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We describe a Coq formalization of constructive ω-cpos, ultrametric spaces and
ultrametric-enriched categories, up to and including the inverse-limit construction of
solutions to mixed-variance recursive equations in both categories enriched over ω-cppos
and categories enriched over ultrametric spaces.
We show how these mathematical structures may be used in formalizing semantics for
three representative programming languages. Specifically, we give operational and
denotational semantics for both a simply-typed CBV language with recursion and an
untyped CBV language, establishing soundness and adequacy results in each case, and
then use a Kripke logical relation over a recursively-defined metric space of worlds to
give an interpretation of types over a step-counting operational semantics for a language
with recursive types and general references.

1. Introduction

The use of proof assistants in formalizing language metatheory and implementing cer-
tified tools has grown enormously over the last decade, and is now a major trend in
programming language research. Most current work on mechanizing language definitions
and safety proofs, certified compilation, proof carrying code, and so on uses fairly ele-
mentary operational methods, such as syntactic type soundness and rather intensional
simulation relations for compiler correctness. Indeed, one of the motivations for the recent
development of some of the most exciting new operational methods, notably step-indexing
and its refinements, has been a desire for techniques that are more amenable to machine
formalization than is domain theory, which has often been viewed as too complex to work
with in a proof assistant.

Whilst the authors are enthusiastic users of operational methods, we have also all –
when working on paper – made considerable use of denotational semantics, for example in
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modelling higher-order languages with references. When it is applicable, denotational se-
mantics tends to offer stronger theorems, more reusable results and important intuitions
(not least in interpreting ‘functions’ as functions); we are loath to abandon it as soon
as we start to mechanize our work. Furthermore, operational techniques have themselves
become decidedly non-trivial and started to involve general constructions, such as the
indirection theory of Hobor et al. [2010], which are most usefully understood and gen-
eralized by being explicit about the semantic categories in which they really take place.
Indeed, when modelling programming languages with higher-order references the whole
space of semantic types is naturally defined by a solution to a recursive domain equation
in a category of complete bounded ultrametric spaces. This holds irrespective of whether
one defines the semantics of types over an operational or a denotational semantics of the
underlying programming language [Birkedal et al., 2010a]. The present paper describes
a formalization of many of the denotational techniques we have found useful in practice,
showing that they are indeed amenable to mechanization.

Mechanizing domain theory and denotational semantics has an illustrious history.
Provers such as HOL, Isabelle/HOL and Coq can all trace an ancestral line back to
Milner’s [1972b] LCF, which was a proof checker for Scott’s PPλ logic of cpos, continu-
ous functions and admissible predicates. And although later systems were built on less
‘domain-specific’ foundations, there have subsequently been dozens of formalizations of
different notions of domains and bits of semantics, with examples in all the major provers.
Few, however, have gone far enough to be applicable to formalizing even what one might
cover in an undergraduate course on denotational semantics.

We will describe a Coq formalization of ω-cpos, bisected complete ultrametric spaces,
the denotational semantics of a typed and untyped versions of a simple functional lan-
guage, and a semantics of types for a language with recursive types and a higher order
store based on operational semantics. All this goes considerably further than previous
work on mechanizing semantics; another paper [Benton and Hur, 2009] describes a non-
trivial compiler correctness theorem that was formalized and proved using one of the
models presented here. We have also used the framework to formalize full abstraction
results for a trace-based semantics of cooperative threads by Abadi and Plotkin [2009].

Section 2 introduces the structuring mechanisms used in the development. The first is
a formalization of some basic category theory, allowing us to abstract much of the theory
relating to constructions, such as products, that are shared by several different kinds of
mathematical structure. The second is the ‘packed classes’ pattern [Garillot et al., 2009]
for defining and working with hierarchies of mathematical structures. Section 3 describes
the formalization of ω-cpos, which is based on an earlier library for constructive pointed
ω-cpos and continuous functions written by Paulin-Mohring [2009] as a basis for a se-
mantics of Kahn networks, and of probabilistic programs [Audebaud and Paulin-Mohring,
2006]. In Section 4, we define a simply-typed call-by-value functional language, give it
a denotational semantics using our predomains and prove the standard soundness and
adequacy theorems, establishing the correspondence between the operational and deno-
tational semantics. These classic results seem not to have been previously mechanized
for a higher-order language.

Section 5 is about solving recursive domain equations. We formalize Scott’s inverse limit
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construction along the lines of work by Freyd [1990, 1992] and Pitts [1994, 1996]. This
approach characterizes the solutions as minimal invariants, yielding reasoning principles
that allow one to construct and work with recursively-defined predicates and relations
over the recursively-defined domains. Our solutions can be found in any O-category, i.e.,
any cppo-enriched category, as presented by Smyth and Plotkin [1982]. In Section 6, we
define the semantics of an untyped call-by-value language using a particular recursive
domain found in the Kleisli category for our lift monad, and use the associated reasoning
principles to again establish soundness and adequacy theorems.

Section 7 concerns the formalization of complete bounded ultra-metric spaces (CBUlt),
and how to find solutions to recursive domain equations in general M-categories, i.e.,
categories enriched over CBUlt. Section 8 continues with a denotational interpretation of
the types of a lambda calculus with recursive types and higher order store. The semantics
is found in the category of pre-ordered complete bounded ultra-metric spaces (PreCBUlt),
where we need to solve a recursive domain equation to model the space of semantic types.
We conclude this section with a sound interpretation of the language.

An earlier version of some of this work was published as a conference paper [Benton
et al., 2009]. The fragments of Coq appearing in the paper have been typeset from the
compilable sources, but are far from self-contained. The complete Coq development,
which builds under Coq 8.2pl1 plus Ssreflect, is available from the authors’ homepages.

2. Packaging Structures and Categories

Many different mathematical structures are used in programming language semantics,
some of which are built on others (e.g. cpos being a further specialization of partial orders)
and many of which support similar constructions (e.g. cartesian products). An earlier
version of our formalization of domain theory used Coq’s dependent records to make
independent definitions of each structure, and of each of the corresponding constructions
and lemmas, together some fairly ad-hoc use of coercions. This straightforward approach
worked, but did suffer from a proliferation of notations (e.g. for the many different kinds
of structure-preserving map), and the presence of many rather similar definitions and
lemmas (which it was also hard to name consistently). Whilst extending the formalization
to cover ultrametric spaces we have also refactored it, using two techniques in particular
to manage complexity. The first is a design pattern, due to Garillot et al. [2009], for
mixin-style packaging of mathematical structures. The second is the formalization of a
certain amount of category theory, enabling us to work with slightly more abstract and
reusable definitions, lemmas and notations.

2.1. Setoids

All the structures with which we will be working have a notion of equality, which will
generally not be Coq’s intensional ‘=’. We thus define a top-level structure of setoids:
types equipped with an equivalence relation [Barthe et al., 2003]:

Module Setoid.
Definition axiom (T:Type) (e:T → T → Prop) := equiv _ e.
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Record mixin_of T := Mixin
{ set_eq : T → T → Prop; set_equiv : axiom set_eq }.
Notation class_of := mixin_of (only parsing).
Structure type := Pack {sort :> Type; _:class_of sort; _:Type}.
Definition class cT := let: Pack _ c _ := cT return class_of cT in c.
Definition unpack K (k : ∀ T (c : class_of T), K T c) cT :=
let: Pack T c _ := cT return K _ (class cT) in k _ c.

Definition pack T c := @Pack T c T.
End Setoid.
Notation setoidType := Setoid.type.
Notation SetoidMixin := Setoid.Mixin.
Notation SetoidType := Setoid.pack.
Definition tset_eq := fun T ⇒ Setoid.set_eq (Setoid.class T).
Infix "≡ " := tset_eq (at level 70).
Lemma tset_refl (T:setoidType) (x:T) : x ≡ x.
Lemma tset_trans (T:setoidType) (x y z:T) : x ≡ y → y ≡ z → x ≡ z.
Lemma tset_sym (T:setoidType) (x y:T) : x ≡ y → y ≡ x.
Add Parametric Relation (T:setoidType) : T (@tset_eq T)
reflexivity proved by (@tset_refl T) symmetry proved by (@tset_sym T)
transitivity proved by (@tset_trans T) as tset_eqrel.

We make pervasive use of the packed classes pattern of Garillot et al. [2009]; this looks
somewhat prolix at first sight, but is a very flexible and uniform way of constructing and
inferring hierarchies of structures. Coq modules are used as namespaces, allowing stan-
dardized internal naming for the different aspects of each structure. Then Setoid.axiom e
says that e is an equivalence relation, the T-parameterized Setoid.mixin bundles a no-
tion of equality on T with a proof that it satisfies the axiom, whilst Setoid.type packs
a particular carrier type together with the corresponding mixin. We will later see how
this two-stage separation of the Packed type and the class is used to build hierarchical
structures, but for now note that the coercion sort :> Type means that if T : setoidType
then x : T is shorthand for x : sort T. We also register equalities on setoidTypes as re-
lations with respect to which we wish to be able to rewrite, using Sozeau’s [2009] recent
generalized re-implementation of Coq’s setoid rewriting framework.

2.2. Categories

Categories are another top-level structure. The mixin is parameterized by a type T for
the objects and a dependent type T → T → setoidType for morphisms, and specifies a
composition operation (tcomp) and identities (tid) together with proofs that these satisfy
the usual axioms for categories, and that composition respects equality on morphisms:

Module Category.
Section Axioms.
Variable Ob:Type.
Variable Morph : Ob → Ob → setoidType.
Variable tcomp : ∀ T0 T1 T2, Morph T1 T2 → Morph T0 T1 → Morph T0 T2.
Variable tid : ∀ T0, Morph T0 T0.
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Definition tid_left := ∀ T0 T1 (f:Morph T0 T1), tcomp (tid T1) f ≡ f.
Definition tid_right := ∀ T0 T1 (f:Morph T0 T1), tcomp f (tid T0) ≡ f.
Definition tcomp_assoc := ∀ T0 T1 T2 T3 (f:Morph T2 T3) (g:Morph T1 T2)

(h:Morph T0 T1), (tcomp f (tcomp g h)) ≡ (tcomp (tcomp f g) h).
Definition tcomp_respect := ∀ T0 T1 T2 (f f’ : Morph T1 T2)

(g g’ : Morph T0 T1), f ≡ f’ → g ≡ g’ → tcomp f g ≡ tcomp f’ g’.
End Axioms.
Definition axiom O M c i :=
@tid_left O M c i ∧ tid_right c i ∧ tcomp_assoc c ∧ tcomp_respect c.

Record mixin_of T (Morph : T → T → setoidType) := Mixin
{ tcomp : ∀ T0 T1 T2, Morph T1 T2 → Morph T0 T1 → Morph T0 T2;
tid : ∀ T0, Morph T0 T0;
tcategory : axiom tcomp tid }.

Notation class_of := mixin_of.
Structure cat := Pack {object :> Type;
morph :> object → object → setoidType ; _:class_of morph; _:Type}.

Definition class cT := let: Pack _ _ c _ := cT return class_of cT in c.
Definition unpack (K:∀ O (M:O → O → setoidType) (c:class_of M), Type)
(k : ∀ O (M: O → O → setoidType) (c:class_of M), K _ _ c) (cT:cat) :=
let: Pack _ M c _ := cT return @K _ _ (class cT) in k _ _ c.

Definition pack T M c := @Pack T M c T.
Definition comp (cT:cat) : ∀ (A B C:cT),

morph B C → morph A B → morph A C := tcomp (class cT).
Definition id (cT:cat) : ∀ (A:cT), morph A A := tid (class cT).

End Category.
Notation catType := Category.cat.
Notation morph := Category.morph.
Notation object := Category.object.
Infix "−→ " := Category.morph (at level 55, right associativity)
Infix "◦ " := Category.comp (at level 35)
Notation Id := Category.id.
Add Parametric Morphism (C:catType) X Y Z : (@Category.comp C X Y Z)
with signature (@tset_eq (C Y Z)) ==>(@tset_eq (C X Y)) ==>(@tset_eq (C X Z))
as comp_eq_compat.

Lemma comp_assoc (C:catType) (W X Y Z : C) (f:W −→ X) (g : X −→ Y)
(h : Y −→ Z) : h ◦ (g ◦ f) ≡ h ◦ g ◦ f.

Lemma comp_idR (C:catType) (X Y : C) (f : X −→ Y) : f ◦ Id ≡ f.

Again, there is complexity associated with the packed classes pattern, though this is es-
sentially the same boilerplate as for Setoid. That composition respects the setoid equality
on morphisms is registered with the rewriting machinery, so the in-context equational
rewrites used in traditional ‘diagram chasing’ proofs translate directly into Coq. The
external interface is provided by the notations, such as ◦ , and several lemmas, such as
comp_assoc, defined just after the module.

We next formalize categories with more specialized structure, including finite prod-
ucts and coproducts, exponentials, limits and colimits. The following extract from the
definition of categories with products demonstrates how the packed classes pattern works:
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Module CatProduct.
Definition prod_diagram (C : catType) (A B P : C) (π1 : C P A) (π2 : C P B)

(X : C) (f : C X A) (g : C X B) (h : C X P) :=
π1◦ h ≡ f ∧ π2◦ h ≡ g.

Definition axiom (C:catType) (prod : C → C → C) (π1 : ∀ A B, C (prod A B) A)
(π2 : ∀ A B, C (prod A B) B) (h: ∀ A B Z, C Z A → C Z B → C Z (prod A B)) :=
∀ A B X f g,

@prod_diagram C A B (prod A B) (π1 _ _) (π2 _ _) X f g (h A B X f g) ∧
∀ m, prod_diagram (π1 _ _) (π2 _ _) f g m → m ≡ (h A B X f g).

Record mixin_of (C:catType) := Mixin
{ prod : C → C → C;
π1: ∀ A B, C (prod A B) A;
π2: ∀ A B, C (prod A B) B;
prod_ex : ∀ A B Z, C Z A → C Z B → C Z (prod A B); _ : axiom π1π2prod_ex}.

Record class_of T (M:T → T → setoidType) : Type :=
Class { base :> Category.class_of M ; ext :> mixin_of (Category.Pack base T)}.

Structure cat := Pack {object :> Type;
morph :> object → object → setoidType ; _ : class_of morph; _ : Type}.

Definition class cT := let: Pack _ _ c _ := cT return class_of cT in c.
Definition pack := let k T M c m := Pack (@Class T M c m) T in Category.unpack k.
Coercion catType (cT:cat) := Category.pack (class cT).

End CatProduct.

Notation prodCat := CatProduct.cat.
Canonical Structure CatProduct.catType.
Definition prod (C:prodCat) (A B:C) : C :=

(CatProduct.prod (CatProduct.class C) A B).
Definition π1(C:prodCat) (A B:C) : morph (prod A B) A :=

(CatProduct.π1 (CatProduct.class C) A B).
Definition π2(C:prodCat) (A B:C) : morph (prod A B) B :=

(CatProduct.π2 (CatProduct.class C) A B).
Definition prod_fun (C:prodCat) (Z A B:C) (f:C Z A) (g:C Z B) :
morph Z (prod A B) := (CatProduct.prod_ex (CatProduct.class C) f g).

Infix "*" := prod
Notation "’〈|’ f , g ’|〉’" := (prod_fun f g) (at level 30)
Notation "f ’×’ g" := (prod_fun (f ◦ π1) (g ◦ π2)) (at level 30)
Lemma prod_fun_fst (C:prodCat) (X Y Z:C) (f:Z −→ Y) (g:Z −→ X) :

π1◦ 〈|f , g|〉 ≡ f.
Lemma prod_fun_snd (C:prodCat) (X Y Z:C) (f:Z −→ Y) (g:Z −→ X) :

π2◦ 〈|f , g|〉 ≡ g.
Lemma prod_unique (C:prodCat) (X Y Z : C) (h h’:Z −→ X * Y) :
π1◦ h ≡ π1◦ h’ → π2◦ h ≡ π2◦ h’ → h ≡ h’.

Add Parametric Morphism (C:prodCat) X Y Z : (@prod_fun C X Y Z)
with signature (@tset_eq (C X Y)) ==>(@tset_eq (C X Z)) ==>

(@tset_eq (C X (Y * Z))) as prod_fun_eq_compat.
Lemma prod_map_prod_fun (C:prodCat) (X Y Z W A : C) (f:X −→ Y) (g: Z −→ W)

(h:A −→ _) (k:A −→ _) : f ×g ◦ 〈|h,k|〉 ≡ 〈|f ◦ h, g ◦ k|〉.
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move ⇒ C X Y Z W A f g h k. apply prod_unique; rewrite comp_assoc.
- do 2 rewrite prod_fun_fst. rewrite <- comp_assoc. by rewrite prod_fun_fst.
- do 2 rewrite prod_fun_snd. rewrite <- comp_assoc. by rewrite prod_fun_snd.
Qed.

The class component of each structure is a dictionary, in the sense of Haskell type
classes. For categories with products, this comprises two sub-dictionaries: one (base)
carrying the features of a category and one (ext) giving a product structure thereon.
CatProduct.pack makes a category-with-products out of a category and a corresponding
product mixin, using the CPS-style destructor Category.unpack to access the components
of the category. The coercion CatProduct.catType allows categories-with-products to be
coerced to categories; registering this as a Canonical Structure allows Coq to infer the
intended structure when we use category operations (such as the notation for arrows,
composition and equality) with prodCats. If C:prodCat then CatProduct.object C is con-
vertible with Category.object (CatProduct.catType C), for example, and it is the canon-
ical structure declaration that allows Coq to solve the (higher-order) unification prob-
lem CatProduct.object C = Category.object ??. The prod_map_prod_fun lemma demon-
strates some of the payoff from setting up this packaging and rewriting machinery: the
statement and proof are just as they would be on paper.

3. Basic Domain Theory

We now turn to the formalization of the concrete category of ω-cpos, building on that
by Paulin-Mohring [2009]. Apart from the packaging, the main difference is that Paulin-
Mohring treated pointed cpos and continuous maps, with a special-case construction of
flat cpos (those that arise from adding a bottom element under all elements of an other-
wise discretely ordered set), whereas we use potentially bottomless cpos (‘predomains’)
and formalize a general constructive lift monad.

The type of preorders, ordType, packs a carrier T with a mixin containing a binary
relation Ole (written infix as v ) and a proof that Ole is reflexive and transitive. The
symmetrisation of v is an equivalence relation, so any ordType is a setoidType. The
packaging of preorder is set up, using Coercions and Canonical Structure, to infer this
setoid structure automatically when needed:

Module PreOrd.
Definition axiom T (Ole : T → T → Prop) :=
∀ x , Ole x x ∧ ∀ y z, (Ole x y → Ole y z → Ole x z).

Record mixin_of T := Mixin {Ole : T → T → Prop; _ : axiom Ole}.
Notation class_of := mixin_of (only parsing).
Lemma setAxiom T (c:mixin_of T):Setoid.axiom (fun x y ⇒ Ole c x y ∧ Ole c y x).
Coercion base2 T (c:class_of T) : Setoid.class_of T := Setoid.Mixin (setAxiom c).
Structure type := Pack {sort :> Type; _ : class_of sort; _ : Type}.
Definition class cT := let: Pack _ c _ := cT return class_of cT in c.
Coercion setoidType (cT:type) := Setoid.Pack (class cT) cT.

End PreOrd.
Notation ordType := PreOrd.type.
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Notation OrdMixin := PreOrd.Mixin.
Notation OrdType := PreOrd.pack.
Canonical Structure PreOrd.setoidType.

That Ole is a partial order modulo ≡ is registered with Coq’s generalized rewriting
machinery; by also establishing the sense in which the constructions that follow are
morphisms with respect to these relations, we can easily perform (in)equational rewriting
in proofs. We henceforth omit ‘standard’ parts of the packed class infrastructure (such
as type and class above) in listing fragments.

We define a structure of monotone functions between partial orders:

Definition monotonic (O1 O2 : ordType) (f : O1→ O2) := ∀ x y, x v y → f x v f y.
Module FMon. Section fmon.
Variable O1 O2 : ordType.
Record mixin_of (f:O1 → O2) := Mixin { ext :> monotonic f}.
Structure type : Type := Pack {sort :> O1 → O2; _ : class_of sort; _ : O1 → O2}.
End fmon. End FMon.
Notation fmono := FMon.type.

And this structure itself inherits an ordType structure from the codomain:

Lemma fmono_axiom (O1 O2:ordType) :
PreOrd.axiom (fun f g:fmono O1 O2 ⇒ ∀ x, f x v g x).

Canonical Structure fmono_ordMixin (T T’:ordType) := OrdMixin (@fmono_axiom T T’).
Canonical Structure fmono_ordType T T’ :=

Eval hnf in OrdType (fmono_ordMixin T T’).

We define ordCatType:catType the category of pre-orders (ordTypes) and monotone func-
tions (fmono O O’) as the canonical category for ordTypes.

Define natO : ordType by equipping the natural numbers with the usual ‘vertical’ or-
der, ≤. If O : ordType and c : natO −→ O, call c a chain in O.

Lemma natO_axiom : PreOrd.axiom (fun n m : nat ⇒ leq n m).
Canonical Structure natO_ordMixin := OrdMixin natO_axiom.
Canonical Structure natO_ordType := Eval hnf in OrdType (natO_ordMixin).
Notation natO := natO_ordType.

A complete partial order comprises a preorder T, a function
⊔

computing least upper
bounds of chains in T, and a proof that this is always both an upper bound and less than
or equal to any other upper bound:

Module CPO.
Definition axiom (T:ordType) (

F
: (natO −→ T) → T) :=

∀ (c:natO −→ T) x n, (c n v
F
c) ∧ ((∀ n, c n v x) →

F
c v x).

Record mixin_of (T:ordType) : Type := Mixin {
F
: (natO −→ T) → T; _ : axiom

F
}.

Record class_of (T:Type) : Type :=
Class {base :> PreOrd.class_of T; ext :> mixin_of (PreOrd.Pack base T) }.

Coercion ordType cT := PreOrd.Pack (class cT) cT.
Definition setoidType cT := Setoid.Pack (class cT) cT.
End CPO.
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Notation cpoType := CPO.type.
Notation CpoMixin := CPO.Mixin.
Notation CpoType := CPO.pack.
Canonical Structure CPO.ordType.
Canonical Structure CPO.setoidType.

It is important to note that this definition of a complete partial order is constructive: we
require least upper bounds of chains not merely to exist, but to be computable in Coq’s
logic of total functions.

A monotone function f between two cpoTypes is continuous if it preserves (up to ≡ )
least upper bounds. One direction is already a consequence of monotonicity, so we just
have to specify the other. We package continuous functions, inheriting from monotone
ones.

Definition continuous (D1 D2 : cpoType) (f : ordCatType D1 D2) :=
∀ c : natO −→ D1, f (

F
c) v

F
(f ◦ c).

Module FCont. Section fcont.
Variable O1 O2 : cpoType.
Record mixin_of (f:fmono O1 O2) := Mixin {cont :> continuous f }.
Record class_of (f : O1 → O2) :=

Class {base :> FMon.mixin_of f; ext :> mixin_of (FMon.Pack base f) }.
Coercion fmono f : fmono O1 O2 := FMon.Pack (class f) f.
End fcont. End FCont.
Notation fcont := FCont.type.
Canonical Structure FCont.fmono.

From the continuous identity map, cid, and a proof that composition preserves continuity,
we construct the category cpoCatType of ω-cpos and continuous maps:

Lemma cpoCatAxiom : Category.axiom ccomp cid.
Canonical Structure cpoCatMixin := CatMixin cpoCatAxiom.
Canonical Structure cpoCatType := Eval hnf in CatType cpoCatMixin.

We next define various standard constructions on ω-cpos, including:

Discrete cpos. Equipping any X : Type with the order x1 v x2 iff x1 = x2 (i.e. Leibniz
equality) yields a cpo that we write discrete_cpoType X. We declare discrete_cpoType nat
and discrete_cpoType bool as canonical structures.

Finite products. discrete_cpoType unit is a terminal object, One, endowing cpoCatType
with the structure of a terminalCat. The Cartesian product of any two predomains
with the pointwise ordering and least upper bound operator (

F
c = (

F
(π1◦ c),

F
(π2◦ c)))

is a categorical product, making cpoCatType a prodCat.
Cartesian closure. For any predomains X and Y, we equip the continuous function

space fconti X Y with the pointwise order inherited from Y, yielding a preorder
fcont_ordType X Y. We then define X =⇒ Y : cpoType by equipping fcont_ordType X Y
with least upper bounds computed pointwise: if c : natO −→ fcont_ordType X Y is a
chain, then

F
c is λd1.

⊔
(λn.c n d1). We then define

ev : (X =⇒ Y) * X −→ Y and exp_fun : (X * Y −→ Z) → (X −→ (Y =⇒ Z))
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and show that they satisfy the diagrams needed to give cpoCatType the extra structure
of an expCat, i.e. a cartesian closed category.

We elide the details of other constructions, including finite coproducts and general in-
dexed products, in the formalization. Whilst our cpos are not required to have least
elements, those that do are of special interest. We start with pointed preorders:

Module Pointed.
Definition axiom (T:ordType) (l:T) := ∀ x, l v x.
Record mixin_of (T:ordType) := Mixin {least_elem : T; _ : axiom least_elem}.
Record class_of T := Class
{ base :> PreOrd.class_of T; ext :> mixin_of (PreOrd.Pack base T)}.
Coercion ordType cT := PreOrd.Pack (class cT) cT.
Definition setoidType cT := Setoid.Pack (class cT) cT.
Definition least cT := least_elem (class cT).

End Pointed.
Notation ⊥:= Pointed.least.
Canonical Structure Pointed.ordType.
Canonical Structure Pointed.setoidType.
Lemma leastP (O:pointedType) (x:O) : ⊥v x.

A cppoType is then defined as a pointed cpoType, and we define the cartesian closed
category cppoCatType of pointed ω-cpos and continuous functions.

Given D : cppoType and f : D −→ D, we define fixp f, the least fixed point of f in
the usual way, as the least upper bound of the chain of iterates of f starting at ⊥.
FIXP : (D =⇒ D) −→ D is the ‘internalised’ version of fixp. We then prove a fixed point
induction principle for admissible predicates:

Definition admissible (D:cpoType) (P:D → Prop) :=
∀ f : natO −→ D, (∀ n, P (f n)) → P (

F
f).

Lemma fixp_ind (D:cppoType) : ∀ (F: D −→ D)(P:D → Prop),
admissible P → P ⊥→ (∀ x, P x → P (F x)) → P (fixp F).

For D:cpoType and P:D→ Prop admissible, we also define a sub-cpo structure on {d:D | P d},
inheriting order and lubs from D.

The main technical complexity in this first part of our formalization is simply the
packaging and layering of so many definitions. The packed classes pattern and the explicit
use of category-theoretic abstractions have both shortened and improved the structure
of the development relative to our previous version, and the external interface we will
use later is much more uniform. There is still plenty of room for further improvement,
however, particularly in regard to the tension between the elementwise (type-theoretic)
and pointfree (categorical) styles of working.

3.1. Lift Monad

The basic order theory of the previous section goes through essentially as it does when
working classically on paper. In particular, the definitions of lubs in products and func-
tion spaces are already constructive. But lifting will allow us to express general partial
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recursive functions, which, in Coq’s logic of total functions, is clearly going to involve
some work. Our solution generalizes Paulin-Mohring’s treatment of the particular case
of flat cpos, which in turn builds on work of Capretta [2005] on general recursion in type
theory. We exploit Coq’s support for coinductive datatypes [Coquand, 1993], defining the
lift of D for D:cpoType in terms of a type Stream of potentially infinite streams:

CoInductive Stream := Eps : Stream → Stream | Val : D → Stream.

An element of Stream is (classically) either the infinite Eps(Eps(Eps( . . . ))), or a finite
sequence Eps (Eps (. . .Val d). . .)) of Eps ticks, terminated by Val d for some d:D. One
can think of Stream as defining a resumptions monad, which we will subsequently quotient
to define lifting. For x:Stream and n:nat, pred_nth x n is the stream that results from
removing the first n Eps steps from x. The order on Stream is coinductively defined by

CoInductive DLle : Stream D → Stream D → Prop :=
| DLleEps : ∀ x y, DLle x y → DLle (Eps x) (Eps y)
| DLleEpsVal : ∀ x d, DLle x (Val d) → DLle (Eps x) (Val d)
| DLleVal : ∀ d d’ n y, pred_nth y n = Val d’ → d v d’ → DLle (Val d) y.

which satisfies the following coinduction principle:

Lemma DLle_rec : ∀ R : Stream D → Stream D → Prop,
(∀ x y, R (Eps x) (Eps y) → R x y) →
(∀ x d, R (Eps x) (Val d) → R x (Val d)) →
(∀ d y, R (Val d) y → ∃ n, ∃ d’, pred_nth y n = Val d’ ∧ d v d’)
→ ∀ x y, R x y → DLle x y.

The coinduction principle is used to show that DLle is reflexive and transitive, allowing
us to construct a preorder DL_ord : pointedType (and we now write the usual v for
the order). The infinite stream of Eps’s, Ω, is the least element of DL_ord. The inferred
setoidType structure, ≡ , quotients DL_ord by equating finite streams of any length that
produce ≡ -equal elements of D.

Fig. 1. Least upper bounds in D⊥

Constructing a cpoType from DL_ord
is slightly subtle. We need to de-
fine a function that maps chains
c:natO −→ DL_ord to their lubs in
DL_ord. An important observation is
that if some cn is non-Ω, i.e. there ex-
ists a dn such that cn ≡ Val dn, then
for anym ≥ n, there is a dm such that
cm ≡ Val dm and that moreover, the
sequence dn, dn+1, . . . , forms a chain
in D. Classically, we’d like to just say
that if there is such a cn, the lub is
Val applied to the lub of the associ-
ated chain in D, otherwise the lub is Ω. But that simple idea does not work in a construc-
tive setting. There is no computable function that tests whether a particular cn is Ω or
not, because one can only examine finite prefixes. Using a standard trick from recursion
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theory, however, we can make a parallel corecursive search through all the cns simulta-
neously, as illustrated in Fig. 1. The output stream we need to produce is an element of
DL_ord. Each time the interleaving search finds an Eps (the solid circles), we produce an
Eps on the output. So if every element of the chain is Ω, we will end up producing Ω on
the output. But should we find a Val d (in the figure, d3) after outputting some finite
number (in the figure, thirteen) of Eps s, then we know all later elements of the chain are
also non-Ω, so we go ahead and build the chain in D that they form (d3 v d4 v d5 v · · · ),
compute the least upper bound, tdi, of that using the lub operation of D, and output
Val(tdi). The definition of this construction in Coq, and the proof that it does indeed
yield the least upper bound of the chain c, involve non-trivial constructive reasoning.
In particular, we use a provable form of constructive indefinite description to go from
knowing that there is a chain in D to actually having that chain in our hand, so as to
be able to take its lub. The end result is a constructive lub operation on DL_ord, from
which we can construct D⊥ : cppoType, as required.

Lifting is a strong monad [Moggi, 1991] on cpoCatType. The unit η : D −→ D⊥ just
applies the Val constructor. If f:D −→ E⊥ define kleisli f : D⊥ −→ E⊥ to be the map

cofix kl (l:Stream D) := match l with Eps l ⇒ Eps (kl l) | Val d ⇒ f d end.

Thinking operationally, the way in which kleisli sequences computations is very intu-
itive. To run kleisli f d, we start by running d. Every time d takes an Eps step, we do
too, so if d diverges so does kleisli f d. Should d yield a value d’, however, the remain-
ing steps are those of f d’. kleisli f is continuous and satisfies the equations making
(−⊥, η,kleisli) a Kleisli triple on cpoCatType. It is also convenient to have parameterized
versions, KLEISLIR D E : D * E −→ F⊥ → D * E⊥ −→ F⊥ , defined by composing kleisli
with the evident strength τ : D * E⊥ −→ (D * E)⊥ .

4. A Simply-Typed Functional Language

Our first application of the formalization of ω-cpos is the denotational semantics of
PCFv, a simply-typed, call-by-value functional language with recursion. PCFv has inte-
ger, boolean, function and pair types. Typing environments are lists of types.

Inductive Ty := Int | Bool | Arrow (ty1 t2 : Ty) | Prod (ty1 t2 : Ty).
Infix " –-> " := Arrow (at level 55, right associativity).
Infix " ∗ " := Prod (at level 55).
Definition Env := seq Ty.

The term representation is ‘strongly-typed’: Coq types for variables and terms are in-
dexed by Ty and Env, so terms are well-typed by construction. We discuss working with
strongly-typed term representations in more detail elsewhere [Benton et al., 2010], so here
just present the basic definitions. We separate syntactic values v from general expres-
sions e, and restrict the syntax to ‘administrative normal form’, with explicit sequencing
of evaluation by LET and inclusion of values into expressions by VAL:

Inductive Var : Env → Ty → Type :=
| ZVAR : ∀ E t, Var (t :: E) t
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| SVAR : ∀ E t t’, Var E t → Var (t’ :: E) t.
Inductive Value E : Ty → Type :=
| TINT : nat → Value E Int
| TBOOL : bool → Value E Bool
| TVAR :> ∀ t, Var E t → Value E t
| TFIX : ∀ t1 t2, Exp (t1 :: t1 –-> t2 :: E) t2 → Value E (t1 –-> t2)
| TPAIR : ∀ t1 t2, Value E t1 → Value E t2 → Value E (t1 ∗ t2)
with Exp E : Ty → Type :=
| TFST : ∀ t1 t2, Value E (t1 ∗ t2) → Exp E t1
| TSND : ∀ t1 t2, Value E (t1 ∗ t2) → Exp E t2
| TOP : (nat → nat → nat) → Value E Int → Value E Int → Exp E Int
| TGT : Value E Int → Value E Int → Exp E Bool
| TVAL : ∀ t, Value E t → Exp E t
| TLET : ∀ t1 t2, Exp E t1 → Exp (t1 :: E) t2 → Exp E t2
| TAPP : ∀ t1 t2, Value E (t1 –-> t2) → Value E t1 → Exp E t2
| TIF : ∀ t, Value E Bool → Exp E t → Exp E t → Exp E t.
Definition CExp t := Exp nil t.
Definition CValue t := Value nil t.

Variables of type Var env t are ‘typed de Bruijn indices’, essentially proofs that t is
at a particular position in env. The typing rule for each term constructor can be read
directly off its definition. For example, TLET takes an expression typed as t1 under env,
and another expression typed as t2 under env extended with a new variable of type t1;
its whole type is then t2 under env. A typed substitution s : Sub env env’ provides a
value v : Value env’ t for each type t in the environment env. We define notation for
writing substitutions as lists. Substitutions are applied to expressions by

subExp : ∀ (env env’:Env) (ty:Ty), Sub env env’ → Exp env ty → Exp env’ ty

whilst subVal does the same thing for values. The operational semantics is very direct,
and evaluation preserves types just by construction:

Inductive Ev: ∀ t, CExp t → CValue t → Prop :=
| e_Val: ∀ t (v : CValue t), TVAL v ⇓ v
| e_Op: ∀ op n1 n2, TOP op (TINT n1) (TINT n2) ⇓ TINT (op n1 n2)
| e_Gt : ∀ n1 n2, TGT (TINT n1) (TINT n2) ⇓ TBOOL (n2 ≤ n1)
| e_Fst : ∀ t1 t2 (v1 : CValue t1) (v2 : CValue t2), TFST (TPAIR v1 v2) ⇓ v1
| e_Snd : ∀ t1 t2 (v1 : CValue t1) (v2 : CValue t2), TSND (TPAIR v1 v2) ⇓ v2
| e_App : ∀ t1 t2 e (v1 : CValue t1) (v2 : CValue t2),

subExp [ v1, TFIX e ] e ⇓ v2 → TAPP (TFIX e) v1 ⇓ v2
| e_Let : ∀ t1 t2 e1 e2 (v1 : CValue t1) (v2 : CValue t2),

e1 ⇓ v1 → subExp [ v1 ] e2 ⇓ v2 → TLET e1 e2 ⇓ v2
| e_IfTrue : ∀ t (e1 e2 : CExp t) v, e1 ⇓ v → TIF (TBOOL true) e1 e2 ⇓ v
| e_IfFalse : ∀ t (e1 e2 : CExp t) v, e2 ⇓ v → TIF (TBOOL false) e1 e2 ⇓ v
where "e ’⇓ ’ v" := (Ev e v).
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4.1. Denotational semantics

The inductive semantics of types uses the product of ω-cpos to model products and
continuous functions into a lifted ω-cpo to model call-by-value functions:

Fixpoint SemTy t : cpoType :=
match t with
| Int ⇒ nat_cpoType
| Bool ⇒ (One:cpoType) + One
| t1 –-> t2 ⇒ SemTy t1 =⇒ (SemTy t2)⊥
| t1 ∗ t2 ⇒ SemTy t1 * SemTy t2
end.

Fixpoint SemEnv E : cpoType :=
match E with
| nil ⇒ One
| t :: E ⇒ SemEnv E * SemTy t
end.

We interpret Value E t in SemEnv E −→ SemTy t. Expressions are similar, but the range
is a lifted cpo.

Fixpoint SemVar E t (var : Var E t) : SemEnv E −→ SemTy t :=
match var with
| ZVAR _ _ ⇒ π2

| SVAR _ _ _ v ⇒ SemVar v ◦ π1

end.
Fixpoint SemExp E t (e : Exp E t) : SemEnv E −→ (SemTy t)⊥ :=
match e with
| TOP op v1 v2 ⇒ η ◦ SimpleBOp op ◦ 〈| SemVal v1 , SemVal v2 |〉
| TGT v1 v2 ⇒ η ◦ SimpleBOp (fun x y ⇒ if leq x y then inl _ tt else inr _ tt)

◦ 〈| SemVal v2 , SemVal v1 |〉
| TAPP _ _ v1 v2 ⇒ ev ◦ 〈|SemVal v1 , SemVal v2 |〉
| TVAL _ v ⇒ η ◦ SemVal v
| TLET _ _ e1 e2 ⇒ KLEISLIR (SemExp e2) ◦ 〈|Id , SemExp e1 |〉
| TIF _ v e1 e2 ⇒ choose (SemExp e1) (SemExp e2) (SemVal v)
| TFST _ _ v ⇒ η ◦ π1 ◦ SemVal v
| TSND _ _ v ⇒ η ◦ π2 ◦ SemVal v
end with SemVal E t (v : Value E t) : SemEnv E −→ SemTy t :=
match v with
| TINT n ⇒ const _ n
| TBOOL b ⇒ const _ (if b then inl _ tt else inr _ tt)
| TVAR _ i ⇒ SemVar i
| TFIX t1 t2 e ⇒ (FIXP : cpoCatType _ _) ◦ exp_fun (exp_fun (SemExp e))
| TPAIR _ _ v1 v2 ⇒ 〈|SemVal v1 , SemVal v2 |〉
end.

SimpleBOp lifts Coq functions to continuous maps on discrete cpos, const is the K combi-
nator and choose is a continuous conditional. Observe that this is exactly how one would
usually present the categorical (point-free) semantics of this language. Inference fills in
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the category in which we are working, its cartesian closed structure, the pointedness of
the interpretation of function types that justifies the use of FIXP, and so on.

4.2. Relating denotational and operational semantics

The soundness theorem says that if an expression e evaluates to a value v, then the
denotation of e is the lift of that of v. We start by giving the semantics of substitutions
as continuous functions, defining

Fixpoint SemSub E E’ : Sub E’ E → SemEnv E −→ SemEnv E’ := ...

by induction on E’. This allows us to state the crucial substitution lemma, which in turn
is used in the e_App and e_Let cases of the soundness proof.

Lemma SemCommutesWithSub E:
(∀ t (v:Value E t) E’ (s:Sub E E’), SemVal v ◦ SemSub s ≡ SemVal (subVal s v))

∧ (∀ t (e:Exp E t) E’ (s:Sub E E’), SemExp e ◦ SemSub s ≡ SemExp (subExp s e)).

Theorem Soundness: ∀ t (e : CExp t) v, e ⇓ v → SemExp e ≡ η◦ SemVal v.

We next prove adequacy : if the denotation of a closed expression e is some lifted
element, then e converges to a value. The proof uses a logical relation between syntax
and semantics. We start by defining a liftRel operation that takes a relation between a
cpo and values and lifts it to a relation between a lifted cpo and expressions, then use
this to define relExp in terms of relVal.

Definition liftRel t (R : SemTy t → CValue t → Prop) :=
fun d e ⇒ ∀ d’, d ≡ Val d’ → ∃ v, e ⇓ v ∧ R d’ v.

Fixpoint relVal t : SemTy t → CValue t → Prop :=
match t with
| Int ⇒ fun d v ⇒ v = TINT d
| Bool ⇒ fun d v ⇒ v = TBOOL d
| t1 –-> t2 ⇒ fun d v ⇒ ∃ e, v = TFIX e ∧
∀ d1 v1, relVal t1 d1 v1 → liftRel (relVal t2) (d d1) (subExp [ v1, v ] e)

| t1 ∗ t2 ⇒ fun d v ⇒ ∃ v1, ∃ v2,
v = TPAIR v1 v2 ∧ relVal t1 (fst d) v1 ∧ relVal t2 (snd d) v2

end.
Definition relExp ty := liftRel (relVal ty).

The logical relation is down-closed on the left and is admissible:

Lemma relVal_lower: ∀ t d d’ v, d v d’ → relVal t d’ v → relVal t d v.
Lemma rel_admissible: ∀ t v, admissible (fun d ⇒ relVal t d v).

These lemmas are then used in the proof of the Fundamental Theorem for the logical
relation, which is proved by induction on the structure of terms.

Theorem FundamentalTheorem E:
(∀ t v senv s, relEnv E senv s → relVal t (SemVal v senv) (subVal s v)) ∧
(∀ t e senv s, relEnv E senv s → liftRel (relVal t) (SemExp e senv) (subExp s e)).

Now we instantiate the fundamental theorem with closed expressions to obtain



N. Benton, L. Birkedal, A. Kennedy and C. Varming 16

Corollary Adequacy: ∀ t (e : CExp t) d, SemExp e tt ≡ Val d → ∃ v, e ⇓ v.

The development of this section follows closely that given by Winskel [1993, chap. 11].

5. Recursive Domain Equations

We now outline our formalization of the solution of mixed-variance recursive domain
equations, such as arise in modelling untyped higher-order languages, languages with
higher-typed store or languages with general recursive types.

The basic technology for solving domain equations is Scott’s inverse limit construction,
our formalization of which follows an approach due to Freyd [1990, 1992] and Pitts [1996],
generalized to categories C enriched over cppoCatType. A key idea is to separate the
positive and negative occurrences, specifying recursive domains as fixed points of locally
continuous bi-functors F : Cop×C → C, i.e. objects D such that such that F (D,D) ' D.

We start by defining the type of cppoCatType-enriched categories with a terminal object
and continuous composition:

Module BaseCat.
Record mixin_of (O:Type) (M:O → O → cppoType) := Mixin
{ catm :> Category.mixin_of M;
terminal :> CatTerminal.mixin_of (Category.Pack catm O);
comp : ∀ X Y Z : O, M Y Z * M X Y −→ M X Z;
comp_comp : ∀ X Y Z m m’, comp X Y Z (m,m’) ≡ Category.tcomp catm m m’

}.
Coercion base2 T (M:T → T → cppoType) (c:class_of M) := CatTerminal.Class c.
Coercion terminalCat (cT:cat) : terminalCat := CatTerminal.Pack (class cT) cT.
Definition catType (cT:cat) : catType := Category.Pack (class cT) cT.
Definition cppoType (cT:cat) (X Y:cT) : cppoType :=

CPPO.Pack (CPPO.class (morph X Y)) (cT X Y).
End BaseCat.
Notation cppoMorph := BaseCat.cppoType.
Notation CppoECatType := BaseCat.pack.

Composition in cppoCatType-enriched categories is inherited via the catm field in the
mixin, but we also specify that composition agrees with a continuous map comp in
cppoCatType. There are projections, such as cppoMorph, from morphisms to all the points in
the ordered type hierarchy, most of which we have elided. These are all Canonical Structures,
but not declared as coercions.

A mixed variance locally-continuous bifunctor on a cppoCatType-enriched categoryM
comprises an action on pairs of objects (ob), a continuous action on pairs of morphisms
(morph), contravariant in the first argument and covariant in the second, together with
proofs that morph respects both composition (morph_comp) and identities (morph_id):

Record BiFunctor : Type := mk_functor
{ ob : M → M → M ;
morph : ∀ (T0 T1 T2 T3 : M), (cppoMorph T1 T0) * (cppoMorph T2 T3) −→

(cppoMorph (ob T0 T2) (ob T1 T3)) ;
morph_comp: ∀ T0 T1 T2 T3 T4 T5 (f:M T4 T1) (g:M T3 T5) (h:M T1 T0)
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(k:M T2 T3), getmorph (morph T1 T4 T3 T5 (f,g)) ◦ (morph T0 T1 T2 T3 (h, k)) ≡
morph _ _ _ _ (h ◦ f, g ◦ k) ;

morph_id : ∀ T0 T1, morph T0 T0 T1 T1 (Id:M _ _, Id:M _ _) ≡ (Id : M _ _)}.

A pair (f : D −→ E, g : E −→ D) is an embedding-projection (e-p) pair if g ◦ f ≡ idD
and f◦g v idE . Now let F:BiFunctor. For any e-p pair (f, g), (morph F (g, f), morph F (f, g))
is an e-p pair. We define a sequence of objects by iterating F, starting with the terminal
object inM and linked by a corresponding sequence of e-p pairs:

Fixpoint Diter (n:nat) :=
match n return M with | O ⇒ One | S n ⇒ ob F (Diter n) (Diter n) end.

Fixpoint Injection (n:nat) : (Diter n) −→ (Diter (S n)) :=
match n with
| O ⇒ ⊥
| S n ⇒ morph F _ _ _ _ (Projection n, Injection n)
end with Projection (n:nat) : (Diter (S n)) −→ (Diter n) :=
match n with
| O ⇒ terminal_morph _
| S n ⇒ morph F _ _ _ _ (Injection n,Projection n)
end.
Variable comp_left_strict : ∀ (X Y Z:M) (f:M X Y),

(⊥:Y −→ Z) ◦ f ≡ (⊥:X −→ Z).
Lemma eppair_IP: ∀ n, eppair (Injection n) (Projection n).

The further assumption that composition is left-strict will be discharged when we instan-
tiate the general framework later. We call such sequences ‘towers’:

Record Tower : Type := mk_tower
{ tobjects : nat → M;
tmorphisms : ∀ i, (tobjects (S i)) −→ (tobjects i);
tmorphismsI : ∀ i, (tobjects i) −→ (tobjects (S i));
teppair : ∀ i, eppair (tmorphismsI i) (tmorphisms i)}.

Definition DTower := mk_tower eppair_IP.

We define limits of towers and require the enriched category to have a limiting cone for
every tower:

Record Cone (To:Tower) : Type := mk_basecone
{ tcone :> M;
mcone : ∀ i, tcone −→ (tobjects To i);
mconeCom : ∀ i, tmorphisms To i ◦ mcone (S i) ≡ mcone i }.

Record Limit (To:Tower) : Type := mk_baselimit
{lcone :> Cone To;
limitExists : ∀ (A:Cone To), (tcone A) −→ (tcone lcone);
limitCom : ∀ (A:Cone To), ∀ n, mcone A n ≡ mcone lcone n ◦ limitExists A;
limitUnique : ∀ (A:Cone To) (h: (tcone A) −→ (tcone lcone))

(C:∀ n, mcone A n ≡ mcone lcone n ◦ h), h ≡ limitExists A }.

Variable L:∀ T:Tower, Limit T.
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Under these assumptions, we can construct the desired solution:

Definition DInf : M := tcone (L DTower).
Definition Fold : (ob F DInf DInf) −→ DInf := ...
Definition Unfold : DInf −→ (ob F DInf DInf) := ...
Lemma FU_id : Fold ◦ Unfold ≡ Id.
Lemma UF_id : Unfold ◦ Fold ≡ Id.

In order to do anything useful with recursively defined domains, we really need some
general reasoning principles that allow us to avoid unpicking all the complex details of
the construction above every time we want to prove something. One ‘partially’ abstract
interface to the construction reveals that DInf comes equipped with a chain of retractions
ρi : DInf −→ DInf such that

⊔
i ρi ≡ Id. A more abstract and useful principle is given

by Pitts’s [1996] characterization of the solution as a minimal invariant, which is how
we will establish the existence of a recursively defined logical relation in Section 6.1. We
define delta : (cppoMorph DInf DInf) −→ (cppoMorph DInf DInf) such that

Lemma delta_simpl e : delta e = Fold ◦ morph F _ _ _ _ (e,e) ◦ Unfold.

We then show the minimal invariance property by a pointwise comparison of the chain
of retractions whose lub we know to be the identity function with the chain whose lub
gives the least fixed point of delta:

Lemma id_min : (FIXP delta : M _ _) ≡ Id.

6. A Uni-Typed Lambda Calculus

We now apply the technology of the previous section to formalize the denotational se-
mantics of an uni-typed (untyped) CBV lambda calculus with constants. This time the
values are variables, numeric constants, and λ abstractions; expressions are again in ANF
with LET and VAL constructs, together with function application, numeric operations, and
a zero-test conditional. We index the type Value of values and Exp of expressions by an
environment of type nat. The evaluation relation is as follows:

Inductive Evaluation : Exp O → Value O → Prop :=
| e_Val : ∀ v, VAL v ⇓ v
| e_App : ∀ e1 v2 v, subExp [v2] e1 ⇓ v → APP (LAMBDA e1) v2 ⇓ v
| e_Let : ∀ e1 v1 e2 v2, e1 ⇓ v1 → subExp [v1] e2 ⇓ v2 → LET e1 e2 ⇓ v2
| e_Ifz1 : ∀ e1 e2 v1, e1 ⇓ v1 → IFZ (INT 0) e1 e2 ⇓ v1
| e_Ifz2 : ∀ e1 e2 v2 n, e2 ⇓ v2 → IFZ (INT (S n)) e1 e2 ⇓ v2
| e_Op : ∀ op n1 n2, OP op (INT n1) (INT n2) ⇓ INT (op n1 n2)
where "e ⇓ v" := (Evaluation e v).

6.1. Semantic Model

We interpret the unityped language in a solution for the recursive domain equation
D ' N + (D =⇒ D⊥), following the intuition that a value is either a number or a
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function, and functions may diverge when applied to values. The solution is found in the
Kleisli category for the lift monad, i.e., our encoding of the category of cpos and partial
functions. Notice that this Kleisli category is classically isomorphic to the category Cppo⊥
of domains and strict functions often used on paper [Pitts, 1996, Reynolds, 1974]. The
construction in Coq is an instantiation of results from the previous section.

We start by constructing the Kleisli category as a cppoCatType-enriched category with
left strict composition:

Lemma kcpoCatAxiom : @Category.axiom cpoType
(fun X Y ⇒ exp_cppoType X (liftCppoType Y)) (fun X Y Z f g ⇒ kleisli f ◦ g) (@η).

Canonical Structure kcpoCatMixin := CatMixin kcpoCatAxiom.
Canonical Structure kcpoCatType := Eval hnf in CatType kcpoCatMixin.

Canonical Structure kcpoBaseCatType := Eval hnf in CppoECatType kcpoBaseCatMixin.
Lemma leftss : (∀ (X Y Z : kcpoBaseCatType) (f : kcpoBaseCatType X Y),

(⊥:kcpoCatType _ _) ◦ f ≡ (⊥: X −→ Z)).

And we show that it has all limits of towers:

Definition kcpoLimit (T:Tower kcpoBaseCatType) : Limit T.

We then build the bifunctor F (D,E) = N + (D =⇒ E⊥) using combinators:

Definition FS := biSum (biConst (discrete_cpoType nat)) biFun.

And then we construct the solution, defining predomains DInf and VInf for values:

Definition DInf : cpoType := @DInf kcpoBaseCatType kcpoLimit FS leftss.
Definition VInf := (discrete_cpoType nat) + (DInf =⇒ DInf⊥ ).
Definition Fold : VInf −→ DInf⊥ := Fold kcpoLimit FS leftss.
Definition Unfold : DInf −→ VInf⊥ := Unfold kcpoLimit FS leftss.

We notice that for all isomorphisms in the Kleisli category: f : D −→ E⊥ and g : E −→
D⊥, kleisli(f) ◦ g = η and kleisli(g) ◦ f = η, f and g are total functions and we obtain:

Lemma foldT : total Fold.
Lemma unfoldT : total Unfold.
Definition Roll : VInf −→ DInf := totalL foldT.
Definition Unroll : DInf −→ VInf := totalL unfoldT.
Lemma RU_id : Roll ◦ Unroll ≡ Id.
Lemma UR_id : Unroll ◦ Roll ≡ Id.

We also get the minimal invariant property:

Definition delta:(DInf =⇒ DInf⊥ )−→ (DInf =⇒ DInf⊥ ) := delta kcpoLimit FS leftss.
Lemma id_min : η≡ FIXP delta.

Environments are interpreted as n-ary products of VInf, with projections:

Fixpoint SemEnv E : cpoType := match E with O ⇒ One | S E ⇒ SemEnv E * VInf end.
Fixpoint SemVar E (v : Var E) : SemEnv E −→ VInf :=
match v with
| ZVAR _ ⇒ π2
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| SVAR _ v ⇒ SemVar v ◦ π1

end.

The semantics of values and expressions of the unityped language are then defined by:

Fixpoint SemVal E (v:Value E) : SemEnv E −→ VInf :=
match v return SemEnv E −→ VInf with
| INT i ⇒ in1 ◦ const _ i
| VAR m ⇒ SemVar m
| LAMBDA e ⇒ in2 ◦ exp_fun (kleisli (η ◦ Roll) ◦ SemExp e ◦ Id ×Unroll)
end with SemExp E (e:Exp E) : SemEnv E −→ VInf⊥ :=
match e with
| VAL v ⇒ η◦ SemVal v
| APP v1 v2 ⇒ kleisli (η ◦ Unroll) ◦ ev ◦
〈| [ @const _ (exp_cppoType _ _) ⊥, Id] ◦ SemVal v1, Roll ◦ SemVal v2 |〉

| LET e1 e2 ⇒ ev ◦ 〈|exp_fun (KLEISLIR (SemExp e2)), SemExp e1 |〉
| OP op v0 v1 ⇒ kleisli (η ◦ in1 ◦ SimpleBOp op) ◦ uncurry (Smash _ _) ◦

〈| [ η, const _ ⊥]◦ SemVal v0, [η, const _ ⊥]◦ SemVal v1|〉
| IFZ v e1 e2 ⇒ ev ◦

[ [ exp_fun (SemExp e1 ◦ π2), exp_fun (SemExp e2 ◦ π2)] ◦ zeroCase ,
@const _ (exp_cppoType _ _) ⊥]× Id ◦ 〈|SemVal v, Id|〉

end.

Here zeroCase : nat_cpoType −→ One + nat_cpoType is the ‘error-signalling’, continuous
predecessor function. The expression semantics is defined to yield ⊥ in case of type errors
(e.g. in the APP case).

6.2. Soundness and Adequacy

As in the typed case, we define semantic substitutions and show a substitution lemma:

Lemma SemCommutesWithSub E:
(∀ (v : Value E) E’ (s : Sub E E’), SemVal v ◦ SemSub s ≡ SemVal (subVal s v))

∧ (∀ (e : Exp E) E’ (s : Sub E E’), SemExp e ◦ SemSub s ≡ SemExp (subExp s e)).

Soundness is then shown using the substitution lemma and the isomorphism of the predo-
main DInf in the case for APP. The proof proceeds by induction, using equational reasoning
to show that evaluation preserves semantics:

Lemma Soundness e v : (e ⇓ v) → SemExp e ≡ η◦ SemVal v.

The proof of adequacy again uses a logical relation between syntax and semantics, but
this cannot now be defined simply by induction on types. Instead we have a recursive
specification of a logical relation over our recursively defined domain, but it is not at all
clear that such a relation exists: because of the mixed variance of the function space,
the operator on relations whose fixed point we seek is not monotone. Following Pitts
[1996], however, we again use the technique of separating positive and negative occur-
rences, defining a monotone operator in the complete lattice of pairs of relations, with
the superset order in the first component and the subset order in the second. A fixed
point of that operator is then constructed by Knaster-Tarski.
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We first define a notion of admissibility on ≡-respecting relations between elements of
our domain of values VInf and closed syntactic values in Value O and show that this is
closed under intersection, so admissible relations form a complete lattice, RelAdm.

We then define a relational action corresponding to the bifunctor used in defining our
recursive domain. This action, RelV, maps a pair of relations R, S on VInf * Value O to
a new relation that relates inl m to NUM m for all m : nat, and relates inr f to LAMBDA e
just when f : DInf =⇒ DInf⊥ satisfies the ‘logical’ property

∀ d v, R (d, v) → ∀ d’, kleisli (η ◦ Unroll) (f (Roll d)) ≡ Val d’ →
∃ v’, subExp [v’] e ⇓ v2 ∧ S (d’,v’)

It is easy to show that RelV maps admissible relations to admissible relations and is con-
travariant in its first argument and covariant in its second. Hence the function λR :
RelAdmop. λS : RelAdm. (RelV S R, RelV R S) is monotone on the complete lattice
RelAdmop × RelAdm. Thus it has a least fixed point (∆−,∆+). By applying the minimal
invariant property from the previous section, we prove that in fact ∆− ≡ ∆+, so we have
found a fixed point, LR of RelV, which is the logical relation needed to prove adequacy.

We extend LR to ELR, a relation on VInf⊥ * Exp O, by ELR (d,e) if and only if for all d’
if d ≡ Val d’ then there exists a value v and a derivation e ⇓ v such that LR (d’,v), and
then prove fundamental theorem for these relations by simultaneous structural induction
on values and expressions:

Theorem FundamentalTheorem n :
(∀ (v:Value n) sl d, LRsubst d sl → (RelV LR LR) (SemVal v d, subVal sl v)) ∧
∀ (e:Exp n) sl d, LRsubst d sl → ELR (SemExp e d) (subExp sl e).

Adequacy is then a corollary of the fundamental theorem:

Corollary Adequacy (e:Exp O) d : SemExp e tt ≡ Val d → ∃ v, e ⇓ v.

7. Complete Ultra-Metric Space Theory

We continue with a formalization of complete 1-bounded ultrametric spaces. Classically
an ultrametric space is a set M equipped with a measure function d : M ×M → R such
that d(x, y) ≥ 0 and the following three conditions holds for all x, y, z:

d(x, y) = d(y, x) d(x, y) = 0⇔ x = y d(x, z) ≤ max(d(x, y), d(y, z))

We notice that this axiomization uses neither the additive nor multiplicative structure of
the reals, and indeed the ultrametric spaces used to model programming languages are
usually bisected [Birkedal et al., 2010b]: every non-zero distance is 2m for some m. It is
easy see that the set {(x, y) | d(x, y) ≤ 1

2n } is an equivalence relation for every n, and
the n+ 1’th equivalence relation is contained in the n’th. Conversely, given a sequence of
equivalence relations Dn onM where Dn+1 ⊆ Dn (as subsets ofM×M), we can define a
metric d by d(x, y) = 0 if x = y and otherwise d(x, y) = 2−max{n|x Dn y}, and (M,d) is a
1-bounded ultrametric space. On bisected ultrametric spaces the two notations coincide,
and for the ease of formalization, we choose to represent a bounded ultrametric space
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as a setoidType with a sequence of equivalence relations Dn such that Dn+1 ⊆ Dn, and
x Dn y for every n is equivalent to x ≡ y:

Module Metric. Section Axioms.
Variable M:setoidType.
Variable Mrel : ∀ n : nat, M → M → Prop.
Definition Mrefl x y := ((∀ n, Mrel n x y) ↔ x ≡ y).
Definition Msym n x y := Mrel n x y → Mrel n y x.
Definition Mtrans n x y z := Mrel n x y → Mrel n y z → Mrel n x z.
Definition Mmono x y n := Mrel (S n) x y → Mrel n x y.
Definition Mbound x y := Mrel O x y.
Definition axiom := ∀ n x y z, @Mrefl x y ∧ @Msym n x y ∧ @Mtrans n x y z ∧

@Mmono x y n ∧ @Mbound x y.
End Axioms.
Record mixin_of (M:setoidType) : Type := Mixin
{ Mrel : ∀ n : nat, M → M → Prop; _ : axiom Mrel }.

Coercion setoidType cT := Setoid.Pack (class cT) cT.
End Metric.
Notation metricType := Metric.type.
Definition Mrel (m:metricType) : nat → m → m → Prop :=
let: Metric.Mixin r _ := Metric.met (Metric.class m) in r.

Notation "x ’=’ n ’=’ y" := (@Mrel _ n x y) : M_scope.

Next we define the morphisms in the category of bounded ultrametric spaces. A func-
tion between ultrametric bisected spaces is non-expansive iff it maps n-equivalent el-
ements to n-equivalent results [Birkedal et al., 2010b]. We package up nonexpansive
functions, and define the category of bounded ultrametric spaces and nonexpansive func-
tions:

Definition nonexpansive (M M’:metricType) (f:M → M’) : Prop :=
∀ (n : nat) (e e’ : M), e = n = e’ → f e = n = f e’.

Module FMet. Section fmet.
Variable O1 O2 : metricType.
Record mixin_of (f:O1 → O2) := Mixin { nonexp :> nonexpansive f }.
Notation class_of := mixin_of (only parsing).
Structure type : Type := Pack {sort :> O1 → O2; _ : class_of sort; _ : O1 → O2}.
End fmet. End FMet.

Notation fmet := FMet.type.

We go on to define complete bounded ultrametric spaces. We start by defining Cauchy
chains as sequences for which all elements from the n’th element onwards are n-equal.
In other words, every element after the n’th is in the n’th disc centered around the n’th
element. This is a very strict definition of Cauchy chains as we always know from which
point on in the sequence the elements are n-related. This strict definition of Cauchy chains
weakens the notion of completeness and is used crucially to show the completeness of the
space of finite partial nonexpansive functions (see Section 8.2). Hence we end up with
this definition:

Definition cchainp (M:metricType) (x:nat → M) : Prop :=
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∀ n i j, n v i → n v j → (x i) = n = (x j).
Record cchain (M:metricType) : Type := mk_cchain
{ tchain :> nat → M; cchain_cauchy : cchainp tchain }.

A bounded complete ultrametric space is then defined as an bounded ultrametric space
M equipped with a completion operation comp : cchain M → M such that every Cauchy
chain c converges to comp c.

Definition mconverge (M:metricType) (c:cchain M) (x:M) : Prop :=
∀ n, ∃ m, ∀ i, m v i → (c i) = n = x.

Module CMetric.
Definition axiom M (comp:cchain M → M) := ∀ c, mconverge c (comp c).
Record mixin_of (M : metricType) : Type := Mixin
{ comp : cchain M → M; _ : axiom comp }.

Structure type : Type := Pack {sort :> Type; _ : class_of sort; _ : Type}.
Coercion metricType cT := Metric.Pack (class cT) cT.

End CMetric.
Notation cmetricType := CMetric.type.
Definition umet_complete (M:cmetricType) : cchain M → M :=
CMetric.comp (CMetric.class M).

We continue by defining the category of bounded complete ultrametric spaces and
nonexpansive functions cmetricCatType, and we define the product, sum, and exponential
in cmetricCatType. As cmetricCatType is a full subcategory of the category of bounded
ultrametric spaces the morphisms and commuting diagrams are all inherited.

The main reason for looking at bounded complete ultrametric spaces is Banach’s fixed
point theorem. Given a non-empty bounded complete ultrametric space M , every con-
tractive endomorphism defined on M has a unique fixed point. We say a morphism
f : M −→M is contractive if for any two points x, y, if x n= y then f(x) n+1= f(y). Given
x : M (M is non-empty) the sequence where the n’th elements is the n’th iteration of
f on x (λn. fn(x)) is a Cauchy sequence and thus, by completeness of M , the sequence
converges to a point in M . We define:

Definition contractive M N (f:fmet M N) : Prop :=
∀ n x y, x = n = y → f x = n.+1 = f y.

Fixpoint iter n (M:metricType) (f:M → M) :=
match n with | O ⇒ id | S n ⇒ fun x ⇒ f (iter n f x) end.

Lemma cfixP (M:cmetricType) (f:M −→ M) (C:contractive f) x :
cchainp (fun n ⇒ iter n f x).

Definition cfix (M:cmetricType) f C x : cchain M := mk_cchain (@cfixP M f C x).
Definition fixp (M:cmetricType) f C x : M := umet_complete (@cfix M f C x).

We then show that fixp f c x is the unique fixed point of f . The last lemma below
shows that taking fixed points of contractive functions is non-expansive, and thus the
fixed point operator can be internalized, i.e., there is a morphism fix from the bounded
complete ultrametric space of contractive endomorphisms on M , to M , and for every
contractive f , fix(f) is the unique (up to ≡) fixed point of f .
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Lemma fixp_eq (M:cmetricType) (f:M −→ M) (C:contractive f) (x:M) :
fixp C x ≡ f (fixp C x).

Lemma fixp_unique (M:cmetricType) f (C:contractive f) (x y:M) :
fixp C x ≡ fixp C y.

Lemma fixp_ne (M:cmetricType) f f’ (C:contractive f) (C’:contractive f’)
(x x’:M) n : f = n = f’ → fixp C x = n= fixp C’ x’.

7.1. Recursive Domain Equations in M -categories

Scott’s inverse limit construction for solving recursive domain equations was adapted
to complete metric spaces by America and Rutten [1989]. We have formalized a recent
generalization of the construction toM -categories, that is, categories enriched in complete
bounded ultrametric spaces, due to [Birkedal et al., 2009b].

We start by defining an M -category as a category enriched over a bounded complete
ultrametric space, with a terminal object, and a composition operation internalized in
the metric space. The enrichment is achieved in essentially the same way as we defined
cppo-enriched categories in section 5. Similarly, the definition of locally nonexpansive
bifunctors closely follows that of locally continuous bifunctors in the cppo-enriched case.
In the rest of this section we assume M is anM -category and that F : Mop×M→ M is locally
non-expansive.

An increasing Cauchy towers is a sequence of section/retraction pairs (s, r), where
limn→∞(sn ◦ rn) = id.

Definition retract (T0 T1 : M) (f: T0 −→ T1) (g: T1 −→ T0) := g ◦ f ≡ Id.

Record Tower : Type := mk_tower
{ tobjects : nat → M;
tmorphisms : ∀ i, tobjects (S i) −→ (tobjects i);
tmorphismsI : ∀ i, (tobjects i) −→ (tobjects (S i));
tretract : ∀ i, retract (tmorphismsI i) (tmorphisms i);
tlimitD : ∀ n i, n v i →
(tmorphismsI i ◦ tmorphisms i : cmetricMorph _ _) = n = Id}.

We proceed with definitions of categorical concepts such as cones, limits, cocones, and
colimits over increasing Cauchy towers. Here we only show the definition of cones and
limits:

Record Cone (To:Tower) : Type := mk_basecone
{ tcone :> M;
mcone : ∀ i, tcone −→ (tobjects To i);
mconeCom : ∀ i, tmorphisms To i ◦ mcone (S i) ≡ mcone i }.

Record Limit (To:Tower) : Type := mk_baselimit
{ lcone :> Cone To;
limitExists : ∀ (A:Cone To), (tcone A) −→ (tcone lcone);
limitCom : ∀ (A:Cone To), ∀ n, mcone A n ≡ mcone lcone n ◦ limitExists A;
limitUnique : ∀ (A:Cone To) (h: (tcone A) −→ (tcone lcone))

(C:∀ n, mcone A n ≡ mcone lcone n ◦ h), h ≡ limitExists A }.
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Following Birkedal et al. [2009b] we require M -categories to have limits of increasing
Cauchy towers. Thence we continue by defining a tower DTower where the n’th object
is the n’th iteration of the bifunctor starting from the terminal object T in M . The
first retract F T T −→ T is given by the fact that T is the terminal object. We require a
morphism T −→ F T T, and that the action of the bifunctor on morphisms is contractive.
By contractiveness we then get the limit condition for DTower, and we define DInf as
the limit of DTower. It is now a lengthy task to verify that the DInf is a solution to the
recursive domain equation, finally ending up with constants:

Definition Fold : (ob F DInf DInf) −→ DInf := ...
Definition Unfold : DInf −→ (ob F DInf DInf) := ...
Lemma FU_id : Fold ◦ Unfold ≡ Id.
Lemma UF_id : Unfold ◦ Fold ≡ Id.

just as in the cppo-enriched case.

8. A CBV Lambda Calculus with Recursive Types and Higher Order Store

In this section we present an application of our formalization of solutions to recursive
domain equations in M -categories by giving a step-indexed semantic model of types
for a call-by-value polymorphic lambda calculus Fµ! with recursive types and general
references. This model was sketched by Birkedal et al. [2010b]; we begin by recalling the
basic ideas. It is a simple unary model, interpreting types as predicates over untyped
terms and sufficing to establish a semantic type soundness result, but illustrates many
of the core challenges of modelling languages with higher-order store.

Following realizability style models, types will be interpreted by certain ‘well-behaved’
predicates on the set V of syntactic Fµ! values. We write UPred(V ) for the set of all
‘well-behaved’ predicates. Since Fµ! includes dynamic allocation of general references,
the model will be a Kripke model, in which semantic types are indexed by possible
worlds that specify which locations are allocated, and what the (semantic) type of the
value stored in each allocated location is assumed to be. Thus we end up with recursive
equations of roughly this form:

W = N→fin T,

T = W →m UPred(V ).

Here locations are modeled as natural numbers, worlds as finite maps from locations
to semantic types, and the m on the function space →m refers to the requirement that
semantic types should be Kripke monotone in the worlds. Worlds are ordered by the
standard inclusion order when we view worlds as (functional) relations.

More precisely, we will solve the following recursive world equation

W ' N→fin ( 1
2W →m UPred(V )) (1)

in the category PreCBUltne of preordered complete bounded non-empty ultrametric
spaces. The space UPred(V ) is the object of downward closed subsets of N × V (if
(k, v) ∈ UPred(V ) then (k′, v) ∈ UPred(V ) for all k′ < k), equipped with the natural
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metric (see formalization below) and the discrete order. The factor 1
2 is a so-called shrink-

ing factor, known from earlier work on metric domain theory, which is used to ensure
that the functor corresponding to the equation above is locally contractive. Thus 1

2W is
W with the metric shifted by one (see formalization below).

Having defined the set of semantic types, we can then define a meaning function
from syntactic types into semantic types in logical relations style and, finally, prove
the fundamental theorem of logical relations, i.e., that any well-typed program is in the
interpretation of its type.

This completes the quick overview of the model; we now proceed by presenting the
formalization of the syntax of Fµ! and then the semantics.

8.1. Syntax of Fµ!

The types of Fµ! are defined in Coq as follows.

Inductive Ty (n:nat) : Type :=
| TVar i: i < n → Ty n
| Int: Ty n | Unit: Ty n
| Product: Ty n → Ty n → Ty n
| Sum: Ty n → Ty n → Ty n
| Mu: Ty (S n) → Ty n
| All: Ty (S n) → Ty n
| Arrow: Ty n → Ty n → Ty n
| Ref: Ty n → Ty n.

As with terms in the language of Section 6, the types here are well-scoped by construction,
with µ- and ∀-bound type variables represented by de Bruijn indices.

Terms are again split into values and expressions, utilising LET for sequencing and VAL
to embed values into expressions. Well-scoping of type variables alone is by construction,
as for types; well-scoping of term variables and typing of terms will be specified by an
inductively-defined typing judgment.

We also define a type cvalue of closed values with a single constructor CValue carrying
a value and a proof that it is closed. Likewise we have a type cexpression of closed ex-
pressions. Substitution is standard and we have constants for type substitutions (tsubst,
etsubst, vtsubst) and value substitutions (csubstV, csubstE) for the different types of
syntax. The syntactic store-typings that occur in typing derivations are finite maps, rep-
resented using a general sorted-list encoding that is applicable whenever the domain of
the map supports a computable order relation. An advantage of this representation is
that Leibniz equality coincides with extensional equality on the represented maps.

The typing judgement i ` env | se `v v ::: t means value v has type t in type envi-
ronment env and syntactic store typing se, all the types being well-formed in the context
of i free type variables; the mutually recursive judgement for expressions is similar. The
step-counting natural semantics is as follows:

Inductive EV : nat → (Exp 0) → Heap → Value O → Heap → Type :=
| EvVAL h v : EV O (VAL v) h v h
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| EvFST h v0 v1 : EV O (FST (P v0 v1)) h v0 h
| EvSND h v0 v1 : EV O (SND (P v0 v1)) h v1 h
| EvOP h op n0 n1 : EV O (OP op (P (INT n0) (INT n1))) h (INT (op n0 n1)) h
| EvUNFOLD h v t : EV 1 (UNFOLD (FOLD t v)) h v h
| EvREF (h:Heap) v (l:nat) : l /∈ dom h → EV 1 (REF v) h (LOC l) (updMap l v h)
| EvBANG (h:Heap) v (l:nat) : h l = Some v → EV 1 (BANG (LOC l)) h v h
| EvASSIGN (h:Heap) v (l:nat) : h l → EV 1 (ASSIGN (LOC l) v) h UNIT (updMap l v h)
| EvLET h n0 e0 v0 h0 n1 e1 v h1 : EV n0 e0 h v0 h0 →

EV n1 (substE (v0::nil) e1) h0 v h1 → EV (n0 + n1) (LET e0 e1) h v h1
| EvAPP h n t0 e v0 v h0 : EV n (substE (v::nil) e) h v0 h0 →

EV n (APP (LAM t0 e) v) h v0 h0
| EvTAPP h n e t v0 h0 : EV n (etsubst (t::nil) e) h v0 h0 →

EV n (TAPP (TLAM e) t) h v0 h0
| EvCASEL h n t v e0 e1 v0 h0 : EV n (substE (v::nil) e0) h v0 h0 →

EV n (CASE (INL t v) e0 e1) h v0 h0
| EvCASER h n t v e0 e1 v0 h0 : EV n (substE (v::nil) e1) h v0 h0 →

EV n (CASE (INR t v) e0 e1) h v0 h0.

Fµ! satisfies the usual substitution and type preservation lemmas.

8.2. Semantics of Fµ!

We start out by defining the objects of PreCBUltne. We define the objects by inheriting
the structure of preorders and the structure of bounded complete ultrametric spaces.
Furthermore we require the preorder to respect the equivalence relation from the metric
space, and the completion process of Cauchy chains must respect the preorder as well.

Module PreCBUmet.
Definition respect (S:setoidType) (le:S → S → Prop) :=
∀ s s’ t t’:S, s ≡ s’ → t ≡ t’ → le s t → le s’ t’.

Definition axiom (T:cmetricType) (le:T → T → Prop) :=
respect le ∧ ∀ c c’ : cchain T, (∀ i, le (c i) (c’ i)) →

le (umet_complete c) (umet_complete c’).
End PreCBUmet.

The morphisms of PreCBUltne are the morphisms of the underlying metric space that
are also monotonic with respect to the preorder:

Module FPCM. Section fpcm.
Variable O1 O2 : pcmType.
Record class_of (f:O1 → O2) :=
Class { base :> FMet.mixin_of f; ext :> FMon.mixin_of f }.

Coercion base2 f (c:class_of f) : FMon.mixin_of f := fmonoMixin c.
End fpcm. End FPCM.
Notation fpcm := FPCM.type.

Next we define the standard type operators, sums, products, exponentials, etc, and
we show that PreCBUltne is an M -category. We show that PreCBUltne has limits of
Cauchy towers and thus we obtain solutions to recursive domain equations. We then



N. Benton, L. Birkedal, A. Kennedy and C. Varming 28

build a small library of bifunctor combinators to find a solution to the recursive domain
equation mentioned in the overview above. We start with downwards closed sets. Given
a type T we define:

Definition downclosed (p:nat * T → Prop) := ∀ n k t, k < n → p (n,t) → p (k,t).

and we give the Σ-type { p : nat * T → Prop | downclosed p } the following structure.
Two sets are equivalent iff the sets contain the same elements. Two sets A,B are n-related
iff the respective subsets of element (k, e) where k < n are equal. An element (k, e) is
in the completion of a Cauchy chain iff (k, e) is in the (k + 1)’th element of the chain.
The order on these sets is the standard subset order, and it is easy to show the required
axioms. We define UPred(T ) in PreCBUltne as the object of downward closed subsets of
N×T and refer to the elements as uniform predicates (by analogy with complete uniform
PERs [Amadio and Curien, 1998]).

For finite partial maps we define two maps to be equivalent iff they have the same
domain, and on their common domain they have equivalent values. Two maps are (n+1)-
equal iff they have a common domain and their respective values on the elements in
the domain are (n + 1)-equal (by boundedness any two maps must be 0-related). The
completion of a Cauchy chain has the domain of the second element in the chain (notice
how the strong definition of Cauchy chains from Section 7 is used), and for each element
in this domain, the chain specializes, via application, to a chain in the codomain, whose
completion we may take. We have coded up this process and shown that a Cauchy chain
of finite partial functions converges to its result. The preorder on finite partial maps is
the extension order: a map is less than another map iff the domain of the first map is a
subset of the domain of the second map, and on the common part of their domains they
have equivalent values. We let findom_pcmType T T’ denote the object of finite partial
maps from T to T’, and show that it is functorial in T’ via post composition.

We continue by solving the recursive domain equation (1), and thus obtain the iso-
morphism Fold and Unfold:

Definition BF : BiFunctor pcmECatType := findomBF
((BiComp (halveBF idBF) (constBF (upred_pcmType (cvalue O))) BiArrow))

[compType of nat].
Definition W : pcmType := @DInf BF morph_contractive.
Definition Unfold := @Unfold BF morph_contractive :
W −→ findom_pcmType [compType of nat]

((halve_pcmType W =⇒ upred_pcmType (cvalue O))).
Definition Fold := @Fold BF morph_contractive :
findom_pcmType [compType of nat]

((halve_pcmType W =⇒ upred_pcmType (cvalue O))) −→ W.

Next we give an interpretation of types. We start by interpreting type contexts as
products of morphisms in PreCBUltne from 1

2W to UPred(V ):

Definition TV := halve_pcmType W =⇒ upred_pcmType (cvalue O).
Fixpoint TVal (n:nat) : cmetricType :=
match n with | O ⇒ One | S n ⇒ TVal n * TV end.
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Fixpoint pick n j : (j < n) → cmetricCatType (TVal n) TV :=
match n as n0, j as j0 return j0 < n0 → TVal n0 −→ TV with
| O,_ ⇒ fun F ⇒ match less_nil F with end
| S n,S j ⇒ fun F ⇒ @pick n j F ◦ π1

| S n, O ⇒ fun F ⇒ π2

end.

We then proceed by defining a uniform predicate on closed values for each type con-
structor. For simple values we simply define a suitable set like this:

Lemma upred_int_down :
downclosed (fun kt ⇒ match snd kt : cvalue O with

| (CValue (INT i) _) ⇒ True | _ ⇒ False end).
Definition upred_int : upred_pcmType (cvalue 0) :=

exist (@downclosed _) _ upred_int_down.

For the recursive types we define an operator upred_mu with the intension that if R is
the meaning of t then FIXP ◦ upred_mu R is the meaning of Mu t. We start by defining the
downward closed predicate for the values in the recursive type, and then package it as a
morphism.

Lemma upred_mu_down n
(R: TVal n.+1 −→ halve_pcmType W =⇒ upred_pcmType (cvalue O)) (s:TVal n)
(P:(halve_pcmType W −→ upred_pcmType (cvalue O)) * halve_pcmType W) :

downclosed (fun kt ⇒ let: CValue v’ p’ := snd kt in
match fst kt, v’ as v0 return closedV v0 → Prop with
| O,FOLD t v ⇒ fun X ⇒ True
| S k,FOLD t v ⇒ fun X ⇒ upred_fun (R ((s,(fst P))) (snd P)) (k,CValue v X)
| _,_ ⇒ fun X ⇒ False
end p’).

Definition upred_mut n R s w : upred_pcmType (cvalue O) :=
exist (@downclosed _) _ (@upred_mu_down n R s w).

Definition upred_mu n (R: TVal n.+1 −→ halve_pcmType W =⇒ upred_pcmType (cvalue O)) :
TVal n −→ morphc_pcmType TV TV :=
Eval hnf in mk_fmet (@upred_mun n R).

The following relation defines when a heap of closed values, h, satisfies the typing
constraints of a world, w, up to an index, k:

Definition heap_world k (h:cheap) (w:W) :=
∀ j, j < k → dom (heap h) = dom (Unfold w) ∧
∀ l (I: l \in dom (Unfold w)) (I’:l \in dom (heap h)),

upred_fun (indom_app I w) (j,CValue (indom_app I’) (heap_cl I’)).

Then we give the definition of when an expression e is in a semantic type f at step-
level k and world w. Note how this formal definition closely resembles definitions familiar
from step-indexed models, such as that of Ahmed et al. [2009].
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Definition IExp (f:TV) (k:nat) (e:cexpression 0) (w:W) :=
∀ j, (j v k)%N →
∀ (h h’:cheap) v (D:EV j e h v h’), heap_world k h w →
∃ w’:W, w v w’ ∧ heap_world (k - j) h’ w’ ∧

upred_fun (f w’) (k-j,CValue v (proj2 (cev D))).

We then continue with the definitions for the remaining type constructors (for space
reasons we only show the definitions for arrow types and ref types here).

Lemma upred_arrow_down n
(R0 R1: TVal n −→ halve_pcmType W =⇒ upred_pcmType (cvalue 0))
(s:TVal n) (w: halve_pcmType W) : downclosed (fun kt ⇒ let: (k,v) := kt in
match v with
| CValue (LAM t’ e) p ⇒ ∀ w’ j (va:cvalue O), w v w’ → (j v k)%N →

upred_fun (R0 s w’) (j,va) → IExp (R1 s) j (csubstE [:: va] e) w’
| _ ⇒ False end).

Definition upred_arrowt n R0 R1 s w : upred_pcmType (cvalue 0) :=
exist (@downclosed _) _ (@upred_arrow_down n R0 R1 s w).

Definition upred_arrow n
(R0 R1:TVal n −→ halve_pcmType W =⇒ upred_pcmType (cvalue 0)) :
cmetricCatType (TVal n) (halve_pcmType W =⇒ upred_pcmType (cvalue 0)) :=
Eval hnf in mk_nemon (upred_arrowN (R0,R1)).

Lemma upred_ref_down n
(R : TVal n −→ halve_pcmType W =⇒ upred_pcmType (cvalue 0))
(s:TVal n) (w: halve_pcmType W) :

Definition upred_reft n R w : upred_pcmType (cvalue 0) :=
exist (@downclosed _) _ (@upred_ref_down n R (fst w) (snd w)).

Definition upred_ref n
(R : TVal n −→ halve_pcmType W =⇒ upred_pcmType (cvalue 0)) :
(TVal n) −→ (halve_pcmType W =⇒ upred_pcmType (cvalue 0)) :=
Eval hnf in mk_nemon (upred_refN R).

Now we can give the value interpretation of types. The constants Pcomp and pprod_fun_ne
are internalizations of the composition operation and the universal morphism of the prod-
uct in PreCBUltne, respectively.

Fixpoint IVal n (t:Ty n) : cmetricCatType (TVal n) TV :=
match t with
| TVar n J ⇒ pick J
| Int ⇒ mconst _ (pconst _ upred_int)
| Unit ⇒ mconst _ (pconst _ upred_unit)
| Mu t ⇒ FIXP ◦ upred_mu (IVal t)
| t ∗ t’ ⇒ (exp_fun Pcomp upred_product : metricCatType _ _) ◦ pprod_fun_ne

◦ 〈|IVal t,IVal t’|〉
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| Sum t t’ ⇒ (exp_fun Pcomp upred_sum : metricCatType _ _) ◦ Pprod_fun
◦ 〈|IVal t, IVal t’|〉

| All t ⇒ upred_all (IVal t)
| t –-> t’ ⇒ upred_arrow (IVal t) (IVal t’)
| Ref t ⇒ upred_ref (IVal t)
end.

We interpret type environments of size m into uniform predicates on an m-ary product
of closed values:

Fixpoint IEnv n (e:TypeEnv n) :
TVal n −→ halve_pcmType W =⇒ upred_pcmType (Prod (cvalue 0) (size e)) :=

match e as e0 return
TVal n −→ halve_pcmType W =⇒ upred_pcmType (Prod (cvalue 0) (size e0)) with

| nil ⇒ mconst _ (pconst _ (upred_empty unit))
| t::te ⇒ (pcompM _ _ _ ◦ ppair _ Prod_cons ◦ Pprod_fun) ◦ 〈|IEnv te, IVal t |〉
end.

We interpret store-types into uniform predicates on worlds:

Lemma IStore_down n (Se:StoreType n) (s:TVal n) :
downclosed (fun kt ⇒ ∀ l t, Se l = Some t →

upred_fun (IVal (Ref t) s (snd kt)) (fst kt, cLOC _ l)).
Definition IStore n (Se:StoreType n) (s:TVal n) : upred_pcmType W :=

exist (@downclosed _) _ (@IStore_down n Se s).

Finally, we give a logical relation, show a substitution theorem for the interpretation
of types, and show the fundamental theorem of the logical relation, ensuring soundness
of the interpretation.

Definition VRel n (E:TypeEnv n) (Se:StoreType n) (v:Value n) (t:Ty n) :=
∀ k (s:TVal n) (ts:Prod (Ty 0) n) g w,
upred_fun (IEnv E s w) (k,g) → upred_fun (IStore Se s) (k,w) →

upred_fun (IVal t s w) (k, csubstV (Prod_subst g) (vtsubst (Prod_subst ts) v)).
Definition ERel n (E:TypeEnv n) (Se:StoreType n) (e:Exp n) (t:Ty n) :=
∀ k (s:TVal n) (ts:Prod (Ty 0) n) g w,

upred_fun (IEnv E s w) (k,g) → upred_fun (IStore Se s) (k,w) →
IExp (IVal t s) k (csubstE (Prod_subst g) (etsubst (Prod_subst ts) e)) w.

Lemma IVal_subst n (t:Ty n) s m s’ (a:seq (Ty m)) :
(∀ i (P:i < n), pick P s ≡ (IVal (nth Unit a i) s’)) →

IVal t s ≡ IVal (tsubst a t) s’.

Lemma FT i E S t : (∀ v, i ` E | S `v v ::: t → VRel E S v t) ∧
(∀ e, i ` E | S `e e ::: t → ERel E S e t).

9. Discussion

As we noted in the introduction, there have been many mechanized treatments of dif-
ferent aspects of domain theory and denotational semantics. One rough division of this
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previous work is between axiomatic approaches and those in which definitions and proofs
of basic results about cpos, continuous functions and so on are made explicitly with the
prover’s logic. LCF [Milner, 1972a] falls into the first category, as does Reus’s [1999] work
on synthetic domain theory in LEGO. HOLCF, originally due to Regensburger [1995] and
later reworked by Müller et al. [1999], uses Isabelle’s axiomatic type class mechanism to
define and prove basic properties of ω-cpos within higher order logic; a datatype pack-
age allows certain recursively-defined domains and associated induction and coinduction
principles to be introduced, though these are axiomatic rather than definitional. HOL-
CPO [Agerholm, 1994a, 1995] was an extension of HOL with similar goals, and basic
definitions have also been formalized in PVS [Bartels et al., 1996]. Coq’s library includes
a formalization by Kahn [1993] of some general theory of dcpos.

HOLCF is probably the most developed of these systems, and has been used for
some non-trivial semantic applications [Nipkow, 1998, Varming and Birkedal, 2008]. Re-
cently, Huffman has begun to extend HOLCF significantly, developing the theory of
SFP-domains and powerdomains [Huffman, 2008], and a universal domain from which
other recursively-defined domains can be presented as retracts [Huffman, 2009]; the in-
tention is that this latter will provide the basis for an improved, definitional datatype
package. Huffman’s constructions are impressively complex, involving Gödel-numberings
of finite posets, for example.

Compared with higher-order logic, working in a rich dependent type theory like that
of Coq is clearly a huge advantage. We can express the semantics of a typed language
as a dependently typed map from syntax to semantics, rather than only being able to
do shallow embeddings – this is clearly necessary if one wishes to prove theorems like
adequacy or compiler correctness. Secondly, one really needs dependent types to work
conveniently with monads and logical relations, or to formalize even concrete cases of the
inverse limit construction in a natural way,† let alone take the further abstraction step to
working with abstract and concrete categories as we do here. It should also be remarked
that not only are we making full use of the power of the underlying type theory, but rely
heavily on more sophisticated features of Coq’s front end, some of which are rather recent
additions. Sozeau’s [2009] generalized rewriting tactics allow ‘diagram-chasing’ proofs to
translate directly, whilst his Program and dependent destruction tactics [Sozeau, 2008] are
crucial for working with non-trivial dependency. The elegant packaging and inference of
many different kinds of structure would be impossible without Canonical Structures, and
Garillot et al.’s [2009] development of the pattern to exploit them. (The recently-added
type class mechanism [Sozeau and Oury, 2008] might be a viable alternative.)

The constructive nature of our formalization and the coinductive treatment of lifting
has both benefits and drawbacks. On the minus side, some of the proofs and constructions
are much more complex than they would be classically and one does sometimes have
to pay attention to which of two classically-equivalent forms of definition one works

† As well as Huffman’s work, Agerholm [1994b] has constructed a model of the untyped lambda calculus
using HOL-ST, a version of HOL that supports ZF-like set theory; this is elegant but HOL-ST is not
widely used and no semantics seems to have been done with the model. Petersen [1993] formalized a
reflexive cpo based on Pω in HOL, though this also does not seem to have been applied.
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with. Worse, some constructions do not seem to be possible, such as the smash product
of pointed domains; not being able to define ⊗ was one motivation for moving from
Paulin-Mohring’s pointed cpos to our unpointed ones. One benefit that we have not
yet seriously investigated, however, is that it is possible to extract actual executable
code from the denotational semantics. Indeed, the lift monad is a kind of syntax-free
operational semantics, not entirely unlike game semantics; this perspective, and deeper
connections with step-indexing and metric models, certainly merit further study.

The revised structuring techniques, using category theory to work at a higher level of
abstraction and the packed classes pattern to build hierarchies and infer structure, have
been very successful. There is, however, room for further improvement and getting the
right level of generality is a delicate matter. For example, the morphisms of a category are
currently defined as a setoidType, but the objects are not. This is insufficiently general
to represent, say, arrow or functor categories, but suffices to abstract the handful of
concrete categories with which we have been working. We are not aiming for a first-class
formalization of category theory for its own sake, merely doing enough to allow us to
talk about some particular concrete things in an abstract way. Too much abstraction can
easily cause as many problems as too little, especially in mechanized reasoning, but we
do expect to generalize the treatment of categories a little further in future.

The Coq development is of a very reasonable size. Categories and the domain theory
library, including the theory of recursive domain equations, total around 4400 lines, and
the metric extension is around 1400 lines. The formalization of the simply typed language
and its soundness and adequacy proofs are around 1000 lines, the unityped language takes
around 1200, and the language with recursive types and a higher-order store is around
5100 lines with the syntax taking up over 55% of the lines.

The development has been used in the formalization of some new research [Benton and
Hur, 2009] and, although we continue to make improvements, is sufficiently mature to
be of use in further non-trivial applications. The semantic model for higher-order store
presented in Section 8 is a simple unary model, but involves most of the pieces necessary
for the formalization of state-of-the-art relational models for reasoning about equivalence
of mutable abstract data types [Ahmed et al., 2009]. The techniques can also be used
to show soundness of separation logics for languages with higher order store [Schwing-
hammer et al., 2010, Birkedal et al., 2010b] or with storable locks [Hobor et al., 2010].
Such models can either be built using step-indexing directly over the operational se-
mantics, as we did in Section 8, or by using a cpo-based model [Birkedal et al., 2009a,
Schwinghammer et al., 2010].
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