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Abstract

We present a domain-theoretic model of parametric polyimsrp based on admissible per’s
over a domain-theoretic model of the untyped lambda casculthe model is shown to be a model
of Abadi & Plotkin’s logic for parametricity, by the constrtion of an LAPL-structure as defined by
the authors in[[[7.15]. This construction gives formal prob$olutions to a large class of recursive
domain equations, which we explicate. As an example of a coatipn in the model, we explicitly
describe the natural numbers object obtained using pariitet

The theory of admissible per's can be considered a domaanytter (impredicative) polymor-
phism. By studying various categories of admissible andncb@emplete per’'s and their relations,
we discover a picture very similar to that of domain theory.

1 Introduction

In this paper we show how to define parametric domain-thisonebdels of polymorphic intuitionistic
/ linear lambda calculus. The work is motivated by two défer observations, due to Reynolds and
Plotkin.

In 1983 Reynolds argued that parametric models of the secaiet lambda calculus are very useful
for modeling data abstraction in programmingl[23] (see [ill@for a recent textbook description). For
real programming, one is of course not just interested im@ngty terminating calculus such as the
second-order lambda calculus, but also in a language witreftursion. Thus idoc. cit. Reynolds also
asked for a parametriomain-theoretienodel of polymorphism. Informally, what is meaht [24] byghi
is a model of an extension of the polymorphic lambda calc[#ds9], with a polymorphic fixed-point
operatorY : Va. (&« — ) — « such that

1. types are modeled as domains, the sublanguage withguhpgdhism is modeled in the standard
way andY ¢ is the least fixed-point operator for the domain

2. the logical relations theorem (also known as the abstrathheorem) is satisfied when the logical
relations are admissible, i.e., strict and closed undétdiof chains;
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3. every value in the domain representing some polymorpipie ts parametric in the sense that it
satisfies the logical relations theorem (even if it is notititerpretation of any expression of that

type).

Of course, this informal description leaves room for difetr formalizations of the problem. Even so,
it has proved to be a non-trivial problem. Unpublished wadrRtkin [20] indicates one way to solve
the problem model-theoretically by using strict, admikesitartial equivalence relations over a domain
model of the untyped lambda calculus but the details of #ationally parametric model have not been
worked out before. We do that here.

In loc. cit. Plotkin also suggested that one should consider paransritain-theoretic models not
only of polymorphic lambda calculus but of polymorphic itinistic / linear lambda calculus. This is
necessary, since full parametricity for second order laardadculus gives a type theory with coproducts,
and since we already have fixed points in the calculus, suektansion of simply typed lambda calculus
is inconsistent[[111]. The polymorphic intuitionistic / &ar type theory gives a way to distinguish, in
the calculus, between strict and possibly non-strict cmmtiis functions and a restricted parametricity
principle can then give type encodings in the linear parthef ¢alculus. Indeed Plotkin argued that
such a calculus could serve as a very powerful metalanguaigimain theory in which one could also
encode recursive types, using parametricity.

Thus parametric domain-theoretic models of polymorphiuaiiionistic / linear lambda calculus are of
import both from a programming language perspective (fodefing data abstraction) and from a purely
domain-theoretic perspective.

This paper describes such a model, classifies the classwtiee domain equations that can be solved
in the model and provides the first rigorous proof that theitsms can obtained through the use of
parametricity.

The proof builds on earlier work by the authors. In a recemqtepdé] (see also the brief conference
version [T]) we have presented an adaptation of Abadi & fihogic for parametricity for the second
order lambda calculu$_[21] to the dual calculus suggesteBIbikin. We call this logic Linear Abadi
& Plotkin Logic (LAPL), and the term language, called PK:lfor polymorphic intuitionistic / linear
lambda calculus, is a simple extension of Barber and Plstkialculus for dual intuitionistic / linear
lambda calculus (DILL) with polymorphism and fixed points.the logic we have given detailed proofs
of correctness of Plotkin’s encodings of types in PiLLincluding general recursive types, and also
validated reasoning principles for these types.

In another recent paperi [5] we have defined the categorydtiemotion ofparametric LAPL-structure
which are parametric models of LAPL. The notion of a paraimnétAPL-structure is a useful notion of
parametric model since one can reason about a parametric4s&écture using the logic. In particular,
we have shown how to solve general recursive type equatiotiese structures.

This paper presents a parametric P{l-inodel based on admissible per’s (partial equivalenceioals)
over a reflexive domain (a domain-theoretic model of the petlylambda calculus) thus confirming the
folklore idea that such a model exists. The model is constduasing Robinson and Rosolini’s para-
metric completion proces5_[25], and shown to be parameyrithé construction of an LAPL-structure
around it. The LAPL structure gives formal proofs of the extpd consequences of parametricity. Thus
by the general results for parametric LAPL-structures, wegplutions to recursive type equations;
here we explicitly describe the class of recursive type ggus on the model that can be solved using
parametricity.

The theory of admissible per's mixes the idea of modelingredjcative polymorphism using per’s
with domain theory and can be seen as a domain theory for mopimism. It is our hope that this
theory will provide the same intuition about polymorphismcombination with recursion as domain



theory does for the theory of recursive functions. From tlsvypoint of axiomatic domain theory,
PILLy axiomatizes the adjunction between the categories of @biapo’s with strict continuous maps
and all continuous maps respectively, whereas axiomaticagio theory traditionally has axiomatized
the adjunction between the category of cpo’s and the categfarpo’s with partial maps (as in Fiore’s
thesis [[8]). We see a tight correspondence to traditionahao theory and can, as usual, construct
categories corresponding to pointed cpo’s with strict meps cpo’s with partial maps, but unlike in
traditional domain theory, the two categories are not eaeiv in the setup with admissible per’s.

The idea of PILL as a meta language for domain theory is further investigategcent work by
Mgagelberg[[15], in which it is shown that a large class of pgetric LAPL-structures model Plotkin’s
FPC [19] (see alsd [8]) - a calculus with general recursiygesyand a call-by-value operational se-
mantics. A classical result states that FPC can be integbietdomain theory and that this model is
adequate. The concrete case of the LAPL-structure imastigin this paper also models an extension
of FPC with call-by-value polymorphism and this interptita is computationally adequate.

Recently, Pitts and coworkelis |18, 4] have presented asyntpproach to Reynolds’ challenge, where
the notion of domain is essentially taken to be equivaletasses of terms modulo a particular notion
of contextual equivalence derived from an operational sgicefor a language called Lily, which is

essentially polymorphic intuitionistic / linear lambddadus endowed with an operational semantics.

In parallel with the work presented here, Rosolini and Somg&€] have shown how to construct para-
metric domain-theoretic models using synthetic doma@oti in intuitionistic set-theory. Moreover,
they have shown how to give a computationally adequate déonal semantics of Lily.

In subsequent papers we show how these models give riseametic LAPL-structures, and so the
results about LAPL-structures (such as solutions to réeuddomain equations) transfer to these models.

We have strived to make this paper reasonably self-corttane thus include definitions and proofs of
the relevant properties for admissible per's. Moreover,haee included an overview of the concrete
interpretation in Sectioh3.2. However, to fully appreeidlte larger scope of the paper, the reader
is expected to be familiar with the brief description of LARLthe conference paperl[7], but readers
interested only in the description of the domain theoretodal of parametric polymorphism may skip
SectiorT# and consider that section a formal verificatiornefggarametricity results for the model.

1.1 Outline

Section® considers two categories of admissible per’s aveflexive cpo, one with continuous maps
and one with strict continuous maps. The first is shown to beesian closed and the second to be
symmetric monoidal closed, and the two are related by amatign in which one map is forgetful and
the other is a lifting functor. Sectidn 2.2 contains the dgston of axiomatic domain theory advertised
above.

In Section B a model of PIL{ in which types are indexed families of admissible per’s isstaucted.

In Section[3]l the parametric completion process is applietlis model giving a parametric PlllL
model. The model is parametric in the sense that it can bex@steto a parametric LAPL-structure,
i.e., a model for the logic LAPL for parametricity. This isastn in Sectiorf¥. Sectiofl 5 introduces
the family of recursive domain equations that may be solwetié parametric model using the general
results about parametric LAPL-structures, and in Sedfloas6an example of a computation in the
model, we compute explicitly the natural numbers objechim d¢ategory of admissible per’s and strict
continuous maps, as encoded using parametricity. Seddtimtafes our results to previous work on
recursive types in per-models.



2 Admissible per’s

Recall that a reflexive cpo is a pointedchain-complete partial order equipped with maps
®: D— [D— D] and U: [D— D] — D,
both Scott-continuous and satisfying
@(DW::iduLﬁD}

where[D — D] denotes the cpo of continuous functions frémto D. We assume, without loss of
generality, that botlb and ¥ are strict. The map®, ¥ induce a combinatory algebra structure Pn
with applicationd - d' = ®(d)(d'), and using this it is quite standard to construct strict icoiaius
functions

(,-y: Dx D — D, 7D — D and 7':D — D,

such that for alll, d’ € D:
rd,d)y=d and 7(d,d)=d.

We usei to denote¥ (id|p_, pj). Notice that® (i) = idjp_ p).

Recall that a partial equivalence relation (a per) is a sytmmend transitive relation. For a pét, the
set|R| of elements/ such thatd R d is called thedomainof the perR, and R induces an equivalence
relation on its domain.

Definition 2.1. An admissible partial equivalence relation dn is a partial equivalence relatiaR on
D satisfying

strict Lp R 1p,

w-chain complete For (d,,)ne., and(d],)ne. w-chains inD:

(Vn€wdy Rd)) = | |da R | | d,

new necw

Definition 2.2. For R andS per’'s onD, define the set oéquivariant functions from R to S as
F(R,S)={a€[D— D]ldRd = a(d) S a(d)}
and the set o$trict equivariant functions from R to S as

fKR,S)LZZ{QEEf(R,S”aCLD)ZZLD}.

Note F(R,S), € F(R,S).

Definition 2.3. For R andS per’s onD, define onF(R, S) or F(R, S) ;. the equivalence relationr g

by
a~psfeVdeD.dRd= ald) S 5(d)

We write PER (D) for the category of partial equivalence relations oxer Recall that it has partial
equivalence relations ovep as objects and that a morphigm: R — S is an equivalence class in
F(R,S)/ ~pr s. Elements ofa] are calledealizers for [a].

Definition 2.4. We define the categorA P(D) of admissible partial equivalence relations ovems
the full subcategory cPER(D) on the admissible per’s.
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The following theorem is well knowrn_[2] but we recall the pfdor the readers benefit.

Theorem 2.5. The categoryAP (D) is a sub-cartesian closed categoryBER(D).

Proof. We recall the constructions. It is straightforward to wetlat the resulting per’s are admissible.
The terminal object is the admissible per defined by

dld &d=1p=d.
The binary product oR andsS is

dRxSd

)
Ady,dy,d,dy € D.d=(d1,do) A d=(d.,d)) A dRd, AN dySdj

The exponential oR andS, S*, is given by
dStd < ®(d) ~ps ().
O

Lemma 2.6. There is a faithful functor ClassesAP(D) — Set mapping an admissible per to the
set of equivalence classes and an equivalence class cfeealio the map of equivalence classes they
induce. This functor preserves products, i.e., for any pamdmissible per'sk, S, ClassesR x S) =
Classe$R) x ClassesS).

Proof. Classess the global sections functokom(1, —), which preserves products. That it is faithful
follows from the fact that all constant functiod$ — D are continuous. O

Definition 2.7. The categonAP (D), of admissible per’s and strict continuous functions is tiiedn-
objects subcategory afP (D) with morphismsa]: R — S equivalence classes (R, S) |/ ~p s.

Remark 2.8. Note that inAP (D), , morphisms are required to havestict continuous realizer. On
the other hand, if there is a realizere (R, S) with o(Lp) S L p then the function that mapsp to
1 p and all otherd € D to «(d) will still be continuous and equivalent toin F(R, S). This function
will thus be a realizer iF (R, S) | .

Theorem 2.9. AP(D), is a cartesian sub-category &P (D).

Proof. Obvious sincer, 7/, and(-, -) are strict. O

Theorem 2.10. The categoryAP (D) is symmetric monoidal closed.
Proof. The tensor of andS is

dR® S d
)
dRxSd
V
(%Nﬁama@@yﬂ&dzwwm A d = (d,d) A >
(leJ_D V dQSJ_D) A (dllRJ_D V dIQSJ_D)



This complicated looking definition is most easily undesstdhrough the functo€lasses The equiv-
alence classes of the tensor product are those of the pradglicthne modification that all pairs where
one of the coordinates are relatedltg have been gathered into one big equivalence class.

The unit of the tensof is defined by
dld & d=d=1pvd=d =i
The exponential ok andS, R — S, is given by
dR—-Sd < dSPd A (d"RLp= ®d)(d")S LpSdd)d"))
The proof consist of a series of straightforward verificagio O

For later use we shall mention how regular subobjects lodkishcategory. We usd — R to express
that A is a regular subobject @&, if R is an admissible per.

Lemma 2.11. There is a bijective correspondence between regular selotbjpfR and per's A such
that

Classe$A) C ClassesR) A A € Obj(AP(D),)

Proof. AssumeR and A with the mentioned properties. Defifig, by

dRyd
)
d={dy, Lp) A d=(dy,i) A
d =(d,Lp) A v d = {d},i) A v
dy R dj, dy R d}
d= <db,J_D> AN d= <d1,i> A
d ={d,i) A \% d=(d,Lp) A
dy A dy di Ad

i.e pairs fromR x {{Lp}, {i}} with the added relations of pairs with their first componestated inA.
R4 € Obj(AP(D) ) and there are two morphisnfs — R4 realized byd — (d, L p) andd — (d, i)
respectively. In view of remark2.8, and sintg, A 1 p, the latter does in fact realize a morphism of
AP(D), andA is the equalizer of these two morphisms.

Conversely, the image of an equalizer is easily seen to bésaiiie. Thus all regular subobjects have a
representative, which is a subset of the equivalence dassdesired. O

We also need the following fact about admissible per’s

Lemma 2.12.If I is an arbitrary set, and for all € I, R; is an admissible per oveb then the relation
Nics Ri defined as

d(\Rid < VieldR;d
iel
is an admissible per oveb.



2.1 Lifting

We now define a lifting functor, to establish a left adjointth@ inclusionU: AP(D) — AP(D),.
Define the mafd.y: Obj(AP(D)) — Obj(AP(D),) by

d Lo(R) d

g
d=1lp=d VvV 3JedeD.(d= (e Ad={(c)AeR)

This is well-defined ag,((R) easily is admissible iR is.

Notice the “if” construct available on a lifted per: F& an admissible per ifl is in the domain of
Ly(R) thend is either L p or a pair(i, e). Hence® (7 (d)) is either the totally undefined function or the
identity onD. Thus®(w(d))(d') can be read “itl ¢ [ L], (g thend' else L p”, where[L]s is the class
represented by p in the admissible pes.

We also have a “lift"” map): R — Ly(R) realized by\d € D.(i,d) and an “unlift’ mape: Lo(R) — R
realized byr’. Notice thate is strict, buty is not.

To handle morphisms we work at the level of realizers. Defimeadmissible per'sk and.S, the map
Ly: F(R,S) — F(Lo(R), Lo(5)) L by

Li(a) = Ad € D.®(m(d))((i, (7 (d))))

which reads “ifd ¢ [ L] g then lift(a(unlift d)) else Lp". As L (a)((i,e)) = (i, a(e)), this is easily
seen to be well-defined. As it also takes equivalent realimeequivalent realizers, we can lift the map
to the level of morphisms and a straightforward verificatstiows that this together withy defines a
functorL: AP(D) — AP(D),.

Theorem 2.13. There is a monoidal adjunctioh 4 U.

Proof. One first shows that is left adjoint toU in the ordinary sense. The unit of the adjunction is given
by (nr: R — UL(R))rearp,, and fort: R — U(S) in AP(D), the required unique: L(R) — S
in AP (D), , such that/ (u) o ng = t, is given by the realizer

oy, = Ad € D.if d ¢ [L](r) thenay(unlift d) else[L]s

whereq; is a realizer fort.

To show that the adjunction is monoidal it suffices byl [10] how that the left adjoint. is a strong
symmetric monoidal functor (sek_|16] for an explanationp tfis end, we must exhibit an isomor-
phismmr: I — L(1) and a natural isomorphismg s: L(R) ® L(S) — L(R x S). This is mostly
straightforward; we just include the definitionwfr s: it is the morphism realized by

Ad e D.
if 7(d) # L then
if 7/(d) # L then
lift of (unlift(x(d)), unlift(z’(d)))

elsel p
elsel p.
The inverse is realized by
Ad € D.
if d # 1 then
(lift of 7 (unlift(d)), lift of 7’ (unlift(d)))
elsel p.



2.2 Relation to axiomatic domain theory

We have advertised the slogan, that the theory of admisp#iis is “a domain theory for polymor-
phism”. In this section we explore different categories dringssible and chain complete per’s and their
relations, and relate the results to classical domain yhddre reader should keep the following picture
in mind from classical domain theory.

L L

< =~ -~
Cpo T pCpo——Cppo, 1 _Cppo 1)
U U

Here Cpo is the category of complete partial orders (cpoj¥;po of cpo’s and continuous partial
functions,Cppo of pointed cpo’s and strict continuous functions adigpo of pointed cpo’s and all
continuous functions. In the diagrabhalways denotes inclusion ardlifting.

In axiomatic domain theory much focus has been on the lettadjanction, as in Fiore’s thesis in which
categories of partial maps are studied. The category ofgpanapspCpo is isomorphic to the Kleisli
category for the lifting monad o@po induced by the adjunctioff - L, and this is also isomorphic to
the Eilenberg-Moore category for the monad an€@iepo | .

In PILLy, the adjunction on the right is axiomatized, and in genelal P-models there is a priori no
category corresponding ©@po. In the theory of admissible per’s, however, there is ondsoamely
the categoryCCP (D) of chain complete per’s ovdp with maps defined as iIAP (D). One may easily
show that the lifting functor of Sectidn 2.1 extends to a fond.: CCP(D) — AP(D),, and in fact
this is left adjoint to the inclusiot/ : AP(D); — CCP(D), thusU L induces a monad o€ CP (D).
The picture corresponding t0l (1) for admissible per’s is

L
f AP(D).
U

CCP(D) T AP(D)

|

L
CCP(D)yy

HereCCP(D)y is the Kleisli category for the monad. We will show thaP (D), is the Eilenberg-
Moore category of the monad dtiCP (D), but that this is not the same &8CP (D), in the sense
that the comparison map, which is the inclusion in the diagia not an isomorphism, as is the situation
in domain theory.

Proposition 2.14. The categoryAP (D), is equivalent to the Eilenberg-Moore category @1, on
CCP(D).

Proof. A standard theorem of adjunctions tells us tAdP (D), is included in the Eilenberg Moore
category. In fact, the inclusion maps an obj&of AP (D) to the counit of the adjunction &. We
must show that any monad algebra L. is of this form (up to isomorphism). Suppoge LS — S

is an algebra realized hy. Construct the admissible péf by adding L to the equivalence class of
a(Ll)in S. Itis now an easy check to show thét LS — S is isomorphic as an algebra to the counit
e: LS — 5. O

We remark that in factCCP(D) is a cartesian closed categoby a strong commutative monad, and
the symmetric monoidal structure &P (D) is induced byU L as in [12].



Proposition 2.15. The Kleisli category for the monaddL on CCP(D) is equivalent to the full subcat-
egory ofAP(D), on persRsuchthatfl]r = {L}.

Proof. The Kleisli category is isomorphic to the category of fregedras, which is equivalent to the
mentioned category. O

As mentioned, this is different from the situation in classidomain theory, where the Kleisli category
for the lifting monad orCpo coincide with the Eilenberg-Moore category for the same aigand both
are isomorphic t€Cppo, . For a simple example of an algebra tér that is not isomorphic to a free
one, suppose. # d < e are elements oD, and consider the admissible per given by the collection of
equivalence class€q L, e}, {d}}.

The last proposition of this section shows how to rec&v€P (D) from AP (D), . This is interesting,
as PILLy is meant to axiomatize the adjunction to the rightfdf (1), and general PILL -model there
is a priori no category corresponding@po.

Proposition 2.16. The co-Eilenberg-Moore category for the comorad on AP (D) is equivalent to
CCP(D).

Proof. We show that the co-Eilenberg-Moore category is isomorphtbe category of admissible per's
R for which the equivalence clags p] is a downward closed subset of the domainfof— i.e., if
dRd,d < d andd R Lp, thend R L — and maps that preserve and reflec]. This category
is equivalent taCCP (D), with one map of the equivalence lifting a chain complete pad the other
discarding the equivalence clgssp] from an admissible per.

Supposey is a realizer for a coalgebgon an admissible pek, andd R d, d < d’ andd’ R L. Sincea

is strict,a(L) = L, and so(d') LUR L implying a(d') = L. Thus, by monotonicityxd = L. Since

e o ¢ is the identity, where is the counitd R L. On the other hand, ifL] is a downward closed subset
of the domain ofR then one may easily check that

1L if 3d' >d.d R L
¢(d) _{ (i,d) else

defines a unique coalgebra structurefanContinuity of¢ follows from admissibility ofR.

Suppose: R — S is a map between such per’s, preserving coalgebra strucBineet has a strict
realizer it must preserve the equivalence class.ofo see that it also reflects it, suppasgl|z) = [L]s.
Then alsaLU (t)(¢r([d])) = [L]Lus implying thatéz([d]) = [L]Lr. Clearly, therd R L.

Suppose on the other hand thatR — S reflects the equivalence class_bf In order to showLU (t) o
&r = &g o t we write them out, assumings realized byey;:

[ LU@(L]) 3 >ddRL [ [1] if 3 > d.d R L
LU®)(&r((d]) —{ LU (G d]) else —{ (i, oud)]  else
and

Using that ford R d, 3d' > ayd.d’ S L < d R L, we can rewrite them to

LUt)(€r((d)) = { (L] tdR L { 0] it oy S L

[, ud)] else and £s(t((d]) = [, ud)] else

which are equal sincereflects[_L]. O



3 A domain-theoretic PILL y model

The calculus PILLk is a Polymorphic Intuitionistic / Linear Lambda calculusthva fixed point com-
binatorY'. It is basically DILL of [3] extended with polymorphism andéd points. Types are formed
using the grammar

cu=all|lo®@T|oc—oT|lo|][a.o.

Terms are written in context as
EIT;ARt: 0

whereZ is the context of free type variablds,s a context of inituitionistic variables amil is a context
of linear variables. All the free type variables occurrind’i, A ando must be in=. The typing rules
for terms are presented in Figlide 1.

The type constructoro denotes a linear function space, and its constructor is hdambstraction for
linear variables. Intuitionistic function space can beceted using the Girard encodiag— 7 = lo —o
7. Using this encoding, the polymorphic fixed point combimatohas the typd [ a. (¢« — «) — a.

Terms of PILLy are considered up to an equality theory including stan@ardrules and stating that
is a fixed point operator. For further details on P{LEee[[6].

This section presents a PlikLmodel in which thekr and — are interpreted using the symmetric
monoidal closed structure AP (D), and! is interpreted using lifting. But because Pl:lcontains
polymorphism the categorical formulation of the model stinre is based on fibred category theory. A
model of PILLy is essentially a fibred model of DILIL]3] with extra structueemodel polymorphism.

The model to be constructed here will be denoted

L
UFam(AP(D),) 1 UFam(AP(D)) 2
U
q P
Set.

The fibred adjunction of2) is a fibred version of the adjumttbetweerAP (D) andAP(D),. The
calculus PILLy will be modeled in the fibratio using the symmetric monoidal closed structure to
model the type constructions ®, —. The lifting functor L will be used to model and polymorphism
will be modeled via simple products with respect to a genglnject. Atermz: &;%: ¢’ - t: 7 in which
thex; are the intuitionistic variables and theare the linear variables is modeled as a vertical morphism
&, LU[oi] ® Q,lo;] — [7] in the fibrationg. The fibrationp still plays a role as it can be used to
model the terms with only intuitionistic variables.

We shall only show that the categorical structure neededhfmteling PILLy is present, and not spell
out the interpretation of PIL{ in the model. For further details on PlgLmodels se€ [16].

Define the contravariant functdr : Set®® — Cat by mapping a sef to the category”(I) with

Objects: (R;)icr where for alli € I, R; is an object ofAP (D).

Morphisms: (¢;)icr: (R;i)icr — (Si)icr, Where, for alli € I, t; € AP(D)(R;,S;) and thet; have
a uniform realizerin the sense that there exists ann [D — D] such that for alk € I, ¢; =

[a]ﬁRi .S
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i—Ex T EID-FY: [[a.!(la - a) —«

(1]
e

ElTz:obax:0

[1]

|Dx:0;—Fa:o

EIARt:0—o1 Z|A Fuo
A, A’ disjoint
EIT;AAFtu:T

EIT;Az:0obu: T

EIT; AR Nz 0u:0—oT

|IT;AFt:0 Z|T;A Fs:T

- A, A’ disjoint
EIAA Ft®s: o T
E|T;—Ft:o
ET,—Flt:o
E,a: Type |[[AFt: o SN L q
= | T; Ais well-forme
E|T;AF Aa: Type.t: [[a: Type.o
EIT;ARE: [Ja: Type.o EF 7: Type

EID;AREr): o[t/

A v oy FtT

= |1 s:0®0
ET;AF !
- A, A’ disjoint
E|IT;A A Fletz: o®y: o' besint: 1
E|T;AFs: o |0,z 0; At T
A, A’ disjoint

Z|T;AA Fletlr: lobesint: 7

EIT;ARt: T Z|T;A Fs:o
Z|IT;A, A Flet x betins: o

Figure 1: Typing rules for PILL terms
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For a functionf: I — J, the reindexing functoP( f) is simply given by composition witlf.
Define the contravariant functqy : Set®® — Cat given by mapping sef to the category)(I) with

Objects: (R;);cr Where for alli € I, R; is an object ofAP(D), .

Morphisms: (t;)ier: (R;i)icr — (Si)ier Where foralli € I,t; € AP(D),(R;,S;) and3a € [D —
D].Yiel. t;= [a]:Rilsi-

For a functionf: I — J, the reindexing functo€)( f) is again simply given by composition with

That we have two contravariant functors is obvious. The I@natlieck construction (see for exam-
ple [13]) then gives us two split fibrationg; UFam(AP (D)) — Set andq: UFam(AP(D),) —
Set. The functorsL andU both operate one the level of realizers and so lift to fibrextfors between
these two fibrations (we abuse notation and also denote thesiffanctors byL andU). Explicitly,

on objectsL (I, (R;)icr) = (I, (L(R;))icr) and on vertical morphisms (7, (t;)icr) = (I, (L(t;))icr)-
Likewise forU. These are not recursive definitions, they simply look s@bse of the reuse of letters.

Proposition 3.1. L andU are split fibred functors and - U is a split fibred strong monoidal adjunction

Proof. It is obvious thatl, andU are split fibred functors; the second part follows immedyateom
TheorenZ1B. O

To show that[(R) is a model of PILL it remains to be shown thdtas a generic object and simple
products, in other words models polymorphism.

Lemma 3.2. The sef2 = Obj(AP(D),) = Obj(AP(D)) is a split generic object of the fibration
The fibrationg has simple splif2-products satisfying the Beck-Chevalley condition.

Proof. The first part is obvious. For the second part, one uses tha dsfinition for uniform families
of ordinary per’'s and verifies that it restricts to admissiper's: We recall from[113] that given any
projectionm,;: M x 0 — M in Set, the right adjointv,; to 73, is given on objects by intersection:

v1\4((R(a,w))(a,w)EMXQ) = ( ﬂ R(aw))aEM-

weN
By lemmaZIP the resulting per is admissible. O

Theorem 3.3. The diagram({@) constitutes a model of PILL

Proof. Given the preceding results it only remains to verify thatt(ie structure in the diagram models
the polymorphic fixed point combinator and that @Fam (AP (D)) is equivalent to the category of
products of free coalgebras tfFam(AP(D)), .

For (1), the required follows, as expected, because the pe’strict and complete. In more detail, what
is needed is an element of the Pi:ltype ][ o. (@« — «) — « as interpreted in the model, giving fixed
points to maps. An inspection of the model shows that thismme@acontinuous functiokix: [D —

D] — D such that for any admissible p&, if « is a realizer for a mafi.(R) — R, thenFix(«a) is a
fixed point fora o I, wherel is a realizer for the “lifting map%: R — L(R) described in Sectidn2.1.
Moreover, ifa >~z r o are related inL(R) — R then we must havéFix(«), Fix(¢/)) € R. Taking

Fix to be the functior — | |, (o 0 1)"(L) gives an element clearly satisfying the first condition. The
second condition is satisfied becaugeés strict and chain complete.

For (2), observe that b{/[16, Proposition 1.21] applied tedien{ZB it suffices to show thetFam (AP (D))
is equivalent to the co-Kleisli category of the adjunctibrH U, but this follows from the fact that is
an inclusion surjective on objects. O
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3.1 A parametric domain-theoretic model of PILL,

In this section, we introduce a parametric version of the flan constructed model. It is essentially ob-
tained through a parametric completion procéss [25]._lipifid4 shown how the parametric completion
process can be used to construct parametric LAPL-strigtargeneral.

One of the reasons why having a parametric model is integgss that it will be a model of recursive
types, containing solutions to recursive domain equatioBection[b details the family of recursive
domain equations, that can be solved in the obtained model.

We will arrive at the diagram

PFam(AP(D),) ﬁ_ PFam(AP(D)) (3)
\ U /
PAP(D).

As is usual in the parametric completion process, typesheilpairs(f?, f”) where f? is a type in the
sense of the mod€][](2), and is a relational interpretation of the type, i.e., a map tgkinvector of
relations and producing a new relation. In this setup, bsti@h on a pair of admissible perB, S
we shall mean a regular subobject of the productRer S in AP(D),. SinceClasse$R x S) =
Classe$R) x Classes$S), LemmdZ1ll gives the following characterization of thatiehs in question:
these are subsef&/ C Classe$R) x Classe$S) such that([L]g,[L]s) € M, and if (d,), (d],) are
increasing chains of elements Bfin the domain ofR andS respectively, such thd{d,|r, [d,]s) € M
for all n, then alsq([| |,,c,, dnlr, | l,c. dn]s) € M. (Itis crucial that subobject is in the category with
strict maps — this is what give§_L |z, [L]s) € M). As always we writed — R x S for such relations.
We adopt the notatioRegSub(R x S) for the set of objectst in AP (D), such thatd — R x S.

We now return to the definition of the fibrations bf (3). ThedaategoryPAP (D) is defined as

Objects: n € N — objects are natural numbers.

Morphisms: f: n — m is anm-tuple,(f1,. .., fm), where eacly; is a pair(f?, fI') satisfying
e fPis amap of object§Obj(AP(D), ))™ — Obj(AP(D),)

e fI'is a map, that to twar-tuples of objects oAP (D), associates a set-theoretic map of
subobjects

I € T seonjiapoy. e (el RegSub(R; x ;) — RegSub(f7(F) x f7(S)))

satisfying .
VE € (Obj(AP(D) )" f] (R, F)(edr,) = €4ps 7,
We now describ®Fam(AP(D), ) — PAP(D) andPFam(AP(D)) — PAP(D).
We plan to use the Grothendieck construction, and so defitexéd categorieSPFam(AP(D),)),
is defined with

Objects: morphisms inPAP (D) fromn to 1.

Morphisms: ¢: f — gis afamily of morphismst 5: fP(R R) — gP( ))Re (Obj(AP(D) )" of AP(D)
with a uniform realizer (as in the definition d’)JFam(AP(D))) which respects relations in the
sense that

—, —,

VA~ Rx S.f" (RS, A)((d),[d]) = ¢ (R, S, A)(t5([d), t([d).

13



If we write LR(AP(D), ), for the collection of all admissible relations on admissilper’'s, and
(AP(D) ), for the collection of all admissible per’s, then there is ffepdve graph

(AP(D)1)o ——=LR(AP(D)1)o

where the two maps going left map a relation to its domain adbmain respectively and the map
going right maps an admissible per to the equality relatiBy.this being a reflexive graph, we mean
that going right and then back using either of the two mapkeddentity. Another way to think of an
object of(PFam(AP (D), )), is as a paif", fP) in a diagram

LR(AP(D), )5 —~LR(AP(D).)o

it il

(AP(D). ) — " (AP(D) 1)

In the diagram the three obvious squares are required to coenrRor example, the two ways of starting
in the lower left corner and ending in the upper right are gguhich is exactly the requirement that
preserves equality.

Quite similarly(PFam(AP(D))),, is defined as the category with

Objects: morphisms inPAP (D) fromn to 1.

Morphisms: ¢: f — gis a uniformly realized family of morphism@ ;)
such that

Fe(obi(ap(n),)r T AP(D)

tg: U(fP(R)) — U(g"(R))
whereU: AP(D), — AP(D) is the forgetful functor. That we now ask for morphisms of
AP(D) removes the demand, that the uniform realizer be strict. irAgas ¢ should respect
relations:

—,

VA~ Rx S.f" (RS, A)(d),[d]) = ¢ (R, S, A)(t([d), t([d]).

Note that the only difference between the two definitionseschoice of category in which the; are
required to be morphisms.

—

We will very often write simplyf”(A) for f"(R, S, A).
Definition 3.4. Define the functoi.: PFam(AP(D)) — PFam(AP(D), ) on

objects by
L((f" 7)) = (FP, F")
where
FP(R) = L(f*(R))
and

morphisms by

In the definition, we have lifted a relation. By this we mearafiply the lifting functor to the span

(mo f, 7' o f7) corresponding to the relation. The resulting relationtesldifted elements to each other
iff the unlifted versions are related, and relates the exjeiwce classes of to each other. We define

U: PFam(AP(D),) — PFam(AP(D)) in a similar way usind’ instead ofL.
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Lemma3.5.L: PFam(AP(D)) — PFam(AP(D),)andU: PFam(AP (D), ) — PFam(AP(D))
are both fibred functors, and constitute a fibred adjunctiod U.

By an easy extension of Theoréml2.5, we have:

Proposition 3.6. PFam(AP(D)) is fibred cartesian closed.

Proof. The product of /7, f") and(g?, ") is (fP x gP, f" x g") wherefP x g” is the point-wise product,
andf” x ¢g" takes the point-wise product of subobjects, which of coigsesubobject of the products. In
the exponent f? — ¢7, f" — ¢") the first component is defined point wise, and the second coemo

fT — g" relates the equivalence classés '] if they map related elements to related elements in the
sense that if[e], [¢/]) € f7(A) then([®(d)e], [®(d')e']) € g"(A). (Recall that the latter is well defined,
i.e., independent of the choice of representatives). O

Proposition 3.7. PFam(AP (D), ) is fibred cartesian and fibred symmetric monoidal closed.

Proof. We just present the SMCC structure: In the fifRFam (AP (D), ))n, the tensor producE of
(f7, fr) and(g?. ") is (f* @ g7, " ® g") where(f? ® g)(R) = fP(R) ® g"(R) and f"(A) ® g"(A)
is the image off"(A) x ¢"(A) under the quotient map from the product to the tensor. Inroﬂwds
fr(A)@g"(A) relates the equivalence classesiaind relate$(d, d')] 1, 7,03 10 [(€
(assuming these are not representatives of thequivalence classes)(if

clAl), [e]) € f7(A) and([d], [¢]) € g"(A).

The unit of the tensor is given by the objédt — I, A — eq,).

The exponential of f?, f") and(g”, ¢") in (PFam(AP(D),)),, is (fp —o g¥, f" —o g") where again
fP —o g” is defined pointwise using the closed structureAd®(D) |, i.e., (f? — gP)(R) = fP(R) —

g”(R). The relational interpretation of the exponentigl — g") /T) relates equivalence classes that
represent maps that preserve relations, (&.— ¢")(A)([d], [d]) iff

V(lel, [€']) € 7 (A). ([2(d)(e)], [2(d)()]) € ¢" (4).

To verify the adjunction—) @ (f?, ") 4 (f?, f") — (—), we use that we know it holds in the first
component and then check that the bijection can be restricteealizers that define morphisms in the
second component; the latter is a direct consequence ofdlie¢he relational interpretations ¢f and
—o are defined. O

» ) (9290 ()

Lemma 3.8. L 4 U is a fibred symmetric monoidal adjunction.

Proof. This proceeds much as in the unfibred case. We showlihata fibred strong symmetric
monoidal functor. We must provide a morphisny and a natural transformation, but we can simply
use the same realizers as before, since everything has béeadicoordinatewise and these realizers
are independent of the specific per’s, and hence are unifeaiizers. O

The next lemma shows thdl (3) models polymorphism.
Lemma 3.9. The fibrationPFam(AP(D),) — PAP(D) has a split generic objec® and simple
Q-products.

Proof. ClearlyQ) = 1 is a split generic object. For the simple products, giverogggtiont: n+1 — n,
we must define a right adjoint tg*. The construction is exactly as in]13, Section 8.4]. th@sdjmaps
an object(f?, ") of PFam(AP (D), )ny1 to ([ 2,11 f7) in PFam(AP(D), ),, where

(L") (R, -, Ra)(d, )
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YR. fP(Ry,. .., R, R)(d, )N
VR, S, A— RxS. ([d]fP(Rl,...,Rn,R)> [e]fp(Rl,m,Rms)) S f’"(equ, . ,ean, A)

and]] f"(Ax,..., An)([d], [e]) iff
VR,S,A— R x S. fr(A1,...,An, A)([d],[e]).

For this to be an object @Fam(AP (D), ), one needs to check that in fddt /" (eq,, . .., €0, ) is
equality on[] f7(R), but this can easily be verified. O

Proposition 3.10. The diagram[{B) constitutes a PlkLmodel.

Proof. It only remains to verify that the structure models the fixethpcombinator. Here we simply
use theY” from Theoreniz313, which works since relations are strict@man complete. O

Remark 3.11. Notice that in the model]3), the fibre of closed types, itee,dategoryPFam (AP (D) ))o
is isomorphic tcAP (D) .

3.2 Overview of Interpretation

We can summarize the interpretation of types.

Recall, that the interpretation of atype, ..., a,, - o isapair(f?, f"), wheref? is a function that takes
n admissible per’s (detailing the types for the free typealalgs) and produces an admissible per, #nd

is the relational interpretation. Thy& takesn regular subobjecta; — Ry x Sq,..., A, — R, X S,
and gives a regular subobject §f(Ry, ..., R,) X fP(S1,...,5)-
Assumeaqs,...,a, F o, and thatR,, ..., R, andSy,..., S, are admissible per's and; — R; X

S1,..., A, — Ry, xS, are regular subobjects WP (D), . Then the interpretation af is given by the
following two tables:

o fP(Ry,...,Ry)
o R;
I {(Lp, Lp), (i,i)}
TRT {({d1,d2), (d},d3)) [ [T]P(dr,dy) A [r']P(d2,d3)} U

{(<d17d2>7 <d/17d/2>) ‘ d17d/1 € |[[7-]];D‘ /\d27dl2 € H[T/]]p| A
(I7]7(dr, Lp) v [7']P(d2, L)) A
(I7]7(dy, L) v [7'1P(dy, L))}

T —o 7 {(d,d") | ®(d)(Lp) =2(d')(Lp)=1Lp A
V(e,¢) € [717.[71P(®(d)(e), ®(d) ()}
T {(Lp, Lp)} U{({i,d), (i,d) | [7]"(d,d')}

[Tar {(dd)|YRe AP(D) ., .[r]P(Ri,..., Ry, R)(d,d) A
VR,S € AP(D), YA — R x S.[7]" (eqn,, . .- eqn,, A)((d], [d])}
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o JT(Ar, . An)

a; A;
I {([Lp], [Lo]), ([il, iD}
TRT {([{d1, d2)], [(d, d)]) | [7]" ([, [di]) A [7]7([de], [da)])}
T—or7 {([d], 1) | V(le], [e]) € []".[7T"([2(d)(e)], [@(d)(e)])}
Ir {([Lo]s (LoD} UG D). [(1d)]) | [

[717(ld), [@'D)}
[Teer {(ld),[d]) |VR,S € AP(D) VA — R x S.[7]"(Ay, ..., An, A)([d], [d])}

4 A parametric LAPL-structure

Intuitively the PILLy- model constructed in Sectidn_B.1 is parametric, becausey éyge has a rela-
tional interpretation (") satisfying identity extension (this is the requirementttfT (eqy, , ..., €0z ) =

€0 () ), and moreover, the relational interpretations-efand] [ are given by the usual mterpretatlons
as can be seen from the proofs above. In this section we makstétement precise by showing that
the PILLy model can be extended to a parametric LAPL-structure [8], a model of the logic for
parametricity on PILL presented in16]. This will give us proofs of encodings ofuesive types in the
model as we shall explain in Sectibh 5 below.

The LAPL-structure will be given by the diagram

Fam(Sub(Set)) (4)

PFam(AP(D@am(AP(D))C—I> Faml(TSet)
PAP(D).

The left hand side of the diagram is simply the mofEl (3), Whie want to reason about using the logic
for parametricity. We use the logic of sets to reason abqedgyn the model. We have already used
the term admissible relation to refer to certain subsetb@product of sets of equivalence classes, and
general propositions on admissible per’s will be simplyssib of the set of equivalence classes for the
per. Thus we include the category of admissible per’s intactitegory of sets using ti@assedunctor,

and reason using subsets. The inclusion of per’s into tigedlarategory of sets is needed because when
reasoning about parametricity one needs to quantify oVeelations between a pair of types, and the
collection of relations between per’s is a set, hot a per.ddfge general types are not per’s, but indexed
families of per’s (plus a relational interpretation of ceely so the inclusion of per’s into sets must be
indexed, and that is the right hand side of the diagram.

The formal definition of the categories @ (4) is as follow$eTfibre ofFam(Set) overn has as

Objects mapsf : Obj(AP (D))" — Set.

Morphisms ¢ : f — g is a family of set theoretic maps
(tﬁ D f(R) — g(R))ﬁeObj(AP(D))"

and reindexing is given by composition. The fibrdafm(Sub(Set)) over an objecf : Obj(AP(D))" —
Set is a preorder with
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Objects mapss : Obj(AP(D))" — Set, such that
VR € Obj(AP(D))". s(R) C f(R).

Morphisms There is a morphism — s’ if

VR € Obj(AP(D))". s(R) C s'(R).

Here reindexing with respect to morphismsBAP (D) is given by composition, whereas reindexing
with respect to morphisms iIBam(Set) is given by inverse image.

Lemma 4.1. The fibrations has fibred products, angt, s) is an indexed first-order logic fibration with
simple2-products and -coproducts.

Proof. Clearly s has fibred product inherited fro8et. The rest of the lemma states that the fibration
has left and right adjoints to sufficiently many reindexingdtors to interpret all the needed quantifica-
tions in the logic LAPL. But- is simply an indexed version of the subobject fibratiorSest, and since
this fibration has left and right adjoints to all reindexinmétors, the lemma follows. O

The inclusion functod : PFam(AP(D)) — Fam(Set) of @) maps a typé /7, /) to Classes f?,
and likewise maps a morphisfi;) 5 to (Classes$t 3)) 5. This corresponds to the intuition described
earlier: a type is a paiff?, "), but when reasoning about a type, we forget the relatioetpretation
f" of the type, and reason set theoretically about the equigalelasses of the per.

Lemma 4.2. [ is a faithful and product-preserving map of fibrations.
As mentioned,] includes the category of per’s into a larger category in Whie collection of rela-

tions between a pair of per's is an object. In the setting oPLAstructures, this is formulated as a
contravariant map of fibrations U:

PFam(AP (D) )? Fam(Set)

T~

PAP(D)

By contravariant map of fibrations, we mean a map commulting thie reindexing structure, but con-
travariant in each fibre. The functor is defined as

(f,g) — 21)x1M9)
Lemma 4.3. U is a contravariant map of fibrations.

The precise formulation di’ mapping a pair of types to the collection of all relations bose types is
the existence of a family of bijections

Yot Fam(Set) (M, Uy (f,g))n — Obj(Fam(Sub(Set)) s 1. . (/1x0. (o))
indexed overf, g € (PFam(AP(D),)), andM € (Fam(Set)),,. This family is defined by
Xn(h) = {(m7 (CL, b))‘(aa b) € h(m)}

in other words this is just the usual bijection between ssbtétic maps/; — P(M, x M3) and subsets
of My x My x Mg.

In terms of LAPL-structures we have proved:
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Proposition 4.4. The diagram[(¥4) constitutes a pre-LAPL structure.

Any type (fP, f7) in our model has a relational interpretation given by the rffapvhich we would like

to show can be used for reasoning about parametricity. HexvéVis only defined on admissible rela-
tions on per’s, i.e., not oanysubset ofClasse$R) x Classe$S). This is no coincidence, as explained
in the introduction, and in the logic LAPLI[6], axioms areruulated for such a collection of admissible
relations to be useful for reasoning about parametricite Show that the admissible relations used in
this paper satisfy these axioms in Lemimd 4.5.

First we formulate the collection of admissible relatiossaasubfunctol” of U by V (f,g) = R —
{Classe$A) | A —ap(p), (fP(R)x g"(R)) }.

Lemma 4.5. The structure in diagrani]4) and model admissible relations.

Proof. We must show that the collection of admissible relationsliee satisfy the axioms formulated
in [6]. Recall that an admissible relation on a p@ht, S) of admissible per’s is a regular subobject of
the productR x S in AP(D),. Since equality is given by the diagonal map, this is adriesiand
since regular subobjects are closed under reindexing atapms inAP (D) , the reindexing axiom is
satisfied. By LemmB=Z212, regular subobjects are closedruntesection, which proves that admis-
sible relations are closed under conjunction and univargahtification. Finally, we must show that
(z,y).¢ D p(x,y) is admissible ifp is admissible an@ is a proposition, i.e.x,y are not free inp.
Since the logic of the pre-LAPL structurd (4) is classicaltbeoretic logic, the proof boils down to the
two cases ofp being true or false. In the first case we simply get the adbisselationp, and in the
second we get the total relatiém, y). T which clearly is admissible. O

The final step towards showing thBf (4) is an LAPL-structuré gaus models LAPL, is to show that all
types have a relational interpretation. In categoricahgerthis is formulated as the existence of a map
of fibrations.J:

PFam(AP(D),) LinAdmRelations

PAP (D) AdmRelCtx

whereLinAdmRelations — AdmRelCtx is a fibration constructed from the pre-LAPL structure
@). Intuitively itis a fibration of relations, and the idesthat/ should simply be the mag”, /") — f".
We first write out the abstract definition of the fibration datens in the case of the pre-LAPL structure
considered here.

The categoryAdmRelCtx has as

Objects triples (n, m,©) where®: Obj(AP (D))" — Set, assigns a set to a vector of admissible
per’s.

Morphisms triples (f,g,p): (n,m,0) — (n’,m’,©") wheref: n — n’ andg: m — m’ are mor-
phisms inPAP (D) andp is an indexed family of set theoretic maps

—

p=(ppg OR,S)— Gl(fp(R)’gp(S)))EGObj(AP(D))",§€Obj(AP(D))m

In this concrete casbinAdmRelations can be described as follows: Given an objectm, ©) over
(n,m), the fibre ofLinAdmRelations over(n, m, ©) has as

19



Objects triples (¢, f, g) such thatf andg are objects oPFam(AP (D), ) overn andm respectively
and¢ is an indexed family of maps

¢ = (5251%,5*: @(é> 5) —{A|A— fp(ﬁ) X gp(g) })ﬁzeObj(AP(D))nﬁeObj(AP(D))m
Morphisms A morphism(¢, f,g) — (v, f’, ¢’) is a pair of morphisms
(t:f—fuig—4g)
in (PFam(AP(D),)), and(PFam(AP(D)))n, respectively, such that

VR € Obj(AP(D))", S € Obj(AP(D))™.YM € O(R, S).
¥([d], [@']) € Classe$?(R)) x Classesg(S)). ([d], [d']) € ¢(M) = (t([d]), u([d'])) € (M)

Notice the two maps of fibrations

PFam(AP(D),) LinAdmRelations
)
o1
PAP(D) AdmRelCtx

which on objects oAdmRelCtx are defined byy(n, m,©) = n andd;(n, m,0) = m and on ob-
jects ofLinAdmRelations map(¢, f, g) to f andg respectively. Thinking oLinAdmRelations —
AdmRelCtx as a fibration of relations, these are the maps that map aorelat its domain and
codomain respectively.

Finally we can define the required functér For the base categories,is defined on
Objects by n — (n,n, ([[,[{A| A — R; x S; })

Morphisms by f — (f, £, L )

ﬁ,§eAP(D)n)

and for the total categoried, is defined on

Objects by (f7, ") — (", f. f)
Morphisms byt — (t,1).
Lemma 4.6. J is a map of fibrations and, o J andd; o J are both equal to the identity.

Lemma 4.7. J is a map of linear\,-fibrations.

Proof. We must show that/ preserves—, ®, [[, I and!. In the fibrationLinAdmRelations —
AdmRelCtx this structure is defined using syntactic construction daticns. Recall froml[]5, Re-
mark 2.35] that fop: AdmRel(o, 7), the relatiorlp is the smallest admissible relation containitg, !y)
whenevern(x,y). If A — R x S thenLA is the smallest regular subobject Bfx S relating the lifts

of d ande if d, e are related iMd. Since the fibred functdron PFam(AP (D), ) is defined pointwise

by lifting relations, J thus commutes with. Likewise we can show thal commutes withg using

the characterization ab on relations in [[5, Remark 2.35] as the smallest admiss#igion relating
d® etod ® ¢ wheneverd andd’ are related and ande’ are related. The rest of the cases are simple
inspections. O

Theorem 4.8. The diagram infd) constitutes a parametric LAPL-structure.
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Proof. The preceding results show that it is an LAPL-structure;niyaemains to show that it is a
parametric such. Identity extension holds in the interaabliage of the LAPL-structure because the
relational interpretation of a type i#", and this is required to satisfy identity extension. Findie
technical requirements of very strong equality and exteraity hold because the subobject fibration
on Set satisfies very strong equality and extensionality. O

5 Solving recursive type equations

Having shown thaf{3) extends to a parametric LAPL-strugtthe results froni]5] apply to our model.

In particular, we can solve a large class of recursive doregirations given by a class of fibred functors
called strong fibred functors inl[5]. The following lemma cheterizes strong fibred functors in this
concrete model.

Proposition 5.1. There is a bijective correspondence between strong fibrectdus (as defined in[5])
F

(PFam(AP(D),)®)" x PFam(AP(D) )™ F PFam(AP (D))

\/

PAP(D)

and triples (F?, F", Fy), where(F?, F") is an object of PFam(AP (D) )m+r) and (FP, Fy) is a
functor (AP (D), °?)" x AP(D)""" — AP(D), and moreover

e [ has a realizer, i.e., there exists a continuous nlagD — D]|"*"™ — [D — D] such
that, iftheAP (D), morphismgy, ..., t,, u1,...u, arerealized byvy, ..., an, 31, .., Gn then
dlay...on, 01 ... 0n)is arealizer forFy (t1, ..., ty, U1, ..., Upy).

e Fj respects relations, i.e., d; — R; x S; and A, — R, x Sl and(t;: R, — R;,u;: S} — S;)
preserve relations in the sense that forall

V([d], [e]) € Aj. (ti([d]), ui([e])) € As

and likewiseB; — T; x U;, B! — T! x U/ and for alli the pair (v;: T; — T/,6;: U; — U/)
preserves relations, then also

(Fr(t1y sty Y1y s Ym)s Fr(ug, ooy, 01,0, 0m))
preserve relations, i.e¥/([d], [e]) € F" (A1, ..., An, B1,...,Bn)
(Fi(t1y eyt Y1y ¥m) (), By (uty e tn, 01, -2 0m)(l€]) € FT(AY, ..., AL, B, ..., B,,)
The main example of a strong fibred functor is the interpiatadf a type

al?"'aanvﬁlv"'aﬁml_a

of pure PILLy in which the type variables; occur only negatively and the type variablgsonly
positively.
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Proof. Notice first thatn + m is a generic object for the fibration
(PFam(AP(D),)®)" x PFam(AP(D), )™ — PAP(D),
and so the object part of a fibred funciBras in the theorem is completely determined by the image on

the identity onn + m.

If F'is a strong fibred functor, the(#?, F") is the image off" applied to the identity on + m, and the
existence of the realizer fdr; follows from the strength of the functor.

For the other direction, suppose we are giyéit, ', ;) as above. Then the functér is defined on
objects by composition withF?, F"). O

As mentioned, in[Ib] we prove that all recursive type equeioorresponding to strong fibred functors
can be solved. For a detailed description of what this meaagefer toloc. cit. Here we mention
just the simple case af = 0,m = 1. In this caseF' is a fibred endofunctor, and since the fibre
PFam(AP(D) )y is isomorphic tcAP (D) we get the following theorem.

Theorem 5.2. Supposg F?, F", Fy) is a strong fibred functor in the case af= 1 andm = 0 of
Proposition[2]L. Then there exists an admissible Beand an isomorphisn¥?(R) = R in AP(D)
which is at the same time an initial algebra and a final coalgefor the functor(F?, Fy): AP(D); —
AP(D),.

6 Example: Natural numbers

As an example of a computation in the model, we compute a#tplibe interpretation of the type
[[Jo. (¢ o) > a—o«

which we know from LAPL is a natural numbers objectAP (D), (since this is the fibre of closed
types).

Due to shortage of letters in the english alphabet, we wélatjg;, f andg in addition tod for elements
of D.

To ease notation, given a regular subobjéct- R x S, we shall write(z,y) € A for R(x,x), S(y,y)
and([z], [y]) € A. We will also leavel, & implicit, and simply writef x for ®(f)(z).

We consider the typdlat = [[[ a. (@ — @) — o — «]. By definition
d(Nat?)d'
iff for all R, S per’s and all regular subobjects— R x S, (f,g9) € (A — A) and(z,y) € A
(dfzx,dgy) € A.

The domain ofNat contains the elements = AfAz. L andn = Af. \x. f(z), in particular0 =
AfAz.z. We also have a magucc Nat — Nat realized byAn. A\f. A\z. f(n(f)(z)), andsucdn) =
n + 1.

Lemma 6.1. Supposer < m. Thenn = m.
Proof. Consider the two functiong,g: D — D given by f(d) = (d,i), wherei is the code of the

identity function, andg being the first projection. Both are continuous and sigeef = id f is
injective. Define the sequence of elements= f™(L). This sequence is strictly increasing.
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Now, if n < m then

son < m. Further,
Tmn =N GTm <M GTy =1L

som = n. O
Lemma 6.2. The perN given by
INL AN VYneNnNn

is admissible.

Proof. N has the equivalence classes
{1 u{{n}|neN}
thus, by the lemma above, there are no interesting chains in O

Proposition 6.3. Supposel(Nat”)d. Then

i) d = dsucc0and
i) eitherd= 1L ord=n.
Proof. Consider the discrete admissible ger
{{d} | d € D}
Then givenf, z consider the regular subobjedt— Nat x D given by
(L, L)e A, Vn. (n, f"(x)) € A.

A is admissible, simply because it contains no interestiggeasing chains. Clearljsucc f) € A —
A, so
(dsucc0,d f z) € A,

i.e., ifdsuccO = L, thend f x = L forall f,2 and sod = L, and ifd succO = n for somen, then
d fxz= f"(x),forall f,z, sod = n. As we have seen, there are no other possibilities farcc0. [

Proposition 6.4. Supposel(Nat?)d’, thend = d'.
Proof. By considering the regular subobje¢t— Nat x Nat given by
(L, 1) €A, Vn.(n,n) € A

we conclude
d succl = d' succO.

By PropositioR6.B part i) we then gét= d'. O

In conclusion, by direct calculation we have shown
Nat? = {{L1}} U{{n} [ n € N},

where the elements are distinct incomparable elementsiof
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7 Related PER Models of Recursive Types

As mentioned earlier, the fiber categaBFam (AP (D))o is equivalent toAP(D),. Hence the
results on solutions to recursive domain equations of &e&iimply that we can solve a wide class of
recursive domain equations @aP (D), . In other words, our abstract results show that admissials p
provide a model of recursive types. Previous per modelsofrsive types, however, have involved extra
conditions on the per’s beyond admissibility.

In [1] a per model of polymorphism and recursive types is troicged. It employs per’s, which are ad-
missible, meet closed, uniform and convex. An O-categothe$e so-callegoodper’s is constructed
and type expressions can now be modeled as effective symrhwictors on this category. 1nl[2] it is
shown how complete uniform per’s (cuper’s) over a univedsahain allows one to solve domain equa-
tions on the per level. In both cases the chosen notion of ffieeilitate an ordering of the equivalence
classes and thus allows one to solve recursive domain eqgads in classical domain theory.

In [I]] the collection of domain equations that can be solvedyazen by the notion of effective symmetric

functors. Comparing these with the strong fibred functorsusfsetting we see that both notions require
a realizer, but our functors are also required to have aioaktinterpretation given by the component
F" as in LemmdK]1. It appears that our notion of recursive typeons are more restrictive, but

on the other hand our notion of admissible per’s is simplee fiNd this trade-off acceptable, as all

type expressions formed using the type constructors ofrailghic FPC give rise to a strong fibred

functor [15]. The real difference, however, is that our niasi@arametric.
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