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Abstract

We present a new model, called GuardedEqu, of guarded dependent type
theory using generalised equilogical spaces. GuardedEqu models guarded re-
cursive types, which can be used to program with coinductive types and we
prove that GuardedEqu ensures that all definable functions on coinductive
types, e.g., streams, are continuous with respect to the natural topology. We
present a direct, elementary, construction of the new model, which, impor-
tantly, is coherent (split) by construction.
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1. Introduction

Type theories with support for guarded recursive functions and guarded
recursive types are useful for programming with coinductive types and also
for serving as a meta-theory for constructing sophisticated models of pro-
gramming languages with effects [1, 2].

In this paper, we present a new model of guarded dependent type theory,
based on a generalisation of equilogical spaces [3]. We refer to the new model
as GuardedEqu.

In contrast to earlier models of guarded dependent type theory, Guarded-
Equ ensures that definable functions on coinductive types are suitably con-
tinuous. For example, any function definable on the type of streams is con-
tinuous with respect to the standard topology on streams. Thus, if f is such
a function on streams and xs is a stream, a finite amount of the output f(xs)
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only depends on a finite amount of the input xs. We prove that an analogous
result holds for final coalgebras of arbitrary polynomial functors.

It is well-known that models of dependent type theory can be tricky to
construct. A virtue of GuardedEqu is that the model construction is quite
elementary and can be presented via a simple generalisation of constructions
known from realizability models of type theory. An important feature of
GuardedEqu is that it is coherent (split) by construction. A limitation of the
model is that it does not include universes.

We now explain how GuardedEqu is related to earlier models of variations
of guarded type theory.

Originally a type theory with a single I modality for expressing guard-
edness was modelled using the category PSh (ω), the topos of trees [1]. The
model and the type theory allows for the solution of guarded recursive do-
main equations. It was later realised that guarded recursion can also be used
for ensuring that functions producing values of coinductive types are produc-
tive in a precise sense. To support such encodings the type theory needs to
be extended with the ability to eliminate I in a controlled way. This led
Atkey and McBride [4] to generalise I to a family of modalities indexed by
clocks, and to support clock quantification for controlled elimination of I.
Atkey and McBride’s development was for a simply typed calculus. They
developed a model of their type theory and showed that, e.g., all streams
definable in the calculus were were interpreted as actual streams, i.e., non
bottom elements. Møgelberg [5] extended their work to a model of depen-
dent type theory with universes. This model was subsequently refined [6] to
support clock synchronisation which considerably simplified the calculus. As
it currently stands this model is complex, in particular in its split form which
is needed to soundly model the rules of guarded dependent type theory [7].

GuardedEqu can be seen as a generalisation of the model by Atkey and
McBride to dependent types. The type theory we are considering has, to be
useful, certain type isomorphisms [4, 5]. An example is the type isomorphism
∀κ.N ∼= N, where N is the type of natural numbers. In Atkey and McBride’s
model these were type equalities, but in the presheaf models of guarded
dependent type theory [5, 6] the types ∀κ.N and N are only modelled as
canonically1 isomorphic types. In GuardedEqu these type isomorphisms are
again type equalities. This generalises the results of Atkey and McBride to
a dependent type theory.

1Canonical means there is a term definable using just the ordinary introduction rules
for ∀κ of type N→ ∀κ.N and the denotation of this term is an isomorphism.
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2. Guarded dependent type theory

In this section we give a very brief introduction to the syntax of guarded
dependent type theory. We refer the reader to [7] for the full set of typing
rules, their motivation and more detailed explanation.

Guarded dependent type theory can be seen as a version of polymorphic
dependent type theory [8]. It includes two contexts. A context ∆ of clock
variables κ, κ′, · · · and a context Γ of ordinary term variables. Types depend
on clocks, that is, clocks can appear in types, but clocks are only names
in the sense that there are no constructions on clocks themselves. Guarded
dependent type theory has the following basic judgements.

Γ `∆

Γ `∆ A type

Γ `∆ t : A

The judgement Γ `∆ expresses that the free clocks in Γ are contained in ∆,
the judgement Γ `∆ A type expresses that A is a well-formed type in context
Γ `∆ and the last judgement expresses that t has type A in context Γ `∆. As
usual in dependent type theory, there are also judgements for type and term
equality for which we refer to [7]. Clocks are used to distinguish different
I modalities. Thus, for each clock there is a modality Iκ and a term nextκ

with the typing judgement

Γ `∆ t : A

Γ `∆ nextκ t : IκA
κ ∈ ∆

Clock weakening is admissible, e.g., there is a derivation of

Γ `∆ A type

Γ `∆,κ A type

for κ 6∈ ∆ and analogously for other judgements. Clock weakening has a
right adjoint, which we write as ∀κ. The introduction rule is

Γ `∆ Γ `∆,κ t : A

Γ `∆ Λκ.t : ∀κ.A

with the usual elimination rule for products and β-η rules for judgemental
equalities. Thus in the model we shall need to have polymorphic products of
kinds over types [8, Chapter 11].

A profitable way of thinking about guarded dependent type theory (and
polymorphic dependent type theory in general) is as follows.
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For each clock context ∆ we have a core dependent type theory with
ordinary type formers Π, Σ and equality types. In Section 3.1 we show how to
model this fragment by constructing categories PEqu(P ) and associated split
closed comprehension categories with strong coproducts and strong equality.
The construction is parametrised by a partially ordered set P . For the model
of the core fragment it does not matter what P is. Later on, in Section 3.3, we
instantiate P with specific posets which allow us to model theImodality and
clock quantification ∀κ. Different clock contexts ∆ will give rise to different
posets P .

Next, to be able to change clock contexts, e.g., to interpret weakening,
we need to be able to move between categories PEqu(P ) for different P .
Section 3.2 provides the necessary results which ensure that moving from
PEqu(P ) to PEqu(Q) preserves all the structure, e.g., products, coproducts.
Section 3.3 then ties it all together into one model of guarded dependent
type theory with two-level indexing. One for clock contexts and one for or-
dinary contexts. Section 3.4 provides a high-level summary of the model
construction in the framework of fibrations. In Section 4 we prove how fi-
nal coalgebras for polynomial functors can be obtained via guarded recursive
types. And we prove the continuity properties for functions on final coalge-
bras for polynomial functors mentioned in the Introduction.

GuardedEqu validates all the rules of guarded dependent type theory apart
from universes. We do not show soundness of all the rules in this article but
only show the main constructions needed. Using these constructions the
verification of all the rules is quite straightforward, albeit somewhat tedious
to write out in all detail.

Remark 1. In the most recent formulation of guarded dependent type the-
ory [7], guarded recursive types are defined via fixed points of functions on
universes. Since we do not model universes in GuardedEqu, we would need
some other facility for defining guarded recursive types syntactically, such as
the one used in [1]. Formulating and modeling such guarded recursive types
can be done without too much trouble, following [1].2 Here, however, we do
not include such a treatment, since that would not be particularly interest-
ing, given all the other material. Instead we show in Section 4 that we can
construct final coalgebras of polynomial functors using solutions of guarded

2Indeed it is easy to show that PEqu(P ) is enriched in the category of presheaves over P ,
which is equivalent to the category of sheaves over P equipped with the Alexandrov topol-
ogy, so fits into the general framework [1] for a well-founded order P . Further, it is easy
to see that the usual type constructors, →, ×, + give rise to enriched functors, and thus
one can prove an existence theorem for fixed points of contractive functors following [1].
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type equations and we show that the solution comes equipped with the cor-
rect topology, which allows us to show expected productivity properties of
functions defined on final coalgebras. �

3. GuardedEqu

3.1. Modelling core dependent type theory

First we explain some general constructions which do not deal directly
with guarded recursion but are used later on. Let P be a partially ordered
set. The category PEqu(P ) has as objects pairs A = (|A| , RA) where

• |A| is an algebraic lattice, i.e., a complete lattice where every element
is the supremum of compact elements below it

• RA is a monotone map from P op to PERs on |A| ordered by subset
inclusion. In other words, RA is a family of partial equivalence relations
on |A| indexed by P such that if p ≤ q then RA(p) ⊇ RA(q).

We will sometimes write a ≈pA a′ for (a, a′) ∈ RA(p).
Morphisms from A to B in PEqu(P ) are equivalence classes, with respect

to the relation ∼ defined below, of continuous non-expansive maps |A| → |B|
(i.e., morphisms in AlgLat). The function f is non-expansive if it satisfies for
all p ∈ P the property

∀(a, a′) ∈ RA(p), (f(a), f(a′)) ∈ RB(p).

The equivalence relation ∼ is defined as

f ∼ g ⇐⇒ ∀p ∈ P, ∀(a, a′) ∈ RA(p), (f(a), g(a′)) ∈ RB(p).

Note that ∼ is an equivalence relation on non-expansive maps, but only a
partial equivalence relation on general continuous maps. Indeed, if we define
the relation ∼ on all maps then the non-expansive ones are precisely the ones
in the domain of ∼.

This makes PEqu(P ) into a category. Identities are given by equivalence
classes of the identity functions in AlgLat. Composition of [f ] : A → B and
[g] : B → C is given by the equivalence class of f ◦ g. It can easily be seen
that this definition is independent of the choice of representatives f and g.

Remark 2. If P is the unique poset with one element then PEqu(P ) is
the category of partial equilogical spaces [3], equivalent to the category of
equilogical spaces. �
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To interpret dependent types we present the slice categories in a differ-
ent way, similar to uniform families [8] but incorporating the monotonicity
requirement.

Analogous to the way that the slice category PSh (C) /Γ of the category
of presheaves PSh (C) over some presheaf Γ is equivalent to the category of
presheaves over the category of elements we will represent the slice categories
of PEqu(P ) using an auxiliary poset

∫
P

Γ. We now define this poset. Let
Γ ∈ PEqu(P ). The poset

∫
P

Γ has as elements pairs (p, [γ]p) where p ∈ P
and [γ]p is an equivalence class of γ ∈ |Γ| with respect to the relation RΓ(p).
In particular this means (γ, γ) ∈ RΓ(p). We define the order ≤ on

∫
P

Γ as
(p, c) ≤ (q, c′) if and only if p ≤ q and c ⊇ c′. Or equivalently (p, [γ]p) ≤
(q, [γ′]q) if p ≤ q and (γ, γ′) ∈ RΓ(p).

Lemma 3. The set
∫
P

Γ with the order relation ≤ defined above is a poset.

Note that in contrast to the situation with presheaves, it is not the case
that the category PEqu(P )/Γ is equivalent to the category PEqu(

∫
P

Γ). The
problem is that the latter category has too few morphisms, however its ob-
jects are precisely the ones needed. To get a category equivalent to the slice
category we define a new category TypeP (Γ).3 Its objects are the objects of
PEqu(

∫
P

Γ). A morphism from A to B is an equivalence class of continuous
functions |Γ| → |A| → |B| in AlgLat with respect to the partial equivalence
relation ∼Γ which relates f and f ′ if and only if

∀p ∈ P, ∀(γ, γ′) ∈ RΓ(p),∀(a, a′) ∈ RA(p, [γ]p), (fγa, gγ
′a′) ∈ RB(p, [γ]p).

As before such a function f is called non-expansive if f ∼Γ f , i.e., if f is in
the domain of ∼Γ. Identity at the object A is given by the equivalence class
of the second projection and composition of [f ] : A→ B and [g] : B → C is
given by the equivalence class of the continuous function

γ 7→ a 7→ gγ(fγa).

Remark 4. Comparing to the situation with presheaves again, the mor-
phisms in TypeP (Γ) have access to an additional parameter Γ (as compared
to the morphisms in PEqu(

∫
P

Γ)). The reason this is not needed with presheaf
categories is that natural transformations are indexed families of functions
(satisfying coherence conditions) and elements of Γ are part of the indexing
poset. So in essence, the additional parameter Γ is already built into the
definition of the category of presheaves over the category of elements. �

3We use the notation TypeP (Γ) because this category will be used to interpret depen-
dent types in context Γ.
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Theorem 5. For any poset P and Γ ∈ PEqu(P ) the category TypeP (Γ) is
equivalent to the slice category PEqu(P )/Γ.

Proof. We define two functors F : TypeP (Γ) → PEqu(P )/Γ and G in the
converse direction. The functor F maps

• the object A to the object πA : Γ n A→ Γ where

|Γ n A| = |Γ| × |A|
RΓnA(p) = {((γ, a), (γ′, a′)) | (γ, γ′) ∈ RΓ(p) ∧ (a, a′) ∈ RA(p, [γ]p)} .

and πA is the equivalence class of the first projection |Γ| × |A| → |Γ|.

• the morphism [f ] to the equivalence class of the morphism

(γ, a) 7→ (γ, fγa)

The definition of the equivalence relation ∼Γ is precisely what is needed
to show that such a definition is independent of the choice of represen-
tative f .

The functor G maps

• an object [f ] : A → Γ of the slice category to the object f−1(A) of
TypeP (Γ) where∣∣f−1(A)

∣∣ = |A|
Rf−1(A) (p, [γ]p) = {(a, a′) | (a, a′) ∈ RA(p) ∧ (f(a), γ) ∈ RΓ(p)} .

• a morphism [α] : [f ] → [g] to the equivalence class of the continuous
function

γ 7→ a 7→ αa

Finally we define two natural isomorphisms η : id → F ◦ G and ε : id →
G ◦ F .

A Γ n f−1(A)

Γ

[f ]

ηf

πf−1(A)

Define ηf to be the equivalence class of the continuous function

a 7→ (f(a), a).
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Its inverse is the equivalence class of the second projection π2 : |Γ|×|A| → |A|.
The component of ε and A is given by the equivalence class of

γ 7→ a 7→ (γ, a).

Its inverse is given by the equivalence class of the continuous function

γ 7→ (γ′, a) 7→ a.

Checking that these are well-defined and that they satisfy the claimed proper-
ties is straightforward, albeit somewhat lengthy, unpacking of definitions.

3.1.1. Reindexing

Given a morphism [f ] : Γ1 → Γ2 in PEqu(P ) there is a functor f ∗ :
TypeP (Γ2) → TypeP (Γ1) defined by “precomposition”. Given an object
A ∈ TypeP (Γ2) the object f ∗(A) is

|f ∗(A)| = |A|
Rf∗(A) (p, [γ]p) = RA (p, [f(γ)]p) .

The functor f ∗ maps a morphism realised by g to the morphism realised
by g ◦ f . More concretely, a morphism [g] is by definition realised by a
continuous function g : |Γ2| → |A| → |B|. The morphism f ∗([g]) is realised
by the function of type |Γ1| → |A| → |B| mapping γ and a to g(fγ)a.

Lemma 6. The operation f ∗ we have defined is well-defined, i.e., indepen-
dent of the choice of representative f , and it is a functor.

Moreover this construction shows that we have a functor from the op-
posite of the category PEqu(P ) to the category of categories which maps Γ
to TypeP (Γ) and [f ] to the functor f ∗. So we may use the Grothendieck
construction to get a fibration p : UFam(P ) → PEqu(P ). Concretely, the
objects of the total category UFam(P ) are pairs (Γ, A) where Γ ∈ PEqu(P )
and A ∈ TypeP (Γ). Morphisms (Γ1, A1)→ (Γ2, A2) are pairs ([f ], [g]) where
[f ] : Γ1 → Γ2 is a morphism in PEqu(P ) and [g] is an equivalence class of
continuous functions |Γ1| → |A1| → |A2| with respect to the relation ∼A1,A2

which relates g and g′ if and only if

∀p ∈ P, ∀(γ, γ′) ∈ RΓ1(p),∀(a, a′) ∈ RA1(p, [γ]p), (gγa, g
′γ′a′) ∈ RA2(p, [f(γ)]p).

Since the assignment f 7→ f ∗ is a functor the fibration p, which simply
projects the first components, is a cloven split fibration. The chosen cartesian
lifting of [f ] : Γ1 → p (Γ2, A) is

([f ], [γ 7→ a 7→ a]) : (Γ1, f
∗(A))→ (Γ2, A)
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The functor F defined in the proof of Theorem 5 can be extended to
a comprehension category. Indeed, define the functor P : UFam(P ) →
PEqu(P )→ as

P(Γ, A) = πA

P([f ], [g]) = ([f ], [(γ, a) 7→ (fγ, gγa)])

as depicted in the following diagram

Γ1 n A1 Γ2 n A2

Γ1 Γ2

πA1

[(γ,a)7→(f(γ),gγa)]

πA2

[f ]

Theorem 7. The diagram

UFam(P ) PEqu(P )→

PEqu(P )

p

P

cod

commutes and p is a full split comprehension category with unit. The terminal
object functor 1 : PEqu(P )→ UFam(P ) maps Γ to the object (Γ, 1) where

|1| = 2∅

R1(p) = 2∅ × 2∅

and 2∅ is the power set of the empty set.

Below we will extensively use the fact that the fibre over an object Γ
with respect to the fibration p is isomorphic in a trivial way to the category
TypeP (Γ). This reduces clutter because we do not have to carry around the
first components of objects of the fibre which do not matter, since they are
uniquely determined (up to equality).

3.1.2. Dependent products

Theorem 8. The comprehension category p has (split) products satisfying
(split) Beck-Chevalley condition.

9



Proof. Let πA = P(Γ, A) : Γ n A → Γ be a projection. It induces a functor
π6
A from the slice over Γ to the slice over ΓnA which we need to show has a

right adjoint. Representing slices using the categories TypeP (−) the functor
π6
A is simply π∗A. Thus, given an object B ∈ TypeP (Γ n A) define the object

Π(A,B) ∈ TypeP (Γ) to have the underlying lattice |Π(A,B)| the lattice of
continuous functions |A| → |B|. The family of relations RΠ(A,B) is defined at
(p, [γ]p) to be

{(f, f ′) | ∀q ≤ p,∀(a, a′) ∈ RA(q, [γ]q), (f(a), f ′(a′)) ∈ RB (q, [(γ, a)]q)} .

To show that we get a right adjoint to π∗A we show that we have a universal
morphism

apA,B : π∗A (Π(A,B))→ B

in TypeP (Γ n A). We define apA,B to be the equivalence class of the mor-
phism

(γ, a) 7→ f 7→ fa.

Note that the relation RΠ(A,B) states precisely what is needed to show that
the function we have defined is non-expansive.

To show that apA,B is universal we show that for any C and any morphism
[φ] : π∗A(C) → B there is a unique morphism cur (φ) : C → Π(A,B) in
TypeP (Γ) making the following diagram commute.

π∗A(C) π∗A(Π(A,B))

B

π∗A(cur(φ))

[φ]

apA,B

Define cur (φ) to be the equivalence class of the function

γ 7→ c 7→ (a 7→ φ(γ, a)c)

of type |Γ| → |C| → (|A| → |B|), recalling that [φ] is realised by the function
φ of type |Γ| × |A| → |C| → |B|.

Checking that all the stated properties hold is straightforward unpacking
of definitions.

Finally, the Beck-Chevalley condition can be verified to hold by simple
computations.
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3.1.3. Dependent sums

Theorem 9. The comprehension category p has (split) strong coproducts
satisfying (split) Beck-Chevalley condition.

Proof. As in the proof of Theorem 8 given an object B ∈ TypeP (Γ n A)
define an object Σ(A,B) ∈ TypeP (Γ) as follows. The underlying lattice
|Σ(A,B)| is the lattice |A| × |B|. The family of relations RΣ(A,B) is defined
at (p, [γ]p) to be

{((a, b), (a′, b′)) | (a, a′) ∈ RA(p, [γ]p), (b, b
′) ∈ RB (p, [(γ, a)]p)} .

This definition comes with a morphism pairA,B : B → π∗A (Σ(A,B)) in the
fibre over ΓnA which we define to be the equivalence class of the continuous
function

(γ, a) 7→ b 7→ (a, b).

This morphism satisfies the property that for any C and any [φ] : B →
π∗A(C) there exists a unique morphism unpack (φ) : Σ(A,B) → C satisfying
π∗A(unpack (φ)) ◦ pairA,B = [φ]. Indeed, the morphism unpack (φ) is defined
as the equivalence class of the continuous function

γ 7→ (a, b) 7→ φ(γ, a)b.

All of the claimed properties are easy and straightforward to check.
With these definitions the assignment B 7→ Σ(A,B) extends to a functor

left adjoint to π∗A. Concretely it maps a morphism [φ] : B → C to the
equivalence class of the continuous function

γ 7→ (a, b) 7→ (a, φ(γ, a)b).

Recall the domain functor dom : PEqu(P )→ → PEqu(P ). A comprehension
category has strong coproducts [8, Definition 10.5.2] if the morphism

dom
(
P(πA, pairA,B)

)
is an isomorphism. In our case this follows by computation. Indeed, the
morphism dom

(
P(πA, pairA,B)

)
is the equivalence class of the continuous

function

((γ, a), b) 7→ (γ, (a, b)).
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3.1.4. Equality

Theorem 10. The fibration p has strong equality.

Proof. For any Γ and any A ∈ TypeP (Γ) there is a morphism in PEqu(P )

δA : Γ n A→ Γ n An π∗A(A)

which is the equivalence class of the continuous function (γ, a) 7→ ((γ, a), a).
Recall that a comprehension category has weak equality if δ6A has a left

adjoint EqA for any A and these left adjoints satisfy the Beck-Chevalley
condition.

Let us define EqA : TypeP (Γ n A) → TypeP (Γ n An π∗A(A)). We pro-
ceed as we did in Theorem 9, by constructing an object EqA(B) and a uni-
versal morphism. Given B ∈ TypeP (Γ n A) define EqA(B) to have the un-
derlying lattice |EqAB| the lattice |B| and the family of relations REqA(B) is
defined at (p, [((γ, a), a′)]) to be

{(b, b′) | (b, b′) ∈ RB(p, [(γ, a)]), (a, a′) ∈ RA(p, [γ])}

=

{
RB(p, [(γ, a)]) if (a, a′) ∈ RA(p, [γ])

∅ otherwise

There is a morphism reflA,B : B → δ∗A(EqAB) which is the equivalence class
of the continuous function

(γ, a) 7→ b 7→ b.

This pair satisfies the universal property stating that for any C and any [φ] :
B → δ∗A(C) there exists a unique morphism with (φ) : EqA(B)→ C satisfying
δ∗A(with (φ)) ◦ reflA,B = [φ]. The morphism with (φ) is the equivalence class
of the continuous function

((γ, a), a′) 7→ b 7→ φ(γ, a)b.

To show that the equality is strong we additionally need to check [8,
Definition 10.5.2] that the canonical morphism

κ : Γ n AnB → Γ n An π∗A(A) n EqAB

which is the equivalence class of the continuous function

((γ, a), b) 7→ (((γ, a), a), b)

is an isomorphism. This is indeed the case and its inverse is given by the
equivalence class of the function

(((γ, a), a′), b) 7→ ((γ, a), b).
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With this we have shown that for any poset P the fibration P is a model
of dependent type theory with strong dependent sums and strong, i.e. ex-
tensional, equality.

A few words on how the identity type is modelled. A term t of type A
in context Γ is modelled as a section of the projection P(A). Because P is a
comprehension category the diagram

Γ n An π∗A(A) Γ n A

Γ n A Γ

ππ∗
A

(A) πA

πA

which is the image, P (πA), of the cartesian lifting πA of πA, is a pullback
diagram. Thus given two terms t and s of type A we get a unique morphism
〈〈id, t〉, s〉 making the following diagram commute.

Γ

Γ n An π∗A(A) Γ n A

Γ n A Γ

〈〈id,t〉,s〉

t

s

ππ∗
A

(A) πA

πA

The fibration p has a terminal object functor 1. We define the interpretation
of the type Id(t, s) to be the object

〈〈id, t〉, s〉6 (EqA(1(Γ n A))) .

Concretely in our model the underlying lattice of JId(t, s)K is the lattice 2∅.
The relation RId(t,s) is

RId(t,s)(p, [γ]) = {(∅, ∅) | (π2(t(γ)), π2(s(γ))) ∈ RA(p, [γ])}

=

{
|1| × |1| if (π2(t(γ), π2(s(γ)))) ∈ RA(p, [γ])

∅ otherwise

which is as expected. This also makes it clear why the model supports
extensional equality.
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3.2. Moving between PEqu(P ) and PEqu(Q)

Let P and Q be two posets and φ : Q → P a monotone function. It
induces a functor φ† : PEqu(P ) → PEqu(Q) (notice the reversed order of
posets Q and P ) by “precomposition” as follows. It maps an object Γ to the
object φ†(Γ) where ∣∣φ†(Γ)

∣∣ = |Γ|
Rφ†(Γ) = RΓ ◦ φ

where we consider RΓ as a function from P to the set of partial equivalence
relations on |Γ|, so composition with φ is well-defined. Moreover because
φ is monotone the composition RΓ ◦ φ retains the monotonicity property.
The functor φ† maps a morphism realised by f to the equivalence class of
the continuous function f . Note however that the equivalence relations are
different, consequently φ† is in general neither full nor faithful.

Lemma 11. The functor φ† preserves limits and colimits.

Further, given Γ ∈ PEqu(P ) there is an induced monotone function φΓ

φΓ :

∫
Q

φ†(Γ)→
∫
P

Γ

φΓ(q, [γ]q) =
(
φ(q), [γ]φ(q)

)
.

Note that by the definition of φ†(Γ) the sets [γ]φ(q) and [γ]q are equal.
This function in turn induces a functor

φ†Γ : TypeP (Γ)→ TypeQ
(
φ†(Γ)

)
which acts as follows.

objects It maps an object A to the object (|A| , RA ◦ φΓ).

morphisms It maps the morphism realised by f to the equivalence class of
f , exactly as in the definition of φ†.

We have two types of reindexing. The following lemma states that they
commute in the appropriate way.

Lemma 12. Let [f ] : Γ1 → Γ2 be a morphism in PEqu(P ). The following
diagram of functors commutes on the nose

TypeP (Γ2) TypeP (Γ1)

TypeQ
(
φ†(Γ2)

)
TypeQ

(
φ†(Γ1)

)
φ†Γ2

f∗

φ†Γ1

(φ†(f))
∗

14



Proof. Since none of these functors changes the underlying lattices or the
realisers those are clearly preserved on the nose if only the relations are
preserved. This is easily seen to be the case with the definitions provided.

Combining these two functors we get a morphism of fibrations

UFam(P ) UFam(Q)

PEqu(P ) PEqu(Q)

φ>

pP pQ

φ†

(1)

The functor φ> maps

objects the object (Γ, A) to the object
(
φ†(Γ), φ†Γ(A)

)
morphisms the morphism ([f ], [g]) to the morphism ([f ]′, [g]′) where we

have used ′ to highlight the fact that the equivalence relations are dif-
ferent.

Theorem 13. The pair of functors just defined is a morphism of split fibra-
tions. It maps the chosen cartesian liftings to the chosen cartesian liftings.

Proof. The fact that it is a morphism of fibrations follows from Lemma 12
and the fact that the functors never change the underlying realisers.

Lemma 14. Let φ†
→

: PEqu(P )→ → PEqu(Q)→ be the functor induced by
φ† in the natural way and let PP and PQ be the comprehensions belonging
to fibrations pP and pQ. Then φ†

→ ◦ PP = PQ ◦ φ>. In particular for any
A ∈ TypeP (Γ) we have φ†(πA) = πφ†ΓA

.

Finally, the diagram of functors

UFam(P )Γ UFam(P )ΓnA

UFam(Q)φ†(Γ) UFam(Q)φ†(Γ)nφ†Γ(A)

π6A

φ> φ>

π6
φ
†
Γ
A

commutes on the nose. Note that we have used the equality φ†(Γ)n φ†Γ(A) =
φ†(Γ n A) which follows from the first part of the lemma.
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Theorem 15. If φ is a fibration then the morphism of fibrations (1) pre-
serves products and coproducts on the nose. This means (cf. [8, Definition
1.9.13])

• φ† preserves pullbacks on the nose

• For every Γ ∈ PEqu(P ) and A ∈ TypeP (Γ) the canonical natural trans-
formation

φ> ◦ Π(A,−)→ Π
(
φ†Γ(A),−

)
◦ φ>

is the identity. This in particular means that we have an equality of
objects

φ>(Π(A,B)) = Π
(
φ†Γ(A), φ>(B)

)
for every B ∈ TypeP (Γ n A).

• For every Γ ∈ PEqu(P ) and A ∈ TypeP (Γ) the canonical natural trans-
formation

Σ
(
φ†Γ(A),−

)
◦ φ> → φ> ◦ Σ(A,−)

is the identity.

Proof. Most of this is simple computation and only requires φ to be mono-
tone. We need the assumption that φ is a fibration to show that products
are preserved. To show how this assumption is used we spell out the proof
of

φ>(Π(A,B)) = Π
(
φ†Γ(A), φ>(B)

)
.

Since φ> or φ†Γ do not change the underlying lattices they are |A| → |B| on
both sides. To show that the families of relations are the same we show two
inclusions.

⊆ For every q ∈ Q and (γ, γ) ∈ RΓ(φ(q)) we show

Rφ>(Π(A,B))(q, [γ]) ⊆ RΠ(φ†Γ(A),φ>(B))(q, [γ]).

Recall

Rφ>(Π(A,B))(q, [γ]) = RΠ(A,B)(φ(q), [γ]). (2)
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Let
(f, f ′) ∈ RΠ(A,B)(φ(q), [γ]), (3)

r ≤ q and (a, a′) ∈ Rφ†Γ(A)(r, [γ]). Recall

Rφ†Γ(A)(r, [γ]) = RA(φ(r), [γ]).

Because φ is monotone φ(r) ≤ φ(q) holds and so from assumption (3)
we get (fa, f ′a′) ∈ RB(φ(r), [(γ, a)]) and by definition of φ> we have

Rφ>(B)(r, [(γ, a)]) = RB(φ(r), [(γ, a)])

which gives

(fa, f ′a′) ∈ Rφ>(B)(r, [(γ, a)])

as needed. Note that we have only needed φ to be monotone for this
direction.

⊇ For every q ∈ Q and (γ, γ) ∈ RΓ(φ(q)) we show

RΠ(φ†Γ(A),φ>(B))(q, [γ]) ⊆ Rφ>(Π(A,B))(q, [γ]).

Assume

(f, f ′) ∈ RΠ(φ†Γ(A),φ>(B))(q, [γ]). (4)

Recalling (2) let r ≤ φ(q) and (a, a′) ∈ RA(r, [γ]). We need to show
(fa, f ′a′) ∈ RB(r, [(γ, a)]). Because φ is a fibration there exists a
u(q, r) ∈ Q such that u(q, r) ≤ q and φ(u(q, r)) = r. Thus by defi-
nition we have (a, a′) ∈ Rφ†Γ(A)(u(q, r), [γ]) and so from (4) (fa, f ′a′) ∈
Rφ>(B)(u(q, r), [(γ, a)]). By definition and the property φ(u(q, r)) = r
we have

Rφ>(B)(u(q, r), [(γ, a)]) = RB(r, [(γ, a)])

which concludes the proof.

Remark 16. We have not needed the full assumption that φ is a fibration,
only that the function φ when restricted to ↓ q →↓ φ(q) is surjective for any
q ∈ Q. This is equivalent to requiring that φ : Q→ P is an open map when
Q and P are equipped with the version of the Alexandrov topology where the
opens are lower sets. Indeed, this is immediate from the fact that down sets
of the form ↓ q, called the principal ideals, form the basis of the Alexandrov
topology. However if we were to consider universes we would likely also
need the additional assumption requiring that the assignment u(q,−) is a
monotone function [6, Lemma 3.21]. �
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3.3. Modelling guarded dependent type theory

This section uses the definition of posets I (∆) for a finite set ∆ and mono-
tone functions I (f) for f : ∆1 → ∆2 and their properties from [6] which we
do not repeat here. We define GR (∆) = PEqu(I (∆)) and for a function f :
∆1 → ∆2 we define GR (f) : GR (∆1) → GR (∆2) to be the functor I (f)†

defined in the previous section. Similarly we define GR> (∆) = UFam(I (∆))
and GR> (f) : UFam(I (∆1)) → UFam(I (∆2)) to be the functor I (f)> de-
fined in the previous section. We write p∆ for the resulting fibration. For an
object Γ ∈ GR (∆) we define GRΓ (∆) = TypeI(∆) (Γ). Note that GRΓ (∆)
is isomorphic in a trivial way to the fibre over Γ with respect to the fibra-
tion p∆. Because the diagram (1) commutes the functor GR> (f), for any
f : ∆1 → ∆2, restricts to a functor GRΓ (∆1) → GRGR(f)(Γ) (∆2). We will
write GRΓ (f) for this functor.

3.3.1. Clock quantification

Let ∆ be a finite set of clocks, κ a clock not in ∆ and ι : ∆ → ∆, κ the
inclusion. Let Γ ∈ GR (∆). We define a functor ∀κ : GRGR(ι)(Γ) (∆, κ) →
GRΓ (∆) right adjoint to the functor GRΓ (ι). It maps an object A to the
object ∀κA where

|∀κA| = |A|

R∀κA ((E, δ), [γ]E,δ) =
⋂
n∈N

RA

(
ι!n(E, δ), [γ]ι!n(E,δ)

)
where ι!n is defined by Bizjak and Møgelberg [6, Lemmas 3.15, 3.16]. In
particular it satisfies I (ι) ◦ ι!n = idI(∆) which ensures that the sets [γ]E,δ and
[γ]ι!n(E,δ) are in fact equal, so the relation R∀κA is well-defined and because
PERs are closed under intersection it is also a PER.

The functor ∀κ maps a morphism realised by f to the morphism realised
by f . Note however that, again, the equivalence relations with which the
morphisms are constructed are not the same at the source and target, so ∀κ
is neither full nor faithful in general.

Theorem 17. The functor ∀κ is right adjoint to GRΓ (ι). It additionally
satisfies the following properties.

• ∀κ ◦ GRΓ (ι) = id

• The unit of the adjunction is the identity.

• The counit of the adjunction at an object A is given by the equivalence
class of the continuous function

γ 7→ a 7→ a.

18



Note however that it is not the identity.

• (The Beck-Chevalley condition for clock substitution) Given u : ∆1 →
∆2 and κ1 6∈ ∆1 and κ2 6∈ ∆2. Let û : ∆1, κ1 → ∆2, κ2 be the extension
of u mapping κ1 to κ2. Then

GRΓ (u) ◦ ∀κ1 = ∀κ2 ◦ GRΓ (û)

and moreover the canonical morphism from left to right is the identity.

• If [f ] : Γ1 → Γ2 is a morphism in GR (∆) then

f ∗ ◦ ∀κ = ∀κ ◦ (GR (ι) ([f ]))∗.

This item shows that substitution in terms commutes with clock quan-
tification as it should.

Proof. The first and second items follow from the property I (ι) ◦ ι!n = idI(∆).
The third item follows from the property [6, Lemma 3.16]

ι!δ(κ) (I (ι) (E, δ)) ≥ (E, δ).

The last two items follow from the fact that the underlying lattices never
change and a simple computation showing the relations are preserved.

3.3.2. The delay functor

Let ∆ be a finite set of clocks, κ ∈ ∆ and Γ ∈ GR (∆). There is a functor
IκΓ : GRΓ (∆)→ GRΓ (∆). It maps the object A to the object IκΓ(A) where

|IκΓ(A)| = |A|

RIκΓ A ((E, δ), [γ]E,δ) =

{
|A| × |A| if δ(κ) = 1

R
(
(E, δ−κ), [γ](E,δ−κ)

)
otherwise

where δ−κ is defined by Bizjak and Møgelberg. In particular it satisfies
(E, δ−κ) ≤ (E, δ) and the assignment is monotone in (E, δ) which shows that
RIκ A is well-defined. The functor IκΓ maps a morphism realised by f to the
morphism realised by f .

There is a natural transformation nextΓ,κ : id → IκΓ which is realised, at
an object A, by the continuous function γ 7→ a 7→ a.

Remark 18. This is the place where monotonicity of relations RX is needed.
Without it, next would not exist. Consequently we could not state and prove
the fixed point property in Proposition 21 in general. �
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Theorem 19. The functor IκΓ we have defined satisfies the following prop-
erties.

• ∀κ ◦ IκΓ = ∀κ

• If u : ∆1 → ∆2 and κ ∈ ∆1 then

If(κ)
GR(f)(Γ) ◦ GRΓ (u) = GRΓ (u) ◦ IκΓ

• If [f ] : Γ1 → Γ2 is a morphism in GR (∆) then

f ∗ ◦ IκΓ1
= IκΓ2

◦ f ∗.

The last item shows that substitution for term variables commutes over
I correctly.

Remark 20. It can be shown that for or each κ the functor Iκ : PEqu(P )→
PEqu(P ) (which corresponds to the functor Iκ1) is an applicative functor in
the sense of [9]. In [7] the applicative functor rules are generalised using
delayed substitutions in order for I to behave well with respect to dependent
products. The functors IκΓ can be shown to validate these rules. The proofs
are straightforward, albeit notationally heavy. �

3.3.3. Fixed points

Let ∆ be a finite set of clocks, κ ∈ ∆, Γ ∈ GR (∆) and A ∈ GRΓ (∆).

Proposition 21. Let [g] : IκΓA → A be a morphism. There is a unique
morphism [f ] : 1→ A such that

[g] ◦ nextΓ,κ
A ◦ [f ] = [f ].

Proof. Recall that 1 is the terminal object in GRΓ (∆). The underlying
lattice is 2∅ and the relations are total relations on this lattice. To show that a
fixed point exists we first construct a continuous function f : |Γ| → |1| → |A|
satisfying gγ(fγ∅) = fγ∅ for all γ ∈ |Γ|. This is easy to do using the fact
that taking least fixed points is a continuous operation [10, Proposition 3.14],
i.e., we define

fγ∅ =
∞∨
n=0

(gγ)n(⊥).

Using this realiser we have [g] ◦ nextΓ,κ ◦ [f ] = [f ], provided that f is non-
expansive, i.e., that f is a realiser. We show this now. We need to show that
for any (E, δ) ∈ I (∆) and any (γ, γ′) ∈ RΓ(E, δ) we have

(fγ∅, fγ′∅) ∈ RA((E, δ), [γ]E,δ). (5)
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We proceed by induction on δ(κ). To be more precise, the statement we
are proving by induction is that for any n ∈ N and for any (E, δ) satisfying
δ(κ) = n the property (5) holds.

If δ(κ) = 1 then by the definition of RIκΓ A((E, δ), [γ]E,δ) we have

(fγ∅, fγ′∅) ∈ RIκΓ A((E, δ), [γ]E,δ)

and so, because g is non-expansive,

(gγ(fγ∅), gγ′(fγ′∅)) ∈ RA((E, δ), [γ]E,δ)

but, e.g., gγ(fγ∅) = fγ∅ so we have (5). The induction step should now be
clear.

Uniqueness of the constructed fixed point follows by an analogous induc-
tion.

Note that the underlying realisers might have many fixed points, but what
we have shown is that all of them are equivalent according to the family of
PERs given.

3.4. Summary of the model

Theorems 13 and 15 together with [6, Lemma 3.7] ensure that the pair
(GR> (f) ,GR (f)) is a morphism of split fibrations preserving products and
coproducts on the nose.

We can organise the constructions above into the general framework of
fibrations. In particular we construct a PDTT-structure [8, Definition 11.3.1].
The model GuardedEqu can be organised in the following diagram of fibrations
and comprehension categories.

D A→

A E B→

B

P

q
cod

r

Q

b
cod

We now explain what all of these are. The base category B and the category
E are the same. They have as objects finite subsets of the set of clocks CV.
A morphism f : ∆1 → ∆2 is a function ∆2 → ∆1 (note the reversal). So,
briefly, we may describe B as the opposite of the category of finite sets and
functions. The functor b is the identity functor and Q is defined as follows.
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We assume we have a function new (−) that given a finite set of clocks returns
a clock not already in that set. The comprehension Q maps a set ∆ to the
inclusion ι∆ from ∆ to ∆, new (∆). It maps a function u : ∆ → ∆′ to the
commutative square

∆ ∆′

∆, new (∆) ∆′, new (∆′)

u

ι∆ ι∆′

û

where û is the extension of u mapping new (∆) to new (∆′). Thus we easily
see that cod ◦ Q = idB = b.

Next, the category A has as objects pairs (∆,Γ) where ∆ is a finite set of
clocks and Γ is an object of GR (∆). A morphism (∆1,Γ1) → (∆2,Γ2) is a
pair (u, [f ]) where u is a function ∆2 → ∆1, i.e., a morphism in B from ∆1 to
∆2, and [f ] is a morphism Γ1 → GR (u) (Γ2) in GR (∆1). Equivalently, this
is the total category of the Grothendieck construction applied to the functor
GR, the evident projection r : A→ B is a split fibration.

Finally, the category D can be briefly described as the total category of
the Grothendieck construction applied to the functor GR> (−). Concretely,
its objects are pairs (∆, (Γ, A)) where ∆ is a finite set of clocks and (Γ, A) ∈
GR> (∆). A morphism

(∆1, (Γ1, A1))→ (∆2, (Γ2, A2))

is pair morphisms (u, ([f ], [g])) where u is a function ∆2 → ∆1 and ([f ], [g])
is a morphism in GR> (∆1) from (Γ1, A1) to GR> (u) (Γ2, A2). The functor
q maps the pair (∆, (Γ, A)) to the pair (∆,Γ). Thus we have that r ◦ q is
the projection associated with the Grothendieck construction. Moreover, q
is also a split fibration. Indeed, the cartesian lifting of

(u, [f ]) : (∆1,Γ1)→ q (∆2, (Γ2, A2))

is the morphism

(u, ([f ], [g])) : (∆1, (Γ1, f
∗ (GRΓ2 (u) (A2))))→ (∆2, (Γ2, A2))

and g : Γ1 → A2 → A2 is the function

γ 7→ a 7→ a.

Recall that p ∈ I (∆1) and so I (u) (p) ∈ I (∆2) as required of a PDTT-
structure. Note that q can also be seen as arising from the Grothendieck
construction mapping the object (∆,Γ) to the category TypeI(∆) (Γ).
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And at last, the comprehension P maps the object (∆, (Γ, A)) to the
morphism (object of the arrow category) (id∆, πA). Hence we see immediately
that all the projections are indeed r-vertical as required.

4. Continuity

Let A,B ∈ GR (∅) and [f ] : B → A a morphism. Such a morphism
defines a polynomial functor Pf . Abusing notation this functor can be de-
scribed as

Pf (X) =
∑
a:A

Xf−1(a).

or more precisely, Pf (X) is the total space, i.e., domain, of the exponential

πf2 in the slice over A, where π2 : X × A→ A is the second projection.
As an example we have the object of streams whose elements are of type

A. We take the morphism [f ] : A→ A to be the identity. We then have

PidA(X) =
∑
a:A

X1 ∼=
∑
a:A

X = A×X.

Alternatively, without abusing notation, recall that the identity on A is the
terminal object in the slice category over A. Hence πidA

2
∼= π2 as object of

the slice over A and the total space of π2 is precisely X × A. The object of
streams is defined to be the final coalgebra of PidA .

A more interesting example is the type of possibly infinite lists of type A.
We take the morphism [f ] to be the inclusion of A to 1 + A. Then, abusing
notation,

Pf (X) ∼=
∑
x:1

Xf−1(x) +
∑
x:A

Xf−1(x) ∼=
∑
x:1

X0 +
∑
x:A

X1 ∼= 1 + A×X

so Pf indeed describes the shapes of lists. The object of lists is defined to
be the initial algebra, if it exists, of this functor and the object of potentially
infinite lists is defined to be the final coalgebra of this functor.

Bauer and Birkedal [11] describe the polynomial functor Pf : GR (∅)→
GR (∅) very concretely as follows. It maps an object X to the object(
|A| × (|B| → |X|), RPf (X)

)
where (a, u) ≈?Pf (X) (a′, u′) if and only if (a, a′) ∈

RA(?) and

∀(b, b′) ∈ RB(?), (f(b), a) ∈ RA(?)⇒ (u(b), u′(b′)) ∈ RX(?).

We have used ? to denote the unique element of I (∅). This functor can
be lifted to the functor Pκ

f on GR (κ) for any clock κ by replacing f by
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GR (ι) (f). Concretely the functor maps the object X of GR (κ) to the
object whose underlying lattice is the same |A| × (|B| → |X|). To describe
the relations we will use the fact that there is only one equivalence relation
on the set {κ} to represent pairs (E, δ) ∈ I (κ) by a single natural number n.
The relation RPκf (X) at n relates (a, u) and (a′, u′) if and only if (a, a′) ∈ RA(?)
and

∀(b, b′) ∈ RB(?), (f(b), a) ∈ RA(?)⇒ (u(b), u′(b′)) ∈ RX(n)

The lifting is easily seen to satisfy the property

GR (ι) ◦ Pf = Pκ
f ◦ GR (ι) .

Next, Bauer and Birkedal [11] construct the algebraic lattice

M =
∞∏
i=0

(|B|i → |A|)

together with an isomorphism φ : |A| × (|B| →M)→M (in AlgLat) defined
component-wise (since M is a product, this makes sense). We use πi : M →
(|B|i → |A|) to denote projections.

π0(φ(a, u)) = ? 7→ a

πi+1(φ(a, u)) = (b,~b) ∈ |B|i+1 7→ πi(u(b))(~b)

where we have assumed in this case that products associate to the right.
The inverse ψ : M → |A| × (|B| → M) to φ can also be given explicitly

as

ψ(m) =
(
π0(m)(?), b 7→

{
~b 7→ πi+1(m)(b,~b)

}∞
i=0

)
.

We will write ψ1 = π1 ◦ ψ : M → |A| and ψ2 : π2 ◦ ψ : M → (|B| →M).
Next we construct the solution to Pκ

f (IκX) ∼= X. The underlying lattice
of X is the lattice M constructed above. The family of relations RX is defined
by induction on n using the isomorphisms φ and ψ. We define m ≈nX m′ if
and only if (ψ1(m), ψ1(m′)) ∈ RA(?) and

∀(b, b′) ∈ RB(?), (f(b), ψ1(m)) ∈ RA(?)⇒ (ψ2(m)(b), ψ2(m′)(b′)) ∈
⋂
k<n

RX(k)

or alternatively

RX(1) = {(m,m′) | (ψ1(m), ψ1(m′)) ∈ RA(?)}
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and m ≈n+1
X m′ if and only if (ψ1(m), ψ1(m′)) ∈ RA(?) and

∀(b, b′) ∈ RB(?), (f(b), ψ1(m)) ∈ RA(?)⇒ (ψ2(m)(b), ψ2(m′)(b′)) ∈ RX(n).

With these definitions it is easy to see that the functions φ and ψ are non-
expansive, and so they give rise to an isomorphism in GR (κ).

Finally, applying ∀κ to the objectX we get the relationRM =
⋂∞
n=1RX(n).

Observe that the construction of RX is precisely the chain Φn(>) where Φ is
the operator defined by Bauer and Birkedal [11]. Because Φ commutes with
non-empty intersections, i.e.,

Φ

(⋂
i∈I

Ri

)
=
⋂
i∈I

Φ(Ri)

for all inhabited I, we have that RM defined above is precisely the largest
fixed point of Φ by Kleene’s fixed point theorem.

Hence (M,RM) is the final coalgebra of Pf , as needed.
To recap, what we have shown is that we can construct final coalgebras

of polynomial functors using solutions of guarded domain equations.
Finally, we get more than from the presheaf models [6, 5]. In these models

M would just be a set with the property that it is the final coalgebra of the
functor Pf and we get no useful information on functions M →M definable
in the type theory, i.e., in the model functions M →M are all functions. Us-
ing GuardedEqu we get the additional property that every morphism of type
M →M definable in the type theory is realised by a continuous function.

Let us look at a concrete example to see that this property gives useful
information. Let A be some set considered as an algebraic lattice A>,⊥ by
adding two elements > and ⊥ with > being the top element and ⊥ the
bottom and otherwise the order is discrete. We consider A as an object of
GR (∅) by equipping A>,⊥ with the PER RA which is the identity relation
on A, but does not relate ⊥ or > to anything, including themselves.

The type of streams is given as the final coalgebra of the polynomial
functor PidA>,⊥

. This is not a very convenient description so we provide

another description of the type of guarded streams of type A. The underlying
lattice is the product lattice

∏∞
i=0 A>,⊥ and the relations are

RStrg(A)(n) = {({xi}∞i=0 , {yi}
∞
i=0) | ∀k < n, (xk, yk) ∈ RA}

Note that n starts at 1, but the indexing of the product starts at 0, which is
the reason for using the strict order relation k < n.

There are two continuous functions α :
∏∞

i=0A>,⊥ → M and β in the
converse direction, where M is the lattice constructed above, but specialised
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for the functor PidA>,⊥
. So

M =
∞∏
i=0

(
Ai>,⊥ → A>,⊥

)
.

The function α is defined as

α(s) = { 7→ si}∞i=0

where si is the i-th element of the string. The function β is defined by
induction. Given m ∈M define the stream β(m) by induction

β(m)0 = ψ1(m)

β(m)n+1 = ψ1 (ψ2(m) (β(m)n)) .

Then it is easy to see that these functions are continuous and that β ◦ α = id.
In contrast α ◦ β is not the identity. However an easy calculation shows α
and β are non-expansive with respect to the equivalence relations given and
that α ◦ β ∼ id.

Thus because ∀κ is a functor the lattice
∏∞

i=0A>,⊥ together with the
partial equivalence relation relating only equal streams where none of the
elements are > or ⊥ is the final coalgebra for the functor PidA>,⊥

.

Using the equivalence between partial equilogical spaces and equilogical
spaces and using the fact that Top is a full subcategory of the category of
equilogical spaces [3] we quickly see that functions on streams are in bijective
correspondence with continuous functions on the topological space

∏∞
i=0A,

where A is equipped with the discrete topology. Standard topological exercise
then shows that these are precisely the functions with the property that the
first m elements of an output stream only depend on the first n, for some n,
elements of the input stream.

5. Discussion

A natural question to ask is what is the relationship between PEqu(P )
and presheaves on P valued in PEqu. Clearly if P is the singleton poset
these are equivalent. In general, one can show that the category of PEqu-
valued presheaves [P op,PEqu] is a reflective subcategory of PEqu(P ) and the
reflector F is faithful, but in most cases it is not full. In particular if ∆ is
inhabited and P is I (∆) the reflector is not full. Based on this we conjecture
that the categories are not equivalent, however we do not have a proof of
this. However even if they were equivalent, the presentation with families of
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PERs is simpler to work with and does not have problems with coherence
inherent in the presheaf presentation.

An inspection of the constructions used shows that the use of algebraic
lattices as realisers is not essential. For instance it could be replaced by
other categories of domains (such as complete pointed partial orders, Scott
domains, or countably based algebraic lattices) or we could consider only
PERs on a reflexive domain. The important properties are that the category
is cartesian closed and that its endomorphisms have fixed points. Section 4
requires more, namely the existence of certain countable limits.

One can also model guarded recursive functions using (complete) ordered
families of equivalences [12]. An important difference to that approach is
that we require no completeness conditions on our families of PERs. The
reason is precisely that the underlying category of realisers has fixed points.
In contrast, functions between sets do not necessarily have fixed points, so
the completeness conditions on ordered families of equivalences in [12] are
needed to ensure that suitably contractive functions have fixed points.

Guarded dependent type theory can be thought of in particular as a
rich “rule format” for defining functions on coinductive types, cf. the work
of Rutten [13] who defines a rule format for defining non-expansive stream
functions. Since guarded dependent type theory is an extension of dependent
type theory with types which allow us to express “non-expansiveness”, the
rule format is modular in the sense of [14]. Indeed in loc. cit. it is shown
that, if one defines a function, e.g., from streams to streams using a restricted
set of rules then the set of rules allowed in the construction of stream func-
tions can be extended with the newly defined function. This corresponds
to the observation that the newly defined function is non-expansive, which
in guarded dependent type theory corresponds to a function from guarded
streams to guarded streams. Using clock quantifiers affords more expressive-
ness and allows us to distinguish in the type theory between functions which
can be used in recursive definitions of streams (and stream functions) and
functions such as the tail function which can only be used in a much more
restricted way. The model constructed in this paper shows that guarded de-
pendent type theory can also be seen as a rule format for defining continous
functions on streams and, more generally, on arbitrary coinductive types.
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