Controlling unfolding in type theory

Daniel Gratzer, Jonathan Sterling, Carlo Angiuli, Thierry Coquand, and Lars Birkedal

Abstract. We present a novel mechanism for controlling the unfolding of definitions in dependent type theory. Traditionally, proof assistants let users specify whether each definition can or cannot be unfolded in the remainder of a development; unfolding definitions is often necessary in order to reason about them, but an excess of unfolding can result in brittle proofs and intractably large proof goals. In our system, definitions are by default not unfolded, but users can selectively unfold them in a local manner. We justify our mechanism by means of elaboration to a core type theory with extension types, a connective first introduced in the context of homotopy type theory. We prove a normalization theorem for our core calculus and have implemented our system in the cooltt proof assistant, providing both theoretical and practical evidence for it.

1 Introduction

In dependent type theory, terms are type checked modulo definitional equality, a congruence generated by α, β, and η-laws, as well unfolding of definitions. Unfolding definitions is to some extent a convenience that allows type checkers to silently discharge many proof obligations, e.g. a list of length $1 + 1$ is without further annotation also a list of length 2. It is by no means the case, however, that we always want a given definition to unfold:

- **Modularity:** Dependent types are famously sensitive to the smallest changes to definitions, such as whether $(+)$ recurs on its first or its second argument. If we plan to change a definition in the future, it may be desirable to avoid exposing its implementation to the type checker.

- **Usability:** Although unfolding has the potential to simplify proof states, it also has the potential to dramatically complicate them, resulting in unreadable subgoals, error messages, etc. A user may find that certain definitions are likely to be problematic in this way, and thus opt not to unfold them.

Many proof assistants accordingly have implementation-level support for marking definitions opaque (unable to be unfolded), including Agda’s `abstract` keyword [36] and Coq’s `Qed` command [38].
But unfolding definitions is not merely a matter of convenience: to prove a property of a function, we must unfold it. For example, if we make the definition of the (+) function opaque, then (+) is indistinguishable from a variable of type \(\mathbb{N} \to \mathbb{N} \to \mathbb{N} \) and so cannot be shown to be commutative, satisfy \(1 + 1 = 2 \), etc.

In practice, proof assistants resolve this contradiction by adopting an intermediate stance: definitions are transparent (unfolded during type checking) by default, but users are given some control over their unfolding. Coq provides conversion tactics (\texttt{cbv}, \texttt{simpl}, etc.) for applying definitional equalities, each of which can be annotated with a list of definitions to unfold; its \texttt{Opaque} and \texttt{Transparent} commands toggle the default unfolding behavior of a transparent definition; and the SSREFLECT tactic language natively supports a “locking” idiom for controlling when definitions unfold [17]. Agda allows users to group multiple definitions into a single \texttt{abstract} block, inside of which the definitions are transparent and outside of which they are opaque; this allows users to define a function, prove all lemmas that depend on how the function was defined, and then irreversibly make the function and lemmas opaque.

These mechanisms for controlling unfolding are more subtle than they may at first appear. In Agda, definitions within \texttt{abstract} blocks are transparent to other definitions in the same block, but opaque to the types of those definitions; without such a stipulation, those types may cease to be well-formed when the earlier definition is made opaque. Furthermore, \texttt{abstract} blocks are anti-modular, requiring users to anticipate all future lemmas about definitions in a block—indeed, the Agda standard library [37] uses \texttt{abstract} exactly once at the time of writing. Coq’s conversion tactics are more flexible than Agda’s \texttt{abstract} blocks, but being tactics, their behavior can be harder to predict. The \texttt{lock} idiom in SSREFLECT is more predictable because it creates opaque definitions, but comes in four different variations to simplify its use in practice.

Contributions We propose a novel mechanism for fine-grained control over the unfolding of definitions in dependent type theory. We introduce language-level primitives for \textit{controlled unfolding} that are elaborated into a core calculus with \textit{extension types} [30], a connective first introduced in the context of homotopy type theory. We justify our elaboration algorithm by establishing a normalization theorem (and hence the decidability of type checking and injectivity of type constructors) for our core calculus, and we have implemented our system for controlled unfolding in the experimental \texttt{cooltt} proof assistant [29].

Definitions in our framework are opaque by default, but can be selectively and locally unfolded as if they were transparent. Our system is finer-grained and more modular than Agda’s \texttt{abstract} blocks: we need not collect all lemmas that unfold a given definition into a single block, making our mechanism better suited to libraries. Our primitives have more predictable meaning and performance than Coq’s unfolding tactics because they are implemented by straightforward elaboration into the core calculus (via new types and declaration forms); we anticipate that this \textit{type-theoretic} account of controlled unfolding will also provide a clear path toward integrating our ideas with future language features.
Our core calculus is intensional Martin-Löf type theory extended with proof-irrelevant proposition symbols p, dependent products $\{ p \} A$ over those propositions, and extension types $\{ A \mid p \rightarrow a \}$ whose elements are the elements of A that are definitionally equal to a under the assumption that p is true. Extension types are similar to the path types $(\text{Path} A a_0 a_1)$ of cubical type theory [9,3,2], which classify functions out of an abstract interval \mathbb{I} that are definitionally equal to a_0 and a_1 when evaluated at the interval’s respective endpoints $0, 1 : \mathbb{I}$.

To justify our elaboration algorithm, we prove a normalization theorem for our core calculus, characterizing its definitional equivalence classes of types and terms and as a corollary establishing the decidability of type checking. Our proof adapts and extends Sterling’s technique of synthetic Tait computability (STC) [34,31], which has previously been used to establish parametricity for an ML-style module calculus [34] and normalization for cubical type theory [33] and multimodal type theory [18]. Our proof is fully constructive, an improvement on the prior work of Sterling and Angiuli [33]; we have also corrected an error in the handling of universes in an earlier revision of Sterling’s doctoral dissertation [31].

Outline In Section 2 we introduce our controlled unfolding primitives by way of examples, and in Section 3 we walk through how these examples are elaborated into our core language of dependent type theory with proposition symbols and extension types. In Section 4 we present our elaboration algorithm, and in Section 5 we discuss our implementation of the above in the cooltt proof assistant. In Section 6 we establish normalization and decidability of type checking for our core calculus. We conclude with a discussion of related work in Section 7.

2 A surface language with controlled unfolding

We begin by describing an Agda-like surface language for a dependent type theory with controlled unfolding. In Section 4 we will give precise meaning to this language by explaining how to elaborate it into our core calculus; for now we proceed by example, introducing our new primitives bit by bit. Our examples will concern the inductively defined natural numbers and their addition function:

\[
(+) : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}
\]
\[
\text{ze} + n = n \\
\text{su} m + n = \text{su} (m + n)
\]

2.1 A simple dependency: length-indexed vectors

In our language, definitions such as $(+)$ are opaque by default—they are not unfolded automatically. To illustrate the need to selectively unfold $(+)$, consider the indexed inductive type of length-indexed vectors with the following constructors:

\[
\text{vnil} : \text{vec} \text{ze} A \\
\text{vcons} : A \rightarrow \text{vec} n A \rightarrow \text{vec} (\text{su} n) A
\]
Suppose we attempt to define the `append` operation on vectors by dependent pattern matching on the first vector. Our goals would be as follows:

\[
(\oplus) : \text{vec } m \ A \rightarrow \text{vec } n \ A \rightarrow \text{vec } (m + n) \ A
\]
\[
vnil \oplus v = \text{vec } (n + m) \ A
\]
\[
vcons \ a \ u \oplus v = \text{vec } (su \ m + n) \ A
\]

As it stands, the goals above are in normal form and cannot be proved; however, we may indicate that the definition of \((+\) should be unfolded within the definition of \((\oplus)\) by adding the following top-level `unfolds` annotation:

\[
(\oplus) \text{ unfolds } (+)
\]
\[
(\oplus) : \text{vec } m \ A \rightarrow \text{vec } n \ A \rightarrow \text{vec } (m + n) \ A
\]

With our new declaration, the goals simplify:

\[
vnil \oplus v = \text{vec } n \ A
\]
\[
vcons \ a \ u \oplus v = \text{vec } (su \ m + n) \ A
\]

The first goal is solved with \(v\) itself; for the second goal, we begin by applying the `vcons` constructor:

\[
vcons \ a \ u \oplus v = vcons \ a \ ? : \text{vec } (m + n) \ A
\]

The remaining goal is just our induction hypothesis \(u \oplus v\). All in all, we have:

\[
(\oplus) \text{ unfolds } (+)
\]
\[
(\oplus) : \text{vec } m \ A \rightarrow \text{vec } n \ A \rightarrow \text{vec } (m + n) \ A
\]
\[
vnil \oplus v = v
\]
\[
vcons \ a \ u \oplus v = vcons \ a \ (u \oplus v)
\]

2.2 Transitive unfolding

Now suppose we want to prove that `map` distributes over \((\oplus)\). In doing so we will certainly need to unfold `map`, but it turns out this will not be enough:

\[
\text{map} : (A \rightarrow B) \rightarrow \text{vec } n \ A \rightarrow \text{vec } n \ B
\]
\[
\text{map} \ f \ vnil = vnil
\]
\[
\text{map} \ f \ (vcons \ a \ u) = vcons \ (f \ a) \ (\text{map} \ f \ u)
\]

\[
\text{map}-\oplus \text{ unfolds } \text{map}
\]
\[
\text{map}-\oplus : (f : A \rightarrow B) \ (u : \text{vec } m \ A) \ (v : \text{vec } n \ A)
\]
\[
\rightarrow \text{map} \ f \ (u \oplus v) \equiv \text{map} \ f \ u \oplus \text{map} \ f \ v
\]
\[
\text{map}-\oplus \ f \ vnil \ v = \text{map} \ f \ (vnil \oplus v) \equiv vnil \oplus \text{map} \ f \ v
\]
\[
\text{map}-\oplus \ f \ (vcons \ a \ u) \ v
\]
\[
\equiv \text{map} \ f \ (vcons \ a \ u \oplus v) \equiv vcons \ (f \ a) \ (\text{map} \ f \ u) \oplus \text{map} \ f \ v
\]

To make further progress we must also unfold \((\oplus)\):
map⊕ unfolds map; (⊕)

map⊕ : (f : A → B) (u : vec m A) (v : vec n A)
→ map f (u ⊕ v) ≡ map f u ⊕ map f v

map⊕ f vnil v = {? : map f v ≡ map f v}

map⊕ f (vcons a u) v =
 {? : vcons (f a) (map f (u ⊕ v)) ≡ vcons (f a) (map f u ⊕ map f v)}

In our language, unfolding (⊕) has the side effect of also unfolding (+); in other words, unfolding is transitive. To see why this is the case, observe that the unfolding of vcons a u ⊕ v : vec (su m + n) A, namely vcons a (u ⊕ v) : vec (su (m + n)) A, would otherwise not be well-typed. From an implementation perspective, one can think of the transitivity of unfolding as necessary for subject reduction. Having unfolded map, (⊕), and thus (+), we complete our definition:

cong : (f : A → B) → a ≡ a' → f a ≡ f a'
cong f refl = refl

map⊕ unfolds map; (⊕)

map⊕ : (f : A → B) (u : vec m A) (v : vec n A)
→ map f (u ⊕ v) ≡ map f u ⊕ map f v

map⊕ f vnil v = refl

map⊕ f (vcons a u) v = cong (vcons (f a)) (map⊕ f u v)

2.3 Recovering unconditionally transparent and opaque definitions

There are also times when we intend a given definition to be a fully transparent abbreviation, in the sense of being unfolded automatically whenever possible. We indicate this with an abbreviation declaration:

abbreviation singleton
singleton : A → vec (su ze) A
singleton a = vcons a vnil

Then the following lemma can be defined without any explicit unfolding:

abbrv-example : singleton 5 ≡ vcons 5 vnil
abbrv-example = refl

The meaning of the abbreviation keyword must account for unfolding constraints. For instance, what would it mean to make map⊕ an abbreviation?

abbreviation map⊕
map⊕ unfolds map; (⊕)

...
unfolded. In other words, **abbreviation** \(\vartheta \) followed by \(\vartheta \) **unfolds** \(\kappa_1; \ldots; \kappa_n \) means that unfolding \(\vartheta \) is synonymous with unfolding all of \(\kappa_1; \ldots; \kappa_n \).

Conversely, we may intend a given definition *never* to unfold, which we may indicate by a corresponding **abstract** declaration. Because definitions in our system do not automatically unfold, the force of **abstract** \(\vartheta \) is simply to prohibit users from including \(\vartheta \) in any subsequent **unfolds** annotations.

Remark 1. A slight variation on our system can recover the behavior of Agda’s **abstract** blocks by *limiting* the scope in which a definition \(\vartheta \) can be unfolded; the transitivity of unfolding dictates that any definition \(\vartheta' \) that unfolds \(\vartheta \) cannot itself be unfolded once we leave that scope. We leave the details to future work.

2.4 Unfolding within the type

The effect of a \(\vartheta \) **unfolds** \(\kappa_1; \ldots; \kappa_n \) declaration is to make \(\kappa_1; \ldots; \kappa_n \) unfold within the definition of \(\vartheta \), but still not within its type; it will happen, however, that a *type* might not be expressible without some unfolding. First we will show how to accommodate this situation using only features we have introduced so far, and then in Section 2.5 we will devise a more general and ergonomic solution.

Consider the left-unit law for \((\oplus)\): in order to state that a vector \(u \) is equal to the vector \(\text{vnil} \oplus u \), we must contend with their differing types \(\text{vec} \ n \ A \) and \(\text{vec} \ (\text{ze} + n) \ A \) respectively. One approach is to rewrite along the left-unit law for \(\mathbb{N} \); indeed, to state the *right-unit* law for \((\oplus)\) one must rewrite along the right-unit law for \(\mathbb{N} \). But here, because \((+)\) computes on its first argument, \(\text{vec} \ n \ A \) and \(\text{vec} \ (\text{ze} + n) \ A \) would be definitionally equal types if we could unfold \((+)\).

In order to formulate the left-unit law for \((\oplus)\), we start by defining its *type* as an abbreviation that unfolds \((+)\):

\[
\text{abbreviation} \quad \oplus\text{-left-unit-type} \\
\oplus\text{-left-unit-type} \text{ unfolds } (+) \\
\oplus\text{-left-unit-type} : \text{vec} \ n \ A \rightarrow \text{Type} \\
\oplus\text{-left-unit-type} \ u = \text{vnil} \oplus u \equiv u
\]

Now we may state the intended lemma using the type defined above:

\[
\oplus\text{-left-unit} : (u : \text{vec} \ n \ A) \rightarrow \oplus\text{-left-unit-type} \ u \\
\oplus\text{-left-unit} \ u = \text{? : } \oplus\text{-left-unit-type} \ u
\]

Clearly we must unfold \((+)\) and thus \(\oplus\text{-left-unit-type}\) to simplify our goal:

\[
\oplus\text{-left-unit} \text{ unfolds } (+) \\
\oplus\text{-left-unit} : (u : \text{vec} \ n \ A) \rightarrow \oplus\text{-left-unit-type} \ u \\
\oplus\text{-left-unit} \ u = \text{? : vnil} \oplus u \equiv u
\]

We complete the proof by unfolding \((\oplus)\) itself, which transitively unfolds \((+)\):

\[
\oplus\text{-left-unit} \text{ unfolds } (\oplus) \\
\oplus\text{-left-unit} : (u : \text{vec} \ n \ A) \rightarrow \oplus\text{-left-unit-type} \ u \\
\oplus\text{-left-unit} \ u = \text{refl}
\]
2.5 Unfolding within subexpressions

We have just demonstrated how to unfold definitions within the type of a declaration by defining that type as an additional declaration; using the same technique, we can introduce unfoldings within any subexpression by hoisting that subexpression to a top-level definition with its own unfolding constraint.

Unfolding within the type, revisited Rather than repeating the somewhat verbose pattern of Section 2.4, we abstract it as a new language feature that is easily eliminated by elaboration. In particular, we introduce a new expression former unfold \(\kappa \) in \(M \) that can be placed in any expression context. Let us replay the example from Section 2.4, but using unfold rather than an auxiliary definition:

\[
\oplus\text{-left-unit} : (u : \text{vec } n A) \to \text{unfold (+) in vnil } \oplus u \equiv u \\
\oplus\text{-left-unit} u = \text{unfold (+) in vnil } \oplus u \equiv u
\]

The type unfold (+) in vnil \(\oplus u \equiv u \) is in normal form; the only way to simplify it is to unfold (+). We could do this with another inline unfold expression, but here we will use a top-level declaration:

\[
\oplus\text{-left-unit unfolds (+)} \\
\oplus\text{-left-unit} : (u : \text{vec } n A) \to \text{unfold (+) in vnil } \oplus u \equiv u \\
\oplus\text{-left-unit} u = \text{unfold (+) in refl}
\]

By virtue of the above, the unfold expression in our hole has computed away and we are left with \(\text{refl} \) as \((\oplus) \) is still abstract in this scope. To make progress, we strengthen the declaration to unfold \((\oplus) \) in addition to (+):

\[
\oplus\text{-left-unit unfolds (\oplus)} \\
\oplus\text{-left-unit} : (u : \text{vec } n A) \to \text{unfold (+) in vnil } \oplus u \equiv u \\
\oplus\text{-left-unit} u = \text{unfold (\oplus) in refl}
\]

The meaning of the code above is exactly as described in Section 2.4: the unfold scope is elaborated to a new top-level abbreviation that unfolds (+).

Expression-level vs. top-level unfolding We noted in our definition of \(\oplus\text{-left-unit} \) above that we could have replaced the top-level unfolds (\(\oplus \)) directive of \(\oplus\text{-left-unit} \) with the new expression-level unfold (\(\oplus \)) in as follows:

\[
\oplus\text{-left-unit'} : (u : \text{vec } n A) \to \text{unfold (+) in vnil } \oplus u \equiv u \\
\oplus\text{-left-unit'} u = \text{unfold (\(\oplus \)) in refl}
\]

The resulting definition of \(\oplus\text{-left-unit'} \) has slightly different behavior than \(\oplus\text{-left-unit} \) above: whereas unfolding \(\oplus\text{-left-unit} \) causes \((\oplus) \) to unfold transitively, we can unfold \(\oplus\text{-left-unit'} \) without unfolding \((\oplus) \)—at the cost of unfold \((\oplus) \) expressions appearing in our goal. This more granular behavior may be desirable in some cases, and it is a strength of our language and its elaborative semantics that the programmer can manipulate unfolding in such a fine-grained manner.

For completeness, we illustrate the elimination of expression-level unfolding from the definition of \(\oplus\text{-left-unit'} \):
abbreviation ⊕-left-unit'-type
⊕-left-unit'-type unfolds (+)
⊕-left-unit'-type : vec n A → Type
⊕-left-unit'-type u = vnil ⊕ u ≡ u

abbreviation ⊕-left-unit'-body
⊕-left-unit'-body unfolds (⊕)
⊕-left-unit'-body : (u : vec n A) → ⊕-left-unit'-type u
⊕-left-unit'-body u = refl
⊕-left-unit' : (u : vec n A) → ⊕-left-unit'-type u
⊕-left-unit' u = ⊕-left-unit'-body u

In our experience, expression-level unfolding seems more commonly useful for end users than top-level unfolding; on the other hand, the clearest semantics for expression-level unfolding are stated in terms of top-level unfolding! Because one of our goals is to provide an account of unfolding that admits a reliable and precise mental model for programmers, it is desirable to include both top-level and expression-level unfolding in the surface language.

3 Controlling unfolding with extension types

Having introduced our new surface language constructs for controlled unfolding in Section 2, we now describe how to elaborate these constructs into our dependently-typed core calculus. Again we proceed by example, deferring our formal descriptions of the core calculus and elaboration algorithm to Section 4.

3.1 A dependently-typed core calculus with proposition symbols

Our core calculus parameterizes intensional Martin-Löf type theory (MLTT) [25] by a bounded meet semilattice of proposition symbols \(p \in P \), and adjoins to the type theory a new form of context extension and two new type formers \(\{ p \} A \) and \(\{ A \mid p \rightarrow M \} \) involving proposition symbols:

\[
\begin{align*}
\text{(contexts)} \quad \Gamma & \ ::= \quad \ldots \mid \Gamma, p \\
\text{(types)} \quad A & \ ::= \quad \ldots \mid \{ p \} A \mid \{ A \mid p \rightarrow M \}
\end{align*}
\]

The bounded meet semilattice structure on \(P \) closes proposition symbols under conjunction \(\wedge \) and the true proposition \(\top \), thereby partially ordering \(P \) by entailment \(p \leq q \) ("\(p \) entails \(q \)") satisfying the usual logical principles. We say \(p \) is true if \(\top \) entails \(p \); the context extension \(\Gamma, p \) hypothesizes that \(p \) is true.

Remark 2. Our proposition symbols are much more restricted than, and should not be confused with, other notions of proposition in type theory such as h-propositions [41, §3.3] or strict propositions [16]. In particular, unlike types, our proposition symbols have no associated proof terms.
The type \(\{ p \} A \) is the dependent product “\(\{ __ : p \} \to A \)” i.e., \(\{ p \} A \) is well-formed when \(A \) is a type under the hypothesis that \(p \) is true, and \(f : \{ p \} A \) when, given that \(p \) is true, we may conclude \(f : A \). The extension type \(\{ A \mid p \mapsto a_p \} \) is well-formed when \(A \) is a type and \(a_p : \{ p \} A \); its elements \(a : \{ A \mid p \mapsto a_p \} \) are terms \(a : A \) satisfying the side condition that when \(p \) is true, we have \(a = a_p : A \).

3.2 Elaborating controlled unfolding to our core calculus

Our surface language extends a generic surface language for dependent type theory with a new expression former unfold and several new declaration forms: \(\vartheta \) unfolds \(\kappa_1 : \ldots : \kappa_n \) for controlled unfolding, abbreviation \(\vartheta \) for transparent definitions, and abstract \(\vartheta \) for opaque definitions. Elaboration transforms these surface-language declarations into core-language signatures, i.e., sequences of declarations over our core calculus of MLTT with proposition symbols.

Our core-language signatures include the following declaration forms:

- **prop** \(p \leq q \) introduces a fresh proposition symbol \(p \) such that \(p \) entails \(q \in \text{P} \);
- **prop** \(p = q \) defines the proposition symbol \(p \) to be an abbreviation for \(q \in \text{P} \);
- **const** \(\vartheta : A \) introduces a constant \(\vartheta \) of type \(A \).

We now revisit our examples from Section 2, illustrating how they are elaborated into our core calculus:

Plain definitions Recall our unadorned definition of \((+)\) from Section 2:

\[
(+) : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\
ze + n = n \\
su \ m + n = su (m + n)
\]

We elaborate \((+)\) into a sequence of declarations: first, we introduce a new proposition symbol \(\Upsilon_+ \) corresponding to the proposition that “\((+)\) unfolds.” Next, we introduce a new definition \(\delta_+ : \mathbb{N} \to \mathbb{N} \to \mathbb{N} \) satisfying the defining clauses of \((+)\) above, under the (trivial) assumption of \(\top \); finally, we introduce a new constant \((+)\) involving the extension type of \(\delta_+ \) along \(\Upsilon_+ \).

\[
\text{prop } \Upsilon_+ \leq \top \\
\delta_+ : \{ \top \} (m n : \mathbb{N}) \to \mathbb{N} \\
\delta_+ \ ze \ n = n \\
\delta_+ (su \ m) \ n = su (\delta_+ \ m \ n)
\]

\[
\text{const } (+) : \{ \mathbb{N} \to \mathbb{N} \to \mathbb{N} \mid \Upsilon_+ \mapsto \delta_+ \}
\]

Remark 3. In a serious implementation, it would be simple to induce \(\delta_+ \) to be pretty-printed as \((+)\) in user-facing displays such as goals and error messages.
Top-level unfolding

To understand why we have elaborated (+) in this way, let us examine how to elaborate top-level unfolding declarations (Section 2.1):

\[(\oplus) \text{ unfolds } (+)\]
\[(\oplus) : \text{vec } m \ A \rightarrow \text{vec } n \ A \rightarrow \text{vec } (m + n) \ A\]
\[\text{vnil } \oplus v = v\]
\[\text{vcons } a \ u \oplus v = \text{vcons } a \ (u \oplus v)\]

To elaborate \((\oplus)\) unfolds (+), we define the proposition symbol \(\Upsilon_{\oplus}\) to entail \(\Upsilon_{+}\), capturing the idea that unfolding \((\oplus)\) always causes (+) to unfold; in order to cause (+) to unfold in the body of \((\oplus)\), we assume \(\Upsilon_{+}\) in the definition of \(\delta_{\oplus}\).

In full, we elaborate the definition of \((\oplus)\) as follows:

\[
\begin{align*}
\text{prop } & \Upsilon_{\oplus} \leq \Upsilon_{+} \\
\delta_{\oplus} : \{ \Upsilon_{+} \} \ (u : \text{vec } m \ A) \ (v : \text{vec } n \ A) \rightarrow \text{vec } (m + n) \ A \\
\delta_{\oplus} \text{ vnil } v = v \\
\delta_{\oplus} \text{ (vcons } a \ u) \ v = \text{vcons } a \ (\delta_{\oplus} u \ v) \\
\text{const } (\oplus) : \{ \text{vec } m \ A \rightarrow \text{vec } n \ A \rightarrow \text{vec } (m + n) \ A \mid \Upsilon_{\oplus} \rightarrow \delta_{\oplus} \}
\end{align*}
\]

Observe that the definition of \(\delta_{\oplus}\) is well-typed because \(\Upsilon_{+}\) is true in its scope: thus the the extension type of (+) causes ze + n to be definitionally equal to \(\delta_{+}\), ze n, which in turn is defined to be n. The constraint \(\Upsilon_{\oplus} \rightarrow \delta_{\oplus}\) is well-typed because \(\Upsilon_{\oplus}\) entails \(\Upsilon_{+}\).

If a definition \(\vartheta\) unfolds multiple definitions \(\kappa_1; \ldots; \kappa_n\), we define \(\Upsilon_{\vartheta}\) to entail (and define \(\delta_{\vartheta}\) to assume) the conjunction \(\Upsilon_{\kappa_1} \wedge \cdots \wedge \Upsilon_{\kappa_n}\); if a definition \(\vartheta\) unfolds no definitions, then \(\Upsilon_{\vartheta}\) entails (and \(\delta_{\vartheta}\) assumes) \(\top\), as in our (+) example.

Abbreviations

To elaborate the combination of the declarations abbreviation \(\vartheta\) and \(\vartheta\) unfolds \(\kappa_1; \ldots; \kappa_n\) we define \(\Upsilon_{\vartheta}\) to entail (and \(\delta_{\vartheta}\) to assume) the conjunction \(\Upsilon_{\kappa_1} \wedge \cdots \wedge \Upsilon_{\kappa_n}\) and \(\Upsilon_{\vartheta}\) to entail \((+)^*\) (and \(\delta_{\vartheta}\) to assume) the conjunction \(\Upsilon_{\kappa_1} \wedge \cdots \wedge \Upsilon_{\kappa_n}\).

For example, consider the following code from Section 2.3:

\[
\begin{align*}
\text{abbreviation } & \text{map-}\oplus \\
\text{map-}\oplus : \ (f : A \rightarrow B) \ (u : \text{vec } m \ A) \ (v : \text{vec } n \ A) \\
\text{map-}\oplus & f (u \oplus v) \equiv \text{map } f u \oplus \text{map } f v \\
\text{map-}\oplus & f \text{ vnil } v = \text{refl} \\
\text{map-}\oplus & f \text{ (vcons } a \ u) \ v = \text{cong } (\text{vcons } (f \ a)) \ (\text{map-}\oplus f u \ v)
\end{align*}
\]

It is elaborated as follows:

\[
\begin{align*}
\text{prop } & \Upsilon_{\text{map-}\oplus} = \Upsilon_{\text{map}} \wedge \Upsilon_{\oplus} \\
\delta_{\text{map-}\oplus} : \{ \Upsilon_{\text{map}} \wedge \Upsilon_{\oplus} \} \ (f : A \rightarrow B) \ (u : \text{vec } m \ A) \ (v : \text{vec } n \ A) \\
& \rightarrow \text{map } f (u \oplus v) \equiv \text{map } f u \oplus \text{map } f v \\
\delta_{\text{map-}\oplus} & f \text{ vnil } v = \text{refl} \\
\delta_{\text{map-}\oplus} & f \text{ (vcons } a \ u) \ v = \text{cong } (\text{vcons } (f \ a)) \ (\delta_{\text{map-}\oplus} f u \ v)
\end{align*}
\]
\[
\text{const map-⊕} = \{(f : A \to B) \, (u : \text{vec } m \, A) \, (v : \text{vec } n \, A) \to \text{map } f \, (u \oplus v) \equiv \text{map } f \, u \oplus \text{map } f \, v, \| \text{map-⊕} \mapsto \text{δ}_{\text{map-⊕}}\}
\]

Expression-level unfolding The elaboration of the expression-level unfolding construct `unfold κ in M` to our core calculus factors through the elaboration of expression-level unfolding to top-level unfolding as described in Section 2.5; we return to this in Section 4.3.

4 The elaboration algorithm

We now formally specify our mechanism for controlled unfolding by more precisely defining the elaboration algorithm sketched in the previous section, starting with a precise definition of the target of elaboration, our core calculus TT_P.

4.1 The core calculus TT_P

Our core calculus TT_P is intensional Martin-Löf type theory (MLTT) \cite{25} with dependent sums and products, natural numbers, a Tarski universe, etc., extended with (1) a collection of proof-irrelevant proposition symbols, (2) dependent products over propositions, and (3) extension types for those propositions \cite{30}.

Remark 4. We treat the features of MLTT and of our surface language somewhat generically; our elaboration algorithm can be applied on top of an existing bidirectional elaboration algorithm for type theory, e.g., those described in \cite{11,21}.

In fact, TT_P is actually a family of type theories parameterized by a bounded meet semilattice $(\mathbb{P}, \top, \land)$ whose underlying set \mathbb{P} is the set of proposition symbols of TT_P; the semilattice structure on \mathbb{P} axiomatizes the conjunctive fragment of propositional logic with \land as conjunction, \top as the true proposition, and \leq as entailment (where $p \leq q$ is defined as $p \land q = p$), subject to the usual logical principles such as $p \land q \leq p$ and $p \land q \leq q$ and $p \leq \top$.

Remark 5. The judgments of TT_P are functorial in the choice of \mathbb{P}, in the sense that given any homomorphism $f : \mathbb{P} \to \mathbb{P}'$ of bounded meet semilattices and any type or term in TT_P over \mathbb{P}, we have an induced type/term in TT_P' over \mathbb{P}'. In particular, we will use the fact that judgments of TT_P are stable under adjoining new proposition symbols to \mathbb{P}.

The language TT_P augments ordinary MLTT with a new form of judgment $\Gamma \vdash p \, \text{true}$ (for $p \in \mathbb{P}$) and the corresponding context extension $\Gamma ; p$ (for $p \in \mathbb{P}$). The judgment $\Gamma \vdash p \, \text{true}$ states that the proposition p is true in context Γ, i.e., the conjunction of the propositional hypotheses in Γ entails p; the latter extends Γ with the hypothesis that p is true.
The dependent product $\{p\} A$ of the family $p \vdash A$ is defined as an ordinary
dependent product type, omitting the β/η rules for lack of space:

$$
\Gamma, p \vdash A \\
\Gamma, p \vdash M : A \\
\Gamma \vdash \{p\} A \\
\Gamma \vdash M @ p : A
$$

The remaining feature of TTP is the extension type $\{A \mid p \mapsto a_p\}$. Given a
proposition $p \in \mathbb{P}$ and an element a_p of A under the hypothesis p, the elements
of $\{A \mid p \mapsto a_p\}$ correspond to elements of A that equal a_p when p holds.

$$
\Gamma \vdash a : A \\
\Gamma, p \vdash a_p : A \\
\Gamma \vdash \{A \mid p \mapsto a_p\} \\
\Gamma \vdash \text{in}_p a : \{A \mid p \mapsto a_p\} \\
\Gamma \vdash \text{out}_p a : A \\
\Gamma \vdash \text{out}_p(\text{in}_p a) = a : A
$$

4.2 Signatures over TTP

Our elaboration procedure takes as input a sequence of surface language defini-
tions, and outputs a well-formed signature, a list of declarations over TTP.

$$
\Sigma ::= \epsilon | \Sigma, D \\
D ::= \text{const} \ x : A \mid \text{prop} \ p \leq q \mid \text{prop} \ p = q
$$

A signature is well-formed precisely when each declaration in Σ is well-
formed relative to the earlier declarations in Σ. Our well-formedness judgment
$\vdash \Sigma \text{sig} \rightarrow \mathbb{P}, \Gamma$ computes from Σ the TTP context Γ and proposition semilattice
\mathbb{P} specified by Σ’s const and prop declarations, respectively.

The rules for signature well-formedness are standard except for the prop $p \leq q$
and prop $p = q$ declarations, which extend \mathbb{P} with a new element p satisfying
$p \leq q$ or $p = q$ respectively. Recalling that our core calculus TTP
is really a family of type theories parameterized by a semilattice \mathbb{P}, these declarations shift
us between type theories, e.g., from TTP to TTP, where $Q = \mathbb{P}[p \leq q]$ is the
minimal semilattice containing \mathbb{P} and an element p satisfying $p \leq q$. This shifting
between theories is justified by Remark 5.
Controlling unfolding in type theory

\[\vdash \Sigma \text{ sig} \rightarrow \{ \top \}, \]

\[\vdash (\Sigma, \text{ const } x : A) \text{ sig} \rightarrow \mathbb{P}, (F, x : A) \]

\[\vdash \Sigma \text{ sig} \rightarrow \mathbb{P}, \Gamma \quad q \in \mathbb{P} \]

\[\vdash (\Sigma, \text{ prop } p \leq q) \text{ sig} \rightarrow \mathbb{P}[p \leq q], \Gamma \]

\[\vdash (\Sigma, \text{ prop } p = q) \text{ sig} \rightarrow \mathbb{P}[p = q], \Gamma \]

4.3 Bidirectional elaboration

We adopt a bidirectional elaboration algorithm which mirrors bidirectional type-checking algorithms [10,28]. The top-level elaboration judgment \(\Sigma \vdash \vec{S} \leadsto \Sigma' \) takes as input the current well-formed signature \(\Sigma \) and a list of surface-level definitions \(\vec{S} \) and outputs a new signature \(\Sigma' \), maintaining the invariant that successful elaboration produces well-formed signatures.

We define \(\Sigma \vdash \vec{S} \leadsto \Sigma' \) in terms of three auxiliary judgments for elaborating surface-language types and terms; in the bidirectional style, we divide term elaboration into a checking judgment \(\Sigma; \Gamma \vdash e \Leftarrow A \leadsto \Sigma', M \) taking a core type as input, and a synthesis judgment \(\Sigma; \Gamma \vdash e \Rightarrow A \leadsto \Sigma', M \) producing a core type as output. All three judgments take as input a signature \(\Sigma \) and a context (telescope) over \(\Sigma \), and output a new signature along with a core type or term.

In the algorithm, we write \((\text{def } \vartheta : A, \text{ abbrev?}, \text{ abstr?}, [\kappa_1, \ldots, \kappa_n], e)\) for the representation of a surface-level definition \(S \); in this expression, \(\vartheta \) is the name of the definiendum, \(A \) is the surface-level type of the definition, \(\text{abbrev?} \) and \(\text{abstr?} \) are flags governing whether \(\vartheta \) is an abbreviation (resp., is abstract), \([\kappa_1, \ldots, \kappa_n] \) are the names of the definitions that \(\vartheta \) unfolds, and \(e \) is the surface-level definiens.

The elaboration judgment elaborates each surface definition in sequence:

\[
\begin{align*}
\Sigma & \vdash \vec{S} \leadsto \Sigma_1 \\
\Sigma_1; & \vdash A \Leftarrow \text{type} \leadsto \Sigma_2, A \\
\Sigma_2; & \vdash e \Leftarrow A \leadsto \Sigma_3, M \\
\text{let } p := & \text{ if abstr? then gensym() else } Y_0 \\
\text{let } \varnothing := & \text{ if abbrev? then (=) else } (\leq) \\
\text{let } \Sigma_4 := & \Sigma_3; \text{prop } p \ni \bigwedge_{i \leq n} Y_{\kappa_i}; \text{const } \vartheta : \{A \mid p \Rightarrow M\}
\end{align*}
\]

\[\Sigma \vdash \vec{S}, (\text{def } \vartheta : A, \text{abbrev?}, \text{abstr?}, [\kappa_1, \ldots, \kappa_n], e) \leadsto \Sigma_4 \]

Remark 6. When a definition is marked \text{abstract}, the name of the unfolding proposition is generated fresh so that it cannot be accessed by any future \text{unfold} declaration. Conversely, when a definition is marked as an \text{abbreviation}, its unfolding proposition is defined to be equivalent to the conjunction of its dependencies rather than merely entailing its dependencies.

The rules for term and type elaboration are largely standard, \textit{e.g.}, we elaborate a surface dependent product to a core dependent product by recursively
elaborating the first and second components. We single out two cases below: the boundary between checking and synthesis, and the expression-level unfold.

\[
\begin{align*}
\Sigma; \Gamma \vdash e \Rightarrow A \Leftrightarrow \Sigma_1; M & \quad \Sigma; \Gamma \vdash \text{conv } AB \\
\Sigma_1; \Gamma \vdash e \Leftrightarrow B \Leftrightarrow \Sigma_1; M & \quad \text{let } \chi := \text{gensym}() \\
\Sigma; \Gamma \vdash \text{unfold } \vartheta \in e \Leftrightarrow A \Leftrightarrow \Sigma_2; \text{out } \vartheta \chi \mid \Gamma
\end{align*}
\]

The first rule states that a term synthesizing a type \(A\) can be checked against a type \(B\) provided that \(A\) and \(B\) are definitionally equal; in order to implement this rule algorithmically, we need definitional equality to be decidable. Additionally, our (omitted) type-directed elaboration rules are only well-defined if type constructors are injective up to definitional equality, e.g., \(A \rightarrow B = C \rightarrow D\) if and only if \(A = C\) and \(B = D\). We establish both of these essential properties of definitional equality in Section 6.

Elaborating expression-level unfolding requires the ability to hoist a type to the top level by iterating dependent products over its context, an operation noted \(\prod \Gamma\) above. Because \(\Gamma\) can hypothesize (the truth of) propositions, this operation relies crucially on the presence of dependent products \(\{p\}\).

5 Case study: an implementation in \texttt{cooltt}

We have implemented our approach to controlled unfolding in the experimental \texttt{cooltt} proof assistant [29]; \texttt{cooltt} is an implementation of cartesian cubical type theory [2], a computational version of homotopy type theory whose syntactic metatheory is particularly well understood [31,33]. The existing support for partial elements and extension types made \texttt{cooltt} a particularly hospitable ground to experiment with elaborating controlled unfolding to extension types.

The following example illustrates the use of controlled unfolding in \texttt{cooltt}:

\[
\begin{align*}
\text{def } + : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} :&= \\
\text{elim} \\
\mid \text{zero } \Rightarrow \text{n } \Rightarrow \text{n} \\
\mid \text{suc } \{_ \Rightarrow \text{ih}\} \Rightarrow \text{n } \Rightarrow \text{suc } \{\text{ih }\text{n}\} \\
\text{unfold } + \\
\text{def } +0L \ (x : \mathbb{N}) : \text{path } \{+ 0 x\} \ x \ := \\
\text{elim} \\
\mid \text{zero } \Rightarrow +0L \ \text{0} \\
\mid \text{suc } \{x \Rightarrow \text{ih}\} \Rightarrow \\text{equation } \mathbb{N} \\
\mid + \ {\text{suc } y} = [+0L \ {\text{suc } y}] \\
\mid \text{suc } \{+ x \ 0\} = [i \Rightarrow \text{suc } \{\text{ih } i\}] \\
\mid \text{suc } \text{x} \\
\text{def } +0R \ (x : \mathbb{N}) : \text{path } \{+ 0 x\} \ x \ := \\
\text{elim} \\
\mid \text{zero } \Rightarrow \text{+0R } \text{+0R} \\
\mid \text{suc } \{x \Rightarrow \text{ih}\} \Rightarrow \\text{equation } \mathbb{N} \\
\mid + \ {\text{suc } y} = [+0L \ {\text{suc } y}] \\
\mid \text{suc } \{+ x \ 0\} = [i \Rightarrow \text{suc } \{\text{ih } i\}] \\
\mid \text{suc } \text{x} \\
\text{def } +0L \ (x : \mathbb{N}) : \text{path } \{+ 0 x\} \ x \ := \\
\text{elim} \\
\mid \text{zero } \Rightarrow \text{n } \Rightarrow \text{n} \\
\mid \text{suc } \{_ \Rightarrow \text{ih}\} \Rightarrow \text{n } \Rightarrow \text{suc } \{\text{ih }\text{n}\} \\
\text{unfold } + \\
\text{def } +0R \ (x : \mathbb{N}) : \text{path } \{+ 0 x\} \ x \ := \\
\text{elim} \\
\mid \text{zero } \Rightarrow +0L \ \text{0} \\
\mid \text{suc } \{x \Rightarrow \text{ih}\} \Rightarrow \\text{equation } \mathbb{N} \\
\mid + \ {\text{suc } y} = [+0L \ {\text{suc } y}] \\
\mid \text{suc } \{+ x \ 0\} = [i \Rightarrow \text{suc } \{\text{ih } i\}] \\
\mid \text{suc } \text{x} \\
\end{align*}
\]

This example follows a common pattern: we prove basic computational laws (+0L) by unfolding a definition, and then in subsequent results (+0R) use these lemmas abstractly rather than unfolding. Doing so controls the size and readability of proof goals, and explicitly demarcates which parts of the library depend on the definitional behavior of a given function.

We have also implemented the derived forms for expression-level unfolding:

\[
\begin{align*}
\text{def } \text{two } : \mathbb{N} :&= + 1 1 \\
\end{align*}
\]
def thm : path N two 2 := unfold two + in i ⊆ 2
def thm-is-refl : path-p {i ⇒ path N two {thm i}} {i ⇒ two} thm :=
 i j ⇒ unfold two + in 2
def thm-is-refl' : path {path N two 2} {i ⇒ unfold two + in two} thm :=
 i j ⇒ unfold two + in 2

The third and fourth declarations above illustrate two strategies in cooltt for
dealing with a dependent type whose well-formedness depends on an unfolding;
in thm-is-refl we use a dependent path type but only unfold in the definiens,
whereas in thm-is-refl' we use a non-dependent path type but must unfold in both
the definiens and in its type.

Our cooltt implementation deviates in a few respects from the presentation
in this paper: in particular, the propositions \(\Upsilon \kappa \) are represented by abstract
elements \(i_\kappa : I \) of the interval via the embedding \(I \hookrightarrow F \) sending \(i \) to \((i = I_1) \).
This implementation-specific design decision is not essential, but it enabled us
to use an existing solver for inequalities \(i \leq j \). Our modifications to cooltt
were relatively modest, resulting in a net increase of 996 lines of OCaml code;
we believe that our implementation strategy is also applicable in principle to
systems such as Agda, which already features the extension types that we need.

6 The metatheory of TT\(_P\)

In Section 4 we described an algorithm elaborating a surface language with
controlled unfolding to TT\(_P\). In order to actually execute our algorithm, it is
necessary to decide the definitional equality of types in TT\(_P\); as is often the case
in type theory, type dependency ensures that deciding equality for types also
requires us to decide the equality of terms. In order to implement our elaboration
algorithm, we therefore prove a normalization result for TT\(_P\).

At its heart, a normalization algorithm is a computable bijection between
equivalence classes of terms up to definitional equality and a collection of normal
forms. By ensuring that the equality of normal forms is evidently decidable, this
yields an effective decision procedure for definitional equality. In our case, we
attack normalization through a synthetic and semantic approach to normalization
by evaluation called synthetic Tait computability [34,33,31,32] or STC.

Neutral forms for TT\(_P\) This appealingly simple story for normalization is
substantially complicated by the boundary law for extension types:

\[
\Gamma \vdash p \text{ true} \quad \Gamma, p \vdash a : A \quad \Gamma \vdash a : \{A \mid p \rightarrow a\} \\
\Gamma \vdash \text{out}_p a = a : A
\]

When defining normal forms for TT\(_P\), we might naively add a neutral form \(\text{out}_p \)
to represent \(\text{out}_p \). In order to ensure that normal and neutral forms correspond
bijectively with equivalence classes of terms, however, we should only allow \(\text{out}_p \)
to be applied in a context where \(p \) is not true; if \(p \) were true, then \(\text{out}_p a \) is
already represented by the normal form for \(a_p \).
A similar problem arises in the context of cubical type theory [9, 2] where some equalities apply precisely when two dimensions coincide. The same problem then presents itself: either renamings must exclude substitutions which identify two dimension terms, or neutral forms will fail to be stable under renamings.

In their recent proof of normalization for cubical type theory, Sterling and Angiuli [33] refined neutral forms to account for this tension by introducing stabilized neutrals. Rather than cutting down on renamings, they expand the class of neutrals by allowing “bad” neutrals akin to \(\text{out}_p e \) in a context where \(p \) is true. They then associate each neutral form with a frontier of instability: a proposition which is true if the neutral is no longer meaningful. Crucially, while well-behaved neutrals may not be stable under renamings, the frontier of instability is stable, and can therefore be incorporated into the internal language.

We show that Sterling and Angiuli’s stabilized neutrals can be adapted to \(\text{TT}_P \) and use their approach to establish normalization. In so doing, we refine Sterling and Angiuli’s approach to obtain a constructive normalization proof. We also carefully spell out the details of the universe in the normalization model, correcting an oversight in an earlier revision of Sterling’s dissertation [31].

6.1 Type theories as categories with representable maps

While any number of logical frameworks are available (generalized algebraic theories [7], essentially algebraic theories [15], locally cartesian closed categories [20], etc.), Uemura’s categories with representable maps [39, 40] are particularly attractive because they express exactly the binding and dependency structure needed for type theory: a second-order version of generalized algebraic theories.

Definition 1. A category with representable maps \(\mathcal{C} \) is a finitely complete category equipped with a pullback-stable class of representable maps \(\mathcal{R} \subseteq \text{Arr}(\mathcal{C}) \) such that pullback along \(f \in \mathcal{R} \) has a right adjoint (dependent product along \(f \)).

We will often refer to categories with representable maps as \(\text{CwRs} \).

Definition 2. A morphism of CwRs is a functor between the underlying categories that preserves finite limits, representability of maps, and dependent products along representable maps.

Definition 3. Categories with representable maps, morphisms between them, and natural isomorphisms assemble into a \((2, 1)\)-category \(\text{CwR} \).

Uemura’s logical framework axiomatizes the category of judgments of \(\text{TT}_P \) as a particular category with representable maps \(\mathcal{T} \). The finite limit structure of \(\mathcal{T} \) encodes substitution as well as equality judgments, while the class of representable maps carves out those judgments that may be hypothesized. Uemura [39] develops a syntactic method for presenting a CwR as a signature within a variant of extensional type theory, which he has rephrased in terms of second order generalized algebraic theories in his doctoral dissertation [40]. Although we will use the type-theoretic presentation for convenience, the difference between these two accounts is only superficial.
Each judgment of TT_p is rendered as a (dependent) sort while type and term formers are modeled by elements of the given sorts. In order to record whether a given judgment may be hypothesized, the sorts of the type theory are stratified by meta-sorts $\star \subseteq □$ where $A : \star$ signifies that A is a representable sort (i.e., a context-former) and can be hypothesized, whereas $B : □$ cannot parameterize a framework-level dependent product.

Theorem 1. Let \mathbb{T} be the free category with representable maps generated by a given logical framework signature; then the groupoid of CwR functors $[\mathbb{T}, \mathcal{E}]_{\text{CwR}}$ is equivalent to the groupoid of interpretations of the signature within \mathcal{E}.

We will often refer to a category with representable maps \mathbb{T} as a type theory; indeed, as the category of judgments of a given type theory, \mathbb{T} is a suitable invariant replacement for it.

The $(2,1)$-category of models of a type theory

Theorem 1 describes the universal property of a type theory generated by a given signature in a logical framework. Type theories qua CwRs thus give rise to a form of functorial semantics in which algebras (interpretations) arrange into a groupoid of CwR functors $[\mathbb{T}, \mathcal{E}]_{\text{CwR}}$.

This is an appropriate setting for studying the syntax of type theory, but it is somewhat inappropriate for studying the semantics of type theory—in which one expects models to correspond to structured CwFs [13] or natural models [5], which themselves arrange into a $(2,1)$-category. The second notion of functorial semantics, developed by Uemura in his doctoral dissertation [40], is a generalization of the theory of CwFs and pseudo-morphisms between them [8,27].

Note that we may always regard a presheaf category $\mathcal{P}(\mathcal{C})$ as a CwR with the representable maps being representable natural transformations, i.e., families of presheaves whose fibers at representables are representable [5].

Definition 4. A model of a type theory \mathbb{T} is defined to be a category \mathcal{M}_0 together with a CwR functor $\mathcal{M} : \mathbb{T} \rightarrow \mathcal{P}(\mathcal{M}_0)$.

Models are arranged into a $(2,1)$-category $\mathbf{Mod}\mathbb{T}$ (see Appendix B). Essentially, a morphism of models $\mathcal{M} \rightarrow \mathcal{N}$ is given by a functor $\alpha_0 : \mathcal{M}_0 \rightarrow \mathcal{N}_0$, together with a natural transformation $\mathcal{M} \rightarrow \alpha_*\mathcal{N} \in \mathcal{P}(\mathcal{M}_0)$ that preserves context extensions up to isomorphism; an isomorphism between morphisms of models is a natural isomorphism between the underlying functors satisfying an additional property. For each CwR \mathbb{T}, Uemura has shown the following theorem:

Theorem 2. The $(2,1)$-category of models $\mathbf{Mod}\mathbb{T}$ has a bi-initial object \mathcal{I}.

Remark 7. If one takes \mathbb{T} to be e.g., Martin-Löf type theory, the bi-initial model \mathcal{I} can be realized by the familiar initial CwF built from the category of contexts.

6.2 Encoding TT_p in the logical framework

We begin by defining the signature for a category with representable maps \mathbb{T}_0 containing exactly the bare judgmental structure of TT_p, namely the propositions and the judgments for types and terms. In our signature, we make liberal use of the Agda-style notation for implicit arguments. As always, p ranges over \mathbb{P}.
\[\langle p \rangle : \ast \quad \text{tp} : \Box \]
\[_\vdash \{ u, v : \langle p \rangle \} \Rightarrow u = v \quad \text{tm} : \text{tp} \Rightarrow \ast \]
\[_\vdash \{ \vdash \langle \bigwedge_{i<n} P_i \rangle \} \Rightarrow \langle p_k \rangle \]
\[_\vdash \{ \vdash \langle p_i \rangle, \ldots \} \Rightarrow \langle \bigwedge_{i<n} p_i \rangle \]

We next extend the above to include the type forms of \(\text{TT}_p \), writing \(\mathbb{T} \) for the \(\text{CwR} \) generated by the full signature.

Notation 1. Given \(X : \{ \vdash \langle p \rangle \} \Rightarrow \Box \), we will write \(\{ p \} X \) to further abbreviate the Agda-style implicit function space \(\{ \vdash \langle p \rangle \} \rightarrow X \).

For space reasons, we only include the signature for the extension types:

\[
\begin{align*}
\text{ext}_p : (A : \text{tp}) (a : \{ p \} \text{tm} A) & \Rightarrow \text{tp} \\
\text{in}_p : (A : \text{tp}) (a : \{ p \} \text{tm} A) (u : \text{tm} A) \{ \vdash \{ p \} u = a \} & \Rightarrow \text{tm} (\text{ext}_p A a) \\
\text{out}_p : (A : \text{tp}) (a : \{ p \} \text{tm} A) (u : \text{tm} (\text{ext}_p A a)) & \Rightarrow \text{tm} A \\
_\vdash (A : \text{tp}) (a : \{ p \} \text{tm} A) (u : \text{tm} (\text{ext}_p A a)) \{ \vdash \langle p \rangle \} & \Rightarrow \text{out}_p A a u = a \\
_\vdash (A : \text{tp}) (a : \{ p \} \text{tm} A) (u : \text{tm} A) \{ \vdash \{ p \} u = a \} & \Rightarrow \text{out}_p A a (\text{in}_p A a u) = u \\
_\vdash (A : \text{tp}) (a : \{ p \} \text{tm} A) (u : \text{tm} (\text{ext}_p A a)) & \Rightarrow \text{in}_p A a (\text{out}_p A a u) = u
\end{align*}
\]

These clauses precisely axiomatize the rules of extension types given in Section 4.1. Once the signature is complete, we obtain from Uemura’s framework a category with representable maps \(\mathbb{T} \) together with a bi-initial model \(\mathcal{I} \).

6.3 The atomic figure shape and its universal property

For each context \(\Gamma \) and type \(\Gamma \vdash A \) type, it is possible to axiomatize the normal forms of type \(A \); unfortunately, this assignment of sets of normal forms does not immediately extend to a presheaf on the category of contexts \(\mathcal{I}_0 \), precisely because normal forms are not a priori closed under substitution! In fact, closing normal forms under substitution is the purpose of the normalization theorem, so we are not able to assume it beforehand.

Normal forms are, however, closed under substitutions of variables for variables (often called structural renamings), and in our case we shall be able to close them additionally under the “phase transitions” \(\Gamma, \langle p \rangle \rightarrow \Gamma, \langle q \rangle \) when \(\Gamma, p \vdash q \) true is derivable. We shall refer to the substitutions so-restricted as atomic substitutions, and we wish to organize them into a category.

It is possible to inductively define a category of “atomic contexts” whose objects are those of \(\mathcal{I}_0 \) and whose morphisms are atomic substitutions, but this construction obscures a beautiful and simple (2,1)-categorical universal property first exposed by Bocquet, Kaposi, and Sattler [6] that leads to a more modular proof. To explicate this universal property, first note that the theory \(\mathbb{T}_0 \) axiomatizes exactly the structure of variables and phase transitions, and that the initial model \(\mathcal{I} \) of \(\mathbb{T} \) is, by restriction along \(\mathbb{T}_0 \hookrightarrow \mathbb{T} \), also a model of \(\mathbb{T}_0 \).

Definition 5. An atomic substitution algebra is given by a model \(\mathcal{A} \) of the bare judgmental theory \(\mathbb{T}_0 \), together with a morphism of models \(\alpha : \mathcal{A} \rightarrow \mathcal{I} \) in \(\text{Mod} \mathbb{T}_0 \) such that \(\alpha_{\text{tp}} : \mathcal{A}_{\text{tp}} \rightarrow \mathcal{I} \text{tp} \in \text{Pr}(\mathcal{A}_0) \) is an isomorphism.
The atomic substitution algebras arrange themselves into a (2,1)-category, a full subcategory of the pseudo-slice $\text{Mod} T_0 \downarrow \mathcal{I}$.

Theorem 3 (Bocquet, Kaposi, and Sattler [6]). The bi-initial atomic substitution algebra $(A, \alpha : A \rightarrow \mathcal{I})$ exists.

We use the bi-initial atomic substitution algebra as a *figure shape* in the sense of Sterling [31, §4.3] to instantiate synthetic Tait computability. Here we transition into the 2-category of Grothendieck topoi, geometric morphisms, and geometric transformations, guided by a *phase distinction* between “object-space” and “meta-space” [32]; object-space refers to the object language embodied in the model \mathcal{I}, whereas meta-space refers to the metalanguage embodied in the model A. Later on, we will construct a *glued* topos in which we may speak of constructs that have extent in both object-space and meta-space. We follow Anel and Joyal [1] and Vickers [42] in emphasizing the distinction between a topos X and the category of sheaves S_X presenting it:

Definition 6. We denote by I and A the object-space and meta-space topoi respectively, with underlying categories of sheaves $S_I = \text{Pr}(I)$ and $S_A = \text{Pr}(A)$.

Definition 7. The functor $\alpha : A \rightarrow \mathcal{I}$ gives rise under precomposition to a lex and cocontinuous functor $\text{Pr}(I) \rightarrow \text{Pr}(A)$, that shall serve as the inverse image part of a geometric morphism $\alpha : A \rightarrow I$ named the atomic figure shape.

Definition 8. We denote by G the closed mapping cylinder [23] of the geometric morphism $\alpha : A \rightarrow I$, such that S_G is the comma category $S_A \downarrow \alpha^*$. We will write $j : I \rightarrow G$ and $i : A \rightarrow G$ for the induced open and closed subtopos inclusions.

6.4 The language of synthetic Tait computability

As I and A are both subtopoi of G, they are reflected in the internal language of S_G by means of a pair of complementary lex idempotent monads (\circ, \bullet). The internal language of S_I is presented by the \circ-modal or *object-space* types and S_A is presented by \bullet-modal or *meta-space* types. Because they form an open/closed partition, these modal subuniverses admit a particularly simple formulation:

Theorem 4. There exists a proposition $\text{obj} : \Omega$ such that

1. a type X is \circ-modal / object-space iff $X \rightarrow (\text{obj} \rightarrow X)$ is an isomorphism;
2. a type X is \bullet-modal / meta-space iff $\text{obj} \times X \rightarrow \text{obj}$ is an isomorphism.

Remark 8. We will use extension types $\{ A \mid \phi \mapsto a \}$ in the internal language of S_G as realized by the subset comprehension of topos logic, treating their introduction and elimination rules silently. Here the proposition ϕ will be an element of the subobject classifier, in contrast to the situation in our object language, where it ranged over a fixed set of proposition symbols.
Remark 9. We isolate a subuniverse $\Omega_{\text{dec}} \subseteq \Omega$ of the subobject classifier that is closed under finite disjunctions and contains $\text{obj}; \Omega_{\text{dec}}$ will ultimately be a subuniverse spanned by pointwise/externally decidable propositions [2], but this fact will not play a role in the synthetic development.

Notation 2. As there is at most one element of obj, we will reuse Notation 1 and write $\{\text{obj}\} A$ rather than $\{_ : \text{obj}\} \rightarrow A$ when $A : \{_ : \text{obj}\} \rightarrow U$.

As a presheaf topos, \mathcal{S}_G inherits a hierarchy of cumulative universes U_i, each of which supports the strict gluing or (mixed-phase) refinement type [19,32]: a version of the dependent sum of a family of meta-space types indexed in an object-space type A that additionally restricts within object-space to exactly A:

\[
\frac{A : \{\text{obj}\} U_i \quad B : (\{\text{obj}\} A) \rightarrow U_i \quad \{\text{obj}\}(a : A) \rightarrow (B a \cong 1)}{(x : A) \times B x : \{U_i | \text{obj} \rightarrow A\} \quad \text{gl} : \{\sum_{x : (\{\text{obj}\} A) B x} \cong (x : A) \times B x | \text{obj} \rightarrow \pi_1\}}
\]

Remark 10. In topos logic, it is a property for a function to have an inverse; thus we have conveniently packaged the introduction and elimination rules for $(x : A) \times B x$ into a single function gl that is assumed to be an isomorphism.

Notation 3. We write $[\text{obj} \rightarrow a | b]$ for $\text{gl}(a, b)$ and $\text{ungl} x$ for $\pi_2(\text{gl}^{-1} x)$.

Both \circ and \bullet induce reflective subuniverses $U_i^\circ, U_i^\bullet \hookrightarrow U_i$ spanned by modal types, and these universes are themselves modal. Following Sterling [31], we use strict gluing to choose these universes with additional strict properties:

\[
U_i^\circ : \{U_{i+1} | \text{obj} \rightarrow U_i\} \quad U_i^\bullet : \{U_{i+1} | \text{obj} \rightarrow 1\}
\]

Furthermore, the inclusion $U_i^\circ \hookrightarrow U_i$ restricts to the identity under obj. With the modal universes at hand, we may choose $\circ : U_i \rightarrow U_i$ and $\bullet : U_i \rightarrow U_i$ to factor through U_i° and U_i^\bullet respectively. Henceforth we will suppress the inclusions $U_i^\circ, U_i^\bullet \hookrightarrow U_i$ and write e.g. $\circ : U_i \rightarrow U_i^\circ$ for the reflections.

Remark 11. The strict gluing types, modal universes, and their modal reflections can be chosen to commute strictly with the liftings $U_i \rightarrow U_{i+1}$.

The interpretation of the TT_p signature within \mathcal{S}_I internalizes into \mathcal{S}_G as a sequence of constants valued in the subuniverse U_i^\bullet; for instance, we have:

\[
\begin{align*}
\text{tp} & : U_i^\bullet \\
\text{tm} & : \text{tp} \rightarrow U_i^\bullet \\
\langle p \rangle & : \Omega_{\text{dec}} \quad (\text{for } p \in P) \\
\text{ext}_p & : (A : \text{tp}) \rightarrow (a : \{\langle p \rangle\} \text{tm} A) \rightarrow \text{tp} \\
\text{in}_p & : (A : \text{tp}) (a : \{\langle p \rangle\} \text{tm} A) \rightarrow \{\text{tm} A | \langle p \rangle \leftrightarrow a\} \cong \text{tm} (\text{ext}_p A a)
\end{align*}
\]

Following Remark 10, we package the pair $(\text{in}_p, \text{out}_p)$ as a single isomorphism in_p.

The presheaf of terms in the model \mathcal{A} internalizes as a meta-space type of variables which by virtue of the structure map $\mathcal{A} \rightarrow I$ can be indexed over the object-space collection of terms. We realize this synthetically as follows:

\[
\text{var} : (A : \text{tp}) \rightarrow \{U | \text{obj} \leftrightarrow \text{tm} A\}
\]

We refer to extensional type theory extended with these constants and modalities as the language of synthetic Tait computability (STC).
Remark 12. To account for strict universes—those for which el commutes strictly with chosen codes—some prior STC developments employed strict gluing along the image of el [33,31]. By limiting our usage of strict gluing to obj, we are able to execute our constructions in a constructive metatheory. To model strict universes, we instead rely on the cumulativity of the hierarchy of universes \mathcal{U}_i and the fact that all levels are coherently closed under modalities and strict gluing.

6.5 Normal and neutral forms

Internally to STC, we now specify the normal and neutral forms of terms, and the normal forms of types. Following Sterling and Angiuli [33] we index the type of neutral forms by a frontier of instability, a proposition at which the neutral form is no longer meaningful. Our construction proceeds in two steps. First, we define a series of indexed quotient-inductive definitions [24] specifying the meta-space components of normal and neutral forms:

$$
\text{nf}_\cdot : (A : \text{tp}) \to \text{tm} A \to \mathcal{U}_0^0
$$

$$
\text{ne}_\cdot : (A : \text{tp}) \to \Omega_{\text{dec}} \to \text{tm} A \to \mathcal{U}_0^0
$$

$$
\text{nftp}_\cdot : \text{tp} \to \mathcal{U}_0^0
$$

Next we use the strict gluing connective to define the types of normals, neutrals, and normal types such that they lie strictly over tm and tp:

$$
\text{nf} A = (a : \text{tm} A) \times \text{nf}_\cdot A a
$$

$$
\text{ne}_\phi A = (a : \text{tm} A) \times \text{ne}_\cdot A \phi a
$$

$$
\text{nftp} = (A : \text{tp}) \times \text{nftp}_\cdot A
$$

We illustrate a representative fragment of the inductive definitions in Fig. 1.

The induction principles for nf_\cdot, ne_\cdot, and nftp_\cdot play no role in the main development, which works with any algebra for these constants. These induction principles, however, are needed in order to to prove Theorem 6 and deduce the decidability of definitional equality and the injectivity of type constructors. These same considerations motivate our choice to index ne_\cdot over Ω_{dec} rather than Ω.

6.6 The normalization model

The construction of the normalization model itself is now reduced to a series of programming exercises. Specifically, we must give a new TT_p-algebra internally to \mathcal{S}_p subject to the constraint that each of its constituents restricts under obj to the corresponding constant from the TT_p-algebra inherited from \mathcal{S}_1. For instance, we must define types representing object types and terms:

$$
\text{tp}^* : \{\mathcal{U}_2 | \text{obj} \mapsto \text{tp}\}
$$

$$
\text{tm}^* : \{\text{tp}^* \to \mathcal{U}_1 | \text{obj} \mapsto \text{tm}\}
$$

The meta-space component of the computability structure of types is given as a dependent record below:

$$
\text{record} \; \text{tp}_\cdot (A : \text{tp}) : \mathcal{U}_2 \; \text{where}
$$
\texttt{var} : (x : \text{var} A \rightarrow \text{ne}_\ast A \perp x)
\texttt{unst} : \{a : \text{tm} A\} \rightarrow \text{ne}_\ast A \top a
_ : (a : \text{tm} A)(e : \text{ne}_\ast A \top a) \rightarrow e = \texttt{unst} a
\texttt{ext}_p : \text{nf}_\ast A \rightarrow (\{p\} \text{nf}_\ast (Aa)) \rightarrow \text{nf}_\ast (\text{ext}_p Aa)
\texttt{in}_p : \text{nf}_\ast A \rightarrow \text{nf}_\ast (Aa) \rightarrow \text{nf}_\ast (\text{ext}_p Aa) u
\texttt{out}_p : \text{nf}_\ast A \rightarrow \text{ne}_\ast (\text{ext}_p Aa) \phi u \rightarrow \text{ne}_\ast A (\phi \vee (p)) \left(\text{in}_{p,1} u\right)
\texttt{up}_\text{uni} : \text{ne}_\ast \phi A \rightarrow (\{\phi\} \text{nftp}_\ast (A)) \rightarrow \text{nftp}_\ast (\text{el} A)
\texttt{up}_\text{a} : \text{ne}_\ast \phi A \rightarrow (\{\phi\} \text{nftp} (\text{el} A)) \rightarrow \text{ne}_\ast (\text{el} A) \psi a \rightarrow (\{\phi \vee \psi\} \text{nf}_\ast (\text{el} A) a) \rightarrow \text{nf}_\ast (\text{el} A) a
\texttt{el} : \text{ne}_\ast \phi A \rightarrow (\{\phi\} \text{nf}_\ast \text{uni} A) \rightarrow \text{nf}_\ast \text{uni} A
_ : (e : \text{ne}_\ast \text{uni} \top A)(u : \text{nftp}_\ast A) \rightarrow \text{up}_\text{uni} e u = u
_ : (e : \text{ne}_\ast \text{uni} \top A)(u : \text{nf}_\ast \text{uni} A) \rightarrow \text{el} e u = u
_ : \{\phi \vee \psi\} \{a : \text{ne}_\ast \phi A\} (a_A : \{\phi\} \text{nftp}_\ast (\text{el} A)) (e_a : \text{ne}_\ast (\text{el} A) \psi a) (u_a : \text{nf}_\ast A a) \rightarrow \text{up}_\text{a} e_A u_A e_a u_a = u_a

![Fig. 1. Selected rules from the quotient inductive definition of nf, ne, and nftp.](image)

\texttt{code} : \text{nftp}_\ast A
\texttt{tm}_\ast : \text{tm} A \rightarrow \text{tm}_\ast A
\texttt{reflect} : (a : \text{tm} A)(\phi : \Omega_{\text{dec}})(e : \text{ne}_\ast A \phi a) (a_\phi : \{\phi\} \text{tm}_\ast a)
\rightarrow \{\text{tm}_\ast a | \phi \mapsto a_\phi\}
\texttt{reify} : (a : \text{tm} A) \rightarrow \text{tm}_\ast a \rightarrow \text{nf}_\ast A a

The \texttt{tm}_\ast field classifies the meta-space component of a given element; the reflect and reify fields generalize the familiar operations of normalization by evaluation, subject to Sterling and Angiuli’s stabilization yoga \cite{33}. We finally define both \texttt{tp}^* and \texttt{tm}^* using strict gluing to achieve the correct boundary:

\texttt{tp}^* = (A : \text{tp}) \times \text{tp}_\ast A
\texttt{tm}^* A = (a : \text{tm} A) \times (\text{un} A) \text{tm}_\ast a

\textbf{Notation 4.} Henceforth we will simply write \texttt{A.fld} rather than (\texttt{un} A).\texttt{fld} to access a field of the closed component of \texttt{A}.

We must also define \langle p \rangle^* : \Omega_{\text{dec}} for each \(p \in \mathbb{P} \) subject to the condition that \texttt{obj} implies \langle p \rangle^* = \langle p \rangle. As there is no normalization data associated with these propositions, we define \langle p \rangle^* = \langle p \rangle which clearly satisfies the boundary condition. It remains to show that (\texttt{tp}^*, \texttt{tm}^*) are closed under all the connectives of \texttt{TT}_\mathbb{P}.

\textbf{We show two representative cases: extension types and the universe.}

\textbf{Extension types} We begin with extension types. Fixing \(A : \text{tp}^*, p : \mathbb{P}, \) and \(a : \{\langle p \rangle\} \text{tm}^* A, \) we must construct the following two constants:

\texttt{ext}^*_p A a : \{\text{tp}^* | \texttt{obj} \mapsto \text{ext}_p A a\}
\texttt{in}^*_p A a : \{\text{tm}^* A | \langle p \rangle \mapsto a\} \cong \text{tm}^* (\text{ext}^*_p A a) \mid \texttt{obj} \mapsto \text{in}_p A a\}
Recalling the definition of tp^* as a strict gluing type, we observe that the boundary condition on ext_p^* already fully constrains the first component:

$$ext_p^* A a = [\text{obj} \mapsto ext_p A a | ? : tp_*(ext_p A a)]$$

We define the second component as follows, using copattern matching notation:

$$(ext_p^* A a).\text{code} = ext_p A.\text{code} \ (A.\text{reify} a)$$
$$(ext_p^* A a).tm_\ast x = \bullet \{A.\text{tm}_\ast (in_p^{-1} x) | (p) \mapsto a\}$$
$$(ext_p^* A a).\text{reify} (\eta_\ast x) = in_p A.\text{code} \ (A.\text{reify} x)$$
$$(ext_p^* A a).\text{reflect} x \phi e (\eta_\ast x) =$$
$$\eta_\ast (A.\text{reflect} (in_p^{-1} x) (\phi \lor (p)) (\text{out}_p A.\text{code} e) [\phi \mapsto x_\phi | (p) \mapsto a])$$

In the clauses for reify and reflect above, we were allowed to pattern match on $\eta_\ast x$ because we are mapping into meta-space types.

Remark 13. Stabilized neutrals are crucial to the definition of $(ext_p^* A a).\text{reflect}$ above: without them, we could not ensure that reflecting $\text{out}_p A.\text{code} e$ lies within the specified subtype of $A.Tm_\ast$.

Having defined ext_p^* in this manner, the definition of in_p^* is straightforward:

$$in_p^* A a x = [\text{obj} \mapsto in_p A a x | \text{ungl} x]$$

We leave the routine verification of the various boundary conditions to the reader; nearly all of them follow immediately from the properties of strict gluing.

The universe We now turn to the construction of the universe in the normalization model; it is here that the complexity of unstable neutrals becomes evident. Once again the boundary conditions on uni^* fully constrain part of its definition:

$$uni^* = [\text{obj} \mapsto uni | ? : tp_*_uni]$$

The second component of uni^* is complex and we present its definition in Fig. 2. The inclusion of $el\text{-code}$ in uni_\ast is necessary in order to define el^*:

$$\text{obj} \mapsto el^* A = el A$$
$$(el^* (\eta_\ast A)).\text{code} = A.el\text{-code}$$
$$(el^* (\eta_\ast A)).tm = A.Tm_\ast$$
$$(el^* (\eta_\ast A)).\text{reflect} = A.\text{reflect}$$
$$(el^* (\eta_\ast A)).\text{reify} = A.\text{reify}$$

Finally, we must show that uni^* is closed under all small type formers and that el^* preserves them. This flows from the cumulativity of the universes in SG: to close uni^* under e.g. products, we essentially ‘redo’ the construction of products within tp^* by altering its predicate to be valued in U_0 rather than U_1.
record uni•A : U₁ where

code : nf•uni A
el-code : nftp₁ (el A)
tm• : tm (el A) → U₁
reflect : (a : tm A) (φ : Ωdec)
 → (e : ne• A φ a)
 → (aₜ : {φ} tm• a)
 → {tm• a | φ ↪ aφ}
reify : (a : tm A) → tm• a → nf•A a

obj ↦ uni•.reflect A φ eₐ Aₜ = A
ungl (uni•.reflect A φ eₐ Aₜ) =
let Aₜ : {φ} uni• A = X ↦ Aφ; X;
η• record
 code = upunι eₐ Aₜ.code
 el-code = el eₐ Aₜ.el-code
 tm• a = (u : nf• A X) × {φ} {a : Aφ.tm• a | Aφ.reify a = u}
reflect a ψ eₐ aψ =
 let aψ : {ψ} (u : nf• A X) × ... = x ↦ aψ; x;
 let aₜ = Aφ.reflect ψ eₐ aψ;
 η• (el eₐ Aₜ.el-code eₐ [φ ↪ Aφ.reify aφ | ψ ↪ aψ]) = aφ
reify _ (η• (u, _)) = u

Fig. 2. The normalization structure on the universe.

6.7 The normalization algorithm

Having constructed the normalization model in S_G, we now extract the actual normalization algorithm using an argument based on those presented by Fiore [14] and Sterling [31]. Despite the differences in the normalization models, this portion of the proof closely follows Sterling’s argument.

Theorem 5. The unit map η₀ : nftp → tp is an isomorphism.

In fact, as our construction of the normalization model is constructive, this isomorphism and its inverse are both computable.

Definition 9. An object X ∈ S_G is called levelwise decidable when for each Γ ∈ A₀, the set (i* X)Γ is decidable where i : A₀ ↦ G is as in Definition 8.

Theorem 6. Viewed as objects of S_G, the following are levelwise decidable:

nftp (A : tp) × nf A (A : tp) × (φ : Ωdec) × neₐ A

From Theorems 5 and 6 we obtain our main results concerning TT_P:

Corollary 1. Definitional equality of types and terms in TT_P is decidable, and type constructors in TT_P are definitionally injective.
7 Related work

As discussed in Section 1, proof assistants already have support for various means of controlling the unfolding of definitions; we classify these mechanisms as either library-level or language-level.

Library-level features Various library-level idioms for abstract definitions are used in practice such as SSREFLECT’s lock idiom. While such approaches are flexible and compatible with existing proof assistants, they are often cumbersome in practice. For instance, lock relies on various tactics with subtle behavior, which makes it difficult to use locking idioms in pure Gallina code.

Language-level features Many proof assistants include a feature like Agda’s abstract blocks which marks a definition as completely opaque to the remainder of the development. In Remark 1, we explained how to recover Agda’s abstract definitions using controlled unfolding. Moreover, as controlled unfolding does not require a user to decide up front whether a definition can be unfolded, it gives a more realistic and flexible discipline for abstraction in a proof assistant. In practice, however, abstract is often used for performance reasons instead of merely for controlling abstraction; unfolding large or complex definitions can significantly slow down type checking and unification. While we have not discussed performance considerations for controlled unfolding, the same optimizations apply directly to our mechanism for definitions that are never unfolded. In total, controlled unfolding strictly generalizes Agda’s abstract blocks.

Translucent ascription in module systems Thus far we have focused on proof assistants, but similar considerations arise for ML-style module systems [26,22,12,34]. Interestingly, the default opacity for definitions in module systems is the same as in controlled unfolding and opposite to proof assistants: types are abstract unless marked otherwise. The treatment of translucent type declarations in module systems [22] relies on singleton kinds [4,35], which are the special case of extension types whose boundary proposition is \(\top \). Generalizing from compiletime kinds to mixed compiletime–runtime module signatures, Sterling and Harper have pointed out that transparent ascriptions are most appropriately handled by means of an extension type whose boundary proposition represents the compiletime phase itself [34]. Thus the translucency of compiletime module components can be thought of as a particular controlled unfolding policy in the sense of this paper.

8 Conclusions and future work

We have proposed controlled unfolding, a new mechanism for interpolating between transparent and opaque definitions in proof assistants. We have demonstrated its practical applicability by extending cooltt with controlled unfolding primitives; we have also proved its theoretical soundness by constructing an elaboration algorithm to a core calculus whose normalization we establish using a novel constructive synthetic Tait computability argument.
In the future, we hope to see controlled unfolding integrated into more proof assistants and to further explore its applications for large-scale organization of mechanized mathematics. In the context of our cooltt implementation, we have also already begun to experiment with potential extensions, including one that allows a subterm to be declared locally abstract and then unfolded later on as-needed — a more flexible alternative to Coq’s abstract t tactical. As we mentioned in Remark 1, we also are interested in facilities to limit the scope in which it is possible to unfold a given definition.

Acknowledgments

This work was supported in part by a Villum Investigator grant (no. 25804), Center for Basic Research in Program Verification (CPV), from the VILLUM Foundation. Jonathan Sterling is funded by the European Union under the Marie Skłodowska-Curie Actions Postdoctoral Fellowship project TypeSynth: synthetic methods in program verification. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the granting authority can be held responsible for them. Carlo Angiuli is supported by the U.S. Air Force Office of Scientific Research under grant number FA9550-21-0009. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the AFOSR.

References

A The LF signature for TT_P

We present the nonstandard portion of the signature of TT_P:

$$\begin{align*}
\text{tp} & : \Box \\
\text{tm} & : \text{tp} \Rightarrow \ast \\
\langle p \rangle & : \ast \\
_\text{u} & : \{ u, v : \langle p \rangle \} \Rightarrow u = v \\
_\text{v} & : \{ _\text{u} : \bigwedge_{i<n} p_i \} \Rightarrow \langle p_k \rangle
\end{align*}$$
\[
_ : \{_ : (p_1), \ldots \} \implies \langle \lambda_{i<n} p_i \rangle
\]

\[
ext_p : (A : \text{tp}) (a : \{p\} \text{tm} A) \implies \text{tp}
\]

\[
in_p : (A : \text{tp}) (a : \{p\} \text{tm} A) (u : \text{tm} A) \{_ : \{p\} \equiv a\} \implies \text{tm} (\text{ext}_p A a)
\]

\[
\text{out}_p : (A : \text{tp}) (a : \{p\} \text{tm} A) (u : \text{tm} (\text{ext}_p A a)) \implies \text{tm} A
\]

\[
_ : (A : \text{tp}) (a : \{p\} \text{tm} A) (u : \text{tm} (\text{ext}_p A a)) \{_ : \{p\}\} \implies \text{out}_p A a u = a
\]

\[
_ : (A : \text{tp}) (a : \{p\} \text{tm} A) (u : \text{tm} A) \{_ : \{p\} \equiv a\} \implies \text{out}_p A a (\text{in}_p A a u) = u
\]

\[
_ : (A : \text{tp}) (a : \{p\} \text{tm} A) (u : \text{tm} (\text{ext}_p A a)) \implies \text{in}_p A a (\text{out}_p A a u) = u
\]

\[
\text{part}_p : (A : \{p\} \text{tp}) \implies \text{tp}
\]

\[
\text{lam}_p : (A : \text{tp}) (a : \{p\} \text{tm} A) \implies \text{tm} (\text{part}_p A)
\]

\[
\text{app}_p : (A : \text{tp}) (u : \text{tm} (\text{part}_p A)) \implies \{p\} \text{tm} A
\]

\[
_ : (A : \text{tp}) (a : \{p\} \text{tm} A) \implies \text{app}_p A (\text{lam}_p A a) = a
\]

\[
_ : (A : \text{tp}) (a : \text{tm} (\text{part}_p A)) \implies \text{lam}_p A (\text{app}_p A a) = a
\]

B The (2,1)-category of models of a type theory

Uemura [40] has observed that a model \((\mathcal{M}_0, \mathcal{M})\) in the sense of Definition 4 can be packaged into a single functor \(\tilde{\mathcal{M}} : T \to \mathbf{Cat}\), in which \(T\) by a new terminal object \(\circ\) and \(\mathbf{Cat}\) is the 2-category of categories. From this perspective, a sort \(X \in T\) is taken to the total category \(\mathcal{M}X = \int_{\mathcal{M}_0} \mathcal{M}X\) of a discrete fibration over \(\tilde{\mathcal{M}}_0 = \mathcal{M}_0\). Here we are using the equivalence between \(\text{DFib}_C \simeq \text{Pr}(C)\). The preservation of representable maps is then rendered here as the requirement that for representable \(u : X \to Y\), each functor \(\tilde{\mathcal{M}}u : \mathcal{M}X \to \mathcal{M}Y\) shall have a right adjoint \(\tilde{\mathcal{M}}u + q_{\tilde{\mathcal{M}}u}\), taking an element of \(\mathcal{M}Y\) to the generic element of \(\mathcal{M}X\) in the extended context.

Example 1. For a representable map \(\pi : \text{tm} \to \text{tp}\), the functorial action \(\tilde{\mathcal{M}}\pi : \mathcal{M}\text{tm} \to \tilde{\mathcal{M}}\text{tp}\) takes a term \(\Gamma \vdash a : A\) to the type \(\Gamma \vdash A\); the right adjoint \(q_{\tilde{\mathcal{M}}\pi} : \mathcal{M}\text{tp} \to \tilde{\mathcal{M}}\text{tp}\) sends a type \(\Gamma \vdash A\) to the variable \(\Gamma, a : A \vdash a : A\).

Definition 10. Given two models \(\mathcal{M}, \mathcal{N}\) of \(T\), a morphism of models from \(\mathcal{M}\) to \(\mathcal{N}\) is given by a natural transformation \(F : \mathcal{M} \to \mathcal{N} \in [T^\circ, \mathbf{Cat}]\) such that the left-hand square below satisfies the Beck–Chevalley condition in the sense that for each representable \(u : X \to Y : T\) the right-hand wiring diagram (oriented from top left to bottom right) denotes an invertible natural transformation \(F_X \circ q_{\tilde{\mathcal{M}}u} \to q_{\tilde{\mathcal{N}}u} \circ F_Y\):
Given a natural transformation \(F : \tilde{M} \to \tilde{N} \in [\mathcal{T}^\mathcal{P}, \mathbf{Cat}] \), we have a left Kan extension \(F_! : \text{DFib}_{\tilde{M}_o} \to \text{DFib}_{\tilde{N}_o} \). This functor can be used to re-express the Beck-Chevalley condition in a manner that is more amenable to computations.

Definition 11. Let \(\mathcal{M}, \mathcal{N} \) be two models of \(\mathcal{T} \), and let \(F, G : \mathcal{M} \to \mathcal{N} \) be two morphisms of models. An isomorphism \(h \) from \(F \) to \(G \) is defined to be an invertible modification between the underlying natural transformations \(F, G \). This amounts to choosing for each \(X \in \mathcal{T}^\mathcal{P} \) a natural isomorphism \(h_X : F_X \to G_X \) in \([\tilde{M}_X, \tilde{N}_X] \), subject to the coherence condition that for each \(u : X \to Y \) in \(\mathcal{T}^\mathcal{P} \) the following two wiring diagrams are equal:

\[
\begin{array}{ccc}
F_X & \cong \ & G_X \\
\downarrow h_X & & \downarrow h_Y \\
\tilde{N}_u & & \tilde{M}_u \\
\end{array}
\]

Naturality of \(F, G \) ensures that the diagrams above have the same boundary.

Remark 14. Because each of the induced maps \(\pi_{\tilde{M}X} : \tilde{M}X \to \tilde{M}_o \) and \(\pi_{\tilde{N}X} : \tilde{N}X \to \tilde{N}_o \) into the cone point are discrete fibrations, it suffices to check the modification condition of \(h \) on only the cone maps \(X \to \ast \); as any discrete fibration is a faithful functor, it moreover follows that \(h_o : F_o \to G_o \) uniquely determines all the other \(h_X \) if they exist. Unfolding further, given \(x \in \tilde{M}X \) we are only requiring that \((h_o)^*_{\pi_{\tilde{M}X}}(G_Xx) = F_Xx \) in the sense depicted below in the discrete fibration \(\tilde{N}X \) over \(\tilde{N}_o \):

\[
\begin{array}{cc}
F_Xx & \xrightarrow{\exists! h_Xx} \ G_Xx \\
\downarrow & \downarrow \ \\
F_o(\pi_{\tilde{M}X}x) & \xrightarrow{(h_o)_{\pi_{\tilde{M}X}}} \ G_o(\pi_{\tilde{M}X}x)
\end{array}
\]

Thus we have a \((2,1)\)-category of models \(\mathbf{Mod}\mathcal{T} \) for any category with representable maps \(\mathcal{T} \).

C The \((2,1)\)-category of atomic substitution algebras

Definition 12. Given atomic substitution algebras \(\alpha : \mathcal{A} \to \mathcal{I} \) and \(\alpha' : \mathcal{A}' \to \mathcal{I} \), a morphism from \((\mathcal{A}, \alpha) \) to \((\mathcal{A}', \alpha') \) is given by a morphism \(F : \mathcal{A} \to \mathcal{A}' \in \mathbf{Mod}\mathcal{T}_0 \) together with an isomorphism \(\phi_F : \alpha \to \alpha' \circ F \) in \([\mathcal{A}, \mathcal{I}]\) as depicted below:

\[
\begin{array}{ccc}
\alpha & \xrightarrow{\phi_F} & \alpha' \\
F & \downarrow & \downarrow \ \\
\alpha & \to & \alpha'
\end{array}
\]
Definition 13. Given two morphisms $F, G : (A, \alpha) \rightarrow (A', \alpha')$, an isomorphism from F to G is given by an isomorphism $h : F \rightarrow G \in [A, A']$ such that the following wiring diagrams denote equal isomorphisms $\alpha \rightarrow \alpha' \circ G$: