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Separation logic specifications with abstract predicates intuitively enforce a discipline that constrains when

and how calls may be made between a client and a library. Thus a separation logic specification of a library

intuitively enforces a protocol on the trace of interactions between a client and the library. We show how to

formalize this intuition and demonstrate how to derive “free theoremsž about such interaction traces from

abstract separation logic specifications. We present several examples of free theorems. In particular, we prove

that a so-called logically atomic concurrent separation logic specification of a concurrent module operation

implies that the operation is linearizable. All the results presented in this paper have been mechanized and

formally proved in the Coq proof assistant using the Iris higher-order concurrent separation logic framework.
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1 INTRODUCTION

Separation logic [Ishtiaq and O’Hearn 2001; Reynolds 2002] provides a powerful formalism for
specifying an interface between a library and a client in terms of resources. For example, a client
may obtain an “opened filež resource by calling an open operation of a file library, which it can then
use to access the file by calling a read operation. Crucially, abstract predicates [Biering et al. 2007;
Parkinson and Bierman 2005] hide implementation details: a client cannot rely on what an “opened
filež resource actually consists of; it can only rely on the functionality for using the resource that
the library provides. A client that is verified with respect to the abstract specification will behave
correctly with any implementation of the library.

In separation logic, functions are specified with preconditions and postconditions. We can think
of the precondition as specifying resources that a client must provide in order to call the function.

Authors’ addresses: Lars Birkedal, birkedal@cs.au.dk, Aarhus University, Denmark; Thomas Dinsdale-Young, tyoung@cs.au.

dk, Concordium, Denmark; Armaël Guéneau, armael@cs.au.dk, Aarhus University, Denmark; Guilhem Jaber, guilhem.jaber@

univ-nantes.fr, Université de Nantes, France; Kasper Svendsen, ksvendsen@cs.au.dk, Uber, Denmark; Nikos Tzevelekos,

nikos.tzevelekos@qmul.ac.uk, Queen Mary University of London, United Kingdom.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/8-ART81

https://doi.org/10.1145/3473586

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 81. Publication date: August 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3473586
https://doi.org/10.1145/3473586


81:2 L. Birkedal, T. Dinsdale-Young, A. Guéneau, G. Jaber, K. Svendsen, and N. Tzevelekos

The postcondition then specifies the resources that the client receives when the function returns.
For example, a simplified specification for a file library might look like:{

closed
}
open()

{
open

} {
open

}
close()

{
closed

} {
open

}
read()

{
open

}
A client acquires an open resource, represented by an abstract predicate, by calling open. With
this file resource, the client can call close and relinquish the resource, or call read and retain
the resource. The rules of separation logic allow us to prove specifications for clients that use the
library correctly, such as: {

closed
}
open(); read(); close()

{
closed

}
On the other hand, we cannot prove any useful specifications1 for programs that use the library
incorrectly, like the following: open(); close(); read().

Intuitively, separation logic specifications imply properties about the trace of interactions between
a library and a client. For example, the specification for the file library ensures that a file can only
be accessed if it has previously been opened and not subsequently closed. This strongly depends on
the fact that the specification is abstract: a client has no way to obtain the open resource except by
calling the open operation. (Indeed, if the client were able to forge the open resource then it could
violate the trace property.) In other words, an abstract separation logic specification of a library
entails a theorem ‘for free’; that is, a theorem that holds for any implementation of the library.
While this intuition is broadly used in the separation logic community, it has not previously been
formalised.

In this paper we present a formal approach to establishing free theorems from abstract separation
logic specifications. In contrast to the well-known free theorems that one can obtain from polymor-
phic types [Reynolds and Plotkin 1993; Reynolds 1983; Wadler 1989], which are all concerned with
equality properties (e.g., that every element of a polymorphic type is equal to2 the polymorphic
identity function), the free theorems we focus on here are all concerned with intensional trace
properties describing how a library and a client interacts. Since the properties are intensional and
not observable in the standard operational semantics, we establish the free theorems by placing a
wrapper between a client and a library that generates a trace of the interactions between the client
and library. We stress that the wrapper has no bearing on the underlying semantics of the program
(when traces are ignored) but simply allows us to formally capture intensional trace properties.
Then, supposing that a library implements an abstract separation logic specification, we show
that the wrapped library also satisfies this specification and, moreover, maintains the desired trace
property as an invariant. For the latter step, we use ghost trace resources, which can be used for
instantiating the abstract predicates in the original specification. In the context of a client that uses
the library in accordance with the specification, the trace properties are thus guaranteed to hold.
Our approach establishes temporal trace properties from separation logic specifications that

are not inherently temporal, independently of implementation details. While ours is not the first
approach incorporating temporal reasoning in program logics, and separation logic in particular, it is
the first one to derive trace properties for libraries that have abstract separation logic specifications.
Previous approaches [da Rocha Pinto et al. 2014; Fu et al. 2010; Gotsman et al. 2013; Sergey et al.
2015] achieve temporal reasoning by specifying and verifying the underlying libraries using trace-
oriented specifications; the novelty of our work is in deriving temporal trace properties “for freež
from trace-agnostic specifications.

1It is always possible to prove a vacuous specification with precondition ⊥, but a useful specification should at least have a

satisfiable precondition. For complete, closed programs we would typically expect the precondition to be emp (denoting the

empty heap), thus requiring the ownership of no specific resource.
2Be it in a denotational semantics model or contextual equivalence based on operational semantics.
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We remark that informal English-language specifications (e.g., the POSIX file system [Gardner
et al. 2014]) are often given in terms of trace properties, so the free theorems we obtain also serve
to link formal separation logic specifications to more informal intuitive trace properties.
We demonstrate our approach on a variety of examples, which establish that separation logic

specifications can imply a variety of free theorems about interaction traces, such as:
• An iterator over a collection should only be used if the collection has not been modified since
the iterator was created (ğ5.2).
• A higher-order function calls its argument exactly once (ğ5.3).
• A traversal on a stack invokes a given method on each value that has been pushed (but not
popped) in the order in which they will be popped (ğ5.4).

As amore advanced example of a free theorem, we further prove that a logically atomic concurrent
separation logic specification of a concurrent module operation [da Rocha Pinto et al. 2014; Jung
et al. 2015a] implies that the operation is linearizable. To the best of our knowledge, this is the first
formal such result. Note that this is indeed a free theorem in the sense it holds for any operation
satisfying a logically atomic specification, i.e., the proof only relies on the specification and not on
the specific operation.

We first outline our methodology on a motivating example in Section 2. We then formally define
the programming language that we consider (Section 3), and the program logic that allows us to
reason about interaction traces (Section 4). Then, we describe in Section 5 how our approach can be
applied on a number of examples, culminating to the formal proof in Section 6 that logical atomicity
implies linearizability, as a free theorem.

This work has been entirely mechanized in the Coq proof assistant using the Iris framework. It
is publically available at either https://zenodo.org/record/5054898 (stable artifact) or https://github.
com/logsem/free-theorems-sl (development repository).

2 MOTIVATING EXAMPLE

As a motivating example, consider a library that provides a stack with push and pop operations. In
Separation Logic, these operations can be specified as follows:

∀𝛼, 𝑥 .
{
stack(𝛼) ∗ ⌈𝑥 ≠ ()⌉

}
push(𝑥)

{
stack(𝑥 :: 𝛼)

}
∀𝛼.

{
stack(𝛼)

}
pop()

{
𝑟 . (⌈𝑟 = () ∧ 𝛼 = 𝜀⌉ ∗ stack(𝛼)) ∨
(∃𝛼 ′. ⌈𝛼 = 𝑟 :: 𝛼 ′⌉ ∗ stack(𝛼 ′))

}

The push operation simply prepends the given value to the stack, which is represented by the
stack abstract predicate. The value must be distinct from the unit (), which is used to indicate
an empty stack. The pop operation returns () if the stack is empty and otherwise removes and
returns the head value. (We use ⌈·⌉ to inject pure propositions into the world of Separation Logic
assertions.) The library would also include a way to create an initially empty stack, but we elide
that here (see the more detailed treatment in ğ5).
We can also specify the stack in terms of trace properties that are satisfied by interactions

between a client and a stack library. For instance, a simple trace property that we might wish to
show is this:

Each (non-unit) value returned by an invocation of pop was an argument of a previous
invocation of push.

This property is not captured by most models of Separation Logic, in part simply because it is an
intensional temporal trace property. We now outline how we can derive this property as a free
theorem.
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In order to capture trace properties, we define a wrapper that instruments the library operations
with code to emit trace events annotated with push and pop labels:

push′ ≜ 𝜆𝑣. push(𝑣); emit⟨push, 𝑣⟩ pop′ ≜ 𝜆_. let 𝑟 = pop() in emit⟨pop, 𝑟 ⟩; 𝑟

We can then define a language of traces that captures our desired invariant:

L = {𝑡 | ∀𝑖, 𝑣 . 𝑡 [𝑖] = ⟨pop, 𝑣⟩ ∧ 𝑣 ≠ () =⇒ ∃ 𝑗 . 𝑗 < 𝑖 ∧ 𝑡 [ 𝑗] = ⟨push, 𝑣⟩}

Our separation logic includes two resources that allow us to reason about code that emits
trace events: trace(𝑡) expresses that 𝑡 is the current trace; and traceInv(𝐼 ) expresses that the trace
invariant is 𝐼 . The proof rule for emit updates the trace resource, while requiring that the new trace
satisfies the invariant. Using these, we can define a ‘wrapped’ version of the abstract stack predicate
so that the wrapped operations will satisfy the same abstract specification, but also enforce the
trace invariant:

stack′(𝛼) ≜ stack(𝛼) ∗ traceInv(L) ∗ ∃𝑡 . trace(𝑡) ∗ ⌈𝑡 ∈ L ∧ ∀𝑥 ∈ 𝛼. ∃𝑖 . 𝑡 [𝑖] = ⟨push, 𝑥⟩⌉

Both the wrapped push and pop operations can be verified similarly. The proof of the wrapped
push operation proceeds as follows:

{stack′(𝛼) ∧ 𝑣 ≠ ()}
{stack(𝛼) ∧ 𝑣 ≠ () ∗ traceInv(L) ∗ ∃𝑡 . trace(𝑡) ∗ ⌈𝑡 ∈ L ∧ ∀𝑥 ∈ 𝛼. ∃𝑖 . 𝑡 [𝑖] = ⟨push, 𝑥⟩⌉}
push(v);
{stack(𝑣 :: 𝛼) ∗ traceInv(L) ∗ ∃𝑡 . trace(𝑡) ∗ ⌈𝑡 ∈ L ∧ ∀𝑥 ∈ 𝛼. ∃𝑖 . 𝑡 [𝑖] = ⟨push, 𝑥⟩⌉}
{stack(𝑣 :: 𝛼) ∗ traceInv(L) ∗ ∃𝑡 . trace(𝑡) ∗ ⌈(𝑡 · ⟨push, 𝑣⟩) ∈ L⌉ ∗
⌈∀𝑥 ∈ (𝑣 :: 𝛼). ∃𝑖 . (𝑡 · ⟨push, 𝑣⟩) [𝑖] = ⟨push, 𝑥⟩⌉}

emit⟨push,v⟩;
{stack(𝑣 :: 𝛼) ∗ traceInv(L) ∗ ∃𝑡 . trace(𝑡) ∗ ⌈𝑡 ∈ L ∧ ∀𝑥 ∈ 𝛼. ∃𝑖 . 𝑡 [𝑖] = ⟨push, 𝑥⟩⌉}
{stack′(𝑣 :: 𝛼)}

Using an Adequacy theorem for our program logic, which links trace invariants to actual program
executions (Theorem 4.1), we can thus conclude that the stack indeed satisfies the desired trace
property. It is a free theorem because the proofs for the wrapped operations only depend on the
specification for push and pop, not the actual code implementing the operations.

The above example demonstrates our technique on a first-order library (the library cannot make
call-backs to the client), but it also applies in a higher-order setting. For instance, consider extending
the stack with a foreach operation that traverses the stack and calls a client-supplied function on
each element in order. In separation logic, this operation can be specified as:

∀𝛼, 𝑓 , 𝐼 .

{
stack(𝛼) ∗ 𝐼 (𝜀) ∗ ∀𝛽, 𝑥 .{
𝐼 (𝛽)

}
𝑓 (𝑥)

{
𝐼 (𝑥 :: 𝛽)

}} foreach(𝑓 ) {stack(𝛼) ∗
𝐼 (rev(𝛼))

}

This specification is subtle. The foreach operation takes a function 𝑓 that is specified (using a
nested triple) with an invariant 𝐼 (𝛽) whose parameter records the list of values that 𝑓 has so far
been called on. The operation is given the predicate 𝐼 (𝜀) initially, and it returns with 𝐼 (rev(𝛼)),
where rev(𝛼) is the reversal of the list 𝛼 . Note that while the predicate stack is abstract to the
client (the library determines the interpretation), the predicate 𝐼 is abstract to the library (the client
determines the interpretation). This means that for the library to obtain the 𝐼 (rev(𝛼)) predicate for
the postcondition from the 𝐼 (𝜀) given in the precondition, it must call 𝑓 on each element of 𝛼 in
order. Moreover, it cannot make any further calls to 𝑓 , since separation logic treats the predicate
𝐼 (𝛽) as a resource, which must be given up by the library each time it calls 𝑓 , and which the library
has no means of duplicating since in separation logic 𝐴 =⇒ 𝐴 ∗𝐴 does not hold in general.

Defining a wrapper for higher-order libraries is more complex than in the first-order case, since
we wish the trace to capture all interactions between the client and the library, including call-backs
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between them. The wrapper must therefore emit events at the call and return of library functions,
as well as functions that are passed as arguments to library functions. We can then specify a number
of properties that traces generated by client-library interactions will have:
• The trace of push and pop operations obeys the stack discipline.
• Between invocation and return, foreach(𝑓 ) calls 𝑓 on each element of the stack in order,
with no further calls.
• The invocations of push, pop and 𝑓 (the argument of a call of foreach) are atomic Ð there
are no further events between the call and return.

While the first property can be seen as a straightforward consequence of the push and pop spec-
ifications, the others are more subtle. In particular, they depend on the foreach specification’s
parametricity in 𝐼 , which prevents the library from using its argument in an arbitrary fashion.
For particular instantiations of 𝐼 , (e.g. 𝐼 (𝛽) = true), foreach could call its argument an arbitrary
number of times, or even store it and call it from future invocations of pop. However, parametricity
ensures that it will behave the same independent of how 𝐼 is instantiated, and so it cannot do that
since 𝐼 can be instantiated so as to enforce trace properties.
This example illustrates several important aspects of our approach. Firstly, we support higher-

order functions, such as foreach. We also deal with expressive trace properties: the language of
traces is not context-free, since the stack may be traversed multiple times. Moreover, the connection
between the separation logic specification and the trace properties that follow from it is subtle.
In ğ5 we revisit this example, among others, in detail. Before doing so, we present the formal

setting of our approach.

3 PROGRAMMING LANGUAGE

We consider a fairly standard higher-order concurrent imperative language. We define the language
in Figure 1: it is an untyped call-by-value 𝜆-calculus with references, products and fork-based
concurrency.
Additionally, our language features an emit primitive, which is used to output values as trace

events, and a fresh primitive, which generates a fresh event tag and emits an event at the same
time. These operations are used to implement the wrappers that instrument the operations of a
given library so as to materialize the events of interest. We will formulate properties in terms of
the event traces produced during program execution by these two primitives.

The definition of values (Val), expressions (Exp) and evaluation contexts (Ectx) is mostly standard.
Most notable are the addition of the two primitives emit and fresh, and tags values 𝜏 , which are
simply represented as strings. Tags are used when defining wrappers so as to label emitted events
and associate them with the corresponding function of a library interface. The fresh primitive can
be used to emit an event annotated with a fresh tag, which is guaranteed not to already appear in
the current trace. In simpler cases, the code of wrappers will simply refer to tag literals (i.e. strings)
to decorate events emitted using emit. We will write mytag for a tag represented by the string
“mytagž. Importantly, tags can be passed around but cannot be compared, so they have no impact
on the control flow of the program.
We equip the language with a small-step operational semantics. The head reduction judgment

𝑒 ;𝜎 →ℎ 𝑒
′;𝜎 ′;−→𝑒𝑓 describes a single step of computation as can be performed by an individual thread.

It expresses that, starting from state 𝜎 , the expression 𝑒 may reduce in one step to expression 𝑒 ′,

while changing the state to 𝜎 ′ and forking off a list of threads running expressions −→𝑒𝑓 . A state 𝜎
corresponds to a pair of a memory heap ℎ (a finite map from locations to values) and the current
trace 𝑡 (a list of values). The threadpool reduction judgment 𝑇 ;𝜎 −→ 𝑇 ′;𝜎 ′ lifts head reduction to
lists of concurrently running threads.
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⊕ ::= + | − | × | = | <
𝑣 ∈ Val ::= 𝜆𝑥 .𝑒 | ⟨𝑣, 𝑣⟩ | () | 𝑛 | 𝑏 | ℓ | 𝜏
𝑒 ∈ Exp ::= 𝑣 | 𝑥 | 𝜆𝑥.𝑒 | 𝑒 𝑒 | 𝑒 ⊕ 𝑒 | if 𝑒 then 𝑒 else 𝑒 | ⟨𝑒, 𝑒⟩ | fst 𝑒 | snd 𝑒

| ref 𝑒 | !𝑒 | 𝑒 ← 𝑒 | fork 𝑒 | CAS(𝑒, 𝑒, 𝑒) | emit 𝑒 | fresh 𝑒
𝐾 ∈ Ectx ::= (standard left-to-right evaluation contexts)

𝑛 ∈ N, 𝑏 ∈ B, ℓ ∈ Loc, 𝜏 ∈ Tag ≜ String

ℎ ∈ Heap ≜ Loc ⇀fin Val

𝜎 ∈ State ≜ Heap × Trace

𝑡 ∈ Trace ≜ Val∗

𝑇 ∈ Tpool ≜ Exp∗

tags(𝜀) ≜ 𝜀 tags(𝑡 · ⟨𝜏, 𝑣⟩) = tags(𝑡) · 𝜏 tags(𝑡 · 𝑣) = tags(𝑡) otherwise

𝑒;𝜎 →ℎ 𝑒
′;𝜎 ′;−→𝑒𝑓 Head reduction (selected rules)

(𝜆𝑥.𝑒) 𝑣 ;𝜎 →ℎ 𝑒 [𝑣/𝑥];𝜎 ; 𝜀 fork 𝑒;𝜎 →ℎ ();𝜎 ; 𝑒

ref 𝑣 ; (ℎ, 𝑡) →ℎ ℓ ; (ℎ ⊎ [𝑙 ↦→ 𝑣], 𝑡); 𝜀
𝜎.ℎ(ℓ) = 𝑣

!ℓ ;𝜎 →ℎ 𝑣 ;𝜎 ; 𝜀

ℎ(ℓ) = 𝑣

ℓ ← 𝑣 ′; (ℎ, 𝑡) →ℎ (); (ℎ[ℓ ↦→ 𝑣 ′], 𝑡); 𝜀

𝜎.ℎ(ℓ) ≠ 𝑣1

CAS(ℓ, 𝑣1, 𝑣2);𝜎 →ℎ false;𝜎 ; 𝜀
CAS(ℓ, 𝑣1, 𝑣2); (ℎ ⊎ [ℓ ↦→ 𝑣1], 𝑡) →ℎ true; (ℎ ⊎ [ℓ ↦→ 𝑣2], 𝑡); 𝜀

emit 𝑣 ; (ℎ, 𝑡) →ℎ (); (ℎ, 𝑡 · 𝑣); 𝜀
𝜏 ∉ tags(𝑡)

fresh 𝑣 ; (ℎ, 𝑡) →ℎ 𝜏 ; (ℎ, 𝑡 · ⟨𝜏, 𝑣⟩); 𝜀

𝑇 ;𝜎 −→ 𝑇 ′;𝜎 ′ Threadpool reduction

𝑒;𝜎 →ℎ 𝑒
′;𝜎 ′;−→𝑒𝑓

(𝑇1 ++ 𝐾 [𝑒] ++ 𝑇2);𝜎 −→ (𝑇1 ++ 𝐾 [𝑒 ′] ++ 𝑇2 ++
−→𝑒𝑓 );𝜎 ′

Fig. 1. Syntax and semantics of the language.

Our language includes a compare-and-swap (CAS) primitive that can be used to implement locks
or other concurrency primitives. Note that it is not terribly important what the exact set of features
of our language is, as long as it is rich enough to allow for interesting implementations of the
libraries and their clients for the specifications that we consider. In the rest of the paper, the code
that we will directly verify is the code of wrappers, which only rely on fresh and emit, but it is
important that we consider a language featureful enough for the whole setup to be realistic.

4 PROGRAM LOGIC

We use a program logic built as an instantiation of the Iris framework. For the purposes of this
paper we present a particular instance of this framework for the language introduced in ğ3 and we
refer to this instance simply as Iris.

4.1 Iris Basics

Figure 2 describes the subset of Iris that is relevant for this paper. We write iProp for the universe
of Iris propositions. These include the standard connectors of higher-order logic and separation
logic, including the separationg conjunction ∗ and the magic wand −−∗ (also known as separating

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 81. Publication date: August 2021.



Theorems for Free from Separation Logic Specifications 81:7

𝑃,𝑄 ∈ iProp ::= True | False | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | . . . higher-order logic
| 𝑃 ∗𝑄 | 𝑃 −−∗ 𝑄 | ⌈𝜙⌉ | □ 𝑃 basic separation logic

|
{
𝑃
}
𝑒
{
𝑣 .𝑄

}
|
〈
𝑃
〉
𝑒
〈
𝑣 .𝑄

〉
program logic

| 𝑃 | 𝑚
𝛾

invariants and ghost state
| trace(𝑡) | hist(𝑡) | traceInv(L) trace-related resources

Fig. 2. The subset of Iris relevant for this paper.

implication). The proposition ⌈𝜙⌉ asserts that the pure proposition 𝜙 holds, where 𝜙 is a proposition
from the meta logic.
The modality □ is used to assert persistence of assertions. Iris assertions can be divided in two

categories: ephemeral assertions and persistent assertions. Ephemeral assertions describe facts or
resources that are available at a given point but might become false or unavailable later. Persistent
assertions describe facts that never cease to be true. The assertion □ 𝑃 then holds if both 𝑃 holds
and 𝑃 is persistent. Formally, we say that an assertion 𝑃 is persistent, written persistent(𝑃), if
𝑃 ⊣⊢ □ 𝑃 , where ⊣⊢ is the logical equivalence of Iris propositions. As the knowledge associated with
a persistent assertion can never be invalidated, persistent assertions can be freely duplicated.

Iris allows specifying programs: a Hoare triple
{
𝑃
}
𝑒
{
𝑣 .𝑄

}
asserts that, when the precondition

𝑃 holds, then 𝑒 is safe to execute, and if 𝑒 reduces to a value 𝑣 , then the postcondition𝑄 holds (note
that 𝑣 acts as a binder in 𝑄). Logically atomic triples

〈
𝑃
〉
𝑒
〈
𝑣 .𝑄

〉
are used to specify concurrent

operations, and are explained in more details in Section 6.1.

The assertion 𝑃 is an Iris invariant: it asserts that 𝑃 should hold at all times, and is therefore a
persistent assertion. Iris also provides a way of tying the evolution of pure data𝑚 to the execution

of a program, through the use of ghost state, described by propositions 𝑚
𝛾
(where 𝛾 is a logical

name identifying a piece of ghost state). We will only make use of invariants and (indirectly) ghost
state in Section 6.

4.2 Trace Primitives

Our instantiation of Iris is augmented with three (definable) assertions, trace(𝑡), hist(𝑡) and
traceInv(L), for reasoning about the trace of events emitted during execution.
The resource trace(𝑡) expresses that the trace of events emitted so far is exactly 𝑡 and asserts

exclusive right to emit further trace events. Since trace(𝑡) asserts exclusive right to emit events, it
cannot be duplicated, and allows a single owner to reason precisely about the current trace.
The trace(𝑡) resource suffices for examples where only a single resource needs to refer to the

current trace. To improve expressiveness, we use the hist(𝑡) resource to reason about prefixes
of the current trace. The resource hist(𝑡) asserts that the trace 𝑡 is a prefix of the trace of events
emitted so far. Note that this property is preserved by emission of new events: if 𝑡 is a prefix of the
current trace then 𝑡 is also a prefix of any extension of the current trace. This resource is persistent
(and thus duplicable), and given the trace(𝑡) resource we can construct a hist(𝑡). Moreover, if we
have a trace(𝑡1) resource and a hist(𝑡2) resource, we can conclude that 𝑡2 is a prefix of 𝑡1. These
properties are given formally at the top of Figure 3.

Finally, the traceInv(L) resource defines a trace invariant that everyone must obey. Here L is a
set of traces and traceInv(L) asserts that, at every point of the execution, the current trace must
belong to L. Since it specifies an invariant, the traceInv(L) resource is duplicable (see Figure 3).
(Internally, traceInv is defined as an Iris invariant of the form . . . , from which we prove as derived
properties the simpler reasoning rules shown in Figure 3.)
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traceInv(L) ⊢ □ traceInv(L) hist(𝑡) ⊢ □ hist(𝑡) trace(𝑡) ⊢ trace(𝑡) ∗ hist(𝑡)

trace(𝑡1) ∗ hist(𝑡2) ⊢ trace(𝑡1) ∗
⌈
𝑡2 ≤pref 𝑡1

⌉
trace(𝑡) ∗ traceInv(L) ⊢ trace(𝑡) ∗ ⌈𝑡 ∈ L⌉

𝑡 · 𝑣 ∈ L

traceInv(L) ⊢
{
trace(𝑡)

}
emit 𝑣

{
trace(𝑡 · 𝑣)

}
∀𝑟 . 𝑟 ∉ tags(𝑡) ⇒ 𝑡 · ⟨𝑟, 𝑣⟩ ∈ L

traceInv(L) ⊢
{
trace(𝑡)

}
fresh 𝑣

{
𝑟 . ⌈𝑟 ∉ tags(𝑡)⌉ ∗ trace(𝑡 · ⟨𝑟, 𝑣⟩)

}
Fig. 3. Properties of the resources trace, hist and traceInv, and specifications for emit and fresh.

We can now give Separation Logic specifications for the emit and fresh operations, which are
shown in Figure 3. Both specifications require ownership over the trace resource trace(𝑡), and that
the trace is governed by some trace invariant L. Given ownership of the trace resource we can
emit an event 𝑣 which is appended at the end of the trace. Emitting a fresh event 𝑣 returns a tag 𝑟
that does not appear in the current trace, and emits the event ⟨𝑟, 𝑣⟩.
As a side-condition, the updated trace is required to satisfy the invariant L (in the case of

fresh, it is required to satisfy L for any fresh tag, since we cannot know in advance the tag that
will be returned by fresh). Finally, both specifications hand out an updated trace resource in the
postcondition, with the emitted event appended at the end.
We emphasize that the predicates and the properties in Figure 3 are all defined and proved

formally in Iris, see the accompanying Coq formalization for details.

4.3 Adequacy Theorem

Ultimately, a program logic is only a technical device: the end goal is to establish properties that
can be shown to hold with respect to the operational semantics of the language, independently of
the details of the logic. This is typically achieved by proving an “adequacyž or “soundnessž theorem
of the logic. We present one such theorem, Theorem 4.1, tailored to our goal of establishing trace
properties for the interaction between a verified library and its client.

Theorem 4.1 (Adeqacy). Given any specification Φ, resource 𝑃0, initialiser 𝑒init , library imple-

mentation 𝑣lib, memory heap ℎ, client 𝑒 , and language L, if the following conditions hold:

• Φ : iProp × Val→ iProp and 𝑃0 : iProp
• 𝜀 ∈ L

• ∀lib, 𝑃 . Φ(𝑃, lib) ⊢ {𝑃} 𝑒 lib {⊤}

• ⊢ {⊤} 𝑒init {𝑃0}

• ⊢ Φ(𝑃0 ∗ trace(𝜀) ∗ traceInv(L), 𝑣lib)

then for any 𝑇,ℎ′, 𝑡 , provided (𝑒init ; 𝑒 𝑣lib), (ℎ, 𝜀) −→
∗ 𝑇, (ℎ′, 𝑡) then we have 𝑡 ∈ L.

To understand the theorem, first recall that the general pattern we follow is to prove that
for any library implementation satisfying an abstract library specification, the wrapped library
implementation satisfies the same abstract specification and moreover the traces generated by the
wrapping satisfy a given invariant. Client programs verified against the abstract library interface
can thus be linked with the wrapped library implementation to conclude that the traces generated
by the wrapping satisfy the given invariant. Theorem 4.1 formalises this idea. Here 𝑒init is an
initialiser operation to initialize the internal state 𝑃0 of the library. The theorem requires that we
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provide a library implementation satisfying the abstract specification Φ and generating traces in L.
It then guarantees that, for any client 𝑒 verified against the abstract specification of the library, the
trace produced by running the client linked with the library implementation 𝑣lib satisfies the trace
invariant L at every step of the execution.

It is worth noting that the assumptions of Theorem 4.1 rules out clients containing calls to emit
or fresh, which could in principle invalidate the trace property. Indeed, following assumption 3
of the theorem, we only consider verified clients 𝑒 that can be proved safe assuming an arbitrary
proposition 𝑃 as pre-condition and the specification of the library Φ(𝑃, lib). Neither of these
propositions can give access to the trace(·) and traceInv(·) predicates necessary to verify calls to
emit and fresh (we have to establish Φ in assumption 5 which prevents it from providing these
predicates for any 𝑃 ).
To use Theorem 4.1 to derive a trace property from a separation logic specification, the idea is

to define a suitable wrapper function wrap for the library in question and prove that if a library
implementation 𝑀 satisfies Φ then so does the wrapped version wrap(𝑀) and, additionally, the
wrapped version generates traces in the L language:

∀𝑃0,M . Φ(𝑃0,M) ⊢ Φ(𝑃0 ∗ trace(𝜀) ∗ traceInv(L),wrap(M)) . (1)

One can then apply Theorem 4.1 by taking 𝑣lib to be wrap(M). For each of the examples coming
up next, we will establish a lemma of the form (1). We stress that each of these results is not just a
fact that holds in our logic: each one can be composed with Theorem 4.1 to obtain that the trace
property of interest is preserved at the level of the operational semantics. (We refer to the Coq
formalization for the details of each specific instantiation.) We also emphasize that (1) is shown for
any𝑀 and thus the trace property only depends on the specification Φ and in that sense we obtain
a free theorem.

5 PROVING TRACE PROPERTIES AS FREE THEOREMS

In this section, we demonstrate the approach sketched earlier through a series of increasingly
complex examples, starting with the basic file library example from the introduction.

It is worth noting that, even though we work in a concurrent language, the examples presented
in this section are sequential in nature: the specifications considered prevent concurrent calls to
the underlying library. We will look more closely into the case of concurrent libraries in Section 6.

5.1 File Library

Recall the Separation Logic specification of the file library from the introduction, here written more
formally, where 𝑃0 denotes the resources needed to initialize the library.

Φfile (𝑃0, (open, close, read)) ≜ ∃open, closed : iProp.□(𝑃0 −−∗ closed) ∧{
closed

}
open()

{
open

}
∧
{
open

}
close()

{
closed

}
∧
{
open

}
read ()

{
open

}
Note the use of different fonts: open, close and read denote functions (values of the language),

while open and closed denote abstract Separation Logic predicates used in the specification of the
functions. Below we will also use the open, close and read tags (recall that they correspond to
mere strings) for writing the wrapper code.

We wish to prove that this Separation Logic specification enforces that verified clients can only
close and read when the file is open. To capture this property, we define a wrapper functionwrapfile
that instruments an implementation of the file library to emit events annotating calls to the different
operations with respective tags open, close and read. Formally, we take a file library to be a triple
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consisting of an open, a close and a read function.

wrapfile ≜ 𝜆(open, close, read).(
𝜆_. open(); emit open, 𝜆_. close(); emit close, 𝜆_. read (); emit read

)
We can now formalize the protocol as constraints on the traces generated by linking an instrumented
file library with a client. In particular, we consider traces belonging to the language Lfile of all
strings 𝑡 ∈ Σ∗ such that 𝑡 is a valid file trace, filetrace (𝑡), where Σ = {open, close, read} and filetrace
is defined as:

filetrace (𝑡) ≜ ∀𝑛. 𝑡 [𝑛] = read ∨ 𝑡 [𝑛] = close =⇒ isopen(𝑡, 𝑛)

isopen(𝑡, 𝑛) ≜ ∃𝑚 < 𝑛. 𝑡 [𝑚] = open ∧ noclose(𝑡,𝑚, 𝑛)

noclose(𝑡,𝑚, 𝑛) ≜ ∀𝑘.𝑚 < 𝑘 < 𝑛 =⇒ 𝑡 [𝑘] ≠ close

The valid file trace predicate, filetrace (𝑡), expresses that the trace 𝑡 only contains read and close
events when the file is open. To prove that the specification enforces the intended protocol, we
proceed by proving that the wrapping preserves satisfaction of the specification and generates
traces in Lfile.

Lemma 5.1. ∀𝑃0, ops. Φfile (𝑃0, ops) ⊢ Φfile (𝑃0 ∗ trace(𝜀) ∗ traceInv(Lfile),wrapfile (ops)).

Proof Sketch. We first need to define new wrapped versions of the abstract representation
predicates, which relate the abstract resources to the current trace. The idea is that the wrapped
open resource, openw, should express that the current trace 𝑡 is in Lfile and that the trace 𝑡 is open.
Likewise, the wrapped closed resource, closedw can simply express that the current trace is in Lfile.

openw ≜ open ∗ ∃𝑡 . trace(𝑡) ∗ traceInv(Lfile) ∗ ⌈isopen(𝑡, |𝑡 |)⌉

closedw ≜ closed ∗ ∃𝑡 . trace(𝑡) ∗ traceInv(Lfile)

We need to prove 𝑃0 ∗ trace(𝜀) ∗ traceInv(Lfile) −−∗ closedw assuming 𝑃0 −−∗ closed, which follows
trivially from the definition of closedw. It remains to be proved that the wrapped methods satisfy
their specifications.

{closedw}
{closed ∗ ∃𝑡 . trace(𝑡) ∗ traceInv(Lfile)}

open();
{open ∗ ∃𝑡 . trace(𝑡) ∗ traceInv(Lfile)}

emit open;
{open ∗ ∃𝑡 . trace(𝑡) ∗ traceInv(Lfile) ∗

⌈isopen(𝑡, |𝑡 |)⌉}
{openw}

We give on the right a proof outline for the wrapped
openmethod. Here we use the assumed specification of the
underlying open method to verify the call to open, and we
used the following property of Lfile and isopen to prove
that emitting open would result in a trace in Lfile that was
open (recall that trace(𝑡) combined with traceInv(Lfile)

entails 𝑡 ∈ Lfile):

∀𝑡 ∈ Lfile. 𝑡 · open ∈ Lfile ∧ isopen(𝑡 · open, |𝑡 · open|) .

The proofs for the close and read operations are similar, but rely on the following property to
justify the emits:

∀𝑡 ∈ Lfile. isopen(𝑡, |𝑡 |) =⇒ 𝑡 · close ∈ Lfile ∧ 𝑡 · read ∈ Lfile .

By combining Lemma 5.1 with the Adequacy theorem (Theorem 4.1) we have thus shown the
free theorem that any verified client can only close and read when the file is open.
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5.2 Iterators on Collections

We consider a collections library that provides methods for modifying a collection as well as
iterating over it. The combination of these two features means that we have to be wary of iterator
invalidation: it is typically unsafe to use an iterator after the collection it is iterating over has
been modified. Following Krishnaswami et al. [2009], we assume for such a library a cut-down
Separation Logic library specification that does not track the contents of the underlying collections,
and consists of five operations. The size operation is non-destructive and returns the size of the
given collection; the add and remove operations destructively modify the given collection by adding
or removing an element; and finally, iterator returns a new iterator for the collection, while next
returns the next element of a given iterator.

Φcoll (𝑃0, (size, add, remove, iterator, next)) ≜

∃coll : Val→ iProp. ∃iter : Val × Val→ iProp. □(𝑃0 −−∗ ∃𝑐 : Val. coll(𝑐)) ∧

∀𝑐 : Val.
{
coll(𝑐)

}
size()

{
𝑥 . coll(𝑐)

}
∧

∀𝑐, 𝑥 : Val.
{
coll(𝑐)

}
add (𝑥)

{
∃𝑐 ′ : Val. coll(𝑐 ′)

}
∧

∀𝑐, 𝑥 : Val.
{
coll(𝑐)

}
remove(𝑥)

{
∃𝑐 ′ : Val. coll(𝑐 ′)

}
∧

∀𝑐 : Val.
{
coll(𝑐)

}
iterator ()

{
𝑟 . coll(𝑐) ∗ iter(𝑟, 𝑐)

}
∧

∀𝑐, 𝑥 : Val.
{
coll(𝑐) ∗ iter(𝑥, 𝑐)

}
next (𝑥)

{
coll(𝑐) ∗ iter(𝑥, 𝑐)

}
A seasoned practicioner of Separation Logic will be able to read from this specification that it

successfully prevents the pitfall of iterator invalidation, i.e. it prevents the use of iterators that
have been invalidated by a modification to the collection. This is not completely obvious, and
comes from the combination of three observations. Firstly, the coll(𝑐) resource, which represents
the ownership over the collection, is indexed by a value 𝑐 which can be seen as an abstract version
number. Secondly, destructive operations such as add or remove update the version number to a
new existentially quantified version number, which can only be assumed to be distinct from all the
previous versions of the collection. Finally, the iter(𝑝, 𝑐) resource expresses that 𝑝 is an iterator
over a collection which was at version 𝑐 when the iterator was created; the specification of next
then requires the ownership of both an iterator and its collection with matching version numbers.
In other words, by simply reading the specification we can deduce the following free theorem:

An iterator over a collection can only be used if the underlying collection has not been

destructively modified since the iterator was created.

This is a trace property of the interaction between the collection library and clients. To capture it
formally, we define as before a wrapper for the library that produces appropriate trace events. The
instrumentation is fairly straightforward and simply emits a suitable event indicating the operation
called and the argument and/or return value of the given operation, when relevant:

wrapcoll ≜ 𝜆(size, add, remove, iter, next).

©«

𝜆𝑦. let 𝑟 = size(𝑦) in emit size; 𝑟,
𝜆𝑦. add (𝑦); emit add,
𝜆𝑦. remove(𝑦); emit remove,
𝜆_. let 𝑟 = iter () in emit⟨iterator, 𝑟 ⟩; 𝑟,
𝜆𝑦. let 𝑟 = next (𝑦) in emit⟨next, 𝑦⟩; 𝑟

ª®®®®®¬
The traces ignore the arguments to add and remove and the return values of size and next, as

they are irrelevant for the protocol.
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With this instrumentation we can now express the informal protocol as a language of permissible
interaction traces between the client and library. We let the trace alphabet be the countable set:

Σ = {size, add, remove} ∪ {⟨next, ℓ⟩, ⟨iterator, ℓ⟩ | ℓ ∈ Loc}

The language Lcoll of safe behaviours contains all strings 𝑡 ∈ Σ
∗ such that, for all 0 ≤ 𝑖 < |𝑡 |:

if 𝑡 [𝑖] = ⟨next, ℓ⟩ then there is 𝑗 < 𝑖 such that 𝑡 [ 𝑗] = ⟨iterator, ℓ⟩ and, for all
𝑗 < 𝑘 < 𝑖 , 𝑡 [𝑘] ∉ { add, remove }.

That is, every call to the next method of an iterator ℓ must be preceded by a call to iterator () which
returns ℓ . In addition, there should be no modification of the collection between those two events.
We now aim to prove that, for an arbitrary library implementation𝑀 that satisfies the collec-

tions specification, the wrapped library implementation wrapcoll (𝑀) also satisfies the collections
specification and the traces generated by the wrapped implementation are in the language Lcoll.

Lemma 5.2. ∀𝑃0, ops. Φcoll (𝑃0, ops) ⊢ Φcoll (𝑃0 ∗ trace(𝜀) ∗ traceInv(Lcoll),wrapcoll (ops)).

Proof Sketch. We first need to define new wrapped versions of the coll and iter resources that
relate the abstract version number to the trace state. The key idea is that the collection parameter
of the wrapped coll resource will consist of a pair (𝑐, 𝑛), where the 𝑐 component is the parameter of
the underlying coll resource and 𝑛 is the index in the trace of the last add or remove event. We want
the wrapped coll((𝑐, 𝑛)) resource to assert that there are no add or remove events in the current
trace after the 𝑛-th element. Likewise, the wrapped iter(𝑟, (𝑐, 𝑛)) resource should assert that there
is an iterator event for iterator 𝑟 in the current trace after the 𝑛-th element. Hence, if we own
both coll((𝑐, 𝑛)) and iter(𝑟, (𝑐, 𝑛)) then we know that no add or remove events were emitted since
the iterator 𝑟 was created.

Let coll and iter denote the non-wrapped representation predicates that exist by the Φcoll (𝑃0, 𝑜𝑝𝑠)

assumption and define the wrapped representation predicates collw and iterw as follows:

collw (𝑥) ≜ ∃𝑦 : Val. ∃𝑛 : N. ⌈𝑥 = (𝑦, 𝑛)⌉ ∗ coll(𝑦) ∗
∃𝑡 . trace(𝑡) ∗ traceInv(Lcoll) ∗ ⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉

iterw (𝑟, 𝑥) ≜ ∃𝑦 : Val. ∃𝑛 : N. ⌈𝑥 = (𝑦, 𝑛)⌉ ∗ iter(𝑦) ∗ ∃𝑡 . hist(𝑡) ∗ ⌈⟨iterator, 𝑟 ⟩ ∈ 𝑡 [𝑛..]⌉

where we use 𝑡 [𝑛..] as notation for the subtrace of 𝑡 starting from the 𝑛-th element.
It thus remains to show that the wrapped library satisfies the collections specification. First,

we need to prove that we obtain a wrapped collection resource from the initial resources: 𝑃0 ∗
traceInv(Lcoll) ∗ trace(𝜀) −−∗ ∃𝑐 : Val. collw (𝑐). This follows easily from the 𝑃0 −−∗ ∃𝑐

′ : Val. coll(𝑐 ′)
assumption by taking the second component of 𝑐 to be 0.
Next, we have to show that each of the wrapped operations satisfies the corresponding Hoare

triple. The size method is particularly simple, as any trace 𝑡 ∈ Lcoll can trivially be extended with a
size event 𝑡 · size ∈ Lcoll. We will thus skip the size method. The add method is more interesting,
as we have to update the index into the trace for the last add event. Below is a proof outline for the
wrapped add method applied to argument z.

{collw (𝑐)}
{∃𝑥, 𝑛, 𝑡 . ⌈𝑐 = (𝑥, 𝑛)⌉ ∗ coll(𝑥) ∗ trace(𝑡) ∗ traceInv(Lcoll) ∗ ⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉}

add(z);
{∃𝑥 ′, 𝑛, 𝑡 . coll(𝑥 ′) ∗ trace(𝑡) ∗ traceInv(Lcoll) ∗ ⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉}

emit add;
{∃𝑥 ′, 𝑛, 𝑡 . coll(𝑥 ′) ∗ trace(𝑡 · add) ∗ traceInv(Lcoll) ∗ ⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉}

{∃𝑐 ′ : Val. collw (𝑐 ′)}
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This leaves us with two proof obligations: firstly, we have to show that we are allowed to emit the
add event (i.e., that 𝑡 · add ∈ Lcoll); and secondly for the last step we have to show that:

∀𝑥 ′, 𝑛, 𝑡 .

(
coll(𝑥 ′) ∗ trace(𝑡 · add) ∗ traceInv(Lcoll)

∗ ⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉

)
−−∗ ∃𝑐 ′ : Val. collw (𝑐

′)

This follows easily by taking 𝑐 ′ to be (𝑥 ′, |𝑡 · add|), as 𝑡 · add contains no add or remove events after
the |𝑡 · add|-th element. The proof for remove follows the same structure as for add.

{collw (𝑐)}
{∃𝑥, 𝑛, 𝑡 . ⌈𝑐 = (𝑥, 𝑛)⌉ ∗ coll(𝑥) ∗ trace(𝑡) ∗
traceInv(Lcoll) ∗ ⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉}

let r = iterator() in
{∃𝑥, 𝑛, 𝑡 . ⌈𝑐 = (𝑥, 𝑛)⌉ ∗ coll(𝑥) ∗ iter(r, 𝑥) ∗ trace(𝑡) ∗
traceInv(Lcoll) ∗ ⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉}

emit⟨iterator, r⟩;
{∃𝑥, 𝑛, 𝑡 . ⌈𝑐 = (𝑥, 𝑛)⌉ ∗ coll(𝑥) ∗ iter(r, 𝑥) ∗
trace(𝑡 · ⟨iterator, r⟩) ∗ traceInv(Lcoll) ∗

⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉}

{collw (𝑐) ∗ iterw (r, 𝑐)}
r
{𝑟 . collw (𝑐) ∗ iterw (𝑟, 𝑐)}

For the iterator method, we emit an iterator
event and create a new hist resource to record
the trace at the time of the creation of the iter-
ator. One the right, we give a proof outline for
the iterator method. We are left with two proof
obligations: 𝑡 · ⟨iterator, r⟩ ∈ Lcoll, and:

∀𝑥, 𝑛, 𝑡 .

(⌈𝑐 = (𝑥, 𝑛)⌉ ∗ coll(𝑥) ∗ iter(r, 𝑥) ∗

trace(𝑡 · ⟨iterator, r⟩) ∗ traceInv(Lcoll) ∗

⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉)

−−∗ collw (𝑐) ∗ iterw (r, 𝑐)

To discharge this last proof obligation, we use the rule from Figure 3 that allows us to introduce
a history resource hist(𝑡 · ⟨iterator, r⟩) and since 𝑛 ≤ |𝑡 | it follows that ⟨iterator, r⟩ ∈ (𝑡 ·
⟨iterator, r⟩) [𝑛..], as required by iterw (r, 𝑐).
We are left with next, which is the most interesting case as it requires us to prove the iterator

we are trying to use is still valid. We give a proof outline for the next method applied to a value x:

{collw (𝑐) ∗ iterw (x, 𝑐)}
{∃𝑦, 𝑛, 𝑡, 𝑡 ′. ⌈𝑐 = (𝑦, 𝑛)⌉ ∗ coll(𝑦) ∗ iter(x, 𝑐) ∗ trace(𝑡) ∗ hist(𝑡 ′) ∗ traceInv(Lcoll)

∗ ⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉ ∗ ⌈⟨iterator, x⟩ ∈ 𝑡 ′[𝑛..]⌉}

let r = next(x);
{∃𝑦, 𝑛, 𝑡, 𝑡 ′. ⌈𝑐 = (𝑦, 𝑛)⌉ ∗ coll(𝑦) ∗ iter(x, 𝑐) ∗ trace(𝑡) ∗ hist(𝑡 ′) ∗ traceInv(Lcoll)

∗ ⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉ ∗ ⌈⟨iterator, x⟩ ∈ 𝑡 ′[𝑛..]⌉}

emit⟨next, x⟩;
{∃𝑦, 𝑛, 𝑡, 𝑡 ′. ⌈𝑐 = (𝑦, 𝑛)⌉ ∗ coll(𝑦) ∗ iter(x, 𝑐) ∗ trace(𝑡 · ⟨next, x⟩) ∗ hist(𝑡 ′) ∗ traceInv(Lcoll)

∗ ⌈add, remove ∉ 𝑡 [𝑛..] ∧ 𝑛 ≤ |𝑡 |⌉ ∗ ⌈⟨iterator, x⟩ ∈ 𝑡 ′[𝑛..]⌉}

{collw (𝑐) ∗ iterw (x, 𝑐)}
r
{collw (𝑐) ∗ iterw (x, 𝑐)}

To verify the emit expression, we further have to prove that 𝑡 · ⟨next, x⟩ ∈ Lcoll, that is, that the
iterator x is still valid. This relies on the following key property of the Lcoll language:

𝑡 ∈ Lcoll ∧ add, remove ∉ 𝑡 [𝑛..] ∧ ⟨iterator, x⟩ ∈ 𝑡 [𝑛..] =⇒ 𝑡 · ⟨next, x⟩ ∈ Lcoll

To apply this property we use the adequate rule from Figure 3 to conclude from trace(𝑡) ∗ hist(𝑡 ′)
that 𝑡 ′ ≤pref 𝑡 and thus that ⟨iterator, x⟩ ∈ 𝑡 ′[𝑛..] =⇒ ⟨iterator, x⟩ ∈ 𝑡 [𝑛..].

5.3 Well-bracketing Protocols

Libraries that allow clients to acquire, access and release resources often impose a well-bracketing
protocol whereby clients are required to acquire resources before accessing and releasing them.
The file library in ğ5.1 was a particularly simple example of such a protocol. In this section we
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consider a more advanced and realistic variant thereof for a library with a higher-order function
that takes care of acquiring and releasing the underlying resource for clients.

Consider a library with a higher-order method withRes for acquiring, accessing and subsequently
releasing some resource (e.g. a file) and an operation op for accessing the resource. The withRes
operation takes as argument a function 𝑓 provided by the client for accessing the resource and
takes care of acquiring the resource before 𝑓 is called and subsequently releasing it again. For such
a library, we typically wish to make sure that (1) clients only access the resource after they have
acquired it, and (2) clients do not try to acquire resources they already hold. Such a library can be
given a specification in Separation Logic as follows:

Φbrac (𝑃0, (withRes, op)) ≜

∃locked : iProp. ∃unlocked : Val→ iProp. □(𝑃0 −−∗ locked) ∧

∀𝑃,𝑄 : iProp.∀𝑓 : Val. {locked ∗ 𝑃 ∗ 𝑆 (𝑃,𝑄, unlocked, 𝑓 )} withRes(𝑓 ) {locked ∗𝑄} ∧

∀𝑥,𝑦 : Val. {unlocked(𝑦)} op(𝑥) {unlocked(𝑦)}

𝑆 (𝑃,𝑄, unlocked, 𝑓 ) ≜ ∀𝑥,𝑦. {unlocked(𝑦) ∗ 𝑃} 𝑓 (𝑥) {unlocked(𝑦) ∗𝑄}

This specification relies on two abstract resources, unlocked and locked, to capture the well-
bracketing aspect of the protocol. One can see that calling withRes requires the client to relinquish
ownership of the locked resource. Since the function provided by the client is only given ownership
of the abstract unlocked resource, it cannot make reentrant calls to withRes. Furthermore, to call
op requires ownership of the unlocked resource, thus ensuring that only the callback provided by
the client to withRes can call op.
But this specification entails another less obvious property. In the specification of withRes, the

library must behave parametrically with respect to 𝑃 and𝑄 , which are provided by the client. Thus,
the specification ensures that withRes is forced to call the function provided by the client exactly
once, as the only way it can transform 𝑃 into 𝑄 is by calling the function provided by the client.

As before, we wish to establish these properties as free theorems obtained from the specification.
We define a wrapping function that instruments the library to emit call and return events for all
calls where control passes between client and library.

wrapbrac ≜ 𝜆(withRes, op). ( 𝜆𝑓 . emit⟨call, withRes, 𝑓 ⟩;

withRes(𝜆𝑥 . emit⟨call, 𝑓 ⟩; 𝑓 (𝑥); emit⟨ret, 𝑓 ⟩);

emit⟨ret, withRes, 𝑓 ⟩,

𝜆x. emit⟨call, op⟩; op(x); emit⟨ret, op⟩ )

We now state formally the desired property as a well-bracketing property of the traces generated
by the instrumented library. Let us define Lbracfull ⊆ Val∗ the language of traces of the form:

𝑠 ′ · ⟨call, withRes, 𝑓 ⟩ · ⟨call, 𝑓 ⟩ · 𝑠op · ⟨ret, 𝑓 ⟩ · ⟨ret, withRes, 𝑓 ⟩

for some 𝑓 ∈ Val, 𝑠op ∈ (⟨call, op⟩ · ⟨ret, op⟩)
∗ and 𝑠 ′ ∈ Lbracfull. That is, the traces in Lbracfull

are well-bracketed sequences of events formed of subsequences of the form ⟨call, withRes, 𝑓 ⟩ ·
⟨call, 𝑓 ⟩ · 𝑠op · ⟨ret, 𝑓 ⟩ · ⟨ret, withRes, 𝑓 ⟩, and subsequences thereof, where 𝑠op a sequence of
consecutive calls and returns of op. Then, we take Lbrac, the language of traces we wish to enforce,
to be the prefix closure of Lbracfull.

To prove that the specification enforces the trace property we proceed as usual, by proving that
for any implementation𝑀 that satisfies the specification, the wrapped implementationwrapbrac (𝑀)

also satisfies the specification and generates traces in Lbrac.

Lemma 5.3. ∀𝑃0, 𝑜𝑝𝑠. Φbrac (𝑃0, 𝑜𝑝𝑠) ⊢ Φbrac (𝑃0 ∗ trace(𝜀) ∗ traceInv(Lbrac),wrapbrac (ops)).
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Proof Sketch. To prove that the wrapped version satisfies the specification and produces traces
in Lbrac, we first need to define wrapped versions of the abstract representation predicates. The
idea is to let the wrapped locked resource, lockedw, express that the current trace 𝑡 is in Lbrac and
the ⟨call, withRes, 𝑓 ⟩ and ⟨ret, withRes, 𝑓 ⟩ events in 𝑡 are well-balanced and well-bracketed. For
the wrapped unlocked resource, unlockedw (𝑥), the idea is to use the argument 𝑥 to track the name
𝑓 of the last unbalanced ⟨call, withRes, 𝑓 ⟩ event in 𝑡 .
To simplify the definitions and subsequent proofs, we first introduce a number of auxiliary re-

sources,𝑇0,𝑇1,𝑇2 and𝑇3.𝑇0 expresses that the current trace is well-balanced.We setO = (⟨call, op⟩ ·

⟨ret, op⟩)∗. 𝑇1 (𝑓 ) expresses that the current trace 𝑡 has the form 𝑠 · ⟨call, withRes, 𝑓 ⟩ where 𝑠 is
well-balanced.𝑇2 (𝑓 ) expresses that the current trace 𝑡 has the form 𝑠 ·⟨call, withRes, 𝑓 ⟩·⟨call, 𝑓 ⟩·𝑠

′

where 𝑠 is well-balanced and 𝑠 ′ ∈ O. Finally, 𝑇3 (𝑓 ) expresses that the current trace 𝑡 has the form
𝑠 · ⟨call, withRes, 𝑓 ⟩ · ⟨call, 𝑓 ⟩ · 𝑠 ′ · ⟨ret, 𝑓 ⟩ where 𝑠 is well-balanced and 𝑠 ′ ∈ O.

𝑇0 = ∃𝑡 . trace(𝑡) ∗ traceInv(Lbrac) ∗ ⌈𝑡 ∈ Lbracfull⌉

𝑇1 (𝑓 ) = ∃𝑡 . trace(𝑡) ∗ traceInv(Lbrac) ∗ ∃𝑡
′ ∈ Lbracfull. ⌈𝑡 = 𝑡

′ · ⟨call, withRes, 𝑓 ⟩⌉

𝑇2 (𝑓 ) = ∃𝑡 . trace(𝑡) ∗ traceInv(Lbrac) ∗

∃𝑡 ′ ∈ Lbracfull, 𝑠op ∈ O .
⌈
𝑡 = 𝑡 ′ · ⟨call, withRes, 𝑓 ⟩ · ⟨call, 𝑓 ⟩ · 𝑠op

⌉
𝑇3 (𝑓 ) = ∃𝑡 . trace(𝑡) ∗ traceInv(Lbrac) ∗

∃𝑡 ′ ∈ Lbracfull, 𝑠op ∈ O .
⌈
𝑡 = 𝑡 ′ · ⟨call, withRes, 𝑓 ⟩ · ⟨call, 𝑓 ⟩ · 𝑠op · ⟨ret, 𝑓 ⟩

⌉
With these resources, we can now define unlockedw and lockedw:

unlockedw (𝑥) ≜ ∃𝑦, 𝑧 : Val. ⌈𝑥 = (𝑦, 𝑧)⌉ ∗ unlocked(𝑦) ∗𝑇2 (𝑧)

lockedw ≜ locked ∗𝑇0

It follows easily that 𝑃0∗trace(𝜀)∗traceInv(Lbrac) −−∗ lockedw from trace(𝜀)∗traceInv(Lbrac) −−∗ 𝑇0
and the assumption 𝑃0 −−∗ locked.
It remains to show that the two instrumented operations satisfy their specifications. We begin

by showing that the instrumented withRes operation satisfies its specification:

∀𝑃,𝑄 : iProp.∀𝑓 : Val.

{lockedw ∗ 𝑃 ∗ 𝑆 (𝑃,𝑄, unlockedw, 𝑓 )} fst (wrapbrac (withRes, op)) (𝑓 ) {lockedw ∗𝑄}

assuming withRes satisfies its specification:

∀𝑃,𝑄 : iProp.∀𝑓 : Val. {locked ∗ 𝑃 ∗ 𝑆 (𝑃,𝑄, unlocked, 𝑓 )} withRes(𝑓 ) {locked ∗𝑄}.

We give a proof outline for the instrumented withRes operation:

{lockedw ∗ 𝑃 ∗ 𝑆 (𝑃,𝑄, unlockedw, 𝑓 )}
{locked ∗𝑇0 ∗ 𝑃 ∗ 𝑆 (𝑃,𝑄, unlockedw, 𝑓 )}
emit⟨call, withRes, f⟩;
{locked ∗𝑇1 (𝑓 ) ∗ 𝑃 ∗ 𝑆 (𝑃,𝑄, unlockedw, 𝑓 )}
let g = 𝜆x. emit⟨call, f⟩; f(x); emit⟨ret, f⟩ in
{locked ∗𝑇1 (𝑓 ) ∗ 𝑃 ∗

𝑆 (𝑃 ∗𝑇1 (𝑓 ), 𝑄 ∗𝑇3 (𝑓 ), unlocked, 𝑔)}
withRes(g);
{locked ∗𝑇3 (𝑓 ) ∗𝑄}
emit⟨ret, withRes, f⟩
{locked ∗𝑇0 ∗𝑄}
{lockedw ∗𝑄}

{unlocked(𝑦) ∗ 𝑃 ∗𝑇1 (𝑓 ) ∗ 𝑆 (𝑃,𝑄, unlockedw, 𝑓 )}
emit⟨call, f⟩;
{unlocked(𝑦) ∗ 𝑃 ∗𝑇2 (𝑓 ) ∗ 𝑆 (𝑃,𝑄, unlockedw, 𝑓 )}
{unlockedw ((𝑦, 𝑓 )) ∗ 𝑃 ∗ 𝑆 (𝑃,𝑄, unlockedw, 𝑓 )}
f(x);
{unlockedw ((𝑦, 𝑓 )) ∗𝑄}
{unlocked(𝑦) ∗𝑄 ∗𝑇2 (𝑓 )}
emit⟨ret, f⟩
{unlocked(𝑦) ∗𝑄 ∗𝑇3 (𝑓 )}
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The interesting step, that we detail on the right-hand side of the proof outline, is showing that
from the assumed specification of 𝑓 we can derive the desired specification for the instrumented
version of 𝑓 :

∀𝑃,𝑄 : iProp.∀𝑓 : Val. 𝑆 (𝑃,𝑄, unlockedw, 𝑓 ) ⇒
𝑆 (𝑃 ∗𝑇1 (𝑓 ), 𝑄 ∗𝑇3 (𝑓 ), unlocked, 𝜆𝑥 . emit⟨call, 𝑓 ⟩; 𝑓 (𝑥); emit⟨ret, 𝑓 ⟩).

Lastly, we need to show that the instrumented op function satisfies its specification. This follows
easily from the fact that unlockedw enforces 𝑇2 (𝑓 ), which is itself preserved when emitting a new
⟨call, op⟩ event. □

5.4 Traversable Stack Example

To further demonstrate that our approach can express and enforce strong trace properties, recall
the stack example from ğ2. We have a stack with a push and a pop method, and a foreach method
that takes a function argument and applies the given function to every element of the stack, in
order, starting from the top-most element. Here the protocol on the interaction between client and
library imposes restrictions on both the client and the library. In particular, we wish to ensure that
the function provided by the client cannot call back into the stack-library and potentially modify
the underlying stack during the iteration of the stack. We also wish to ensure that the library calls
the function provided by the client with every element currently on the stack and in the right order.
A higher-order separation logic specification for such a stack data structure is the following.

Φ(𝑃𝑖𝑛𝑖𝑡 , (push, pop, foreach)) ≜

∃stack : Val∗ → iProp. □(𝑃𝑖𝑛𝑖𝑡 −−∗ stack(𝜀)) ∧

∀𝛼, 𝑥 . {stack(𝛼) ∗ ⌈𝑥 ≠ ()⌉} push(𝑥) {stack(𝑥 :: 𝛼)} ∧

∀𝛼. {stack(𝛼)} pop() {𝑟 . (⌈𝑟 = () ∧ 𝛼 = 𝜀⌉ ∗ stack(𝛼)) ∨ (∃𝛼 ′. ⌈𝛼 = 𝑟 :: 𝛼 ′⌉ ∧ stack(𝛼 ′))} ∧

∀𝛼, 𝑓 , 𝐼 . {stack(𝛼) ∗ 𝐼 (𝜀) ∗ ∀𝛽, 𝑥 . {𝐼 (𝛽)} 𝑓 (𝑥) {𝐼 (𝑥 :: 𝛽)}} foreach(𝑓 ) {stack(𝛼) ∗ 𝐼 (rev(𝛼))}

It asserts existence of an abstract stack representation predicate stack(𝛼) that tracks the exact
sequence of elements currently on the stack using the mathematical sequence 𝛼 . The specification
for push and pop is straightforward: pushing and popping elements pushes or pops elements from
this mathematical sequence, with a few special cases for pushing () or popping from an empty
stack. The specification for foreach is more interesting. It is parametrised by a predicate 𝐼 , to be
chosen by the client. This predicate is indexed by a sequence 𝛽 and 𝐼 (𝛽) is intended to capture
the client’s state after the function provided by the client has been called on each element of 𝛽 ,
in reverse order. This accounts for the 𝐼 (rev(𝛽)) in the post-condition, where rev is the reverse
operator on sequences.
We now wish to show as a free theorem that any implementation satisfying this Separation

Logic stack specification will satisfy the informal trace property described above. We can formalize
the intended protocol as the language Lstack defined as the prefix closure of the language of all
traces 𝑡 such that stktr (𝑡, 𝜀) holds, where, given 𝛼 ∈ Val

∗, we define stktr (𝑡, 𝛼) by:

stktr (𝑡, 𝛼) ≜ (𝑡 = 𝛼 = 𝜀) ∨

(𝑡 = 𝑡 ′ · ⟨call, push, 𝑥⟩ · ⟨ret, push⟩ ∧ 𝛼 =𝑥 ::𝛼 ′∧ stktr(𝑡
′, 𝛼 ′)) ∨

(𝑡 = 𝑡 ′ · ⟨call, pop⟩ · ⟨ret, pop, ()⟩ ∧ 𝛼 = 𝜀 ∧ stktr (𝑡
′, 𝜀)) ∨

(𝑡 = 𝑡 ′ · ⟨call, pop⟩ · ⟨ret, pop, 𝑥⟩ ∧ stktr (𝑡
′, 𝑥 :: 𝛼)) ∨

(𝑡 = 𝑡 ′ · ⟨call, foreach, 𝑓 ⟩ · 𝑡 ′′ · ⟨ret, foreach⟩ ∧ stktr (𝑡
′, 𝛼) ∧ trav(𝑡 ′′, 𝛼, 𝑓 ))

trav(𝑡, 𝛼, 𝑓 ) ≜ (𝑡 = 𝛼 = 𝜀) ∨ (𝑡 = ⟨call, 𝑓 , 𝑥⟩ · ⟨ret, 𝑓 ⟩ · 𝑡 ′ ∧ 𝛼 = 𝑥 :: 𝛼 ′ ∧ trav(𝑡 ′, 𝛼 ′, 𝑓 ))
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To prove the free theorem we then define a suitable library wrapper that tracks all calls to push

and pop and all calls to the function argument provided by the client when calling foreach.

wrapstack (push, pop, foreach) ≜

(𝜆𝑥. emit⟨call, push, 𝑥⟩; push(𝑥); emit⟨ret, push⟩,
𝜆_. emit⟨call, pop⟩; let 𝑥 = pop() in emit⟨ret, pop, 𝑥⟩;𝑥,

𝜆𝑓 . emit⟨call, foreach, 𝑓 ⟩; foreach
(
𝜆𝑥 . emit⟨call, 𝑓 , 𝑥⟩; 𝑓 (𝑥);

emit⟨ret, 𝑓 ⟩
)
; emit⟨ret, foreach⟩)

Lemma 5.4. ∀𝑃0, ops. Φ(𝑃0, ops) ⊢ Φ(𝑃0 ∗ traceInv(Lstack) ∗ trace(𝜀),wrapstack (ops)).

Proof Sketch. We proceed by defining a wrapped version of the stack predicate that asserts
that the sequence of elements 𝛼 matches the contents of the stack as per the current trace 𝑡 .

stackw (𝛼) ≜ stack(𝛼) ∗ ∃𝑡 . ⌈stktr (𝑡, 𝛼)⌉ ∗ trace(𝑡) ∗ traceInv(Lstack)

Clearly we have that 𝑃𝑖𝑛𝑖𝑡 ∗ traceInv(Lstack) ∗ trace(𝜀) −−∗ stackw (𝜀) and 𝑃𝑖𝑛𝑖𝑡 −−∗ stack(𝜀).
It remains to prove the wrapped library methods satisfy the specification instantiated with the

wrapped stack predicate. The proofs for push and pop are straightforward and have been omitted.
For foreach we are given a predicate 𝐼 from the client and need to prove the following triple:

{stackw (𝛼) ∗ 𝐼 (𝜀) ∗ ∀𝛽, 𝑥 . {𝐼 (𝛽)} 𝑓 (𝑥) {𝐼 (𝑥 :: 𝛽)}}

(snd (snd (wrapstack (ops))) (𝑓 )

{stackw (𝛼) ∗ 𝐼 (𝑟𝑒𝑣 (𝛼)))}

In the call to the underlying foreach method, we can pick a suitably wrapped version of the 𝐼
predicate, 𝐼w (𝛽). The idea is that it should assert 𝐼 (𝛽) and that we have emitted an opening foreach
call and called the function argument on all the elements of 𝛽 so far.

𝐼w (𝛽) ≜ 𝐼 (𝛽) ∗ ∃𝑡1, 𝑡2. ⌈stktr (𝑡1, 𝛼) ∧ trav(𝑡2, 𝑟𝑒𝑣 (𝛽), 𝑓 )⌉ ∗ trace(𝑡1 · ⟨call, foreach, 𝑓 ⟩ · 𝑡2)

Weneed to prove that thewrapped function argument updates thewrapped 𝐼 predicate appropriately.
This follows from:

{𝐼w (𝛽)}

{𝐼 (𝛽) ∗ ∃𝑡1, 𝑡2 . ⌈stktr (𝑡1, 𝛼) ∧ trav(𝑡2, 𝑟𝑒𝑣 (𝛽), 𝑓 )⌉ ∗ trace(𝑡1 · ⟨call, foreach, 𝑓 ⟩ · 𝑡2)}
emit ⟨call, 𝑓 , 𝑥⟩;
{𝐼 (𝛽) ∗ ∃𝑡1, 𝑡2 . ⌈stktr (𝑡1, 𝛼) ∧ trav(𝑡2, 𝑟𝑒𝑣 (𝛽), 𝑓 )⌉ ∗ trace(𝑡1 · ⟨call, foreach, 𝑓 ⟩ · 𝑡2 · ⟨call, 𝑓 , 𝑥⟩)}
f(x);
{𝐼 (𝑥 :: 𝛽) ∗ ∃𝑡1, 𝑡2 . ⌈stktr (𝑡1, 𝛼) ∧ trav(𝑡2, 𝑟𝑒𝑣 (𝛽), 𝑓 )⌉ ∗ trace(𝑡1 · ⟨call, foreach, 𝑓 ⟩ · 𝑡2 · ⟨call, 𝑓 , 𝑥⟩)}
emit ⟨ret, 𝑓 ⟩;
{𝐼 (𝑥 :: 𝛽) ∗ ∃𝑡1, 𝑡2 . ⌈stktr (𝑡1, 𝛼) ∧ trav(𝑡2, 𝑟𝑒𝑣 (𝛽), 𝑓 )⌉

∗ trace(𝑡1 · ⟨call, foreach, 𝑓 ⟩ · 𝑡2 · ⟨call, 𝑓 , 𝑥⟩ · ⟨ret, 𝑓 ⟩)}
{𝐼 (𝑥 :: 𝛽) ∗ ∃𝑡1, 𝑡2 . ⌈stktr (𝑡1, 𝛼) ∧ trav(𝑡2, 𝑟𝑒𝑣 (𝑥 :: 𝛽), 𝑓 )⌉ ∗ trace(𝑡1 · ⟨call, foreach, 𝑓 ⟩ · 𝑡2)}
{𝐼w (𝑥 :: 𝛽)}

The second to last step follows from the following property:

∀𝛼, 𝑥, 𝑡 . trav(𝑡, 𝛼, 𝑓 ) =⇒ trav(𝑡 · ⟨call, 𝑓 , 𝑥⟩ · ⟨ret, 𝑓 ⟩, 𝛼 · 𝑥, 𝑓 )

Now the rest of the proof of foreach is just an application of the specification of the underlying
foreach method and the Emit rule for the emission of the foreach call and return events. □
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6 RELATING LOGICAL ATOMICITY AND LINEARIZABILITY

The specifications that we have considered so far are sequential in nature. Indeed, even though we
are working in a concurrent language, and even though both the implementation of a library and
its client can in principle make use of concurrency primitives, the specifications presented earlier
enforce that a client may only call the operations of the library in a sequential fashion.
For instance, the specification for the push operation of the stack library requires the client

to give up exclusive ownership over the stack data structure for the duration of the call, thus
preventing concurrent operations to be made.

And indeed, nothing requires an implementation of this stack library to be thread-safe: during the
execution of push, the internal invariants on the stack data structure might be temporarily broken,
in a way that would be observable by concurrent operations. An unverified client attempting to use
the library in a concurrent fashion might then observe bogus results or corrupt the data structure.

Proper concurrent data structures are instead carefully designed to ensure that all operations are
safe to call concurrently. In particular, they usually ensure that operations appear to take effect
atomically, in order to alleviate the need for clients to reason about interleavings of the individual
instructions within each operation.

Classically this idea of atomicity is formalized as a property of traces of the interactions between
library and client called linearizability [Herlihy and Wing 1990]. More recently, in the setting of
program logics such as TaDa [da Rocha Pinto et al. 2014] and Iris [Jung et al. 2015a] (see also
[Birkedal and Bizjak 2020, Sec. 13]), an alternative notion called logical atomicity has been proposed
as an alternative to linearizability more amenable to program verification in Hoare logic. Logical
atomicity allows expressing the idea of linearizability as an abstract specification for a library, thus
allowing clients to reason about operations that appear atomic using the same reasoning principles
as physically atomic operations.

In this section, we show how to establish a formal connection between linearizability and logical
atomicity. More precisely, we show that any library that can be verified against a logically atomic
specification is in fact linearizable.

6.1 Logical Atomicity

In this subsection we recall how logical atomicity is captured in Iris. As mentioned above, a logically
atomic specification for an operation is intended to express that the operation behaves as if it was
atomic. Now, from a logical perspective, what reasoning power do we gain from this property,
when reasoning about calls to logically atomic operations? The answer is that logical atomicity
allows us to access invariants around logically atomic operations. In Iris, invariants are the key
mechanism used to manage resources that are shared and updated between concurrent threads
according to certain protocols. Invariants (which have to hold at every step of the execution) can
only be accessed for the duration of a single atomic execution step, during which the resources
held by the invariant become accessible. This is described by the invariant opening rule inv-open:3

inv-open{
𝑃 ∗ 𝑅

}
𝑒
{
𝑣 .𝑄 ∗ 𝑅

}
𝑒 is atomic

𝑅 ⊢
{
𝑃
}
𝑒
{
𝑣 .𝑄

}
What logical atomicity grants us is the power to use a similar invariant opening rule around the

call to a logically atomic operation, even though its implementation is not physically atomic (it
performs more than one step of computation), as long as it behaves as if it were.

3We omit the technical details related to namespaces and masks throughout this section. They are important for soundness

but not for the presentation here, and we refer the reader to the Coq formalization for further details.
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Logically atomic triples. Logically atomic operations are specified using logically atomic Hoare
triples,

〈
𝑃
〉
𝑒
〈
𝑣 .𝑄

〉
. These triples support an invariant opening rule similar to inv-open:

logatom-inv-open〈
𝑃 ∗ 𝑅

〉
𝑒
〈
𝑣 .𝑄 ∗ 𝑅

〉
𝑅 ⊢

〈
𝑃
〉
𝑒
〈
𝑣 .𝑄

〉
Note that in contrast to inv-open, this rule does not require the expression 𝑒 to be physically

atomic. Unlike a normal Hoare triple, which expresses that the resources in precondition 𝑃 are
updated to 𝑄 after possibly many execution steps by running 𝑒 , a logically atomic triple requires
that updates occur during a single execution step. As such, a triple

〈
𝑃
〉
𝑒
〈
𝑣 .𝑄

〉
is perhaps best

seen as the specification for the linearization point that occurs during the execution of 𝑒 : the single
internal step that atomically updates the observable state of the data structure.

Using and proving logically atomic triples. Logically atomic triples are defined in Iris in terms of
a more primitive notion of atomic update. We have the following rule:

logatom-au〈
𝑃
〉
𝑒
〈
𝑣 .𝑄

〉
⊣⊢ ∀Ψ.

{
AU𝑃,𝑄 (Ψ)

}
𝑒
{
Ψ
}
.

That is, a logically atomic triple is equivalent to a normal triple where we do not directly get access
to the precondition 𝑃 , but instead to a resource AU𝑃,𝑄 (Ψ) representing the right and obligation to
update resources in 𝑃 into resources in 𝑄 in one step. As witnessed by the universally quantified
postcondition Ψ, when proving a logically atomic triple, one is indeed required to perform the
atomic update (or, in other words, choose a linearization point) as it is the only way of obtaining Ψ.
Atomic updates are not themselves primitives to Iris, but for our purposes we will keep their

definition abstract (more details can be found in [Jung et al. 2015b] and in the Coq formalization of
Iris). Informally, it should be enough to remember that having ownership over an atomic update
AU𝑃,𝑄 gives us the liberty to choose a linearization point where we get access to resources 𝑃 and
must update them into 𝑄 , while being able to access invariants.

6.2 Specification of a Concurrent Library

In this subsection we show what kind of logically atomic specification we consider for a library
with a concurrent operation op. To simplify the presentation, we consider a library that just exposes
a single operation, which can then be called concurrently by a client, possibly with different
arguments. Note that this is in fact equivalent to considering a library exposing several operations:
it is always possible for an operation to dispatch to several concurrent sub-operations depending
on its argument.
Since we wish to cover a wide range of possible operations and specifications, we consider a

fairly abstract specification, where a program value is related to a type 𝑆 of abstract states and
where two mathematical functions 𝑓 and 𝑟 4, of type 𝑆 × Val→ 𝑆 and 𝑆 × Val→ Val respectively,
are used to specify what the updated abstract state and return value should be after executing the
operation, depending on its argument. Thus we will use a specification of the form:〈

𝑠 . PState(𝑥, 𝑠)
〉
op(𝑥,𝑦)

〈
𝑧. PState(𝑥, 𝑓 (𝑠,𝑦)) ∗ ⌈𝑧 = 𝑟 (𝑠,𝑦)⌉

〉
.

Here 𝑥 is a pointer to the data structure that the library implements and which is accessed and
modified by op; and 𝑦 is the argument passed to this specific call to op. PState corresponds to the
abstract representation predicate describing the Separation Logic resources associated with 𝑥 , and
corresponding to the logical model 𝑠 of the data structure (for instance, for a concurrent stack data
structure, 𝑠 would be the sequence of values that it stores). Notice that 𝑠 is bound in the precondition

4 𝑓 and 𝑟 could be easily taken to be relations instead, a generalization that we have implemented in the Coq formalization.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 81. Publication date: August 2021.



81:20 L. Birkedal, T. Dinsdale-Young, A. Guéneau, G. Jaber, K. Svendsen, and N. Tzevelekos

of the triple, instead of being bound on the outside as usual. This reflects the fact that the value
of 𝑠 we are considering will only be known at the linearization point: because the execution of
op might take several steps to execute, the value of 𝑠 might change during its execution, and thus
cannot be predicted upfront.
Now, it is common for concurrent operations to rely on additional resources which are held in

an invariant. To allow for that as well, we parameterize the specification further by a persistent
predicate IsP , which we assume to hold. To relate the instances of IsP and PState that correspond
to the same instantiation of the library, we use a ghost name 𝛾 . To sum up, IsP (𝛾, 𝑥) can be shared
between different threads, and expresses that the name 𝛾 is associated with the structure at address
𝑥 . PState(𝛾, 𝑠) represents the knowledge that the current abstract state of the library is 𝑠 , and is
non-duplicable as it represents ephemeral information that gets updated by calling op. We thus
refine the above specification to:

IsP (𝛾, 𝑥) ⊢
〈
𝑠 . PState(𝛾, 𝑠)

〉
op(𝑥,𝑦)

〈
𝑧. PState(𝛾, 𝑓 (𝑠,𝑦)) ∗ ⌈𝑧 = 𝑟 (𝑠,𝑦)⌉

〉
.

We finally assume that we are provided an initial abstract state 𝑠init ∈ 𝑆 for the library, and a
function opinit which, given initial resources 𝑃init, initializes the library and returns a new instance.
Combining all these elements, our complete specification for a generic concurrent library is

written as follows:

Φ(opinit, op, (𝑆, 𝑠init, 𝑓 , 𝑟 ), 𝑃init, IsP, PState) ≜

∀𝛾, 𝑥 . persistent(IsP (𝛾, 𝑥)) ∧

{𝑃init} opinit () {𝑟 . ∃𝛾 . IsP (𝛾, 𝑟 ) ∗ PState(𝛾, 𝑠init)} ∧

∀𝛾, 𝑥,𝑦. IsP (𝛾, 𝑥) ⊢
〈
𝑠 . PState(𝛾, 𝑠)

〉
op(𝑥,𝑦)

〈
𝑧. PState(𝛾, 𝑓 (𝑠,𝑦)) ∧ ⌈𝑧 = 𝑟 (𝑠,𝑦)⌉

〉
.

Example: a concurrent counter library. It can be useful to see a concrete example of the above
generic specification. To this end, let us consider a simple counter library, exposing an init operation
that creates a fresh counter, and an incr concurrent operation which increments the integer value
held by the counter and returns its previous value. One can for instance implement incr by using
the compare-and-swap primitive (CAS) to ensure that the increment occurs atomically. The counter
library can be then specified as follows, using a logically atomic triple for incr:{

True
}
init()

{
𝑥 . ∃𝛾, IsCnt (𝛾, 𝑥) ∗ Cnt (𝛾, 0)

}
∧

∀𝛾, 𝑥 . IsCnt (𝛾, 𝑥) ⊢
〈
𝑛.Cnt (𝛾, 𝑛)

〉
incr(𝑥)

〈
𝑚.Cnt (𝛾, 𝑛 + 1) ∗ ⌈𝑚 = 𝑛 + 1⌉

〉
,

where Cnt and IsCnt are abstract predicates and IsCnt is persistent. By letting incr′(𝑥, ()) ≜ incr(𝑥),
this counter specification can be seen as an instance of our generic specification above: it corre-
sponds to Φ(init, incr′, (N, 0, succN, succVal), True, IsCnt,Cnt), where succN is the successor function
on natural numbers, and succVal is the successor function on program values representing integers.

6.3 Linearizability

Linearizability is the standard correcteness condition for (first-order) operations on thread-safe
concurrent data structures [Herlihy andWing 1990]. It expresses that, even if concurrent operations
of a library are effectively interleaved at runtime, they behave the same as a sequence of sequential
calls to the library. It can be formalized by requiring that between every call and return in a
given interaction trace, there must exist a single physical step where the observable state of the
data structure changes according to the specification of the operation. This point is known as the
linearization point, and the behavior of the data structure must then match the sequential behavior
of the operations when ordered according to the linearization points.
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Let us define an alphabet Σ of call and return events and an alphabet Σlin of call, linearization
and return events as follows:

Σ ≜ {⟨𝜏, ⟨call, 𝑣⟩⟩ | 𝜏 ∈ Tag, 𝑣 ∈ Val} ∪ {⟨𝜏, ⟨ret, 𝑣, 𝑣 ′⟩⟩ | 𝜏 ∈ Tag, 𝑣, 𝑣 ′ ∈ Val}

Σlin ≜ Σ ∪ {⟨𝜏, ⟨lin, 𝑣, 𝑣 ′⟩⟩ | 𝜏 ∈ Tag, 𝑣, 𝑣 ′ ∈ Val}

Here 𝜏 is a tag used to relate calls, linearization and return events and 𝑣 and 𝑣 ′ are values representing
the argument and return-value, respectively. We define the language L𝜏

linfull of calls, linearizations
and returns tagged with tag 𝜏 as follows. We then denote its prefix closure as L𝜏

lin.

L𝜏
linfull ::= ⟨𝜏, ⟨call, 𝑣⟩⟩ · ⟨𝜏, ⟨lin, 𝑣, 𝑣

′⟩⟩ · ⟨𝜏, ⟨ret, 𝑣, 𝑣 ′⟩⟩ · L𝜏
linfull | 𝜀

As before, we assume that the intended sequential behaviour of the library is given by a tuple
(𝑆, 𝑠init, (𝑓 , 𝑟 )) consisting of a set of abstract states 𝑆 along with two functions (𝑓 , 𝑟 ) and an initial
state 𝑠init ∈ 𝑆 . The function call 𝑓 (𝑠, 𝑣) models a call to the operation in abstract state 𝑠 and with
argument 𝑣 ; it returns the new abstract state. The function call 𝑟 (𝑠, 𝑣) gives the return value of the
operation when abstract state is 𝑠 and argument is 𝑣 . A trace of linearization events satisfies the
specification (𝑆, 𝑠init, (𝑓 , 𝑟 )) if the return values in the trace match the intended return values given
by 𝑟 . This is captured by the sound predicate, defined below:

sound(𝛼) ≜ ∃𝑠, soundWith(𝛼, 𝑠init, 𝑠)

where

soundWith(𝜀, 𝑠, 𝑠 ′) ≜ 𝑠 = 𝑠 ′,

soundWith(𝛼 · ⟨lin, 𝑣, 𝑣𝑟 ⟩, 𝑠, 𝑠 ′′) ≜ ∃𝑠 ′, soundWith(𝛼, 𝑠, 𝑠 ′) ∧ 𝑠 ′′ = 𝑓 (𝑠 ′, 𝑣) ∧ 𝑣𝑟 = 𝑟 (𝑠 ′, 𝑣)

For a linearization trace 𝛽 ∈ Σ∗lin, we write 𝜋 (𝛽) ∈ Σ
∗ for the trace consisting of only the call and

ret events of 𝛽 ; we write 𝜋𝜏 (𝛽) ∈ Σ
∗
lin for the sub-trace of events with tag 𝜏 ; and 𝜋lin (𝛽) ∈ Val

∗ for
the list of linearization events associated to lin events in 𝛽 . We finally define the language Llin of
linearizable traces as follows:

Definition 6.1 (Linearizability). An interaction trace 𝛼 ∈ Σ∗ is linearizable if there exists a trace
𝛽 ∈ Σ∗lin such that ∀𝜏 . 𝜋𝜏 (𝛽) ∈ L

𝜏
lin, 𝛼 = 𝜋 (𝛽), and sound(𝜋lin (𝛽)).

6.4 Linearizability as a Trace Invariant

To prove that logical atomicity implies linearizability, we follow the usual procedure of introducing
a wrapper that emits suitable trace events and proving that the wrapped library satisfies the same
logically atomic specification as the original library and additionally a suitable invariant about the
trace. The wrapping for the operation op is given by the following function:

𝑤𝑟𝑎𝑝 (op) ≜ 𝜆(𝑥,𝑦). let 𝜏 = fresh ⟨call, 𝑦⟩ in let 𝑟 = op(𝑥,𝑦) in emit ⟨𝜏, ⟨ret, 𝑦, 𝑟 ⟩⟩; 𝑟

This wrapping function emits suitable call and return events before and after the call to the
underlying op operation. We use the fresh operation to generate a fresh identifier for every call
event to allow us to uniquely associate return events with call events.
The following theorem then states the key correctness property: given any library satisfying a

logically atomic specification, the wrapped library satisfies the same specification, and the trace it
emits is linearizable.

Theorem 6.2.

∀opinit, op, spec, 𝑃init, IsP, PState.

Φ(opinit, op, spec, 𝑃init, IsP, PState) ⇒

∃IsP𝑤, PState𝑤 .Φ(opinit,𝑤𝑟𝑎𝑝 (op), spec, 𝑃init ∗ trace(𝜀) ∗ traceInv(Llin), IsP𝑤, PState𝑤)
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As before, we can finally combine Theorem 6.2 with the Adequacy theorem (Theorem 4.1) and
obtain as a free theorem that any library which admits a logically atomic specification produces an
interaction trace in Llin, i.e. is linearizable.
In the rest of this section, we detail the key ideas behind the proof of Theorem 6.2.

6.5 Proving Linearizability

Our proof relies on two key ideas.
First, the library specification that we assume exposes that the operation op contains a lineariza-

tion point during its execution. We can thus use this point in the execution as the moment where to
record a lin event in the “ghostž linearization trace that we maintain as part of our trace invariant.
Since the call to op in 𝑤𝑟𝑎𝑝 (op) occurs between the instructions emitting a call and ret event,
we get that the lin event will indeed occur between the corresponding call and ret events.

Second, a key property we need to keep track of is that our use of tags and the fresh primitive
indeed identify different calls to the wrapped operation with different tags. More precisely, we need
to show that during the execution of𝑤𝑟𝑎𝑝 (op), once a fresh tag has been generated, the currently
running thread will be the only one emitting events with this tag. Thus, even though other threads
can run concurrently, at every point of the execution of𝑤𝑟𝑎𝑝 (op)Ðafter the call to fresh, after the
call to op, and after the final emitÐwe know exactly what the linearization trace is for events of
that tag: it is equal, respectively, to a single call event, a call event followed by a lin event, and
finally a call, lin, and ret event.
We now show in more detail how these key ideas materialize in our proof.

Tracking ghost state in Iris. Our proof makes use of somewhat more advanced features of Iris,
which we briefly introduce now. In particular, we define certain ghost theories (predicates and

rules) on top of Iris’ primitive notion of ghost state, which supports predicates of the form 𝑎
𝛾
that

asserts the ownership of the resource 𝑎 at ghost name 𝛾 ∈ Name. Here the resource 𝑎 is an element
of some resource algebra which restricts how it might be updated over time.
We use two constructions built on top of the Iris primitives for handling ghost state. How they

are defined in terms of ·
𝛾
is not particularly relevant, as long as they satisfy a few rules, which

will suffice for carrying out the rest of the proof and which we present below:
The first construction involves a pair of predicatesmap• andmap◦, used for tracking the state of

a finite map𝑀 . Given a name 𝛾 which identifies a specific instance of these predicates, ownership
over map• (𝛾,𝑀) asserts that the map of interest is exactly𝑀 , while map◦ (𝛾,𝑀

′) asserts that the
map of interest is at least 𝑀 ′. The predicates satisfy the following rules, which we explain below.

ghost-mapfrac-dup

map◦ (𝛾,𝑀) ⊢ map◦ (𝛾,𝑀) ∗map◦ (𝛾,𝑀)
ghost-map-sub

map• (𝛾,𝑀) ∗map◦ (𝛾,𝑀
′) ⊢ ⌈𝑀 ′ ⊆ 𝑀⌉

ghost-map-upd

map• (𝛾,𝑀) ∗map◦ (𝛾,𝑀) ⊢ map• (𝛾,𝑀 ⊎ [𝑎 ↦→ 𝑏]) ∗map◦ (𝛾,𝑀 ⊎ [𝑎 ↦→ 𝑏])

Given the combined knowledge of both predicates, one can deduce that𝑀 ′ is a subset of𝑀 (ghost-
map-sub). In the case where both maps match, then we can update the map by monotonically
extending it with a new key-value pair (ghost-map-upd). Finally,map◦ (𝛾,𝑀

′) is duplicable (ghost-
mapfrac-dup), as it represents a “snapshotž of the state of the map at some point in the past, which
remains sound as the map is extended monotonically.
The second construction involves a pair of predicates val• and val◦, which are used to track

the state of a discrete value of an arbitrary type from two different places. Ownership over either
val• (𝛾, 𝑥) or val◦ (𝛾,𝑦) tells us that the value of interest is exactly 𝑥 . The predicates satisfy the
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following rules, which we explain below.

ghost-val-eq

val• (𝛾, 𝑥) ∗ val◦ (𝛾,𝑦) ⊢ ⌈𝑥 = 𝑦⌉

ghost-val-upd

val• (𝛾, 𝑥) ∗ val◦ (𝛾, 𝑥) ⊢ val• (𝛾, 𝑧) ∗ val◦ (𝛾, 𝑧)

When combining the knowledge of both predicates, we can deduce that the associated values match
(ghost-val-eq) or update it to a new value (ghost-val-upd). Unlike map◦, val◦ is not duplicable
as it needs to stay synchronized with the matching val• predicate.

Wrapped representation predicates and main invariant. Let us assume opinit, op, (𝑆, 𝑠init, 𝑓 , 𝑟 ), IsP
and PState such that Φ(opinit, op, (𝑆, 𝑠init, 𝑓 , 𝑟 ), 𝑃init, IsP, PState) holds. The first step of the proof is
then to pick suitable wrapped representation predicates IsP𝑤 and PState𝑤 .

IsP𝑤 ≜ 𝜆(𝛾, 𝑥). ∃𝛾𝑖 , 𝛾𝑠 , 𝛾𝑚 . IsP (𝛾𝑖 , 𝑥) ∗ traceInv(Llin) ∗ ∃𝑠 . 𝐼 (𝛾,𝛾𝑖 , 𝛾𝑠 , 𝛾𝑚, 𝑠)

PState𝑤 ≜ 𝜆(𝛾, 𝑠). ∃𝛾𝑖 , 𝛾𝑠 , 𝛾𝑚 . PState(𝛾𝑖 , 𝑠) ∗ val◦ (𝛾, (𝛾𝑖 , 𝛾𝑠 , 𝛾𝑚)) ∗ val◦ (𝛾𝑠 , 𝑠)

Both IsP𝑤 and PState𝑤 take as argument a ghost name 𝛾 which identifies a specific instance of
the library. Because we need a few extra ghost names to track the various parts of ghost state that
we need, we associate to 𝛾 three ghost names 𝛾𝑖 , 𝛾𝑠 and 𝛾𝑚 , using a val•, val◦ pair to ensure that
they match between IsP𝑤 and PState𝑤 . The val◦ component of the pair appears in the definition of
PState𝑤 , and the val• component will appear next, in the definition of our key invariant 𝐼 , which is
itself held by IsP𝑤 .
IsP𝑤 , the persistent part of the representation predicate, holds the corresponding abstract IsP

predicate provided by the library specification, the traceInv(Llin) predicate enforcing that the trace
is indeed linearizable at each step, and an additional Iris invariant 𝐼 , which we define below. While
traceInv(Llin) is ultimately the only property that we need to instantiate Theorem 4.1 and obtain
that linearizability holds, during the proof we need to maintain additional invariantsÐheld in 𝐼Ðto
be able to show that it does hold as a trace invariant.
PState𝑤 , which corresponds to knowledge that the library is in a specific state, asserts ownership

over the underlying PState, and additionally holds halves of a val•,val◦ pair, associating respectively
𝛾 to the auxiliary ghost names used, and associating the state of the library 𝑠 to ghost name 𝛾𝑠 . The
corresponding val• halves appear next, in the definition of 𝐼 .

𝐼 (𝛾,𝛾𝑖 , 𝛾𝑠 , 𝛾𝑚, 𝑠) ≜ ∃𝛽 ∈ Σ
∗
lin . ∃𝑀 : Tag ⇀fin Name. ⌈dom(𝑀) = tags(𝜋 (𝛽))⌉ ∗

val• (𝛾, (𝛾𝑖 , 𝛾𝑠 , 𝛾𝑚)) ∗ val• (𝛾𝑠 , 𝑠) ∗map• (𝛾𝑚, 𝑀) ∗map◦ (𝛾𝑚, 𝑀) ∗

trace(𝜋 (𝛽)) ∗
⌈
sound(𝜋lin (𝛽)) ∧ ∀𝜏 . 𝜋𝜏 (𝛽) ∈ L

𝜏
lin

⌉
∗

tagsState(𝑀, 𝛽)

The trace 𝛽 is the candidate linearization trace, composed of call, lin and ret events, such that
its restriction to call and ret events 𝜋 (𝛽) corresponds to the current physical trace.
The finite map 𝑀 associates a ghost name for each tag currently appearing in the trace. As

mentioned before, for each fresh tag that has been allocated, we wish to track the point of the
execution where the corresponding wrapper is.𝑀 gets us halfway there: for each tag, it associates
a ghost name which can then be used to track precisely the state of the wrapper as a ghost resource.
This indirection allows 𝑀 to grow monotonically as new tags are emitted, while updates to the
state of a wrapper can be handled separately by updating the corresponding ghost resource.
The invariant 𝐼 holds a half of a val•,val◦ pair for both the auxiliary ghost names and the state

of the library 𝑠 , matching the other halves held by the PState𝑤 predicate. It also holds both map•
and map◦ resources for tracking the state of the map𝑀 . This serves two purposes: first, it allows
updating the map when a new tag is emitted by fresh using rule ghost-map-upd; second, it allows
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handing out afterwards copies of map◦ (𝛾𝑚, 𝑀 ⊎ [𝜏 ↦→ 𝛾𝜏 ]) (using rule ghost-mapfrac-dup) to
serve as witnesses that a tag 𝜏 has been emitted and is associated to a ghost name 𝛾𝜏 .
Invariant 𝐼 holds the resource trace(𝜋 (𝛽)) granting the exclusive permission to update the

physical trace. Reasoning about the calls to the fresh and emit primitiveÐwhich update this
resourceÐwill thus require opening 𝐼 and re-establish it afterwards. 𝐼 moreover enforces that the
linearization events are sound, and that 𝛽 is per-tag linearized, as required to prove linearizability.
Finally, the assertion tagsState(𝑀, 𝛽) (which we define now) describes the collection of ghost

resources tracking the indiviual state of wrappers for each tag in 𝑀 , relating it to the current
linearization trace 𝛽 .

TagState ≜ AfterCall(𝑣) | AfterLin(𝑣, 𝑣 ′) | Done

tagsState(𝑀, 𝛽) ≜

∗
(𝜏,𝛾𝜏 ) ∈𝑀

©«

∃𝜁 : TagState. val• (𝛾𝜏 , 𝜁 ) ∗

match 𝜁 with
| AfterCall(𝑣) ⇒ 𝜋𝜏 (𝛽) = ⟨𝜏, ⟨call, 𝑣⟩⟩

| AfterLin(𝑣, 𝑣 ′) ⇒ 𝜋𝜏 (𝛽) = ⟨𝜏, ⟨call, 𝑣⟩⟩ · ⟨𝜏, ⟨lin, 𝑣, 𝑣
′⟩⟩

| Done ⇒ True



ª®®®®®¬
Values of type TagState, here defined as an inductive datatype, describe the state of a thread run-

ning an instance of𝑤𝑟𝑎𝑝 (op): AfterCall(𝑣) indicates that its execution is after a call to fresh⟨call, 𝑣⟩
but before the linearization point; AfterLin(𝑣, 𝑣 ′) indicates that it is after a linearization point
⟨lin, 𝑣, 𝑣 ′⟩ but before the final emit; and Done indicates that it is done, i.e. after the final emit. Then,
for each pair of a tag 𝜏 and a ghost name 𝛾𝜏 in 𝑀 , tagsState(𝑀, 𝛽) names 𝜁 the state TagState of
the thread which has first allocated 𝜏 , and firstly, ties it with the ghost name 𝛾𝜏 using the assertion
val• (𝛾𝜏 , 𝜁 ); then secondly, enforces that the value of 𝜁 indeed gives us the expected information
about events emitted so far with tag 𝜏 in 𝛽 .

The matching assertion val◦ (𝛾𝜏 , 𝜁 ) is not stored inside the invariant 𝐼 . Instead, it will be kept “on
the sidež in the proof context, as a token expressing that the current state for tag 𝜏 is exactly 𝜁 , for
a concrete value of 𝜁 . This token grants the unique, exclusive permission to emit new events with
tag 𝜏 , updating the state 𝜁 in the process. Consequently, owning such a token during the proof of
𝑤𝑟𝑎𝑝 (op) guarantees that no other thread is able to emit events with the current tag of interest:
this is one of the two key properties that we need to make the proof work.

Outline of the proof. There are three main steps to the proof: one to reason about the call to fresh,
one for calling to the underlying operation op, and one for reasoning about the final emit.

At the beginning of the proof, we are given IsP𝑤 (𝛾, 𝑥), and are asked to prove a logically atomic
triple. We first use the rule logatom-au to turn this triple into a normal Hoare triple:{

IsP𝑤 (𝛾, 𝑥) ∗ AU(∀𝑠.PState𝑤 (𝛾,𝑠)),(PState𝑤 (𝛾,𝑓 (𝑠,𝑦))) (Ψ)
}

let 𝜏 = fresh ⟨call, 𝑦⟩ in let 𝑟 = op(𝑥,𝑦) in emit ⟨𝜏, ⟨ret, 𝑦, 𝑟 ⟩⟩; 𝑟
{Ψ}

We can then start and step through the wrapper code:

• Call to fresh ⟨call, 𝑦⟩.
Because fresh is physically atomic (as a primitive of the language), this reasoning step follows
the usual pattern of reasoning with invariants in concurrent separation logic: we unfold
IsP𝑤 and open the invariant containing 𝐼 around the instruction. We thus get access to
𝐼 (𝛾,𝛾𝑖 , 𝛾𝑠 , 𝛾𝑚, 𝑠) for some 𝛾𝑖 , 𝛾𝑠 , 𝛾𝑠 and 𝑠 , which in turn gives us access to the trace resource
required to call fresh. It is easy to check that adding a call event with a fresh tag preserves
the linearizability of the trace.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 81. Publication date: August 2021.



Theorems for Free from Separation Logic Specifications 81:25

Afterwards we need to close the invariant. Because we added a new tag to the trace, we need
to extend the tagsState resource it contains to account for the new tag. We thus allocate a
new pair val• (𝛾𝜏 ,AfterCall(𝑦)), val◦ (𝛾𝜏 ,AfterCall(𝑦)) for a fresh 𝛾𝜏 .
After closing the invariant, we obtain the following extra resources as witnesses of the
operation, to keep around in our proof context for later:

∃𝑀,𝛾𝜏 .map◦ (𝛾𝑚, 𝑀) ∗ ⌈𝑀 (𝜏) = 𝛾𝜏 ⌉ ∗ val◦ (𝛾𝜏 ,AfterCall(𝑦))

• Call to op(𝑥,𝑦).
Since op is logically atomic, we can again open the invariant containing 𝐼 . Then, we need
to establish the atomic update from the specification of op (AU(∀𝑠.PState (𝛾𝑖 ,𝑠)),(PState (𝛾𝑖 ,𝑓 (𝑠,𝑦))) )
using the one we have in the context (AU(∀𝑠.PState𝑤 (𝛾,𝑠)),(PState𝑤 (𝛾,𝑓 (𝑠,𝑦))) ).
This is the linearization point. Given a way of updating in one step the state of the unwrapped
operation PState(𝛾𝑖 , 𝑠), we need to show that we can similarly update the state of the wrapped
operation PState𝑤 (𝛾, 𝑠), while preserving our invariants.
Updating PState𝑤 (𝛾, 𝑠) to PState𝑤 (𝛾, 𝑓 (𝑠,𝑦)) requires updating the val◦ (𝛾𝑠 , 𝑠) resource it
contains. This is easy: we have the corresponding val• resource available as part of the
opened invariant.
Then, thanks to the val◦ (𝛾𝜏 ,AfterCall(𝑦)) resource that we have in the context, we can
deduce that the current trace only contains one call event with tag 𝜏 . We can then show that
𝐼 (𝛾,𝛾𝑖 , 𝛾𝑠 , 𝛾𝑚, 𝑠) can be reformulated into 𝐼 (𝛾,𝛾𝑖 , 𝛾𝑠 , 𝛾𝑚, 𝑓 (𝑠,𝑦)) by recording a ⟨lin, 𝑦, 𝑟 (𝑠,𝑦)⟩
event in the linearization trace, and that linearizability is preserved.
In the process, the state associated with 𝛾𝜏 has to be updated, which means that we now hold
val◦ (𝛾𝜏 ,AfterLin(𝑦, 𝑟 (𝑠,𝑦))) in the context.

• Call to emit ⟨𝜏, ⟨ret, 𝑦, 𝑟 ⟩⟩.
Aswith the call to fresh, this is a call to a physically atomic operation, sowe can reason as usual
by opening then closing the main invariant. Because we hold val◦ (𝛾𝜏 ,AfterLin(𝑦, 𝑟 (𝑠,𝑦))),
we deduce that the current linearization trace contains a call event followed by a lin event.
This is enough to show that emitting a corresponding ret event preserves both the invariant
𝐼 and the linearizability of the trace, thus completing the proof.

6.6 Related Work

Our key contribution is a technique for deriving free theorems from Separation Logic specifi-
cations, by formally relating separation logic specifications with the temporal properties they
enforce, through wrapping of abstract resources with assertions about traces. As alluded to in the
introduction, the idea of deriving free theorems from specifications is akin to the idea of deriving
free theorems from polymorphic types [Reynolds and Plotkin 1993; Reynolds 1983; Wadler 1989].
In both cases, the term “free theoremž is used to highlight that a theorem is obtained from the
specification / type; in particular, it holds for all programs satisfying the specification / type. In both
cases, a “free theoremž needs proof. In the case of polymorphic types, one often uses a relationally
parametric model of types (often formulated using logical relations) and the key point in the proof
is then to pick a suitable relation for the quantified type variable. In our case, the key point in the
proof is to wrap the assumed library implementation with operations that generate a suitable trace
of the interactions between a library and a client and then show that the wrapped library satisfies
the specification.
We now discuss some further related work not already discussed earlier in the paper.

Approaches based on type systems. Static analyses based on type systems have been widely used to
check resource usage, like our file example, and more generally enforce interaction protocols.
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A particularly influential approach has been Typestates [DeLine and Fähndrich 2004; Strom and
Yemini 1986]. These can be seen as specifying trace properties using pre/post-conditions. They have
been used to check safety temporal properties of programs, by associating abstract states to objects,
then specifying which methods can be called at each state and how they make the state evolve.
In [Bierhoff and Aldrich 2007; Bierhoff et al. 2009] they are combined with aliasing information
to give a sound and modular analysis of API usage protocols, and to check a specification for
the iterator module similar to ours, yet based on a single object. Multi-object properties, like the
iterator one, can be captured by an extension of typestates using tracematches to specify intensional
properties [Naeem and Lhoták 2008].
Session types [Honda et al. 1998; Vasconcelos 2012] are another way of enforcing interaction

patterns between interacting program components. Contracts have also been studied in the context
of session types to check for safety trace-like properties [Gommerstadt et al. 2018]. Properties
of interest are then checked by monitorsÐwrappers that run alongside the codeÐreminiscent of
our wrappers emitting events. The main difference being then that monitors run dynamic checks
(without changing the results of the instrumented program), while our wrappers only expose the
interactions between library and context by emitting events, the trace properties of interest being
proved statically.

Linear types are used in [DeLine and Fähndrich 2001] to develop Vault, a programming language
used to design device drivers, where resource management protocols can be specified explicitly
using annotations in the source code. An automatic analysis has then been developed in [Igarashi
and Kobayashi 2002]. One a more foundational level, core calculus based on linear types have been
studied to support language features related to resource management, such as strong updates [Mor-
risett et al. 2005] or the mechanisms for safe memory management in low-level systems code used
in the Cyclone language [Fluet et al. 2006].
System F° [Mazurak et al. 2010], an extension of System F with linear types, is shown to be

expressive enough to encode as a F° type any protocol representable as a DFA. The authors show
a parametricity result for the language, and show in particular the example of a file interface
similar to ours. The operational semantics of the language also uses traces to track the flow of
values through the program (when they are passed to a function, and when they are used). The
authors show that their system can encode typestate-like properties, by proving (on paper) that
any context using a value of a type encoding a protocol (as a DFA) will indeed always use it in a
way that satisfies the corresponding DFA. They however do not exhibit a systematic proof method
for establishing results similar to our “free theoremsž, and the expressivity of their type system is
limited compared to the expressive separation logic that we consider in this work.

Type and effect systems have been used in [Skalka et al. 2008] to infer resource usage, represented
by an LTS, and combined with model checking to verify trace properties of programs. Such systems
have been applied to Featherweight Java in [Skalka 2008], where challenges coming from object
orientation like inheritance and dynamic dispatch are tackled.

Higher-order model checking was used to provide a sound and complete resource analysis, using
higher-order recursion scheme model checking for a fragment of the 𝜇-calculus [Kobayashi 2009].

TheMezzo programming language [Balabonski et al. 2016; Pottier and Protzenko 2015] uses a type
system based on ideas from Separation Logic, and as such is able to express library specifications
in a style similar to ours. The work on Mezzo however focuses on the design and expressivity of its
type system, and does not study which “free theoremsž could be deduced from its types.
Such approaches based on type systems have been typically designed to support automated

static verification and thus trade off expressiveness for automation. In this work we have made the
opposite trade-off and focused on being able to capture expressive trace properties. As seen, we
can specify non-regular properties (ğ5.3, the language is visibly pushdown [Alur and Madhusudan
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2004]), others that rely on tracking an unbounded number of objects (ğ5.2, where we need to track
all valid iterators), and we can even go beyond context-free languages (ğ5.4, the language requires
an order-2 pushdown automaton [Maslov 1976]). In an orthogonal direction, working with a logic
with quantification we can specify traces from infinite alphabets of events (ğ5.2, ğ5.3, and ğ5.4).

Approaches based on program logics. We have mentionned in the introduction a number of ap-
proaches relying on program logics to establish temporal trace properties. These approaches
typically verify trace-oriented specifications for library implementations; in contrast, our work
establishes temporal trace properties from separation logic specifications that are not inherently
temporal.
We additionally mention here the F7 and F∗ programming languages, which provide another

technique for reasoning about trace properties [Bengtson et al. 2011; Swamy et al. 2013]. The
technique is primarily aimed at verifying cryptographic primitives, but has also been applied
to access control policies about interactions between a client and resources managed through
libraries [Borgström et al. 2011]. It is based on extending the base programming language with
a primitive for assuming that a given formula holds and an assert primitive that fails if a given
formula does not follow from all previously assumed formulas. Access control policies are encoded
by inserting appropriate assume and assert statements and proving that no assert can fail. In
contrast to our work, the F7 and F∗ approach does not establish a formal connection between the
inserted assume/assert statements and the property enforced on the execution. It is also non-local
in that any assume statement can introduce a contradiction and break adequacy.
Finally, we mention the more recent work on using interaction trees [Xia et al. 2019] in com-

bination with the VST framework [Cao et al. 2018] to verify the trace behavior of a networked
server [Koh et al. 2019]. In that work, interaction trees are used to specify traces of behaviors for C
programs, verified using Separation Logic, where the trace of a given program records external calls
made by that program. Similarly to our traceInv predicate (parameterized by a set of traces), the
authors rely on an ITree Separation Logic predicate (parameterized by an interaction tree) to specify
the trace behavior of a given program. The authors also establish a form of linearizability property,
as a refinement between interaction trees specifying the network behavior of the web server. The
concrete interaction tree specifying a network behavior with possibly interleaved events is shown
to refine a simpler interaction tree where network events have been linearized. However, since this
connection is made purely at the level of interaction trees, it is only superficially related to our
result of Section 6, where we relate linearizability as a trace property and logically atomic triples
which do not involve traces.

7 CONCLUSION

We have presented a formal approach for deriving free theorems from Separation Logic specifica-
tions. We have focused on free thorems expressing trace properties on the interaction between
clients verified against the specified library and the library itself. Since our main goal has been
to establish a theoretical foundation relating specifications and trace properties, we focused on
expressiveness rather than automation.
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