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1 Capability Machine Definition and Operational Seman-
tics

1.1 Domains and Notation

Addr £ N
Word = Cap + Z
Reg o RegisterName — Word
Mem = Addr — Word
Perm ::= O | RO | RW | RWL | RX | E | RWX | RWLX
ExecConf = Reg x Mem
Global ::= GLOBAL | LOCAL
Cap = (Perm x Global) x Addr x (Addr 4 {oc}) x Addr
Conf £ ExecConf + {failed} + {halted} x Mem
MemSegment = Addr — Word

Local capabilities have been added by adding a new domain Global which represents whether a
capability is local or global. There are two new permissions RWL and RWLX that permits writing
local capabilities. They are otherwise the same as their non-"permit write local” counterparts.



As we have oo as a possible address, but our words cannot express co. We pick —42 as a
representative for oo when it is in memory (we could have picked any negative noumber). Note
that —42 is not an address, so for address operations —42 only represents co. It is the responsible
of the programmer to keep track of what represents addresses (and take necessary precautions).

Define the following predicate:

Definition 1. We say word w "w is non-local” iff either
e w = ((perm, g), base, end, a) (perm, GLOBAL) for some perm, a, base, and end; or

e wEZ

GLOBAL

LOCAL
Figure 1: Locality hierarchy

Things to note:

e RegisterName contains pc, but is otherwise a sufficiently large finite set.

Table [T] describes what all the permissions grant access to.

Figure [2] shows the ordering of the permissions, i.e, the elements of Perm.

Figure [I] shows the ordering of LOCAL and GLOBAL, i.e., the elements of Global.

The ordering of Perm x Global is pointwise.
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Figure 2: Permission hierarchy



O | No permissions. Grants no permissions
RO | Read only. Grants read permission
RW | Read-write. Grants read and write permis-
sion. Storage of local capabilities prohibited.
RWL | Read-write, permit write local. Grants read
and write permission. Storage of local capa-
bilities possible.
RX | Execute permission. Grants execute and read
permissions.
E | Enter permission. This permission grants no
access, but when jumped to, it will turn into
an RX permission.
RWX | Read-write-execute permission. Grants read,
write, and execute permissions. Storage of lo-
cal capabilities prohibited.
RWLX | Read-write-execute, permit write local.
Grants read, write, and execute permissions.
Storage of local capabilities possible.

Table 1: The permissions in this capability system

Notation:
€ Instructions
r € RegisterName
pc € Cap
pc € RegisterName
® € ExecConf
m,P.mem € Mem
dreg € Reg
a € Addr
perm € Perm
((perm, g), base, end,a) € Cap
n € Z
ms € MemSegment
Words and instructions:
v == |r]
hv = (rym,
v u= nl|l
i == jmp | jnz v lv|move lv rv | load lv hv | store hv rv |

plus v rv rv | minus lv rv rv | 1t lv rv rv | lea lv rv | restrict v rv | subseg lv Tv T
isptr lv rv | getp v lv | getl lv lv | getb v lv | gete v lv | geta lv v |
fail | halt

Further define reg, € Reg such that

Vr € RegisterName. regy(r) =0



1.2 Operational Semantics

Assume a decode function that decodes words to instructions:
decode : Word — Instructions

Assume an encodePerm, encodeLoc, and encodePermPair function that encodes a permissions,
locality, and permission pair, respectively, as an integer:

encodePerm : Perm — Z
encodeLoc : Global — Z
encodePermPair : (Perm x Global) — Z

Further, assume a left inverse function, decodePermPair, that decodes permissions
decodePermPair : Z — (Perm x Global)
We define the operational semantics as follows:

if ®.reg(pc) = ((perm, g), base, end, a)
® — [decode(®.mem(a))] () and base < a < end
and perm € {RX, RWX, RWLX }

® — failed otherwise

A number of functions and predicates used in the definition of [—] (defined later). Notice all of
them are total.

true if perm € {RWX, RWLX, RX, RW, RWL, RO
readAllowed (perm) = {false otllzerwise{ }

true if perm € {RWX, RWLX, RW, RWL}

writeAllowed (perm) = .
false  otherwise
RX b d if w=((E b d
updatePcPerm(w) = ((RX, 9), base, end, a) if w (( »9), base, end, a)
w otherwise
nonZero(w) =

false otherwise

t if base < a < end
withinBounds((, base, end, a)) = e B oase - “=en
false otherwise

®[reg.pc — newPc] if ®.reg(pc) = ((perm, g), base, end, a)
updatePc(®) =

failed otherwise

{tme ifw e Caporw € Z and w # 0

and newPc = ((perm, g), base, end, a + 1)



[fail] (®) = failed
[halt] (®) = (halted, ®.mem)
[jmp ] (®) = ®[reg.pc — updatePcPerm(®.reg(lv))]
dlreg.pc — updatePcPerm(®.reg(lv))] if nonZero(®.reg(rv))
[jnz W rv] (®) = < updatePc(®P) if not nonZero(®.reg(rv))
failed otherwise

updatePc(®[reg.ry — w]) if ®.reg(ra) = ((perm, g), base, end, a) = ¢

and readAllowed(perm) and withinBounds(c
[load [r1] (r2)m] (®) = (perm) ()
and w = ®.mem(a)

failed otherwise

updatePe(®[mem.a — w]) if ®.reg(r1) = ((perm, g), base, end, a) = ¢
and writeAllowed(perm) and withinBounds(c)

[store (ri)m [r2]] (@) = and w = ®.reg(rs)

and if w = ((_,LOCAL), _, , ),
then perm € {RWLX, RWL}
failed otherwise
updatePc(®[reg.ry — rv]) rv €L

updatePc(®[reg.ry — ®.reg(rv)]) otherwise

[move [r1] mv] (@) = {

updatePc(®[reg.ry — c|) if either n = v or rv = |ra| and n = P.reg(rs)
and in either case n € Z

and ®.reg(ry) = ((perm, g), base, end, a)

[Lea |r1] rv] (@) and perm # E

and ¢ = ((perm, g), base, end, a + n)
failed otherwise

updatePc(®[reg.r — c]) if ®.reg(r) = (permPair, base, end, a)
and either rv = n or ®.reg(rv) =n

d in eith Y/
[restrict |r] rv] (®) = and 1n either case n € .
and decodePermPair(n) C permPair

and ¢ = (decodePermPair(n), base, end, a)

failed otherwise



updatePc(®[reg.r1 — ny +ng]) if for i € {1,2}
n; = rv; or n; = ®.reg(rv;)
lus |71 ]| rv1 rus] (®@) =
lp Lra] o1 2] (@) and in either case n; € Z

failed otherwise

updatePc(®[reg.r1 — n1 —ng]) if for i € {1,2}

n; = rv; or n; = .reg(rv;)
minus |71 | rvy rvs] (@) =
[ Lra) rox ro] (@) and in either case n; € Z

failed otherwise

updatePc(®[reg.r1 +— 1]) if for ¢ € {1,2}
n; = rv; or n; = ®.reg(rv;)
and in either case n; € Z
and ny < ng
[1t [71] rv1 Tv2] (@) = < updatePc(®[reg.ry +— 0]) if for i € {1,2}
n; = rv; or n; = ®.reg(rv;)
and in either case n; € Z
and ny £ no

failed otherwise

updatePc(®[reg.r — ¢]) if ®.reg(r) = ((perm, g), base, end, a)
and for i € {1,2}
n; = rv; or n; = P.reg(rv;)
and in either case n; € N
[subseg |7] rvy rva] (®) = and base <
and ny < end where ny € N
or ng = —42 and end =
and perm # E
and ¢ = ((perm, g),n1,na, a)

failed otherwise

updatePc(®[reg.ry — a]) if ®.reg(re) = ((5,-), - - a)

failed otherwise

updatePc(®[reg.ry — base]) if ®.reg(ra) = ((-,-), base, , )

failed otherwise

updatePc(®[reg.r1 — end]) if ®.reg(ra) = ((5, ), -, end, _) and end # oo
updatePc(®[reg.ry — —42]) if ®.reg(ra) = ((-,-), -, 00, -)
failed otherwise

updatePc(®[reg.r; — encodePerm(perm)]) if ®.reg(re) = ((perm, ), _,_)

t D) =
[getp 1] [r2]] (@) failed otherwise

updatePc(®[reg.r; — encodeLoc if ®.reg(ry) = ((_ -
P (®[reg (9)]) g(r2) = ((- 9), - -)

tl Q) =
lgetd [ [raf] (@) = 0% otherwise

updatePc(®lreg.ry — 1]) if ®.reg(rv) € Cap

[[1$p r LTJ 7“11]]( ) updatePc(q)[reg-T17*—> 0]) otherwise



Define the following macros: restrict, subseg, and lea that does not overwrite the source
register. A store that allows integers to be stored directly. store requires a register r; for
storage of temporary values to be available.

. def
restrict ry ro r3 ra = move 71 T2
restrict ri rgry
def
subseg 1] 12 13 r4 = mMOvVe T T'y
subseg 1 13 T4
def
lea ry 79 73 = move 11 T2
lear; 73

def
storern =mover;n

store r ry

Lemma 1 (Determinacy). If ® — ® and & — ®”, then & = d". If ® —, ¥ and & —,
D" then ® = ®". If & —, & and ® —, (halted,mem”), then n < n' and ®" —, _,
(halted, mem'"). [ ]

Proof. By easy inspection of the definition of the operational semantics. O



2 DMalloc specification
Specification 1 (Malloc Specification). Cmaioc Satisfies the specification for malloc iff

Cmalioc = ((E, GLOBAL), _, _, -)A
Ftmalioc,o-
(V¢ TP tpatioe.0- YW, . W (i) =/ = /. H (' .s)(EH W) =/ H(.8) (€ ([i = W(I)]))) A
Lmalloc,0-V = perm A
(V@ € ExecConf. VYms jootprint, MSframe € MemSegment.
Vi, n, size € N.Vw,; € Word.
Yimatioe 3P tmattoe,0/\
®.mem = MS footprint W MS frame N MS footprint n (L > Lmalloc)/N
D.reg(ry) = size A size > 0 A P.reg(rg) = Wret
®.reg(pc) = updatePcPerm(cmaiioc)
=
39’ € ExecConf. 3ms’y,prinss MSaltoc € MemSegment.
35 €N.j > 0A 3, e € Addr. 3], 1. € Region.
P —; DA

/ /
" .mem = ms Tootprint ® MSalloc W MS frame

Unattoc 37 Lmalioc/
ms}ootprint tn—j [0 = Unatioc) N
dom(msaee) = [V, €] AVa € [V, €']. msaioc(a) = OA
P’ reg = P.reg[pc — updatePcPerm(wyet)][r1 — ((RWX, GLOBAL), V', ', b')]A
size — 1 =¢ —b)A
(V® € ExecConf. (®.reg(r1) ¢ Z V ®.reg(r1) < 0) A ®.reg(pc) = updatePcPerm(cmaiioc) = 3j € N. & —; failed)

/

In the specification above ¢, ;..

is a future region of the initial region that governs malloc.

3 Macros

In order to write readable example programs, we provide macros (macro-instructions) that can
be implemented in terms of the instruction set given in the formalisation.

In order to compute offsets and the like, the macros need registers to keep temporary compu-
tations in. We assume such a small set of registers RegisterName, C RegisterName is available
and that RegisterName, does not contain registers explicitely named in a program nor rg, s,
or pc (but clearing all registers still clears the temporary registers).

3.1 Linking and ABI

In order to make capabilities to trusted code (and possibly untrusted code) available, we assume
that some sort of linker has made these available. This is done in the following way: For every
function, the first memory cell the capability for that function governs contains a capability for



the linking table. Each function name in a program corresponds to an offset in the table, e.g.,
malloc could be at offset 0. When a name is used in a program, it indicates what entry from the
linking table to pick. The table should always be accessible by taking a copy of the capability in
the pc-register and adjusting it to point to the first cell it governs.

The capability linking table can be shared between multiple functions that are linked to the
same capabilities as it is accessed through read-only capabilities.

3.2 Flag table

A function may use flags to signal failure. We use the convention that a flag table is available
in the second memory cell of a functions code (so just after the linking table). The flag table is
accessed through a read-write capability and initially it contains all zero. Like the linking table,
each entry is associated with a name which may appear in the macros.

The flag table should never be shared between distrusting parties.

We will often want to make room in memory for a linking-table capability and a flag-table
capability. We therefore define a constant that represents the offset of the actual code of a
function caused by these two capabilities:

offsetLinkFlag = 2

3.3 Macro definitions

In the following, we describe each of the macros. The descriptions are so detailed that it should
be a simple matter to implement the macros. We provide a proposed implementation for each of
the macros in order to install some confidence in the fact that it is possible to implement each
of the macro.

fetch r f load the entry of the linking table corresponding to f to register r.
One possible fetch implementation (r_t1 and r_t2 are registers in RegName_t).

move r pc
getb r_tl r

geta r_t2 r

minus r_tl r_tl r_t2 // Offset to first address, i.e., linking table (b-a)
lea r r_ti1

load r r

lear ... // ... replaced with offset to f in the linking table

move r_t1 O

move r_t2 0

load r r // f capability loaded to register r

call 7(Fargs, Fpriv)
Targs and Tpp, are lists of registers. An overview of this call:
e Set up activation record
e Create local enter capability for activation (protected return pointer)
e (Clear unused registers

e Jump

Upon return: Run activation code

10



A more detailed description of each of the above steps:

Set up activation record

e Run malloc to get a piece of memory with space for:
— Words in 7y
— Code return capability (opc)
— Activation code
e Store the words in 7,4, to the activation record.
e Adjust a copy of the current pc to point to the return address in code and save
it to the activation record.
e Write the activation code to the activation record.

Create local enter capability for activation Adjust the capability for the activation
record to point to the beginning of the activation record and restrict it to a local
enter-capability. Place this capability in rg.

Clear unused registers Clear all the register that are not pc, 7, 7o or in 7g.gs.

Jump Jump to register r

Activation code The activation code does the following:

e Move the stored “private” words in to their respective 7, registers.
e Load the return capability to pc

Possible implementation. We will use malloc r n and rclear 7 (defined below). Assume
Tpriv = Tpriv,1y - - - > Tpriv,n

malloc r_t ... // ... is the size of activation record
// store private state in activation record

store r_t r_priv,1

lear_t 1l

store r_t r_priv,2

lear_t 1

lear_t1

store r_t r_priv,n

lear_t1
// store old pc

move r_tl pc

lea r_tl ... // ... is the offset to return address
store r_t r_ti
lea r_t1 1

// store activation record
store r_t encode(i_1)
lear_tl 1
lea r_t1 1
store r_t encode(i_m)
lea r_tl k // k is m-1, i.e. the offset to the first instruction of the activation code.

restrict r_tl encodePermPair((Local,e))
move r_O r_til

11



rclear R // R = RegisterName - {r,pc,r_0,r_args}
jmp r

Activation record. The instructions correspond to i1, ..., %, in the above.

move r_t pc
getb r_tl r_t
geta r_t2 r_t
minus r_tl r_tl r_t2
// load private state
lea r_t r_ti1
load r_priv,1 r_t
lear_t 1
load r_priv,2 r_t
lear_t1
lear_t1
load r_priv,n r_t
lear_t 1
// load old pc
load pc r_t

malloc r n Calls malloc to allocates a piece of memory of size n. The capability will be stored
in register r. One possible malloc implementation (r-t1 is a register in RegName_t) and
r_1 is the register from the malloc specification.

fetch r malloc

move r_1ln

// save return pointer

move r_t1 r_0

// setup new return pointer

move r_0 pc

lea r_ 0 4 // 4 is the offset to just after jmp r
restrict r_O encodePerm(e)

jmp r

move r r_1

move r_O r_tl // restore return pointer
move r_1 0O

move r_t1 O

assertpq, 11 r2 Compares the words in register ry and 75 (if one of them is an integer, then use
that in the comparison). If they are equal, then execution continues. If they are unequal,
then the assertion flag named flag in the flag list is set to 1 and execution halts (if no flag
is specified, then the first flag in the list is set to 1).
There are four different asserts based on whether ry and ro are registers or numbers. If rq
and ry are registers:

// setup pointer to fail.

move r_t3 pc

lea r_t3 ... // ... is the offset to fail

// make sure both registers contain either capability or integer

12



isptr r_tl1 r_1
isptr r_t2 r_2
minus r_tl r_tl r_t2
jnz r_t3 r_til
// set up capability for cap case:
move r_t4 pc
lea r_t4 ... // ... is the offset to caps
jnz r_t4 r_t2 // jump to caps if r_t2 contains a capability
// the two registers contain an integer
minus r_tl r_1 r_2
jnz r_t3 r_ti1
// the two integers in the registers are equal
move r_t4 pc
lea r_t4 ... // .. offset to success
caps:
geta r_t1 r_1
geta r_t2 r_2
minus r_tl r_tl r_t2
jnz r_t3 r_ti1
getb r_t1 r_1
getb r_t2 r_2
minus r_tl r_tl r_t2
jnz r_t3 r_ti1
gete r_tl1 r_1
gete r_t2 r_2
minus r_tl r_tl r_t2
jnz r_t3 r_til
getp r_t1 r_1
getp r_t2 r_2
minus r_tl r_tl r_t2
jnz r_t3 r_til
getl r_t1 r_1
getl r_t2 r_2
minus r_tl r_tl r_t2
jnz r_t3 r_ti1
// the two capabilities in the registers are equal
move r_t4 pc
lea r_t4 ... // .. offset to success
fail:
// get the flag capability
move r_t3 pc
getb r_tl1 pc
geta r_t2 pc
minus r_tl r_tl r_t2
lea r_t3 r_t1
lea r_t3 1 // the flag table capability is at the second address of cap.
load r_t1 r_t3
lea r_tl ... // ... is the offset of flag in the table
store r_t1 1

13



halt
success:

// clean up

move r_tl1 O

move r_t2 0O

move r_t3 O

move r_t4 O

If 1 is a register, but ro is a constant:

// setup pointer to fail.
move r_t3 pc
lea r_t3 ... // ... is the offset to fail
// make sure both registers contain either capability or integer
isptr r_tl1 r_1
jnz r_t3 r_til
minus r_tl r_1 r_2
jnz r_t3 r_t1
// the two integers in the registers are equal
move r_t3 pc
lea r_t3 ... // .. offset to success
fail:
// get the flag capability
move r_t3 pc
getb r_tl1 pc
geta r_t2 pc
minus r_tl r_tl r_t2
lea r_t3 r_t1
lea r_t3 1 // the flag table capability is at the second address of cap.
load r_t1 r_t3
lea r_tl ... // ... is the offset of flag in the table
store r_t1 1
halt
success:
// clean up
move r_t1 O
move r_t3 0

The case where 71 is a constant and 79 is a register is omitted. The case where both are
constant is also omitted - if the constants are the same, then the macro is nothing. If they
are different, then it corresponds to the failed part of both of the above implementations.

mclear r SUHeSO1x)aHtheInenumy(fﬂsthecapabﬂﬁy7”gowxnsE
Possible implementation:

move r_t r

getb r_t1 r_t

geta r_t2 r_t

minus r_t2 r_tl r_t2

1This may in some cases seem like an unreasonable slow instruction. In a real system it would probably be
implemented as a vector operation which allows modification of continuous segments of memory rather fast.

14



lea r_t r_t2

gete r_t2

minus r_tl r_t2 r_ti1

plus r_tl1 r_t1 1

move r_t2 pc

lea r_t2 ... // ... is the offset to end

move r_t3 pc

lea r_t3 ... // ... is the offset to iter
iter:

jnz r_t2 r_t1

store r_t O

lear_t 1

plus r_t1 r_t1 1

jmp r_t3
end:

move r_t O

move r_t1 O

move r_t2 O

move r_t3 O

rclear 7 Moves 0 to all the registers in the list 7.
Possible implementation: Say 7 =1ry,...,r,

move r_1 O
move r_2 0
/] ...

move r_n O

Note:

e call will fail if we have local capabilities in one of the registers of the “private” register list
as it relies on a capability returned by malloc which will not be permit-write-local. This
severely limits how scall can be used and it provides very little in terms of control-flow
integrety when nested. Below, we introduce scall which can handle local capabilities in
the “private” state.

3.4 Stack

Some programs will assume access to a stack which will be in part indicated by the program
macros but also in the correctness lemma. The stack is accessed through a local RWLX-capability.
Programs will assume that the stack resides in some register, say sy

The stack resides entirely in memory. There is no separation between the memory and the
stack, so when we talk about the stack it is as a conceptual thing.

Even though the memory is infinite, we will only use a finite part for the stack. If we
have allocated too little memory for the stack, and we try to push something anyway, then the
execution will fail. As we consider failing admissible, we are okay with this.

When not in the middle of a push or a pop, the stack capability points to the top word of
the stack. For an empty stack, the stack capability points to the address just below of the range
of authority for the stack capability.

The stack grows upwards

15



push r Pushes the word in register r to the stack by incrementing the address of the stack
capability by one and storing the word through the stack capability.
Possible implementation:

lea r_stk 1
store r_stk r

pop r Pops the top word of the stack by loading it to register r, and decrementing the address
of the stack capability.

load r r_stk
minus r_t1 0 1
lea r_stk r_t1

scall r(Fargs, Tpriv)
Targs and Ty, are lists of registers. This call assumes 7y, contains a stack capability. An
overview of this call:
e Push “private” registers to the stack.
e Push the restore code to the stack.
e Push return address capability
e Push stack capability
e Create protected return pointer
e Restrict stack capability to unused part
e (lear the part of the stack we release control over
e Clear unused registers
e Jump
e Upon return: Run the on stack restore code

e Return address in caller-code: Restore “private” state
A more detailed description of the above steps:

Push “private” registers to the stack Push all the words in the registers in 7., to
the stack.

Push the restore code to the stack Push the restore code to the stack (described later).
This code needs to be on the stack to make sure the stack capability can be restored.
We keep the restore code on the stack minimal. The caller code does the rest of the
restoration.

Push return address capability Push a capability for the return address (in the mem-
ory) to the stack.

Push stack capability Push the full stack capability to the stack.

Create protected return pointer Make a new version of the stack pointer that points
to the beginning of the restoration code. Restrict it to a local enter-capability and
put it in rq.

Restrict stack capability to unused part Make the stack capability only govern the
unused part.

16



Clear the part of the stack we release control over Store 0 to all the memory cells
the restricted stack pointer has authority over.

Clear unused registers Clear all registers but pc, r, 7o, 7w, and Fargs.

Jump Jump to register r.

Run the on stack restore code Load the stack capability to rss. Pop the old program
counter (the return address in caller-code) from the stack to pc.

Return address in caller-code: Restore “private” state

e Pop the restore code of the stack
e Pop the private state on the stack into their respective 7,4, registers.

Possible implementation, say Targs = Targs, 15 - - > Targs,m a0d Tpriy = Tpriv,1s -« s Tpriv,nt

// push private state
push r_priv,1

push r_priv,n
// push activation code
push encode(i_1)

push encode(i_4)
// push old pc
move r_tl pc

lea r_tl ... // ... is the offset to after
push r_ti1

// push stack pointer
push r_stk

// set up protected return pointer
move r_0 r_stk
lea r_ 0 -5 // -5 is the offset to the first instruction of the activation code
restrict r_0 encodePermPair((Local,e))
// restrict stack capability
geta r_tl r_stk
plus r_tl r_t1 1
getb r_t2 r_stk
subseg r_stk r_tl r_t2
// clear unused part of the stack
mclear r_stk
// clear non-argument registers
rclear R // where R = RegisterName - {pc,r_stk,r_O,r,r_args}
jmp T
after:
// pop the restore code
pop r_ti1
pop r_t1
pop r_ti
pop r_til
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// pop the private state into approriate registers
pop r_priv,1

pop r_priv,n
where the restore code is as follows:
1 = move r_tl1 pc
2 = lea r_tl 5 // 5 is the offset to the address where the old stack pointer is located
3 = load r_stk r_t1
-4 = pop pc

e If we want to have local capabilities as part of our private state, then we need to have a
stack and use scall. If we do not have any local capabilities we want to keep around, then
we can use call, but it will incur a small memory leak as the activation records cannot
be recycled! It is also possible to use a combination of scall and call, but when call is
used, then we have no way to store the stack, so we cannot use scall after that.

e As a rule of thumb: If you have provided an untrusted entity access to part of the stack,
then it needs to be cleared before it is passed to an untrusted party.

e As a rule of thumb: If you receive a stack from an untrusted source, then you need to check
that it is a local RWLX-capability and clear it! If any callbacks are provided, then they
need to be global.

crtels [(z1,71), .. (@n, )] Teode
[(z1,71),...(%n,ry)] is a list of variable bindings. If an instruction refers to a variable,
then it will assume that an environment is available in a designated register (say 7eny)-
The register r.,q. should contain a capability governs the code of the closure and that is
executable when jumped to.
Allocate memory for variable environment

Store register contents to environment

Allocate memory for record with environment capability, code capability, and activation code

Store capabilities and activation code to record
Restrict the capability for the “closure pair” to an enter capability

Activation code:

e Load the environment capability to a designated register
e Load the code capability.
e Jump to the code.

A more detailed description of each step:

Allocate memory for variable environment Have malloc allocate a piece of memory
of size n (the size of the variable environment).

Store register contents to environment Store the contents of each of the registers
71,...,Tn to the newly allocated memory.
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Allocate memory for record with environment capability, code capability, and activation code
Allocate a new piece of memory with room for a capability for the environment.

Store capabilities and activation code to record Store the environment capability
and code capability in the record followed by the activation code.

Restrict the capability for the “closure pair” to an enter capability Adjust the ca-
pability to point to the start of the activation code and restrict it to a global enter-
capability.

Activation code:

e Load the environment capability to a designated register.
e Load the code capability.
e Jump to the code.

Possible implementation of crtcls (x,r,) Teode Where |(x,7,)| = n (i1,...,i6, i.e. the acti-
vation code, is defined later):

malloc r_tl n

store r_tl r_vi

lea r_t1 1

store r_tl r_v2

lea r_t1 1

lea r_t1 1

store r_tl r_vn

lea r_t1 -n

restrict r_tl encodePermPair((Global,rw))
malloc r_1 8 //length of activation record
store r_1 r_code // code capability

lea r_1 1

store r_1 r_tl // environment capability
move r_tl1 O

lear_11

store r_1 encode(i_1)

lea r_1 1

store r_1 encode(i_2)

lear_11

lear_11

store r_1 encode(i_6)

lea r_1 -5 //offset to first instruction
restrict r_1 encodePerm(e)

Activation code (i1,...,ig):

1 = move r_tl1 pc

2 = lea r_t1 -2

3 = load r_env r_til
4 = lear_tl 1

5 = load r_tl1 r_t1
6 = jmp r_til
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load r z Assumes environment capability available in register r.,,. Loads the word at the
index associated with z in the environment list. Loads from this capability into r.
Possible implementation:

move r_tl r_env

lea r_tl ... // ... corresponds to offset of x in environment
load r r_t1

move r_tl O

store x r Assumes environment capability available in register r.,,. Loads the word at the
index associated with x in the environment list. Stores the contents of register r through
this capability.

move r_tl r_env

lea r_tl ... // ... corresponds to offset of x in environment
store r_tl r

move r_tl1 O

reqglob r Tests if register r contains a GLOBAL capability. If not fail, otherwise continue exe-
cution.
Possible implementation:

getl r_tl r

minus r_tl1 r_t1 encodeLoc(Global)

move r_t2 pc

lea r_t2 4 // 4 is the offset to just after fail
jnz r_tl r_t2

fail

move r_t1 O

move r_t2 O

regperm r n Tests if register r contains a capability with permission decodePerm(n). If not fail,
otherwise continue execution.
Possible implementation:

getp r_tl r

minus r_tl r_tl n

move r_t2 pc

lea r_t2 4 // 4 is the offset to just after fail
jnz r_tl r_t2

fail

move r_tl O

move r_t2 0

prepstack r Tests if register r contains a capability with permission RWLX. If not fail, otherwise
assume 7 points to ((RWLX, g), base, end, a) adjust it to ((RWLX, g), base, end, base — 1).
Possible implementation

reqperm r encodePerm(rwlx)
getb r_tl r
geta r_t2 r
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Register file

pc Cpc
To Co
Stack Tstk Cstk

Targs,1 Waq,1

0 rargs,n Wa,n
cer — | local stack

Tpriv,1 Wp 1

Tpriv,m Wp,m

Figure 3: This is the first figure of 6 that illustrates how scall works. In this exam-
ple, the call scall r([Fargs,1s-- -, args,n)s [T0s Tpriv,is-- - Tpriv,m)). In this example the two
lists of registers are disjoint even though that does not have to be the case.

minus r_tl1 r_tl r_t2
lea r r_t1

minus r_t1 0 1

lea r r_t1

move r_t1 O

move r_t2 O

Note:

e In a real setting due to a limited number of registers, some of the arguments might be
spilled to the stack. It would be possible to do something similar here, but to keep matters
simple, we opt not to do so.

e regperm can be used to test whether something can pass as a stack.
e reqglob can be used to test whether a callback is admissible in the presence of a stack.
e The code of a closure will often be found in conjunction with the code that creates it.

e prepstack as “prepare stack”. This ensures that the register contains something that looks
like a stack and it is prepared for our stack convention.

3.5 Labels

1: is a meta level label that can be used to refer to a specific address. When placed on the line
of a macro, it refers to the first instruction of this macro.
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Stack Register file

/!
. pc Cpe
: 0 Co
/ — / r C/
Cstk C;stk stk stk
Cpc Targs,1 Wq,1
Co
Wp,1
p
. Targs,n Wa,n
Tpriv,1 Wp,1
Wp,m
Restore code
local stack Tpriv;m | Wp,m

Figure 4: Stack and register-file after the restore code, “private” registers (remember ¢ is here
private.), return address (c},.), and stack capability (c/;,) have been pushed to the stack.

Stack
) Register file
: (3)
5 pc | cpe
! /
d, = |c "o ?/0
stk C;stk T stk Cotk
pc Targs,1 Wa,1
€o
Wp,1
Targs,n Wa,n
Tpriv,1 0
Wp,m
¢y — | Restore code
Tpriv,m 0
local stack

Figure 5: Stack and register-file after the ¢, has been limited to only give authority over
the empty part of the stack (the new capability is 7). The empty part of the stack has been
cleared. ¢ is made from ¢, by setting it to point to the restore code and restricting it to a

local enter-capability. The “private” registers have been cleared.
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Stack

?

Register file

/
/ 7 pcC Co
Cstk - Cstk 2
c To !
be Tstk ?

Co
w ™ w1y

p,1

Tpriv,1 ?
Wp,m o ?
¢y, — | Restore code prv,m :

local stack

Figure 6: Stack and register-file upon return from f. At this point we have no idea what is in
the register-file apart from the pc which we know points to the restore code. The contents of
the stack we released access to is also unknown. (Notice that we have changed the order of the
registers as we are no longer interested in the argument registers. By convention we expect a
return value to be in r1, which is why we have named that word, but the words in the remaining
non-special-purpose registers could also be considered return values.)

Stack
: Register file
. /
(3) To !
Cstk - Co r 0(3)
) stk stk
p,1
1 w1
Tpriv,1 ?
Wp,m .
Restore code 7
Tpriv,m .
local stack

Figure 7: Stack and register-file after executing the restore code. The old stack capability has
been restored and the pc-register now points to the return address in memory.
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Stack

Register file
(3)

. pPC | Cpc

? To Co
— | Co Tstk Cstk

Wp,1 1 wy

Tpriv,1 Wp 1

Wp,m
Restore code Tpriv,m | Wp,m

cstk — | local stack

Figure 8: Stack and register-register file after the clean up code has been run. The “private”
words have been popped to their respective registers. The restore code has been popped off the
stack.
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4

Examples

4.1 Encapsulation of Local State

Assembly program not using stack. Assume that r; & {pc,ro} is a register.

f1:

1f:

malloc r_1 1

store r_1 1

fetch r_adv adv
call r_adv([],[r_11)
assert r_1 1

halt

For f1 to work, its local state needs to be encapsulated.

Lemma 2 (Correctness lemma for £1).
For all n € N let

Cado = ((E, GLOBAL), base 44y, €nd a4y, base qq, + offsetLinkFlag)
cr1 2 ((RWX, GLOBAL), £1 — offsetLinkFlag, 1£, £1)
Conalloe = ((E, GLOBAL), basemalioc, €ndmalioc, DaS€malioc + offsetLinkFlag)

def
m = msf1 W msaag W msiink W msqdy W MSpmaiioc ¥ MS frame

and

® Cmalloc Satisfies the specification for malloc and Lmalioc,0 @S the region from the specification.

where
dom(ms 1) = [£1 — offsetLinkFlag, 1£]
dom(msﬂag) = [ﬂag,ﬂag]
dom(msyink) = [link, link + 1]
dom(ms 4y ) = [base gy, end gy
MSmalloc ‘n [O = Lmalloc,O}

and

o msyi(f1—offsetLinkFlag) = ((RO, GLOBAL), link, link+1, link), ms 1 (£1— offsetLinkFlag+

1) = ((RW, GLOBAL), flag, flag, flag), the rest of msy1 contains the code of f1.

® Msaqy = [flag — 0]
o MSunk = [link = Cmalioe, link + 1 = Cody]

® MSuqy contains a global read-only capability for msyn, on its first address. The remaining

cells of the memory segment only contain instructions.

(reg[pc + cf1),m) —, (halted, m’),

then

m/(flag) = 0
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Proof of Lemma[3. Let n be given and assume the premises in the lemma. Consider the following
part of the execution:

(reg[pc = cp1],m) =4 (rego[pC = Cmatioc] [ro + Cpy][r1 = 1],m)

Where ¢, is the return address. Use the malloc specification with

Lmalloc = tmalloc,0
MS footprint = MSmalloc

D.reg(ry) = size =1
to get

(rego[pc = Cmaioc][ro = Cpy][r1 = 1],m) =5 (regglpe = cpy][ro = cp]lr = al,m’)

for some j where for some ¢/ ;.. Jpub Lmalloc,0
/ /
L.m'=msp Wmspaeg W msunk W msaq W ms Wms,, 1. ¥ MSframe

2. mslmalloc ‘n—j [O = Lmalloc]
3. dom(ms;) = [1,]]

4. ¢; = ((RWX, GLOBAL), [, 1, 1)

ot

ms;(1) =0
Continue the execution to the next malloc hidden in call.
(regolpc = c][ro = [ = al,m’) =i (regolpe = Cmatiocl[ro = €f1][r1 = leng][ri — ¢],m”)
where

6. m"=m'll = 1]
Use the malloc specification notice:

e len,, is the needed size for the activation record.

e |8l and (downwards closure) gives us the needed memory segment satisfaction.

® TS footprint = TS qiioc
Get:

(rego[pC = Cmatoc][ro = Cfillr = lenar][ry = a],m”) = (rego[pe = ¢f1][ro = ¢fyllr = car][ri — ], m®)

for some j’ where for some [0+ ¢/ 137 [0+ (10100

"

1
7. m' = ms g1 W mSaqg W mSiink © msqdy & msy & msq, Wmsy, oo

W NS frame

8. ms/rlnalloc n—j—j’ [0 = [’lmalloc]
9. dom(msga,) = [b, €], and e — b = leng,

10. ¢; = ((RWX, GLOBAL), b, e, b)
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11. Va € [b,e]. msqr(a) =0
Continue execution until just after the jump to adv.
(regolpc = cf1][ro = ¢l = car]lri = m®)) = (rego[pe — updatePePerm(coa)|[r1 — Cadol[ro — €], m®)

for some k' where

e m® = ms 1 W mSfag W MSpink W MSqdy W ms; W mst, W msl & msframe
e ms’,. contains the activation record, i.e., ¢, 0;1) (the return address in f1), and activation

code.

e ¢ = ((E,LOCAL)D, e,b+ offset) where b+ offset is the first address of the activation code.

ar

Define
o W =0 ) o[l — Lgiléfdrmendadv][2 51 (perm, ms 1 W ms e W ms; W mspgag)][3 —
LS4 (perm, ms k)|
define

1

— R /
1. ms = ms 1 W msfqg W msink ¥ msqqy W ms; §ms,, Wms, ..

Use the FTLR on updatePcPerm(cqay) using world W, so show

o (n, (baseqdy, endqqy)) € readCondition(GLOBAL)(W)

_ . nwl,p n pwl . l
Show: Lyuel  endun S Uhaseosy endyg, FOlloWs from Lemma [22

Have
2. (n, updatePcPerm(cqedy)) € E(W)
Let ' =n—j—j —k — k' and show
1. ms:py W

1.1. Split the memory into the disjoint unions of [I] and show:

L{malloc's)(W)
] with malloc specification context independence

o (! !
1.1.1. case: (0, MSmalioc) € Lhnaioe-H (

1.1.1.1. Use MSmatioc n’ [0 = L0 uitoe
property.
1.1.2. case: (n',msaqy) € HpL 4 1W
1.1.2.1. Show Va € [base gdy, end aan]- (' — 1, ms(a)) € V(W) A ms(a) is non-local)
1.1.2.1. a # basegyq, : trivial, contains instruction only and they are non-local.
1.1.2.2. a = baseqqy: show ((RO, GLOBAL), link, link + 1, link) € V(W)
GLOBAL capabilities are non-local.
SFTS (5% (perm, msyink ) % Lﬁzli’lmqu which follows from Lemma
1.1.3. (0, msypi) € HS " (1)(W):
This boils down to showing:
1.1.3.1. (n' = 1, chaiioe) € V(W): Follows from Lemma
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1.1.3.2. (n' — 1,caq0) € V(W): for n” < n/ —1 and W’ 27" W show:
(n", updatePcPerm(cqdy)) € E(W'). Follows from Lemma together with
Lemma [79] and the fact that c,q, is non-local.

1.1.4. The last case follows from Lemma
2. (n/, regy[pc — updatePcPerm(cqadn)][r1 = Cadw][ro — hy]) € R(W)

2.1. case: (n/,cqqy) € V(W)
2.1.1. Similar to [L1.3.2]
2.2. case: (n/,cl,) € V(W).

2.2.1. Let n” < n’ and W’ JP** W be given and show (n”, updatePcPerm(c,,)) € E(W')
Let n® < n” ms' @ W', and (n®, reg) be given
Show: (n®), (reg[pc — updatePcPerm(c,,)], ms’)) € O(W')
Assume (reg[pc +— updatePcPerm(c),.)], ms' & msprame) —p (halted, m’), for
some k" < n®), m/ and MSframe- Due to ms’ 1, W', mssi, mSaag, ms,,
and ms; are unchanged.
The execution loads ¢; to r; and jumps to cgcsl) (the point just before the assertion).
As ms; = 1, the assertion is successful and the execution halts. In other words,
there were no changes to the memory.
Use W', ms, = 0, and ms’ to get the desired result, i.e., m’ = ms’' & ms frgme and
ms’ 3 W’ (using downwards closure of memory satisfaction).

2.3. case: (n/,0) € V(W) (the contents remaining registers)
Trivial to show.

Get
<n’, (rego[pc — updatePcPerm(cqagy)][r1 — Cadv][To — cf"],m(g))) e O(W)

By initial assumption of the lemma, t_he execution halts. Use msframe, m’ and the number of
steps it takes to halt to get: W’ JP™ W, ms, and ms’ s.t. m' = ms, W ms’' & mspame and
ms’ i, W'. AS g4y is a permanent region, we know it is still in W’, so m/(flag) = 0. O

4.2 Encapsulation of Local State Using Local Capabilities and scall

Assembly program using the stack. This program assumes a rgy, € {pc, ro} register that contains
a stack capability (a local RWLX-capability):

£2: push 1
fetch r1 adv
scall r1([],[1)
pop ril
assert rl1 1

2f: halt
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Lemma 3 (Correctness lemma for £2). let

Cadv = ((E, GLOBAL), base qqy, €nd a4y, base 44, + offsetLinkFlag)
cra =2 ((RWX, GLOBAL), £2 — offsetLinkFlag, 2f, £2)
Comalioe = ((E, GLOBAL), base malioc, €ndmalioc, baSEmalioc + OffsetLinkFlag)
Con = ((RWLX, LOCAL), base sy, end s, basesy, — 1)

Clnk =2 ((RO, GLOBAL), link, link + 1, link)
reg € Reg
de
m :f msf2 U] MSflag W MmSnk W MSado W MSmaltioc ¥ Mg W ms frame

and

® Cralloc Satisfies the specification for malloc and tmalioc,0 15 the region from the specification.

where

dom(msye) = [£2 — offsetLinkFlag, 2£|

dom(mspag) = [flag, flag]

dom(msyink) = [link, link + 1]

dom(mssi) = [basesi, end su]

dom(ms 4y ) = [baseady, end gy

MSmailoc ‘n [0 tmalloc,0] foralln e N
and

o mso(£2— offsetLinkFlag) = ((RO, GLOBAL), link, link+1, link), ms ¢o(£2— offsetLinkFlag+
1) = ((RW, GLOBAL), flag, flag, flag), the rest of ms o contains the code of f2.

® MSfag = [flag — 0]

o MmSunk = [link = Calioe, link + 1 = Coay]

® MSady(baseady) = Clink and Va € [baseqdy + 1, end]. msqay(a) € Z

(reglpc = cpo][rsik — csur], m) —p (halted,m’),
then
m’(flag) = 0
|
Proof of Lemma @ (using scall lemma). Let n be given and make the assumptions of the lemma.

If we can show
(n, (reglpc = cpa][rsk — Coti], ms W msgyy)) € O(W) (1)

for
ms = msygo W msfqg W MSiink W MSady ¥ MSmalioc

and

nwl,p ]
base qdy,end gy

W =10 tmalioc,0][1 — 151 (perm, ms o & MSfiag)][2 — (51 (perm, ms g )] [3 > ¢
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then we are done as we by assumption has
(reglpe = cral[rsik = csix],m) —y (halted, m’)

so|l|gives us a W’ JP™ W where W' satisfy part of m’. As ms flag 18 governed by a perm region,
so it is unchanged. In other words

m’(flag) =0
So it suffices to show[I} To this end use Lemma [§ Let ms; be given, then

(reg[pc — cpol[rstk — Csti], ms W msgy Wmsy) =y (reg’, ms W msl,, &Wmsy)
where
e (reg’,ms) islooking at scall rqq,([],[r;]) followed by cpent
® Cpest is Cp2 that points to the instruction after the scall.
e reg’ points to stack with [basesy; — 1] used and mSynusea unused

— for some msynuseq Where ms’,, = [basesy, — 1] W MSynused-

L4 reg/(radv) = Cadv

In order to show the observation part necessary for Lemma [8] we use the ”scall works”-Lemma
(Lemma [58). Show the following

1. ms i1 W
Use Lemma [66] with

1.1. mspo W msaag in—k [1 — ¢ (perm, ms o & msfqg)]
Lemma [67]

1.2. MS adv W MSmalloc ¥ MSlink n—k Wpart
where

nwl,p ]

Whpart = [0 Lmalloe,0][2 = Lo (perm, msyni)|[3 — Lbase aan, end aay

This amounts to
1.2.1. (n—k— 1, mSmalioc) € H 1 Wyer where H is the interpretaion of the tymaiioc,0
region.
Follows from the malloc specification.
1.2.2. (n—k—1,mSadn) € H™' 1 Wpart
Can be shown using Lemma
1.2.3. (n—k — 1, msynk) € HS"(mspink) 1 Wpart
This amounts to showing
1.2.3.1. (n—k — 2, ¢matioc) € V(Whpart) Follows from Lemma
1.232. (n—k—2,codw) € VWpart)
Follows from Theorem [2] using Lemma

2. Hyp-Callee
Assume

o dom(msynused) = dom(msgee & msh,.coa),
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o W' = revokeTemp(W)[15** (temp, msgy ¥ msacr), (PP (dom(ms’,,ceq))]s

e ms” i _p_1 W’

/

e reg’ points to stack with () used and ms,. ..

4 unused
e reg’ = regy|pc — updatePcPerm(cady),T0 = Cret,s 'sth = Chaggos Tadv = Cadv)
(n—Fk—1,cret) € VW)

o (n—k—1,dy) € V(W)

Show
(n—k—1,(reg’, ms")) € O(W')

By Theorem [2] we get
(n — k — 1, updatePcPerm(cqqy)) € EW')
getting the desired result amounts t(ﬂ

2.1. (n—k —1,ceqn) € V(W) ‘
To this end let n’ <n —k — 1 and W JP™ W’ be given and show

(n’, updatePcPerm(cqay)) € EW")
Follows from Theorem Pl and Lemma 221

3. Hyp-Cont
Assume
e n/ <n-—2
o W 3P reyoke Temp(W)
o ms” i, revokeTemp(W")
o reg”(pc) = Cneat

e reg” points to stack with msy, used and ms”

UNUSE:

"

d unused for some MS . mused

and show
(n', (reg”, ms" W [base sy, — 1] & ms., ) € O(W")

unused

From ms" :, revokeTemp(W"), we get that msss is unchanged. Given a frame ms} and
assuming n’ is sufficiently large, the execution continues as follows:

(reg”, ms"Wbasesy, — 1]Wms,, cca¥msy) = (halted, ms"W[basesy, — 1]Wms’,, . ca¥msy)

because 1 is popped of the stack to a register, then it is compared with 1 in the assertion,
so the assertion succeeds and halts immediately after.

By assumption we had ms” :,; revoke Ternp(W') which gives us exactly the memory satis-
faction required by O(W").

O

ML-like program:

2We have memory satisfaction by assumption and the above entails the register-file is in the register-file relation.
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let £ = fun adv =>
let 1 =1 in
adv(l);
1 :=1;
adv (0);
assert(!1 == 1)

In this example let 1 = 1 in allocates a new local capability 1 with read-write permissions.
Assuming adv has no access to capabilities with permit write local, they cannot store 1 and thus
change its value in the second call.

4.3 Well-Bracketedness Using Local Capabilities and scall

£3: push 1
fetch r1 adv
scall r1([1,[1)
pop rl
assert r1 1
push 2
fetch r1 adv
scall r1([1,[D)
3f: halt

The assertion of f3 may seem a bit awkward because it is between two calls. If an adversary
could capture the protected return pointer from the first call and save it until the second call,
then the adversary could jump to it again. At this point the top of the stack would be 2, so
when the execution reaches the assertion, it would fail. However, the produced return pointer
is passed as a local capability, so the only place the adversary can store it is on the stack. The
adversary loses control of the stack when control is returned to f3 where the scall makes sure
to sanitise the stack and register file before control is passed back to the adversary. In other
words, the adversary has no way to capture the continuation which makes the above safe and
well-bracketed.

Lemma 4 (Correctness lemma for £3). For alln € N let

def

Cadv = ((E, GLOBAL), base 44y, end 44y, base g4y + offsetLinkFlag)

def
Cstk =

def

RWLX, LOCAL), base s, end g1, base sy, — 1)

Cmalloc

((

cr3 =2 ((RWX, GLOBAL), £3 — offsetLinkFlag, 3f, £3)
((
((

E, GLOBAL), base maiioc, €ndmaiiocs baS€maiioc + offsetLinkFlag)

def

clink = ((RO, GLOBAL), link, link + 1, link)
reg € Reg
m « ms 3 W msaag W msiink W msady W mSmatioc W MSsek W MS frame
and

® Cmalloc Salisfies the specification for malloc.

32



where

dom(ms 4, ) = [baseadn, end gy

MSmalloc ‘n [0 — Lmalloc,O]

and

o msy3(£3—offsetLinkFlag) = ((RO, GLOBAL), link, link+1, link), ms ¢3(£3— offsetLinkFlag+
1) = ((RW, GLOBAL), flag, flag, flag), the rest of mss contains the code of f3.

® Mmsfag = [flag — 0]
® MSink = [link = Cmalioc, link + 1 = Cady]
® MSady(baseady) = Clink, and all other addresses of msqq, contain instructions.
if
(reglpc — cp3)[rsik — Csti], m) —, (halted,m’),

then
m'(flag) = 0
[ |

In an attempt to aid the reader, we first provide to high-level descriptions of possible proof
of Lemma [4] followed by a more detailed proof.

Proof of Lemma (high-level description). Executing f2 until just after the jump in the first
scall brings us to a configuration where the stack contains 1 followed by some activation code
followed by all zeros. The pc-register contains an executable adversary capability, register rq
contains a protected return pointer - that is a local enter capability for the execution code, and
the r4 contains a capability for the cleared part of the stack.

At this point we can define a world with permanent regions

e fixing the assertion flag, the code of f2, and the linking table.
e the initial malloc region
e a "bP region
and temporary regions
e a region fixing the private part of the stack
e a (P! region for the rest of the stack

From the FTLR, we get that in any future world of W, the adversary capability and its executable
counter part is in the expression relation and thus safe to execute in suitable configurations. If
the configuration we consider right now is suitable, then the execution produces a memory where
the permanent invariants of W are kept which means that the flag is 0.
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To argue that the configuration is suitable, we need to argue that invoking the continuation
produces an admissible result. As the continuation is a LOCAL capability, we take a public future
world of W. In this public world, the private part of the stack remains the same as before the
jump, so when we reach the assertion it succeeds and execution continues. At the point of the
jump in the second scall, the stack contains 2 instead of 1, but otherwise essentially the same.
Here we again use that it is safe to execute the adversary and that the continuation in this case
halts immediately in a configuration where the assertion flag must be 0. O

Proof of Lemma|{| (high-level description 2). If we can show
(reglpc > cr3)[rstk = Csth], MSmattoc W ms" W ms gy W mssy,) € O(W), (2)

for a world W where the assertion flag is permanently 0, then it is still 0 in any configuration the
execution halts in. W also needs to require the program and the linking table to permanently
remain the same, have a region that governs malloc and a standard permanent no-write local
region for the adversary.

Due to Lemma the scall lemma, for each scall we have to argue that the adversary
and continuation produces results that respect the regions of W. Using Lemma [§] the O anti
reduction lemma, it suffices to argue that each part of f3 between scalls produces admissible
results.

Executing until the first scall only pushes 1 to the stack, so the invariants of W are preserved.
Due to the scall lemma, we need to argue that that the adversary and the continuation produce
admissible results.

Using the FTLR, we get that the executable capability for the adversary is in the £-relation.
As we provide no arguments to the adversary, most of the conditions are satisfied by assumptions
and Lemma which makes sure that the stack capability is in the value relation. Which gives
us that the adversary produces an admissible result.

With respect to the continuation, it is passed to the adversary as a local capability, so when
we reason about it, we consider public future worlds. The scall uses temporary regions for the
stack and these persist in public future worlds. This allows us to assume that the private part of
the stack still contains 1 after the call. Further, the program, flags, and linking table remain the
same in any kind of future world. Therefore, we know that the execution continues by popping 1
from the stack and then asserting that it is indeed 1, which is indeed the case, so 2 is pushed to
the stack. At this point we reach another scall. No changes where made to the permanent part
of the stack, so the invariants are still satisfied. At this point we use the scall lemma one last
time. The adversary call code is well-behaved for the same reasons as in the first call. The scall
lemma lets us assume that the continuation continues in a memory that satisfies the invariants of
W. The execution halts immediately in the continuation, so it produces an admissible result. [J

Proof of Lemma[j, Assume the premises of the lemma. Now define

1+ 5" (perm, MS flag ¥ MS f2)]

W = [0 — Lmalloc,O]
[
[2 5 155 Y (perm, msing )]
[

nwl,p ]
base qdy,end gy

3=

Further define
ms' = Mmsfag W ms o W msn, ¥ msady
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If we can show
(n+1, (regpc — cg3][Tstk = Csth]s MSmatioc ¥ Ms’ W Mgy W mssy)) € O(W), (3)

then using msframe as the frame and m’ as the resulting memory, we get that m’ = ms” & ms, ¥
MS frame for some ms’ and ms, s.t. ms” ;1 W. Region 1 guarantees that the assertion flag is
unchanged, so we have

m’(flag) = 0
So SFTS|[3l To do so, we use Lemma Let ms¢ be given. The execution proceeds as follows:

(reglpc = cra)[rsu > Csi], ms' WmssyWms ) —; (reg’, ms'Wlbase sy, — 1|WMS stk |basep+1,endp IMS ),

where
(reg’, ms') is looking at scall r([],[]) followed by cpex

where cpept is ¢z adjusted to point to the next instruction, namely pop ri. Further we have
e reg’ points to stack with [basesy, — 1] used and Mgk |pase +1,endyy,  UnUsed

and ¢ is a suitable number of steps.
To show

(n — i, (reg’, ms" W [basesy — 1] W mSsk|pase.p+1,endo)) € O(W)

We use Lemma 58| (we do not use the local frame in the lemma) which requires us to show
1. ms' ;s W
Partition ms’ as follows:
1.1. msmaitoc: governed by tiaiioc,0, use malloc specification.
1.2. mspgqg ¥ msypa: governed by region 1, only this memory segment is accepted.

1.3. msynk: governed by region 2, only this memory segment is accepted. We also need to
show that the contents is safe, i.e. shoe

1.3.1. (n — 1, ¢maiioc) € V(W): Follows from Lemma
1.3.2. (n —1,cqqw) € V(IW):
We will show
YW 3P W, (n, caqn) € V(W) (4)

which will give us what we need using downwards closure as well as a result for
later use.
Let W’ JP™ W be given and show

(n, (baseqqy, end gy, baseqqy + offsetLinkFlag)) € enterCondition(GLOBAL)(W')
to this end let W JP™ W’ and n’ < n be given and show

(n', updatePcPerm(cqaq,)) € E(W")
This follows from the FTLR (Theorem [2)) if we can show

(', base ady, end qqy) € readCondition(GLOBAL)(W")

nwl,p

Lbaseny, end,y, SOverns the adversary, so the result follows from Lemma
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1.4. ms,q,: Follows from Lemma

2. Hyp-Callee
Assume

o dom(mssik|base y+1,endyy,) = dom(msqee Wms!, )

o W' = revokeTemp(W)[15" (temp, [basesy — 1] W msact), (P (dom(ms’,,....q))]
o ms' i1 W'

e reg” points to stack with () used and ms’,,, .., unused

o reg”’ = regy[pc — updatePcPerm(reg’ (1)), 10 ¥ Cret, Tsth —> Caypo, 7 > T€G' (1)]

e (n—1—1,crt) € VW)

o (n—i—1,cy) VW)

for some MmSact; MSunused, ms//v ’I”@g”, Cret-
Using the FTLR, we get (n — i — 1, updatePcPerm(cqqy)) € E(W'), from

2.1. ms"” :p_i—1 W' : By the above assumptions
2.2. (n—1i—1,reg") € V(W'):
show
2.2.1. (n—i—1,cret) € V(W) : by above assumptions.
222, (n—i1—1,c,) € V(W’) : by above assumptions.
2.2.3. (n—i—1,cqqp) € V(W) : follows from
2.2.4. The remaining registers we need to consider contain 0 and are thus trivial to show.

we get
(n—1i—1,(ms" reg")) € OW")

3. Hyp-Cont
Assume:

en<n—7-2
o W' 3P reyoke Temp (W)

e ms" i revokeTemp(W')

for all r, we have that:
" = Cnest if r=pc
reg” (r) : : s
e V(W") if reg”(r) is a global capability and r & {pc, s }

"

" H : "
e reg” points to stack with [basegy, — 1] used and ms., . .q unused for some ms., .

and show

3.1. (reg”, ms"” W [basesy, — 1] Wms! )€ O(revokeTemp(W"))

As W JP™ T/ we know that the program, assertion flag, and linking table remain
unchanged in ms”. Given some frame ms'f, then the execution proceeds by first
succeeding the assertion and then pushing 2 to the stack:

(reg”, ms"W[basesps — 1]Wmsi,,cea®ms’s) =i (reg®, ms"Wlbase s, — 2Wms!,,,  .q¥ms’y)

where
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/
next

e (reg™® ms") is looking at scall r([],[]) followed by c
e 7eg® points to stack with [base — 2] used and ms”, . unused
o 160 (1) = couy
By Lemma [8]it suffices to show
3.1.1. (0 —k, (reg™®, ms” & [base s — 2] W msll, o
Show this using Lemma [58 a. Show:

3.1.1.1. ms” i _y revokeTemp(W") is satisfied by one of the first Hyp-cont assump-
tions and Lemma,

3.1.1.2. Hyp-Callee
Assume:

)) € O(revoke Temp(W"))

) = dom(ms’, ., W ms)

i dom(msﬁ unused)

unused

), 17 (dom(ms®) )]

unused

o W) = revokeTemp(W")[15t (temp, [base sy, +— 2]Wms’,,.,
o ms® o, WO

e reg™ points to stack with @) used and ms'®

amuseq unused

/
ret?

e reg™ = regy[pc — updatePcPerm(cqay), o — €
(0 — k= 1,cly,) € V(WD)

o (n—k—1,c",) e VW®)
This argument is almost identical to the one we just did for the first call:
Using the FTLR, we get (n — i — 1, updatePcPerm(cqg,)) € E(W®)). Which
we use with

3.1.1.2.1. ms® 1,1 WE): By assumption.

3.1.1.2.2. (n' —k—1,7eg™) € RIW®): Show:

3.1.1.2.2.1. (0 —k —1,¢qa) € V(IW®) by Assumption

3.1.1.2.2.2. (n' — k —1,c,,) by assumption.

3.1.1.2.2.3. (' —k—1,cY,) by assumption
to get

/!
Tstk = Cotr T — Cadu]

(n’ —k—1, (reg™, ms(s))> e OW®)

3.1.1.3. Hyp-Cont
Assume

e n' <n —k-2
o W) Jrub revoke Temp (W' )[5% (temp, ms g, )][c*** (temp, msf;z)used)]
° ms(?’) ntt TevokeTemp(W(3))

for all r, we have that:

=c if r =pc
reg(4) (7,) next
c V(W) if reg™(r) is a global capability and r & {pc, reu}

(3

omuseq unused for some

e reg’ points to stack with [basegy, — 2] used and ms
(3)

unused
and show

ms

(n", (reg®, ms® W [base sy, — 2] & ms®) )) € O(revoke Temp(W®))

unused
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To this end let ms’{, m"”, and j < n” be given and assume

(3

(Teg(?’)’ mg(s) ] [basestk — 2] W MS ynuse

4 Wms’t) —; (halted,m”)
As the execution halts immediately,

(3)

m” = ms® W [base sy — 2] M8, e

8 ms’
By assumption we had ms® 1, revokeTemp(W(3)) and the frame is un-
changed, so we can split the memory as needed.

O

4.4 Inverted Control and Return From Closure

The following example is constructed to investigate the difficulties of preserving an adversary’s
local frame. There is no assertion as this is (slightly) beside the point. The lemma we would
prove about this should look like Lemma [5] but it is not state and proven here.

g2: move 73 pPC

lea r3 ...

crtcls || r3

rclear RegisterName \ {pc,ro,71}
2g: jmp 19
f5: reqglob rl

prepstack rgy

scall r1([],[ro, ens])

mclear 7y

rclear RegisterName \ {rg,pc}
5f: jmp 7o

4.5 Variant of the “awkward” example

Assembly variant of the “awkward” example from [Dreyer et al., 2010} p. 11] which roughly was:

g =fun _ => let x = 0 in
fun f =>
x := 0;
£0O;
x = 1;
£0;
assert(x == 1)

Our translation of the example:

gl: malloc rp 1
store ry O
move T3 pC
lea 73 ...
crtcls [(x,r2)] 73
rclear RegisterName \ {pc,ro,71}
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1g: jmp 19
f4: reqglob 71
prepstack 7y
store = O
scall 1 ([],[ro,71, "env))
store = 1
scall r1([],[ro, ens])
load 71 x
assert r; 1
mclear 7Tk
rclear RegisterName \ {ro, pc}
4f: jmp 719

Where the ... is the appropriate offset to make the capability point to £4.

Lemma 5 (Correctness of g1). For alln € N let

Cadv = ((RWX, GLOBAL), base 4y, €nd g4y, base 44, + offsetLinkFlag)

cst = ((RWLX, LOCAL), base sy, end s¢i;, base gy, — 1)

Cmalloc =

((

co1 2 ((B, GLOBAL), g1 — offsetLinkFlag, 4f, g1)
((
((

E, GLOBAL), base maiioc, €ndmaiiocs baS€mailoc + offsetLinkFlag)
Clnk = ((RO, GLOBAL), link, link, link)
m o MSg1 W MSfAag W MSynk & MSady W MSmalloc W MSstr W MS frame
where

® Cmalloc Satisfies the specification for malloc with Lmalioe 0

dom(msg1) = [g1 — offsetLinkFlag, 4f]

mssik) = [basesy,, end ]
dom(msaqy) = [base gy, end gdy]

MSmalloc ‘n [O — Lmalloc,O]
and

o msg1(gl — offsetLinkFlag) = ((RO,GLOBAL), link, link, link), msg1(gl — offsetLinkFlag +
1) = ((rW, GLOBAL), flag, flag, flag), the rest of msg1 contains the code of g1 immediately
followed by the code of f4.

® Msaqy = [flag — 0]
® MSpink = [hnk = Cmalloc]
® MSady(baseadn) = Cling, and all other addresses of msqq, contain instructions.

e Va € dom(msgy). mssu(a) =0
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(rego[pe = Cadnl[rstk — Cste][r1 — cg1],m) =, (halted,m’),

then
m'(flag) =0
|
In the proof of Lemma [5] we will use the following region
Definition 2.
= (perm, 0, ¢pup, ¢, Hy)
Ppus = {(0,1)}"
¢ =(1,0)Udpup
H, s W ={(n,ms) | ms(z) =sAn >0} U{(0,ms)}
|
Lemma 6. Definition[d defines a region. |

Proof of Lemma [0,

® ¢pup is defined as the reflexive transitive closure, so it is immediately well formed.
e ¢ adds a transition to ¢, and is also reflexive and transitive.
e H, is trivially non-expansive in the state.
e H, does not depend on the W, so0 it also becomes trivially non-expansive and (privately)
monotone in W.
O

Proof of Lemma @ (using scall lemma). Let n be given and make the assumptions of the lemma.
Define

W =0+~ Lmalloc O]

[

[1 > 5% (perm, ms k)]
l

[2 = L;Z;l;esm,endm}

[3 = Lbase

[

adv endadv]

4+ 1" (perm, ms g1 W msfiag)]

and
ms = msg1 & MSfAag W MSyink W MSady W MSmalioc

If we can show
(n, (rego[pC — Cadv][Tstk > Cstr][T1 — cg1], ms W mssy,)) € O(W) (5)

then the termination assumption gives us that part of m satisfies a private future world of W.
Region 4 is permanent, so

m(flag) =0
So it suffices to show Eq. [5} To this end use the FTLR to show (n,ceay) € E(W), so show
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1. (n, (baseqqy, endgay)) € readCondition(GLOBAL)(W)
Simple using region 3 in W and Lemma

2. (n, (baseady, endq4y)) € writeCondition (™!, GLOBAL) (W)
Simple using region 3 in W, using Lemma [T5]

in conclusion (n, cqqy) € E(W). We get Eq. [f]if we show [3] and

3. msWmsgy in W

3.1.

3.2.

3.3.

msg1 W MSfag in (4 5% (perm, msg1 W mspag)]
Lemma
pwl }

MSstk ‘n [2 = Lbasesm,end‘sm
Lemma [68] and assumption that msy is all 0.

nwl,p

. ta,
MS malloc IMS 1ink WMS adv in [0 — Lmalloc,O] [1 =5 u(perma mslznk)][?) = LbaSBadendadv

For convenience define

nwl,p ]
base iy, end iy

Wmini = [0 = Lmalloc,OH1 — Lsta,u(perm’ mslink)] [3 =

Partitioning the memory segment in the components of the disjoint union, the malloc
part follows from assumption msmaiioc in [0 = tmalioc,0] and the malloc specification.

The linking table part of memory amounts to showing:
(n, msing) € H" (ms1ink) (1) (€ (Winini)
which in turn amounts to showing
(n =1, ¢matioc) € V(Winini)

which follows from Lemma

Showing
(’I”L, ms ad'u) € Hgtigeadv sendqqy (1) (57 ! (Wmmi ))

is a bit more involved. It amounts to
Va € dom(msady)- (n — 1, msaan(a)) € V(Winini)
which in turn is trivial for everything but
(n =1, clink) € VWanini)
This amounts to showing
(n — 1, (link, link)) € readCondition(GLOBAL)(Wnini)

which amounts to

sta,u(

n—1
, pwl
L Perm, msunk) S Lk tink

which follows from Lemma 23]

Using Lemma [66] repeatedly with and gives the desired memory satisfaction.
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4. (n,rego[rs = cs][r1 — cq1]) € R(W)
This amounts to showing

4.1.

4.2.

(n, csi) € V(W)
The assumptions on cg and msgy in the lemma entail

o rego[rsu > Csi][r1 > cg1] points to stack with ) used and msey, unused
and further there is a (P! region for msgy, in W, so the result follows from Lemma

(n,cq1) € V(W) '
Let n1 < n and Wy 2P™ W and show

(n1, updatePcPerm(cq1)) € E(Wh)
To this end assume ny < ny, msy 1, Wi, and (ng, reg;) € R(W7) and show
(ng, (regq [pc — updatePcPerm(cg1)], ms1)) € O(Wh)
Using Lemma Lemma Lemma |8 (and some others), it suffices to show

(nh, (regy, msa W ms’ W mses Wmsy)) € O(Wa)

malloc

where
Wo = W10 = tmaiioc)[i1 + 5 (perm, ms )] [iz — 4]
where i1,i9 ¢ dom(W7) and iy # 42 and ¢, is the region in Definition 2| which is a
region by Lemma [} Also
;pm’u lealloc
e ¢, = ((RWX, GLOBAL), =, x, T)
e ms, =[x+ 0]
malloc ¥ MScls & msg 1y Wa
® Ceny = ((RWX, GLOBAL, env, env, env))
® MSeny = [ENV — ¢4
e ¢4 = ((RWX, GLOBAL), g1 — offsetLinkFlag, 4f, £4)

® MScis = MSeny H MSact

® lmalloc

® Mmso W ms

updatePcPerm(reg,(rg)) 1 = pc

reg,(ro) r=rg
regy(r) =
2 Cels r=mnr
0 otherwise

Finally assume Hyp-Act:

Vreg, ms. reg(pc) = cois =

3j.Ymsy. (reg, mswms qsms ) —; (reg[pc — updatePcPerm(csa)|[Teny — Cenv], msWmMS csWms )
(6)

Show
(ng — 1, (regy, msa W ms, W MSeny W ms, Wmses)) € O(Wa) (7)

malloc

If reg, (ro).perm & {E,RX, RWX, RWLX}, then the execution fails after the jump and is
thus trivially true.
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If reg, (ro).perm € {E, RX, RWX, RWLX }, then either executeCondition or enterCondition
holds for the capability in reg,(ro). Now use Wy JP“® W, with the appropriate con-
dition to get

(no — i, updatePcPerm(reg,(rq))) € E(Ws)

which in turn gives us if we can show the following

4.2.1. msa W ms! 0 WMsen, Wmsy Wmses in,—i Wa

We first show the following;:

/
mallo

® MSeny W MScs ‘no—i [21 =

o msy W ms  na—i W10 = Limalioc): We already know this.

st (perm, mseny © mses)]: By Lemma @
® MSy iny—i to — Ly: ms(x) =0, so okay.
4.2.2. (ng —1i,regy) € R(Wa)
Amounts to showing
4.2.2.1. (ng —i,regy(rg)) € V(Wa) by assumption (ng,reg;) € R(W1) and V mono-
tonicity wrt. JPuP

4.2.2.2. (’I’Lg — i,Ccls) S V(Wz) _
Let n3g < ny — ¢ and W3 2P™ W5 be given and show

(ng, updatePcPerm(ces)) € E(W3)
To this and let ny < ng, mss :n, W3, and (ng, regs) € R(W3) and show
(nyg, (regs|pc — updatePcPerm(ces)], mss)) € O(Ws) (8)

Let ms% and ms) be memory segments such that mss = ms} W ms} and
msh i, revokeTemp(W3) (using Lemmal64)). By ms3 :n, W3 and W3 2P Wy,
we know ms s C msh, so using Hyp-Act(6]), we get j such that

Vms . (regs[pc — updatePcPerm(cqs)], msh © msh W ms ) —;

(regs[pe — updatePcPerm(ces)][Teny = Cenv), msh W msh Wmsy)  (9)
Using Lemma [§] it suffices to show
(n4, (regs[pe — updatePcPerm(ces)[Feny F Ceno), msh & msh)) € O(Ws)

Use Lemma @ again. This time let ms'J{ be given and take ms, to be the

part of msk that regs(rsu) does not govern. By the operational semantics,
we kno

(regs[pe = updatePcPerm(ces)][Feny F Ceny], ms5@msi&ms’) — ;i (reg,, mss@msi&ms’)

where

e (regy, msy) is looking at scall r([], [ro, 71, 7env]) followed by cCpent
— Cneqt is the capability pointing to the next instruction.

e reg, points to stack with () used and msynuseq unused

— prepstack did not fail, so the stack capability must be RWLX and follow
the stack convention.

3the execution may fail, but then the configuration is trivially in the observation relation.
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reg,(r1) is a GLOBAL capability.

— reqglob did not fail

msq(x) =0

T€G 4 (renv) = Cenv

region is (the ¢, region) can be in either state 0 or 1, so to make sure it is
in state 0, we use a private transition. So let Wy be revoke Temp(W3) with
region i in state 0. We then have

MS4 ny—j—j' W4

Now we can use Lemma [58 to show:

(ng—7—7,(regy, mss W ms, W 0Wms,nusea)) € O(Wy)

where ms, is the local frame of the scall lemma.

4.2.2.2.1.
4.2.2.2.2.

MSy iny—j—j revokeTemp(Wy): follows from Wy = revokeTemp(Wy)
Hyp-Callee

We know (ng, regs(r1)) € V(Ws). If this is not a capability that becomes
executable when jumped to, then the execution fails, so the register mem-
ory segment pair is trivially in the observation relation. If it is executable,
then either the executeCondition or the enterCondition holds for appropri-
ate values. We also know that it is a global capability, so we can use it
with private future worlds. We have W5 = revoke Temp(Wy)[*" (temp, ) &
MSget $MS,), L”M(dom(ms;nused))} TP W, for some ms e and ms! o ced-
By the execute/enter condition, we have

(ng —j — 7', updatePcPerm(regs(ry))) € E(Ws)

Now it suffices to show

4.2.2.2.2.1. mss p,—j—jy—1 Ws for some mss which is one of the assumptions of

Hyp-Callee.

4.2.2.2.22. (ng —j—j —1,reg5) € R(W5) where regs is as described in the scall

4.2.2.2.3.

lemma Hyp-callee premise.
Amounts to showing:

1) (ng —j— 3" —1,reg5(r1)) € V(Ws), use Lemmawith (ng —j—1,1eg5(r1)) €

V(Ws3), the capability is global, and W5 JP™ W3. 2) The protected return
pointer and the stack capability are in the value relation by Hyp-callee
assumptions.

which gives us
(’I’L4 _j - j/ - 1a (7’695, m35)) € O(W5)

Hyp-Cont
Assume

e ns<ng—j—j —2

o W JP% revoke Temp(Wy)

® mSg in, revokeTemp(Ws)

L4 T’€g6(pC) = Cneugt, 7"696(7"0) - 7'693(7’(]), T€g6(7’1) = 70693(701)7 reg(renv) =

CG’VL’U
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e regg points to stack with () used and ms!, ., unused
Show
(n57 (T‘eg(h mse W ms; W 0w mslv:nused)) € O(WG)

Use the O-anti-reduction lemma (Lemma [8)) followed by the scall lemma
(Lemma [58). Given ms’, we know by the operational semantics and the
fact that the program hasn’t changed that

(regs, msgWms, Wms',,, .awmsy) =i (regs, mse[x — 1Wms,Wms', . .qems)

where

/

o (reg;, msgx > 1]) is looking at scall r([],[ro,"env]) followed by ¢,

ot 18 the current pc capability but looking at load 1y x.

L4 7"897(7“0, T1,Tenv, rstk) = T€gdg (7"0, T1,Tenv, Tstk)
In revokeTemp(Ws), we don’t know which state the ¢, region is in, but
state 1 is reachable via a public transition, so let W7 be revoke Temp(Ws)
with region 75 in state 1. It follows easily that

msg[z — 1] ik Wr
We continue the proof in item

5. At this point, we apply the scall lemma, to get

(ns — k, (regy, msg[z — 1] W ms, Wms., )€ OWr)

unused
show

5.1. msg[z — 1] :py—k revokeTemp(Wy), follows from W7 = revoke Temp(W7).
5.2. Hyp-Callee: Goes like the first Hyp-Callee (4.2.2.2.2.]).
5.3. Hyp-Cont
Assume:
o ng<ns—k—2
o Wy JP% revoke Temp (W)
® Ms7 iy, revokeTemp(Ws)
o 1egg(ro, Tenv) = 1€97(ro, Teny)
® 1egg(PC) = Chept
e regg points to stack with @) used and ms
Show:

(6)

unused

(6)

unused for some ms,, ..

(ng, (regg, ms7 W ms, W W ms®) )) € O(Wsg)

unused

Use Lemma Let msgfl) be given, then

(5)

unused

(4))

(regg, ms7 W ms, W0 W ms Wmsy’) = (regg, ms7 W ms, W0 Wmsy ¥ ms;‘l))

where
e regy(pc) = updatePcPerm(regs(ro)) (note regg(ro) = regs(ro))

e regy(ro) = regs(ro)
e For all r & {pc,ro}, regy(r) = 0.
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e dom(msg) = dom(ms

(5)

unused

) and Va € dom(msg). msg(a) =0

The execution proceeds as above because ¢, in Wy is in state 1, so msy(z) = 1 which
causes the assertion to succeed. Subsequently the stack and most of the registers are
cleared.

Now take Wio to be Wy with all the regions in dom (| W3] ;) reinstated. Now we
show the following:

5.3.1.

5.3.2.

Wi 2P0 Wy
We have
Vr e dom(Wg) Wg(?") = Wl()(?")

if the region was permanent in W, then it is there because Wiy JP"™ Ws. If it
was temporary, then it is there because it was just reinstated. If it was revoked
in W3, then it is still there because the only reinstated region were the temporary
ones in Wis.
All the future worlds we have been given have been public, so the regions can only
have made public transitions. In W3 region ¢, is in state 0 or 1. In Wiy region
Ly 1s in state 1. State 1 can be reached from 0 and 1 using a public transition, so
the ¢, in W7q is a public future region of the ¢, in Wj.
In other words, all the regions in W3 have only taken public transitions compared
to the corresponding regions in Wiy.
The relation between the relevant worlds is sketched out in Figure |4.5
ms7 W ms, W0 Wmsy g1 Wio
First notice that from

o (ny,regs) € R(Ws3)

o ms3 i, Ws

o reg(rsy).perm = RWLX
using Lemma |§| we get that there exists a region, 745 such that

n  pwl
WS(radvstk) = Lsik, sthy

and dom(msunused) C [sthq, sthy]. Now take msqqysik = MSr|[sth,,stk,] (NOtice this

not all of [stk,, stky] is in the domain of ms,). We know
msy in, revokeTemp(Wsg) (10)

and
mSS :n4 W3 (1].)

which gives us two partitions say Pg and Pj5 respectively. Now define the partition
P as follows:

Py(r) r € dom([Ws] permy)
P(T) = § MSadvstk ¥ MSo T = Tadystk
Ps(r) otherwise

Now let r € iW, ny < ng — 1, and W(r) = (., s, -, -, H) and show

(n7, P(r)) € H(s)(&™" (Who))-

Consider the following cases
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5.3.2.1. r € dom(|Ws]permy)

Use the fact that W9 27" revoke Temp(Ws) and that permanent regions
respect future private world.

5.3.2.2. r = T advstk

. S 1
In this case we know the region is 2}

sthy . sthy s SO We need to show
as

(n7, M adustr ¥ mso) € HYY' o (1)(€7 (Who))
which amounts to showing
Va € dom(msg). (n7 — 1, mso(a)) € V(Wig),
which is trivial, and
Va € dom(msaqusik). (N7 — 1, MSqqusik(a)) € V(Wio)
here we use that [[1] entails
Va € dom(ms agpstk)- (R4 — 1, ms gavsi(a)) € V(W3)

and the fact that V is monotone w.r.t J7“ Wiy 3P Wy, and V(W) is
downwards-closed.

5.3.2.3. otherwise
Use Wio P’ W3, and the fact that for a temporary region H(s) is mono-
tone w.r.t. JPu.

5.3.3. (ng — 1, regg) € R(Wio)
Most registers are cleared. The only interesting register is rg, so show:

(ng — 1, regy(ro)) € V(Wrp)
This follows from regq(ro) = regs(ro), (n4,regs) € R(W3), V monotone w.r.t
2Pl Wi 3P0 W,

As we were using Lemma [§] we need to show
(ng — 1, (regy, ms7 W ms, W0 Wmsy)) € O(Wyp)

To this end the use regs(ro) = regg(ro) and (ng,regs(ro)) € V1(Ws). Assuming
that regq(ro).perm € {E,RX,RWX,RWLX} (if this is not the case, then it is trivial
to show the above as the execution fails), then either the executeCondition or the
enterCondition hold for appropriate values. Now use that ng—I < ny and WioJP“* W

(5.3. 1) to get

(ng — I, updatePcPerm(regqy(ro))) € E(Who)
now using [5.3.2] and [5.3.3] we get the desired result.

O

4We don’t know whether the capability is local or global, but it does not matter as we have a public future
world relation between the two worlds.
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second callback

first callback f4 returns
Constructed: R Wy R W+ _@Wlo
Given: W3 W Wy
f4 called callback returns

callback returns

5 Logical Relation
5.1 Worlds

Assume a sufficiently large set of states State that at least contains the states used in this
document.

Definition 3.
Rels = {(dpup, ¢) € P(State®) x P(State?) | ¢ppup, b is reflexive and transitive and ¢puy C ¢}

Theorem 1. There exists a c.o.f.e. Wor and preorders P gnd JP™ such that (Wor, me’)
and (Wor, Qp“b) are preordered c.o.f.e.’s and there exists an isomorphism & such that

€ : Wor = (N £ ({revoked}+
{temp} x State x Rels x (State — (Wor —b> UPred(MemSegment)))+

gp
{perm} x State x Rels x (State — (Wor =~ UPred(MemSegment)))))
opriv
and for W, W' € Wor _ _
WD W & (W) D7 (00
and
w! ;pub W < f(W/) gpub E(W)

We now define the regions to be

Region ={revoked }&
{temp} x State x Rels x (State — (Wor —b> UPred(MemSegment)))w

Tpu

{perm} x State x Rels x (State — (Wor —— UPred(MemSegment)))

Spriv

Let t.v be the projection of the view of a region.
And the worlds are
World = RegionName 2 Region

where RegionName = N.
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The two private future region relations satisfies the following properties:

(s,s) € ¢ (v, Gpup, ¢, H) = (V' ¢5pub,¢ H') r € Region
(V' 8", Bpups @'y H') TP (0, 8, dput, &, H) r 3P (temp, s, dpup, ¢, H)
r € Region

r JP™™ revoked
The two public future region relations satisfies the following properties:

(Sa 5/) S ¢pub (U7 (Zspuba 9, H) = ( ¢pub7 ¢ H' ) (temp, S, ¢pub7 o, H) € Region
(Ul, sla (b;mb? ¢/, H/) gpub (U, S, ¢puba ¢)7 ) (temp7 S, pruba (ba H) gpub revoked

revoked JP*" revoked

The two future world relations satisfy the following properties: They allow for any extension
of the current world and all existing worlds are allowed to move to an appropriate future region.
That is

dom(W') D dom(W)  Vr € dom(W). W’(r) 2> W(r)
W/ ;pub W

dom(W’) D dom(W)  Vr € dom(W). W'(r) IP™™ W (r)
W/ gpriv w

Proof of Theorem[], The theorem follows from a more general solution theorem for the category
of P preordered c.o.f.e.’s, see Birkedal et al.| [2010], [Birkedal and Bizjak| [2014] and [Bizjak| [2017].
We define two functors F; and F5 from P°P x P°P to P.

Fi((X, 27, (v, 37) =
(» (N 2 ({revoked }+
{temp} x State x Rels x (State — ((, L ) =% UPred(MemSegment)))+

mon, ne

{perm} x State x Rels x (State — ((X, 37"") 2% UPred(MemSegment))))), 27"*)
and
Fy((X, 2P), (V. W’))
(» (N 2 ({revoked }+
{temp} x State x Rels x (State — ((Y, Spub’ ) —— UPred(MemSegment)))+
{perm} x State x Rels x (State — ((X, Jpriv’y mon ey UPred(MemSegment))))), 2P*?)

The orderings I and JP** used in the definition of F; and F, are defined by the properties
given above. Note that the image of F; and F5 only differ in the ordering relation, i.e., letting U
denote the forgetful functor from the category of preordered c.o.f.e.’s to the category of c.o.f.e.’s,
we have U o F} = U o Fy. From [Bizjak| [2017] it then follows that there exists a c.o.f.e. Wor
and two preorderings I and 2% and an isomorphism ¢ satisfying the properties claimed in
theorem. (Here, in the proof, we have written the ordering explicitly on the c.o.f.e. when using
monotone non-expansive functions; in the theorem formulation we have instead annotated the
arrow to indicate which ordering is used.) O
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Erase all but a set of views:

W “ ar W(r) W(T).’U' €S
1 otherwise

Define the function active(-) as follows

active : World —s 9ResionName

active(W) = dom(|W | {perm,temp})

Memory segment satisfaction:

. 3P : active(W) — MemSegment.
ms :, W iff
ms i p W
ms = H—J P(r)A
reactive(W)
—_— Vr € active(W).
ms m,p WL 3H, s.
W(r)=(,8,- -, H)A
(n, P(r)) € H(s)(§"(W))

Standard regions for when writing locally is permitted:
PUl P — Region

P A (temp, 1,=, =, HP"! A)

HP®! . P(Addr) — State — (Wor 22" UPred(MemSegment))

—pub

HPY A s Wd:ef{(n, ms)

dOm(mg) = AA
Va € A.(n—1,ms(a)) € V(g(W))} U {(0,ms)}

Revoking all temporary regions:

revokeTemp : World — World

revoked if W (r) = (temp, s, ¢pub, ¢, H)

revoke Temp(W) £ \r.
! (V) {W(r) otherwise

Further define

it ena 2 PP ([base, end))

50



Standard regions for when write local is not allowed:

;™! P(Addr) — Region
A Y (temp, 1, =, =, H™! A)

,"bP P(Addr) — Region
Jrwbe g4 (perm, 1,=,=, H™! A)

H™?!: P(Addr) — State — (Wor 2% UPred(MemSegment))

-
dom(ms) = AA
Va € A.

H™ AsW 2 (n,ms) . U {(0, ms)}
ms(a) is non-localA

(n —1,ms(a)) € V(EW))

Further define

Lgﬂe,end =l ([base, end))

U o = 0P ([base, end))

For convenience define

localityReg(g, W) = dom(| W] {p”m’temp}) ?f 9 = LOCAL
dom (| W] ,ermy) if ¢ = GLOBAL

localityReg(LOCAL, W) are the regions that local capabilities may govern - that is permanent and
temporary regions. localityReg(GLOBAL, W) are the regions that global capabilities may govern
- that is permanent regions. Now define the following function

We need a notion of subset between regions that is almost n-subset, but not quite. The only
difference is that the view part of a region is disregarded. Define “semi n-subset” and “semi
n-supset” as:

(5, bpuns 8) = (', 8y @) YW.Hs W CH' s W

(U, S, ¢puba ¢7 H) < (U/a 3/7 (b;mlw ¢/7 H/)

5.2 The logical relation

The logical relation is defined by several mutual recursive definitions. In order to handle this mu-
tual recursion and show that this definitions are well-defined, Banach’s fixed-point theorem can
be used. We have omitted the details of this construction here, but it is done by parameterising
all the definitions by the value relation.
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L= (v, 8, Ppup, ®, H) is address-stratified iff
Vs, W,n, ms, ms'.
(n,ms),(n,ms') € Hs W =
dom(ms) = dom(ms’)A

Va € dom(ms). (n, ms[a — ms'(a)]) € H s’ W

writeCondition : (((Addr x Addr) — Region) x Global) — World =" UPred(Addr?)
writeCondition(v, g)(W) =
{(n, (base, end)) | Ir € localityReg(g, W).
J[base’, end'] D [base, end].

n—1

W(T) 2 Lbase’ ,end’ and
W (r) is address-stratified }

readCondition : Global — World 22" UPred(Addr?)
readCondition(g)(W) =
{(n, (base, end)) | Ir € localityReg(g, W).
d[base’, end'] D [base, end).

Wr) Cel,

base’ ,end’

execute Condition(g)(W) =
{(n, (perm, base, end)) |Vn' < n.
YW 3 wW.
Va € [base’, end'] C [base, end].
(n', ((perm, g), base’, end’, a)) € E(W')}
where ¢ = LOCAL = J = Jpub
and g = GLOBAL = J = JP"™

enterCondition(g)(W) =
{(n, (base, end, a)) |Vn' < n.
VW' I W.
(n’, ((RX, g), base, end, a)) € EW')}
where ¢ = LOCAL = J = JPv
and ¢ = GLOBAL = J = JP™
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Now define the value relation as follows:

V : World == UPred(Word)

VEANW.{(n,i) | i€ ZU{c0}}U
{(n, ((0, g), base, end, a)) }U
{(n, ((RO, g), base, end, a)) |
(n, (base, end)) € readCondition(g)(W)}U
{(n, ((RW, g), base, end, a)) |
(n, (base, end)) € readCondition(g)(W)A
(n, (base, end)) € writeCondition(:™!, g)(W)}U
{(n, (RWL, g), base, end, a)) |
(n, (base, end)) € readCondition(g)(W)A
(n, (base, end)) € writeCondition(LpM, g)(W)}U
{(n, ((RX, g), base, end, a)) |
(n, (base, end)) € readCondition(g)(W)A
(n, (RX, base, end)) € execute Condition(g)(W)}U
{(n, ((E, 9), base, end, a)) |
(n, (base, end, a)) € enterCondition(g)(W)}U
{(n, (RWX, g), base, end, a)) |
(n, (base, end)) € readCondition(g)(W)A
(n, (base, end)) € writeCondition(. nwl, ) (WA
(n, (RWX, base, end)) € executeCondition(g)(W)A
(n, (RX, base, end)) € execute Condition(g)(W)}U
{(n, (RWLX, g), base, end, a)) |
(n, (base, end)) € readCondition(g)(W)A
(n, (base, end)) € writeCondition(tP*", g)(W)A
(n, (RWLX, base, end)) € executeCondition(g)(W)A
(n, (RWX, base, end)) € executeCondition(g)(W)A
(n, (RX, base, end)) € executeCondition(g)(W)}

O :World =% UPred(Reg x MemSegment)
O W {(n, (reg, ms)) | Yms ¢, mem’,i < n.
(reg, ms W msy) —; (halted, mem”)
= IW’ IP"™ W.3ms,., ms’.
mem’ = ms' & ms, ¥ ms A
ms’ s W'}
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R :World == UPred(Reg)

Spub

R EAW. {(n, reg) | Vr € RegisterName \ {pc}.
(n, reg(r)) € V(W)}

& :World = UPred(Word)
E ED\W. {(n, pe) | Vo' < n.
Y (n', reg) € R(W).
Yms i, W.
(n', (reg[pe — pc], ms)) € O(W)}

5.3 Useful regions
Static region used for parts of memory that should not change.

sta (

151 (v, ms) = (v, 1, =, =, H'* ms)

H*' ms s W ={(n,ms) | n > 0} U{(0,ms") | ms' € Mem}

Static region used for parts of memory that should not change and where you pass control
to untrusted code.

51 ms) = (v, 1, =, =, H¥*" ms)
ms’ = msA
Va € dom(ms).

sta,u i 1 / /
H ms s W =< (n,ms’) ms(a) is non-localA U {(0, ms") | ms" € Mem}
(n—1,ms(a)) € V(EW))
LC”St(v,n) — (U, 1, =, =, chst n)

H™ 0! s W ={(n,ms) | n> 0AVa € dom(ms). ms(a) =n'} U{(0, ms') | ms" € Mem}

5.4 Lemmas
5.4.1 Anti-reduction for the observation relation

Lemma 7 (Failing terms are in O and &). If (reg, ms W msy) —, failed for all msy, then
(n, (reg, ms)) € O(W) for any W.
If (reg[pc — w], ms) — failed for all reg, ms, then (n,w) € E(W) for any W. [ |

Proof. Follows from the definitions of O(W) and £(W) using an (omitted) determinacy result.
O
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Lemma 8 (Anti-reduction for O).
Vn,n',i, reg, reg’, ms, ms’, ms,., W, W".
n' >n—i AW 3P WA
(Vmsy. (reg, ms & ms, W msg) —; (reg’, ms’ & ms, & mss))A
(n’, (reg’, ms’)) € O(W")
= (n, (reg, ms W ms,.)) € O(W)

Proof of Lemmal[8 Assume
1.7 >n—1
2. Wy P W,
3. Vmsy. (reg, ms W ms, W msy) —; (reg’, ms’ & ms, & msy)
4. (n/,(reg’, ms")) € O(W3)

Show
(n, (reg, ms W ms,)) € O(Wh)

To this end let msframe, m' and j be given and assume
(reg, ms & ms, W msframe) —; (halted, m’) (12)
From [3] instantiated with msframe We know

(reg, ms W ms, W msframe) —i (reg’, ms’ W ms, W ms frame) (13)

Using [12] and [13] we get
(reg’, ms" W ms, W ms frame) —j—i (halted,m”)
Using this with 4.| and ms, & msem. as frame, we get W3 P W, ms” and ms e, such that
5. m' = ms" W mspe, W (M, & MSframe)
6. ms" 1y W3

Now use ms,.Wms ., as the “revoked” memory, ms” as the memory that satisfies some invariants,
and Wj as the desired world, then[5] gives us the split and by downwards closure [6] gives us the
desired memory satisfaction. O

5.4.2 Standard regions

Lemma 9. For all W, base, end, n, ms if
e ms:, W
e (n,((perm, g), base, end, a)) € V(W)

o base < end
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e perm € {RWLX, RWX}

then
3r, base’, end’. [base, end] C [base’, end'] AW (r) Z 2™

~ “base’,end’

Proof of Lemma[g Assume
1. (n, ((RWLX, g),b,e,a)) € V(W)
2. ms:,, W
From Assumption |E we get rq, 72, b1, ba, €1 and ey such that

. 11 € localityReg(g, W)

3
4. ro € localityReg(g, W)
5. [b,e] C [by, €]

6

. [b, 6] g [bg,eg]

o pwl
7. W(r) S

bi,e1

8. W(rz) 5!

~ “ba,ez2

9. W(rs) is address-stratified.

From Assumption [2] we get partitionen P s.t.
ms iy p W

Say P(r1) = ms; and P(ry) = msy. First from (n,ms;) € W(r1).H W(ry).s &V (W) using |
we get (n, msy) € HP™' 1D (W) which means dom(ms1) = [by, e1].

bi,eq
Second we know (n, [ba — 0,...,e3 — 0]) € Hf:éz 1EEDW) and (n, msg) € W(ra).H W(ry).s £ (W)
which by Assumption [8.] and [9.| means dom(mss) = [ba, es].
Now assume for contradition 7; # r2, then we have a contradiction with ms :,, , W because
msy and msy are not disjoint (by Assumptions and [6)). So r1 = ro which also means
we get W(ry) ~ Lfijil which by Lemma

n puwl
means W(ry) =" O

[b1,€1] = [b2,e2], so from Assumption |5.4.2 and

Lemma 10. Hf;;le end S 18 monotone w.r.t 3P4 for all s € State and base and end ]

Proof of Lemma[I0 Let W' 3P W be given and let

(n,ms) € HP™. s W (14)

base,en

and show .
(n,ms) € HP™. s W'

base,en.

From [14) we get dom(ms) = [base, end]. Now let a € [base, end] be given and show
(n—1,ms(a)) € VW)
now this follows from Lemma w! Jpub W, Theorem |1} and Assumption O
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Lemma 11. le);usle,end is a region for all base and end. [ |
Proof of Lemma[I]] Follows from Lemma O
Lemma 12. Lﬁﬂsle,end is address-stratified. [ |
Proof. Easy unfolding of definitions. O
Lemma 13. Hgg’;leymd s is monotone w.r.t P for all s € State and base and end |
Proof of Lemma[13 Let W' 3P W be given and let

(n,ms) € HL oy s W (15)

and show .
(n, ms) € H"! s W’

base,end

From we get dom(ms) = [base, end]. Now let a € [base, end] be given and show
1. ms(a) is non-local
2. (n—1,ms(a)) € V(E(W'))

follows trivially from follows from Assumption (which we just argued), W' gpriv
W, Theorem |1} and Lemma 80)

Lemma 14. LZ;‘;le end 18 a Tegion for all base and end.

Proof of Lemma[14 Follows from Lemma [I3] and Lemma

nwl

b end 'S address-stratified.

Lemma 15. ¢

Proof. Easy unfolding of definitions.

nwl,p

Lemma 16. Lhase,end

is a region for all base and end.

O " O 0O m O

Proof of Lemma|16. Follows from Lemma

sta (

Lemma 17. 5**(v, ms) is a region for all v € {perm, temp} and ms. |

Proof of Lemma[I7 H*®™ does not depend on W, so it is trivial to show the necessary non-
expansive and monotonicity requirements. O

Lemma 18. H®%%(ms) s is monotone w.r.t I?™ for all s € State and ms. |
Proof of Lemma[18 Let W' 3P W be given and let

(n,ms’) € H*"*"(ms) s W (16)

and show .
(n,ms") € H""(ms) s W’

From we get ms’ = ms. Now let a € dom(ms) be given and show

1. ms(a) is non-local

2. (n—1,ms(a)) € V(ﬁ(W’))
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follows trivially from follows from Assumption (which we just argued), W’ JP"
80

W, Theorem [1| and Lemma, O
Lemma 19. (5'“(v, ms) is a region for all v € {perm, temp} and ms. [ |
Proof of Lemma[I9 Follows from Lemma [I8 and Lemma O

Lemma 20. N
Hpl o sW CHMM s W

ase,end base,en
|
Proof of Lemma[20 Trivial. Let
(nv ms) € Hglaqgfz,end s W
and show .
(n7 ms) € Hl;;)au;i,end s W
From the assumption, we get dom(ms) = [base, end]. We further need to show
Va € dom(ms). (n — 1, ms(a)) € V(E(W))
Given a, we know from the assumption that
(n—1,ms(a)) € V(E(W))
O
Lemma 21.
Vn € N.Vbase, end € Addr.
anl i LPUJl
base,end ~ “base,end
|
Proof of Lemma[21 Let n, base, end be given and show
n
l
L?{%le,end ~ Lg:se’end
They agree on the state and transition systems, so given W it suffices to show
. A~ N ! N
Hglaqge,end 1w - Hf;f)se,end 1w
which is true by Lemma [20] O
Lemma 22.
Vn € N.Vbase, end € Addr.
nwl,p n pwl
Lbase,end ~ Lbase,end
|
Proof of Lemma[23 Follows from Lemma [20] (see proof of Lemma . O
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Lemma 23.

Vn € N.Vbase, end € Addr. Vv € {perm, temp}.
dom(ms) = [base, end] =

et a(vms) S
|
Proof of Lemma[23 Essentially the same as the proof of Lemma [2I] and Lemma O
Lemma 24.
Vn € N.Vbase, end,b € Addr. V. € Region
L Li’é’;le)md A base < end = 1 = Li’é’;le)md
|
Proof of Lemma[2} For n = 0 it is trivial, so assume n > 0. Say ¢ = (v, 8, ¢pup, ¢, H), then by
2, we know s = 1, Gpup = ¢ ==, and H = Hf;ﬂsle,end. It remains to show that v = temp. To do

so, we show that it cannot be the case that v = perm. If v = perm, then H must be monotone
with respect to I . If we can show that this is not the case, then for ¢ to be a region it must
be the case that v # perm and thus v = temp.

To this end let b ¢ [base, end] and define the worlds:

For these two worlds, we have &(W’) JP™ ¢(W) and from mono. of €71, we have W’ JP"™ TV,
Now define the following memory segment:

ms = [base — ((RO,LOCAL), b,b,b), base +1+— 0,..., end — 0]

It is the case that
(n,ms) e H1W

but
(n,ms)¢ H1W’

as it is not the case that
(n — 1, (RO, LOCAL), b, b, b)) € V(E(W").

The only other option that remains is v = temp. O

5.4.3 Observation relation

Lemma 25 (Observation relation (O) non-expansive).

WLW = O0W)2ZoW)

Proof of Lemma 25, O
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5.4.4 Register-file relation

Lemma 26 (Register-file relation (R) non-expansive).

WEW = R(W) = R(W)

]
Proof of Lemma 26, O
Lemma 27 (Register-file relation (R) monotone wrt J7“?).
W' 2P W= R(W') D R(W)
|
Proof of Lemma[27 O
5.4.5 Expression relation
Lemma 28 (Expression relation (£) non-exapansive).
WEW = W)= EW)
|
Proof of Lemma 28 O
5.4.6 Permission based conditions
Lemma 29. If
(n, (base, end)) € readCondition(g)(revoke Temp(W))
then
(n, (base, end)) € readCondition(g)(W)
|
Proof of Lemma [29

(n, (base, end)) € readCondition(g)(revoke Temp(W))

Gives r € localityReg(g, revoke Temp(W)) such that

V[base', end'] C [base, end). revoke Temp(W ) () é oot

[base’,end’]

Notice revokeTemp(W)(r) is a perm region, so revokeTemp(W)(r) = W (r). Using r as witness,
the result is immediate. O

Lemma 30. If
(n, (base, end)) € writeCondition(t, g)(revokeTemp(W))

then
(n, (base, end)) € writeCondition(c, g)(W)
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Proof of Lemma[30,
(n, (base, end)) € writeCondition(v, g)(revoke Temp(W))

Gives r € localityReg(g, revoke Temp(W)) such that

n—1

V[base', end’] C [base, end)]. revoke Temp(W)(r) 2 Ulbase!,end’]

and
revoke Temp(W)(r) is address-stratified

Notice revokeTemp(W)(r) is a perm region, so revoke Temp(W)(r) = W (r). Using r as witness,
the result is immediate. O

Lemma 31. If
o (n, (perm, base, end)) € executeCondition(g)(revoke Temp(W))

then
(n, (perm, base, end)) € executeCondition(g)(W)

Proof of Lemma[3], Use Lemma O
Lemma 32. If

e (n,(a,base, end)) € executeCondition(g)(revokeTemp(W))

e (n, (a, base, end)) € execute Condition(g)(W)
]
Proof of Lemma[33 Use Lemma [69]
Lemma 33. If
(n, (base, end)) € writeCondition(tP*", LOCAL)(W)
then
(n, (base, end)) € writeCondition(t™", LOCAL) (W)
Proof of lemma[33 Follows from Lemma [22] O
Lemma 34 (readCondition monotone w.r.t JP0). If
o WP W
o (n, (base, end)) € readCondition(g)(W)
then
(n, (base, end)) € readCondition(g)(W")
|
Proof of Lemma[5) O
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Lemma 35 (readCondition global monotonicity w.r.t J7™). If
° W/ gpriv W
o (n, (base, end)) € readCondition(GLOBAL)(W)

then
(n, (base, end)) € readCondition(GLOBAL)(W")

Proof of Lemma[35 readCondition(GLOBAL)(W) picks a perm region from W. perm regions are
persistent over JP™"  so we can use the region that the assumption gives us. O

Lemma 36 (readCondition downwards-closed). If
e n/ <n
o (n, (base, end)) € readCondition(g)(W)

then
(n', (base, end)) € readCondition(g)(W)

Proof of Lemma[36 O
Lemma 37 (writeCondition monotone w.r.t JPu). If

o W/ OPub W/

o L€ {ypul rwl  (nwlp)y

o (n, (base, end)) € writeCondition(t, g)(W)

then
(n, (base, end)) € writeCondition(c, g)(W")
|
Proof of Lemma[57 O
Lemma 38 (writeCondition global monotonicity w.r.t JP™). If
o W JPriv Ty
o L€ {anl,b(nwlm)}
o (n, (base, end)) € writeCondition(t, GLOBAL)(W)
then
(n, (base, end)) € writeCondition(, GLOBAL) (W)
|

Proof of Lemma|38 writeCondition(t, GLOBAL)(W) picks a perm region from W. perm regions
are persistent over JP" so we can use the region that the assumption gives us. O

Lemma 39 (writeCondition downwards-closed). If
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en <n
P {prl7 anl’ L(nwl,p)}
o (n, (base, end)) € writeCondition(t, g)(W)

then
(n’, (base, end)) € writeCondition (v, g)(W)

Proof of Lemma[39

Lemma 40 (ezecCondition monotone w.r.t JPu0), If
° Wl gpub W
e perm € {RX, RWX, RWLX }

o (n, (perm, base, end)) € executeCondition(g)(W)

fhen (n, (perm, base, end)) € executeCondition(t, g)(W')
[ ]
Proof of Lemma [40 O
Lemma 41 (exzecCondition global monotonicity w.r.t JP"). If
o W/ JPriv |y
e perm € {RX, RWX}
o (n, (perm, base, end)) € executeCondition(GLOBAL)(W)
then
(n, (perm, base, end)) € executeCondition(GLOBAL)(W")
|

Proof of Lemma[{d. Assume Wy JP"™ Wi, perm € {RX,RWX} and (n,(perm, base, end)) €
ezecuteCondition(GLOBAL)(W;). Now let W3 JP™™ Wy, a € [base’, end'] C [base, end], and
n’ < n, and show

(n, ((perm, GLOBAL), base’, end’, a)) € E(W5)

by transitivity we have W3 3P TV, so the result follows from (n, (perm, base, end)) € executeCondition(GLOBAL) (W)
O

Lemma 42 (execCondition downwards-closed). If
en <n
e perm € {RX, RWX, RWLX }

e (n, (perm, base, end)) € executeCondition(g)(W)
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then
(n’, (perm, base, end)) € executeCondition(g)(W)

Proof of Lemma[{3 Follows easily from definition. O
Lemma 43 (enterCondition monotone w.r.t JP%). If

o W' IPU W

e (n,(a,base, end)) € enterCondition(g)(W)

then
(n, (a, base, end)) € enterCondition (v, g)(W')

Proof of Lemmal[{3 Follows easily from definition. O
Lemma 44 (enterCondition global monotonicity w.r.t J7"%). If

o W' P

o (n,(a, base, end)) € enterCondition(GLOBAL)(W)

then
(n, (a, base, end)) € enterCondition(GLOBAL)(W")

Proof of Lemma[{4} Assume W>3P™ Wy and (n, (a, base, end)) € enterCondition(GLOBAL)(W).
Now let W3 JP™ Wy, n’ < n, and show

(n, ((RX, GLOBAL), base, end, a)) € E(W3)

by transitivity we have W3 3PV, so the result follows from (n, (a, base, end)) € enterCondition(GLOBAL)(W7).

O
Lemma 45 (enterCondition downwards-closed). If
en <n
o (n,(a,base, end)) € enterCondition(g)(W)
then
(n’, (a, base, end)) € enterCondition(g)(W)
Proof of Lemma [{5 O
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5.4.7 LR Sanity lemmas
Lemma 46.
Vms,n, W = W'.
ms , WAW =W = ms :, W

|
Proof of Lemma [46 O
Lemma 47 (Heap satisfaction downwards closure).
Yms,n' < n, W.
ms:n W=ms . W
|
Proof of Lemma[{7 Let ms, n’ <n, and W be given and assume
ms :, W
This assumption gives us P : active(W) — MemSegment such that
L. ms = L"Jreacme(W) P(r)
2.

Vr € active(W).
dH, s.
Wr)y=1(,8,--H)A
(n', P(r)) € H(s)(~"(W))
Using P as witness, is the first condition we need. Now let r be given and use [2.| to get H
and s such that
3. W(r)=1(,s,-,-, H)
4. (n, P(r)) € H(s)(¢~H(W))
We now need to show
(', P(r)) € H(s)(E~H(W))
which follows from 4.} n’ < n, and H(s)({~1(W)) is a UPred(MemSegment). O
Lemma 48. If
e ms:, W
e (n,((perm, g), base, end, a)) € V(W)
o base < end
e perm € {RWLX, RWL}

then
g = LOCAL

Proof of Lemmal[{8 1t follows as a consequence of Lemma [0] The n-equality forces the region
to be temp, so for the region name to be in localityReg(g, W), the locality must be LocAL. O
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5.4.8 Malloc safe to pass to adversary

Lemma 49 (Safe values are safe to invoke.). If (n + 1,w) € V(W), then (n, updatePcPerm(w)) €
E(W). |

Proof. 1. Casew = ((perm, g), base, end, a) and base < a < end and perm € {RX, RWX, RWLX }:

1.1. (n+ 1, (perm, base, end)) € executeCondition(g)(W).
By: definition of V(W) using the fact that perm € {RX, RWX, RWLX}.

1.2. (n,((perm, g), base, end, a)) € E(W): By definition of executeCondition using the fact
that base < a < end.

2. Case w = ((perm, g), base, end, a) and base < a < end and perm = E:

2.1. (n+ 1, (base, end, a)) € enterCondition(g)(W).
By: definition of V(W) using the fact that perm = E.

2.2. (n,((RX,g), base, end, a)) € E(W): By definition of enterCondition using the fact that
base < a < end.

2.3. updatePcPerm(w) = ((RX, g), base, end, a):
By definition of updatePcPerm(-)

3. Otherwise: (n, updatePcPerm(w)) € E(W):
By Lemmal[7]
O

Lemma 50 (Malloc is safe to pass to adversary). For ¢paiee that satisfies the specification for
malloc with region Lmalloc,0 Zf W(T) gprw Lmalloc,05 then (nacmalloc) € V(W) fOT' all n. n

Proof. 1. ¢maittoe = ((E, GLOBAL), base, end, a).
By: the malloc specification (Specification .

2. Suffices: (n, (base, end, a)) € enterCondition(GLOBAL)(W).
By definition of V(W).

3. Assume: n/ < mn, W’ JP™ W,
Suffices: (n/, ((RX, GLOBAL), base, end, a)) € E(W').
By: definition of the enterCondition

4. Assume: n” <n/, (n”,reg) € R(W'), ms 1pn W’
Suffices: (n”, (reg[pc — ((RX, GLOBAL), base, end, a)], ms)) € O(W')
By: definition of £(W)

5. Assume: ¢ < n”, (reg[pc — ((RX, GLOBAL), base, end, a)], ms W msy) —; (halted, mem')
Suffices: IW” IP™ W' ms,, ms'. mem’ = ms' & ms, ¥ msy and ms’ 1p_; W
By: definition of O(W")

6. W/(T‘) ;pm’v Lmalloc,0 . .
Easy from: W’ 237" W and W (r) 3™ 1,4110¢,0 Using transitivity of JP™.

7. 3P : active(W') — MemSegment. ms v p W', ie. ms = W, cocrive
active(W'). 3H,s. W'(r) = (_,s,_,, H) and (n”, P(r)) € H(s)(¢"*(W"))
By: definition of ms :,» W'.

y P(r) and Vr €
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8. Define ms frame = (Lﬂr’Eactive(W’),r’;ﬁr P(r’)) Wmsy. Then mswmsy = P(r) W msframe and
(", P(r)) € W'(r).H (W'(r).s) (6-1(W')). Easy from the previous point.

9. (n",P(r)) € W'(r).H (W'(r).s) (6 X([r = W'(1)])), i.e. P(r):nr [r W' (r)].
By: the malloc specification (Specification |1} from the previous point.

10. Case: reg(r1) € Z and reg(r;) > 0

10.1. Define size = reg(rq)
10.2. 39’ € ExecConf, ms}ootpﬂnt, msalioc € MemSegment, j € N, j > 0AY, e’ € Addr, €

malloc
Region. (reg[pc — ((RX,GLOBAL), base, end, a)], ms & msy) —; @ and &' .mem =
ms}ootprint&JmsﬂllOCu—Jmsﬁ"@me and lealloc gpub Wl(r) and ms}ootprint n/—j [’I" = lealloc]
and dom(msaec) = [V, €] and Va € [V, €']. msqioc(a) = 0 and ®'.reg = P.reg[pc —
updatePcPerm(wyet)][r1 — ((RWX, GLOBAL), b, e/, V)] and size — 1 = ¢’ — V') with
Wret = D.reg(ry).

By: the malloc specification (Specification .
10.3. Define W’ = W'[r — (! [i = ¢l ] for i & dom(W’). We have that W 2P [r

malloc
[’lrnalloc] and WN QPUb W/'
By: definition of JP“® | using the fact that U alloc P W (7).

10.4. (0", (base’, end")) € readCondition(GLOBAL)(W") for all n':

By: definition of readCondition, using the region W (i) and Lemma

10.5. (n", (base’, end")) € writeCondition(.™"", GLOBAL)(W") for all n’"":

By: definition of writeCondition, using the region W"(3).

10.6. (n”’, (p, base’, end/)) € ezecuteCondition(t™!, GLOBAL)(W") for all ', p € {RWX, RX }:
By: the definition of executeCondition, the FTLR. (Theorem ) using Lemmas
and the previous two points.

10.7. (n”, ((RWX, GLOBAL), b, €', b)) € V(W"):

By: definition of V(W) and the above three points.

10.8. (n” — j, ®.reg[r1 — ((RWX, GLOBAL), b, ¢/,V’)]) € R(W"):

By Lemma [76] Lemma [27| using the fact that W” JP“ W’ and (n”, ®.reg) € V(W'),
together with the previous point.

10.9. (0", mSaioc) € Lb"f_"’el,.H Ll’},ﬂ,.s W' for any n':

By definition of (™!, H™! and V(-) and the facts that dom(msa..) = [V, €'] and
Ya € [V, €e']. msanoc(a) = 0.

10.10. Define ms’ = (LﬂT,Eacme(W/)T,# P(r’)) W ms}ootp”.m W mSaoe. Then & .mem =
ms' W msy and ms’ ,_; W

By the facts that ®’.mem = ms}ootprmttrjmsallocwmsfmme, MS frame = (Lﬂr/e@cme(w,)ﬁ./#, P(r’))L{d

ms ¢, the previous point, the facts that ms}, . .int 07— [7 = U000] a0d W 3Pl sy
U aiioe), the facts that (Vr € active(W'). 3H,s. W'(r) =, (., s, -, -, H) and (n”, P(r)) €

H(s)(¢~Y(W"))) and W” JP* /' and the public monotonicity and downwards closed-
ness of all regions, and finally the definition of W".

10.11. (0" — 5+ 1, wpet) € V(W"):
By Lemma the fact that W” 237 W', Lemma and the fact that (n”, wye:) €
V(W'), which follows from w,e; = ®.reg(r1) and (n”, reg) € R(W').

10.12. (n” — j, updatePcPerm (wye)) € E(W"):
By Lemma [9] from the previous point.
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10.13. (n” — j, (®.reg[r; — ((RWX, GLOBAL), b, e, V')][pc — updatePcPerm(wyet)], ms’)) € O(W"):
By: definition of £(W"), using the previous point and the facts that
(n” — j, ®.reg[r1 — ((RWX, GLOBAL), ¥, ¢/, b)]) € R(W"), ms’ wpr_; W
10.14. i > j and ®" —,_; (halted, mem').
By combining (reg[pc — ((RX, GLOBAL), base, end, a)], ms & msy) —; (halted, mem')
with (reg[pc — ((RX, GLOBAL), base, end, a)], ms & msy) —; ® using Lemma
10.15. IW" 3P™™ W ms,, ms". mem’' = ms" & ms, W msy and ms” 1,y W',
By: definition of O(W"’) from the two previous points.
10.16. W' 2P W'
By Lemma using the previous point and the fact that W” JPub W',

11. Case: reg(r1) € ZV reg(r1) <0

11.1. 3j. (reg[pc — ((RX, GLOBAL), base, end, a)], ms & ms ) —; failed
By: the malloc specification (Specification .

11.2. Contradiction with (reg[pc — ((RX, GLOBAL), base, end, a)], mstms ) —; (halted, mem')

O
5.4.9 Fundamental theorem of logical relations
Lemma 51 (Conditions for load instruction are sufficient). If
e d.mem:, W
e ¢ = ((perm,g), base, end, a)
e (n,c) e V(W)
o readAllowed(perm)
e withinBounds(c)
then (n — 1, ®.mem(a)) € V(W) [ ]
Proof. 1. (n, (base, end)) € readCondition(g)(W): follows by definition of V- from (n,c) €
V(W).
2. 3r € localityReg(g, W), [base’, end’] D [base, end]. W (r) & Lé’(ﬁlg,’en(i,. By definition of
readCondition(g)(W).

3. 3P : active(W) — MemSegment. ®.mem :,, p W. By definition of ®.mem :,, W.

4. ®mem = W, ¢ ,crive(wy P(r) and Vr € active(W), 3H,s. W(r) = (s, -, -, H) and (n, P(r)) €
H(s)(£~1(W)). By definition of ®.mem :, p W.

5. r € localityReg(g, W) C active(W). By definition of localityReg(-) and active(-).

6. IH,s. W(r) = (., s,-, -, H) and (n, P(r)) € H(s)(¢~1(W)). By specializing the result from
Step [£] to the r from Step
7. (n,P(r)) € H"! (5)(£~Y(W)). Follows by combining (n, P(r)) € H(s)(¢~1(W)) with

base’ ,end’

~ l
W(r) C [’g:)se’,end’ from Step
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8. dom(P(r)) = [base’, end’] and for all o’ € [base’, end']. (n — 1, P(r)(a’)) € V(E(E~T(W))).
By definition of H?"!

base’,end’"

9. a € [base, end] C [base’, end']. By combining withinBounds(c) with the fact that [base’, end'] D
[base, end]. from Step

10. In particular, we get: ®.mem(a) = P(r)(a) and (n — 1, P(r)(a)) € V(W).

O
Lemma 52 (Conditions for lea instruction are sufficient). If
e (n,((perm, g), base, end, a)) € V(W)
e perm # E
then (n, ((perm, g), base, end, a’)) € V(W) [ ]

Proof. Follows by inspection of the cases in the definition of V(W): a is ignored in all cases
except where perm = E. O

Lemma 53 (pwl writecond implies nwl). If (n, (base, end)) € writeCondition(1P*!, g)(W) then

(n, (base, end)) € writeCondition(t™*, g)(W)}. |

Proof. 1. 3r € localityReg(g, W). J[base’, end'] 2 [base, end]. W (r) né [’Zb):)sle’,end’ and W (r)
is address-stratified: by definition of writeCondition.

n—1
2. Suffices: W(r) 2 Lg;"sle,,end,. By definition of writeCondition
3. W(r) D 2, "S- follows by L 21
- WA(r) 2 thaseriend’ =2 Lhase’ enas follows by Lemma

O

Lemma 54 (execCond implies entryCond). If (n, (RX, base, end)) € executeCondition(g)(W)
then (n, (base, end, a)) € enterCondition(g)(W). |

Proof. 1. Assume: n’ < n, W I W where g = LOCAL = 3 = 3P and g = GLOBAL = J =
:lpm'v

Suffices: (n/, ((RX, g), base, end, a)) € E(W')
2. Case a € [base, end]: Follows from the definition of executeCondition.

3. Case a ¢ [base, end]: Follows by Lemma [7]

O
Lemma 55 (Conditions for restrict instruction are sufficient). If
o (n,((perm, g), base, end, a)) € V(W)
o (perm’,g’) T (perm, g)
then (n, ((perm’, g'), base, end, a)) € V(W) [ |

Proof. By inspection of the definition of V(W), everything follows trivially except the following.

1. If (n, (base, end)) € writeCondition (1P, g)(W) then (n, (base, end)) € writeCondition(:™, g)(W):
holds by lemma

69



2. If (n, (RX, base, end)) € executeCondition(g)(W) then (n, (base, end, a)) € enterCondition(g)(W).

O
Lemma 56 (Conditions for subseg instruction are sufficient). If
e (n,((perm, g), base, end, a)) € V(W)
e base < base’
e end < end
® perm # E
then (n, ((perm, g), base’, end’, a)) € V(W) [ |
Proof. Follows easily from the definitions of V(W), read Condition, writeCondition, executeCondition.
O
Lemma 57 (Conditions for store instruction are sufficient). If
o ms=ms' Wmsy
e ms' ., W
e ((perm,g), base, end, a) = ¢
e (n,c) e V(W)
o writeAllowed(perm)
e withinBounds(c)
e (n,w) e V(W)
e if w=((,,LOCAL), , _, ), then perm € {RWLX, RWL}
then a € dom(ms’) (i.e. ms[a — w] = ms'[a — w]Wmsy) and ms'[a — w] :, W [ |

Proof. 1. (n,(base, end)) € writeCondition(t, g)(W) where 1 = 1P*! or ¢ = ™! and (if w =
((;, LOCAL), _, -, ), then ¢ = (P¥!).

By definition of V(W) and writeAllowed, from (n,c) € V(W), ((perm, g), base, end, a) =
¢ and writeAllowed(perm) and the fact that (if w = ((,,LOCAL),_,_, ), then perm €
{RWLX, RWL})

n—1
2. Ir € localityReg(g,W). Jlbase’, end'] D [base,end]. W(r) 2 tpase’.enar and W (r) is
address-stratified. By definition of writeCondition.
3. 3P : active(W) — MemSegment. ms’ 1, p W. By definition of ms’ :,, W.

4. ms" =W, coctiveqwy P(r) and Vr € active(W). 3H,s. W(r) = (., s,-,-, H) and (n, P(r)) €
H(s)(¢~Y(W)). By definition of ms’ =, p W.

5. 3H,s. W(r) = (., s,-,-,H) and (n, P(r)) € H(s)(¢~'(W)). By instantiating the previous
point to the r from the writeCondition.
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6. (n,w) € t.H (v.5) (671(W)) by definition of (P!, ;""" and the fact that (if w = ((_, LOCAL), _, _, ),
then 1 = (Pv!).

7. Define ms!, such that dom(ms’,) = [base’, end’], ms!,(a) = w and ms!, (a’) = 0 for a’ # a.
It’s easy to show from the previous point that (n,ms’,) € H(s)(¢~(W)).

8. dom(P(r)) = dom(ms’)) = [base’,end'] > a and (n, P(r)[a — w]) € H(s)(¢~1(W)) by
applying the fact that W (r) is address-stratified, combined with the previous point.
9. Define P'(r) = P(r)[a — w] and P’(r') = P(r’) for 1’ # r.

10. ms'[a = w] = W,.coepiveqw) L' (1) and ms'la = w] 1y pr W. By definition of ms’ :, p W
and the previous two points.
O

Theorem 2 (Fundamental theorem of logical relations). For all n, perm, base, end, a, g, W
If one of the following holds:

[ ]
perm = RXA

(n, (base, end)) € readCondition(g)(W)

perm = RWXA
(n, (base, end)) € readCondition(g)(W)A

(n, (base, end)) € writeCondition(t™™", g)(W)

perm = RWLXA
(n, (base, end)) € readCondition(g)(W)A
(n, (base, end)) € writeCondition(:P"", g)(W),
then
(n, ((perm, g), base, end, a)) € E(W)
|

Proof. 1. By induction on n. In other words, assume that the theorem already holds for all
n <n.

2. Assume: n' <mn, (n',reg) € R(W), ms 1y W.
Suffices: (n/, (reg[pc — ((perm, g), base, end, a)], ms)) € O(W).
By: definition of £(W).

3. Assume: msy, mem’, i < n', ® = (reg[pc — ((perm, g), base, end, a)], ms ¥ msy) and
® —; (halted, mem’),
Suffices: W’ 7™ W, ms,, ms'. mem' = ms' & ms, ¥ ms; and ms’ :,_; W'
By: definition of O(W)

4. 1 # 0, since (reg[pc — ((perm, g), base, end, a)], msWmsy) # (halted, mem') for any mem'.
Therefore, assume w.l.o.g. that i = 1 44/,

® — conf’ —; (halted, mem')
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5. n > n' > 0, since otherwise i = 0 (because i < n’ < n) and this is impossible by the
previous point.

6. (n/,®.reg(pc)) € V(W). Proof:

6.1. Assume: perm’ € {RX, RWX, RWLX} with perm’ C perm
Suffices: (n/, (perm’, base, end)) € executeCondition(g)(W)
By: the definition of V(-) using the assumptions

6.2. Assume: n” < n', W IW, a’ € [base, end], g = LOCAL = 0 = JP“ g = GLOBAL =
= ;pm’v.
Suffices: (n”, ((perm, g), base, end, a’)) € E(W'). By: definition of execute Condition(g)(W)

6.3. By induction, using the assumptions and Lemmas [36| and
7. For all r € RegisterName, (n/, ®.reg(r)) € V(W).

7.1. Case r # pc: follows from (n’, reg) € R(W) by definition of R(W).
7.2. Case r = pc: by step

8. By inspection of the definitions of ® — conf’ and [decode(®.mem(a))] and updatePcPerm(-)
and updatePc(-), it is easy to see that one of the following cases must hold:

9. Case conf’ = failed: contradiction, since it is not possible that failed —; (halted, mem').
10. Case conf’ = (halted, mem):

10.1. Then ¢’ = 0 and mem’ = mem
Follows from (halted, mem) —; (halted, mem)
10.2. For W/ = W, ms, = 0 and ms’ = ms, we have that mem = ms’' & ms, & ms; and
ms’ 1 —1 W’ (using Lemma .
11. Case conf’ = ®"[reg.pc — newPc|, and additionally, one of the following holds:

o ®” mem = ®.mem

e &’ mem = ®.mem[a’ — w], with ®.reg(r;) = ((perm’, g'), base’, end’, a’) = ¢ and
writeAllowed (perm’) and withinBounds(c) and w = ®.reg(rs) and if w = ((-, LOCAL), _, _, ),
then perm’ € {RWLX, RWL}

and also one of the following holds:

e newPc = updatePcPerm(®.reg(lv))

e newPc = ((perm’, g'), base’, end’, a’ + 1) and ®.reg(pc) = ((perm’, g'), base’, end’, a’)
and finally, for all r € RegisterName, one of the following holds:
r) = P.reg(r)

r) = z for some z € Z

o O reg(

(

o &' reg(r) = w and ®.reg(ry) = ((perm’, g'), base’, end’, a’) = c and readAllowed (perm’)
and withinBounds(c¢) and w = ®.mem(a’)

o &' reg

e " reg(r) = ¢ and ®.reg(ry) = ((perm’, g’), base’, end’, a’) and perm’ # E and ¢ =
((perm’, g'), base’, end’, a’ + z) for some z € Z
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o ®" reg(r) = cand ®.reg(r) = ((perm’, g'), base’, end’, a’) and (perm”, g") C (perm’, g')
and ¢ = ((perm”, g"), base’, end’, a')

o ®"reg(r) = ¢ and ®.reg(r) = ((perm’,g’), base’, end’, a’) and base’ < base’ and
end” < end' and ¢ = ((perm/, g'), base”, end” , a’) and perm’ # E

In this case, we have:

11.1. ®”.mem = ms” & msy and ms” 1,1 W.

11.1.1. Case ®”.mem = ®.mem: Then ®”.mem = ms W ms; and ms :,,»_1 W follows by
Lemma (A7

11.1.2. Case ®”.mem = ®.mem[a’ — w], with ®.reg(r1) = ((perm’, g'), base’, end’, a') =
¢ and writeAllowed(perm’) and withinBounds(c) and w = ®.reg(ry) and if w =
((, LOCAL), -, _, ), then perm’ € {RWLX, RWL}.
The facts that ®”’.mem = ms” & msy and ms” :,,_; W follow by Lemmas
and[47using the fact that ms :,» W and (n/, ®.reg(r1)) € V(W) and (n/, ®.reg(r2)) €
V(W) which follows from Step

11.2. For all r € RegisterName, (n' — 1, ®".reg(r)) € V(W).

11.2.1. Case ®".reg(r) = ®.reg(r): (n' — 1, 9" .reg(r)) € V(W) follows from Step[7] using
Lemma [75]

11.2.2. ®".reg(r) = z for some z € Z. (n’' — 1,9".reg(r)) € V(W) follows by definition of
V()

11.2.3. ®".reg(r) = w and ®.reg(r2) = ((perm’, g'), base’, end’, a’) = ¢ and readAllowed (perm')
and withinBounds(c) and w = ®.mem(a’):
(n' —1,9" reg(r)) € V(W) follows by Lemmas [51| using the fact that ®.mem :,,/
W and (n/, @.reg(rz)) € V(W) which we have from step

11.2.4. ®"reg(r) = ¢ and ®.reg(r1) = ((perm’,g'), base’, end’, a’) and perm’ # E and
c = ((perm’, g"), base’, end’, a’ + z) for some z € Z:
(n —1,9"reg(r)) € V(W) follows by Lemmas and [75| using the fact that
(n', ®.reg(r1)) € V(W) which we have from step

11.2.5. ®".reg(r) = ¢ and ®.reg(r) = ((perm’,g’), base’, end’,a’) and (perm”, g") C
(perm’, g') and ¢ = ((perm”, g"), base’, end’, a'):
(n' —1,9".reg(r)) € V(W) follows by Lemmas [55| and [75] using the fact that
(n', ®.reg(r)) € V(W) which follows from (n’, ®.reg) € R(W) by definition.

11.2.6. ®".reg(r) = c and ®.reg(r) = ((perm’, '), base’, end’, a’) and base’ < base” and
end” < end’ and ¢ = ((perm/, g'), base” , end”, a') and perm’ # E:
(n —1,9"reg(r)) € V(W) follows by Lemmas [56 and |75 using the fact that
(n', ®.reg(r)) € V(W) which follows from (n/, ®.reg) € R(W) by definition.

11.3. (n’ —1,®".reg) € R(W): Follows from the previous point by definition of R(W).
11.4. (0’ — 1, newPc) € EW):
11.4.1. Case newPc = updatePcPerm(®.reg(lv)): We distinguish the following cases:
11.4.1.1. Case ®.reg(lv) = ((&, '), base’, end’, a’):
11.4.1.1.1. (n/, ®.reg(lv)) € V(W). Follows from Step [7]

11.4.1.1.2. (0, (base’, end’, addr’)) € enterCondition(g')(W). By definition of V(W)
from the previous point.

11.4.1.1.3. (n/ —1,((RX, ¢'), base’, end’, a’)) € E(W): By definition of enterCondition(-)
and takingn' =n' — 1 and W/ =W
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11.4.1.1.4. updatePcPerm(®.reg(lv)) = ((RX, g'), base’, end’, a’): by definition of update PcPerm ().
11.4.1.2. Case ®.reg(lv) = ((perm’, g'), base’, end’, a’) with perm’ € {RX, RWX, RWLX }
and withinBounds(®.reg(lv)):

11.4.1.2.1. (n/, ®.reg(lv)) € V(W). Follows from Step [7]

11.4.1.2.2. (n/, (perm/, base’, end’, a’)) € executeCondition(g')(W). By definition of
V(W) from the previous point.

11.4.1.2.3. (n' —1,((perm’, g'), base’, end’, a')) € E(W): By definition of ezecuteCondition(-),
takingn’ =n'—1, W' = W and a = a/. Note that a’ € [base’, end’] because
we have withinBounds(®.reg(lv)).

11.4.1.2.4. updatePcPerm(®.reg(lv)) = ((perm’,g’), base’, end’, a’): by definition of
updatePcPerm(-).

11.4.1.3. Casenot (®.reg(lv) = ((E, ¢'), base’, end’, a’)) and not (®.reg(lv) = ((perm’, g'), base’, end’, a’)

with perm’ € {RX, RWX, RWLX} and withinBounds(®.reg(lv))):

11.4.1.3.1. updatePcPerm(®.reg(lv)) = ®.reg(lv): by definition of updatePcPerm(-).

11.4.1.3.2. (reg[pc — ®.reg(lv)], ms) — failed for any reg,ms: by definition of the
evaluation relation.

11.4.1.3.3. (n' — 1, newPc) € E(W): by Lemma [7] using the previous point.

11.4.2. Case newPc = ((perm’, '), base’, end’, a’+1) and ®" .reg(pc) = ((perm’, g'), base’, end’, a'):

11.4.2.1. Case perm’ € {RX,RWX, RWLX} and base’ < a’ +1 < end”:

11.4.2.1.1. (n’ —1,9".reg(pc)) € V(W): by Step

11.4.2.1.2. (n/ —1,((perm’, g'), base’, end’, a’ + 1)) € V(W): by Lemma [52| from the
previous point.

11.4.2.1.3. One of the following holds:

[ ]
perm’ = RXA
(n' — 1, (base’, end")) € readCondition(g)(W)
* perm’ = RWXA
(n' — 1, (base’, end")) € readCondition(g)(W)A
(n' =1, (base’, end")) € writeCondition(.™™", g)(W)
o

perm’ = RWLXA
(n' — 1, (base’, end")) € readCondition(g)(W)A
(n' —1, (base’, end")) € writeCondition(:7"", g)(W),

This follows from the previous point by definition of V(W)
11.4.2.1.4. (n/ —1,((perm’, g'), base’, end’, o’ + 1)) € E(W): By the induction hypoth-
esis of this lemma using the previous point.
11.4.2.2. Case not (perm’ € {RX, RWX, RWLX} and base’ < a’ + 1 < end’): The result
follows by Lemma [7]
11.5. (n/ — 1, (®".reg[pc — newPc], ms")) € O(W): by definition of £(W) using the above
three points.
11.6. IW’' IP™ W, ms,., ms'. mem = ms’ & ms, & msy and ms’ p_; W’
By: definition of O(W) using the previous step and the evaluation conf’ —;/ (halted, mem')
from Step [4]
O
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5.4.10 Scall macro-instruction correctness

Definition 4. We say that (reg, ms) is looking at [ig, - - ,in] followed by cpeqst iff
e reg(pe) = ((p, 9), b, €,a)
e p=RWX, p = RX, or p = RWLX

ea+n<e b<a<e

e ms(a+0, - ,a+n) =i, i)
® Cneat = ((p,9),be;a+n+1)
|
Definition 5. We say that reg points to stack with msgy, used and mSynyseq unused iff
o reg(rspe) = ((RWLX, LOCAL), bk, €sths Q)
o dom(MmsSynused) = [@str + 1, -, €5tk
o dom(mssy) = [bstr, " - » stk
® by — 1 < asp
|

Lemma 58 (scall works). If
o ms i, revokeTemp (W)
o dom(msy) N (dom(ms g W MSunyusea W ms)) = 0
o (reg, ms) is looking at scall r(Forg, Tpriv) followed by Crept

e reg points to stack with msgy used and MSypyseq unused

Hyp-Clallee If

— dom(msunused) = dom(msgee W ms’, .,
— W' = revokeTemp(W)[151% (temp, ms s W ms et © ms ¢), PP (dom(ms’,,.ca))]s

- ms"” 1 W’

reg’ points to stack with () used and ms’

unuse

— reg’ = regy[pc — updatePcPerm(reg(r)), Targ = 7€9(Targ ), To V> Cret, Tstk —> Csth, T F
reg(r)]

— (n—1,c¢p) € V(W)

— (n—1,ce) € V(W)

4 unused

then we have that (n — 1, (reg’, ms”)) € O(W")
Hyp-Cont If

—n'<n-2

— W 3P reyoke Temp (W)
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Then

— ms"” i revokeTemp(W")

— for all r, we have that:

= Cnext Zf?“ = pc
reg’ (r) { = reg(r) if T € Tprin

€ V(revokeTemp(W"))  if reg’(r) is a global capability and v & {pc, Fpriv, stk }

"

/ - : "
— reg’ points to stack with msgy, used and ms. . . unused for some ms. . .

then we have that (', (reg’, ms"” W ms; & msgy, W ms’ ) € O(W")

unused

o (n,(reg, msWmsy W mssy W Msynused)) € O(W)

Proof. Assume n is sufficiently large to execute all the steps up to and including the jump of
scall 7(Targ, Tpriw). If this is not the case, then in any given memory frame the execution will
not halt successfully fast enough.

Further assume

1.
2.

= W

6.

ms i, revoke Temp (W)

dom(msy) N (dom(ms sy & MSynused W ms)) =0

(reg, ms) is looking at scall 7(Targ, Tprew) followed by cpeqt
reg points to stack with msgy used and msqynyseq Unused
Hyp-Callee

Hyp-Cont

Now we wish to apply Lemma To this end let msframe be given. Executing the scall gives us

/
(reg, msWms pIMS 1k WMS ynused DMS frame) —>i (1€g1, MSWMS fUMS 541 WMS 0t WMS'y, 10 WS frame )

where

7.
8.

10.
11.

12.

13.

1 <n
MSqer contains activation record, reg(7pmy), the code return capability, and the full stack

capability (reg(rsy) with the pointer adjusted).

Va € dom(ms’ ). ms! (a) =0

unused unused

dom(msynused) = dom(msgee Wms., ..q)

reg;(ro) = cret = ((E,LOCAL), _, _, _) where the range of authority is the same as reg(rsuy)
and it points to the first instruction of the activation code.

/

reg, points to stack with (0 used and ms/,, ..

, unused

reg,(pc) = updatePcPerm(reg(pc))
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14.
15.
16.

regy(r) = reg(r)

Tegq (raTQS) = reg (Targs)

Vr' € RegisterName \ {pc, rsu, T, Fargs - 7€g1 (') = 0

In order to use Lemma [§] we now need to show

(n1, (regy, ms W ms ¢ W msgp & ms e W ms, ) € O(Wh)

unused

where

W1 = revoke Temp(W)[1*"® (temp, ms s & msaer © ms ), P (dom (ms’,,usea))]

to this end use Hyp-Callee . To use this everything is satisfied directly by assumptions but
the following:

17.

18.

19.

ms W msy W mssy W msge Wmsl, oo, W
Here we apply Lemma By assumption [1.| we have ms :,, revokeTemp(W). So it suffices
to show

/ . sta wl /
MS § & MS st & MS gt WMS e in—1 [0 (temp, ms sy Wms ger Wmsp), P (dom(ms),,,eeq))]

/

This turns out to be trivial as msy, mssy, and ms,c; match the static region. ms;,,,, ..

all zeroes, to it trivially satisfies the :P*! region.

(n—1,req (rser)) € V(W)
Use Lemma with and that W has region (P*!(dom(ms’, . ..4)-

4 18

(n—1,cret) € V(W)
To this end let

19.1. n  <n-—-1
19.2. W, 2P W,

be given and show
(n’, updatePcPerm(c,et)) € E(W3)

To this assume

19.3. n" <n'
19.4. (n”, reg,) € R(W2)
19.5. ms’ n!t W2

be given and show

(n”, (regy[pc = updatePcPerm(cret)], ms')) € O(Ws) (17)

From and we can deduce that the memory can be split in the following way:
ms' = ms"” W ms, W mssy ¥ mSact W msh,ceq W msy

where ms” is the ”permanent” part of memory we get from Lemma ms, is the part "re-
voked” of memory from the same lemma that is not otherwise specified, and dom(ms’,,,,..;) =
dom(ms’! ). From Lemma [63] we also get

unused
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19.6. ms"” i revoke Temp(Ws)

Assume n” is large enough to execute the rest of the scall instructions. If n” is not large
enough, then [I7] is trivial to show. To show [I7] apply Lemma [§] again where ms, is the
revoked part. Let ms},,, . be given, the execution until just after the scall proceeds as
follows:

(rego[pc — updatePcPerm(cpet)], ms' & msgwfmme) —; (regs, ms' W ms}mme)

where

19.7.

Cnext T =Dpc
Cstk = Tstk
reg(r) 7 € {Tpriv}
rego(r)  otherwise

regs(r) =

19.8. reg; points to stack with msgy, used and msger W msznused unused

At this point, we use Hyp-Cont to show the observation predicate condition of
Lemma [&

(n”, (regs, ms"” W ms gy Wmsaee Wmsh, .q @msy)) € O(Wa)

which

en' <n—-2
Follows from (|19.1.)
o Wy JP% revoke Temp(W)
We have
Wy 3P revoke Temp(W)
and assumption we get this by transitivity of 2374,

o ms” :n revoke Temp(Ws)
Exactly

e for all r, we have that:

= Cpext if r =pc
regs(r) < = reg(r) it r € Tpriw

€ V(revokeTemp(Ws))  if regs(r) is a global capability and r & {pc, Tpriv, stk |

The two first cases follows from [19.7] The third follow from assumption and
(9

!/ : : "
e reg’ points to stack with msgy, used and msqee W msy, . .., unused

Exactly
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5.4.11 Malloc macro-instruction correctness

Definition 6. We say that “(reg, ms) links key as j to cmatioe” iff
e reg(pc) = ((perm, g), base, end, a)
o ms(base) = ((_,-), baseyink, -, -)

o ms(baseyn; +j) =c¢

Lemma 59 (malloc works). If
o (reg,ms) is looking at malloc r k followed by cCpext

e k>0

(reg, ms) links malloc as k to Cmalioe

Cmalloc Sotisfies the malloc specification with tmaiioc,0
o W IP™ [i > Linaioc,0]
e ms:, W
o ms = ms' W msfootprint
® M5 footprint n [1 = W(i)]
Hyp-Cont If
—n'<n-1
— Umattoc 37" W (i)
— ms}.ootprmt Wms’ 1 Wi = tmalioc)

! . .
- msfootprint -n’ [Z = Lmalloc]

Cnext 7-/ =pc
reg'(r') = < ((RWX, GLOBAL), base, end,a) 1’ =7
reg(r) r" & RegisterName, U {pc,r,71}

— end — base =k — 1
— dom(msgii0c) = [base, end)]

— Va € [base, end]. msajioc(a) =0
Then we have (n', (reg’, ms" & msh, o ing @ msalloc)) € O(Wtmaitoc))

Then
(n, (reg, ms)) € O(W)
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5.4.12 Create closure macro-instruction correctness

Lemma 60 (crtcls works). If

e (reg,ms) is looking at crtcls (x,r)r followed by Cpext

Hyp-Cont

Then

(reg, ms) links malloc as k to Cmalioe

Cmalloc SGtisfies the malloc specification with tmaiioe,0

w gpriv [Z — Lmalloc,O]

ms ., W

— !
ms = ms W msfootprint

NS footprint ‘n [7/ = W<Z)]

If

n' <n
b .
Lmalloc gpu W(Z)
! ! . .
ms’ & msfootprint n’ W[Z = Lmalloc]

/ Lo
MS tootprint n [7’ = Lmalloc]

Cnext r’ = pcC
reg'(r') = < cus = ((E, GLOBAL), base, end, base +2) 1/ =1,
reg(r) r’ & {pc,r1} U RegisterName,

MScls = MSact ¥ MSeny
ceis = ((E, GLOBAL), .. .)
Cenv = ((RW, GLOBAL), base€ eny, €nd eny, baS€ eny )
dom(mseny) = [baS€eny, €Nd eny)
MSeny(baseeny, - - -, end eny) = 1eg(T)
Hyp-act
If
* reg” (pc) = updatePcPerm(ces)

Then 3k.Vmsy. (reg”, ms” W msqs Wmsy) —p (reg”’, ms” & mscs Wmsy) where

Cenv r = Cenw
reg”’ (r') = < updatePcPerm(reg(r)) ' = pc
reg” (r") r’ & RegisterName,

Then we have (0, (reg’, ms' W& ms footprint & mSeis)) € OW i = timalioc))

(n, (reg, ms)) € O(W)
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5.4.13 Helper lemmas about the stack

Lemma 61. If

e perm € {RX, RWX, RWLX}

e (n, (base, end)) readCondition(LOCAL) (W)

e (n, (base, end)) writeCondition (:P*!, LOCAL) (W)

then

(n, perm, base, end) € executeCondition(LOCAL)(W)

Proof of Lemma[61 Assume

1.
2.
3.

perm € {RX, RWX, RWLX}
(n, (base, end)) readCondition(LOCAL) (W)

(n, (base, end)) writeCondition(:P*!, LOCAL) (W)

Let W/ JP"* W, a, and n’ < n be given and show

(n’, ((perm, LOCAL), base, end, a)) € E(W')

Consider each of the three cases for perm:

4.

perm = RWLX
In this case ¢ = (P*!. If we use the FTLR (Theorem , then we are done. It suffices to

show:
4.1. (n/, (base, end)) € readCondition(LOCAL)(W")
Follows from Lemma [34] Lemma[36] and assumption [2]

4.2. (n’, (base, end)) € writeCondition (P!, LOCAL)(W')
Follows from Lemma [37} Lemma[36] and assumption [3]

perm = RX
In this case ¢+ = ™!, If we use the FTLR (Theorem , then we are done. It suffices to
show:

5.1. (n/, (base, end)) € readCondition(LOCAL)(W")
Follows from Lemma [34] Lemma 36} and assumption
5.2. (n', (base, end)) € writeCondition(:""!, LOCAL)(W')
Follows from Lemma [33] Lemma [37] Lemma [36] and assumption

perm = RWX
In this case ¢« = (™!, If we use the FTLR (Theorem , then we are done. It suffices to
show:

6.1. (0, (base, end)) € readCondition(LOCAL)(W")
Follows from Lemma [34] Lemma [36] and assumption
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Lemma 62 (Stack capability in value relation). If
e 1eg points to stack with () used and ms wunused
o Ir. W(r) = P*(dom(ms))

then
(n, reg(rsw)) € VW)

Proof of Lemma[63 Say
reg(rsi) = st = ((RWLX, LOCAL), base, end, _)
Show

1. (n, (base, end)) € readCondition(LOCAL)(W) :
Amounts to N
! !
(P (dom(ms)) C Li’;e’end
which is true as they are even equal.
2. (n, (base, end)) € writeCondition(tP*", LOCAL)(W) :
Using Lemma[I2} this amounts to

l n l
P (dom(ms)) 2 Li’;‘;amd

which is true as they are even equal.

3. (n, (RWLX, base sy, endsy,)) € executeCondition(LOCAL) (W)
Using 2] and [T we can use Lemma

4. (n, (RWX, basesy;, endsy;)) € executeCondition(LOCAL)(W)
Using 2] and [I] we can use Lemma

5. (n, (RX, base, endgy)) € executeCondition(LOCAL) (W)
Using [T] and 2] we can use Lemma [61}

5.4.14 Memory Segment Satisfaction

We expect the following lemmas to hold true:

Lemma 63 (Revoke temporary memory satisfaction).

Yms,n, W, W".
ms :, W =
/
dms’, ms,..

ms = ms' & ms, A ms’ 1, revoke Temp(W)

Proof of Lemma[63
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Lemma 64 (Revoke temporary memory satisfaction 2).

Vms,n, W, R : active(W) — MemSegment.
ms i, p W =
Ims’, ms,.
ms = ms’ W ms,A

!
M8 2 Plaom(1W | pormy) revoke Temp(W)A

ms, = L—}j P(r)A
e I_WJ {temp}

ms’ = L-ﬂ P(r)

€W ] permy

Proof of Lemma[64}

Lemma 65 (Revoke temporary memory with stack).

Vn, ms, W, reg, s, g, base, end, a.
ms i WA (n,reg) € R(W)A
reg(rser) = ((RWLX, g), base, end, a) ANb < e
Ims’, ms,.

ms’ 1, revokeTemp(W) A ms = ms' & ms,.

Proof of Lemma 65,

Lemma 66 (Disjoint memory satisfaction).

Yn.VYms, ms', ms” NW,W' W".
ms" =mswms AW =WuUIW Ams:, WAms :, W =

ms” ., W

Proof of Lemma [66
Lemma 67 (Memory satisfaction and static regions).

ms i, [i > 5% (v, ms)]

Proof of Lemma[67}
Lemma 68 (Data only memory and standard regions). If
e Va € dom(ms). ms(a) € N

e L E {prl7 anl’ anl,p}
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then
ms i, [i — 1(dom(ms))]

Proof of Lemma [68

5.4.15 Future worlds

Lemma 69 (World public future world of revoked world).

YW. revoke Temp (W) JP“ W

Proof of Lemma[69 For all r where W(r) = (temp, s, ¢pus, ¢, H), we have revoke Temp(W)

revoked. By the public future region relation we have

W (r) = (temp, 8, Ppup, ¢, H) 27" revoke Temp(W)(r) = revoked

all other regions remain unchanged, so this follows by reflexivity of the public future region

relation.

Lemma 70 (World private future world of revoked world).

VYW. revoke Temp (W) 2™ W

Proof of Lemma[70,

Lemma 71 (Public future world relation included in private future world relation).

W/ ;pub W = W/ ;priv w

Proof of Lemma |71

Lemma 72 (Transitivity proberties between private and public future worlds).
W// :Ipm'v W/ A W/ :Ipub W = W// :Ipriv %%

and
W// :lpub W/ A W/ jpm; W = W// :Iprw 1%

Proof of Lemma[73

Lemma 73.

Vn, Wy, Wa, W, Wi = Wy AW] 2P Wy = 3Wy. Wy = W, AWy TP W,
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Proof of Lemma[73 Construct W3 as follows:

(v, 81, Gpub2, P2, Ho)  if r € dom(W2) and W{(r) = (vi, s4, -, -)
Wa(r) = and Wa(r) = (1, -, dpub2; P2, H2)
Wi(r) otherwise

Notice dom(W3) = dom(W7).
Lemma 74.

Y, Wy, Wy, Wj. Wi & Wy AW, 3P Wy = 3W,. Wy = W] AW 2P W,

Proof of Lemma[7j Construct W3 as follows:

(Ulla Slla ¢pub27 ¢27 HQ) if r € dOHl(WQ and Wll (7”') = (U/h 5/17 - = *)
WQ(T) = and WQ(T) - (77 - ¢pub27 ¢27 HQ)
wi(r) otherwise

5.4.16 Value relation

Lemma 75 (Value relation downwards closed).

n <nA(nw) e VW)= (n,w) € V(W)

Proof. By definition of V(W) using Lemma and

Lemma 76 (Register relation downwards closed).

n' <nA(n,w) € R(W) = (n,w) € R(W)

Proof. By definition of R(W) using Lemma

Lemma 77 (Value relation monotone wrt JP0).

W' 2P WA (n,w) € V(W) = (n,w) € V(W)

Proof of lemma[77 Follows from Lemma [34] Lemma 37} Lemma 40} and Lemma

Lemma 78. If
(n,w) € V(revokeTemp(W))

then
(n,w) € V(W)
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Proof of Lemma[78, Follows from Lemma [29] Lemma [30} Lemma [3T} and Lemma
Lemma 79 (Global capabilities monotone wrt J7").
Vn, perm, base, end, a, W, W'.

(n, ((perm, GLOBAL), base, end, a)) € V(W) A W' 2P W/
= (n, ((perm, GLOBAL), base, end, a)) € V(W)

Proof of Lemma[79 Assume
1. perm & {RWL, RWLX}
2. WP W
3. (n, ((perm, GLOBAL), base, end, a)) € V(W)

and show
(n, ((perm, GLOBAL), base, end, a)) € V(W')

O

to this end consider the possible cases of perm and show that each of the necessary conditions

hold:

1. perm =0
Trivial

2. perm = RO
Follows from Lemma B35l

3. perm = RW
Follows from Lemma B and Lemma [38]

4. perm = RX
Follows from Lemma B5 and Lemma [41]

5. perm = RWX
Follows from Lemma Lemma [38] and Lemma

6. perm = E
Lemma, [44]

Lemma 80 (Non local words monotone wrt "),

Vn, perm, base, end, a, W, W' w.
w is non-local/
(n,w) € V(W) AW JP™ 1/
= (n,w) € V(W)

Proof of Lemma[80 If w = ((perm,GLOBAL), base, end, a), then let follows from Lemma

If w € Z, then it follows from the fact that i € V(W”) for all i € Z and W"” € World.
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6 Other examples and applications

This section contains some ideas about other examples and applications than the ticket dispenser
example.

6.1 Stack and return pointer handling without OS involvement using
local capabilities

The idea of this example would be to work out and prove a calling convention that enforces
well-bracketed control flow and encapsulation of local variables using CHERI’s local capabilities.
When one function invokes another function, the essential idea is that:

e Stack pointer is passed as a local and store-local capability.
e Return pointer is passed as a local capability.

Since local pointers cannot leave the registers except into regions for which a store-local
capability is available, this basic idea seems to enforce a number of useful properties: well-
bracketedness of control flow and encapsulation of private state stored on the stack. On the
other hand, it also seems to validate the standard C treatment of the stack: the stack can be
reused after a function returns, even between distrusting parties. However, safety/security of
this design is very non-trivial and seems to rely on some non-trivial reasoning:

Only stack is store-local? A critical assumption is that adversary code has no way to store
local capabilities except on the stack. The reason that it is fine to store local capabilities on
the stack is that the adversary only has a local capability to the stack and cannot usefully store
that capability anywhere. However, this means that we need to rely on the runtime system of
our programming language to be careful when handing out store-local capabilities: only the libc
startup code should initialise the stack as store-local and malloc should not produce them. This
basically means that the libc initialisation code (or whatever component produces the initial
stack pointer) is part of our TCB.

Requirement for clearing the stack Imagine the following trusted C function:

void myfunction(){
advfunction1();
advfunction2();

}

where advfunctionl() and advfunction2() are adversary functions. In the standard C treat-
ment of the stack, advfunction2() would get the same stack pointer as advfunctionl(). This is
supposed to be safe since advfunctionl() cannot have kept capabilities for the stack after its
execution. But what if we require that the two functions have no way of communicating with
each other? Concretely, advfunctionl() has access to some secrets that must not be leaked to
advfunction2(). How can we prevent advfunctionl() from storing the secret somewhere on the
stack and relying on advfunction2() from receiving the same stack pointer where it can read the
secret? The most obvious solution seems to be that we should fully clear the stack (overwrite
it with zeros) after the return of any adversary function, but this could cause an important
overhead. Perhaps the processor should accommodate this with a special instruction that can
zero the entire array that a capability points to?
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What do return pointers look like? An important question is what return pointers look
like? Since we want to protect the caller from the callee, it’s important that the return pointer
is opaque, i.e. an entry pointer. The entry pointer will point to a closure that contains the next
instruction to execute, as well as the previous stack pointer. But since stack pointers are local,
this means that the return pointer closure should be stored in a region of memory for which we
have store-local permission, i.e. on the stack. This means we need the following in our calling
convention: before invoking a function, we push the stack pointer and the instruction pointer
after invocation on the stack, we construct a return pointer by copying the stack pointer, limiting
it to these two entries and making it an entry pointer. Then we shrink the stack pointer to the
unused part of the stack and jump.

Only one-way protection in higher-order settings? Another important point is that,
in a sense, local capabilities provide only one-way protection: the caller is protected from the
callee but not vice-versa. Concretely: when invoking a function with some arguments marked
as local, the caller is guaranteed that the callee will not have been able to store the capabilities
anywhere (except perhaps on the stack, see above). However, the callee seems to have more
limited guarantees: Particularly, the caller may have kept its own stack capability and this stack
capability may (and typically will) also cover the part of the stack that is “owned” by the callee.
In this sense, the guarantees are more limited than in a linear language.

So what does this mean? In a first-order language, this is all fine, but what if we are in a
higher-order language. Imagine the following (in some ML-like language):

let £ = fun callback =>
let ... in
let ret = callback() in

//adversary top function
let advtop = £f( (fun y => ...) )

Our trusted function f is invoked by the adversary (from function advtop()) and wants to
invoke an untrusted callback received from the adversary. When invoking the closure, we don’t
want it to be able to access f’s local variables which it has stored on the stack. To achieve this,
we only give it a stack pointer that covers the part of the stack that is unused by f. However,
the callback may be implemented as an entry pointer that carries capabilities, particularly the
capability to advtop’s stack pointer, which includes the part of the stack that is now used by f
and contains f’s local variables.

So how do we deal with this? Perhaps we should use the fact that this is only possible when
f’s callback argument is allocated to some part of the memory to which advtop has store-local
permissions (since the callback contains a reference to the stack to which advtop only has a
local capability). I see basically three ways to do this, all based on the idea of enforcing that
the callback should be constructed in a part of memory for which no store-local permissions are
available:

e One way to exclude the scenario is to require that callbacks are provided as non-local
capabilities. The downside of this is that local callbacks can be useful for the caller to
prevent the callee from storing them.

e Another way to exclude the scenario is to require that the stack is allocated in a fixed part
of the address space and to check that callbacks point outside of this region before invoking
them.
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e Perhaps we should require that store-local permissions cannot be removed from a capability
and simply require that callback pointers do not have store-local set. Perhaps we can allow
store-local permissions to be given up, but only if the corresponding part of memory is
fully zeroed in the process (or at least all local capabilities stored in the region).

6.2 A result to prove...

The simplest thing that comes to mind as a formal result for all of the above is to look at a concrete
program that clearly relies on properties like well-bracketed control flow and encapsulation of
local variables and prove it correct. As a concrete example: we might show an assembly program
that corresponds to the following (a higher-order program that crosses trust boundaries and
relies on local variable encapsulation and well-bracketed control flow):

let trustedCode = fun adversary =>
let x = ref 0 in
let callback = fun adv2 =>
x = Ix + 1;
let y = ref (!x) in
adv2 unit;

assert (!'x == ly);

x = Ix - 1)
let _ = adversary callback
assert (!x == 0)

7 Related reading

This is a list of related work that might be interesting to read in the context of this project.

7.1 Capability machines
7.1.1 M-Machine

More than 20 years ago, |Carter et al.| [1994] have described the use of capabilities in the M-
Machine. They do seem to have a reference for the instruction set after all [Dally et al., [1995];
it seems like the server was just temporarily down when we were looking for this the first time...

7.1.2 CHERI

The CHERI processor is a much more recent capability machine, described by [Woodruff et al.
[2014], Watson et al.| [2015].

Another result of this project is also CheriBSD: an adaptation of FreeBSD to the CHERI
processorEI It is not separately described in a published paper, but mentioned in the papers
cited above and in some tech reports (see url). This work includes a pure-capability ABI that
could provide some interesting examples.

The CHERI team also has a webpage with all of their CHERI-related publications (including
TRs and such)lﬂ

Shttp://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html
Shttp://wuw.cl.cam.ac.uk/research/security/ctsrd/cheri/
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7.2 Logical Relations

Some papers on logical relations that are relevant for this work are the following:

Hur and Dreyer| [2011] describe a logical relation between ML and a (standard) assembly
language for expressing compiler correctness. Relevant because they target an assembly language,
and they use biorthogonality.

Dreyer et al|[2010] describe a logical relation for a ML-like language and use public/private
transitions to reason about well-bracketed control flow. Relevant because we are considering to
cover an example of enforcing well-bracketed control flow in a capability machine.

Devriese et al.| [2016] describe a logical relation for a JavaScript-like language with object
capabilities. Relevant because it treats object capabilities, albeit in a JavaScript-like lambda
calculus. It also deals with an untyped language, using a semantic unitype.
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