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Abstract

We present a domain-theoretic model of parametric polymorphism based on admissible per’s
over a domain-theoretic model of the untyped lambda calculus. The model is shown to be a model
of Abadi & Plotkin’s logic for parametricity, by the construction of an LAPL-structure as defined by
the authors in [7, 5]. This construction gives formal proof of solutions to a large class of recursive
domain equations, which we explicate. As an example of a computation in the model, we explicitly
describe the natural numbers object obtained using parametricity.

The theory of admissible per’s can be considered a domain theory for (impredicative) polymor-
phism. By studying various categories of admissible and chain complete per’s and their relations,
we discover a picture very similar to that of domain theory.

1 Introduction

In this paper we show how to define parametric domain-theoretic models of polymorphic intuitionistic
/ linear lambda calculus. The work is motivated by two different observations, due to Reynolds and
Plotkin.

In 1983 Reynolds argued that parametric models of the second-order lambda calculus are very useful
for modeling data abstraction in programming [23] (see also[17] for a recent textbook description). For
real programming, one is of course not just interested in a strongly terminating calculus such as the
second-order lambda calculus, but also in a language with full recursion. Thus inloc. cit. Reynolds also
asked for a parametricdomain-theoreticmodel of polymorphism. Informally, what is meant [24] by this
is a model of an extension of the polymorphic lambda calculus[22, 9], with a polymorphic fixed-point
operatorY : ∀α. (α → α) → α such that

1. types are modeled as domains, the sublanguage without polymorphism is modeled in the standard
way andY σ is the least fixed-point operator for the domainσ;

2. the logical relations theorem (also known as the abstraction theorem) is satisfied when the logical
relations are admissible, i.e., strict and closed under limits of chains;

∗Corresponding author. Address: L. Birkedal, IT Universityof Copenhagen, Rued Langgaardsvej 7, DK–2300 Copenhagen
S, DENMARK,birkedal@itu.dk

†This work is sponsored by Danish Research Agency stipend no.272-05-0031

1



3. every value in the domain representing some polymorphic type is parametric in the sense that it
satisfies the logical relations theorem (even if it is not theinterpretation of any expression of that
type).

Of course, this informal description leaves room for different formalizations of the problem. Even so,
it has proved to be a non-trivial problem. Unpublished work of Plotkin [20] indicates one way to solve
the problem model-theoretically by using strict, admissible partial equivalence relations over a domain
model of the untyped lambda calculus but the details of this relationally parametric model have not been
worked out before. We do that here.

In loc. cit. Plotkin also suggested that one should consider parametricdomain-theoretic models not
only of polymorphic lambda calculus but of polymorphic intuitionistic / linear lambda calculus. This is
necessary, since full parametricity for second order lambda calculus gives a type theory with coproducts,
and since we already have fixed points in the calculus, such anextension of simply typed lambda calculus
is inconsistent [11]. The polymorphic intuitionistic / linear type theory gives a way to distinguish, in
the calculus, between strict and possibly non-strict continuous functions and a restricted parametricity
principle can then give type encodings in the linear part of the calculus. Indeed Plotkin argued that
such a calculus could serve as a very powerful metalanguage for domain theory in which one could also
encode recursive types, using parametricity.

Thus parametric domain-theoretic models of polymorphic intuitionistic / linear lambda calculus are of
import both from a programming language perspective (for modeling data abstraction) and from a purely
domain-theoretic perspective.

This paper describes such a model, classifies the class of recursive domain equations that can be solved
in the model and provides the first rigorous proof that the solutions can obtained through the use of
parametricity.

The proof builds on earlier work by the authors. In a recent paper [6] (see also the brief conference
version [7]) we have presented an adaptation of Abadi & Plotkin’s logic for parametricity for the second
order lambda calculus [21] to the dual calculus suggested byPlotkin. We call this logic Linear Abadi
& Plotkin Logic (LAPL), and the term language, called PILLY for polymorphic intuitionistic / linear
lambda calculus, is a simple extension of Barber and Plotkin’s calculus for dual intuitionistic / linear
lambda calculus (DILL) with polymorphism and fixed points. In the logic we have given detailed proofs
of correctness of Plotkin’s encodings of types in PILLY , including general recursive types, and also
validated reasoning principles for these types.

In another recent paper [5] we have defined the category-theoretic notion ofparametric LAPL-structure,
which are parametric models of LAPL. The notion of a parametric LAPL-structure is a useful notion of
parametric model since one can reason about a parametric LAPL-structure using the logic. In particular,
we have shown how to solve general recursive type equations in these structures.

This paper presents a parametric PILLY -model based on admissible per’s (partial equivalence relations)
over a reflexive domain (a domain-theoretic model of the untyped lambda calculus) thus confirming the
folklore idea that such a model exists. The model is constructed using Robinson and Rosolini’s para-
metric completion process [25], and shown to be parametric by the construction of an LAPL-structure
around it. The LAPL structure gives formal proofs of the expected consequences of parametricity. Thus
by the general results for parametric LAPL-structures, we get solutions to recursive type equations;
here we explicitly describe the class of recursive type equations on the model that can be solved using
parametricity.

The theory of admissible per’s mixes the idea of modeling impredicative polymorphism using per’s
with domain theory and can be seen as a domain theory for polymorphism. It is our hope that this
theory will provide the same intuition about polymorphism in combination with recursion as domain
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theory does for the theory of recursive functions. From the view point of axiomatic domain theory,
PILLY axiomatizes the adjunction between the categories of pointed cpo’s with strict continuous maps
and all continuous maps respectively, whereas axiomatic domain theory traditionally has axiomatized
the adjunction between the category of cpo’s and the category of cpo’s with partial maps (as in Fiore’s
thesis [8]). We see a tight correspondence to traditional domain theory and can, as usual, construct
categories corresponding to pointed cpo’s with strict mapsand cpo’s with partial maps, but unlike in
traditional domain theory, the two categories are not equivalent in the setup with admissible per’s.

The idea of PILLY as a meta language for domain theory is further investigatedin recent work by
Møgelberg [15], in which it is shown that a large class of parametric LAPL-structures model Plotkin’s
FPC [19] (see also [8]) - a calculus with general recursive types and a call-by-value operational se-
mantics. A classical result states that FPC can be interpreted in domain theory and that this model is
adequate. The concrete case of the LAPL-structure investigated in this paper also models an extension
of FPC with call-by-value polymorphism and this interpretation is computationally adequate.

Recently, Pitts and coworkers [18, 4] have presented a syntactic approach to Reynolds’ challenge, where
the notion of domain is essentially taken to be equivalence classes of terms modulo a particular notion
of contextual equivalence derived from an operational semantics for a language called Lily, which is
essentially polymorphic intuitionistic / linear lambda calculus endowed with an operational semantics.

In parallel with the work presented here, Rosolini and Simpson [26] have shown how to construct para-
metric domain-theoretic models using synthetic domain-theory in intuitionistic set-theory. Moreover,
they have shown how to give a computationally adequate denotational semantics of Lily.

In subsequent papers we show how these models give rise to parametric LAPL-structures, and so the
results about LAPL-structures (such as solutions to recursive domain equations) transfer to these models.

We have strived to make this paper reasonably self-contained and thus include definitions and proofs of
the relevant properties for admissible per’s. Moreover, wehave included an overview of the concrete
interpretation in Section 3.2. However, to fully appreciate the larger scope of the paper, the reader
is expected to be familiar with the brief description of LAPLin the conference paper [7], but readers
interested only in the description of the domain theoretic model of parametric polymorphism may skip
Section 4 and consider that section a formal verification of the parametricity results for the model.

1.1 Outline

Section 2 considers two categories of admissible per’s overa reflexive cpo, one with continuous maps
and one with strict continuous maps. The first is shown to be cartesian closed and the second to be
symmetric monoidal closed, and the two are related by an adjunction in which one map is forgetful and
the other is a lifting functor. Section 2.2 contains the discussion of axiomatic domain theory advertised
above.

In Section 3 a model of PILLY in which types are indexed families of admissible per’s is constructed.
In Section 3.1 the parametric completion process is appliedto this model giving a parametric PILLY

model. The model is parametric in the sense that it can be extended to a parametric LAPL-structure,
i.e., a model for the logic LAPL for parametricity. This is shown in Section 4. Section 5 introduces
the family of recursive domain equations that may be solved in the parametric model using the general
results about parametric LAPL-structures, and in Section 6, as an example of a computation in the
model, we compute explicitly the natural numbers object in the category of admissible per’s and strict
continuous maps, as encoded using parametricity. Section 7relates our results to previous work on
recursive types in per-models.
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2 Admissible per’s

Recall that a reflexive cpo is a pointedω-chain-complete partial order equipped with maps

Φ: D → [D → D] and Ψ: [D → D] → D,

both Scott-continuous and satisfying
Φ ◦ Ψ = id[D→D]

where[D → D] denotes the cpo of continuous functions fromD to D. We assume, without loss of
generality, that bothΦ andΨ are strict. The mapsΦ,Ψ induce a combinatory algebra structure onD
with applicationd · d′ = Φ(d)(d′), and using this it is quite standard to construct strict continuous
functions

〈·, ·〉 : D ×D → D, π : D → D and π′ : D → D,

such that for alld, d′ ∈ D:

π〈d, d′〉 = d and π′〈d, d′〉 = d′.

We usei to denoteΨ(id[D→D]). Notice thatΦ(i) = id[D→D].

Recall that a partial equivalence relation (a per) is a symmetric and transitive relation. For a perR, the
set|R| of elementsd such thatd R d is called thedomainof the perR, andR induces an equivalence
relation on its domain.

Definition 2.1. An admissible partial equivalence relation onD is a partial equivalence relationR on
D satisfying

strict ⊥D R ⊥D,

ω-chain complete For (dn)n∈ω and(d′n)n∈ω ω-chains inD:

(∀n ∈ ω.dn R d′n) ⇒
⊔

n∈ω

dn R
⊔

n∈ω

d′n,

Definition 2.2. ForR andS per’s onD, define the set ofequivariant functions from R to S as

F(R,S) = {α ∈ [D → D]|d R d′ ⇒ α(d) S α(d′)}

and the set ofstrict equivariant functions from R to S as

F(R,S)⊥ = {α ∈ F(R,S)|α(⊥D) = ⊥D}.

NoteF(R,S)⊥ ⊆ F(R,S).

Definition 2.3. ForR andS per’s onD, define onF(R,S) orF(R,S)⊥ the equivalence relation'R,S

by
α 'R,S β ⇔ ∀d ∈ D. d R d⇒ α(d) S β(d)

We writePER(D) for the category of partial equivalence relations overD. Recall that it has partial
equivalence relations overD as objects and that a morphism[α] : R → S is an equivalence class in
F(R,S)/ 'R,S . Elements of[α] are calledrealizers for [α].

Definition 2.4. We define the categoryAP(D) of admissible partial equivalence relations overD as
the full subcategory ofPER(D) on the admissible per’s.
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The following theorem is well known [2] but we recall the proof for the readers benefit.

Theorem 2.5. The categoryAP(D) is a sub-cartesian closed category ofPER(D).

Proof. We recall the constructions. It is straightforward to verify that the resulting per’s are admissible.
The terminal object1 is the admissible per defined by

d 1 d′ ⇔ d = ⊥D = d′.

The binary product ofR andS is

d R× S d′

m

∃d1, d2, d
′
1, d

′
2 ∈ D. d = 〈d1, d2〉 ∧ d′ = 〈d′1, d

′
2〉 ∧ d1 R d′1 ∧ d2 S d

′
2

The exponential ofR andS, SR, is given by

d SR d′ ⇔ Φ(d) 'R,S Φ(d′).

Lemma 2.6. There is a faithful functor Classes: AP(D) → Set mapping an admissible per to the
set of equivalence classes and an equivalence class of realizers to the map of equivalence classes they
induce. This functor preserves products, i.e., for any pairof admissible per’sR,S, Classes(R × S) ∼=
Classes(R) × Classes(S).

Proof. Classesis the global sections functor,hom(1,−), which preserves products. That it is faithful
follows from the fact that all constant functionsD → D are continuous.

Definition 2.7. The categoryAP(D)⊥ of admissible per’s and strict continuous functions is the full-on-
objects subcategory ofAP(D) with morphisms[α] : R→ S equivalence classes inF(R,S)⊥/ 'R,S.

Remark 2.8. Note that inAP(D)⊥, morphisms are required to have astrict continuous realizer. On
the other hand, if there is a realizerα ∈ F(R,S) with α(⊥D) S ⊥D then the function that maps⊥D to
⊥D and all otherd ∈ D to α(d) will still be continuous and equivalent toα in F(R,S). This function
will thus be a realizer inF(R,S)⊥.

Theorem 2.9. AP(D)⊥ is a cartesian sub-category ofAP(D).

Proof. Obvious sinceπ, π′, and〈·, ·〉 are strict.

Theorem 2.10.The categoryAP(D)⊥ is symmetric monoidal closed.

Proof. The tensor ofR andS is

d R⊗ S d′

m

d R× S d′

∨
(

∃d1, d
′
1 ∈ |R|. ∃d2, d

′
2 ∈ |S|. d = 〈d1, d2〉 ∧ d′ = 〈d′1, d

′
2〉 ∧

(d1 R ⊥D ∨ d2 S ⊥D) ∧ (d′1 R ⊥D ∨ d′2 S ⊥D)

)
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This complicated looking definition is most easily understood through the functorClasses: The equiv-
alence classes of the tensor product are those of the productwith the modification that all pairs where
one of the coordinates are related to⊥D have been gathered into one big equivalence class.

The unit of the tensorI is defined by

dId′ ⇔ d = d′ = ⊥D ∨ d = d′ = i.

The exponential ofR andS,R ( S, is given by

d R ( S d′ ⇔ d SR d′ ∧ (d′′ R ⊥D ⇒ Φ(d)(d′′) S ⊥D S Φ(d′)(d′′))

The proof consist of a series of straightforward verifications.

For later use we shall mention how regular subobjects look inthis category. We useA � R to express
thatA is a regular subobject ofR, if R is an admissible per.

Lemma 2.11. There is a bijective correspondence between regular subobjects ofR and per’sA such
that

Classes(A) ⊆ Classes(R) ∧A ∈ Obj(AP(D)⊥)

Proof. AssumeR andA with the mentioned properties. DefineRA by

d RA d′

m






d = 〈db,⊥D〉 ∧

d′ = 〈d′b,⊥D〉 ∧

db R d′b






∨







d = 〈d1, i〉 ∧

d′ = 〈d′1, i〉 ∧

d1 R d′1






∨







d = 〈db,⊥D〉 ∧

d′ = 〈d′1, i〉 ∧

db A d′1






∨







d = 〈d1, i〉 ∧

d′ = 〈d′b,⊥D〉 ∧

d1 A d′b







i.e pairs fromR×{{⊥D}, {i}} with the added relations of pairs with their first componentsrelated inA.
RA ∈ Obj(AP(D)⊥) and there are two morphismsR ( RA realized byd 7→ 〈d,⊥D〉 andd 7→ 〈d, i〉
respectively. In view of remark 2.8, and since⊥D A ⊥D, the latter does in fact realize a morphism of
AP(D)⊥ andA is the equalizer of these two morphisms.

Conversely, the image of an equalizer is easily seen to be admissible. Thus all regular subobjects have a
representative, which is a subset of the equivalence classes as desired.

We also need the following fact about admissible per’s

Lemma 2.12. If I is an arbitrary set, and for alli ∈ I,Ri is an admissible per overD then the relation
⋂

i∈I Ri defined as

d
⋂

i∈I

Ri d
′ ⇔ ∀i ∈ I. d Ri d

′

is an admissible per overD.
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2.1 Lifting

We now define a lifting functor, to establish a left adjoint tothe inclusionU : AP(D) → AP(D)⊥.
Define the mapL0 : Obj(AP(D)) → Obj(AP(D)⊥) by

d L0(R) d′

m
d = ⊥D = d′ ∨ ∃e, e′ ∈ D.

(

d = 〈i, e〉 ∧ d′ = 〈i, e′〉 ∧ e R e′
)

This is well-defined asL0(R) easily is admissible ifR is.

Notice the “if” construct available on a lifted per: ForR an admissible per ifd is in the domain of
L0(R) thend is either⊥D or a pair〈i, e〉. HenceΦ(π(d)) is either the totally undefined function or the
identity onD. ThusΦ(π(d))(d′) can be read “ifd /∈ [⊥]L0(R) thend′ else⊥D”, where[⊥]S is the class
represented by⊥D in the admissible perS.

We also have a “lift” mapη : R→ L0(R) realized byλd ∈ D.〈i, d〉 and an “unlift” mapε : L0(R) → R
realized byπ′. Notice thatε is strict, butη is not.

To handle morphisms we work at the level of realizers. Define,for admissible per’sR andS, the map
L′

1 : F(R,S) → F(L0(R), L0(S))⊥ by

L′
1(α) = λd ∈ D.Φ(π(d))(〈i, α(π′(d))〉)

which reads “ifd /∈ [⊥]L0(R) then lift(α(unlift d)) else⊥D”. As L′
1(α)(〈i, e〉) = 〈i, α(e)〉, this is easily

seen to be well-defined. As it also takes equivalent realizers to equivalent realizers, we can lift the map
to the level of morphisms and a straightforward verificationshows that this together withL0 defines a
functorL : AP(D) → AP(D)⊥.

Theorem 2.13.There is a monoidal adjunctionL a U .

Proof. One first shows thatL is left adjoint toU in the ordinary sense. The unit of the adjunction is given
by (ηR : R→ UL(R))R∈APD0

, and fort : R → U(S) in AP(D)⊥, the required uniqueu : L(R) → S
in AP(D)⊥, such thatU(u) ◦ ηR = t, is given by the realizer

αu = λd ∈ D.if d /∈ [⊥]L(R) thenαt(unlift d) else[⊥]S

whereαt is a realizer fort.

To show that the adjunction is monoidal it suffices by [10] to show that the left adjointL is a strong
symmetric monoidal functor (see [16] for an explanation). To this end, we must exhibit an isomor-
phismmI : I → L(1) and a natural isomorphismmR,S : L(R) ⊗ L(S) → L(R × S). This is mostly
straightforward; we just include the definition ofmR,S : it is the morphism realized by

λd ∈ D.
if π(d) 6= ⊥ then

if π′(d) 6= ⊥ then
lift of 〈unlift(π(d)), unlift(π′(d))〉

else⊥D

else⊥D.

The inverse is realized by

λd ∈ D.
if d 6= ⊥ then

〈lift of π(unlift(d)), lift of π′(unlift(d))〉
else⊥D.
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2.2 Relation to axiomatic domain theory

We have advertised the slogan, that the theory of admissibleper’s is “a domain theory for polymor-
phism”. In this section we explore different categories of admissible and chain complete per’s and their
relations, and relate the results to classical domain theory. The reader should keep the following picture
in mind from classical domain theory.

Cpo

U

22> pCpo

L
rr ∼= // Cppo⊥

U

11⊥ Cppo

Lqq
(1)

HereCpo is the category of complete partial orders (cpo’s),pCpo of cpo’s and continuous partial
functions,Cppo⊥ of pointed cpo’s and strict continuous functions andCppo of pointed cpo’s and all
continuous functions. In the diagramU always denotes inclusion andL lifting.

In axiomatic domain theory much focus has been on the leftmost adjunction, as in Fiore’s thesis in which
categories of partial maps are studied. The category of partial mapspCpo is isomorphic to the Kleisli
category for the lifting monad onCpo induced by the adjunctionU a L, and this is also isomorphic to
the Eilenberg-Moore category for the monad and toCppo⊥.

In PILLY , the adjunction on the right is axiomatized, and in general PILL Y -models there is a priori no
category corresponding toCpo. In the theory of admissible per’s, however, there is one such, namely
the categoryCCP(D) of chain complete per’s overD with maps defined as inAP(D). One may easily
show that the lifting functor of Section 2.1 extends to a functor L : CCP(D) → AP(D)⊥, and in fact
this is left adjoint to the inclusionU : AP(D)⊥ → CCP(D), thusUL induces a monad onCCP(D).
The picture corresponding to (1) for admissible per’s is

CCP(D) > 11

>

++

AP(D)⊥
qq

U

⊥ 11 AP(D)
Lqq

CCP(D)UL

kk

?�

OO
.

HereCCP(D)UL is the Kleisli category for the monad. We will show thatAP(D)⊥ is the Eilenberg-
Moore category of the monad onCCP(D), but that this is not the same asCCP(D)UL in the sense
that the comparison map, which is the inclusion in the diagram, is not an isomorphism, as is the situation
in domain theory.

Proposition 2.14. The categoryAP(D)⊥ is equivalent to the Eilenberg-Moore category forUL on
CCP(D).

Proof. A standard theorem of adjunctions tells us thatAP(D)⊥ is included in the Eilenberg Moore
category. In fact, the inclusion maps an objectR of AP(D)⊥ to the counit of the adjunction atR. We
must show that any monad algebra forUL is of this form (up to isomorphism). Supposef : LS → S
is an algebra realized byα. Construct the admissible perS′ by adding⊥ to the equivalence class of
α(⊥) in S. It is now an easy check to show thatf : LS → S is isomorphic as an algebra to the counit
ε : LS′ → S′.

We remark that in fact,CCP(D) is a cartesian closed category,UL a strong commutative monad, and
the symmetric monoidal structure onAP(D)⊥ is induced byUL as in [12].
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Proposition 2.15. The Kleisli category for the monadUL onCCP(D) is equivalent to the full subcat-
egory ofAP(D)⊥ on per’sR such that[⊥]R = {⊥}.

Proof. The Kleisli category is isomorphic to the category of free algebras, which is equivalent to the
mentioned category.

As mentioned, this is different from the situation in classical domain theory, where the Kleisli category
for the lifting monad onCpo coincide with the Eilenberg-Moore category for the same monad, and both
are isomorphic toCppo⊥. For a simple example of an algebra forUL that is not isomorphic to a free
one, suppose⊥ 6= d < e are elements ofD, and consider the admissible per given by the collection of
equivalence classes{{⊥, e}, {d}}.

The last proposition of this section shows how to recoverCCP(D) from AP(D)⊥. This is interesting,
as PILLY is meant to axiomatize the adjunction to the right of (1), andin a general PILLY -model there
is a priori no category corresponding toCpo.

Proposition 2.16. The co-Eilenberg-Moore category for the comonadLU onAP(D)⊥ is equivalent to
CCP(D).

Proof. We show that the co-Eilenberg-Moore category is isomorphicto the category of admissible per’s
R for which the equivalence class[⊥D] is a downward closed subset of the domain ofR — i.e., if
d R d, d ≤ d′ andd′ R ⊥D, thend R ⊥D — and maps that preserve and reflect[⊥D]. This category
is equivalent toCCP(D), with one map of the equivalence lifting a chain complete per, and the other
discarding the equivalence class[⊥D] from an admissible per.

Supposeα is a realizer for a coalgebraξ on an admissible perR, andd R d, d ≤ d′ andd′ R ⊥. Sinceα
is strict,α(⊥) = ⊥, and soα(d′) LUR ⊥ implying α(d′) = ⊥. Thus, by monotonicityαd = ⊥. Since
ε ◦ ξ is the identity, whereε is the counit,d R ⊥. On the other hand, if[⊥] is a downward closed subset
of the domain ofR then one may easily check that

ξ(d) =

{

⊥ if ∃d′ ≥ d. d′ R ⊥
〈i, d〉 else

defines a unique coalgebra structure onR. Continuity ofξ follows from admissibility ofR.

Supposet : R ( S is a map between such per’s, preserving coalgebra structure. Sincet has a strict
realizer it must preserve the equivalence class of⊥. To see that it also reflects it, supposet([d]R) = [⊥]S .
Then alsoLU(t)(ξR([d])) = [⊥]LUS implying thatξR([d]) = [⊥]LR. Clearly, thend R ⊥.

Suppose on the other hand thatt : R ( S reflects the equivalence class of⊥. In order to showLU(t) ◦
ξR = ξS ◦ t we write them out, assumingt is realized byαt:

LU(t)(ξR([d])) =

{

LU(t)([⊥]) if ∃d′ ≥ d. d′ R ⊥
LU(t)([〈i, d〉]) else

=

{

[⊥] if ∃d′ ≥ d. d′ R ⊥
[〈i, αtd〉] else

and

ξS(t([d])) =

{

[⊥] if ∃d′ ≥ αtd. d
′ S ⊥

[〈i, αtd〉] else

Using that ford R d, ∃d′ ≥ αtd. d
′ S ⊥ ⇔ d R ⊥, we can rewrite them to

LU(t)(ξR([d])) =

{

[⊥] if d R ⊥
[〈i, αtd〉] else

and ξS(t([d])) =

{

[⊥] if αtd S ⊥
[〈i, αtd〉] else

which are equal sincet reflects[⊥].
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3 A domain-theoretic PILL Y model

The calculus PILLY is a Polymorphic Intuitionistic / Linear Lambda calculus with a fixed point com-
binatorY . It is basically DILL of [3] extended with polymorphism and fixed points. Types are formed
using the grammar

σ ::= α | I | σ ⊗ τ | σ ( τ | !σ |
∏

α. σ.

Terms are written in context as
Ξ | Γ;∆ ` t : σ

whereΞ is the context of free type variables,Γ is a context of inituitionistic variables and∆ is a context
of linear variables. All the free type variables occurring in Γ,∆ andσ must be inΞ. The typing rules
for terms are presented in Figure 1.

The type constructor( denotes a linear function space, and its constructor is a lambda abstraction for
linear variables. Intuitionistic function space can be encoded using the Girard encodingσ → τ = !σ (

τ . Using this encoding, the polymorphic fixed point combinator Y has the type
∏

α. (α → α) → α.

Terms of PILLY are considered up to an equality theory including standardβ, η rules and stating thatY
is a fixed point operator. For further details on PILLY see [6].

This section presents a PILLY model in which the⊗ and ( are interpreted using the symmetric
monoidal closed structure onAP(D)⊥, and! is interpreted using lifting. But because PILLY contains
polymorphism the categorical formulation of the model structure is based on fibred category theory. A
model of PILLY is essentially a fibred model of DILL [3] with extra structureto model polymorphism.

The model to be constructed here will be denoted

UFam(AP(D)⊥)
U

00

q

""DD
DD

DD
DDD

DD
DD

DD
DD

⊥ UFam(AP(D))
Lpp

p

}}{{
{{

{{
{{

{{
{{

{{
{{

{

Set.

(2)

The fibred adjunction of (2) is a fibred version of the adjunction betweenAP(D) andAP(D)⊥. The
calculus PILLY will be modeled in the fibrationq using the symmetric monoidal closed structure to
model the type constructionsI,⊗,(. The lifting functorL will be used to model! and polymorphism
will be modeled via simple products with respect to a genericobject. A term~x : ~σ; ~y : ~σ′ ` t : τ in which
thexi are the intuitionistic variables and theyj are the linear variables is modeled as a vertical morphism
⊗

i LU [[σi]] ⊗
⊗

j [[σ
′
j ]] → [[τ ]] in the fibrationq. The fibrationp still plays a role as it can be used to

model the terms with only intuitionistic variables.

We shall only show that the categorical structure needed formodeling PILLY is present, and not spell
out the interpretation of PILLY in the model. For further details on PILLY models see [16].

Define the contravariant functorP : Setop → Cat by mapping a setI to the categoryP (I) with

Objects: (Ri)i∈I where for alli ∈ I,Ri is an object ofAP(D).

Morphisms: (ti)i∈I : (Ri)i∈I → (Si)i∈I , where, for alli ∈ I, ti ∈ AP(D)(Ri, Si) and theti have
a uniform realizerin the sense that there exists anα in [D → D] such that for alli ∈ I, ti =
[α]'Ri,Si

.
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Ξ | Γ;− ` ? : I Ξ | Γ;− ` Y :
∏

α. !(!α ( α) ( α

Ξ | Γ, x : σ;− ` x : σ Ξ | Γ;x : σ ` x : σ

Ξ | Γ;∆ ` t : σ ( τ Ξ | Γ;∆′ ` u : σ
∆,∆′ disjoint

Ξ | Γ;∆,∆′ ` t u : τ

Ξ | Γ;∆, x : σ ` u : τ

Ξ | Γ;∆ ` λ◦x : σ. u : σ ( τ

Ξ | Γ;∆ ` t : σ Ξ | Γ;∆′ ` s : τ
∆,∆′ disjoint

Ξ | Γ;∆,∆′ ` t⊗ s : σ ⊗ τ

Ξ | Γ;− ` t : σ

Ξ | Γ;− `!t : σ

Ξ, α : Type | Γ;∆ ` t : σ
Ξ | Γ;∆ is well-formed

Ξ | Γ;∆ ` Λα : Type. t :
∏

α : Type. σ

Ξ | Γ;∆ ` t :
∏

α : Type. σ Ξ ` τ : Type

Ξ | Γ;∆ ` t(τ) : σ[τ/α]

Ξ | Γ;∆ ` s : σ ⊗ σ′ Ξ | Γ;∆′, x : σ, y : σ′ ` t : τ
∆,∆′ disjoint

Ξ | Γ;∆,∆′ ` let x : σ ⊗ y : σ′ bes in t : τ

Ξ | Γ;∆ ` s : !σ Ξ | Γ, x : σ;∆′ ` t : τ
∆,∆′ disjoint

Ξ | Γ;∆,∆′ ` let !x : !σ bes in t : τ

Ξ | Γ;∆ ` t : I Ξ | Γ;∆′ ` s : σ

Ξ | Γ;∆,∆′ ` let ? bet in s : σ

Figure 1: Typing rules for PILLY terms
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For a functionf : I → J , the reindexing functorP (f) is simply given by composition withf .

Define the contravariant functorQ : Setop → Cat given by mapping setI to the categoryQ(I) with

Objects: (Ri)i∈I where for alli ∈ I,Ri is an object ofAP(D)⊥.

Morphisms: (ti)i∈I : (Ri)i∈I → (Si)i∈I where for alli ∈ I, ti ∈ AP(D)⊥(Ri, Si) and∃α ∈ [D →
D]. ∀i ∈ I. ti = [α]'Ri,Si

.

For a functionf : I → J , the reindexing functorQ(f) is again simply given by composition withf .

That we have two contravariant functors is obvious. The Grothendieck construction (see for exam-
ple [13]) then gives us two split fibrations,p : UFam(AP(D)) → Set andq : UFam(AP(D)⊥) →
Set. The functorsL andU both operate one the level of realizers and so lift to fibred functors between
these two fibrations (we abuse notation and also denote the fibred functors byL andU ). Explicitly,
on objectsL(I, (Ri)i∈I) = (I, (L(Ri))i∈I) and on vertical morphismsL(I, (ti)i∈I) = (I, (L(ti))i∈I).
Likewise forU . These are not recursive definitions, they simply look so because of the reuse of letters.

Proposition 3.1.L andU are split fibred functors andL a U is a split fibred strong monoidal adjunction

Proof. It is obvious thatL andU are split fibred functors; the second part follows immediately from
Theorem 2.13.

To show that (2) is a model of PILL it remains to be shown thatq has a generic object and simple
products, in other words models polymorphism.

Lemma 3.2. The setΩ = Obj(AP(D)⊥) = Obj(AP(D)) is a split generic object of the fibrationq.
The fibrationq has simple splitΩ-products satisfying the Beck-Chevalley condition.

Proof. The first part is obvious. For the second part, one uses the usual definition for uniform families
of ordinary per’s and verifies that it restricts to admissible per’s: We recall from [13] that given any
projectionπM : M × Ω →M in Set, the right adjoint∀M to π∗M is given on objects by intersection:

∀M ((R(a,ω))(a,ω)∈M×Ω) = (
⋂

ω∈Ω

R(a,ω))a∈M .

By lemma 2.12 the resulting per is admissible.

Theorem 3.3. The diagram(2) constitutes a model of PILLY .

Proof. Given the preceding results it only remains to verify that (1) the structure in the diagram models
the polymorphic fixed point combinator and that (2)UFam(AP(D)) is equivalent to the category of
products of free coalgebras ofUFam(AP(D))⊥.

For (1), the required follows, as expected, because the per’s are strict and complete. In more detail, what
is needed is an element of the PILLY type

∏

α. (α → α) → α as interpreted in the model, giving fixed
points to maps. An inspection of the model shows that this means a continuous functionFix : [D →
D] → D such that for any admissible perR, if α is a realizer for a mapL(R) ( R, thenFix(α) is a
fixed point forα ◦ l, wherel is a realizer for the “lifting map”η : R → L(R) described in Section 2.1.
Moreover, ifα 'LR,R α′ are related inL(R) ( R then we must have(Fix(α),Fix(α′)) ∈ R. Taking
Fix to be the functionα 7→

⊔

n(α ◦ l)n(⊥) gives an element clearly satisfying the first condition. The
second condition is satisfied becauseR is strict and chain complete.

For (2), observe that by [16, Proposition 1.21] applied to Theorem 2.9 it suffices to show thatUFam(AP(D))
is equivalent to the co-Kleisli category of the adjunctionL a U , but this follows from the fact thatU is
an inclusion surjective on objects.
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3.1 A parametric domain-theoretic model of PILLY

In this section, we introduce a parametric version of the thus far constructed model. It is essentially ob-
tained through a parametric completion process [25]. In [14] it is shown how the parametric completion
process can be used to construct parametric LAPL-structures in general.

One of the reasons why having a parametric model is interesting, is that it will be a model of recursive
types, containing solutions to recursive domain equations. Section 5 details the family of recursive
domain equations, that can be solved in the obtained model.

We will arrive at the diagram

PFam(AP(D)⊥)

((QQQQQQQQQQQQQ
U

00⊥ PFam(AP(D))

vvmmmmmmmmmmmm

Lpp

PAP(D).

(3)

As is usual in the parametric completion process, types willbe pairs(fp, f r) wherefp is a type in the
sense of the model (2), andf r is a relational interpretation of the type, i.e., a map taking a vector of
relations and producing a new relation. In this setup, by relation on a pair of admissible per’sR,S
we shall mean a regular subobject of the product perR × S in AP(D)⊥. SinceClasses(R × S) ∼=
Classes(R)×Classes(S), Lemma 2.11 gives the following characterization of the relations in question:
these are subsetsM ⊆ Classes(R) × Classes(S) such that([⊥]R, [⊥]S) ∈ M , and if (dn), (d′n) are
increasing chains of elements ofD in the domain ofR andS respectively, such that([dn]R, [d

′
n]S) ∈M

for all n, then also([
⊔

n∈ω dn]R, [
⊔

n∈ω d
′
n]S) ∈ M . (It is crucial that subobject is in the category with

strict maps — this is what gives([⊥]R, [⊥]S) ∈M ). As always we writeA � R×S for such relations.
We adopt the notationRegSub(R× S) for the set of objectsA in AP(D)⊥ such thatA � R× S.

We now return to the definition of the fibrations of (3). The base categoryPAP(D) is defined as

Objects: n ∈ N — objects are natural numbers.

Morphisms: f : n→ m is anm-tuple,(f1, . . . , fm), where eachfi is a pair(fp
i , f

r
i ) satisfying

• fp
i is a map of objects(Obj(AP(D)⊥))n → Obj(AP(D)⊥)

• f r
i is a map, that to twon-tuples of objects ofAP(D)⊥ associates a set-theoretic map of

subobjects

f r
i ∈ Π~R,~S∈(Obj(AP(D)⊥))n

(

Πj∈{1,...,n} RegSub(Rj × Sj) → RegSub(fp
i (~R) × fp

i (~S))
)

satisfying
∀~R ∈ (Obj(AP(D)⊥))n.f r

i (~R, ~R)( ~eqRj
) = eq

f
p
i (~R),

We now describePFam(AP(D)⊥) → PAP(D) andPFam(AP(D)) → PAP(D).

We plan to use the Grothendieck construction, and so define indexed categories:(PFam(AP(D)⊥))n
is defined with

Objects: morphisms inPAP(D) from n to 1.

Morphisms: t : f → g is a family of morphisms(t~R
: fp(~R) → gp(~R))~R∈(Obj(AP(D)⊥))n of AP(D)⊥

with a uniform realizer (as in the definition ofUFam(AP(D))) which respects relations in the
sense that

∀ ~A �
~R× ~S.f r(~R, ~S, ~A)([d], [d′]) ⇒ gr(~R, ~S, ~A)(t~R

([d]), t~S([d′])).
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If we write LR(AP(D)⊥)0 for the collection of all admissible relations on admissible per’s, and
(AP(D)⊥)0 for the collection of all admissible per’s, then there is a reflexive graph

(AP(D)⊥)0 // LR(AP(D)⊥)0
oo
oo

where the two maps going left map a relation to its domain and codomain respectively and the map
going right maps an admissible per to the equality relation.By this being a reflexive graph, we mean
that going right and then back using either of the two maps is the identity. Another way to think of an
object of(PFam(AP(D)⊥))n is as a pair(f r, fp) in a diagram

LR(AP(D)⊥)n0
fr

//

�� ��

LR(AP(D)⊥)0

�� ��
(AP(D)⊥)n0

fp

//

OO

(AP(D)⊥)0

OO

In the diagram the three obvious squares are required to commute. For example, the two ways of starting
in the lower left corner and ending in the upper right are equal, which is exactly the requirement thatf r

preserves equality.

Quite similarly(PFam(AP(D)))n is defined as the category with

Objects: morphisms inPAP(D) from n to 1.

Morphisms: t : f → g is a uniformly realized family of morphisms(t~R
)~R∈(Obj(AP(D)⊥))n of AP(D)

such that
t~R

: U(fp(~R)) → U(gp(~R))

whereU : AP(D)⊥ → AP(D) is the forgetful functor. That we now ask for morphisms of
AP(D) removes the demand, that the uniform realizer be strict. Again this t should respect
relations:

∀ ~A �
~R× ~S.f r(~R, ~S, ~A)([d], [d′]) ⇒ gr(~R, ~S, ~A)(t~R

([d]), t~S([d′])).

Note that the only difference between the two definitions is the choice of category in which thet~R
are

required to be morphisms.

We will very often write simplyf r( ~A) for f r(~R, ~S, ~A).

Definition 3.4. Define the functorL : PFam(AP(D)) → PFam(AP(D)⊥) on

objects by
L((fp, f r)) = (F p, F r)

where
F p(~R) = L(fp(~R))

and
F r((~R, ~S, ~A)) = L(f r(~R, ~S, ~A))

morphisms by
L(t : (fp, f r) → (gp, gr))(R) = L(t(R))

In the definition, we have lifted a relation. By this we mean toapply the lifting functor to the span
(π ◦f r, π′ ◦f r) corresponding to the relation. The resulting relation relates lifted elements to each other
iff the unlifted versions are related, and relates the equivalence classes of⊥ to each other. We define
U : PFam(AP(D)⊥) → PFam(AP(D)) in a similar way usingU instead ofL.
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Lemma 3.5. L : PFam(AP(D)) → PFam(AP(D)⊥) andU : PFam(AP(D)⊥) → PFam(AP(D))
are both fibred functors, and constitute a fibred adjunctionL a U.

By an easy extension of Theorem 2.5, we have:

Proposition 3.6. PFam(AP(D)) is fibred cartesian closed.

Proof. The product of(fp, f r) and(gp, gr) is (fp×gp, f r×gr) wherefp×gp is the point-wise product,
andf r×gr takes the point-wise product of subobjects, which of courseis a subobject of the products. In
the exponent(fp → gp, f r → gr) the first component is defined point wise, and the second component
f r → gr relates the equivalence classes[d], [d′] if they map related elements to related elements in the
sense that if([e], [e′]) ∈ f r( ~A) then([Φ(d)e], [Φ(d′)e′]) ∈ gr( ~A). (Recall that the latter is well defined,
i.e., independent of the choice of representatives).

Proposition 3.7. PFam(AP(D)⊥) is fibred cartesian and fibred symmetric monoidal closed.

Proof. We just present the SMCC structure: In the fibre(PFam(AP(D)⊥))n, the tensor product of
(fp, f r) and(gp, gr) is (fp ⊗ gp, f r ⊗ gr) where(fp ⊗ gp)(~R) = fp(~R) ⊗ gp(~R) andf r( ~A) ⊗ gr( ~A)
is the image off r( ~A) × gr( ~A) under the quotient map from the product to the tensor. In other words
f r( ~A)⊗gr( ~A) relates the equivalence classes of⊥ and relates[〈d, d′〉]

fp(~R)⊗gp(~R) to [〈e, e′〉]
fp(~S)⊗gp(~S)

(assuming these are not representatives of the[⊥] equivalence classes) if([
elAl], [e]) ∈ f r( ~A) and([d′], [e′]) ∈ gr( ~A).

The unit of the tensor is given by the object(~R 7→ I, ~A 7→ eqI).

The exponential of(fp, f r) and(gp, gr) in (PFam(AP(D)⊥))n, is (fp
( gp, f r

( gr) where again
fp

( gp is defined pointwise using the closed structure ofAP(D)⊥, i.e.,(fp
( gp)(~R) = fp(~R) (

gp(~R). The relational interpretation of the exponential(f r
( gr)( ~A) relates equivalence classes that

represent maps that preserve relations, i.e.,(f r
( gr)( ~A)([d], [d′]) iff

∀([e], [e′]) ∈ f r( ~A). ([Φ(d)(e)], [Φ(d′)(e′)]) ∈ gr( ~A).

To verify the adjunction(−) ⊗ (fp, f r) a (fp, f r) ( (−), we use that we know it holds in the first
component and then check that the bijection can be restricted to realizers that define morphisms in the
second component; the latter is a direct consequence of the way the relational interpretations of⊗ and
( are defined.

Lemma 3.8. L a U is a fibred symmetric monoidal adjunction.

Proof. This proceeds much as in the unfibred case. We show thatL is a fibred strong symmetric
monoidal functor. We must provide a morphismmI and a natural transformationm, but we can simply
use the same realizers as before, since everything has been defined coordinatewise and these realizers
are independent of the specific per’s, and hence are uniform realizers.

The next lemma shows that (3) models polymorphism.

Lemma 3.9. The fibrationPFam(AP(D)⊥) → PAP(D) has a split generic objectΩ and simple
Ω-products.

Proof. ClearlyΩ = 1 is a split generic object. For the simple products, given a projectionπ : n+1 → n,
we must define a right adjoint toπ∗. The construction is exactly as in [13, Section 8.4]: the adjoint maps
an object(fp, f r) of PFam(AP(D)⊥)n+1 to (

∏

fp,
∏

f r) in PFam(AP(D)⊥)n, where

(
∏

fp)(R1, . . . , Rn)(d, e)
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iff
∀R. fp(R1, . . . , Rn, R)(d, e)∧

∀R,S,A � R× S. ([d]fp(R1,...,Rn,R), [e]fp(R1,...,Rn,S)) ∈ f r(eqR1
, . . . ,eqRn

, A)

and
∏

f r(A1, . . . , An)([d], [e]) iff

∀R,S,A � R× S. f r(A1, . . . , An, A)([d], [e]).

For this to be an object ofPFam(AP(D)⊥)n one needs to check that in fact
∏

f r(eqR1
, . . . ,eqRn

) is

equality on
∏

fp(~R), but this can easily be verified.

Proposition 3.10. The diagram (3) constitutes a PILLY model.

Proof. It only remains to verify that the structure models the fixed point combinator. Here we simply
use theY from Theorem 3.3, which works since relations are strict andchain complete.

Remark 3.11. Notice that in the model (3), the fibre of closed types, i.e., the category(PFam(AP(D)⊥))0
is isomorphic toAP(D)⊥.

3.2 Overview of Interpretation

We can summarize the interpretation of types.

Recall, that the interpretation of a typeα1, . . . , αn ` σ is a pair(fp, f r), wherefp is a function that takes
n admissible per’s (detailing the types for the free type variables) and produces an admissible per, andf r

is the relational interpretation. Thusf r takesn regular subobjectsA1 � R1 ×S1, . . . , An � Rn ×Sn

and gives a regular subobject offp(R1, . . . , Rn) × fp(S1, . . . , Sn).

Assumeα1, . . . , αn ` σ, and thatR1, . . . , Rn andS1, . . . , Sn are admissible per’s andA1 � R1 ×
S1, . . . , An � Rn ×Sn are regular subobjects inAP(D)⊥. Then the interpretation ofσ is given by the
following two tables:

σ fp(R1, . . . , Rn)

αi Ri

I {(⊥D,⊥D), (i, i)}

τ ⊗ τ ′ {(〈d1, d2〉, 〈d′1, d
′
2〉) | [[τ ]]

p(d1, d
′
1) ∧ [[τ ′]]p(d2, d

′
2)} ∪

{(〈d1, d2〉, 〈d′1, d
′
2〉) | d1, d

′
1 ∈ |[[τ ]]p| ∧ d2, d

′
2 ∈ |[[τ ′]]p| ∧

([[τ ]]p(d1,⊥D) ∨ [[τ ′]]p(d2,⊥D)) ∧

([[τ ]]p(d′1,⊥D) ∨ [[τ ′]]p(d′2,⊥D))}

τ ( τ ′ {(d, d′) | Φ(d)(⊥D) = Φ(d′)(⊥D) = ⊥D ∧

∀(e, e′) ∈ [[τ ]]p.[[τ ′]]p(Φ(d)(e),Φ(d′)(e′))}

!τ {(⊥D,⊥D)} ∪ {(〈i, d〉, 〈i, d′〉) | [[τ ]]p(d, d′)}
∏

α.τ {(d, d′) | ∀R ∈ AP(D)⊥.[[τ ]]
p(R1, . . . , Rn, R)(d, d′) ∧

∀R,S ∈ AP(D)⊥.∀A � R× S.[[τ ]]r(eqR1
, . . . , eqRn , A)([d], [d′])}
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σ f r(A1, . . . , An)

αi Ai

I {([⊥D], [⊥D]), ([i], [i])}

τ ⊗ τ ′ {([〈d1, d2〉], [〈d′1, d
′
2〉]) | [[τ ]]

r([d1], [d
′
1]) ∧ [[τ ′]]r([d2], [d

′
2])}

τ ( τ ′ {([d], [d′]) | ∀([e], [e′]) ∈ [[τ ]]r.[[τ ′]]r([Φ(d)(e)], [Φ(d′)(e′)])}

!τ {([⊥D], [⊥D])} ∪ {([〈i, d〉], [〈i, d′〉]) | [[τ ]]r([d], [d′])}
∏

α.τ {([d], [d′]) | ∀R,S ∈ AP(D)⊥.∀A � R× S.[[τ ]]r(A1, . . . , An, A)([d], [d′ ])}

4 A parametric LAPL-structure

Intuitively the PILLY model constructed in Section 3.1 is parametric, because every type has a rela-
tional interpretation (f r) satisfying identity extension (this is the requirement thatf r(eqR1

, . . . ,eqRn
) =

eq
fp(~R)), and moreover, the relational interpretations of( and

∏

are given by the usual interpretations
as can be seen from the proofs above. In this section we make this statement precise by showing that
the PILLY model can be extended to a parametric LAPL-structure [5], i.e., a model of the logic for
parametricity on PILLY presented in [6]. This will give us proofs of encodings of recursive types in the
model as we shall explain in Section 5 below.

The LAPL-structure will be given by the diagram

Fam(Sub(Set))

r

��
PFam(AP(D)⊥)

))SSSSSSSSSSSSSS

U

33
⊥ PFam(AP(D))

��

L
ss

� � I // Fam(Set)

s
uukkkkkkkkkkkkkk

PAP(D).

(4)

The left hand side of the diagram is simply the model (3), which we want to reason about using the logic
for parametricity. We use the logic of sets to reason about types in the model. We have already used
the term admissible relation to refer to certain subsets of the product of sets of equivalence classes, and
general propositions on admissible per’s will be simply subsets of the set of equivalence classes for the
per. Thus we include the category of admissible per’s into the category of sets using theClassesfunctor,
and reason using subsets. The inclusion of per’s into the larger category of sets is needed because when
reasoning about parametricity one needs to quantify over all relations between a pair of types, and the
collection of relations between per’s is a set, not a per. Of course general types are not per’s, but indexed
families of per’s (plus a relational interpretation of course) so the inclusion of per’s into sets must be
indexed, and that is the right hand side of the diagram.

The formal definition of the categories of (4) is as follows. The fibre ofFam(Set) overn has as

Objects mapsf : Obj(AP(D))n → Set.

Morphisms t : f → g is a family of set theoretic maps

(t~R
: f(~R) → g(~R))~R∈Obj(AP(D))n

and reindexing is given by composition. The fibre ofFam(Sub(Set)) over an objectf : Obj(AP(D))n →
Set is a preorder with
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Objects mapss : Obj(AP(D))n → Set, such that

∀~R ∈ Obj(AP(D))n. s(~R) ⊆ f(~R).

Morphisms There is a morphisms→ s′ if

∀~R ∈ Obj(AP(D))n. s(~R) ⊆ s′(~R).

Here reindexing with respect to morphisms inPAP(D) is given by composition, whereas reindexing
with respect to morphisms inFam(Set) is given by inverse image.

Lemma 4.1. The fibrations has fibred products, and(r, s) is an indexed first-order logic fibration with
simpleΩ-products and -coproducts.

Proof. Clearlys has fibred product inherited fromSet. The rest of the lemma states that the fibrationr
has left and right adjoints to sufficiently many reindexing functors to interpret all the needed quantifica-
tions in the logic LAPL. Butr is simply an indexed version of the subobject fibration onSet, and since
this fibration has left and right adjoints to all reindexing functors, the lemma follows.

The inclusion functorI : PFam(AP(D)) → Fam(Set) of (4) maps a type(fp, f r) to Classes◦ fp,
and likewise maps a morphism(t~R

)~R
to (Classes(t~R

))~R
. This corresponds to the intuition described

earlier: a type is a pair(fp, f r), but when reasoning about a type, we forget the relational interpretation
f r of the type, and reason set theoretically about the equivalence classes of the per.

Lemma 4.2. I is a faithful and product-preserving map of fibrations.

As mentioned,I includes the category of per’s into a larger category in which the collection of rela-
tions between a pair of per’s is an object. In the setting of LAPL-structures, this is formulated as a
contravariant map of fibrations U:

PFam(AP(D)⊥)2
U //

((QQQQQQQQQQQQQ
Fam(Set)

xxppppppppppp

PAP(D)

By contravariant map of fibrations, we mean a map commuting with the reindexing structure, but con-
travariant in each fibre. The functorU is defined as

(f, g) 7→ 2I(f)×I(g).

Lemma 4.3. U is a contravariant map of fibrations.

The precise formulation ofU mapping a pair of types to the collection of all relations on those types is
the existence of a family of bijections

χn : Fam(Set)(M,Un(f, g))n → Obj(Fam(Sub(Set))M×In(Un(f)×Un(g)))

indexed overf, g ∈ (PFam(AP(D)⊥))n andM ∈ (Fam(Set))n. This family is defined by

χn(h) = {(m, (a, b))|(a, b) ∈ h(m)}

in other words this is just the usual bijection between set theoretic mapsM1 → P (M2×M3) and subsets
of M1 ×M2 ×M3.

In terms of LAPL-structures we have proved:

18



Proposition 4.4. The diagram (4) constitutes a pre-LAPL structure.

Any type(fp, f r) in our model has a relational interpretation given by the mapf r, which we would like
to show can be used for reasoning about parametricity. However,f r is only defined on admissible rela-
tions on per’s, i.e., not onanysubset ofClasses(R) × Classes(S). This is no coincidence, as explained
in the introduction, and in the logic LAPL [6], axioms are formulated for such a collection of admissible
relations to be useful for reasoning about parametricity. We show that the admissible relations used in
this paper satisfy these axioms in Lemma 4.5.

First we formulate the collection of admissible relations as a subfunctorV of U by V (f, g) = ~R 7→
{Classes(A) | A �AP(D)⊥ (fp(~R) × gp(~R)) }.

Lemma 4.5. The structure in diagram (4) andV model admissible relations.

Proof. We must show that the collection of admissible relations used here satisfy the axioms formulated
in [6]. Recall that an admissible relation on a pair(R,S) of admissible per’s is a regular subobject of
the productR × S in AP(D)⊥. Since equality is given by the diagonal map, this is admissible, and
since regular subobjects are closed under reindexing alongmaps inAP(D)⊥, the reindexing axiom is
satisfied. By Lemma 2.12, regular subobjects are closed under intersection, which proves that admis-
sible relations are closed under conjunction and universalquantification. Finally, we must show that
(x, y). φ ⊃ ρ(x, y) is admissible ifρ is admissible andφ is a proposition, i.e.,x, y are not free inφ.
Since the logic of the pre-LAPL structure (4) is classical set theoretic logic, the proof boils down to the
two cases ofφ being true or false. In the first case we simply get the admissible relationρ, and in the
second we get the total relation(x, y).> which clearly is admissible.

The final step towards showing that (4) is an LAPL-structure and thus models LAPL, is to show that all
types have a relational interpretation. In categorical terms, this is formulated as the existence of a map
of fibrationsJ :









PFam(AP(D)⊥)

��
PAP(D)









//









LinAdmRelations

��
AdmRelCtx









whereLinAdmRelations → AdmRelCtx is a fibration constructed from the pre-LAPL structure
(4). Intuitively it is a fibration of relations, and the idea is thatJ should simply be the map(fp, f r) 7→ f r.
We first write out the abstract definition of the fibration of relations in the case of the pre-LAPL structure
considered here.

The categoryAdmRelCtx has as

Objects triples(n,m,Θ) whereΘ: Obj(AP(D))n+m → Set, assigns a set to a vector of admissible
per’s.

Morphisms triples (f, g, ρ) : (n,m,Θ) → (n′,m′,Θ′) wheref : n → n′ andg : m → m′ are mor-
phisms inPAP(D) andρ is an indexed family of set theoretic maps

ρ = (ρ~R,~S
: Θ(~R, ~S) → Θ′( ~fp(~R), ~gp(~S)))~R∈Obj(AP(D))n,~S∈Obj(AP(D))m

In this concrete caseLinAdmRelations can be described as follows: Given an object(n,m,Θ) over
(n,m), the fibre ofLinAdmRelations over(n,m,Θ) has as
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Objects triples(φ, f, g) such thatf andg are objects ofPFam(AP(D)⊥) overn andm respectively
andφ is an indexed family of maps

φ = (φ~R,~S
: Θ(~R, ~S) → {A | A � fp(~R) × gp(~S) })~R∈Obj(AP(D))n,~S∈Obj(AP(D))m

Morphisms A morphism(φ, f, g) → (ψ, f ′, g′) is a pair of morphisms

(t : f → f ′, u : g → g′)

in (PFam(AP(D)⊥))n and(PFam(AP(D)⊥))m, respectively, such that

∀~R ∈ Obj(AP(D))n, ~S ∈ Obj(AP(D))m.∀M ∈ Θ(~R, ~S).

∀([d], [d′]) ∈ Classes(fp(~R)) × Classes(gp(~S)). ([d], [d′ ]) ∈ φ(M) ⇒ (t([d]), u([d′])) ∈ ψ(M)

Notice the two maps of fibrations









PFam(AP(D)⊥)

��
PAP(D)

















LinAdmRelations

��
AdmRelCtx









∂0oo

∂1

oo

which on objects ofAdmRelCtx are defined by∂0(n,m,Θ) = n and∂1(n,m,Θ) = m and on ob-
jects ofLinAdmRelations map(φ, f, g) tof andg respectively. Thinking ofLinAdmRelations →
AdmRelCtx as a fibration of relations, these are the maps that map a relation to its domain and
codomain respectively.

Finally we can define the required functorJ . For the base categories,J is defined on

Objects by n 7→ (n, n, (
∏

i{A | A � Ri × Si })~R,~S∈AP(D)n)

Morphisms by f 7→ (f, f,
∏

i f
r
i )

and for the total categories,J is defined on

Objects by (fp, f r) 7→ (f r, f, f)

Morphisms by t 7→ (t, t).

Lemma 4.6. J is a map of fibrations and∂0 ◦ J and∂1 ◦ J are both equal to the identity.

Lemma 4.7. J is a map of linearλ2-fibrations.

Proof. We must show thatJ preserves(, ⊗,
∏

, I and !. In the fibrationLinAdmRelations →
AdmRelCtx this structure is defined using syntactic construction on relations. Recall from [6, Re-
mark 2.35] that forρ : AdmRel(σ, τ), the relation!ρ is the smallest admissible relation containing(!x, !y)
wheneverρ(x, y). If A � R × S thenLA is the smallest regular subobject ofR × S relating the lifts
of d ande if d, e are related inA. Since the fibred functor! on PFam(AP(D)⊥) is defined pointwise
by lifting relations,J thus commutes with!. Likewise we can show thatJ commutes with⊗ using
the characterization of⊗ on relations in [6, Remark 2.35] as the smallest admissible relation relating
d ⊗ e to d′ ⊗ e′ wheneverd andd′ are related ande ande′ are related. The rest of the cases are simple
inspections.

Theorem 4.8. The diagram in(4) constitutes a parametric LAPL-structure.
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Proof. The preceding results show that it is an LAPL-structure; it only remains to show that it is a
parametric such. Identity extension holds in the internal language of the LAPL-structure because the
relational interpretation of a type isf r, and this is required to satisfy identity extension. Finally the
technical requirements of very strong equality and extensionality hold because the subobject fibration
onSet satisfies very strong equality and extensionality.

5 Solving recursive type equations

Having shown that (3) extends to a parametric LAPL-structure, the results from [5] apply to our model.
In particular, we can solve a large class of recursive domainequations given by a class of fibred functors
called strong fibred functors in [5]. The following lemma characterizes strong fibred functors in this
concrete model.

Proposition 5.1. There is a bijective correspondence between strong fibred functors (as defined in [5])
F :

(PFam(AP(D)⊥)op)n × PFam(AP(D)⊥)m

++WWWWWWWWWWWWWWWWWWWWW

F // PFam(AP(D)⊥)

vvmmmmmmmmmmmmm

PAP(D)

and triples(F p, F r, F1), where(F p, F r) is an object of(PFam(AP(D)⊥)m+n) and (F p, F1) is a
functor(AP(D)⊥

op)n × AP(D)m⊥ → AP(D)⊥, and moreover

• F1 has a realizer, i.e., there exists a continuous mapd : [D → D]n+m → [D → D] such
that, if theAP(D)⊥ morphismst1, . . . , tn, u1, . . . um are realized byα1, . . . , αn, β1, . . . , βm then
d(α1 . . . αn, β1 . . . βm) is a realizer forF1(t1, . . . , tn, u1, . . . , um).

• F1 respects relations, i.e., ifAi � Ri × Si andA′
i � R′

i × S′
i and(ti : R

′
i → Ri, ui : S

′
i → Si)

preserve relations in the sense that for alli

∀([d], [e]) ∈ A′
i. (ti([d]), ui([e])) ∈ Ai

and likewiseBi � Ti × Ui, B′
i � T ′

i × U ′
i and for all i the pair (γi : Ti → T ′

i , δi : Ui → U ′
i)

preserves relations, then also

(F1(t1, . . . , tn, γ1, . . . , γm), F1(u1, . . . , un, δ1, . . . , δm))

preserve relations, i.e.,∀([d], [e]) ∈ F r(A1, . . . , An, B1, . . . , Bm)

(F1(t1, . . . , tn, γ1, . . . , γm)([d]), F1(u1, . . . , un, δ1, . . . , δm)([e])) ∈ F r(A′
1, . . . , A

′
n, B

′
1, . . . , B

′
m)

The main example of a strong fibred functor is the interpretation of a type

α1, . . . , αn, β1, . . . , βm ` σ

of pure PILLY in which the type variablesαi occur only negatively and the type variablesβi only
positively.
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Proof. Notice first thatn+m is a generic object for the fibration

(PFam(AP(D)⊥)op)n × PFam(AP(D)⊥)m → PAP(D),

and so the object part of a fibred functorF as in the theorem is completely determined by the image on
the identity onn+m.

If F is a strong fibred functor, then(F p, F r) is the image ofF applied to the identity onn+m, and the
existence of the realizer forF1 follows from the strength of the functor.

For the other direction, suppose we are given(F p, F r, F1) as above. Then the functorF is defined on
objects by composition with(F p, F r).

As mentioned, in [5] we prove that all recursive type equations corresponding to strong fibred functors
can be solved. For a detailed description of what this means,we refer toloc. cit.. Here we mention
just the simple case ofn = 0,m = 1. In this caseF is a fibred endofunctor, and since the fibre
PFam(AP(D)⊥)0 is isomorphic toAP(D)⊥ we get the following theorem.

Theorem 5.2. Suppose(F p, F r, F1) is a strong fibred functor in the case ofn = 1 andm = 0 of
Proposition 5.1. Then there exists an admissible perR and an isomorphismF p(R) ∼= R in AP(D)⊥
which is at the same time an initial algebra and a final coalgebra for the functor(F p, F1) : AP(D)⊥ →
AP(D)⊥.

6 Example: Natural numbers

As an example of a computation in the model, we compute explicitly the interpretation of the type
∏

α. (α ( α) → α ( α

which we know from LAPL is a natural numbers object inAP(D)⊥ (since this is the fibre of closed
types).

Due to shortage of letters in the english alphabet, we will usex, y, f andg in addition tod for elements
of D.

To ease notation, given a regular subobjectA � R× S, we shall write(x, y) ∈ A for R(x, x), S(y, y)
and([x], [y]) ∈ A. We will also leaveΨ,Φ implicit, and simply writef x for Φ(f)(x).

We consider the typeNat = [[
∏

α. (α ( α) → α ( α]]. By definition

d(Natp)d′

iff for all R,S per’s and all regular subobjectsA � R× S, (f, g) ∈ (A ( A) and(x, y) ∈ A

(d f x, d′ g y) ∈ A.

The domain ofNat contains the elements⊥ = λfλx.⊥ andn = λf. λx. fn(x), in particular0 =
λfλx. x. We also have a mapsucc: Nat → Nat realized byλn. λf. λx. f(n(f)(x)), andsucc(n) =
n+ 1.

Lemma 6.1. Supposen ≤ m. Thenn = m.

Proof. Consider the two functionsf, g : D → D given byf(d) = 〈d, i〉, wherei is the code of the
identity function, andg being the first projection. Both are continuous and sinceg ◦ f = id f is
injective. Define the sequence of elementsxn = fn(⊥). This sequence is strictly increasing.
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Now, if n ≤ m then
xn = n f ⊥ ≤ m f ⊥ = xm

son ≤ m. Further,
xm−n = n g xm ≤ m g xm = ⊥

som = n.

Lemma 6.2. The perN given by

⊥ N ⊥ ∧ ∀n ∈ N.n N n

is admissible.

Proof. N has the equivalence classes

{{⊥}} ∪ {{n} | n ∈ N}

thus, by the lemma above, there are no interesting chains inN .

Proposition 6.3. Supposed(Natp)d. Then

i) d = d succ0 and

ii) either d = ⊥ or d = n.

Proof. Consider the discrete admissible perD:

{{d} | d ∈ D}

Then givenf, x consider the regular subobjectA � Nat ×D given by

(⊥,⊥) ∈ A, ∀n. (n, fn(x)) ∈ A.

A is admissible, simply because it contains no interesting increasing chains. Clearly(succ, f) ∈ A (

A, so
(d succ0, d f x) ∈ A,

i.e., if d succ0 = ⊥, thend f x = ⊥ for all f, x and sod = ⊥, and ifd succ0 = n for somen, then
d f x = fn(x), for all f, x, sod = n. As we have seen, there are no other possibilities ford succ0.

Proposition 6.4. Supposed(Natp)d′, thend = d′.

Proof. By considering the regular subobjectA � Nat × Nat given by

(⊥,⊥) ∈ A, ∀n. (n, n) ∈ A

we conclude
d succ0 = d′ succ0.

By Proposition6.3 part i) we then getd = d′.

In conclusion, by direct calculation we have shown

Natp = {{⊥}} ∪ {{n} | n ∈ N},

where the elementsn are distinct incomparable elements ofD.
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7 Related PER Models of Recursive Types

As mentioned earlier, the fiber categoryPFam(AP(D)⊥)0 is equivalent toAP(D)⊥. Hence the
results on solutions to recursive domain equations of Section 5 imply that we can solve a wide class of
recursive domain equations onAP(D)⊥. In other words, our abstract results show that admissible per’s
provide a model of recursive types. Previous per models of recursive types, however, have involved extra
conditions on the per’s beyond admissibility.

In [1] a per model of polymorphism and recursive types is constructed. It employs per’s, which are ad-
missible, meet closed, uniform and convex. An O-category ofthese so-calledgoodper’s is constructed
and type expressions can now be modeled as effective symmetric functors on this category. In [2] it is
shown how complete uniform per’s (cuper’s) over a universaldomain allows one to solve domain equa-
tions on the per level. In both cases the chosen notion of per’s facilitate an ordering of the equivalence
classes and thus allows one to solve recursive domain equations as in classical domain theory.

In [1] the collection of domain equations that can be solved are given by the notion of effective symmetric
functors. Comparing these with the strong fibred functors ofour setting we see that both notions require
a realizer, but our functors are also required to have a relational interpretation given by the component
F r as in Lemma 5.1. It appears that our notion of recursive type equations are more restrictive, but
on the other hand our notion of admissible per’s is simpler. We find this trade-off acceptable, as all
type expressions formed using the type constructors of Polymorphic FPC give rise to a strong fibred
functor [15]. The real difference, however, is that our model is parametric.
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