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Abstract

It is well known that one can use an adaptation of the invénsi¢construction to solve recursive
equations in the category of complete ultrametric spacesshdw that this construction generalizes
to alarge class of categories with metric-space structusach set of morphisms: the exact nature of
the objects is less important. In particular, the constonadmmediately applies to categories where
the objects are ultrametric spaces with ‘extra structaned where the morphisms preserve this extra
structure. The generalization is inspired by classical @iortheoretic work by Smyth and Plotkin.
Our primary motivation for solving generalized recursivetric-space equations comes from recent
and ongoing work on Kripke-style models in which the sets oflds must be recursively defined.

For many of the categories we consider, there is a naturalasegory in which each set of
morphisms is required to be a compact metric space. Oungedtlows for a proof that such a
subcategory always inherits solutions of recursive equatfrom the full category.

As another application, we present a construction thateglsolutions of generalized domain
equations in the sense of Smyth and Plotkin to solutions eégons in our class of categories.

1 Introduction

Smyth and Plotkinl[17] showed that in the classical invéirsé- construction of solutions to recursive
domain equations, what matters is not thatdbgctsof the category under consideration are domains,
but that the sets afmorphismsbetween objects are domains. In this work we show that, inctse

of ultrametric spaces, the standard construction of soistio recursive metric-space equaticns [5, 10]
can be similarly generalized to a large class of categori#is metric-space structure on each set of
morphisms.

The generalization in particular allows one to solve regarequations in categories where the ob-
jects are ultrametric spaces with some form of additionaicstire, and where the morphisms preserve
this additional structure. Our main motivation for solvieguations in such categories comes from recent
and ongoing work in denotational semantics by the authadso#tmers|[i7| 15]. There, solutions to such
equations are used in order to construct Kripke models egrsively defined worlds: a novel approach
that allows one to give semantic models of predicates aatioak over languages with dynamically al-
located, higher-order store. See Birkedal etial. [8] fomapkes of such applications.

For many of the categories we consider, there is a natur@ntaindeed a subcategory, in which
each set of morphisms is required to be a compact metric $8aé¢ Our setting allows for a general
proof that such a subcategory inherits solutions of reeareuations from the full category. Other-
wise put, the problem of solving recursive equations in saictocally compact’ subcategory is, in a
certain sense, reduced to the similar problem for the fuélgary. The fact that one can solve recursive
equations in a category of compact ultrametric spaces [S¢sas a particular instance. (For various

*See the full article for proofs and further detalls [8].
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applications of compact metric spaces in semantics, saefii@nces in the introduction to van Breugel
and Warmerdam[9].)

As another application, we present a construction thateglsolutions of generalized domain equa-
tions in the sense of Smyth and Plotkin to solutions of eguatiin our class of categories. This con-
struction generalizes and improves an earlier one due trRaid Majster-Cederbau [6].

The key to achieving the right level of generality in the fieslies in inspiration from enriched cate-
gory theory. We shall not refer to general enriched catetimgry below, but rather present the necessary
definitions in terms of metric spaces. The basic idea is, kewehat given a cartesian categ®y(or
more generally, a monoidal category), one considers dedddlcategories, in which the ‘hom-sets’ are
in fact objects oW instead of sets, and where the ‘composition functions’ asepimsms inv.

Other related work. The idea of considering categories with metric spaces asdaishas been used
in earlier work [9] 14]. Rutten and Turi[14] show existence aniqueness of fixed points in a particular
category of (not necessarily ultrametric) metric spaceswlth a proof where parts are more general. In
other work, van Breugel and Warmerdarh [9] show uniquenesa foore general notion of categories
than ours, again not requiring ultrametricity. Neitherlodde articles contain a theorem about existence
of fixed points for a general class of ‘metric-enriched’ gatees (as in our Theoref~B.1), nor a general
theorem about fixed points in locally compact subcategdgfiibeoreni4.11.)

Alessi et al. [3] consider solutions ten-functorialrecursive equations in certain categories of met-
ric spaces, i.e., recursive equations whose solutionsotaretessarily be described as fixed-points of
functors. In contrast, we only considiemctorial recursive equations in this work.

Wagner [18] gives a comprehensive account of a generalizgdse limit construction that in par-
ticular works for categories of metric spaces and categariglomains. Another such construction has
recently been given by Kostanek and Waszkiewicz [11]. Ouegaization is in a different direction,
namely to categories where the hom-sets are metric spa@doWot know whether there is a common
generalization of our work and Wagner’s work; in this work denot aim for maximal generality, but
rather for a level of generality that seems right for our aggpions [8].

2 Ultrametric spaces

We first recall some basic definitions and properties abotticrspaces. [13, 16]. A metric spac¥,d)

is 1-boundedf d(x,y) < 1 for all x andy in X. We shall only work with 1-bounded metric spaces. One
advantage of doing so is that one can define coproducts aedaj@noducts of such spaces; alternatively,
one could have allowed infinite distances.

An ultrametric spaceis a metric spacéX,d) that satisfies the ‘ultrametric inequalitgl(x,z) <
max(d(x,y),d(y,z)) and not just the weaker triangle inequality (where one-hasstead of max on the
right-hand side). It might be helpful to think of the functid of an ultrametric spacéX,d) not as a
measure of (euclidean) distance between elements, b@r rasha measure of the degree of similarity
between elements.

Let CBUIt be the category with complete, 1-bounded ultrametric spas®bjects and non-expansive
(i.e., non-distance-increasing) functions as morphisitis This category is cartesian closed![16]; here
one needs the ultrametric inequality. The terminal objedhé one-point space. Binary products are
defined in the natural way: the distance between two pairdeshents is the maximum of the two
pointwise distances. The exponentlal— B, sometimes writtei8”, has the set of non-expansive func-
tions fromA to B as the underlying set, and the ‘sup’-metdi¢ g as distance functionda_.g(f,9) =
sup{ds(f(x),9(x)) | x € A}. For both products and exponentials, limits are pointwiséollows from
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the cartesian closed structure that the func@nx BA — CA given by composition is non-expansive;
this fact is needed in several places below.

2.1 M-categories

The basic idea of this work is to generalize a theorem abouatrigcplar category of metric spaces to a
theorem about more general categories where each homeseulgrametric space. In analogy with the
O-categories of Smyth and Plotki@for ‘order’ or ‘ordered’) we call such categori®dé-categories.

Definition 2.1. An M-categoryis a categorys’ where each hom-sé&f (A, B) is equipped with a distance
function turning it into a non-empty, complete, 1-bound#thmetric space, and where each composition
function o : ¥ (B,C) x ¢ (A,B) — € (A,C) is non-expansive with respect to these metrics. (Here the
domain of such a composition function is given the productrimé

Notice that the hom-sets of &n-category are required to lm®n-emptymetric spaces. This restric-
tion allows us to avoid tedious special cases in the reselmibsince the proofs depend on Banach'’s
fixed-point theorem.

The simplest example of di-category is the categoyBUIt,e of non-empty, 1-bounded, complete
ultrametric spaces and non-expansive maps. Here the déstanction on each hom-s€BUIt,e(A, B)
is given byd(f,g) = sup{ds(f(Xx),g(x)) | x € A}. The categonlCBUlIt,e is cartesian closed sin€é&BUIt
is: it suffices to verify thaCBUIt-products of non-empty metric spaces are non-empty, anithsiyrfor
exponentials.

Let ¢ be anM-category. A functoF : 4°P x ¢ — ¥ is locally contractiveif there exists some < 1
such thad(F(f,g),F(f',d)) < c-maxd(f, f'),d(g,d')) for all f,f’, g, andg’. Notice that the same
must work for all hom-sets of’.

3 Solving recursive equations

Let ¥ be anM-category. We consider mixed-variance functBrs¢°P x ¢ — ¢ on ¢ and recursive
equations of the fornX = F (X, X). In other words, given such & we seek a fixed point df up to
isomorphism.

Covariant endofunctors 0@ are a special case of mixed-variance functors. It would messense
suffice to study covariant functors: & is an M-category, then so arg®°P (with the same metric on
each hom-set as i) and ¢°P x ¢ (with the product metric on each hom-set), and it is wellskno
how to construct a ‘symmetric’ endofunctor &P x ¢ from a functor such a above. We explicitly
study mixed-variance functors since the proof of the eristeheorem below would in any case involve
an M-category of the forns°P x ¥". As a benefit we directly obtain theorems of the form useful in
applications. For example, for the existence theorem wingeeested in completeness conditions@n
not oné°P x %.

3.1 Uniqueness of solutions

Our results below depend on the assumption that the givestduR on % is locally contractive. One
easy consequence of this assumption is that, unlike in thethetheoretic setting [17], there is at most
one fixed point of up to isomorphism.

Theorem 3.1. Let F: ¥°P x ¥ — ¥ be a locally contractive functor on an M-categc#y, and assume
that i : F(A,A) — A is an isomorphism. Then the pditi—!) is a bifree algebréor F in the following
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sense: for all objects B of and all morphisms f F(B,B) — B and g: B— F(B,B), there exists a
unique pair of morphismgk: B — A h: A — B) such that bi = f o F(k,h) and irtok = F (h,k) o g:

F(kh)
F(AA) ______F(BB)
F(hk)
__h__,

A B

In particular, A is the unique fixed point of F up to isomorphis

3.2 Existence of solutions

In the existence theorem for fixed points of contractive farg; theM-category% will be assumed
to satisfy a certain completeness condition involving t&vof w°P-chains. Since there are different
M-categories satisfying more or less general variants sf ¢bindition, it is convenient to present the
existence theorem in a form that lists a number of succdgsieaker conditions.

An increasing Cauchy towds a diagram

fo f1 fro1 fn

Jo 01 On-1 On

wheregy o fy = ida, for all n, and where liri_., d(fnogn, ida,,,) = 0. Notice that this definition only
makes sense fdvl-categories. Thdl-categorys hasinverse limits of increasing Cauchy towefgor
every such diagram, the sub-diagram containing only theaerg, has a limit. (This subdiagram is,
incidentally, anw®P-chain of morphisms that are split epi, i.e., have a leftisge

Theorem 3.2. Assume that the M-categoty satisfies any of the following (successively weaker) condi-
tions:

1. € is complete.

2. ¥ has a terminal object and limits @6°P-chains.

3. ¥ has a terminal object and limits @6°P-chains of split epis.

4. ¢ has a terminal object and inverse limits of increasing Cauidwers.

Then every locally contractive functor:F&°P x € — % on%é has a unique fixed point up to isomorphism.

4 Locally compact subcategories oM-categories

The condition in Theorer3.2 that involves Cauchy towersicduided in order to accommodate cate-
gories where the hom-sets are compact ultrametric spacég: [Bne example is the full subcategory
KBUItne Of compact non-empty, 1-bounded ultrametric spaces. This subcgtégmerely the simplest
example of a full, ‘locally compact’ subcategory of Bfrcategory. Such a subcategory always inherits
fixed points of functors from the full category:
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Theorem 4.1. Assume tha¥” is an M-category with a terminal object and limits @PP-chains of split
epis. Let | be an arbitrary object oF, and letZ be the full subcategory o& consisting of those
objects A such that the metric spaggl,A) is compact.Z is an M-category with limits of increasing
Cauchy towers, and hence every locally contractive funEtoz°P x ¥ — 2 has a unique fixed point
up to isomorphism.

For a monoidal close@’, the tensor unit is an appropriate choicd ofn particular, takings” to be
CBUItpe andl to be one-point metric space, one obtains:

Corollary 4.2 ([9]). Every locally contractive functor FEKBUItne’? x KBUIthe — KBUIthe has a unique
fixed point up to isomorphism.

5 Domain equations: fromO-categories toM-categories

As another illustration oM-categories, we present a general construction that givevéryO-category

% (see below) a derivel-categoryZ. In addition, the construction gives for every locally doobus
mixed-variance functoF on % a locally contractive mixed-variance funct@ron 2 such that a fixed
point of G (necessarily unique, by Theordm13.1) is the same as a fixed pbF that furthermore
satisfies a ‘minimal invariance’ condition_[12]. Thus, gelzed domain equations can be solved in
M-categories.

The construction generalizes an earlier ane [6] which igHerparticular category of pointed cpos
and strict, continuous functions (or full subcategoriesr¢iof) and only works for a restricted class of
functors that does not include general function spaces.

Rank-ordered cposl[6], independently discovered unden#émee ‘uniform cpos’l[7], arise from a
particular instance of aiM-category obtained from this construction. The extra raétriormation in
that category (as compared with the underlyirgategory) is useful in realizability models |1, 4].

An O-category[l7] is a categorys where each hom-séf (A, B) is equipped with arw-complete
partial order, usually writteA-, and where each composition function is continuous witheesto these
orders. A functorF : ¥°P x ¥ — € is locally continuousdf each function on hom-sets that it induces is
continuous.

Assume now that’ is anO-category such that each hom-%&{A, B) contains a least elemenfs g
and such that the composition functions@fare strict:f o Lag = Lac = Lgcog for all f andg. We
construct arM-categoryZ of ‘rank-ordered%-objects’ as follows. An objectA, (Th)new) Of Z is a
pair consisting of an objed of ¥ and a family of endomorphismg, : A — Ain ¥ that satisfies the
following requirements:

(1) = Laa.

(2) MW C i forallm<n.

(3) Tno Th = Th © T = Thyin(myn) for all mandn.
(4) Unecw ™ = ida.

Then, a morphism fromA, (Th)new) t0 (A, (T)new) IN Z is a morphismf from Ato A’ in ¢ sat-
isfying that 17,0 f = f o 1, for all n. Composition and identities i¥ are the same as i#. Fi-
nally, the distance function on a hom-g&t(A, (Th)new), (A, (T))ncw)) is defined as followsd(f,g) =
2-max{newlmef=meg} jf f -£ g andd(f,g) = 0 otherwise. (One can show using conditions (1)-(4) above
that this function is in fact well-defined.)

Proposition 5.1. & is an M-category.
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Now letF : ¥°P x ¥ — € be a locally continuous functor. We construct a locally cactive functor
G:92°°x 2 — 2 from F. On objectsG is given by

G((Av (nﬁ)new)? (Bv (rﬁ)new)) = (F (A7 B)? (TI#B)nEw)

where"® = 1 and 705 = F (i}, 1) for all n. On morphismsG is the same aF, i.e., G(f,g) =
F(f,g). One can verify thaG is well-defined and furthermore locally contractive witlotfar 1/2.

Proposition 5.2. Let A be an object o&. The following two conditions are equivalent. (1) Theresexi
an isomorphism iF (A, A) — A such that id = fix(Ae? A ioF (e e) oi~1). (Here fix is the least-fixed-
point operator.) (2) There exists a family of morphisimg)ncq, such thatA = (A, (T)new) is the unique

fixed-point of G up to isomorphism.

It remains to discuss how completeness propertiés wansfer toz. One can show that the forgetful
functor from 2 to ¢ creates terminal objects and limits @PP-chains of split epis. Alternatively, by
imposing an additional requirement @hone can show that the forgetful functor creaaédimits: for a
given limitin ¢, the induced bijection between cones and mediating marghisust be an isomorphism
in the category of cpos (where cones are ordered pointwiiag uhe order on each hom-set). That
requirement is in particular satisfied by the usual conarategories of cpos.
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