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This paper considers direct encodings of generalized algebraic data types (GADTs) in a minimal suitable

lambda-calculus. To this end, we develop an extension of System Fl with recursive types and internalized type

equalities with injective constant type constructors. We show how GADTs and associated pattern-matching

constructs can be directly expressed in the calculus, thus showing that it may be treated as a highly idealized

modern functional programming language. We prove that the internalized type equalities in conjunction with

injectivity rules increase the expressive power of the calculus by establishing a non-macro-expressibility result

in Fl , and prove the system type-sound via a syntactic argument. Finally, we build two relational models of

our calculus: a simple, unary model that illustrates a novel, two-stage interpretation technique, necessary to

account for the equational constraints; and a more sophisticated, binary model that relaxes the construction

to allow, for the first time, formal reasoning about data-abstraction in a calculus equipped with GADTs.
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1 INTRODUCTION

Since their introduction twenty years ago, generalized algebraic data types [Cheney and Hinze
2003; Sheard and Pasalic 2008; Xi et al. 2003], commonly referred to as GADTs, have become
a staple of modern functional programming languages. First introduced as an extension of the
Glasgow Haskell Compiler, they were since adopted by OCaml, Scala and many other programming
languages, due to their ability to establish more precise specifications for algebraic type constructors.
These implementations, and the attendant difficulties, have also resulted in a rich literature that
tackles the problems of type inference in languages with ML-style polymorphism and GADTs [Jones
et al. 2006; Pottier and Régis-Gianas 2006]. However, one feature that remains understudied is the
semantics of GADTs and the nature and expressivity of these types. Since the seminal paper of Xi
et al. [2003], GADT calculi have usually been equipped with primitive notions of algebraic types
and their constructors. While this is desirable for studying the problems of inference, it tends to
obscure the essence of the structure of the types, and where their expressive power stems from.
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In this paper, we intend to shed more light on these aspects of GADTs by introducing what we
believe to be the first calculus that does not rely on the notion of a data type constructor to express
GADTs. We then proceed by studying soundness and expressive power of the calculus, as well as
provide some interesting and difficult open problems.

Beyond algebraic data types. Algebraic data types are one of the fundamental features of modern
functional programming languages, arguably as important to programming practice as higher-order
functions themselves. One of the canonical examples is that of a binary tree with nodes labeled by
elements of some type, which can be defined as follows, using Haskell syntax:1

data Tree a = Leaf | Node (Tree a) a (Tree a)

These types are often modeled in _-calculi with a combination of simple types — disjoint sums
for distinct constructors, products for their arguments — and iso-recursive types [Pierce 2002,
Chapter 21]. For instance, the type of trees labeled with elements of type U would correspond to
the following type:

Tree U ≜ `V. unit+ (V ×U × V)

Above, the variable V bound by ` stands for the recursive occurrences of the Tree type constructor.
There are two important points to note about the type of trees. First, it really is a type constructor,

rather than a type: we only get a type after the definition of Tree is applied to an argument, the
type of labels. Second, the definition is uniform in the argument: all the recursive arguments are
indexed with the same type of elements as the complete tree. Over the last quarter of a century,
numerous generalizations have been proposed to extend the expressive power of algebraic data
types and allow definitions to more precisely describe the shape of the data.
The most natural way to relax the constraints on the shapes of algebraic data types is to re-

move the uniformity condition; types obtained in this way are often dubbed nested algebraic data
types. A simple example due to Bird and Meertens [1998] is the type of perfectly balanced trees,
defined below:

data PTree a = PLeaf | PNode a (PTree (a * a))

This definition models a perfectly balanced tree as a list of levels; at each depth, we require twice
as many elements as at the previous one, by virtue of the fact that the recursive call to the type
constructor is taken at type a * a. Since the type is no longer uniform, simple recursive types
no longer suffice to encode it in a _-calculus based system. We may nonetheless encode it in a
version of polymorphic _-calculus with recursive type constructors, which forms the basis of most
modern functional programming languages. Under this extension, type-level recursion can be used
to define not only ground types but also proper type constructors. This allows us to encode the
type of perfectly-balanced trees as follows:

PTree ≜ `V :: T ⇒ T. _U :: T. unit+ (U × (V (U ×U))) .

Above we define PTree as a recursively-defined type constructor by specifying that the recursive
variable V shall map types to types; then we introduce the type U of labels using a type-level
lambda-abstraction. After that, the encoding follows the pattern described above.

While relaxing the uniformity requirement for algebraic data types is likely the most natural gen-
eralization, other possibilities abound. Readers familiar with inductive type families, as introduced
in the Calculus of Inductive Constructions [Paulin-Mohring 1993] or found in the implementations
of Coq or Agda, may notice that — even with the relaxed condition — the arguments still satisfy

1In this paper, we use Haskell syntax for presenting examples. However, our language differs from Haskell, as we use a

different evaluation strategy. In this paper, all examples use call-by-value evaluation strategy, i.e. before performing any

reductions, arguments should be reduced to values.
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The Essence of Generalized Algebraic Data Types 24:3

the conditions required of parameters, rather than the more general indices; the difference is that
parameters may be constrained non-uniformly in recursive calls, whereas indices may additionally
be non-uniform in the return types of the data constructors.2 This additional non-uniformity
is precisely what generalized algebraic data types (GADTs) allow for, albeit restricted to the
non-dependently typed setting. This may be demonstrated by the following intrinsically well-typed
representation of lambda terms:

data Tm a where

Lift :: a -> Tm a

Lam :: (a -> Tm b) -> Tm (a -> b)

App :: Tm (a -> b) -> Tm a -> Tm b

There are several things to observe about the representation above. First of all, we re-use the
meta-level types as the indices that indicate the type of the given lambda term. Secondly, although
the Lift constructor is uniformly inhabited at any type for which we have an element, Lam is
only ever inhabited at indices that are, syntactically, of the arrow type form, and the indices of the
arguments and result of the App constructor express nontrivial constraints. This has far-reaching
consequences for the behavior of pattern-matching: for instance, if we have an object of type
Tm (a * b), we can safely disregard the Lam constructor. This ability to enforce constraints on
the return type of the constructor enables specifications of data types to express many invariants,
lending them power that before was only found in dependent type theories. It is worth noting that
this property of pattern matching in languages with GADTs expresses the discriminability of types
whose head constructors are different; discriminability laws of this kind are not present in standard
dependent type theories, which means that the naïve encoding of GADTs as inductive families in
(e.g.) Coq does not allow the same programs to be written.3

With this additional expressive power comes new problems. Since classic algebraic data types
can be directly translated to rather conservative extensions of System F, they are very well studied
— not just in terms of type safety, but also stronger properties, such as relational parametricity. In
fact, it is the parametricity results that allow us to talk about “free theorems” about simple algebraic
data types, such as lists or trees. Since nested, or non-uniform data types can be similarly encoded
in well-behaved extensions of System F, many of these results also extend to them. However, this
line of results comes to a halt when GADTs are concerned: while many calculi have been developed,
the main lines of work have focused on the difficult questions of typechecking in the presence
of GADTs [Dunfield and Krishnaswami 2019] or the equally difficult matter of functorial initial
algebra semantics for GADTs [Johann and Ghani 2008], and very few go beyond type safety results.
This paper is an attempt to cross that boundary.

However, in order to investigate existence of relational models of GADTs, we need a calculus that
is expressive enough to directly encode GADTs and the associated programming patterns, while at
the same time remaining as simple as possible. To this end, in Section 2 we develop System F=8l` ,

which extends System Fl with recursive types and internalized equalities. System F=8l` also contains
certain discriminability and type-constructor injectivity rules, which are crucial for GADT-style
reasoning. In contrast to most of the GADT calculi, our approach allows us to leave out the notions
of constructors of algebraic data types and their associated type constructors. We believe that this
allows us to better capture the essence of how GADTs behave and remove language constructs

2In the context of dependent type theory, non-uniformity together with propositional equality suffice to encode indices.

However, in the absence of equality types or constraints they behave parametrically.
3To account for the needed discriminability in the environment of inductive families in systems like Coq and Agda, one

must value the index of Tm in a custom inductively defined universe rather than in the ambient universe of existing types.
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that are useful in practice, but superfluous in terms of the semantic study of the calculus and
its properties.
After having defined the calculus, we proceed, in Section 3, to study its relationship to its well-

studied restriction, System Fl . We establish that even in the absence of recursive types and with
certain restrictions on injectivity of type constructors, our calculus is not expressible in Fl , due to
the presence of the typing rules that we use to model GADTs. Thus, any potential translation to
the better-studied system must be a full-program compilation. This result cuts against the folklore
understanding of GADTs as “existentials and type equalities”: we show that the encodings depend
crucially on how one can reason about type equality.
Since System F=8l` is, to the best of our knowledge, not macro-expressible in known systems, in

Section 4 we establish its type soundness through a non-trivial syntactic argument, involving a
normalization process to cater for equality reasoning, and proceed to investigate the existence of
relational models of the calculus in Section 5. Since the proof of non-expressibility strongly suggests
that the usual approach of interpreting types as predicates or relations on values would not allow us
to enforce the necessary injectivity rules, we develop a novel unary model construction that splits
the relational interpretation process in two phases. First, we use a normalization-by-evaluation
(NbE) interpretation to account for type-level computation (including injectivity of types); then,
the closed, ground subset of the NbE interpretations of types is realized as predicates on values. We
observe that while this construction is sufficient to construct a model, it does not allow to reason
about syntactically ill-typed programs or data abstraction. To remedy this, we propose a simple
extension of the technique, and use it to build a binary relational model that allows us to transport
data abstraction results into the realm of GADTs.
With the exception of the expressibility result in Section 3, all the constructions presented in

this paper are formalized in Coq. We believe that some of those developments, in particular the
NbE implementation which bakes functoriality into the construction, thus alleviating some of the
post-hoc reasoning necessary, are of independent interest. We discuss the techniques used in the
formalization in Section 6. Finally, we discuss related work in Section 7 and conclude in Section 8.

Contributions and Outline. In summary, we make the following contributions:

• We present (in Section 2) a novel calculus F=8l` extending System Fl with (higher-kinded)
iso-recursive types and internalized type-equalities satisfying enough injectivity and discrim-
inability laws to model GADTs.

• We prove (in Section 3) that System F=8l` is not macro-expressible in System Fl , justifying
our claim that GADTs require additional expressive power.

• We prove (in Section 4) type soundness of System F=8l` , with a methodologically novel use of
normalization-by-evaluation within a syntactic type soundness proof.

• We present (in Section 5) two semantic models of System F=8l` , introducing a novel two-stage
construction technique that allows us to enforce injectivity of type constructors in a relational
model, and reason about syntactically ill-typed programs and data abstraction.

• We have formalized our constructions in the Coq Proof Assistant (Section 6).

2 POLYMORPHIC _-CALCULUS WITH INTERNALIZED TYPE EQUALITIES

In this section we present our core calculus, dubbed System F=8l` , as an extension of System Fl –

the _-calculus with impredicative polymorphism and type constructors, which is the theoretical
foundation of modern functional programming languages. The core feature of our calculus is the
reification of Fl type equality, which is a judgment for which there is no internal syntax within the
Fl language.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 24. Publication date: January 2024.
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kinds ^ ::= T | ^ ⇒ ^

constructors 2 ::= ∀^ | ∃^ | `^ |→| × | + | unit | void

constraints j ::= f ≡^ g

types f, g ::= 2 | U | _U :: ^. g | f g | j →g | j ×g

Fig. 1. The syntax of kinds, types and constraints.

∀^ , ∃^ :: (^ ⇒ T) ⇒ T `^ :: (^ ⇒ ^) ⇒ ^ (`) →,×, + :: T ⇒ T ⇒ T unit, void :: T

2 :: ^

Δ ⊢ 2 :: ^ Δ ⊢ U :: Δ(U)

Δ, U :: ^ ⊢ g :: ^ ′

Δ ⊢ _U :: ^. g :: ^ ⇒ ^ ′

Δ ⊢ f :: ^1 ⇒ ^2 Δ ⊢ g :: ^1

Δ ⊢ f g :: ^2

Δ ⊢ j constr Δ ⊢ g :: T

Δ ⊢ j →g :: T

Δ ⊢ j constr Δ ⊢ g :: T

Δ ⊢ j ×g :: T

(Δ ⊢ g8 :: ^)8∈{1,2}

Δ ⊢ g1 ≡^ g2 constr

Fig. 2. Well-kinded constructors and types, and well-formed equality constraints. The recursive type con-

structor (marked with a red (`)) is not considered in a restricted sub-system, F=8l .

Syntax of kinds and types. The structure of kinds, types and equality constraints is presented
in Figure 1. The calculus has the standard kind structure: T stands for the kind of proper types,
while ^1 ⇒ ^2 denotes the kind of type constructors that produce a type of kind ^2 given a type of
kind ^1. The types are formed from variables, type abstraction and application, type constants —
which include products, disjoint sums, arrows, as well as universal and existential quantifiers, and
recursive type constructor — and two types that interact with type equality constraints. The first of
these is an arrow type predicated on a constraint: its intended meaning is to qualify suspended
computations that can only be run if the constraint is valid; the second is an analogue of a product
type that provides a value together with a witness of validity of a constraints. The constraints,
in turn, are kinded equalities between types. Figure 2 provides the kinding rules for types and
well-formedness rules for constraints; the two judgments are mutually inductively defined.

By convention, we write binary type constants (i.e. arrows, products and sums) infix, and we
write ∀U :: ^. g to mean ∀^ (_U :: ^. g) — and likewise for existential and recursive types. Note that
the arrow and product syntax is somewhat ambiguous; however, it is always clear from context
whether the type is a standard arrow/product, or the constrained variant.

This syntax allows us to express most of the standard types encountered in functional program-
ming: for instance, we can express a uniform algebraic data type List ≜ _U :: T. `V :: T. unit+U × V ,
with the unit type standing in for the nil constructor, and the pair for the cons. However, the fact
that we can form recursive data types at higher kinds allows us to express nested data types, and
the constrained types allow us to express GADTs. For example, consider the following type:

data Foo :: * -> * where

C1 :: Bool -> Foo Bool

C2 :: Foo a

We may encode the above by defining Foo ≜ _U :: T. (Bool× (U ≡T Bool)) + unit. We discuss
expressivity and examples in more detail in Section 2.1.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 24. Publication date: January 2024.
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21 ≠ 22 (Δ ⊢ 28 g8 :: ^)8∈{1,2}

Δ ⊩ 21 g1 #^ 22 g2

Δ ⊢ 2 g :: T Δ ⊢ j →f :: T

Δ ⊩ 2 g #T j →f

Δ ⊢ 2 g :: T Δ ⊢ j ×f :: T

Δ ⊩ 2 g #T j ×f

Δ ⊢ j1 →g1 :: T Δ ⊢ j2 ×g2 :: T

Δ ⊩ j1 →g1 #T j2 ×g2

Δ ⊩ g2 #^ g1

Δ ⊩ g1 #^ g2

j ∈ Φ

Δ | Φ ⊩ j

Δ, U :: ^0 ⊢ f :: ^A Δ ⊢ g :: ^0

Δ | Φ ⊩ (_U :: ^0 . f) g ≡^A f [g/U]

Δ ⊢ g :: ^0 ⇒ ^A U ∉ Δ

Δ | Φ ⊩ _U :: ^0 . g U ≡^0⇒^A g

Δ | Φ ⊩ j →f ≡T b →g

Δ | Φ ⊩ f ≡T g

Δ | Φ ⊩ j ×f ≡T b ×g

Δ | Φ ⊩ f ≡T g

2 :: (^8 ⇒)8 ^ Δ | Φ ⊩ 2 (f8 )8 ≡^ 2 (g8 )8
(

Δ | Φ ⊩ f8 ≡^8 g8
)

8

Δ | Φ ⊩ j ×f ≡T b ×g Δ | Φ ⊩ j

Δ | Φ ⊩ b

Δ | Φ ⊩ j →f ≡T b →g Δ | Φ ⊩ j

Δ | Φ ⊩ b

Fig. 3. Discriminability of types and provability of equality constraints; for brevity, we omit the rules that

make constructor equality a congruent equivalence relation.

Discriminability and provability of constraints. With the syntax of kinds and types defined, we
can turn to the notion of provability of constraints, which is defined is Figure 3. The judgment
Δ | Φ ⊩ j denotes that the constraint j — well-formed in the type-variable context Δ — is provable
from the assumptions in Φ, which are also constraints well-formed in Δ. In addition to a rule that
allows for the use of assumptions, the rules follow the standard type-equivalence pattern from
System Fl : the type equivalence is a congruence with respect to the type formers, and it is closed
under V and [ rules. However, in addition to these we also have injectivity rules for type constants
(including the new variants of arrow and product), marked in purple in the definition. These
ensure that if two types formed by the application of the same constructor to the same number
of (well-kinded) arguments are equal, then so are, pairwise, their arguments. The consequences
of including these rules will be discussed in detail in the following section; the rationale for their
inclusion is that this is precisely the reasoning that GADTs require, particularly when performing
pattern-matching. For now, let us observe that it is the injectivity rules that allow us to discern,
from an assumption List U ≡T List V , that U ≡T V holds. Note, however, that any essential use of an
injectivity rule requires the existence of an assumed equality of two compound types in the context,
from which we can derive equalities of components. That can serve as an intuitive explanation for
why they are not necessary in System Fl .

In addition to the provability judgment, we also define a simpler notion of discriminability of a
constraint. This judgment holds when two types can never be made equal — in principle, whenever
the two types are created by distinct type constants. Note that, for the purpose of simplicity, we
only consider the top-most constructor, and that the constrained arrow and product types are
discriminable from each other, as well as from the types constructed by appropriate application of
type constants. The corresponding rules are marked in blue in Fig. 3.

Syntax of expressions and values. With the notions of types, constraints and provability defined,
we now turn to the term-level of our calculus. The syntax is defined in Figure 4; for simplicity
of presentation we use fine-grain call-by-value semantics [Levy et al. 2003], which significantly
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values E ::= G | ⟨⟩ | _G . 4 | ⟨E1, E2⟩ | inj1 E | inj2 E | Λ. 4 | pack E | roll E | _•. 4 | ⟨•, E⟩

expressions 4 ::= E | letG = 41 in 42 | E1 E2 | proj1 E | proj2 E | case E [G . 41 |~. 42] |

abort E | E ∗ | let (∗, G) = E in 4 | unroll E | abort • | E • | let (•, G) = E in 4

eval. contexts � ::= □ | letG = � in 4

Fig. 4. The syntax of expressions and values.

reduces the metatheoretical overhead. In larger examples we typically forego these restrictions,
assuming a left-to-right, call-by-value reading of the terms.
As a consequence of being an extension of System Fl , most of the syntax of our calculus is

standard, although note that we use let (∗, G) = E in 4 as an unpacking operation, “pattern-matching”
on the packed value. Aside from that choice, we have two new values and three new expressions.
The values are, respectively, the introduction forms for the constrained arrow and product types: a
computation suspended pending a proof of constraint, and a pair consisting of a value and such a
proof. However, since we do not introduce proof terms for our notion of provability, we use • in
places where we might imagine a proof or an assumption. This is in direct correspondence to the
treatment of universal and existential types, where witnesses are also elided.
In the same spirit, the “proof application”, E •, and “proof unpacking”, let (•, G) = E in 4 , serve

as elimination forms for the two constructs. This leaves us with the final expression, abort •,
whose behavior matches the eliminator for an empty type — i.e. the program should be considered
erroneous whenever the expression is in an evaluation position. Its intended role will become
clearer when we consider the type system, presented in Figure 5.
The typing judgment assigns a type (of kind T) to an expression or a value in three contexts:

Δ, which assigns kinds to type variables, Φ, which lists the constraints we assume to hold, and Γ,
which assigns types (of kind T in Δ) to term-level variables. Most rules follow System Fl , with the
additional context passed around; we discuss the other rules below. First, the form of the Fl rule
that allows one to replace the type of a term with any type equivalent to it is slightly different
in our calculus, as we use the provability relation for the appropriate constraint, rather than the
external type equivalence judgment. This means that the proof may depend on equalities, some of
which can be introduced by the derivation — a fact that is crucial to encode pattern matching over
GADTs. Second, the rules for values and expressions associated with the constrained types match
the intuition of introduction and elimination rule. When type-checking the body of _•. 4 we may
assume that any well-formed constraint j holds, and assign the type j →g to the expression — but
in order to use a value of this type, through E •, we need to show that the required constraint does
indeed hold. The rules for constrained pairs are analogous. Finally, the rule for abort • requires that
a discriminable equality can be proved using our assumptions: in other words, that the assumptions
are inconsistent. This rule is crucial, since it allows us to directly encode pattern matching for
GADTs in a calculus where all case expressions are, by necessity, exhaustive: in a way, it corresponds
to OCaml’s “dot pattern”, which forces the typechecker to try to ensure that a given case in a
pattern-match is impossible due to the equalities that would have to hold. The final extension
with respect to the standard System Fl is the presence of the recursive types; the corresponding
rules are marked with a red `. Due to their higher-kinded nature, the recursive types need to be
appropriately applied in order for the roll expression to typecheck; the same arguments are passed
to the recursive type’s unfolding. As usual, the typing rule for the unroll expression is simply an
inverse of the one for roll.
In order to see these rules in action, consider the type constructor Foo, defined as Foo ≜

_U :: T. (Bool× (U ≡T Bool)) + unit, and the program: 4 ≜ caseG [~. let (•, ~) = ~ in abort • | _. ⟨⟩].
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G : g ∈ Γ

Δ | Φ | Γ ⊢ G : g Δ | Φ | Γ ⊢ ⟨⟩ : unit

Δ ⊢ f :: T Δ | Φ | Γ, G : f ⊢ 4 : g

Δ | Φ | Γ ⊢ _G . 4 : f→g

(Δ | Φ | Γ ⊢ E8 : g8 )8∈{1,2}

Δ | Φ | Γ ⊢ ⟨E1, E2⟩ : g1 ×g2

Δ ⊢ g2 :: T Δ | Φ | Γ ⊢ E : g1

Δ | Φ | Γ ⊢ inj1 E : g1 +g2

Δ ⊢ g1 :: T Δ | Φ | Γ ⊢ E : g2

Δ | Φ | Γ ⊢ inj2 E : g1 +g2

Δ, U :: ^ | Φ | Γ ⊢ 4 : g

Δ | Φ | Γ ⊢ Λ. 4 : ∀U :: ^. g

Δ ⊢ f :: ^ Δ | Φ | Γ ⊢ E : g [f/U]

Δ | Φ | Γ ⊢ pack E : ∃U :: ^. g

^ = (^8 ⇒)8 T (Δ ⊢ f8 :: ^8 )8
Δ | Φ | Γ ⊢ E : g [`U :: ^. g/U] (f8 )8

Δ | Φ | Γ ⊢ roll E : (`U :: ^. g) (f8 )8
(`)

Δ ⊢ j constr Δ | Φ, j | Γ ⊢ 4 : g

Δ | Φ | Γ ⊢ _•. 4 : j →g

Δ | Φ ⊩ j Δ | Φ | Γ ⊢ E : g

Δ | Φ | Γ ⊢ ⟨•, E⟩ : j ×g

Δ | Φ ⊩ g1 ≡T g2 Δ | Φ | Γ ⊢ E : g1

Δ | Φ | Γ ⊢ E : g2

Δ | Φ | Γ ⊢ 41 : f Δ | Φ | Γ, G : f ⊢ 42 : g

Δ | Φ | Γ ⊢ letG = 41 in 42 : g

Δ | Φ | Γ ⊢ E1 : f→g Δ | Φ | Γ ⊢ E2 : f

Δ | Φ | Γ ⊢ E1 E2 : g

Δ | Φ | Γ ⊢ E : g1 ×g2

Δ | Φ | Γ ⊢ proj1 E : g1

Δ | Φ | Γ ⊢ E : g1 ×g2

Δ | Φ | Γ ⊢ proj2 E : g2

Δ ⊢ g :: T Δ | Φ | Γ ⊢ E : void

Δ | Φ | Γ ⊢ abort E : g

Δ | Φ | Γ ⊢ E : g1 +g2
(Δ | Φ | Γ, G8 : g8 ⊢ 48 : g)8∈{1,2}

Δ | Φ | Γ ⊢ case E [G1. 41 | G2. 42] : g

Δ | Φ | Γ ⊢ E : ∀U :: ^. g Δ ⊢ f :: ^

Δ | Φ | Γ ⊢ E ∗ : g [f/U]

Δ | Φ | Γ ⊢ E : ∃U :: ^. f Δ ⊢ g :: ^

Δ, U :: ^ | Φ | Γ, G : f ⊢ 4 : g

Δ | Φ | Γ ⊢ let (∗, G) = E in 4 : g

^ = (^8 ⇒)8 T (Δ ⊢ f8 :: ^8 )8
Δ | Φ | Γ ⊢ E : (`U :: ^. g) (f8 )8

Δ | Φ | Γ ⊢ unroll E : g [`U :: ^. g/U] (f8 )8
(`)

Δ | Φ ⊩ f1 ≡^ f2 Δ ⊩ f1 #^ f2 Δ ⊢ g :: T

Δ | Φ | Γ ⊢ abort • : g

Δ | Φ | Γ ⊢ E : j →g Δ | Φ ⊩ j

Δ | Φ | Γ ⊢ E • : g

Δ | Φ | Γ ⊢ E : j ×f Δ | Φ, j | Γ, G : f ⊢ 4 : g

Δ | Φ | Γ ⊢ let (•, G) = E in 4 : g

Δ | Φ ⊩ g1 ≡T g2 Δ | Φ | Γ ⊢ 4 : g1

Δ | Φ | Γ ⊢ 4 : g2

Fig. 5. Type system of F=8l` . The roll and unroll rules (marked with a red (`)) are not considered in F=8l . The

rules are grouped by separating values and expressions, and, within these two groups, by connectives.
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letG = E in 4 ↦→ 4 [E/G]

(_G. 4) E ↦→ 4 [E/G]
(

proj8 ⟨E1, E2⟩ ↦→ E8
)

8∈{1,2}
(

case inj8 E [G . 41 | G . 42] ↦→ 48 [E/G]
)

8∈{1,2}

(Λ. 4) ∗ ↦→ 4

let (∗, G) = pack E in 4 ↦→ 4 [E/G]

unroll (roll E) ↦→ E (`)

(_•. 4) • ↦→ 4

let (•, G) = ⟨•, E⟩ in 4 ↦→ 4 [E/G]

41 ↦→ 42

� [41] → � [42]

Fig. 6. Operational semantics: contraction and reduction relations; rules marked with a red (`) are not

considered in F=8l

Assuming G : Foo unit— and that Bool and unit are discriminable — we can check that 4 : unit. This
is because in the first branch of the case expression we unpack the constrained pair, introducing
a constraint unit≡T Bool as an assumption — but since this is a discriminable equality, the abort
instruction typechecks, thus expressing the fact that our program should never reach this point
during its evaluation. Admittedly, this example is not particularly useful: we discuss more practical
examples and their encodings in the following section.
First, though, we turn to the operational semantics of our programs, presented in Figure 6.

This, again, is largely standard — and the rules for the new constructs simply force appropriate
computations or pass the argument to the computation that requires it. As usual, we model failure
by a stuck computation: thus, neither of the abort expressions has any contraction rule associated
with it.

Nontermination in F=8l` . It is clear that well-typed programs in our calculus are not necessarily
terminating, due to the inclusion of recursive types. However, it is interesting to observe that recur-
sive types are not the only source of non-terminating behavior: the combination of impredicative
quantification and injectivity of type-constructors with higher-kinded arguments is sufficient.4

To observe this behavior, consider the following type, well-kinded at T ifU :: T, for any constructor
2 :: (T ⇒ T) ⇒ T (either the existential, universal or recursive type constructor):

g
loop
2 ≜ ∃V :: T ⇒ T. (2 V ≡T U) × (V U → void)

We can now use the same constructor to close-off our type, taking gcl2 ≜ 2 (_U :: T. g
loop
2 ), and use

it to give a type to the following variant of the staple of non-terminating computations:

E loop ≜ _G. let (∗, (•, ~)) = G in~ (pack ⟨•, ~⟩)

Indeed, we can easily show that, in closed contexts,

⊢ E loop : g
loop
2 [gcl2 /U] → void,

taking g
loop
2 itself as the existential witness, and reflexivity as the required proof of type equiv-

alence, and using injectivity of 2 on the assumption retrieved from the package to ensure that

~ is typed — in both instances — at g
loop
2 [gcl2 /U]. Analogous packaging of E loop will ensure that

⊢ E loop (pack ⟨•, E loop⟩) : void, and we get a closed expression at the empty type whose evaluation
does not terminate (since it reduces to itself).

4We adapt a proof of falsehood in Idris via injective type constructors, available at https://github.com/idris-lang/Idris-

dev/issues/3687, itself an adaptation of a similar proof in Lean, discussed at https://github.com/leanprover/lean/issues/654.

While these systems are significantly different, the main problem — injectivity at higher kinds and impredicativity leading

to inconsistency — remains applicable.
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data Z where

data S a where

data GTree a n where

EmptyG :: GTree a Z

NodeG :: GTree a n -> a -> GTree a n -> GTree a (S n)

left :: GTree a (S n) -> GTree a n

left (NodeG l _ _) = l

Fig. 7. An example GADT, the type of perfectly-balanced trees.

A simpler sub-calculus. Since the main object of our study, System F=8l` , exhibits non-terminating
behavior without utilizing the recursive types, the injective, internalized equalities clearly increase
the expressive power over standard System Fl . However, to make this point even stronger, and to
better highlight some of the difficulties in extending relational techniques to systems with GADTs,
in Section 3 we study a sub-calculus of F=8l` , called F=8l and establish its relationship to System Fl .
This removes the recursive types and all the rules associated with them, i.e. all the rules marked
with (`) and — in order to avoid the nonterminating construction discussed above — prohibits
the use of the injectivity rule on quantifiers (which, in effect, restricts its use to sum, product and
arrow types).

2.1 Expressing GADTs and Pa�ern Matching

We now discuss how the features of F=8l` allow for encoding of common patterns of GADTs. As
is folklore, this will be achieved through a combination of existential quantification and equality
constraints over types — however, in order to demonstrate how the system operates, we pay special
attention to the equality reasoning required, particularly discriminability and injectivity.

As mentioned in the previous section, the distinguishing feature of (proper) GADTs is restriction
of the index of certain constructors of a type constructor. Below, we present an alternative encoding
of perfectly balanced binary trees, which is uniform in the type of its labels, but uses a separate
index to guarantee constant depth on all paths. In the absence of other extensions of the type system,
the classic Haskell approach is to define “type-level natural numbers”, i.e. two distinguishable type
constructors, one of kind T, and one of kind T ⇒ T, which we would externally identify with zero
and successor. The implementation of these, and the balanced binary tree, are presented in Fig. 7.

There are a few things of note in the implementation. First, note that both Z and S a are empty
types — however, since the ML lineage of languages treats data types nominally, they are still
distinguishable, and S is considered injective. Second, the discriminability of these two types
ensures that the two constructors of GTree have distinct indices: this, in turn, ensures that both
arguments of NodeG have the same height, as measured by our pseudo-natural number type that
represents the index. Finally, we can write a type-safe left function that recovers the left subtree
of a non-empty tree. The non-emptiness of the argument is enforced by a constraint on its index:
the EmptyG pattern is impossible, due to discriminability.
Our encoding of this example will not be entirely direct, due to the structural treatment of

types in F=8l` . Therefore, we take the type unit as encoding the depth 0, and the type constructor

_U :: T. unit+U as the successor.5 This ensures that the two “constructors” of type-level natural

5In this example, the precise types do not matter, since their role is phantom — they do not influence the computation other

than through reasoning about their equality. As we shall see, this is not always the case.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 24. Publication date: January 2024.



The Essence of Generalized Algebraic Data Types 24:11

GTree :: T ⇒ T ⇒ T

GTree ≜

_UC :: T. `i :: T ⇒ T. _U= :: T.

((U= ≡T unit) × unit)

+ ∃U ′
= ::

T. (U= ≡T (U
′
= + unit)) ×i U ′

= ×UC ×i U ′
=

le� : ∀UC , U= ::

T. GTree UC (U= + unit) →GTree UC U=
le� ≜ Λ. Λ. _G . case unrollG

| inj1 (•, _). abort •
| inj2 (∗, (•, ⟨;, ⟨_, _⟩⟩)) . ;

Fig. 8. F=8l` -encoding of GTree and left. We use syntactic sugar in the definition of le� to improve readability.

data Tm v where

Lift :: a -> Tm a

Abs :: (a -> Tm b) -> Tm (a -> b)

App :: Tm (a -> b) -> Tm a -> Tm b

eval :: Tm a -> a

eval (Lift x) = x

eval (Abs f) = \x -> eval (f x)

eval (App f x) = (eval f) (eval x)

Fig. 9. GADT and evaluation of well-formed lambda terms

numbers are discriminable, and that the “successor” is indeed injective. Now we can proceed with
the encoding, presented in Fig. 8. There are a few things to note here. First, notice that we can
take the type of labels, UC , as an external parameter to the recursive type, as it remains uniform
throughout the definition. On the other hand, the depth-encoding index, U= , varies through the
recursive calls and has to be bound within the recursive type. Finally, the body of the type is a
disjoint sum, with both branches restricting the index U= through an equality constraint. The left
branch is only available at index unit, while the right branch is available at any index U ′

= + unit —
with the new, smaller index U ′

= bound existentially, and used at the recursive calls.
In the definition of the le� function, we use some syntactic sugar to offset the verbosity of

our fine-grain call-by-value notation. We introduce the two type variables, UC and U= , and an
argument G of type GTree UC (U= + unit), and pattern-match on its unrolled form. In the left case,
we obtain a unit value, and a constraint U= + unit≡T unit, which is clearly discriminable: thus, we
can use the abort expression to obtain any well-formed type. In the right case, on the other hand,
we introduce a fresh type variable U ′

= , the existential witness of the depth of our subtrees, and a
constraint U= + unit≡T U

′
= + unit. Note that the variable ; , which denotes the left subtree, has type

GTree UC U
′
= , which must not escape the scope of the case: thus, it is crucial to cast the type through

an equality to one that is well-formed outside the case expression. We can achieve this due to the
injectivity rules, since the constraint we introduced implies that U= ≡T U

′
= holds. Thus, we have that

le� : ∀UC :: T. ∀U= :: T. GTree UC (U= + unit) →GTree UC U= , which is the expected type.
In the previous example, the indices at which we used type equalities were entirely separated

from the term-level content of the types: they were phantom. This afforded us a lot of leeway
in terms of the encoding, as we only needed to ensure that appropriate type constructors were
injective or discriminable. However, it is not always the case that indices do not carry any semantic
meaning — GADTs also can be used to encode data types whose indices are used in nontrivial
manner. In Fig. 9 we revisit the well-formed lambda terms example from the introduction: note
that the presence of the Lift constructor allows us to treat any metalanguage value of type a as
a constant term of that type. This binds the type structure of the indices to the type structure at
the metalevel: we are no longer free to choose the encoding of the other indices arbitrarily, as we
would lose the connection to the lifted values at the appropriate index. This can be observed in the
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Tm :: T ⇒ T

Tm ≜

`i :: T ⇒ T. _U :: T.

U + (∃V,W :: T. (U ≡T (V→W)) × (V→i W))

+ (∃V :: T. i (V→U) ×i V)

eval : ∀U :: T. Tm U →U

eval ≜

fix _5 . Λ. _G .

case unrollG

| inj1 ~. ~

| inj2 ~. case ~

| inj1 (∗, (∗, (•, 6))). _I. 5 ∗ (6 I)

| inj2 (∗, ⟨6, G⟩). (5 ∗ 6) (5 ∗ G)

Fig. 10. F=8l` -encoding of Tm and eval. We use syntactic sugar in the definition of eval to improve readability.

well-typed evaluator in Fig. 9, which transforms lambda-terms indexed with type a into values of
that type. Although this pattern requires a rather tight connection between the indices of recursive
types and the types themselves, we can encode it in F=8l` using the same approach presented above.
The encodings are presented in Fig. 10. Note that there is no equality constraint in the first branch
of the sum type: this means the corresponding case in pattern-matching is never discriminable, and
thus has to be considered in any program. This matches the intended behavior, as we consider a
non-exhaustive pattern matching a type error. Since the definition of eval is recursive, it utilizes a fix
combinator, which is definable through the use of recursive types, using the standard construction.

3 NON-EXPRESSIBILITY OF F=8l IN Fl

We begin the study of our calculus by establishing its relationshipwith System Fl — the polymorphic
lambda calculus with higher kinds, of which F=8l is an extension. For brevity, we do not present the
standard rules of System Fl for kinding, constructor equivalence, and typing.
It is well-known that System Fl is strong enough to express some notions of equality using

universal quantification at higher kinds. For instance, Atkey [2012] uses a Church-style definition of
equality as its own eliminator, as the following type constructor, although a Leibniz-style definition
is also possible [Barendregt 1993, §5.4, Definition 5.4.17]:

eq^ ≜ _U, V :: ^. ∀d :: ^ ⇒ ^ ⇒ T. (∀W :: ^. d W W) → d U V

This leads to a pertinent question: does the reification of equalities and the complex type system
proposed in the previous section add any expressive power, or is it an over-complicated reimagining
of Fl?
To answer this question we study the restricted system, F=8l , equipped with reified equality,

discriminability and the injectivity rules for type constructors with ground arguments, but without
considering the recursive types or injectivity on higher-kinded arguments, which would take
the system beyond the expressive power of Fl by allowing nonterminating behaviors. We study
the problem of expressibility of F=8l in Fl as an extension of Felleisen’s [1991] approach to typed
languages, i.e. the question of existence of a structural translation of the internalized equalities and
associated constructs, which preserves the structure of the features already present in the target
language. Through an appeal to a model of Fl defined below, we establish that no such translation
that preserves typing may exist.

The propositional model of Fl . The model we construct in this section treats the Fl types as
propositions, in the usual Curry-Howard fashion: the idea is to enforce the condition that the
inhabited types are mapped to true propositions, while the empty types are mapped to false ones.
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JUK[ ≜ [ (U)

J_U :: ^. gK[ ≜ _i.JgK[ [U ↦→i ]

Jf gK[ ≜ JfK[ (JgK[)

J2K[ ≜ J2K

J×K i1 i2 ≜ i1 ∧ i2

J+K i1 i2 ≜ i1 ∨ i2

J→K i1 i2 ≜ i1 ⇒ i2

JunitK ≜ ⊤

JvoidK ≜ ⊥

J∀^K i ≜ ∀k : J^K. i (k )

J∃^K i ≜ ∃k : J^K. i (k )

Fig. 11. Propositional interpretation of the types (le�) and constructors (middle and right) of Fl .

Our formalization uses the Coq type of propositions; however, a set-theoretic model of truth is
equally valid.
We begin by defining the interpretation of kinds:

JTK ≜ Prop

J^1 ⇒ ^2K ≜ J^1K → J^2K,

with the implicit notion that equivalent propositions are equal, and that functions preserve equality
and are themselves equal extensionally. Now we can define the interpretation of well-kinded types
of System Fl , which is presented in Fig. 11. We take the usual type of the interpretation function as
JΔ ⊢ g :: ^K : (

∏

UJΔ(U)K) → J^K, and omit the contexts and kinds to avoid cluttering the definition.
Note that the constructors are interpreted as appropriate logical connectives; in particular, the
empty type is interpreted as falsehood.

It is immediate that the definition is well-formed. As a soundness result, we obtain the following
theorem, where the interpretation of the term-variable context is given as by the conjunction of
the interpretations of types.

Theorem 3.1. For any well-typed term Δ | Γ ⊢ 4 : g in Fl and any [ :
∏

UJΔ(U)K we have

JΓK[ ⇒ JgK[ .

Note that since the types in Γ and g are of kind T, the theorem is well-formed. With this result,
we are ready to tackle the problem of expressibility of F=8l .

Non-existence of a translation. Armed with the model of Fl , we can now prove the following
non-expressibility theorem:

Theorem 3.2. There cannot exist a family of translations ⌈−⌉ : �=8l → �l for expressions, values

and types such that the following conditions hold:

• ⌈−⌉ preserve closedness of types and terms;

• ⌈−⌉ is homomorphic on constructs of Fl ;

• if · | · | · ⊢ 4 : g holds in F=8l , then · | · ⊢ ⌈4⌉ : ⌈g⌉ holds in Fl .

Note that, while we restrict ourselves to conditions on typing of closed programs with no equality
assumptions, the requirement that the translation is homomorphic ensures that the typing also
needs to be preserved in open contexts that can arise as application of the typing rules of Fl .
Certainly, the most important feature of a translation from F=8l to Fl would be the elimination of
constraints and equality assumptions: we make no assumptions as to how this would be achieved,
as the impossibility of the translation follows already from its required behavior on types and type
constructors.

Proof. Assume that a translation that satisfies the requirements exists, and consider a type
constructor i ≜ _U :: T. (U ≡T unit+ void) × unit, well-kinded in F=8l at kind T ⇒ T. Clearly, there
exists an expression 4 , such that · | · | · ⊢ 4 : i (unit+ unit) → void, since the assumed constraint
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allows us (by using injectivity) to cast the unit value to type void. Thus, by the properties of
translation, we get that · | · ⊢ ⌈4⌉ : ⌈i⌉ (unit+ unit) → void, and consequently, by the properties
of the propositional model, (J⌈i⌉K ⊤) ⇒ ⊥.
However, observe that the type i (unit+ void) is clearly inhabited (by the value ⟨•, ⟨⟩⟩), and

thus, by properties of the translation and the soundness of the model, J⌈i⌉K·⊤ holds, leading to
a contradiction. □

Note that the proof depends only on injectivity of the disjoint sum type constructor and the ability
to cast through type equalities. An analogous construction can be performed for discriminability,
since unit+ unit and unit are also equal in our model of Fl . The intuitive content of the proof is
that the requirement that the translation behaves homomorphically on type constructors cannot
be fulfilled: while in System Fl , a type constructor that builds a non-empty type from a non-empty
argument will do so for any non-empty argument, this is not necessarily the case in the presence
of discriminable (or injective) equality constraints.

Through this theorem, we have established that F=8l is not directly expressible in Fl . We believe
that this highlights the expressive power of GADTs, which depend heavily on injectivity rules to
express the precise pattern-matching constructs. Moreover, it highlights that while the adage that
GADTs are existential types and type equalities may be true, one ought to be very precise about
what can be proved about the equality of types within the system.

Finally, the propositional model of Fl serves to highlight the difficulties that any traditional
relational interpretations is bound to run into: while the propositional model identifies all inhabited
types, the standard relational approach tends to, at least, conflate all the empty types. It is also diffi-
cult to imagine how one could obtain injectivity for type arguments that appear in a contravariant
position in the interpretation, such as for the left-hand side of the arrow type.

4 TYPE SOUNDNESS OF F=8l`

Having established that our calculus is a non-trivial extension of the known systems, we turn to
the question of its type soundness. In this section we apply the classic syntactic methodology of
progress and preservation [Wright and Felleisen 1994]. However, since the type-system of F=8l`

includes a complex system of equality reasoning — in particular, a system that is able to express
that assumptions are contradictory — the progress lemma becomes non-trivial. On the other hand,
the same fact allows us to state in one concise lemma all the properties that are required to prove
canonical forms (also called inversion) lemmas for particular type formers. This lemma states the
consistency of our proof system.

Lemma 4.1 (Consistency). A discriminable constraint is not provable in an empty context: in other

words, ∅ | ∅ ⊩ g1 ≡^ g2 and ∅ ⊩ g1 #^ g2 are contradictory.

We prove this lemma via a normalization-by-evaluation argument [Berger and Schwichtenberg
1991; Danvy 1996], which we discuss in more detail in Section 5.2; for now, we discuss the method-
ological implications of the lemma. In the case of F=8l` its statement follows naturally from having
the discriminability judgment as part of the type system used to discharge contradictory equality
assumptions — a feature that is rarely, if ever, present: most systems with non-trivial equality of
types consider them up to relatively simple syntactic rearrangements or some forms of subtyp-
ing. However, we believe that even in those cases it may be a useful methodological approach
to define these relations in such a way that a variant of Lemma 4.1 can be stated. Moreover, if
the system admits a natural characterization of normal forms and non-trivial computation on the
level of types, we believe that normalization-by-evaluation is a natural path to follow in proving
consistency. To the best of our knowledge, this is the first time such a consistency property is used
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explicitly as a crucial ingredient in a Wright–Felleisen-style proof of type soundness via progress
and preservation [Wright and Felleisen 1994].
Lemma 4.1 can be used to eliminate impossible cases in progress and preservation lemmas. Its

first application is in the proofs of the canonical forms and inversion lemmas, which have to account
for possible applications of equality casting rule: here, it plays the role of traditional inversion
lemmas in type systems with subtyping principles. The lemma allows us to eliminate the impossible
cases, which are trivially discriminable: thus, the notion of discriminability serves to simplify and
modularize these proofs. We observe this in the following instance of a canonical form lemma for
the arrow types.

Lemma 4.2 (Canonical form for arrows). If E is a closed value of type g and g is provably equal

to some arrow type in an empty context, then E is a lambda-abstraction with a well-typed body.

(∅ | ∅ ⊩ g ≡T (g1 →g2)) ∧ (∅ | ∅ | Γ ⊢ E : g) =⇒ (∃G 4. E = _G. 4 ∧ ∅ | ∅ | Γ, G : g1 ⊢ 4 : g2)

Proof. By induction on the typing derivation. Of the applicable proof rules only type-cast and
lambda abstraction rules are not discriminable; the remainder can be dispatched via Lemma 4.1 (e.g.
if g = g3 +g4). In the first of the remaining cases we proceed by induction, since the type equality
is transitive. Finally, for the lambda abstraction we only need to cast the variable and expression
through appropriate equalities, which follow from injectivity of the arrow constructor. □

Lemma 4.3 (Preservation). Reductions preserves typing in the sense that for any well-typed

∅ | ∅ | ∅ ⊢ 4 : g such that 4 → 4 ′, we also have ∅ | ∅ | ∅ ⊢ 4 ′ : g .

Proof. The proof is by induction on a given typing derivation.6 All the cases (except for type
conversion, which is trivial) follow by case analysis of the reduction, with the appropriate canonical
form lemmas used where necessary. □

Lemma 4.4 (Progress). Any well-typed expression ∅ | ∅ | ∅ ⊢ 4 : g can either be reduced or is

already a value.

Proof. The proof proceeds by induction on the typing derivation. All the cases, except for the
(trivial) type conversion and discrimination of impossible equalities, follow from canonical form
lemmas. The latter case holds due to the contradiction rule for equality constraints. In this case, we
assume that 4 = abort •, and both ∅ | ∅ ⊩ g ≡T f and ∅ ⊩ g #T f hold. By Lemma 4.1, we evidently
have a contradiction. □

Definition 4.5 (Safety). A closed expression 4 is called safe when any expression that 4 reduces to
is irreducible if and only if it is a value.

Theorem 4.6 (Soundness). Any well-typed expression ∅ | ∅ | ∅ ⊢ 4 : g is safe in the sense of

Definition 4.5.

Proof. The proof follows from progress and preservation lemmas. □

5 RELATIONAL MODELS OF INJECTIVE TYPE EQUALITIES

In this section we discuss relational models of F=8l` . We begin by discussing in detail the chal-

lenge of constructing models that validate injectivity rules (this challenge could already be ob-
served in Section 3). In Section 5.2 we follow this by constructing a unary model, which utilizes a
normalization-by-evaluation view of the types, and which we can use to semantically justify type
soundness. In Section 5.3 we discuss the limitations of this construction, in particular for the case
of binary relations (as needed for reasoning about representation independence), and, finally, we

6This allows us to omit inversion lemmas for elimination forms.
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2 :: ^

⊢ 2 :: NeuΔ^

G :: ^ ∈ Δ

⊢ G :: NeuΔ^

⊢ a :: NeuΔ^0⇒^A
⊢ ` :: NfΔ^0

⊢ a ` :: NeuΔ^A

⊢ j :: NCΔ ⊢ a :: NeuΔT

⊢ j →a :: NeuΔT

⊢ j :: NCΔ ⊢ a :: NeuΔT

⊢ j ×a :: NeuΔT

⊢ a :: NeuΔT

⊢ a :: NfΔT

⊢ ` :: NfΔ,U ::̂ 0

^A

⊢ _U :: ^0 . ` :: NfΔ^0⇒^A

(

⊢ `8 :: Nf
Δ

^

)

8∈{1,2}

⊢ `1 ≡^ `2 :: NC
Δ

Fig. 12. A judgmental presentation of neutral and normal types, and normal constraints.

extend the model construction to allow for semantic binary relations as needed for reasoning about
representation independence. We use the model to obtain the first known proofs of representation
independence in a setting with generalized algebraic data types.

5.1 The Challenge of Injective Relational Interpretations

To appreciate the challenge of constructing a relational interpretation where all type constructors
would be injective, consider the propositional interpretation of System Fl presented in Figure 11.
While relational interpretations — whether unary or binary — contain additional information,
the basic structure remains very similar. In particular, whenever a given type is uninhabited, its
interpretation is empty: this leads to the resurgence of the problems that threaten validity of the
injectivity and discriminability rules. Therefore, a direct interpretation of types as predicates on
values is not viable.

A universe of codes. A natural attempt to square this circle is through introduction of some
universe of codes of types, into which we could interpret types in a way that would validate
injectivity and discriminability, and which we could decode (or interpret, or realize), in a separate
step, as predicates on values. This, however, presents its own challenges, as the structure of the
types is rather rich. Indeed, there would be two conflicting requirements: (1) In order to obtain a
justification of injectivity and discriminability rules, such a universe (or at least a significant part of
it) would need to be inductively defined. But at the same time, (2) the injectivity of the quantifiers
and recursive type constructors, and the rich equational theory involving the higher-kinded types,
requires a rather semantic view of the codes, particularly at higher types. Fulfilling those seemingly
conflicting requirements without succumbing to paradoxes is challenging — and it is the subject of
the remainder of this section.

5.2 A Unary Model via Normalization-by-Evaluation

A key insight of the model construction we now present is that the above mentioned requirements
for our universe of codes match very closely those known from the area of normalization-by-
evaluation: we have the inductively defined normal forms, and semantic interpretations, which are
used to justify the sophisticated equational or computational theory. In our case, the neutral and
normal forms of types and constraints are presented in Figure 12.

Definition 5.1. Wewill writeK for the category of kinding contextsΔwithmorphisms X : Δ → Δ
′

given by kind-preserving renamings sending variables U ∈ Δ
′ to variables X∗U : Δ′(U) in context Δ.
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reify : J^K ⇒ Nf^
reify(a : JTK) ≜ a

reify(i : J^0 ⇒ ^A K) ≜
_U :: ^0 . reify(i (reflect(U)))

reflect : Neu^ ⇒ J^K
reflect(a : NeuT) ≜ a

reflect(a : Neu^0⇒^A
) (` : J^0K) ≜

reflect(a (reify(`)))

Fig. 13. Reification and reflection functions, defined in the internal language of Pr(K).

We will write yK : K ↩→ Pr(K) for the Yoneda embedding of K into its category of presheaves

Pr(K) = SetK
op
sending Δ ∈ K to the representable functor homK (−,Δ).

For a given kind ^ , the collections of normal constructors, well-formed neutral constructors, and
normal constraints form presheaves Nf^ , Neu^ , and NC on the categoryK , as described inductively

in Fig. 12. For example, NfΔ^ is the set of normal forms of constructors of kind ^ in context Δ. The
functorial action is given by syntactic renaming of variables.

Definition 5.2 (Intepretation of kinds). We now define an NbE-inspired interpretation of kinds
into presheaves on the category K of kinding contexts and renamings as follows:

JTK ≜ NeuT

J^0 ⇒ ^A K ≜ J^0K ⇒ J^A K

In the second clause above, the right-hand ⇒ denotes the exponential presheaf [Mac Lane and
Moerdijk 1992, §I.6, Proposition 1]. The interpretation of kinds ^ is extended to kind contexts Δ
pointwise, using the cartesian product of presheaves:

JΔK ≜
∏

U ::̂ ∈Δ

J^K

We use the interpretation of kinds defined above as the type of the interpretation function for
types; the interpretation of constraints will target constraints in normal form.
The normalization procedure can now proceed in the usual way, by defining the injection of

neutral forms and reification, and reflection of well-formed types into the interpretation of their
kinds (and normalization of constraints).

We begin by defining, by mutual induction on the structure of kinds, the reification of interpreta-
tions of kinds as normal forms and the reflection of neutrals as interpretation of kinds (the main
purpose of the latter is to perform a semantic analogue of eta-expansion). In order to enforce the
well-formedness, these are defined as exponential presheaves; we present the implementation in
Figure 13, making use of the cartesian closed structure of presheaves via the internal language
of Pr(K). Note how the reification ensures that all functional types will be in eta-long form, and
how the variable U needs to be reflected to be passed as an argument to i , since its kind may be
functional (and thus the variable may need to be eta-expanded as well).

Definition 5.3 (The identity environment). For each context Δ, we may define an identity environ-

ment idΔ : JΔKΔ using the reflection operation, setting idΔ (U :: ^ ∈ Δ) ≜ reflect(U).

With reification and reflection in place, we can define the interpretation of types. As with the
other two functions, well-formedness with respect to renaming is ensured by taking the denotation
in the exponential presheaf:

JΔ ⊢ g :: ^K : JΔK ⇒ J^K

We present the implementation of this interpretation function in Figure 14, again using the internal
language of Pr(K).
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JΔ ⊢ U :: ^K[ ≜ [ (U)

JΔ ⊢ _U :: ^0 . g :: ^0 ⇒ ^A K[ ≜ ` ↦→ JΔ, U :: ^0 ⊢ g :: ^A K[ [U ↦→` ]

JΔ ⊢ f g :: ^A K[ ≜ JΔ ⊢ f :: ^0 ⇒ ^A K[ JΔ ⊢ g :: ^0K[

JΔ ⊢ 2 :: ^K[ ≜ reflect(2)

JΔ ⊢ j →g :: TK[ ≜ JΔ ⊢ j constrK[ → JΔ ⊢ g :: TK[

JΔ ⊢ j ×g :: TK[ ≜ JΔ ⊢ j constrK[ × JΔ ⊢ g :: TK[

JΔ ⊢ g1 ≡^ g2 constrK[ ≜ reify(JΔ ⊢ g1 :: ^K[) ≡^ reify(JΔ ⊢ g2 :: ^K[)

Fig. 14. Interpretation of types and constraints, specified in the internal language of Pr(K).

[ | a1 ≈T a2 ≜ Ja1K[ = a2

[ | i1 ≈^0⇒^A i2 ≜ ∀Δ′
1,Δ

′
2, (X1 : homK (Δ′

1,Δ1), X2 : homK (Δ′
2,Δ2)), ([

′ : JΔ′
1K

Δ
′
2 ), `1, `2.

(

X∗2[ = _G. [ ′(X1 (G))
)

→
(

[ ′ | `1 ≈^0 `2
)

→
(

[ ′ | i1 (X1, `1) ≈^A i2 (X2, `2)
)

Fig. 15. A logical relation connecting interpretations of types via an environment. The relation [ | `1 ≈^ `2
ranges over [ : JΔ1K

Δ2 , `1 : J^KΔ1 , and `2 : J^KΔ2 .

While this definition bakes in the requirement that the interpretation of our types is well-behaved
in terms of functoriality, we need more: due to the presence of injectivity, if the interpretation of
our constraints is to verify the reasoning rules, reification needs to be injective, at least on the
image of interpretation of types.

Lemma 5.4. For any types g1, g2 of kind ^ , well-formed in Δ and any good (defined in the following

paragraph) environment [ : JΔKΔ
′
, if reify(Jg1K[) = reify(Jg2K[), then Jg1K[ = Jg2K[ .

This lemma does not depend on conventional soundness or completeness lemmas for NbE, nor
is it useful in their proofs in the absence of injectivity. However, in the presence of injectivity of
constructors, it is crucial to the proof of completeness of NbE, which needs to justify the reasoning
rules of Fig. 3 — in particular, the injectivity rule. There, we can assume that J2 (f8 )8K[ = J2 (g8 )8K[ ,
and need to prove that

(

Jf8K[ = Jg8K[
)

8
. The types in our assumption are applications of a constructor

to arguments, and thus neutral, but this only allows us to establish that
(

reify(Jf8K[) = reify(Jg8K[)
)

8
:

thus, to establish completeness, we need Lemma 5.4.
To prove this lemma, we introduce a novel logical relation ([ | `1 ≈^ `2), as depicted in Fig. 15.

Note that, in contrast to the usual relation that appears in the proof of soundness and relates
syntactic view of types to the semantic view, this relation connects two semantic types via a
mediating environment, which serves to reconcile the free variables in the two types.7 The relation
naturally extends to a pair of environments (with matching domain) related through a third,
mediating environment. We say that a semantic type ` ∈ J^KΔ (respectively, environment) is good
when it is related to itself via the identity environment:

good(`) ≜ (idΔ | ` ≈^ `)

With this definition, we can establish the (limited) injectivity of reification that we need via a
series of technical lemmas. The most important include the following pair of results.

7To the best of our knowledge, this approach has not been previously employed in the NbE literature.
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Lemma 5.5. If [ | `1 ≈ `2, then Jreify(`1)K[ = `2.

Lemma 5.6. If [ | [1 ≈ [2, then [ | JgK[1 ≈ JgK[2 .

The first of these establishes that we can obtain the related semantic type via reinterpretation
of the reification; the second ensures that interpreting a type with related environments yields
related results.

With Lemma 5.4, we can finally establish correctness of equational reasoning and discriminability.

Lemma 5.7. If Δ | Φ ⊩ k holds, and [ : JΔKΔ
′
is a good environment and JiK[ is true for any i ∈ Φ,

then JkK[ is also true. Moreover, if Δ ⊩ g1 #^ g2 holds, then Jg1 ≡^ g2K[ is false.

In the above, we say that (a normal form of) a constraint is true if the two types (in normal forms)
are identical. As a corollary, we obtain the consistency lemma of Section 4.

Realizing NbE interpretations as predicates on values. While the normalization-by-evaluation
argument has given us some interpretation of types that can be used to justify the equality and
discriminability rules of the calculus, it is far from obvious, a priori, that we can use it to give a
relational interpretation on values. To get an intuitive view of what remains to be done, note that
we have largely dealt with the problem of open types, and the main problem that remains is that of
open terms. Note also that, crucially, it is enough to consider evaluation in closed contexts, both
for terms and types, and that we only need to give a relational interpretation to types of kind T.
Therefore, we define a function R : Neu·

T → Val → iProp, using a mixture of guarded and structural
recursion. Here iProp is a universe of step-indexed propositions, which comes equipped with a
later modality and supports definition of recursive predicates when the recursion is guarded by the
later modality (concretely, iProp can be understood as downwards-closed sets of natural numbers
or as the universe of propositions in an appropriate logic framework, such as LSLR [Dreyer et al.
2011] or Iris [Jung et al. 2018]). The definition is presented in Figure 16. Note that, in contrast to the
usual presentation of impredicative quantification, we need to use guarded recursion for universal
and existential quantifiers to ensure that the interpretation is well-defined, as the normal form of
the body of the quantified type needs to be reinterpreted to obtain a normal form of the resulting
type. Thus, this approach does not conflict with the non-terminating example of Section 2: the fact
that the model validates the injectivity rules for universal and existential quantifiers precludes an
interpretation of the quantifiers that doesn’t require us to count a computation step.
With the interpretation of the closed types defined (in two stages), we can now turn to the

definition of the logical relation, which is presented in Figure 17. We pay attention to the fact that
the environments for the type-variable context Δ are “good”, i.e. that all the interpretations are
self-related, which ensures that this property is inherited by any interpretation of a type with that
environment. The environment needs to validate all the equality assumptions in Φ, and the closing
environment is the standard extension of the relation on values. With this definition, it is easy to
prove the fundamental theorem of logical relations:

Theorem 5.8 (Fundamental). Any well-typed value, Δ | Φ | Γ ⊢ E : g , is in the logical interpre-

tation of its type, i.e. Δ | Φ | Γ |= E : g . Any well-typed expression, Δ | Φ | Γ ⊢ 4 : g , is in the logical

interpretation of its type for computations, i.e. Δ | Φ | Γ |= 4 : g .

Proof. By induction on the structure of the derivation, using appropriate compatibility lemmas.
For the type conversion rules, note that the assumptions of Lemma 5.7 are satisfied. Thus, the
normal forms of the two types are equal, and so their realizers coincide. □

Limitations of the model based on the NbE interpretation of types. While the model presented in
this section justifies semantically the type system of System F=8l` , and the realizability interpretation
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E(%) (4) ≜ (∃E . % (E) ∧ 4 = E) ∨ (∃4 ′. 4 → 4 ′ ∧ ⊲ E(%) (4 ′))

R(unit) (E) ≜ E = ⟨⟩

R(void) (E) ≜ ⊥

R(a1 ×a2) (E) ≜ ∃E1, E2 . E = ⟨E1, E2⟩ ∧
∧

8∈{1,2}

R(a8 ) (E8 )

R(a1 +a2) (E) ≜
∨

8∈{1,2}

∃E ′. E = inj8 E
′ ∧ R(a8 ) (E

′)

R(a1 →a2) (E) ≜ ∀D. R(a1) (D) → E(R(a2)) (E D)

R(∀U :: ^. g) (E) ≜ ∃4. E = Λ. 4 ∧ ∀` ∈ J^K(·) . good(`) → ⊲ E(R(JgK[U ↦→` ])) (4)

R(∃U :: ^. g) (E) ≜ ∃E ′. E = pack E ′ ∧ ∃` ∈ J^K(·). good(`) ∧ ⊲R(JgK[U ↦→` ]) (E
′)

R((`U :: ^. g) f) (E) ≜ ∃E ′. E = roll E ′ ∧ ⊲R(J(g [`U :: ^. g/U]) fK·) (E
′)

R(j →a) (E) ≜ j true → E(R(a)) (E •)

R(j ×a) (E) ≜ ∃E ′.E = ⟨•, E ′⟩ ∧ j true ∧ R(a) (E ′)

Fig. 16. The interpretation of closed, neutral ground types as predicates and an evaluation closure; both

notions are defined via guarded recursion.

JΦK[ true ≜ ∀i ∈ Φ. JiK[ true

JΓK[ ≜
{

W ∈ dom(Γ) → Val
�

� ∀G ∈ dom(Γ). R(JΓ(G)K[) (W (G))
}

Δ | Φ | Γ |= E : g ≜ ∀[ ∈ JΔK(·) . good([) → JΦK[ true → ∀W ∈ JΓK[ → R(JgK[) (E [W])

Δ | Φ | Γ |= 4 : g ≜ ∀[ ∈ JΔK(·) . good([) → JΦK[ true → ∀W ∈ JΓK[ → E(R(JgK[)) (4 [W])

Fig. 17. The definition of the logical relation.

can be naturally extended to the binary case, with closed, neutral ground types interpreted as
step-indexed relations rather than predicates, the interpretation has an important shortcoming.
The limiting factor stems from the fact that all our semantic types can be reified as (a subset of)
well formed, syntactic types. Thus, the universally or existentially quantified variables can only
be instantiated with such types. (Concretely, for universal types, e.g., the relation g in Figure
16 is in J^K(·).) In the binary case, this clearly prevents us from reasoning about representation
independence for abstract data types, as we are obliged to choose the representation once and
for all — and even in the unary case, it prevents us from proving safety of a (syntactically) ill-
typed implementation of an interface by semantic means. In effect, by allowing the sophisticated
equational reasoning with types whose syntactic structure (or part of it) must be known, we have
severely circumscribed the model. So the question is: Can we relax these constraints for types
whose syntactic structure we need not know and then obtain a more powerful semantic model
supporting reasoning about semantic typing (in the unary case) and representation independence
(in the binary case)? The answer is yes, as we now explain.
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i : Val2 → iProp

i : U
♮Δ

T

2 :: ^

2 : U
♮Δ
^

G :: ^ ∈ Δ

G : U
♮Δ
^

a : U
♮Δ
^0⇒^A

` : UΔ

^0

a ` : U
♮Δ
^A

j : UΔ

C a : U
♮Δ

T

j →a : U
♮Δ

T

j : UΔ

C a : U
♮Δ

T

j ×a : U
♮Δ

T

a : U
♮Δ

T

a : UΔ

T

` : UΔ,U ::̂ 0

^A

_U :: ^0 . ` : UΔ

^0⇒^A

(

`8 : U
Δ

^

)

8∈{1,2}

⊢ `1 ≡^ `2 : U
Δ

C

Fig. 18. Open universes, generalizing the neutral and normal forms of types and normal constraints. As with

normal forms, we define three universes by mutual induction: the neutral universe U
♮Δ
^ , the normal universe

UΔ
^ and the universe of normal constraints UΔ

C
; as before, the functorial action is given by syntactic renaming.

5.3 A Relaxed Model for Representation Independence

We now show that the NbE model can be relaxed — albeit by relinquishing the canonical property
that the inductively defined “normal forms” are a subset of well-formed types. Thus, rather than
defining the neutral and normal forms of types, we define open universes (still split into neutral
and normal) at each kind. These universes, presented in Figure 18, are largely as before, since we
still need to enforce injectivity of our type constructors, except that the neutral universe at ground
kind also contains the entire space of uniform relations on closed values! These are considered
distinct from all the other, more syntactic, members of the universe and are considered equal when
equivalent as (uniform) relations. Note that our universes remain functorial with respect to the
type variable contexts, as the relations are inert, unchanging under the context morphism action.
We can now replay the same construction as presented in the previous section, with one key

difference: where the reinterpretation of semantic types used to piggyback on the (implicit) coercion
of neutral and normal forms to well-formed types, we cannot do so here. This, however, is not a
problem: we replay the definition of Figure 14 twice: once for types (targeting our open universes),
and once for elements of the universe themselves. An analogue of the logical relation in Figure 15
then lets us establish that Lemma 5.7 holds in this interpretation as well.

With the generalized NbE-style model, we can now give its realization (for closed, ground, neutral
universe) as relations on values. The definition is presented in Figure 19; the construction proceeds
in an entirely analogous fashion, with the main difference being the interpretation of the relationi —
which is simply realized as itself. The other minor difference is that the components of the recursive
type have to be interpreted on their own and applied as the elements of the semantic interpretation,
rather than coerced into a single type; this does not lead to any significant differences.
The remainder of the interpretation is standard: we interpret open types by quantifying over

an environment of closing environments. The difference with respect to the simpler model is that
the interpretations for open type variables (as well as the ones in the realizability interpretation
of universal and existential quantifiers) now allow a closed relation on values to be picked. This
allows picking safe-but-syntactically-ill-typed implementations (in the unary case), as well as
implementations that relate different implementations (in the binary case), thus allowing us to
recover some data abstraction capacities. Note that for this to be viable, the context cannot depend
on the structure of the picked interpretation (through constraints): this is the cost of working in
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E(%) (41, 42) ≜ (∃E1, E2. 41 = E1 ∧ 42 →
∗ E2 ∧ % (E1, E2)) ∨

(

∃4 ′1, 4
′
2. 41 → 4 ′1 ∧ 42 →

∗ 4 ′2 ∧ ⊲ E(%) (4 ′1, 4
′
2)
)

R(i) (D, E) ≜ i (D, E)

R(unit) (D, E) ≜ D = E = ⟨⟩

R(void) (D, E) ≜ ⊥

R(a1 ×a2) (D, E) ≜ ∃D1, D2, E1, E2 . D = ⟨D1, D2⟩ ∧ E = ⟨E1, E2⟩ ∧
∧

8∈{1,2}

R(a8 ) (D8 , E8 )

R(a1 +a2) (D, E) ≜
∨

8∈{1,2}

∃D ′, E ′. D = inj8 D
′ ∧ E = inj8 E

′ ∧ R(a8 ) (D
′, E ′)

R(a1 →a2) (D, E) ≜ ∀D ′, E ′. R(a1) (D
′, E ′) → E(R(a2)) (D D ′, E E ′)

R(∀U :: ^. g) (D, E) ≜ ∃4, 4 ′. D = Λ. 4 ∧ E = Λ. 4 ′∧

∀` ∈ J^K(·) . good(`) → ⊲ E(R(JgK[U ↦→` ])) (4, 4
′)

R(∃U :: ^. g) (D, E) ≜ ∃D ′, E ′. D = packD ′ ∧ E = pack E ′∧

∃` ∈ J^K(·). good(`) ∧ ⊲R(JgK[U ↦→` ]) (D
′, E ′)

R(`^ i f) (D, E) ≜ ∃D ′, E ′. D = rollD ′ ∧ E = roll E ′ ∧ ⊲R(JiK· J`^ iK· JfK·) (D
′, E ′)

R(j →a) (D, E) ≜ j true → E(R(a)) (D •, E •)

R(j ×a) (D, E) ≜ ∃D ′, E ′.D = ⟨•, D ′⟩ ∧ E = ⟨•, E ′⟩ ∧ j true ∧ R(a) (D ′, E ′)

Fig. 19. The realization of U
♮ ·
T

as relations on values.

an environment that can reason about the types and depend on non-trivial information about
their structure.

Representation independence for non-empty lists. To illustrate that our model supports reasoning
about representation independence, we provide a small synthetic example, in which we show
contextual equivalence of two implementations of an existentially typed module for non-empty
lists of natural numbers, with operations for obtaining the head of a list, constructing a list with a
single element, and for inserting an element into a list:

nelist ≜ ∃U :: T. (U →N) × (N→U) × (N→U →U)

The two implementations we consider are lists of natural numbers and vectors of natural numbers.
The vectors are implemented as a GADT; they are indexed by their size, which we represent as
type-level natural numbers. The implementation details can be found in Figure 20. It is worth
noting that the GADT enables the definition of a total head operation for vectors.
We use our logical relation to show that two implementations �1 = pack ⟨head, ⟨inj, cons⟩⟩ and

�2 = pack ⟨vhead, ⟨vinj, vcons⟩⟩ are contextually equivalent8 at the type nelist. The key step in the
proof is to choose an appropriate relation for the existentially quantified type variable U in the
nelist type. We use the following relation, which specifies that both lists must be non-empty, and
their respective head elements must be related as natural numbers:

{(E1, E2) | E1 = roll inj2 ⟨D1, D2⟩ ∧ E2 = pack roll inj2 ⟨D3, D4⟩ ∧ RJNK(D1, D3)} ⊆ Val × Val.

8For brevity, we have not included the standard argument showing that logical relatedness implies contextual approximation;

it is included in the Coq formalization. To show contextual equivalence, we show logical relatedness in both directions.
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natlist :: T

natlist ≜ `U :: T. unit + (N × U)

cons : N→ natlist→ natlist

consG xs ≜ roll inj2 ⟨G, xs⟩

inj : N→ natlist

injG ≜ cons G (roll inj1 ⟨⟩)

head : natlist→N

head xs ≜

case unroll xs

| inj1 _. diverge

| inj2 ⟨~, _⟩. ~

natvec :: T ⇒ T

natvec ≜

`i :: T ⇒ T. _U :: T.

((U ≡T void) × unit)

+ (N×∃V :: T. (U ≡T (V + unit)) × (i V))

nenatvec :: T

nenatvec ≜ ∃U :: T. natvec (U + unit)

vcons : N→ nenatvec→ nenatvec

vconsG xs ≜

let (∗, ys) = xs in

pack roll inj2 ⟨G, pack ⟨•, ys⟩⟩

vinj : N→ nenatvec

vinjG ≜ vcons G roll inj1 ⟨•, ⟨⟩⟩

vhead : nenatvec→N

vhead xs ≜

let (∗, ys) = xs in

case unroll ys

| inj1 (•,F) . abort •

| inj2 ⟨~, _⟩. ~

Fig. 20. F=8l` -encoding of lists and non-empty type-indexed vectors. We use syntactic sugar throughout.

Parametricity. Our model is also strong enough to encompass a number of the classic conse-
quences of parametricity. To demonstrate that, we present a simple free theorem: we show that
any value E of type ∀U :: T. U →U approximates the identity function Λ. _G . G .

Proof. It suffices to show that for any [ ∈ JΔK(·) such that good([) and JΦK[ hold, and any
substitutions (W,W ′) ∈ JΓK[ ,

R(J∀U :: T. U →UK)[ (E [W], (Λ. _G . G) [W
′]).

Given the assumption that Δ | Φ | Γ ⊢ E : ∀U :: T. U →U , by the fundamental lemma we get
R(J∀U :: T. U →UK)[ (E [W], E [W

′]). By the definition of the value interpretation for universal types,

E [W] = Λ. 4 and E [W ′] = Λ. 4 ′. Moreover, ∀`. ⊲ E(R(JU →UK[,U ↦→`)) (4, 4
′). We instantiate this

interpretation with an empty relation. From that we can conclude that either 4 diverges, in which
case the statement trivially holds, or 4 terminates at a value 5 . If 4 terminates at 5 , then, it suffices
to prove the following statement:

∀D E `. ⊲(R(JUK[,U ↦→`) (D, E) → E(R(JUK[,U ↦→`)) (5 D, E)) .

We instantiate the interpretation from the fundamental lemma with a singleton relation {(D, E)} ⊆

Val×Val. From that and determinism of operational semantics, we can conclude that either C ≜ 5 D

terminates or diverges. If it terminates, the result is equal to D by our choice of the relation, in
which case the statement trivially holds. If C diverges, then the statement vacuously holds. □

Note that the proof follows the standard pattern, thus providing evidence that the known results
can be transferred to a calculus with GADTs. While the example we show here does not explicitly
use GADTs, the approach scales: the usual theorems, such as map-map fusion or the free theorems
of Wadler [1989], can be proved not just for lists, but also types that do use equality constraints,
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such as vectors or perfect binary trees indexed with type-encoded depth. Note, however, that these
properties reflect the payload type of the data structure (which behaves parametrically, even though
the structure itself uses equality constraints), rather than the index encoding length or depth, which
is much more constrained.

Power and limitations of the relational model. As the examples above demonstrate, our model
is powerful enough to transport parametricity and representation independence results from
simpler systems, without internalized, injective equalities. It is natural to ask whether all such
results can be preserved in our model, and whether GADTs introduce new opportunities for
exploiting parametricity.

For the first question, we are aware of certain limitations of our current model. These stem from
the fact that we only allow inert relations as semantic elements of our open universes. Thus, we
have no way of treating higher-kinded parameters semantically. Thus, for instance, we cannot use
an ill-typed but well-behaved implementation of lists as a type constructor of kind T ⇒ T (over the
type of elements). In contrast, concrete instantiation of such a list constructed at known element
type do fit into the setup as presented. Whether this limitation can be lifted is one of the questions
left for future work.
As for the interaction of GADTs with parametricity, it is clear that type constructors with

equality-constrained indices cannot be parametric in those indices: this much is enforced by the
model. However, this does not mean that GADTs as a feature are orthogonal to representation
independence, free theorems, etc.: the fact that they can be used as implementations of abstract
data types, used as instances of free theorems, etc., with correct behavior enforced by virtue of the
type system is a consequence of the model we have presented in this section.

6 FORMALIZATION

With the exception of the final part of the non-expressibility theorem in Section 3, all the con-
structions presented in this paper have been formalized in the Coq proof assistant. In this section
we discuss some aspects of the formalization that we believe are of wider interest, either from a
technical or a methodological standpoint.

6.1 Internal Languages vs. Explicit Presheaves

In the informal presentation of our results, we have made liberal use of the internal language of
presheaf categories where possible. For instance, many important constructions involved in our
NbE–style model lie in the category Pr(K) of presheaves on the category K of kind contexts and
kind-preserving renamings. The most direct and intuitive presentation of these constructions, then,
uses the internal language of K as a (locally) cartesian closed category. The use of the internal
language is well-established as a way to avoid the proliferation of administrative parameters
(quantifying over future worlds, renamings, etc.) that routinely obscure what are in essence simple
constructions based on simple ideas.

The downside of our use of the internal language is that different parts of our development must
take place in different categories (languages), corresponding to the boundary between the Pr(K)

and Set. Whereas informal mathematical practice is highly optimized for working rigorously with
such abstraction boundaries, the same does not currently hold of proof assistants like Coq which do
not yet support mixing different type theories in the same development. For this reason, our Coq
formalization explicitly unfolds the internal constructions to external ones; this process introduces
many additional verification conditions (e.g. naturality laws, etc.) that are automatic in the internal
presentation, but which we had to check explicitly in our Coq development.
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6.2 Representation of Terms and Binders

The problem of representing abstract syntax with binding in theorem provers spawned a rich
literature, whose review is beyond the scope of this paper. Here, we briefly note that the approach
we use is inspired by Fiore et al.’s [1999] algebraic view of abstract syntax and variable binding.
In particular, both terms and types are constructed as presheaves, i.e. Type-valued functors on a
category of renamings. This is achieved by parameterizing the Coq type of terms with a type of its
variables, and — through the use of an appropriate library of typeclasses — equipping the resulting
type constructor with a functorial structure. We then equip the functor with a monadic structure
that encodes substitution.

6.3 Normalization by Evaluation: Methodological and Technical Features

The NbE implementation is the foundation of most of the technical developments of the paper: both
the syntactic, progress-and-preservation proof of type soundness and the model construction rely
on a variant of the procedure. It is, however, also interesting from the technical, proof-engineering
point of view — we leverage the representation of syntax based on presheaves over names to
interpret types as presheaves. This has the advantage of baking a lot of the requisite structure of
types and their normal forms into the construction, and thus removing a large part of the reasoning
based on partial equivalence relation that are necessary in less precise encodings in order to prune
the semantic spaces of ill-behaved functions. Compare for instance the work of Allais et al. [2017],
whose interpretation of types, while similar at object level, does not require functoriality: while
their implementation may be simpler, it requires significantly more post-hoc reasoning, some of
which is unnecessary if we interpret the types into spaces with richer structure. Thus, while the
particular NbE implementation we consider is relatively simple, and the categorical notions that
we utilize are fairly well-known in this context [Fiore 2002], we believe that our formalization goes
further towards an NbE that is correct by construction than the state of the art.

6.4 Relational Models and Step-Indexed Logics

The logic used in Section 5 is not the standard Coq logic; in particular, it internalizes the step-
indexed methods through the use of the later operator and the Löb induction to define and reason
about predicates. Thus we had to choose a framework that allows reasoning in such a logic.
Since the requirements of the model were only related to constructing relations via guarded

recursion, we decided to use Polesiuk’s IxFree library [Polesiuk 2017], which provides features
roughly equivalent to the LSLR logic [Dreyer et al. 2011]. Alternative choices are available, however:
one is to work in an axiomatic extension of Coq’s type theory, like Sterling and Harper [2018] —
although this does come at a price of the final soundness results being expressed in a different type
theory. The other obvious candidate is the Iris framework [Jung et al. 2018]: its power to construct
solutions of recursive domain equations (via its invariants feature) would be useful in extending
the calculus to include higher-order mutable state. We chose against using it, for this project, due
to its higher complexity, and the fact that in a simpler logic, such as the one provided by IxFree, we
can make a much more direct use of the host logic (i.e. Coq’s) proof manipulation primitives.

7 RELATED WORK

Of the many calculi that were developed to account for GADTs and similar features, the one most
closely related to our work is System �� [Sulzmann et al. 2007; Weirich et al. 2013]; the calculus
developed as an intermediate language for the Glasgow Haskell Compiler. While it accounts for
features that we do not handle, such as type functions and equality axioms, which are part of GHC,
the treatment of GADTs is much closer to the surface language, through explicitly defined type
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constructors and their constructors on term level. The presence of equality constraints leads to
similar problems in the syntactic type soundness, and necessitates considering the problem of
consistency of the equational theory. However, while the calculus is perfectly well suited as an
intermediate language, it is less ideal for the semantic study of the GADTs.

Relational models of higher-kinded polymorphic lambda calculi have been widely studied since
the 1990s [Hasegawa 1994; Robinson and Rosolini 1994]. Two examples of interest include the
formalized developments of Atkey [2012] and Vytiniotis and Weirich [2010]. Atkey formalizes pure
System Fl , but studies type equality expressible within the system, and inductive types that arise
as initial algebras of positive functors. However, the notion of functoriality he uses is external to
the calculus, and the encodings of GADTs he obtains through the encoding of Johann and Ghani
[2008] does not seem to allow discrimination based on distinct types. Instead, he extends Fl with
additional kinds, including type-level natural numbers — which can express some GADT patterns.
Vytiniotis and Weirich build a relational model of an extension of System Fl with a single

built-in GADT [Vytiniotis and Weirich 2010], and show parametricity properties of this language.
We explore a larger class of programs that can contain arbitrary GADTs, including the runtime-type
representation type R. The nontermination of their System 'l when the representation type is
extended to include universal quantifiers is likely related to our example in Section 2, although the
details of the construction differ somewhat. An interesting feature of their model is the inclusion of
syntactic information in the interpretation of types and type equivalence, which is quite different
from our two-stage interpretation. However, since the closure under type equivalence is only
enforced post-hoc, it is not likely that their construction could be scaled to all type constructors
being injective, rather than just the built-in representation GADT.
The most recent line of work on semantics and parametricity of GADTs comes from Johann et

al. [Johann and Cagne 2022; Johann and Ghiorzi 2021, 2022; Johann et al. 2021]. These are categorical
models for languages where type constructors are considered functorial, and inductive types can
be formed out of strictly positive functors, as appropriate initial algebras. Our calculus is somewhat
more modest, in that the type constructors have no additional structure; on the other hand, we
consider an impredicative system with general recursive types, and thus our approach to obtaining
relational models must be somewhat different.

A complementary line of work on the syntax and elaboration of GADTs is that of Dunfield and
Krishnaswami [2019], who have given a proof-theoretic account of equality constraints in terms of
the Girard–Schroeder-Heister elimination rule for equality [Girard 1992; Schroeder-Heister 1994],
which says that Γ, 2 ≡^ 3 ⊢ J holds if and only if \ ∗Γ ⊢ \ ∗J holds for all substitutions \ in the
complete set of unifiers for 2, 3 :: ^. Unifiability of two constructors is a syntactic and meta-level
concept that does not correspond to any behavior of semantic models; indeed, most languages
have constructor injectivity as an admissible rule, but it is a special feature of GADTs for these
injectivity laws to be derivable and thus required in models. Dunfield and Krishnaswami [2019]
achieve these laws all at once by incorporating syntactic unifiability into their formal theory; we
achieve something analogous in our setting by means of explicit rules. This choice is important
because our main results pertain to semantic models, a viewpoint that is not readily accessed from
the Girard–Schroeder-Heister perspective.

8 CONCLUSION

In this work, we developed a core calculus that can be used for semantic study of generalized
algebraic data types. We show that the calculus is expressive enough to encode many of the
commonly used programming patterns, and that it is strictly more expressive than calculi that
do not enforce injectivity and discriminability of constant type constructors. We prove that the
calculus is type-safe, and build a novel, two-stage relational model that uses a variation on the
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normalization-by-evaluation construction to enforce the injectivity and discriminability rules. The
model is strong enough to allow for data-abstraction reasoning, the first such for a calculus equipped
with GADTs.

Several directions of future work are apparent. First, integrating other advanced language features,
such as higher-order mutable state or effect handlers, within our calculus and its model would
be an interesting direction that could lead to models that account for virtually all main features
of modern functional programming languages; the difficulties in modeling these seem largely
orthogonal to those we faced in the current work, so such an extension should be manageable.
Second, it seems that even with the inclusion of “inert” step-indexed predicates in the universe, the
model is not robust enough to ensure termination of the sub-calculus with restricted injectivity
and no recursive types, System F=8l — a property that, we believe, ought to hold. Therefore, we
would like to further refine our model, so that it would allow for a more fine-tuned interpretation
of non-injective quantifiers, as well as more refined data-abstraction principles. Finally, a possible
direction would consider adapting the functorial approach of Johann et al. to a setting with a wider
space of type constructors. This could allow us to enrich practical programming languages with
type constructors that have the mapping action inherently associated with them, including the
ability to quantify over such constructs.
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