
Logical Methods in Computer Science
Volume 00, Number 0, Pages 000–000
S 0000-0000(XX)0000-0

RELATIONAL PARAMETRICITY AND SEPARATION LOGIC

LARS BIRKEDAL AND HONGSEOK YANG

IT University of Copenhagen, Denmark
E-mail address: birkedal@itu.dk

Queen Mary, University of London, UK
E-mail address: hyang@dcs.qmul.ac.uk

Abstract. Separation logic is a recent extension of Hoare logic for reasoning about pro-
grams with references to shared mutable data structures. In this paper, we provide a new
interpretation of the logic for a programming language with higher types. Our interpreta-
tion is based on Reynolds’s relational parametricity, and it provides a formal connection
between separation logic and data abstraction.

1. Introduction

Separation logic [18, 13, 7] is a Hoare-style program logic, and variants of it have been
applied to prove correct interesting pointer algorithms such as copying a dag, disposing
a graph, the Schorr-Waite graph algorithm, and Cheney’s copying garbage collector. The
main advantage of separation logic compared to ordinary Hoare logic is that it facilitates
local reasoning, formalized via the so-called frame rule using a connective called separating
conjunction. The development of separation logic initially focused on low-level languages
with heaps and pointers, although in recent work [14, 8] it was shown how to extend
separation logic first to languages with a simple kind of procedures [14] and then to languages
also with higher-types [8]. Moreover, in [14] a second-order frame rule was proved sound
and in [8] a whole range of higher-order frame rules were proved sound for a separation-logic
type system.

In [14] and [8] it was explained how second and higher-order frame rules can be used
to reason about static imperative modules. The idea is roughly as follows. Suppose that
we prove a specification for a client c, depending on a module k,

{P1} k {Q1} ` {P} c(k) {Q}.
The proof of the client depends only on the “abstract specification” of the module, which
describes the external behavior of k. Suppose further that an actual implementation m of
the module satisfies

{P1 ∗ I}m {Q1 ∗ I}.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

1

init0(i) ≡ c.next := i inc0 ≡ let i = c.next in
let v = i.data in
i.data := v+1

read0 ≡ let i = c.next in
let v = i.data in
g.data := v

init1(i) ≡ let v = i.data in
i.data := −v;
c.next := i

inc1 ≡ let i = c.next in
let v = i.data in
i.data := v−1

read1 ≡ let i = c.next in
let v = i.data in
g.data := −v

Figure 1: Counter Modules

Here I is the internal resource invariant of the module m, describing the internal heap
storage used by the module to implement the abstract specification. We can then employ
a (higher-order) frame rule on the specification for the client to get

{P1 ∗ I} k {Q1 ∗ I} ` {P ∗ I} c(k) {Q ∗ I},
and combine it with the specification for m to obtain

{P ∗ I} c(m) {Q ∗ I}.
A key advantage of this approach to modularity is that it facilitates so-called “ownership
transfer.” For example, if the module is a queue, then the ownership of cells transfers from
the client to module upon insertion into the queue. Moreover, the discipline allows clients
to maintain pointers into cells that have changed ownership to the module. See [14] for
examples and more explanations of these facts.

Note that the higher-order frame rules in essence provide implicit quantification over
internal resource invariants. In [5] it is shown how one can employ a higher-order version
of separation logic, with explicit quantification of assertion predicates to reason about dy-
namic modularity (where there can be several instances of the same abstract data type
implemented by an imperative module), see also [15]. The idea is to existentially quantify
over the internal resource invariants in a module, so that in the above example, c would
depend on a specification for k of the form

∃I. {P1 ∗ I} k {Q1 ∗ I}.
As emphasized in the papers mentioned above, note that, both in the case of implicit quan-
tification over internal resource invariants (higher-order frame rules) and in the case of ex-
plicit quantification over internal resource invariants (existentials over assertion predicates),
reasoning about a client does not depend on the internal resource invariant of possible mod-
ule implementations. Thus the methodology allows us to formally reason about mutable
abstract data types, aka. imperative modules.

However, the semantic models in the papers mentioned above do not allow us to make
all the conclusions we would expect from reasoning about mutable abstract data types. In
particular, we would expect that clients should behave parametrically in the internal re-
source invariants: When a client is applied to two different implementations of a mutable
abstract data type, it should be the case that the client preserves relations between the in-
ternal resource invariants of the two implementations. This is analogous to Reynolds’s style
relational parametricity for abstract data types with quantification over type variables [17].

2

To understand this issue more clearly, consider the two implementations of a counter
in Figure 1. A counter has three operations: init(i) for initializing the counter, and inc
and read for increasing and reading the value of the counter. In the first implementation,
init0(i) takes a heap cell i containing an initial value for the counter, and stores its address
i in the internal variable c, thereby setting the value of the counter to the contents of i.
The intention is that when a client program calls this initialization routine with cell i, it
should transfer the ownership of the cell to the counter – it should not dereference the
cell after calling init0(i). The operation inc0 increases the value of the transferred cell i,
and read0 returns the value of cell i, by storing it in a pre-determined global variable g.
The second implementation is almost identical to the first, except that the value of the
counter is negated. Thus, when R is the relation that relates a heap containing cell i and
variable c with the same heap with the value of cell i negated, all operations of these two
implementations preserve this relation R.

Now suppose that we are given a client program of the form

let i=new in
(
i.data:=n; init(i); b(inc, read)

)
whose body b satisfies the following specification in separation logic:

{emp} inc {emp}, {g 7→ -} read {g 7→ -} ` {P} b(inc, read) {Q}
for some P,Q that do not mention cell i. We expect that the body b of the client preserves
the relation R of the two implementations, and that the client cannot detect the difference
between the two. Our expectation is based on the specification for b, which says that the
triple {P} b(inc, read) {Q} can be proved in separation logic, assuming only the “abstract
specification” of the inc and read operations, where all the internal resources of the module,
such as cell i, are hidden. This provability should prevent b from accessing the internal
resources of a counter directly and thus detecting the difference between the two implemen-
tations. However, none of the existing models of separation logic can justify our expectation
on the client program above.

In this paper we provide a new parametric model of separation logic, which captures
that clients behave parametrically in internal resource invariants of mutable abstract data
types. For instance, our model shows that b(inc, read) preserves the relation R, and thus it
behaves in the same way no matter whether we use the first or second implementation of a
counter. In the present paper, we will focus on the implicit approach to quantification over
internal resource invariants via higher-order frame rules, since it is technically simpler than
the explicit approach.1

Our new model of separation logic is based on two novel ideas. The first is to read
specifications in separation logic as relations between two programs. For instance, in our
model, the Hoare triple {P} b(inc, read) {Q} describes a relationship between two instanti-
ations [[b(inc, read)]]η0 and [[b(inc, read)]]η1 of the client’s body b by environments η0 and η1.
Intuitively, environment ηi defines an implementation of module operations inc and read, so
[[b(inc, read)]]ηi means b is linked with the implementation ηi(inc) and ηi(read). Note that
when used with appropriate η0, η1 (i.e., ηi that maps inc and read to the meaning of inci

and readi), the triple expresses how b(inc0, read0) is related to b(inc1, read1).

1The reason is that the implicit quantification of separation logic uses quantification in a very disciplined
way so that the usual reading of assertions as sets of heaps can be maintained; if we use quantification
without any restrictions, as in [3], it appears that we cannot have the usual reading of assertions as sets of
heaps because, then, the rule of consequence is not sound.

3

The second idea is to parameterize the interpretation by relations on heaps. Mathemat-
ically, this means that the interpretation uses a Kripke structure that consists of relations
on heaps. The relation parameter describes how the internal resource invariants of two mod-
ules are related, and it lets us express the preservation of this relation by client programs.
In our counter example, an appropriate parameter is the relation R above. When the triple
{P} b(inc, read) {Q} is interpreted with R (and ηi corresponding to inci, readi), it says, in
particular, that b(inc0, read0) and b(inc1, read1) should preserve the relation R between the
internal resources of the two implementations of a counter.

1.1. Related Work. Technically, it has proven to be a very non-trivial problem to define
a parametric model for separation logic. One of the main technical challenges in developing
a relationally parametric model of separation logic, even for a simple first-order language, is
that the standard models of separation logic allow the identity of locations to be observed
in the model. This means in particular that allocation of new heap cells is not parametric
because the identity of the location of the allocated cell can be observed in the model. (We
made this observation in earlier unpublished joint work with Noah Torp-Smith, see [20,
Ch. 6].)

This problem of non-parametric memory allocation has also been noticed by recent work
on data refinement for heap storage, which exploits semantic ideas from separation logic
[10, 11]. However, the work on data refinement does not provide a satisfactory solution.
Either it avoids the problem by assuming that clients do not allocate cells [10], or its
solution has difficulties for handling higher-order procedures and formalizing (observational)
equivalences, not refinements, between two implementations of a mutable abstract data type
[11].

Our solution to this challenge is to define a more refined semantics of the programming
language using FM domain theory, in the style of Benton and Leperchey [4], in which one
can name locations but not observe the identity of locations because of the built-in use
of permutation of locations. Part of the trick of loc. cit. is to define the semantics in a
continuation-passing style so that one can ensure that new locations are suitably fresh with
respect to the remainder of the computation. (See Section 4 for more details.) Benton and
Leperchey used the FM domain-theoretic model to reason about contextual equivalence
and here we extend the approach to give a semantics of separation logic in a continuation-
passing style. We relate this new interpretation to the standard direct-style interpretation
of separation logic via the so-called observation closure (−)⊥⊥ of a relation, see Section 7.

The other main technical challenge in developing a relationally parametric model of
separation logic for reasoning about mutable abstract data types is to devise a model which
validates a wide range of higher-order frame rules. Our solution to this challenge is to
define an intuitionistic interpretation of the specification logic over a Kripke structure,
whose ordering relation intuitively captures the framing-in of resources. Technically, the
intuitionistic interpretation, in particular the associated Kripke monotonicity, is used to
validate a generalized frame rule. Further, to show that the semantics of the logic does
indeed satisfy Kripke monotonicity for the base case of triples, we interpret triples using a
universal quantifier, which intuitively quantifies over resources that can possibly be framed
in. In the earlier non-parametric model of higher-order frame rules for separation-logic
typing in [8] we also made use of a Kripke structure. The difference is that in the present
work the elements of the Kripke structure are relations on heaps rather than predicates on
heaps because we build a relationally parametric model.

4

In earlier work, Banerjee and Naumann [1] studied relational parametricity for dynam-
ically allocated heap objects in a Java-like language. Banerjee and Naumann made use
of a non-trivial semantic notion of confinement to describe internal resources of a module;
here instead we use separation logic, in particular separating conjunction and frame rules,
to describe which resources are internal to the module. Our model directly captures that
whenever a client has been proved correct in separation logic with respect to an abstract
view of a module, then it does not matter how the module has been implemented internally.
And, this holds for a higher-order language with higher-order frame rules.

This paper is organized as follows. In Section 2 we describe the programming and
assertion languages we consider and in Section 3 we define our version of separation logic.
In Section 4 we define the semantics of our programming language in the category of FM-
cpos, and describe our relational interpretation of separation logic in Section 5. In Section 6
we present a general abstract construction that provides models of specification logic with
higher-order frame rules and show that the semantics of the previous section is in fact a
special case of the general construction. Section 7 relates our relational interpretation to
the standard interpretation of separation logic, and in Section 8 we present the abstraction
theorem that our parametric model validates. We describe examples in Section 9, and
finally we conclude and discuss future work in Section 10.

An extended abstract of this paper was presented at the FOSSACS 2007 conference [9].
This paper includes proofs that were missing in the conference version, and describes a
general mathematical construction that lies behind our parametric model of separation
logic. We also include a new example that illustrates the subtleties of the problems and
results.

2. Programs and Assertions

In this paper, we consider a higher-order language with immutable stack variables. The
types and terms of the language are defined as follows:

Types τ ::= com | val→ τ | τ→ τ
Expressions E ::= i | 0 | 1 | −1 | E + E | E − E

Terms M ::= x | λi.M |M E | λx : τ.M |MM
| fixM | if (E=E) thenM elseM |M ;M
| let i=new in M | free(E) | let i=E.f in M | E.f :=E (f ∈ {0, 1})

The language separates expressions E from termsM . Expressions denote heap-independent
values, which are either the address of a heap cell or an integer. Expressions are bound to
stack variables i, j. On the other hand, terms denote possibly heap-dependent computations,
and they are bound to identifiers x, y. The syntax of the language ensures that expressions
always terminate, while terms can diverge. The types are used to classify terms only. com
denotes commands, val → τ means functions that take an expression parameter, and τ → τ ′

denotes functions that takes a term parameter. Note that to support two different function
types, the language includes two kinds of abstraction and application, one for expression
parameters and the other for term parameters. We assume that term parameters are passed
by name, and expression parameters are passed by value.

To simplify the presentation, we take a simple storage model where each heap cell has
only two fields 0 and 1. Command let i=new in M allocates such a binary heap cell, binds
the address of the cell to i, and runs M under this binding. The f ’th field of this newly

5

∆, i ` i ∆ ` 0
∆ ` E1 ∆ ` E2

∆ ` E1 + E2

∆ ` E1 ∆ ` E2

∆ ` E1 − E2

∆ | Γ, x : τ ` x : τ
∆, i | Γ `M : τ

∆ | Γ ` λi.M : val → τ

∆ | Γ `M : val → τ ∆ ` E
∆ | Γ `M E : τ

∆ | Γ, x : τ `M : τ ′

∆ | Γ ` λx : τ.M : τ → τ ′
∆ | Γ `M : τ ′ → τ ∆ | Γ ` N : τ ′

∆ | Γ `M N : τ
∆ | Γ `M : τ → τ

∆ | Γ ` fix M : τ

∆ ` E ∆ ` F ∆ | Γ `M : com ∆ | Γ ` N : com

∆ | Γ ` if (E=F) thenM elseN : com

∆ |Γ `M : com ∆ |Γ ` N : com

∆ |Γ `M ;N : com

∆, i |Γ `M : com

∆ |Γ ` let i=new in M : com
∆ ` E

∆ |Γ ` free(E) : com

∆, i | Γ `M : com ∆ ` E
∆ | Γ ` let i=E.f in M : com

f ∈ {0, 1} ∆ ` E ∆ ` F
∆ | Γ ` E.f := F : com

f ∈ {0, 1}

Figure 2: Typing Rules for Expressions and Terms

allocated cell at address i is read by let j = i.f in N and updated by i.f := E. The cell i is
deallocated by free(i).

The language uses typing judgments of the form ∆ ` E(: val) and ∆ |Γ `M : τ , where
∆ is a finite set of stack variables and Γ is a standard type environment for identifiers x.
The typing rules for expressions and terms are shown in Figure 2.

We use the standard assertions from separation logic to describe properties of the
heap:2

P ::= E = E | E ≤ E | E 7→ E,E | emp | P ∗ P | P ∧ P | ¬P | ∃i. P.
The points-to predicate E 7→ E0, E1 means that the current heap has only one cell at

address E and that the i-th field of the cell has the value Ei. The emp predicate denotes
the empty heap, and the separating conjunction P ∗ Q means that the current heap can
be split into two parts so that P holds for the one and Q holds for the other. The other
connectives have the usual meaning from classical logic. All the missing connectives from
classical logic are defined as usual.

In the paper, we will use the three abbreviations (E 7→ -), (E 7→ -, E1) and (E 7→ E0, -).
The first E 7→ - is a syntactic sugar for ∃i, j. E 7→ i, j, and denotes heaps with cell E only.
E 7→ -, E1 is an abbreviation for ∃i. E 7→ i, E1, and means heaps that contain only cell E
and store E′ in the second field of this unique cell E. The last E 7→ E0, - is defined similarly.

Assertions only depend on stack variables i, j, not identifiers x, y. Thus assertions are
typed by a judgment ∆ ` P : Assertion. The typing rules for this judgment are completely
standard, and thus omitted from this paper.

2We omit separating implication −∗ to simplify presentation.

6

3. Separation Logic

Our version of separation logic is the first-order intuitionistic logic extended with Hoare
triples and invariant extension. The formulas in the logic are called specifications, and they
are defined by the following grammar:

ϕ ::= {P}M{Q} | ϕ⊗ P | E = E | M = M
| ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ∀x : τ.ϕ | ∃x : τ.ϕ | ∀i.ϕ | ∃i.ϕ

The formula ϕ ⊗ P means the extension of ϕ by the invariant P . It can be viewed as a
syntactic transformation of ϕ that inserts P ∗− into the pre and post conditions of all triples
in ϕ. For instance, ({P}x{Q} ⇒ {P ′}M(x){Q′})⊗P0 is equivalent to {P ∗ P0}x{Q ∗ P0} ⇒
{P ′ ∗ P0}M(x){Q′ ∗ P0}. We write Specs for the set of all specifications.

Specifications are typed by the judgment ∆ | Γ ` ϕ : Specs, where we overloaded Specs
to mean the type for specifications.

The logic includes all the usual proof rules from first-order intuitionistic logic with
equality, and a rule for fixed-point induction. In addition, it contains proof rules from
separation logic, and higher-order frame rules, expressed in terms of rules for invariant
introduction and distribution. Figure 3 shows some of these additional rules and a rule for
fixed-point induction. In the figure, we often omit contexts ∆ | Γ for specifications and also
conditions about typing.

The rules for Hoare triples are the standard proof rules of separation logic adapted
to our language. Note that in the rule of consequence, we use the standard semantics of
assertions P, P ′, Q,Q′, in order to express semantic implications between those assertions
(of course, standard logical derivability ∆ | P ` P ′ and ∆ | Q′ ` Q are sufficient conditions).
The rules for invariant extension formalize higher-order frame rules, extending the idea in
[8]. The generalized higher-order frame rule ϕ⇒ ϕ⊗P adds an invariant P to specification
ϕ, and the other rules distribute this added invariant all the way down to the triples. We
just show one use of those rules that lead to the second-order frame rule:

∆ | Γ, x : com ` {P}x{Q} ⇒ {P ′}M(x){Q′}
∆ | Γ, x : com ` ({P}x{Q} ⇒ {P ′}M(x){Q′})⊗ P0

∆ | Γ, x : com ` {P}x{Q} ⊗ P0 ⇒ {P ′}M(x){Q′} ⊗ P0

∆ | Γ, x : com ` {P ∗ P0}x{Q ∗ P0} ⇒ {P ′ ∗ P0}M(x){Q′ ∗ P0}
The last rule is for fixed-point induction, and it relies on the restriction that a specification
is of the form γ(fix M). The grammar for γ guarantees that γ(x) defines an admissible
predicate for x, thus ensuring the soundness of fixed-point induction. Moreover, it also
guarantees that γ(x) holds when M means ⊥, so allowing us to omit a usual base case,
“γ(⊥),” from the rule.

Note that the rules do not include the so-called conjunction rule:

({P}M{Q} ∧ {P ′}M{Q′}) ⇒ {P ∧ P ′}M{Q ∧Q′}
The omission of this rule is crucial, since our parametricity interpretation does not validate
the rule. We discuss the conjunction rule further in Section 10.

Example 3.1. Recall the counter example from the introduction and consider the following
simple client

let i=new in
(
i.0 := 5; init(i); inc; read

)
,

7

Proof Rules for Hoare Triples

(∀i.{P}M{Q}) ⇒ {∃i. P}M{∃i. Q} (where i 6∈ fv(M))
({P}M{Q} ∧ {P ′}M{Q′}) ⇒ {P ∨ P ′}M{Q ∨Q′}

{P ∧ E=F}M{Q} ∧ {P ∧ E 6=F}N{Q} ⇒ {P}if (E=F) thenM elseN{Q}
{P}M{P0} ∧ {P0}N{Q} ⇒ {P}M ;N{Q}
(∀i. {P ∗ i 7→ 0, 0}M{Q}) ⇒ {P}let i=new in M{Q} (where i6∈fv(P,Q))

(∀i. {P ∗ E 7→ i, E1}M{Q}) ⇒ {∃i. P ∗ E 7→ i, E1}let i=E.0 in M{Q}
(where i6∈fv(E,Q))

{E 7→ -}free(E){emp}
{E 7→ -, E1}E.0 := F{E 7→ F,E1}

[[P]]ρ ⊆ [[P ′]]ρ and [[Q′]]ρ ⊆ [[Q]]ρ for all ρ ∈ [[∆]]
∆ | Γ ` {P ′}M{Q′} ⇒ {P}M{Q}

Proof Rules for Invariant Extension −⊗ P

ϕ ⇒ ϕ⊗ P {P}M{P ′} ⊗Q ⇔ {P ∗Q}M{P ′ ∗Q}
(E = F)⊗Q ⇔ E = F (M = N)⊗Q ⇔ (M = N)
(ϕ⊗ P)⊗Q ⇔ ϕ⊗ (P ∗Q) (ϕ⊕ ψ)⊗ P ⇔ (ϕ⊗ P)⊕ (ψ ⊗ P)

(where ⊕ ∈ {⇒,∧,∨})
(κx : τ. ϕ)⊗ P ⇔ κx : τ. ϕ⊗ P (κi. ϕ)⊗ P ⇔ κi. ϕ⊗ P

(where κ ∈ {∀,∃}) (where κ ∈ {∀,∃} and i 6∈ fv(P))

Rule for Fixed-Point Induction

C ::= [] |λi.C |C E |λx : τ.C |CM | fixC |C;M γ ::= {P}C{Q} | γ∧γ | ∀x : τ.γ | ∀i.γ
(∀x. γ(x) ⇒ γ(M x)) ⇒ γ(fix M)

where γ(N) is a capture-avoiding insertion of N into the hole [−] in γ.

Figure 3: Sample Proof Rules

whose body consists of inc; read. The client initializes the value of the counter to 5, increases
the counter, and reads the value of the counter.

In our logic, we can prove that the body of the client satisfies:

∆ | Γ ` ϕ ⇒ {g 7→ -}inc; read{g 7→ -}
where ∆ is a set of stack variables containing g and Γ, ϕ are defined by

Γ
def
= {inc : com, read : com}, ϕ

def
= {emp}inc{emp} ∧ {g 7→ -}read{g 7→ -}.

Note that cell i, which is transferred to the counter by init(i), does not appear in any
assertion of the specification for the client’s body. This implies, correctly, that the client
does not dereference the transferred cell i, after calling init(i).

8

The formal proof of the specification of the body uses the first-order frame rule, and it
is given below:

∆ | Γ ` ϕ⇒ {emp}inc{emp} 1

∆ | Γ ` ϕ⇒ ({emp}inc{emp} ⊗ (g 7→ -))
2

∆ | Γ ` ϕ⇒ {emp ∗ g 7→ -}inc{emp ∗ g 7→ -} 3

∆ | Γ ` ϕ⇒ {g 7→ -}inc{g 7→ -} 4
∆ | Γ ` ϕ⇒ {g 7→ -}read{g 7→ -} 5

∆ | Γ ` ϕ⇒ {g 7→ -}inc; read{g 7→ -} 6

The interesting parts of the proof are steps 2, 3, where we use rules for invariant extensions,
in order to add the frame axiom g 7→ - into the pre and post conditions of a triple. Note
that the addition of this frame axiom starts with a generalized frame rule ϕ⇒ ϕ⊗ P , and
continues with the rule that moves P inside ϕ. The remaining steps 1, 5, 4, 6 are instances
of usual rules for first-order intuitionistic logic or Hoare logic, such as the elimination rule
for conjunction and the rule of Consequence.

4. Semantics of Programming Language

Let Loc be a countably infinite set of locations. The programming language is inter-
preted in the category of FM-cpos on Loc.

We remind the reader of the basics of FM domain theory. Call a bijection π on Loc a
permutation when π(l) 6= l only for finitely many l, and let perm be the set of all permu-
tations. An FM-set is a pair of a set A and a function · of type perm × A → A, such that
(1) id · a = a and π · (π′ · a) = (π ◦ π′) · a, and (2) every a ∈ A is supported by some finite
subset L of Loc, i.e.,

∀π ∈ perm. (∀l ∈ L. π(l) = l) =⇒ π · a = a.

It is known that every element a in an FM-set A has a smallest set L that supports a. This
smallest set is denoted supp(a). An FM function f from an FM-set A to an FM-set B is a
function from A to B such that f(π · a) = π · (f(a)) for all a, π.

An FM-poset is an FM-set A with a partial order v on A such that a v b =⇒ π·a v π·b
for all π, a, b. We say that a (ω-)chain {ai}i in FM-poset A is finitely supported iff there is
a finite subset L of Loc that supports all elements in the chain. Finally, an FM-cpo is an
FM-poset (A,v) for which every finitely-supported chain {ai}i has a least upper bound,
and an FM continuous function f from an FM-cpo A to an FM-cpo B is an FM function
from A to B that preserves the least upper bounds of all finitely supported chains.

Types are interpreted as pointed FM-cpos, using the categorical structure of the cate-
gory of FM-cpos, see Figure 4. In the figure, we use the FM-cpo Val of references defined
by:

Val
def
= Loc + Int + {default}

where π ·v def
= if (v 6∈ Loc) then v else π(v) and default denotes a default value used for type-

incorrect expressions, such as the addition of two locations. The only nonstandard part is
the semantics of the command type com, which we define in the continuation passing style
following [19, 4]:

O
def
= {normal , err}⊥ (with π · o = o) Heap

def
= Loc ⇀fin Val ×Val

Cont
def
= (Heap → O) [[com]]

def
= (Heap × Cont → O).

9

Val
def
= Loc + Int + {default} O

def
= {normal , err}⊥

Heap
def
= Loc ⇀fin Val ×Val Cont

def
= Heap → O

[[val → τ]]
def
= Val → [[τ]] [[τ → τ ′]]

def
= [[τ]] → [[τ ′]]

[[com]]
def
= Heap × Cont → O

[[∆]]
def
=

∏
i∈∆ Val [[Γ]]

def
=

∏
x : τ∈Γ[[τ]].

Figure 4: Interpretation of Types and Typing Contexts

[[∆ ` E]] : [[∆]] → Val

[[∆, i ` i]]ρ
def
= ρ(i) [[∆ ` 0]]ρ

def
= 0

[[∆ ` E1 + E2]]ρ
def
= if ([[E1]]ρ, [[E2]]ρ ∈ Int) then ([[E1]]ρ + [[E2]]ρ) else default

[[∆ ` E1 − E2]]ρ
def
= if ([[E1]]ρ, [[E2]]ρ ∈ Int) then ([[E1]]ρ − [[E2]]ρ) else default

Figure 5: Interpretation of Expressions

Here A×B and A→ B are cartesian product and exponential in the category of FM-cpos.
And A ⇀fin B is the FM-cpo of the finite partial functions from A to B whose order and
permutation action are defined below:

(1) f v g
def⇐⇒ dom(f) = dom(g) and f(a) v g(a) for all a ∈ dom(f),

(2) (π · f)(a)
def
= if (a ∈ π(dom(f))) then (π · ((f ◦ π−1)(a))) else undefined.

The first FM-cpo O specifies all possible observations, which are normal termination
normal , erroneous termination err or divergence ⊥. The next FM-cpo Heap denotes the
set of heaps. It formalizes that a heap contains only finitely many allocated cells and each
cell in the heap has two fields. The third FM-cpo Cont represents the set of continuations
that consume heaps. Finally, [[com]] is the set of cps-style commands. Those commands
take a current heap h and a continuation k, and compute an observation in O (often by
computing a final heap h′, and calling the given continuation k with h′).

Note that Heap has the usual heap disjointness predicate h#h′, which denotes the
disjointness of dom(h) and dom(h′), and the usual partial heap combining operator •, which
takes the union of (the graphs of) two disjoint heaps. The # predicate and • operator fit well
with FM domain theory, because they preserve all permutations: h#h′ ⇐⇒ (π ·h)#(π ·h′)
and π · (h • h′) = (π · h) • (π · h′).

The semantics of typing contexts ∆ and Γ is given by cartesian products: [[∆]]
def
=∏

i∈∆ Val and [[Γ]]
def
=

∏
x : τ∈Γ[[τ]]. The products here are taken over finite families, so they

give well-defined FM-cpos.3 We will use symbols ρ and η to denote environments in [[∆]]
and [[Γ]], respectively.

The semantics of expressions and terms is shown in Figures 5 and 6. It is standard,
except for the case of allocation, where we make use of the underlying FM domain theory:
The interpretation picks a location that is fresh with respect to currently known values

3An infinite product of FM-cpos is not necessarily an FM-cpo.

10

[[∆ |Γ `M : τ]] : [[∆]]× [[Γ]] → [[τ]]

[[∆ |Γ, x : τ ` x : τ]]ρ,η
def
= η(x)

[[∆ |Γ ` λi.M : val → τ]]ρ,η
def
= λv : Val . [[∆, i |Γ `M : τ]]ρ[i→v],η

[[∆ |Γ `M E : τ]]ρ,η
def
= ([[∆ |Γ `M : val → τ]]ρ,η) [[E]]ρ

[[∆ |Γ ` λx : τ ′.M : τ ′ → τ]]ρ,η
def
= λm : [[τ ′]]. [[∆ |Γ, x : τ ′ `M : τ]]ρ,η[x→m]

[[∆ |Γ `M N : τ]]ρ,η
def
= ([[∆ |Γ `M : τ ′ → τ]]ρ,η) [[∆ |Γ ` N : τ ′]]ρ,η

[[∆ |Γ ` fix M : τ]]ρ,η
def
= leastfix [[∆ |Γ `M : τ → τ]]ρ,η

[[∆ |Γ ` if (E=F) thenM elseN : com]]ρ,η
def
= if [[E]]ρ=[[F]]ρ then [[∆ |Γ `M : com]]ρ,η

else [[∆ |Γ ` N : com]]ρ,η

[[∆ |Γ `M ;N : com]]ρ,η(h, k)
def
= let k′ be λh′. [[∆ |Γ ` N : com]]ρ,η(h′, k)

in [[∆ |Γ `M : com]]ρ,η(h, k′)

[[∆ |Γ` let i=new in M : com]]ρ,η(h, k)
def
= [[∆, i |Γ `M : com]]ρ[i→l],η(h • [l→0, 0], k)

(where l ∈ (Loc−supp(h, ρ, η, k)))

[[∆ |Γ` free(E) : com]]ρ,η(h, k)
def
= if [[E]]ρ 6∈dom(h) then err

else (k(h′) for h′ s.t. h′ • [[[E]]ρ→h([[E]]ρ)] = h)

[[∆ |Γ` let i=E.0 in M : com]]ρ,η(h, k)
def
= if [[E]]ρ 6∈dom(h) then err

else let (v, v′) = h([[E]]ρ)
in [[∆, i |Γ `M : com]]ρ[i→v],η(h, k)

[[∆ |Γ ` E.0 := F : com]]ρ,η(h, k)
def
= if [[E]]ρ 6∈dom(h) then err

else (let (v, v′) = h([[E]]ρ) in k(h[[[E]]ρ→([[F]]ρ, v′)]))

Figure 6: Interpretation of Terms

(i.e., supp(h, η, ρ)) as well as those that will be used by the continuation (i.e., supp(k)).
The cps-style interpretation gives us an explicit handle on which locations are used by the
continuation, and the FM domain theory ensures that supp(h, η, ρ, k) is finite (so a new
location l can be chosen) and that the choice of l does not matter, as long as l is not in
supp(h, η, ρ, k). (Formally, one shows by induction that the semantics is well-defined.) We
borrowed this interpretation from Benton and Leperchey [4].

5. Relational Interpretation of Separation Logic

We now present the main result of this paper, a relational interpretation of separation
logic. In this interpretation, a specification means a relation on terms, rather than a set of
terms “satisfying” the specification. This relational reading formalizes the intuitive claim
that proof rules in separation logic ensure parametricity with respect to the heap.

Our interpretation has two important components that ensure parametricity. The first
is a Kripke structureR. The possible worlds ofR are finitely supported binary relations r on
heaps,4 and the accessibility relation is the preorder defined by the separating conjunction

4A relation r is finitely supported iff there is L ⊆fin Loc s.t. for every permutation π, if π(l) = l for all
l ∈ L, then ∀h0, h1. h0[r]h1 ⇐⇒ (π · h0)[r](π · h1).

11

for relations:

h0[r ∗ s]h1
def⇔ there exist splittings n0 •m0 = h0 and n1 •m1 = h1 such that

n0[r]n1 and m0[s]m1,

r v r′
def⇔ there exists s such that r ∗ s = r′.

Intuitively, r v r′ means that r′ is a ∗-extension of r by some s. The Kripke structure R
parameterizes our interpretation, and it guarantees that all the logical connectives behave
parametrically wrt. relations between internal resource invariants.

The second is semantic quadruples, which describe the relationship between two com-
mands. We use the semantic quadruples to interpret Hoare triples relationally. Consider
c0, c1 ∈ [[com]] and r, s ∈ R. For each subset D0 of an FM-cpo D, define eq(D0) to be the
partial identity relation on D that equates only the elements in D0. A semantic quadruple
[r](c0, c1)[s] holds iff

∀r′ ∈ R.∀h0, h1 ∈ Heap.∀k0, k1 ∈ Cont .
(h0[r ∗ r′]h1 ∧ k0[s ∗ r′ → eq(G)]k1) =⇒ (c0(h0, k0)[eq(G)]c1(h1, k1)),

where G is the set O − {err} = {normal ,⊥} of good observations, and where k0[s ∗ r′ →
eq(G)]k1 means that k0, k1 map heaps related in s ∗ r′ into the diagonal of G . The above
condition indirectly expresses that if the input heaps h0, h1 are r ∗ r′-related, then the
output heaps are related by s ∗ r′. Note that the definition quantifies over relations r′ for
new heaps, thus implementing relational parametricity. In Section 7, we show how semantic
quadruples are related to a more direct way of relating two commands and we also show
that the parametricity in the definition of semantic quadruples implies the locality condition
in separation logic [18].

The semantics of the logic is defined by the satisfaction relation |=∆|Γ between [[∆]] ×
[[Γ]]2 ×R and Specs, such that |=∆|Γ satisfies Kripke monotonicity:

(ρ, η0, η1, r |=∆|Γ ϕ) ∧ (r v r′) =⇒ (ρ, η0, η1, r
′ |=∆|Γ ϕ).

One way to understand the satisfaction relation is to assume two machines that execute
the same set of terms. Each of these machines contains a chip that implements a module
with a fixed set of operations. Intuitively, the (ρ, η0, η1, r) parameter of |= specifies the
configurations of those machines: one machine uses (ρ, η0) to bind free stack variables
and identifiers of terms, and the other machine uses (ρ, η1) for the same purpose; and
the internal resources of the built-in modules in those machines are related by r. The
judgment (ρ, η0, η1, r) |=∆|Γ ϕ means that if two machines are configured by (ρ, η0, η1, r),
then the meanings of the terms in two machines are ϕ-related. Note that we allow different
environments for the Γ context only, not for the ∆ context. This is because we are mainly
concerned with parametricity with respect to the heap and only Γ entities, not ∆ entities,
depend on the heap.

Figure 7 shows the detailed interpretation of specifications. In the figure, we make use
of the standard semantics of assertions [18]. We now explain three cases in the definition of
|=.

The first case is implication. Our interpretation of implication exploits the specific
notion of accessibility in R. It is equivalent to the standard Kripke semantics of implication:

for all r′ ∈ R, if r v r′ and (ρ, η0, η1, r
′) |= ϕ, then (ρ, η0, η1, r

′) |= ψ,

because r v r′ iff r′ = r ∗ s for some s.

12

For all environments ρ ∈ [[∆]] and η0, η1 ∈ [[Γ]] and all worlds r ∈ R,

(ρ, η0, η1, r) |= {P}M{Q} def⇐⇒ [eq([[P]]ρ) ∗ r]([[M]]ρ,η0 , [[M]]ρ,η1)[eq([[Q]]ρ) ∗ r]
(ρ, η0, η1, r) |= ϕ⊗ P

def⇐⇒ (ρ, η0, η1, r ∗ eq([[P]]ρ)) |= ϕ

(ρ, η0, η1, r) |= E = F
def⇐⇒ [[E]]ρ = [[F]]ρ

(ρ, η0, η1, r) |= M = N
def⇐⇒ [[M]]ρ,η0 = [[N]]ρ,η0 and [[M]]ρ,η1 = [[N]]ρ,η1

(ρ, η0, η1, r) |= ϕ⇒ ψ
def⇐⇒ for all s ∈ R, if (ρ, η0, η1, r ∗ s) |= ϕ,

then (ρ, η0, η1, r ∗ s) |= ψ

(ρ, η0, η1, r) |= ∀i. ϕ def⇐⇒ for all v ∈ Val , (ρ[i→v], η0, η1, r) |= ϕ

(ρ, η0, η1, r) |= ∃i. ϕ def⇐⇒ there exists v ∈ Val s.t. (ρ[i→v], η0, η1, r) |= ϕ

(ρ, η0, η1, r) |= ∀x : τ. ϕ
def⇐⇒ for all m,n ∈ [[τ]], (ρ, η0[x→m], η1[x→n], r) |= ϕ

(ρ, η0, η1, r) |= ∃x : τ. ϕ
def⇐⇒ there exist m,n ∈ [[τ]] s.t. (ρ, η0[x→m], η1[x→n], r) |= ϕ

(ρ, η0, η1, r) |= ϕ ∧ ψ def⇐⇒ (ρ, η0, η1, r) |= ϕ and (ρ, η0, η1, r) |= ψ

(ρ, η0, η1, r) |= ϕ ∨ ψ def⇐⇒ (ρ, η0, η1, r) |= ϕ or (ρ, η0, η1, r) |= ψ

Figure 7: Relational Interpretation of Separation Logic

The second case is quantification. If a stack variable i is quantified, we consider one
semantic value, but if an identifier x is quantified, we consider two semantic values. This
is again to reflect that in our relational interpretation, we are mainly concerned with heap-
dependent entities. Thus, we only read quantifiers for heap-dependent entities x relationally.

The last case is invariant extension ϕ ⊗ P . Mathematically, it says that if we extend
the r parameter by the partial equality for predicate P , specification ϕ holds. Intuitively,
this means that some heap cells not appearing in a specification ϕ satisfy the invariant P .

A specification ∆ | Γ ` ϕ is valid iff (ρ, η0, η1, r) |= ϕ holds for all (ρ, η0, η1, r). A proof
rule is sound when it is a valid axiom or an inference rule that concludes a valid specification
from valid premises.

Lemma 5.1. The axioms for ⊗ are sound.

Proof. All the axioms for ⊗ have the form ϕ⇒ ψ or ϕ⇔ ψ. When proving those axioms,
we use the fact that ϕ⇒ ψ is valid if and only if (ρ, η0, η1, r) |= ϕ implies (ρ, η0, η1, r) |= ψ
for all (ρ, η0, η1, r).

First, consider the generalized frame rule ϕ ⇒ ϕ ⊗ P . Suppose that (ρ, η0, η1, r) |= ϕ.
Then, by Kripke monotonicity, (ρ, η0, η1, r ∗ eq([[P]]ρ)) |= ϕ. Thus, (ρ, η0, η1, r) |= ϕ⊗ P .

Second, consider the distribution rule for triples. We prove the validity of this rule as
follows:

(ρ, η0, η1, r) |= {P}M{Q} ⊗ P0

⇐⇒ (ρ, η0, η1, r ∗ eq([[P0]]ρ)) |= {P}M{Q} (by the semantics of ⊗P).
⇐⇒ [eq([[P]]ρ) ∗ eq([[P0]]ρ) ∗ r]([[M]]ρ,η0 , [[M]]ρ,η1)[eq([[Q]]ρ) ∗ eq([[P0]]ρ) ∗ r]
⇐⇒ [eq([[P ∗ P0]]ρ) ∗ r]([[M]]ρ,η0 , [[M]]ρ,η1)[eq([[Q ∗ P0]]ρ) ∗ r]
⇐⇒ (ρ, η0, η1, r) |= {P ∗ P0}M{Q ∗ P0} (by the semantics of triples).

The second equivalence is by the semantics of triples, and the third equivalence holds
because eq maps ∗ for predicates to ∗ for relations.

13

Third, we prove the soundness of the distribution rules for equality. Note that the
semantics of E = F and M = N is independent of the heap relation r in (ρ, η0, η1, r). Thus,
once we fix the ρ, η0, η1 components, either E = F and M = N hold for all r, or E = F
and M = N hold for no r. Let ϕ be E = F or M = N . From the property of ϕ that we
have just pointed out, it follows that

(ρ, η0, η1, r) |= ϕ ⇐⇒ (ρ, η0, η1, r ∗ eq([[P]]ρ)) |= ϕ ⇐⇒ (ρ, η0, η1, r) |= ϕ⊗ P.

Finally, consider all the remaining rules, which are distribution rules for logical connec-
tives. All cases can be proved mostly by unrolling and rolling the definition of |=. Here we
explain two cases. The first case is the distribution rule for existential quantification of i.
We prove that this rule is sound below:

(ρ, η0, η1, r) |= ∃i. ϕ⊗ P
⇐⇒ there exists v ∈ val s.t. (ρ[i→v], η0, η1, r) |= ϕ⊗ P
⇐⇒ there exists v ∈ val s.t. (ρ[i→v], η0, η1, r ∗ eq([[P]]ρ[i→v])) |= ϕ
⇐⇒ there exists v ∈ val s.t. (ρ[i→v], η0, η1, r ∗ eq([[P]]ρ)) |= ϕ (since i 6∈ fv(P))
⇐⇒ (ρ, η0, η1, r ∗ eq([[P]]ρ)) |= ∃i : δ. ϕ
⇐⇒ (ρ, η0, η1, r) |= (∃i : δ. ϕ)⊗ P.

All the equivalences except the third follow by rolling/unrolling the definition of |=. The
next case is the rule for implication, which we prove sound as follows:

(ρ, η0, η1, r) |= (ϕ⇒ ψ)⊗ P
⇐⇒ (ρ, η0, η1, r ∗ eq([[P]]ρ)) |= ϕ⇒ ψ
⇐⇒ ∀s.

(
(ρ, η0, η1, r ∗ eq([[P]]ρ) ∗ s) |= ϕ

)
=⇒

(
(ρ, η0, η1, r ∗ eq([[P]]ρ) ∗ s) |= ψ

)
⇐⇒ ∀s.

(
(ρ, η0, η1, r ∗ s) |= ϕ⊗ P

)
=⇒

(
(ρ, η0, η1, r ∗ s) |= ψ ⊗ P

)
⇐⇒ (ρ, η0, η1, r) |= (ϕ⊗ P) ⇒ (ψ ⊗ P).

Again, all the equivalences are obtained by rolling/unrolling the definition of |=.

Theorem 5.2. All the proof rules are sound.

Proof. The interpretation of all the logical connectives is standard, so that the semantics
validates all the usual rules from first-order intuitionistic logic with equality. Moreover, by
Lemma 5.1, all the rules about ⊗ are sound as well. Thus, it remains to show that the rules
about Hoare triples and fixed point induction are sound.

Note that most of the rules about triples and fixed point induction have the form ϕ⇒ ψ.
When proving the soundness of those rules, we use the fact that ϕ⇒ ψ is valid if and only
if (ρ, η0, η1, r) |= ϕ implies (ρ, η0, η1, r) |= ψ for all (ρ, η0, η1, r).

The first case is the rule for memory allocation:

(∀i.{P ∗ i 7→ 0, 0}M{Q}) ⇒ {P}let i=new in M{Q}.
Consider (ρ, η0, η1, r) satisfying the assumption of the above axiom. We need to prove that
(ρ, η0, η1, r) also satisfies the conclusion, i.e.,

[eq([[P]]ρ) ∗ r]([[let i=new in M]]ρ,η0 , [[let i=new in M]]ρ,η1)[eq([[Q]]ρ) ∗ r].
Choose arbitrary h0, h1 ∈ Heap, k0, k1 ∈ Cont , and s ∈ R such that

h0[eq([[P]]ρ) ∗ r ∗ s]h1 and k0[(eq([[Q]]ρ) ∗ r ∗ s) → eq(G)]k1.

Pick l ∈ Loc − supp(h0, h1, ρ, η0, η1, k0, k1). Then, the FM domain theory ensures that for
j = 0, 1,

[[let i=new in M]]ρ,ηj (hj , kj) = [[M]]ρ[i→l],ηj
(hj • [l→0, 0], kj). (5.1)

14

Let ρ′ be ρ[i→l], and let h′j be hj•[l→0, 0]. We prove the required relationship for let i=new in M
as follows:

h0

[
eq([[P]]ρ) ∗ r ∗ s

]
h1 ∧ k0

[
(eq([[Q]]ρ) ∗ r ∗ s) → eq(G)

]
k1

=⇒ h0

[
eq([[P]]ρ′) ∗ r ∗ s

]
h1 ∧ k0

[
(eq([[Q]]ρ′) ∗ r ∗ s) → eq(G)

]
k1

=⇒ h′0
[
eq([[P ∗ i 7→ 0, 0]]ρ′) ∗ r ∗ s

]
h′1 ∧ k0

[
(eq([[Q]]ρ′) ∗ r ∗ s) → eq(G)

]
k1

=⇒ [[M]]ρ′,η0
(h′0, k0)

[
eq(G)

]
[[M]]ρ′,η1

(h′1, k1)
=⇒ [[let i=new in M]]ρ,η0(h0, k0)

[
eq(G)

]
[[let i=new in M]]ρ,η1(h1, k1).

The first implication holds, because ρ and ρ′ are different only for i but i 6∈ fv(P,Q). The
second implication follows from the definition of h′j , and the third implication from the
assumption that (ρ, η0, η1, r) |= ∀i. {P ∗ i 7→ 0, 0}M{Q}. Finally, the last implication holds,
because of the equation 5.1.

The second case is the axiom for lookup

(∀i.{P ∗ E 7→ i, E1}M{Q}) ⇒ {∃i.P ∗ E 7→ i, E1}let i=E.0 in M{Q}.
Consider (ρ, η0, η1, r) that satisfies (∀i.{P ∗ E 7→ i, E1}M{Q}), and pick arbitrary h0, h1 ∈
Heap, k0, k1 ∈ Cont and s ∈ R such that

h0

[
eq([[∃i.P ∗ E 7→ i, E1]]ρ) ∗ r ∗ s

]
h1 ∧ k0

[
eq([[Q]]ρ) ∗ r ∗ s→ eq(G)

]
k1.

Let l be [[E]]ρ (which is well-defined since i 6∈ fv(E)). By the first conjunct above, l is in
dom(h0) ∩ dom(h1), and there exist v and ρ′ such that

v=proj0(h0(l))=proj0(h1(l)), ρ′=ρ[i→v], and h0

[
eq([[P ∗ E 7→ i, E1]]ρ′) ∗ r ∗ s

]
h1.

Here proj0 is the projection of the first component of pairs. The two equalities above about
v and ρ′ imply that for j = 0, 1,

[[let i=E.0 in M]]ρ,ηj (hj , kj) = [[M]]ρ′,ηj
(hj , kj). (5.2)

We derive the desired relationship about let i=E.0 in M as follows:

k0

[
eq([[Q]]ρ) ∗ r ∗ s→ eq(G)

]
k1 ∧ h0

[
eq([[P ∗ E 7→ i, E1]]ρ′) ∗ r ∗ s

]
h1

=⇒ k0

[
eq([[Q]]ρ′) ∗ r ∗ s→ eq(G)

]
k1 ∧ h0

[
eq([[P ∗ E 7→ i, E1]]ρ′) ∗ r ∗ s

]
h1

=⇒ [[M]]ρ′,η0(h0, k0)
[
eq(G)

]
[[M]]ρ′,η1(h1, k1)

=⇒ [[let i=E.0 in M]]ρ,η0(h0, k0)
[
eq(G)

]
[[let i=E.0 in M]]ρ,η1(h1, k1).

The first implication holds because i 6∈ fv(Q), the second follows from the fact that (ρ, η0, η1, r)
satisfies the assumption of this axiom, and the last implication follows from the equation
5.2.

The third case is the axiom {E 7→ -}free(E){emp}. Choose arbitrary (ρ, η0, η1, r),
h0, h1 ∈ Heap, k0, k1 ∈ Cont , and s ∈ R, such that

h0

[
eq([[E 7→ -]]ρ) ∗ r ∗ s

]
h1 ∧ k0

[
eq([[emp]]ρ) ∗ r ∗ s→ eq(G)

]
k1.

By the first conjunct above, there are splittings m0 • n0 = h0 and m1 • n1 = h1 such
that m0[eq([[E 7→ -]])]m1 and n0[r ∗ s]n1. Note that the relationship between m0 and m1

implies that [[free(E)]]ρ,ηj (hj , kj) = kj(nj) for j = 0, 1. Thus, it is sufficient to show that
k0(n0)[eq(G)]k1(n1). Note that n0 and n1 are already related by r ∗ s, and k0 and k1 by
eq([[emp]]ρ) ∗ r ∗ s → eq(G). The conclusion follows from these two relationships, because
eq([[emp]]ρ) ∗ r ∗ s = r ∗ s.

The fourth case is the axiom {E 7→ -, E1}E.0 := F{E 7→ F,E1}. Choose arbitrary
(ρ, η0, η1, r), h0, h1 ∈ Heap, k0, k1 ∈ Cont , and s ∈ R, such that

h0

[
eq([[E 7→ -, E1]]ρ) ∗ r ∗ s

]
h1 ∧ k0

[
eq([[E 7→ F,E1]]ρ) ∗ r ∗ s→ eq(G)

]
k1.

15

Because of the first conjunct, there are splittings m0 • n0 = h0 and m1 • n1 = h1 such that
m0[eq([[E 7→ -, E1]]ρ)]m1 and n0[r ∗ s]n1. Let m′ be the heap [[[E]]ρ→([[F]]ρ, [[E1]]ρ)]. Then,
we have the following two facts:

(1) (m′ • n0)
[
eq([[E 7→ F,E1]]ρ) ∗ r ∗ s

]
(m′ • n1), and

(2) for all j = 0, 1, [[E.0 := F]]ρ,ηj (hj , kj) = kj(m′ • nj).
By the first fact, k0(m′ • n0)[eq(G)]k1(m′ • n1). Now, the second fact gives the required
[[E.0 := F]]ρ,η0(h0, k0)

[
eq(G)

]
[[E.0 := F]]ρ,η1(h1, k1).

The fifth case is the rule of Consequence. Suppose that [[P]]ρ ⊆ [[P ′]]ρ and [[Q′]]ρ ⊆ [[Q]]ρ,
and (ρ, η0, η1, r) |= {P ′}M{Q′}. Consider h0, h1 ∈ Heap, k0, k1 ∈ Cont , and s ∈ R, such
that

h0[eq([[P]]ρ) ∗ r ∗ s]h1 ∧ k0[eq([[Q]]ρ) ∗ r ∗ s→ eq(G)]k1.

Since eq is monotone and ∗ preserves the subset order for relations,

eq([[P]]ρ) ∗ r ∗ s ⊆ eq([[P ′]]ρ) ∗ r ∗ s, and
[eq([[Q]]ρ) ∗ r ∗ s→ eq(G)] ⊆ [eq([[Q′]]ρ) ∗ r ∗ s→ eq(G)].

Thus, h0[eq([[P ′]]ρ) ∗ r ∗ s]h1 and k0[eq([[Q′]]ρ) ∗ r ∗ s → eq(G)]k1. These two relation-
ships imply the required [[M]]ρ,η0(h0, k0)

[
eq(G)

]
[[M]]ρ,η1(h1, k1), because (ρ, η0, η1, r) satis-

fies {P ′}M{Q′}.
The sixth case is the rule for introducing existential quantification for assertions:

(∀i.{P}M{Q}) ⇒ {∃i.P}M{∃i.Q}.
Consider (ρ, η0, η1, r) that satisfies ∀i.{P}M{Q}. We should show that (ρ, η0, η1, r) satisfies
{∃i.P}M{∃i.Q}, i.e.,

[eq([[∃i.P]]ρ) ∗ r]([[M]]ρ,η0 , [[M]]ρ,η1)[eq([[∃i.Q]]ρ) ∗ r].
Pick arbitrary h0, h1 ∈ Heap, k0, k1 ∈ Cont , and s ∈ R such that

h0[eq([[∃i.P]]ρ) ∗ r ∗ s]h1 and k0[(eq([[∃i.Q]]ρ) ∗ r ∗ s) → eq(G)]k1.

By the definition of eq, [[∃i.P]] and [[∃i.Q]], these two conjuncts imply the existence of v and
ρ′ such that

ρ′ = ρ[i→v], h0[eq([[P]]ρ′) ∗ r ∗ s]h1, and k0[(eq([[Q]]ρ′) ∗ r ∗ s) → eq(G)]k1.

From what we have just shown, we derive the conclusion as follows:

(h0[eq([[P]]ρ′) ∗ r ∗ s]h1) ∧ (k0[(eq([[Q]]ρ′) ∗ r ∗ s) → eq(G)]k1)
=⇒ [[M]]ρ′,η0(h0, k0)[eq(G)][[M]]ρ′,η1(h1, k1) (since (ρ, η0, η1, r) |= ∀i.{P}M{Q})
=⇒ [[M]]ρ,η0(h0, k0)[eq(G)][[M]]ρ,η1(h1, k1) (since i 6∈ fv(M)).

The seventh case is the disjunction rule. Suppose that (ρ, η0, η1, r) satisfies triples
{P}M{Q} and {P ′}M{Q′}. Consider h0, h1 ∈ Heap, s ∈ R, and k0, k1 ∈ Cont , such that

h0

[
eq([[P ∨ P ′]]ρ) ∗ r ∗ s

]
h1 ∧ k0

[
eq([[Q ∨Q′]]ρ) ∗ r ∗ s→ eq(G)

]
k1.

By the definition of eq([[P ∨ P ′]]ρ), heaps h0 and h1 are related by eq([[P]]ρ) ∗ r ∗ s or
eq([[P ′]]ρ) ∗ r ∗ s. Without loss of generality, we assume that

h0

[
eq([[P]]ρ) ∗ r ∗ s

]
h1. (5.3)

Since eq is monotone and ∗ preserves the subset order for relations, relation eq([[Q∨Q′]]ρ) ∗
r ∗ s→ eq(G) is a subset of eq([[Q]]ρ) ∗ r ∗ s→ eq(G), and so,

k0

[
eq([[Q]]ρ) ∗ r ∗ s→ eq(G)

]
k1. (5.4)

16

By the supposition, (ρ, η0, η1, r) satisfies {P}M{Q}. Thus, the relationships 5.3 and 5.4
imply the required

[[M]]ρ,η0(h0, k0)
[
eq(G)

]
[[M]]ρ,η1(h1, k1).

The eighth case is the rule for conditional statement. Suppose that (ρ, η0, η1, r) satisfies
{P ∧ E = F}M{Q} and {P ∧ E 6= F}N{Q}. Consider h0, h1 ∈ Heap, s ∈ R, and k0, k1 ∈
Cont , such that

h0

[
eq([[P]]ρ) ∗ r ∗ s

]
h1 ∧ k0

[
eq([[Q]]ρ) ∗ r ∗ s→ eq(G)

]
k1.

We do the case analysis depending on whether [[E]]ρ = [[F]]ρ. Suppose that [[E]]ρ = [[F]]ρ. In
this case, h0

[
eq([[P ∧ E = F]]ρ) ∗ r ∗ s

]
h1, and

[[if (E=F) thenM elseN]]ρ,ηj (hj , kj) = [[M]]ρ,ηj (hj , kj) for all j = 0, 1. (5.5)

Using these facts, we derive the conclusion as follows:

h0

[
eq([[P ∧ E = F]]ρ) ∗ r ∗ s

]
h1 ∧ k0

[
eq([[Q]]ρ) ∗ r ∗ s→ eq(G)

]
k1

=⇒ [[M]]ρ,η0(h0, k0)
[
eq(G)

]
[[M]]ρ,η1(h1, k1)

=⇒ [[if (E=F) thenM elseN]]ρ,η0(h0, k0)
[
eq(G)

]
[[if (E=F) thenM elseN]]ρ,η1(h1, k1).

The first implication follows from our assumption that {P ∧ E = F}M{Q} is satisfied by
(ρ, η0, η1, r), and the second follows from the equation 5.5 above. The other case [[E]]ρ 6= [[F]]ρ
can be proved similarly, so it is omitted here.

The ninth case is the rule for sequential composition. Suppose that (ρ, η0, η1, r) satisfies
{P}M{P0} and {P0}N{Q}. Consider h0, h1 ∈ Heap, s ∈ R, and k0, k1 ∈ Cont , such that

h0

[
eq([[P]]ρ) ∗ r ∗ s

]
h1 ∧ k0

[
eq([[Q]]ρ) ∗ r ∗ s→ eq(G)

]
k1.

Let k′j be λh′j .[[N]]ρ,ηj (h
′
j , kj). Since (ρ, η0, η1, r) |= {P0}N{Q},

k′0 = λh′0.[[N]]ρ,η0(h
′
0, k0)

[
eq([[P0]]ρ) ∗ r ∗ s→ eq(G)

]
λh′1.[[N]]ρ,η1(h

′
1, k1) = k′1.

Since (ρ, η0, η1, r) |= {P}M{Q0}, the above relationship between k′0 and k′1 implies

[[M]]ρ,η0(h0, k
′
0)

[
eq(G)

]
[[M]]ρ,η1(h1, k

′
1).

This gives the conclusion, because [[M ;N]]ρ,ηj (hj , kj) is equal to [[M]]ρ,ηj (hj , k
′
j), for all

j = 0, 1.
The last case is the rule for fixed point induction. We note two properties of C and γ.
(1) For all ρ, η, if η(x) = ⊥, then [[C(x)]]ρ,η = ⊥.
(2) For all (ρ, η0, η1, r), the following set is admissible:

{(m0,m1) | (ρ, η0[x→m0], η1[x→m1], r) |= γ(x)}.
These properties can be proved by a straightforward induction on the structure of C and
γ. The soundness of the induction rule follows from the second property.

17

6. A General Construction

Our Kripke semantics of specifications presented in the previous section is in fact an
instance of a general, abstract construction that allows one to interpret a specification logic
with higher-order frame rules. In this section, we describe the general construction. The
remaining part of the paper can be read and understood without reading this section, in
which we assume some basic knowledge of categorical logic (see, e.g., [5] for a quick recap).

Before explaining our construction, we remind the reader of FM-cousins of monoid,
preorder, Heyting algebra and complete Heyting algebra. For FM-sets A,B,C, we call an
element a0 ∈ A, a function f : A× B → C or a relation r ⊆ A× B equivariant when they
preserve the permutation action in the following sense: for all a ∈ A, b ∈ B and π ∈ perm,

(π · a0 = a0) ∧ (π · (f(a, b)) = f(π · a, π · b)) ∧ ((a, b) ∈ r ⇐⇒ (π · a, π · b) ∈ r).
An FM-monoid is an FM-set M with monoid operations (I ∈ M, ∗ : M × M → M)
such that I and ∗ are equivariant, and an FM-preorder is an FM-set A with an equivariant
preorder v on A. An FM-Heyting algebra is an FM-poset (A,v) with operations

⊥,> ∈ A, and t,u,⇒: A×A→ A,

such that all of those operations are equivariant and (A,v,⊥,>,t,u) forms a Heyting alge-
bra. Finally, an FM-complete Heyting algebra is an FM-Heyting algebra (A,v,⊥,>,t,u,
⇒) such that every finitely supported subset of A has a least upper bound and a greatest
lower bound.

Our construction starts with an FM-monoid (M, I, ∗) in which ∗ is commutative. The
FM-monoid (M, I, ∗) generalizes the set of finitely supported binary relations r on heaps,
where the monoid unit I is the singleton relation ([], []) of two empty heaps and the monoid
operator ∗ is the separating conjunction for relations. Intuitively, each m in M represents
information about the internal resource invariants of modules, and the ∗ operator of M is
used to combine two pieces of information that describe disjoint resources. Throughout this
section, we assume given a fixed FM-monoid (M, I, ∗) with ∗ commutative, and describe a
construction over this FM-monoid.

First, we define a preorder v for M :

m v n ⇐⇒ ∃m′.m ∗m′ = n.

Intuitively, m v n means that n is an extension of m with information about additional
disjoint resources.

Lemma 6.1. (M,v) is an FM-preorder.

It is well known that Kripke models of intuitionistic propositional logic are obtained by
taking the upwards closed subsets of a preorder and that the upwards closed subsets form
a complete Heyting algebra. Thus, our next step is to form such a model over M , but in
the world of FM-sets. Hence we construct an FM-complete Heyting algebra L(M) whose
underlying set L consists of finitely supported upwards closed subsets of M , and which is
ordered by subset inclusion, denoted vL. The Heyting operations for L are defined in the
standard way: when M0,M1 ∈ L(M),

⊥ def
= ∅ > def

= M

M0 tM1
def
= M0 ∪M1 M0 uM1

def
= M0 ∩M1

M0 ⇒M1
def
= {m | ∀m′. (m v m′ ∧m′ ∈M0) =⇒ m′ ∈M1}.

18

Lemma 6.2. (L(M),vL,⊥,>,t,u,⇒) is an FM-complete Heyting algebra.

The lattice L(M) has two interesting properties, which we used in our semantics of
separation logic. The first property is that the ⇒ operator involves quantification over
information about disjoint resources:

Lemma 6.3. An element m belongs to M0 ⇒M1 if and only if

∀m′. m ∗m′ ∈M0 =⇒ m ∗m′ ∈M1.

The second property is about the operator that frames in information about disjoint
resources. We define a binary operator −⊗− : L(M)×M → L(M) by

M0 ⊗m
def
= {m′ | m′ ∗m ∈M0}.

Lemma 6.4. The function −⊗− is well-defined, and it satisfies the following three prop-
erties:

(1) − ⊗m commutes with ⇒ and all the existing least upper bounds or greatest lower
bounds of subsets of L(M).

(2) (M0 ⊗m)⊗m′ = M0 ⊗ (m ∗m′) for all M0 ∈ L(M) and m,m′ ∈M .
(3) M0 is a subset of M0 ⊗m, for every M0 ∈ L(M).

In our semantics of separation logic, we used this ⊗ operator to interpret invariant ex-
tension ϕ⊗P , and designed its proof rules, based on the general properties of ⊗ summarized
in the above lemma.

Finally, we construct a hyperdoctrine FMSet(−, L(M)), which can be used to interpret
the specification logic, including quantifiers and invariant extensions (i.e., ϕ⊗ P).

Lemma 6.5. FMSet(−, L(M)) satisfies all the axioms for hyperdoctrines, thereby allowing
the interpretation of intuitionistic predicate logic.

For each m ∈M , consider the fibred endo-functor

FMSet(−,−⊗m) : FMSet(−, L(M)) → FMSet(−, L(M)),

which maps a predicate ϕ over X, that is, an equivariant function ϕ from X to L(M), to
(−⊗m) ◦ ϕ.

Lemma 6.6. The fibred functor FMSet(−,−⊗m) preserves ⊥,>,t,u,⇒ in each fibre and
commutes with quantifiers ∃ and ∀.

In summary, the previous two lemmas provide alternative proofs to large parts of
Lemma 5.1 and Theorem 5.2. In the proof of the latter theorem in the previous section we
omitted the detailed proof of soundness of the rules for predicate logic; it is a consequence
of the above Lemma 6.5. Finally, we remark that the general construction actually gives us
more than we use in the previous section: First, since we have a hyperdoctrine, we in fact
have a model of higher-order specification logic in which one can also model quantification
over specifications. Second, L(M) is in fact not only an FM-complete Heyting algebra but
an FM-complete BI algebra. This means that we can have ∗ and −∗ connectives also for
specifications. We have not yet made use of these additional facts.

19

7. Properties of Semantic Quadruples

In this section, we prove two properties of semantic quadruples. The first clarifies the
connection between our new interpretation of Hoare triples and the standard interpretation,
and the second shows how our cps-style semantic quadruples are related to a more direct
way of relating two commands.

First, we consider the relation between semantic quadruples and Hoare triples. Define
an operator cps that cps-transforms a state transformer semantically:

cps : (Heap → (Heap + {err})⊥) → (Heap × Cont → O)

cps(c)
def
= λ(h, k). if (c(h) 6∈ {⊥, err}) then k(c(h)) else c(h).

Proposition 7.1. For all p, q ⊆ Heap and all c ∈ Heap → (Heap + {err})⊥, the quadruple
[eq(p)](cps(c), cps(c))[eq(q)] holds iff the two conditions below hold:

(1) for every h in p, either c(h) = ⊥ or c(h) ∈ q, hence c(h) cannot be err;
(2) for every h in p and h1 such that h#h1,

(a) if c(h) = ⊥, then c(h • h1) = ⊥,
(b) if c(h) 6= ⊥, then c(h) • h1 is defined and equal to c(h • h1).

Note that the first condition is the usual meaning of Hoare triples, and the second is
the locality condition of commands in separation logic restricted to heaps in p [18]. Since
the locality condition merely expresses the parametricity of commands with respect to new
heaps, the proposition indicates that our interpretation of triples is the usual one enhanced
by an additional parametricity requirement.

Proof of Proposition 7.1. (⇒) Pick an arbitrary heap h in p. Let k be the continuation
defined by

k(h)
def
= if (h ∈ q) then ⊥ else err .

Then, k[eq(q) → eq(G)]k and h[eq(p)]h. By the assumption on the validity of the quadruple,
cps(c)(h, k)[eq(G)]cps(c)(h, k). By the definition of k, this relationship on cps(c) implies that
cps(c)(h, k) = ⊥, which in turn gives

(c(h) = ⊥) ∨ (c(h) ∈ Heap ∧ k(c(h)) = ⊥).

The second disjunct of this disjunction is equivalent to c(h) ∈ q because k(h′) = ⊥ ⇐⇒
h′ ∈ q. So, the disjunction gives the first condition.

For the second condition, consider h, h1 such that h ∈ p and h#h1. Let r be the relation
{([], h1)} on heaps, and define three continuations k0, k1, k2 as follows:

k0(h′)
def
= normal ,

k1(h′)
def
= if (h′ = c(h)) then normal else ⊥,

k2(h′)
def
= if (c(h) ∈ Heap ∧ h′ = c(h) • h1) then normal else ⊥.

By the definition of r and ki, we have that

h[eq(p) ∗ r](h • h1), k0[eq(q) ∗ r → eq(G)]k0, and k1[eq(q) ∗ r → eq(G)]k2.

To see why the third relationship holds, note that if h′1[eq(q) ∗ r]h′2, then h′1 • h1 is defined
and h′2 = h′1 •h1. Thus, h′1 = c(h) holds precisely when c(h) ∈ Heap ∧ h′2 = c(h) •h1 holds.
This implies that k1(h′1) = normal iff k2(h′2) = normal . Now, by the assumption on the
validity of the quadruple, we have that

cps(c)(h, k0)[eq(G)]cps(c)(h • h1, k0) and cps(c)(h, k1)[eq(G)]cps(c)(h • h1, k2).
20

The first conjunct about k0 implies that if c(h) = ⊥, then c(h • h1) = ⊥, and the second
conjunct about k1, k2 implies that if c(h) 6= ⊥, then c(h • h1) = c(h) • h1.

(⇐) Consider a relation r on heaps and pick heaps h1, h2 and continuations k1, k2 such
that

h1[eq(p) ∗ r]h2 and k1[eq(q) ∗ r → eq(G)]k2.

Then, there exist two splittings h′1 • h′′1 = h1 and h′2 • h′′2 = h2 such that h′1 = h′2 ∈ p and
h′′1[r]h

′′
2. If c(h1) = ⊥, then c(h′1) = ⊥ by the condition (2-b) of the assumption, and c(h′2) =

⊥ by the condition (2-a) of the assumption. Thus, in this case, we have cps(c)(h1, k1) =
cps(c)(h2, k2) = ⊥ and cps(c)(h1, k1)[eq(G)]cps(c)(h2, k2), as desired. Otherwise, i.e., if
c(h1) 6= ⊥, then c(h′1) 6= ⊥ by the condition (2-a). Thus, by the condition (2-b), we have
that c(h1) = c(h′1) • h′′1 and c(h2) = c(h′1) • h′′2. Since c(h′1) ∈ q by the condition (1),

c(h1) = c(h′1) • h′′1[eq(q) ∗ r]c(h′1) • h′′2 = c(h2).

This implies cps(c)(h1, k1)[eq(G)]cps(c)(h2, k2), as desired.

Next, we relate our cps-style notion of semantic quadruples to the direct-style alterna-
tive. The notion underlying this relationship is the observation closure, denoted (−)⊥⊥. For
each FM-cpo D and relation r ⊆ D ×D, we define two relations, r⊥ on [D → O] and r⊥⊥

on D, as follows:

k1[r⊥]k2
def⇐⇒ ∀d1, d2 ∈ D. (d1[r]d2 =⇒ k1(d1)[eq(G)]k2(d2)),

d1[r⊥⊥]d2
def⇐⇒ ∀k1, k2 ∈ [D → O]. (k1[r⊥]k2 =⇒ k1(d1)[eq(G)]k2(d2)).

Operator (−)⊥ dualizes a relation on D to one on observations on D, and (−)⊥⊥ closes a
given relation r under observations.

Proposition 7.2. Let r, s be relations in R. Consider functions c1, c2 from Heap to (Heap+
{err})⊥. A quadruple [r](cps(c1), cps(c2))[s] holds, iff

∀(r′, h1, h2). h1[r ∗ r′]h2 =⇒ (c1(h1)=c2(h2)=⊥ ∨ c1(h1)[(s ∗ r′)⊥⊥]c2(h2)).

This proposition shows that our semantic quadruples are close to what one might expect
at first for relating two commands parametrically. The only difference is that our quadruple
always closes the post-relation s ∗ r′ under observations.

Proof of Proposition 7.2. (⇒) Consider r′, h1, h2 such that h1[r ∗ r′]h2. We first show that

c1(h1) = ⊥ ⇐⇒ c2(h2) = ⊥.
Let k be the continuation λh′.normal . Then, k[s ∗ r′ → eq(G)]k. By the assumption on the
quadruple for cps(c1), cps(c2), we have that

cps(c1)(h1, k)[eq(G)]cps(c2)(h2, k).

This relationship implies that c1(h1) = ⊥ ⇐⇒ c2(h2) = ⊥, because ci(hi) = ⊥ ⇐⇒
cps(ci)(hi, k) = ⊥ by the choice of k.

Next, we prove that if c1(h1) 6= ⊥ or c2(h2) 6= ⊥, then c1(h1)[(s ∗ r′)⊥⊥]c2(h2). By what
we have just shown, c1(h1) 6= ⊥ iff c2(h2) 6= ⊥. We will assume that neither c1(h1) nor
c2(h2) is ⊥. Take two continuations k1, k2 such that k1[(s∗r′)⊥]k2, i.e., k1[s∗r′ → eq(G)]k2.
Since the quadruple [r](cps(c1), cps(c2))[s] holds by assumption and h1[r ∗ r′]h2, we have
that

cps(c1)(h1, k1)[eq(G)]cps(c2)(h2, k2).

21

Since both c1(h1) and c2(h2) are different from ⊥, the relationship is equivalent to

k1(c1(h1))[eq(G)]k2(c2(h2)).

We have just shown that c1(h1)[(s ∗ r′)⊥⊥]c2(h2).
(⇐) Pick an arbitrary relation r′, heaps h1, h2 and continuations k1, k2 such that h1[r ∗

r′]h2 and k1[s ∗ r′ → eq(G)]k2 (i.e., k1[(s ∗ r′)⊥]k2.) By the assumption of this if direction,
either c1(h1) = c2(h2) = ⊥ or c1(h1)[(s ∗ r′)⊥⊥]c2(h2). In the first case,

cps(c1)(h1, k1) = ⊥ [eq(G)]⊥ = cps(c2)(h2, k2),

and in the second case, both c1(h1) and c2(h2) are in Heap, so that

cps(c1)(h1, k1) = k1(c1(h1)) [eq(G)] k2(c2(h2)) = cps(c2)(h2, k2).

The conclusion follows from these two relationships.

8. Abstraction Theorem

The abstraction theorem below formalizes that well-specified programs (specified in sep-
aration logic with implicit quantification over internal resource invariants by frame rules)
behave relationally parametrically in internal resource invariants. The easiest way to un-
derstand this intuition may be from the corollary following the theorem.

Some readers might feel that it is too much to call the abstraction theorem a “theorem”
since it really is a trivial corollary of the soundness theorem — but that is just as it should
be: the semantics was defined to achieve that.

Theorem 8.1 (Abstraction Theorem). If ∆ | Γ ` ϕ is provable in the logic, then for all
(ρ, η0, η1, r) ∈ [[∆]]× [[Γ]]2 ×R, we have that (ρ, η0, η1, r) |= ϕ.

Proof. By Theorem 5.2, we get that ∆ | Γ ` ϕ is valid, which is just what the conclusion
expresses.

Corollary 8.2. Suppose that ∆ | x : com ` {P1}x{Q1} ⇒ {P}M{Q} is provable in the
logic. Then for all (ρ, c0, c1, r), if [eq([[P1]]ρ) ∗ r](c0, c1)[eq([[Q1]]ρ) ∗ r] holds, then

[eq([[P]]ρ) ∗ r]([[M]][x→c0], [[M]][x→c1])[eq([[Q]]ρ) ∗ r]
holds as well.

Intuitively, x corresponds to a module with a single operation, and M a client of the
module. This corollary says that if we prove a property of the client M , assuming only
an abstract external specification {P1}x{Q1} of the module, the client cannot tell apart
two different implementations c0, c1 of the module, as long as c0, c1 have identical external
behavior. The four instances of eq in the proposition formalize that the external behaviors of
c0, c1 are identical and that the client M behaves the same externally regardless of whether
it is used with c0 or c1. The relation r is a simulation relation for internal resource invariants
of c0 and c1.

Proof of Corollary 8.2. Define environments η0, η1 and heap sets p, p1, q, q1 as follows:

η0 = [x→c0], η1 = [x→c1], and (p1, q1, p, q) = ([[P1]]ρ, [[Q1]]ρ, [[P]]ρ, [[Q]]ρ).

22

∀j. {∃i. c 7→ i, - ∗ i 7→ -, j} inc0 {∃i. c 7→ i, - ∗ i 7→ -, (j+1)}
∀j. {∃i. c 7→ i, - ∗ i 7→ -, j ∗ g 7→ -}read0{∃i. c 7→ i, - ∗ i 7→ -, j ∗ g 7→ -, j}

inc0 ≡ let i=c.0 in (let j=i.1 in i.1 := j+1)
read0 ≡ let i=c.0 in (let j=i.1 in g.1 := j)

∀j. {∃i. c 7→ i, - ∗ i 7→ -, j} inc1 {∃i. c 7→ i, - ∗ i 7→ -, (j−1)}
∀j. {∃i. c 7→ i, - ∗ i 7→ -, j ∗ g 7→ -}read1{∃i. c 7→ i, - ∗ i 7→ -, j ∗ g 7→ -, (−j)}

inc1 ≡ let i=c.0 in (let j=i.1 in i.1 := j−1)
read1 ≡ let i=c.0 in (let j=i.1 in g.1 := −j)

∆ | Γ ` ({emp}inc{emp} ∧ {g 7→ -}read{g 7→ -}) ⇒ {g 7→ -}inc; read{g 7→ -}
(where ∆ ≡ {g, c} and Γ ≡ {inc : com, read : com})

Figure 8: Two Implementations of a Counter and a Simple Client

By Theorem 8.1, we have, for any r, that (ρ, η0, η1, r) |= {P1}x{Q1} ⇒ {P}M{Q}. From
this, we derive the conclusion of the proposition:

(ρ, η0, η1, r) |= {P1}x{Q1} ⇒ {P}M{Q}
=⇒ (∀s ∈ R. (ρ, η0, η1, r ∗ s) |= {P1}x{Q1} =⇒ (ρ, η0, η1, r ∗ s) |= {P}M{Q})
=⇒ ((ρ, η0, η1, r) |= {P1}x{Q1} =⇒ (ρ, η0, η1, r) |= {P}M{Q})
=⇒ ([eq(p1) ∗ r](c0, c1)[eq(q1) ∗ r] =⇒ [eq(p) ∗ r]([[M]]η0 , [[M]]η1)[eq(q) ∗ r]).

9. Examples

Our first example is the two implementations of a counter in the introduction and the
simple client (inc; read) in Example 3.1. We remind the reader of the implementations and
the specification of the client in Figure 8 (here we use the formally correct 0 and 1 for
the fields named data and next in the introduction for readability). The figure also shows
the concrete specifications of the implementations. Note that the concrete specifications
describe that both implementations use an internal cell c.0 to keep the value of the counter,
and that the second implementation stores the negated value of the counter in this internal
cell.

Pick a location l ∈ Loc and an environment ρ ∈ [[{c, g}]] with ρ(c) = l, and define
f0, f1, g0, g1, b0, b1 as follows:

fi
def
= [[inci]]ρ,[], gi

def
= [[readi]]ρ,[], bi

def
= [[inc; read]]ρ,[inc→fi,read→gi].

Now, by the Abstraction Theorem, we get that, for all r,(
[eq([[emp]]ρ) ∗ r](f0, f1)[eq([[emp]]ρ) ∗ r] ∧ [eq([[g 7→ -]]ρ) ∗ r](g0, g1)[eq([[g 7→ -]]ρ) ∗ r]

)
⇒

[eq([[g 7→ -]]ρ) ∗ r](b0, b1)[eq([[g 7→ -]]ρ) ∗ r].
(9.1)

23

∀i, v. {i 7→ -, v ∗ k 7→ -}put0(i){k 7→ -, v}
∀j, v. {j 7→ - ∗ k 7→ -, v}get0(j){j 7→ -, v ∗ k 7→ -, v}

put0 ≡ λi. let v = i.1 in (free(i); k.1 := v)
get0 ≡ λj. let v = k.1 in j.1 := v

∀i, v. {i 7→ -, v ∗ (∃k′. k 7→ k′, - ∗ k′ 7→ -)}put1(i){∃k′. k 7→ k′, - ∗ k′ 7→ -, v}
∀j, v. {j 7→ - ∗ (∃k′. k 7→ k′, - ∗ k′ 7→ -, v)}get1(j){j 7→ -, v ∗ (∃k′. k 7→ k′, - ∗ k′ 7→ -, v)}
put1 ≡ λi. let k′=k.0 in (free(k′); k.0:=i)
get1 ≡ λj. let k′=k.0 in let v=k′.1 in j.1:=v

∆ | Γ ` (∀i.{i 7→ -}put(i){emp}) ∧ (∀j.{j 7→ -}get(j){j 7→ -}) ⇒ {j 7→ -}c{j 7→ -}
(where ∆ ≡ {j, k} and Γ ≡ {put : val → com, get : val → com})

c ≡ let i=new in (i.1:=5; put(i); get(j))

Figure 9: Two Implementations of a Buffer and a Simple Client

We now sketch a consequence of this result; for brevity we allow ourselves to be a bit
informal. Let r be the following simulation relation between the two implementations:

r
def
= { (h0, h1) | ∃i ∈ Loc.∃n ∈ Int .∃v0, v1, v′0, v′1 ∈ Val .

i 6= l ∧ h0 = [c→i, v0] • [i→v′0, n] ∧ h1 = [c→i, v1] • [i→v′1,−n] }.
Then one can verify that the antecedent of the implication in (9.1) holds, and thus conclude
that

[eq([[g 7→ -]]ρ) ∗ r](b0, b1)[eq([[g 7→ -]]ρ) ∗ r]
holds. Take (h0, h1) ∈ eq([[g 7→ -]]ρ) ∗ r, and denote the result of running b0 on h0 by
h′0, and the result of running b1 on h1 by h′1. We then conclude that h′0 will be of the
form h′00 • h′01 and that h′1 will be of the form h′10 • h′11 with (h′01, h

′
11) ∈ r and with

(h′00, h
′
10) ∈ eq([[g 7→ -]]ρ).

Thus the relation between the internal resource invariants is maintained and, for the
visible part, b0 and b1 both produce the same heap with exactly one cell.

The next example is a buffer of size one, and it illustrates the ownership transfer. Our
buffer has operations put and get. Intuitively, put(i) stores the value found at i in the
buffer, and get(j) retrieves the value stored in the buffer and stores it at j. We assume the
following abstract specifications of this mutable abstract data type:

(∀i. {i 7→ -}put(i){emp}) and (∀j. {j 7→ -}get(j){j 7→ -}.
Figure 9 shows two implementations of the buffer and a client, as well as the concrete

specifications for the implementations and the specification for the client. Note that the
first implementation just uses one cell for the buffer and that the implementation follows the
intuitive description given above. The second implementation uses two cells for the buffer.
The additional cell is used to hold the cell pointed to by i itself. Note that this additional cell
is transferred from the caller of put2(i), i.e., a client of the buffer. Finally, the specification
of the client describes the safety property of c, assuming the abstract specification for the
buffer.

24

Pick ρ ∈ [[{j, k}]], and define f0, f1, g0, g1, c0, c1 by

fi
def
= [[puti]]ρ,[], gi

def
= [[geti]]ρ,[], ci

def
= [[c]]ρ,[put→fi,get→gi].

Our Abstraction Theorem gives that, for all r,

(∀v ∈ Val . [eq([[i 7→ -]]ρ[i→v]) ∗ r](f0(v), f1(v))[eq([[emp]]ρ[i→v]) ∗ r]) ∧
(∀v ∈ Val . [eq([[j 7→ -]]ρ[j→v]) ∗ r](g0(v), g1(v))[eq([[j 7→ -]]ρ[j→v]) ∗ r])
⇒ [eq([[j 7→ -]]ρ) ∗ r](c0, c1)[eq([[j 7→ -]]ρ) ∗ r].

(9.2)

This result implies that the client behaves the same no matter whether we run it with the
first or second implementation of the buffer. To see this, let l be ρ(k) and define a simulation
relation r between the two implementations:

r
def
= { (h0, h1) | ∃l′ ∈ Loc.∃n, v0, v1, v′1 ∈ Val .

l 6= l′ ∧ h0 = [l→v0, n] ∧ h1 = [l→l′, v1] • [l′→v′1, n] }.
For this relation r, one can verify that the antecedent of the implication in (9.2) holds, and
thus conclude that

[eq([[j 7→ -]]ρ) ∗ r](c0, c1)[eq([[j 7→ -]]ρ) ∗ r]
holds. This quadruple says, in particular, that c0 and c1 map eq([[j 7→ -]]ρ) ∗ r-related heaps
to eq([[j 7→ -]]ρ) ∗ r-related heaps, which means that they behave the same for cell j and
preserve the r relation for the internal resource invariants of the two implementations.

10. Conclusion and Future Work

We have succeeded in defining the first relationally parametric model of separation
logic. The model captures the informal idea that well-specified clients of mutable abstract
data types should behave parametrically in the internal resource invariants of the abstract
data type.

We see our work as a first step towards devising a logic for reasoning about mutable
abstract data types, similar in spirit to Abadi and Plotkin’s logic for parametricity [16, 6].
To this end, we also expect to make use of the ideas of relational separation logic in [21]
for reasoning about relations between different programs syntactically. The logic should
include a link between separation logic and relational separation logic so that one could get
a syntactic representation of the semantic Abstraction Theorem and its corollary presented
above.

One can also think of our work as akin to the O’Hearn-Reynolds model for idealized algol
based on translation into a relationally parametric polymorphic linear lambda calculus [12].
In loc. cit. O’Hearn and Reynolds show how to provide a better model of stack variables
for idealized algol by making a formal connection to parametricity. Here we provide a
better model for the more unwieldy world of heap storage by making a formal connection
to parametricity.

As mentioned in Section 3, the conjunction rule is not sound in our model. This is a
consequence of our interpretation, which “bakes-in” the frame rule by quantifying over all
relations r′. Indeed, using the characterization given by Proposition 7.2, one sees that for
the conjunction rule(

[r1](cps(c1), cps(c2))[s1] ∧ [r2](cps(c1), cps(c2))[s2]
)

=⇒ [r1 ∧ r2](cps(c1), cps(c2))[s1 ∧ s2]
to hold, we would need something like (r1∧ r2)∗ r = (r1 ∗ r)∧ (r2 ∗ r) to hold. We “bake-in”
the frame rule in order to get a model that validates a wide range of higher-order frame

25

rules and it is known that already for second-order frame rules, the conjunction rule is not
sound without some restrictions on the predicates involved [14]. We don’t know whether it
is possible to develop a parametric model in which the conjunction rule is sound.

Future work further includes developing a parametric model for the higher-order version
of separation logic with explicit quantification over internal resource invariants. Finally, we
hope that ideas similar to those presented here can be used to develop parametric models
for other recent approaches to mutable abstract data types (e.g., [2]).

Acknowledgments

We would like to thank Nick Benton, Jacob Thamsborg and the anonymous referees for
their insightful comments. This work was supported by FUR (FIRST). Yang was supported
also by EPSRC.

References

[1] A. Banerjee and D. Naumann. Ownership Confinement Ensures Representation Independence for
Object-oriented Programs. Journal of the ACM, 52(6):894–960, 2005.

[2] M. Barnett and D. Naumann. Towards imperative modules: Reasoning about invariants and sharing of
mutable state. In Proc. of LICS’04, 2004.

[3] N. Benton. Abstracting Allocation:The New new Thing. In Proc. of CSL’06, 2006.
[4] N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for storage. In Proc. of

TLCA’05, pages 88–101, Nara, Japan, 2005.
[5] B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines and higher order separation logic. In

Proc. of ESOP’05, pages 233–247, Edinburgh, UK, 2005.
[6] L. Birkedal and R. Møgelberg. Categorical models for Abadi-Plotkin’s logic for parametricity. Mathe-

matical Structures in Computer Science, 15:709–772, 2005.
[7] L. Birkedal, N. Torp-Smith, and J. C. Reynolds. Local reasoning about a copying garbage collector. In

Proc. of POPL’04, pages 220–231, Venice, Italy, 2004.
[8] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing and higher-order frame

rules. In Proc. of LICS’05, pages 260–269, 2005.
[9] L. Birkedal and H. Yang. Relational Parametricity and Separation Logic. In Proc. of FOSSACS’07,

pages 93–107, 2007.
[10] I. Mijajlović, N. Torp-Smith, and P. O’Hearn. Refinement and separation context. In Proc. of

FSTTCS’04, pages 421–433, Chennai, India, 2004.
[11] I. Mijajlović and H. Yang. Data refinements with low-level pointer operations. In Proc. of APLAS’05,

pages 19–36, Tsukuba, Japan, 2005.
[12] P. O’Hearn and J. Reynolds. From Algol to polymorphic linear lambda-calculus. Journal of the ACM,

47(1):167–223, 2000.
[13] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Local reasoning about programs that alter data structures.

In Proc. of CSL’01, pages 1–19, Paris, France, 2001.
[14] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In Proc. of POPL’04,

pages 268–280, Venice, Italy, 2004.
[15] M. Parkinson and G. Bierman. Separation logic and abstraction. In Proc. of POPL’05, pages 247–258,

Long Beach, CA, USA, 2005.
[16] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In Proc. of TLCA’93, pages 361–375,

Utrecht, Netherlands, 1993.
[17] J. Reynolds. Types, abstraction, and parametric polymorphism. Information Processing, 83:513–523,

1983.
[18] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc. of LICS’02, pages

55–74, Copenhagen, Denmark, 2002.
[19] M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness. Theoretical Computer Science,

342:28–55, 2005.
[20] N. Torp-Smith. Advances in Separation Logic — A Study of Logics for Reasoning about Stateful Pro-

grams. PhD thesis, IT University of Copenhagen, 2005.

26

[21] H. Yang. Relational separation logic. Theoretical Comput. Sci., 2005. (to appear).

IT University of Copenhagen, Denmark
E-mail address: birkedal@itu.dk

Queen Mary, University of London, UK
E-mail address: hyang@dcs.qmul.ac.uk

27

