 6
1.3 Some Constructors . 7

2 The Later Operator 8
2.1 Löb Induction . 9

3 A Universe in the Topos of Trees 11
3.1 Families with Small Fibers . 12
3.2 The Hofmann-Streicher Construction . 13

4 Application: Streams 15
4.1 Constructors for Families . 15
4.2 Codes for Families . 17
4.3 Defining Streams . 19

2

1 The Topos of Trees
Trees. Trees represent objects that evolve along discrete time steps. Together with a notion of
morphism of trees, they assemble in a category.

Notation 1.1. We note 𝜔 the first infinite ordinal. Its elements are the natural numbers
0, 1, 2, 3, … We insist on writing 𝜔 instead of ℕ because we are only really interested in the
order–theoretic aspects of 𝜔, and not in the algebraic aspects of ℕ.

Definition 1.2. A tree 𝐹 is given by the following data
— For 𝑡 ∈ 𝜔, a set denoted 𝐹𝑡.
— For 𝑡, 𝑢 ∈ 𝜔, when 𝑢 ≤ 𝑡, a map 𝐹𝑢≤𝑡 ∶ 𝐹𝑡 → 𝐹𝑢.

subject to the following constraints
— For 𝑡 ∈ 𝜔, ∀𝑥 ∈ 𝐹𝑡, 𝐹𝑡≤𝑡𝑥 = 𝑥
— For 𝑡, 𝑢, 𝑣 ∈ 𝜔 such that 𝑢 ≤ 𝑡 and 𝑣 ≤ 𝑢, ∀𝑥 ∈ 𝐹𝑡, 𝐹𝑣≤𝑢(𝐹𝑢≤𝑡 𝑥) = 𝐹𝑣≤𝑡 𝑥

Definition 1.3. Let 𝐹, 𝐺 be trees. A morphism 𝜑 ∶ 𝐹 ⟶ 𝐺 is given by the following data
— For 𝑡 ∈ 𝜔, a map 𝜑𝑡 ∶ 𝐹𝑡 → 𝐺𝑡

subject to the following constraint
— For all 𝑡, 𝑢 ∈ 𝜔 such that 𝑢 ≤ 𝑡, ∀𝑥 ∈ 𝐹𝑡, 𝐺𝑢≤𝑡(𝜑𝑡 𝑥) = 𝜑𝑢(𝐹𝑢≤𝑡 𝑥)

Drawing trees. We find the following graphical representatioons convenient. These diagrams
highlight the flow of information underlying trees and their morphisms.

𝐹0 𝐹1 𝐹2
𝐹0≤1 𝐹1≤2 ⋯

𝐹0 𝐹1 𝐹2

𝐺0 𝐺1 𝐺2

𝜙0 𝜙1 𝜙2

⋯

⋯

A tree 𝐹 A morphism of trees 𝜑 ∶ 𝐹 → 𝐺

Trees are presheaves. Trees are really just presheaves over 𝜔, and morphisms of trees are
really just natural transformations between such presheaves. We won’t develop a general theory
of presheaf toposes, so we will stick with trees and refer to the category of trees and their
morphisms as “the topos of trees” without defining toposes in general. We will however see (some
of) the structure and properties of the topos of trees that make it deserve to be called a topos.
Since trees are presheaves, we will use the following notation.

Notation 1.4. The category of trees (the topos of trees) is noted Psh 𝜔.

Geometry and logic. In the category of sets, “the” point is “the” set with one element. We
denote it by ∗, and we also denote its element by ∗. Although there are many sets with only one
element, we use the singular to refer to the point as it is unique up to isomorphism. Similarly,
in the topos of trees, there is a terminal object.

Construction 1.5. The point ∗ ∈ Psh 𝜔 is defined by
— ∗𝑡 ≡ ∗ the terminal set
— ∗𝑢≤𝑡 ≡ ! the only map into ∗

This ∗ ∈ Psh 𝜔 is terminal, as a consequence of the terminality of the set ∗.

The category of sets also features the empty set ∅ (which is really unique by set extensionality),
and constructors like cartesian products 𝐴 × 𝐵 and disjoint sums 𝐴 + 𝐵. These sets also have

3

analogs in the topos of trees: there are trees that have the same universal properties.

Construction 1.6. The void ∅ ∈ Psh 𝜔 is defined by
— ∅𝑡 ≡ ∅ the initial set
— ∅𝑡 ≡ ! the only map from ∅.

Construction 1.7. Let 𝐴 and 𝐵 be trees. Their product 𝐴 × 𝐵 can be explicitly con-
structed as
— (𝐴 × 𝐵)𝑡 ≡ 𝐴𝑡 × 𝐵𝑡
— (𝐴 × 𝐵)𝑢≤𝑡 (𝑥, 𝑦) ≡ (𝐴𝑢≤𝑡 𝑥, 𝐴𝑢≤𝑡 𝑦)

This satisfies the universal property of products since the sets 𝐴𝑡 × 𝐵𝑡 satisfy this property
in the category of sets.

Construction 1.8. Let 𝐴 and 𝐵 be trees. Their sum 𝐴 + 𝐵 can be explicitly constructed
as
— (𝐴 + 𝐵)𝑡 ≡ 𝐴𝑡 + 𝐵𝑡
— (𝐴 + 𝐵)𝑢≤𝑡 (𝑥, 𝑦) ≡ (𝐴𝑢≤𝑡 𝑥, 𝐴𝑢≤𝑡 𝑦)

This satisfies the universal property of sums since the sets 𝐴𝑡 + 𝐵𝑡 satisfy this property in
the category of sets.

The fact that these constructions are available in the topos of trees indicates that the topos of
trees behaves like the category of sets. We will briefly develop a geometrical and a logical per-
spectives on sets, which carry over to trees. These perspectives will make the Yoneda embeddings
(definition 1.9) stand out as “nonclassical” objects. First, we focus on the classical case of sets.
In the next paragraph, we will see that trees behave non-classically.

We can reinterpret all previous constructions as propositions, along the idea that a set is a
proposition that is true if and only if the set is inhabited. We find that since ∅ is never inhabited
it represents falsehood. 𝐴 × 𝐵 is inhabited if and only if both 𝐴 and 𝐵 are inhabited, so it
represents the logical “and”. 𝐴+𝐵 is inhabited if and only if either 𝐴 or 𝐵, or both, is inhabited,
so it represents the logical “or”. This is the category of sets seen from the point of view of its
internal logic. We find that we have an analog of the excluded middle: a set that is not ∅ always
has an inhabitant.

The geometric point of view on sets is to look at elements. The key idea is that elements of a
set 𝑋 bijectively correspond to maps ∗ → 𝑋. From this point of view, we like to call a map ∗ → 𝑋
a point of 𝑋 and we like to call ∗ “the” point. We find that a set that has no point is necessarily
empty. The point can’t be “fragmented”: there is nothing in between the void and the point.

Nonclassical elements. Now, the topos of trees can also be approached from the logical point
of view and the geometrical point of view. However the topos of trees features some new, exotic
objects that violate the excluded middle (from the logical perspective) and behave like fragments
of the point (from the geometrical perspective). These new objects are the innocent-looking
Yoneda embeddings.

Definition 1.9. Let 𝑡 ∈ 𝜔. The tree 𝕪𝑡 is defined as follows.
— When 𝑢 ≤ 𝑡, (𝕪𝑡)𝑢 ≡ ∗
— When 𝑢 > 𝑡, (𝕪𝑡)𝑢 ≡ ∅
— When 𝑢 ≤ 𝑡, (𝕪𝑡)𝑣≤𝑢∗ ≡ ∗
— When 𝑢 > 𝑡, (𝕪𝑡)𝑣≤𝑢 is the only map from ∅ to (𝕪𝑡)𝑣

Proposition 1.10. Let 𝑡 ∈ 𝜔. There is no map 𝕪𝑡 → ∅. In other words, 𝕪𝑡 is not empty.
Equivalently, 𝕪𝑡 is not false.

4

Proof. A morphism 𝜑 ∶ 𝕪𝑡 → ∅ would map (𝕪𝑡)𝑡 = ∗ to ∅, a contradiction.

Proposition 1.11. Let 𝑡 ∈ 𝜔. There is no map ∗ → 𝕪𝑡. In other words, 𝕪𝑡 has no point.
Equivalently, 𝕪𝑡 is not true.

Proof. A morphism 𝜑 ∶ ∗ → 𝕪𝑡 would map into (𝕪𝑡)𝑡+1 = ∅ from ∗, a contradiction.

On the one hand, we will have to pay for this extra structure, and the price is that we won’t
be able to adapt every idea from set theory. On the other hand, this new structure provides
provides us with new ways to reason. Chief among them will be Löb induction which we will
encounter later in section 2.1.

1.1 Pullbacks and Fibered Data
Fibered and Indexed Data. In the topos of trees, and more generally in geometry and in
categorical semantics of functional languages, there is a way to think about data that depends
on some other data. The idea is to define, with just the tools that we have in the topos of tree,
an analog of type families.

First, let us look at the familiar context of set theory. We will reformulate the usual set theoretical
notions in a way that can be carried over to the topos of trees.

Let 𝐼 be a set of indices. Let (𝑋𝑖)𝑖∈𝐼 be a family of sets indexed over 𝐼. From (𝑋𝑖)𝑖 we can
construct 𝐸 ≡ {(𝑖, 𝑥) ∣ 𝑖 ∈ 𝐼, 𝑥 ∈ 𝑋𝑖}. This 𝐸 is equiped with a projection 𝜋 ∶ 𝐸 → 𝐵, defined
as 𝜋(𝑖, 𝑥) ≡ 𝑖. The trick here is that we can recover (𝑋𝑖)𝑖 from 𝐸 and 𝑝. Indeed, we find that
𝑋𝑖 is in bijection with {𝑦 ∈ 𝐸 ∣ 𝜋(𝑦) = 𝑖}. More precisely, we the function 𝑋𝑖 → 𝜋−1({𝑖}) that
maps 𝑥 to (𝑖, 𝑥) is a bijection. Conversely, from any pair like (𝐸, 𝜋) we can construct a family
like (𝑋𝑖)𝑖∈𝐼.

What this means is that the indexed point of view — that of (𝑋𝑖)𝑖 — is equivalent to the fibered
point of view — that of (𝐸, 𝜋). The benefit of the fibered point of view is that fibered data is
defined using just a function between two objects, a definition that can be carried over to the
topos of trees without change.

Remark 1.12. We will recover the indexed point of view for trees when we introduce the
universe in section 3.

Pullacks as a tool to sudy fibered data. Let 𝐵 ∈ Psh 𝜔 be a tree, which we note 𝐵 like
𝐵ase. Let 𝐸 ∈ Psh 𝜔 be another tree, which we want to think of 𝐸verything that lies over the
𝐵ase. Finally, let 𝑝 ∶ 𝐸 → 𝐵, which we will think of as a 𝑝rojection. Any such (𝐸, 𝑝) can be
seen as fibered tree over 𝐵. We now describe the central tool at our disposal to manipulate
families: pullbacks. Using pullbacks, we can recover the ideas of reindexing, of inverse images
and of various operations on families of data over a base.

Construction 1.13. Let 𝐴, 𝐵, 𝐶 ∈ Psh 𝜔 and 𝑝 ∶ 𝐴 → 𝐵, 𝑞 ∶ 𝐶 → 𝐵. We con-
struct 𝐴 ×𝐵 𝐶, which fits in the following cartesian square

𝐴 ×𝐵 𝐶 𝐶

𝐴 𝐵

⌟
𝑞

𝑝

5

We define 𝐴 ×𝐵 𝐶 as follows
— (𝐴 ×𝐵 𝐶)𝑡 ≡ {(𝑥 ∈ 𝐴𝑡, 𝑦 ∈ 𝐶𝑡) ∣ 𝑝𝑡(𝑥) = 𝑞𝑡(𝑦)}
— (𝐴 ×𝐵 𝐶)𝑢≤𝑡 (𝑥, 𝑦) ≡ (𝐴𝑢≤𝑡 𝑥, 𝐶𝑢≤𝑡 𝑦)

The maps on the left and on the top of the diagram are defined as the obvious projections.

The universality of 𝐴 ×𝐵 𝐶 comes from the fact that (𝐴 ×𝐵 𝐶)𝑡 is defined as a pullback
of 𝐴𝑡 and 𝐶𝑡 over 𝐵𝑡.

Pullbacks generalize the operation of reindexing. In the context of set theory, a family (𝑋𝑖)𝑖∈𝐼
over 𝑖 may be reindexed using a function 𝑓 ∶ 𝐽 → 𝐼, yielding (𝑋𝑓(𝑗))𝑗∈𝐽. Using the fibered point
of view, this assembles in the following diagram

{(𝑗, 𝑥) ∣ 𝑥 ∈ 𝑋𝑓(𝑗)} {(𝑖, 𝑥) ∣ 𝑥 ∈ 𝑋𝑖}

𝐽 𝐼

𝜋1

⌟
𝜋1

𝑓

This reindexing operation on fibered data has its own notation.

Notation 1.14. Let 𝐴, 𝐵 ∈ Psh 𝜔 and 𝑓 ∶ 𝐴 → 𝐵. Let 𝐸 ∈ Psh 𝜔 and 𝑝 ∶ 𝐹 → 𝐵. We
note 𝑓∗𝐸 ∈ Psh 𝜔 and 𝑓∗𝑝 ∶ 𝑓∗𝐸 → 𝐴 the data of the pullback as in the following diagram

𝑓∗𝐸 𝐸

𝐴 𝐵

𝑓∗𝑝 𝑝

𝑓

⌟

1.2 Global and Local Elements
Global elements. By analogy with the set theoretical case, we will call maps ∗ → 𝐴 points
or elements of 𝐴. To be more precise, we will call these global, as we will later introduce local
notions.

Definition 1.15. Let 𝐴 ∈ Psh 𝜔. A global point or global element of 𝐴 is a map ∗ → 𝐴.

Let us look at the interaction between points and fibered data. In the context of set theory, when
(𝑋𝑖)𝑖∈𝐼 is a family of sets indexed over 𝐼, one can take 𝑖 ∈ 𝐼 and have the set 𝑋𝑖. This operation
can be seen in the following pullback

𝑋𝑖 {(𝑖, 𝑥) ∣ 𝑥 ∈ 𝑋𝑖}

∗ 𝐼
! 𝜋1

∗↦𝑖

⌟

and, from the fibered point of view in sets, pulling back over an element can be done by using
inverse images

𝜋−1({𝑖}) 𝐸

∗ 𝐵
! 𝜋

∗↦𝑖

⌟

and we find that, in the topos of trees, pullbacks over points ∗ → 𝐵 can also be described in
terms of inverse images.

6

Proposition 1.16. Let 𝐵 ∈ Psh 𝜔 and 𝑓 ∶ ∗ → 𝐵. Let 𝐹 ∈ Psh 𝜔 and 𝑝 ∶ 𝐹 → 𝐵. The
pullback that fits in the following picture

𝑓∗𝐹 𝐹

∗ 𝐵
! 𝑝

∗↦𝑖

⌟

can be defined as follows
— (𝑓∗𝐹)𝑡 ≡ 𝑝−1

𝑡 ({𝑓𝑡 ∗})
— (𝑓∗𝐹)𝑢≤𝑡 𝑥 ≡ 𝐹𝑢≤𝑡 𝑥
as we find that, by naturality of 𝑝, 𝐹𝑢≤𝑡 correctly preserves fibers.

Local elements. The 𝕪𝑡 are close relatives of the terminal tree ∗, and we use them to define
local elements of trees. Local elements 𝕪𝑡 → 𝐴 can be very simply described in terms of the data
of 𝐴. This fact is the much–celebrated Yoneda lemma.

Definition 1.17. A local element of a tree 𝐹 is a map 𝜑 ∶ 𝕪𝑡 → 𝐹 for some 𝑡 ∈ 𝜔.

Proposition 1.18 (Yoneda Lemma). Let 𝐴 ∈ Psh 𝜔. There are the following isomor-
phisms between sets

∀𝑡 ∈ 𝜔, (𝕪𝑡 ⟶ 𝐴) ≃ 𝐴𝑡

1.3 Some Constructors
In this section, we define some more structure that we will need for our final application in
section 4.

Natural Numbers. There is a tree ℕ that mimics the properties of ℕ. We will need this for
our final application in section 4 but we won’t need more than its definition.

Definition 1.19. We define ℕ as follows
— ℕ𝑡 ≡ ℕ
— ℕ𝑢≤𝑡𝑛 ≡ 𝑛

Remark 1.20. More generally, for any set 𝐴, we can define 𝐴 as the constant tree that
maps all 𝑡 ∈ 𝜔 to 𝐴. This construction assembles into a functor, which implies some degree
of preservation of the structure of 𝐴 ∈ Set when translated to Psh 𝜔.

Exponentials. Let 𝑋, 𝑌 ∈ Pshs 𝜔. The exponential of 𝑋 and 𝑌 is a tree of which (local)
elements correspond to maps between 𝑌 and 𝑋. We note it 𝑋𝑌. In general, in a category that
has cartesian products, like the topos of trees, the exponentials are defined as the right adjoints
of the product. This means that we want the following family of isomorphisms

(𝑍 × 𝑌 ⟶ 𝑋) ≃ (𝑍 ⟶ 𝑋𝑌)

These isomorphisms are incarnations of currying and decurrying — the notation “· ⟶ ·” for
hom-sets helps highlight this analogy. With this property in mind, and with the Yoneda lemma,
let us “guess” what the exponential should be.

(𝑋𝑌)𝑡 ≃ 𝕪𝑡 ⟶ 𝑋𝑌

≃ 𝕪𝑡 × 𝑌 ⟶ 𝑋

7

A natural transformation of the last type in the equations above is given by a family of func-
tions (𝕪𝑡𝑢 × 𝑌𝑢 ⟶ 𝑋𝑢)𝑢∈𝜔, which is equivalently a family (𝑌𝑢 ⟶ 𝑋𝑢)𝑢≤𝑡 by currification and
because 𝕪𝑡𝑢 is inhabited if and only if 𝑢 ≤ 𝑡. This motivates the following definition.

Definition 1.21. The exponential presheaf 𝑋𝑌 is defined as follows
— (𝑋𝑌)𝑡 ≡ 𝑌∣𝜔≤𝑡

⟶ 𝑋∣𝜔≤𝑡
is the set of natural transformations between the functors

restricted to 𝜔≤𝑡.
— (𝑋𝑌)𝑢≤𝑡 is defined by restriction.

There is a natural transformation that applies exponentials to arguments.

Definition 1.22. We define app ∶ 𝑋𝑌 × 𝑌 ⟶ 𝑋 as follows
— app𝑡 ∶ (𝑌∣𝜔≤𝑡

→ 𝑋∣𝜔≤𝑡
) × 𝑌𝑡 ⟶ 𝑋𝑡 maps (𝜓, 𝑦) to 𝜓𝑡𝑦.

2 The Later Operator
The Later operator. Let 𝐹 ∈ Psh 𝜔 be a tree. It is instructive to think of 𝐹𝑡, 𝑡 ∈ 𝜔 as “the
data of 𝐹 after 𝑡 time steps”. There is a special endomorphism in the topos of trees which acts
on trees as a delay operator, letting the data lag one step behind.

Definition 2.1. We define ▶ ∶ Pshs 𝜔 ⟶ Pshs 𝜔, pronounced “later”. This endofunctor
maps a tree 𝐹 to the tree ▶𝐹 such that
— (▶𝐹)0 ≡ ∗
— (▶𝐹)𝑡+1 ≡ 𝐹𝑡
— (▶𝐹)0≤𝑡 ≡!
— (▶𝐹)𝑢+1≤𝑡+1 ≡ 𝐹𝑢≤𝑡

This construction is functorial in 𝐹.

We can see the “delayed” aspect of ▶𝐹 with respect to 𝐹 by observing that, when 𝑡 ≥ 1, (▶𝐹)𝑡 =
𝐹𝑡−1: after 𝑡 time steps, the data that ▶𝐹 represents is just the data that 𝐹 used to represent
after only 𝑡 − 1 time steps. The equation (▶𝐹)0 ≡ ∗ materializes the idea that there is no
information in ▶𝐹 at time 𝑡 = 0, since there is no “𝐹−1” to get information from.

For a graphical represention of the “▶” operator, notice that it takes a tree 𝐹 such as on the left
below to a tree such as on the right below

𝐹0 𝐹1 𝐹2
𝐹0≤1 𝐹1≤2 ⋯ ⟼ ∗ 𝐹0 𝐹1

! 𝐹0≤1 ⋯

The following construction shows that “if we have some data now, then we can also keep it for
later”.

Definition 2.2. There is, for all 𝐹 ∈ Pshs 𝜔, a map next ∶ 𝐹 → ▶𝐹. This map is defined
as follows
— next0 ∶ 𝐹0 → (▶𝐹)0 is just the terminal map
— next𝑡+1 ∶ 𝐹𝑡+1 → (▶𝐹)𝑡+1
Unfolding the definition of ▶𝐹, we find that we want a map 𝐹𝑡+1 → 𝐹𝑡. We
take 𝐹𝑡≤𝑡+1.

This definition satisfies the naturality condition of natural transformations.

8

Graphically, this transformation maps 𝐹 to the following morphism

𝐹0 𝐹1 𝐹2

∗ 𝐹0 𝐹1

!

𝐹0≤1

𝐹0≤1

𝐹1≤2

𝐹1≤2

⋯

! 𝐹0≤1

⋯

2.1 Löb Induction
Löb and fixed points. In all generality, given a set 𝐴, or a 𝐴 in any other structure,
and 𝑓 ∶ 𝐴 → 𝐴 a function, or any kind of arrow that is relevant to the structure of 𝐴, a fixed point
of 𝑓 is 𝑥 ∈ 𝐴 such that 𝑓(𝑥) = 𝑥. An ideal fixed point operator would take any such 𝐴 and any
such 𝑓 and yield such a 𝑥. Of course, such an operator doesn’t exist in that much generality. Löb
induction provides a general operator that is syntaxically close to this ideal fixpoint operator, up
to a constraint on the domain of the function we want to take fixed points of.

Theorem 2.3 (Löb induction). For all 𝑋 ∈ Pshs 𝜔, there is a unique

löb ∶ 𝑋▶𝑋 ⟶ 𝑋

such that the following diagram commutes

𝑋▶𝑋 𝑋

𝑋▶𝑋 × 𝑋▶𝑋 𝑋▶𝑋 × 𝑋 𝑋▶𝑋 × ▶𝑋

löb

1×löb 1×later

where the arrow on the left is duplication, and the arrow on the right is application.

Let us rephrase the diagrammatic statement above in a more familiar language of terms. The
arrow on the top of the diagram has to be equal to the composite that passes through the
bottom. These arrows are morphisms of trees, hence natural transformations, therefore families
of functions indexed by 𝑡 ∈ 𝜔. The domains of these functions are the (𝑋▶𝑋)𝑡∈𝜔, which by
definition are the ((▶𝑋)∣𝜔≤𝑡

→ 𝑋∣𝜔≤𝑡
)𝑡∈𝜔. The diagram is then commutative exactly when

∀𝑡 ∈ 𝜔, ∀𝑓 ∶ (▶𝑋)∣𝜔≤𝑡
→ 𝑋∣𝜔≤𝑡

, 𝑓𝑡(later𝑡(löb𝑡𝑓)) = löb𝑡𝑓

We can further reduce this equation by splitting cases on 𝑡 = 0 and 𝑡 > 0.
— When 𝑡 = 0 — taking 𝑓 ∶ (▶𝑋)∣𝜔≤0

→ 𝑋∣𝜔≤0
, we see that actually 𝑓 ∶ ∗ → 𝑋0, and

löb0𝑓 = 𝑓∗ (2.1)

— When 𝑡 > 0 — taking 𝑡 ∈ 𝜔 and 𝑓 ∶ (▶𝑋)∣𝜔≤𝑡+1
→ 𝑋∣𝜔≤𝑡+1

, we see that

löb𝑡+1𝑓 = 𝑓𝑡+1(later𝑡+1(löb𝑡+1𝑓)) by definition
= 𝑓𝑡+1(𝑋𝑡≤𝑡+1(löb𝑡+1𝑓)) by definition of later
= 𝑓𝑡+1(löb𝑡(𝑓∣𝜔≤𝑡

)) by naturality of löb
(2.2)

Let us first draw a diagram that helps informally see why there is such an operator. Let 𝜑 ∶ ▶𝑋 ⟶ 𝑋.
This 𝜑 may be represented as follows

∗ 𝑋0 𝑋1

𝑋0 𝑋1 𝑋2

𝜑0 𝜑1 𝜑2

⋯

⋯

9

and we see that to construct an element of𝑋0, our only option is to use 𝜑0∗ ∈ 𝑋0, then recursively
once we have some 𝑥𝑖 ∈ 𝑋𝑖 there is only one way to construct an element of 𝑋𝑖+1 in the diagram.

We now prove theorem 2.3. We split the proof in existence and uniqueness.

Existence of Löb induction. The discussion above motivates the following

Proof. We define löb 𝜑 as follows, recursively over 𝜔
— (löb 𝜑)0 ∶ (𝑋▶𝑋)0 ⟶ 𝑋0
For 𝜓 ∶ (▶𝑋)∣𝜔≤0

⟶ 𝑋∣𝜔≤0
, we define (löb 𝜑)0𝜓 ≡ 𝜓0∗

— (löb 𝜑)𝑡+1 ∶ (𝑋▶𝑋)𝑡+1 ⟶ 𝑋𝑡+1
For 𝜓 ∶ (▶𝑋)∣𝜔≤𝑡+1

⟶ 𝑋∣𝜔≤𝑡+1
, we define (löb 𝜑)𝑡+1𝜓 ≡ 𝜓𝑡+1(löb 𝜑)𝑡.

This is well defined because the domain of 𝜓𝑡+1 is (▶𝑋)𝑡+1 which is by definition 𝑋𝑡.

Uniqueness of Löb induction. Let 𝑋 ∈ Pshs 𝜔 and fun ∶ 𝑋▶𝑋 ⟶ 𝑋 be a function that
also makes the diagram 2.3 commute, i.e. such that

∀𝑡 ∈ 𝜔, ∀𝑓 ∶ (▶𝑋)∣𝜔≤𝑡
→ 𝑋∣𝜔≤𝑡

, 𝑓(later𝑡(fun𝑡𝑓)) = fun𝑡𝑓

We show that fun = löb.

Proof. First, notice that eqs. (2.1) and (2.2) can be adapted for fun: when 𝑓 has the right type,

fun0𝑓 = 𝑓∗ (2.3)

fun𝑡+1𝑓 = 𝑓𝑡+1(fun𝑡(𝑓∣𝜔≤𝑡
)) (2.4)

By function extensionality, it suffices to show that

∀𝑡 ∈ 𝜔, ∀𝑓 ∶ (▶𝑋)∣𝜔≤𝑡
⟶ 𝑋∣𝜔≤𝑡

, fun𝑡𝑓 = löb𝑡𝑓

We show the result by induction on 𝑡 ∈ 𝜔.
— For 𝑡 = 0, for all 𝑓, we want

fun0𝑓 = lob0𝑓

which by eqs. (2.1) and (2.3) reduces to 𝑓∗ = 𝑓∗.
— For the inductive step, assume that the result is true for 𝑡 ∈ 𝜔. We show that,

∀𝑓 ∶ (▶𝑋)∣𝜔≤𝑡+1
→ 𝑋∣𝜔≤𝑡+1

, fun𝑡+1𝑓 = lob𝑡+1𝑓

which by eqs. (2.2) and (2.4) amounts to

𝑓(fun𝑡(𝑓∣𝜔≤𝑡
)) = 𝑓(löb𝑡(𝑓∣𝜔≤𝑡

))

which is true as a consequence of our assumption.

10

3 A Universe in the Topos of Trees
Universes in set theory. It is well-known that trying to reason about a would-be “set of all
sets” leads to paradoxes. Grothendieck universes allow to reason about “sets of all small sets”,
without paradoxes, but at the cost of axiomatizing the existence of such universes. The trick is
that although small sets can be collected in a set, this set of small sets isn’t small.

Definition 3.1. A Grothendieck universe is a set 𝑈 that such that

(i) Transitivity. ∀𝑢 ∈ 𝑈, ∀𝑡 ∈ 𝑢, 𝑡 ∈ 𝑈
(ii) Power set. ∀𝑢 ∈ 𝑈, 𝒫(𝑢) ∈ 𝑈
(iii) Empty set. ∅ ∈ 𝑈
(iv) Unions. ∀𝐼 ∈ 𝑈, ∀(𝑢𝑖)𝑖 ∈ 𝑈𝐼, ⋃𝑖∈𝐼 𝑢𝑖 ∈ 𝑈
(v) Infinity. ℕ ∈ 𝑈

Definition 3.2. Let 𝑈 be a Grothendieck universe. A set 𝐴 is said to be 𝑈-small when 𝐴
is a member of 𝑈.

Given a Grothendieck universe 𝑈, we may reason about 𝑈-small structures too. For instance,
a 𝑈-small ring is a ring of which carrier set is 𝑈-small. This is a consequence of the closure
properties of definition 3.1: it can be shown that Grothendieck universes are closed under all the
operations of (constructive) set theory. Thanks to this, we find that there is a set of 𝑈-small
rings. This idea that “small structures may be collected in a set” is crucial in categorically–minded
mathematics — think how often one may write about the category of groups and the category
of topological spaces, for instance.

Categories of trees. Let us just work with two universes, one for small sets and one for
(potentially) large sets. A set 𝑋 is essentially small when there exists a small 𝐴𝑋 in bijection
with 𝑋, i.e. ∃𝐴𝑋 ∈ Sets, 𝑋 ≃ 𝐴𝑋. We will use the following notations to designate categories
of sets and sets of sets of various sizes. Using the same notaiton for these two notions is not
problematic, as the latter are just the sets of objects of the former.

Sets small sets
Setes essentially small sets
Set sets

We also use small and large trees.

Definition 3.3. A tree 𝐹 is small when ∀𝑡 ∈ 𝜔, 𝐹𝑡 ∈ Sets.

Definition 3.4. A tree 𝐹 is essentially small when it is isomorphic to a small tree, which
is the same as asking for each of the 𝐹𝑡, 𝑡 ∈ 𝜔, to be essentially small.

We introduce the following notations for categories of trees. We have already defined Psh 𝜔 and
we recast this notation to be suitable for our concerns of size. Once again, we use the same
notation to designate categories of trees and sets of trees, which is still unproblematic because
the latter are the sets of objects of the former.

Pshs 𝜔 small trees
Pshes 𝜔 essentially small trees
Psh 𝜔 trees

11

3.1 Families with Small Fibers
Codes and decoding. We have chosen two Grothendieck universes, one for small sets Sets
and one for (potentially) large sets Set. Let 𝑈 denote the Grothendieck universe of small sets.
There is a function 𝑈 → Sets that maps 𝑋 ∈ 𝑈 to 𝑋 ∈ Sets. This tautological function defines
a family of sets indexed over 𝑈. We turn it into a fibered family over 𝑈, by defining ̇𝑈 the set
of pairs (𝑋 ∈ 𝑈, 𝑥 ∈ 𝑋). This comes equiped with a function 𝑝 ∶ ̇𝑈 → 𝑈, the projection on the
first component. We find that for 𝑋 ∈ 𝑈 we have 𝑋 ≃ 𝑝−1({𝑋}), so that 𝑋 fits in the following
square

𝑋 ̇𝑈

∗ 𝑈

⌟
𝑝

∗↦𝑋

We take this diagram as the definition of “decoding” a code ∗ → 𝑈 for set. We can generalize this
idea to codes for families by putting any set on the bottom left of the square in the place of ∗.

The universe of small trees. This diagram can be rewritten in the topos of trees. In sec-
tion 3.2, we will construct a special tree 𝒰 together with a family 𝒰̇ → 𝒰 that mimic the
properties of 𝑈 and (̇𝑈, 𝑝). First, we define a notion of smallness in the topos of trees.

Definition 3.5. Let 𝐸, 𝐵 ∈ Psh 𝜔 and 𝑝 ∶ 𝐸 → 𝐵 be a morphism of trees. 𝑝 is said to
have small fibers when for all 𝜑 ∶ 𝕪𝑡 → 𝐵 the pullback 𝜑∗𝐸 is essentially small.

Notation 3.6. We note sf(𝐵) the collection of (𝑋, 𝑝 ∶ 𝑋 → 𝐵) such that 𝑝 has small
fibers.

Proposition 3.7. Let 𝐸, 𝐵 ∈ Psh 𝜔. A map 𝑝 ∶ 𝐸 → 𝐵 has small fibers iff for all 𝑡 ∈ 𝜔
and 𝑥 ∈ 𝐵𝑡, 𝑝−1

𝑡 ({𝑥}) is essentially small.

Proof. The reason is that the 𝑝−1
𝑡 ({𝑥}) assemble into pullbacks of 𝑝 along elements 𝕪𝑡 → 𝐵.

We define the following notions of codes for families of trees.

Definition 3.8. Let 𝐴 ∈ Psh 𝜔 and (𝐹 , 𝑝) ∈ sf(𝐴). We say that 𝑐 ∶ 𝐴 → 𝒰 is a code
for (𝐹 , 𝑝) when it is possible to complete the following cartesian square

𝐹 𝒰̇

𝐴 𝒰

∃

𝑝
⌟

𝑝𝒰

𝑐

Definition 3.9. Let 𝐴 ∈ Pshs 𝜔. We say that 𝑐 ∶ ∗ → 𝒰 is a code for 𝐴 when it is a code
for (𝐴, !) ∈ sf(∗).

The property we want to prove. Our goal here will be to construct 𝒰 such that every map
with small fibers has a code in 𝒰. This will be proposition 3.25:

Proposition 3.25. Any map with small fibers 𝑝 ∶ 𝐸 → 𝐵 arises as a pullback of 𝑝𝒰 ∶ 𝒰̇ → 𝒰
along a function 𝜑 ∶ 𝐵 → 𝒰.

12

3.2 The Hofmann-Streicher Construction
We now construct the tree 𝒰.

Definition 3.10. The tree 𝒰 — the 𝒰niverse — is defined as follows
— 𝒰𝑡 ≡ Pshs 𝜔≤𝑡
— 𝒰𝑢≤𝑡 ∶ Pshs 𝜔≤𝑡 ⟶ Pshs 𝜔≤𝑢 is restriction

This tree has a canonical map 𝑝 ∶ 𝒰̇ → 𝒰 with small fibers where 𝒰̇ where

Definition 3.11. The tree 𝒰̇ is defined as follows
— 𝒰̇𝑡 ≡ ∑𝐹∈Pshs 𝜔≤𝑡

𝐹𝑡
— 𝒰̇𝑢≤𝑡 ∶ ∑𝐹∈Pshs 𝜔≤𝑡

𝐹𝑡 ⟶ ∑𝐹∈Pshu 𝜔≤𝑡
𝐹𝑢 is defined on the first component by restric-

tion, and on the second component by using the map 𝐹𝑡≤𝑢.

Definition 3.12. The map 𝑝𝒰 ∶ 𝒰̇ ⟶ 𝒰 is defined by projecting on the first component
of 𝒰.

Proposition 3.13. 𝑝𝒰 has small fibers.

Proof. This follows from proposition 3.7. Notice that (𝑝𝒰)−1
𝑡 ({𝐹}) = 𝐹𝑡 which is small.

The category of elements. We need a new technical tool, the category of elements, to prove
our proposition 3.25.

Definition 3.14. Let 𝐹 be a tree. The category of elements of 𝐹, noted ∫𝐹, is the category
where
— objects are pairs (𝑡, 𝑥) where 𝑡 ∈ 𝜔 and 𝑥 ∈ 𝐹𝑡
— there is a morphism (𝑡, 𝑥) → (𝑢, 𝑦) when 𝑡 ≤ 𝑢 and 𝐹𝑡≤𝑢𝑦 = 𝑥.

Remark 3.15. The category of elements can alternatively be defined as the comma cate-
gory 𝕪•⟋𝐹 thanks to the Yoneda lemma — an equivalent description that justifies the name
“category of elements”.

Our proof will proceed in two step. First, we will show that small families over a base 𝐵 may be
equivalently be seen as small presheaves over the category of elements ∫𝐵. Then, we will show
that presheaves over ∫𝐵 may equivalently be seen as maps 𝐵 → 𝒰. Our result will follow by
composing these two equivalences.

Construction 3.16. Let 𝐵 be a tree. Let 𝑋 ∈ Pshs ∫𝐵. The tree tot 𝑋 is defined as
follows
— (tot 𝑋)𝑡 ≡ ∑𝑥∈𝐵𝑡 𝑋𝑡,𝑥
— (tot 𝑋)𝑢 ≤ 𝑡 ∶ ∑𝑥∈𝐵𝑡 𝑋𝑡,𝑥 ⟶ ∑𝑥∈𝐵𝑢 𝑋𝑢,𝑥
is defined using the functions 𝐵𝑢≤𝑡 and 𝑋(𝑢,𝐵𝑢≤𝑡𝑥)≤(𝑡,𝑥).

Construction 3.17. Let 𝐵 be a tree. Let 𝑋 ∈ Pshs ∫𝐵. The map dis 𝑋 ∶ tot 𝑋 → 𝐵 is
defined as follows
— (dis 𝑋)𝑡 ∶ ∑𝑥∈𝐵𝑡 𝑋𝑡,𝑥 → 𝐵𝑡 is simply the projection on the first component.

Construction 3.18. Let𝐵 be a tree. Let 𝑝 ∶ 𝐸 → 𝐵 have small fibers. The presheaf toElm 𝑝
is defined as follows
— Ideally, (toElm 𝑝)(𝑡, 𝑥) ≡ 𝑝−1

𝑡 ({𝑥}) however it is only essentially small according to
proposition 3.7. By essential smallness, there is a 𝐴𝑝−1

𝑡 ({𝑥}) ∈ Sets that is in bijection
with 𝑝−1

𝑡 ({𝑥}). We define (toElm 𝑝)(𝑡, 𝑥) ≡ 𝑝−1
𝑡 ({𝑥}).

13

— (toElm 𝑝)(𝑢,𝑦)≤(𝑡,𝑥) ∶ 𝐴𝑝−1
𝑡 ({𝑥}) ⟶ 𝐴𝑝−1

𝑢 ({𝑦})
comes from the map 𝐵𝑡≤𝑢 which correctly maps the 𝑥-fiber of 𝑝𝑡 to the 𝑦-fiber of 𝑝𝑢
by consequence definition of the morphisms of the category of elements.

Remark 3.19. If 𝐸, 𝐵 ∈ Pshs 𝜔, then we can define (toElm 𝑝)(𝑡, 𝑥) ≡ 𝑝−1
𝑡 ({𝑥}) directly

since this set is automatically small.

Proposition 3.20. A map 𝑝 ∶ 𝐸 → 𝐵 has small fibers iff it is isomorphic to dis 𝑋 ∶
tot 𝑋 → 𝐵 for some 𝑋 ∈ Pshs ∫𝐵.

Proof. First, dis 𝑋 always has small fibers. Using proposition 3.7, it suffices to notice that
(dis 𝑋)−1

𝑡 ({𝑥}) = 𝑋𝑡,𝑥 and that this last set is small by definition.

Second, when 𝑝 ∶ 𝐸 → 𝐵 has small fibers, we can consider the presheaf toElm 𝑝 (Construc-
tion 3.18), and we find that 𝑝 is isomorphic to dis (toElm 𝑝).

Constructions 3.16 and 3.17 together with Construction 3.18 assemble into a correspondance
between fibered trees over 𝐵 and presheaves over the category of elements of 𝐵. Although this
correspondance isn’t a bijection, Proposition 3.20 means that 𝑋 ↦ dis 𝑋 is essentially surjective.
For reference, we collect our constructions in the following picture:

sf(𝐵) ⟷ Pshs ∫𝐵
(𝑋, 𝑝) ⟼ (𝑐, 𝑥) ↦ (𝐴 small st. 𝐴 ≃ 𝑝−1

𝑐 (𝑥))
(𝑐 ↦ {(𝑥, 𝑦) ∣ 𝑦 ∈ 𝑋(𝑐, 𝑥)}) ⟻ 𝑋

Construction 3.21. Let 𝐵 ∈ Psh 𝜔 and 𝑋 ∈ Pshs ∫𝐵. The map toIdx 𝑋 ∶ 𝐵 → 𝒰 is
defined as follows
— (toIdx 𝑋)𝑡𝑥 ≡ (𝑢 ≤ 𝑡) ↦ 𝑋(𝑢, 𝐵𝑢≤𝑡𝑥)

Construction 3.22. Let 𝐵 ∈ Psh 𝜔 and 𝜑 ∶ 𝐵 → 𝒰. The presheaf toElm 𝜑 ∈ Pshs ∫𝐵 is
defined as follows
— (toElm 𝜑)(𝑡, 𝑥) ≡ (𝜑𝑡𝑥)𝑡
— (toElm 𝜑)(𝑢,𝑦)≤(𝑡,𝑥) ∶ (𝜑𝑡𝑥)𝑡 → (𝜑𝑢𝑦)𝑢 requires some work.
Notice first that, by definition of the morphisms of ∫𝐵, we actually need a function
(𝜑𝑡𝑥)𝑡 → (𝜑𝑢(𝐵𝑢≤𝑡𝑥))𝑢.
Then, by naturality, this is just a function (𝜑𝑡𝑥)𝑡 → (𝜑𝑡𝑥)𝑢 and this means that —
recall that 𝜑𝑡𝑥 ∈ Pshs 𝜔≤𝑡 — we can define (toElm 𝜑)(𝑢,𝑦)≤(𝑡,𝑥) ≡ (𝜑𝑡𝑥)𝑢≤𝑡 .

Proposition 3.23. These two maps are mutual inverses.

Proof. First, see that

(toIdx(toElm 𝜑))𝑡𝑥 = (𝑢 ≤ 𝑡) ↦ (𝜑𝑢(𝐵𝑢≤𝑡))𝑢 by definition
= (𝑢 ≤ 𝑡) ↦ (𝜑𝑡𝑥)𝑢 by naturality of 𝜑
= 𝜑𝑡𝑥

Then, see that

(toElm(toIdx 𝑋))(𝑡, 𝑥) = ((𝑢 ≤ 𝑡) ↦ 𝑋(𝑢, 𝐵𝑢≤𝑡𝑥))𝑡 by definition
= 𝑋(𝑡, 𝑥) by reducing the expression

14

This means that we actually have an isomorphism of sets

Pshs ∫𝐵 ≃ (𝐵 → 𝒰)
𝑋 ⟼ (𝑥 ↦ (𝑢 ≤ 𝑡) ↦ 𝑋(𝑢, 𝐵𝑢≤𝑡𝑥))𝑡∈𝜔

(𝑡, 𝑥) ↦ (𝜑𝑡𝑥)𝑡 ⟻ 𝜑

Proposition 3.24. The map

(𝐵 → 𝒰) ⟶ 𝑠𝑓(𝐵)
𝜑 ⟼ (tot(toElm 𝜑), dis(toElm 𝜑))

is a pullback map
(𝐵 → 𝒰) ⟶ 𝑠𝑓(𝐵)

𝜑 ⟼ (𝜑∗𝒰̇, 𝜑∗𝑝𝒰)

Proposition 3.25. Any map with small fibers 𝑝 ∶ 𝐸 → 𝐵 arises as a pullback of 𝑝𝒰 ∶ 𝒰̇ → 𝒰
along a function 𝜑 ∶ 𝐵 → 𝒰.

Proof. This follows from the explicit description of pullbacks given in proposition 3.24 together
with propositions 3.20 and 3.23 that prove that (𝐸, 𝑝) is always isomorphic to this explicit
pullback.

4 Application: Streams
We have gathered enough knowledge about the topos of trees to actually construct a nontrivial
example that is relevant to computer science, namely, streams. Our notion of streams will be a
formal model of the idea of a sequence of natural numbers that are fed into a system. This notion
is time-dependent, and trees are a natural structure with which to reason about time-dependent
data and programs.

4.1 Constructors for Families
Products. We have defined products in the category of trees in Construction 1.7. Our construc-
tion is easily seen to be functorial in its two arguments. Taking advantage of this functoriality,
we now generalize our construction to families. We will see that this generalization is reasonable
as, when applied to families over the point ∗, it boils down to our original definition of products.

Definition 4.1. Let 𝐴 ∈ Psh 𝜔. Let 𝐸, 𝐹 ∈ Psh 𝜔 and 𝑝 ∶ 𝐸 → 𝐴, 𝑞 ∶ 𝐹 → 𝐴. The
product of (𝐸, 𝑝) and (𝐹 , 𝑞) is the family that fits in the following diagram

𝐸 ×𝐴 𝐹 𝐸 × 𝐹

𝐴 𝐴 × 𝐴

𝑝×𝐴𝑞
⌟

𝑝×𝑞

Δ

where Δ ∶ 𝐴 → 𝐴 × 𝐴 is the diagonal, Δ𝑥 ≡ (𝑥, 𝑥).

Proposition 4.2. Let 𝐴, 𝐵 ∈ Pshs 𝜔. We see these trees as families over the point ∗. The
product 𝐴 ×∗ 𝐵 following definition 4.1 is isomorphic to the product 𝐴 × 𝐵.

15

Proof. It suffices to show that 𝐴 × 𝐵 fits in the same diagram as 𝐴 ×∗ 𝐵 in definition 4.1, i.e.
that there is the following cartesian square

𝐴 × 𝐵 𝐴 × 𝐵

∗ ∗ × ∗

1𝐴×𝐵

!
⌟

!×!

This square is seen to be cartesian because ∗ × ∗ ≃ ∗.

More generally, the data of 𝐸 ×𝐵 𝐹 over the global points of 𝐵 is recovered from the data of 𝐸
and 𝐹 over the global points of 𝐵. Precisely, we show the following proposition.

Proposition 4.3. Let 𝐵 ∈ Psh 𝜔. Let 𝐸, 𝐹 ∈ Psh 𝜔 and 𝑝 ∶ 𝐸 → 𝐴, 𝑞 ∶ 𝐹 → 𝐴.
Let 𝑓 ∶ ∗ → 𝐵. We have the following isomorphism

𝑓∗(𝐹 ×𝐵 𝐺) ≃ 𝑓∗𝐹 × 𝑓∗𝐺

Proof. It suffices to show that 𝑓∗𝐸 × 𝑓∗𝐹 fits in the diagram of definition 4.1. By pullback
pasting, it suffices to show that it fits in the outer cartesian square of the following diagram

𝑓∗𝐸 × 𝑓∗𝐹 𝐸 ×𝐵 𝐹 𝐸 × 𝐹

∗ 𝐵 𝐵 × 𝐵

⌟ ⌟
𝑝×𝑞

𝑓 Δ

The bottom composite can be rewritten Δ∘𝑓 = (𝑓 ×𝑓) ∘Δ. Therefore it suffices to fit 𝑓∗𝐸 ×𝑓∗𝐹
in the following cartesian square

𝑓∗𝐸 × 𝑓∗𝐹 𝐸 × 𝐹

∗ ∗ × ∗ 𝐵 × 𝐵

⌟

Δ 𝑓×𝑓

and, because ∗ × ∗ ≃ ∗, the bottom left arrow is an isomorphism so it suffices to fit 𝑓∗𝐸 × 𝑓∗𝐹
in the following

𝑓∗𝐸 × 𝑓∗𝐹 𝐸 × 𝐹

∗ × ∗ 𝐵 × 𝐵

⌟

𝑓×𝑓

and this last cartesian square holds by applying the functor · × · to the two cartesian squares
that define 𝑓∗𝐸 and 𝑓∗𝐹.

Later operator on families. We extends the definition 2.1 to families.

Definition 4.4. Let 𝐴 ∈ Psh 𝜔. We define ▶ ∶ sf(𝐴) ⟶ sf(𝐴). This endofunctor maps
a tree (𝐹 , 𝑝) to (▶𝐴𝐹, ▶𝐴𝑝) defined by pulling back as in the following diagram

𝐹

𝐴

𝑝 ⟼
▶𝐴𝐹 ▶𝐹

𝐴 ▶𝐴

▶𝐴𝑝
⌟

▶𝑝

next

16

where the arrow on the right hand side of the square comes from definition 2.1.

We can check that this definition of “▶𝐴” makes sense by checking that it behaves correctly above
points

Proposition 4.5. Let 𝐵 ∈ Psh 𝜔. Let (𝐹 , 𝑝) ∈ sf(𝐵). Let 𝑓 ∶ ∗ → 𝐵 a global point of 𝐵.
The following isomorphism holds

𝑓∗(▶𝐵𝐹) ≃ ▶(𝑓∗𝐹)

Proof. It suffices to show that ▶(𝑓∗𝐹) fits in the outer cartesian square of the following diagram

▶(𝑓∗𝐹) ▶𝐴𝐹 ▶𝐹

∗ 𝐴 ▶𝐴
𝑓

!
⌟

▶𝐴𝑝
⌟

▶𝑝

next

By naturality of next, we have next∘𝑓 = (▶𝑓)∘next. Therefore it suffices to show that ▶(𝑓∗𝐹)
fits in the following diagram

▶(𝑓∗𝐹) ▶𝐹

∗ ▶∗ ▶𝐴
▶𝑓

!
⌟

▶𝑝

next

but ▶∗ ≃ ∗, so we just need to fit ▶(𝑓∗𝐹) in the following diagram

▶(𝑓∗𝐹) ▶𝐹

▶∗ ▶𝐵

▶! ▶𝑝

▶𝑓

and this last cartesian square is shown to hold by applying ▶ to the square that defines 𝑓∗𝐹.

4.2 Codes for Families
We make use of our work in section 3 to show that the universe 𝒰 has codes for products
(Construction 1.7 and definition 4.1), the later operator (definitions 2.1 and 4.4) and natural
numbers (definition 1.19). Our arguments hinge on proposition 3.25: to show that an object or
a family have a code, it suffices to show that the object is small or the family has small fibers.
Since this property is very easy to check, constructing codes is a straightforward process.

Natural numbers. There is a code in 𝒰 for ℕ.

Construction 4.6. As a consequence of proposition 3.25, there is a code 𝑐ℕ ∶ ∗ → 𝒰 of ℕ
that fits in the following diagram

ℕ 𝒰̇

∗ 𝒰
!

⌟
𝑝𝒰

𝑐ℕ

17

Products. The universe 𝒰 has codes for products.

Construction 4.7. There is a map prod ∶ 𝒰 × 𝒰 → 𝒰 which fits in the diagram below

𝒰̇ × 𝒰̇ 𝒰̇

𝒰 × 𝒰 𝒰

𝑝𝒰×𝑝𝒰

⌟
𝑝𝒰

prod

This map is the code of 𝑝𝒰 × 𝑝𝒰. This follows from proposition 3.25 (notice that 𝑝𝒰 × 𝑝𝒰
has small fibers, as 𝑝𝒰 has small fibers).

Proposition 4.8. Let 𝐴 ∈ Psh 𝜔 and (𝐸, 𝑝), (𝐹 , 𝑞) ∈ sf(𝐴). Let 𝑐1 ∶ 𝐴 → 𝒰 be a code
for (𝐸, 𝑝), and 𝑐2 be a code for (𝐹 , 𝑞). The following map

𝐴 𝐴 × 𝐴 𝒰 × 𝒰 𝒰
Δ 𝑐1×𝑐2 prod

is a code for the family (𝐸 ×𝐴 𝐹, 𝑝 ×𝐴 𝑝) ∈ sf(𝐴).

Proof.
𝐸 ×𝐴 𝐹 𝐸 × 𝐹 𝒰̇ × 𝒰̇ 𝒰̇

𝐴 𝐴 × 𝐴 𝒰 × 𝒰 𝒰
Δ 𝑐1×𝑐2 prod

⌟ ⌟ ⌟

We have the pullback squares above, where the left square comes from definition 4.1 and is
simply the definition of 𝐸 ×𝐴 𝐹, the middle pullback square is definition 3.8, the fact that 𝑐1 and
𝑐2 are codes, viewed through · × ·, which preserves pullbacks, and the right pullback square is
proposition 3.25. By pullback pasting, the outer rectangle is cartesian too.

Later. The universe 𝒰 internalizes the operator ▶·.

Construction 4.9. There is a map ▷ ∶ 𝒰 → 𝒰̇ which fits in the diagram below

▶𝒰̇ 𝒰̇

▶𝒰 𝒰

▶𝑝𝒰

⌟
𝑝𝒰

▷

This map is the code of ▶𝑝𝒰. This follows from proposition 3.25 (notice that ▶𝑝𝒰 has
small fibers, as 𝑝𝒰 has small fibers).

Proposition 4.10. The universe contains codes for the later operator on families. Let𝐴 ∈ Psh 𝜔
and (𝐸, 𝑝) ∈ sf(𝐴). Let 𝑐 ∶ 𝐴 → 𝒰 be a code for (𝐸, 𝑝). The map

𝐴 ▶𝐴 ▶𝒰 𝒰next ▶𝑐 ▷

is a code for ▶(𝐸, 𝑝)

18

Proof.
▶𝐴𝐸 ▶𝐸 ▶𝒰̇ 𝒰̇

𝐴 ▶𝐴 ▶𝒰 𝒰

⌟ ⌟ ⌟

next ▶𝑐 ▷

(4.1)

We have the pullback squares above, where the left pullback square comes from definition 4.4
and is simply the definition of ▶𝐴𝐸, the middle pullback square is definition 3.8, the fact that 𝑐
is a code, viewed through ▶, which preserves pullbacks, and the right pullback square is propo-
sition 3.25. By pullback pasting, the outer rectangle is cartesian too.

4.3 Defining Streams
We construct a solution to the recursive domain equation that we stated in the introduction. We
define Stream ∶ ∗ ⟶ 𝒰 such that

∗ 𝑈

∗ × ∗ 𝑈 × 𝑈 𝑈 × ▶𝑈 𝑈 × 𝑈

Stream

𝑐ℕ×Stream 1×later 1×▷

where the arrow on the right is our encoding of products (Construction 4.7). In other words,

∀𝑡 ∈ 𝜔, Stream𝑡∗ ≃ ℕ × ▷𝑡(later𝑡(Stream𝑡∗))

which reduces to Stream0∗ ≃ ℕ and for all 𝑡 ∈ 𝜔, Stream𝑡+1∗ ≃ ℕ × Stream𝑡, so that

Stream𝑡∗ ≃ ℕ × ℕ × ⋯ × ℕ = ℕ𝑡+1

It suffices to define Stream by löb induction on the element of 𝒰▶𝒰 corresponding to the following
composite

▶𝒰 𝒰 𝒰 × 𝒰 𝒰▷ 𝑐ℕ×1 prod

The map Stream ∶ ∗ → 𝒰 is a code for the tree Stream∗𝒰̇. By construction, this tree is a
solution to the equation that was stated in the introduction. We can compute its local points
(up to isomorphism) using the Yoneda lemma, proposition 1.16 and the characterization above
of Stream𝑡∗. Its global points are a colimit of its local points.

local points (𝕪𝑡 ⟶ Stream∗𝒰) ≃ ℕ𝑡+1

global points (∗ ⟶ Stream∗𝒰) ≃ ℕ𝜔

These characterizations reflect the intuitive behavior of streams. A stream, observed with the
knowledge of all its extent through time, is a sequence of numbers. On the other hand, if we can
only observe the same stream with the knowledge of its contents after 𝑡 time steps, we find that
the data it has yielded is excactly 𝑡 numbers.

This concludes this note. In the context of the theory of Iris, we have isolated the problem of
solving recursive domain equations. We have stated a recursive domain equation, that of streams,
we have stated the context in which we meant to solve this equation, and we have developed tools
to construct a solution. In doing this, we have illustrated the problem of solving recursive domain
equations, and worked out the details of how to do so by using Löb induction on a universe.

19

References
Pierre America and Jan J. M. M. Rutten. 1989. Solving Reflexive Domain Equations in a
Category of Complete Metric Spaces. J. Comput. Syst. Sci. 39, 3 (1989), 343–375. doi:10.
1016/0022-0000(89)90027-5

Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. 1971. Theorie de Topos et
Cohomologie Etale des Schemas I, II, III (2015 reedition ed.). Chapter I, Préfaisceaux. https:
//www.normalesup.org/~forgogozo/SGA4/01/01.pdf

Jean Bénabou. 1973. Problemes dans les topos: d’apres le cours de questions speciales de math-
ematique. (1973).

Lars Birkedal and Rasmus Ejlers Møgelberg. 2013. Intensional Type Theory with Guarded
Recursive Types qua Fixed Points on Universes. In 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013. IEEE
Computer Society, 213–222. doi:10.1109/LICS.2013.27

Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. 2012. First
steps in synthetic guarded domain theory: step-indexing in the topos of trees. Log. Methods
Comput. Sci. 8, 4 (2012). doi:10.2168/LMCS-8(4:1)2012

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. 2010. The category-theoretic solution
of recursive metric-space equations. Theor. Comput. Sci. 411, 47 (2010), 4102–4122. doi:10.
1016/J.TCS.2010.07.010

Pietro Di Gianantonio and Marino Miculan. 2002. A Unifying Approach to Recursive and Co-
recursive Definitions. In Types for Proofs and Programs, Second International Workshop,
TYPES 2002, Berg en Dal, The Netherlands, April 24-28, 2002, Selected Papers (Lecture
Notes in Computer Science, Vol. 2646), Herman Geuvers and Freek Wiedijk (Eds.). Springer,
148–161. doi:10.1007/3-540-39185-1_9

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. 2018. Iris from the ground up: A modular foundation for higher-order concurrent
separation logic. J. Funct. Program. 28 (2018), e20. doi:10.1017/S0956796818000151

Hiroshi Nakano. 2000. A Modality for Recursion. In 15th Annual IEEE Symposium on Logic
in Computer Science, Santa Barbara, California, USA, June 26-29, 2000. IEEE Computer
Society, 255–266. doi:10.1109/LICS.2000.855774

Thomas Streicher. 2005. Universes in Toposes. In From sets and types to topology and analysis
- Towards practicable foundations for constructive mathematics, Laura Crosilla and Peter M.
Schuster (Eds.). Oxford logic guides, Vol. 48. Oxford University Press.

20

https://doi.org/10.1016/0022-0000(89)90027-5
https://doi.org/10.1016/0022-0000(89)90027-5
https://www.normalesup.org/~forgogozo/SGA4/01/01.pdf
https://www.normalesup.org/~forgogozo/SGA4/01/01.pdf
https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1016/J.TCS.2010.07.010
https://doi.org/10.1016/J.TCS.2010.07.010
https://doi.org/10.1007/3-540-39185-1_9
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1109/LICS.2000.855774

	The Topos of Trees
	Pullbacks and Fibered Data
	Global and Local Elements
	Some Constructors

	The Later Operator
	Löb Induction

	A Universe in the Topos of Trees
	Families with Small Fibers
	The Hofmann-Streicher Construction

	Application: Streams
	Constructors for Families
	Codes for Families
	Defining Streams

