
Electronic Notes in Theoretical Computer Science 34 (2000)
http://www.elsevier.nl/locate/entcs/volume34.html 280 pages

Developing Theories of Types and
Computability via Realizability

Lars Birkedal

The IT University in Copenhagen, Denmark

c©2000 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume34.html




Abstract

We investigate the development of theories of types and computability via
realizability.

In the first part of the thesis, we suggest a general notion of realizability,
based on weakly closed partial cartesian categories, which generalizes the
usual notion of realizability over a partial combinatory algebra. We show
how to construct categories of so-called assemblies and modest sets over
any weakly closed partial cartesian category and that these categories of
assemblies and modest sets model dependent predicate logic, that is, first-
order logic over dependent type theory. We further characterize when a
weakly closed partial cartesian category gives rise to a topos. Scott’s cate-
gory of equilogical spaces arises as a special case of our notion of realizability,
namely as modest sets over the category of algebraic lattices. Thus, as a
consequence, we conclude that the category of equilogical spaces models
dependent predicate logic; we include a concrete description of this model.

In the second part of the thesis, we study a notion of relative com-
putability, which allows one to consider computable operations operating
on not necessarily computable data. Given a partial combinatory algebra
A, which we think of as continuous realizers, with a subalgebra A] ⊆ A,
which we think of as computable realizers, there results a realizability topos
RT(A,A]), which one intuitively can think of as having “continous ob-
jects and computable morphisms”. We study the relationship between this
topos and the standard realizability toposes RT(A) and RT(A]) over A and
RT(A]). In particular, we show that there is a localic local map of toposes
from RT(A,A]) to RT(A]). To obtain a better understanding of the relation-
ship between the internal logics of RT(A,A]) and RT(A]), we then provide
a complete axiomatization of arbitrary local maps of toposes. Based on this
axiomatization we investigate the relationship between the internal logics of
two toposes connected via a local map. Moreover, we suggest a modal logic
for local maps. Returning to the realizability models we show in particular
that the modal logic for local maps in the case of RT(A,A]) and RT(A])
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can be seen as a modal logic for computability. Moreover, we characterize
some interesting subcategories of RT(A,A]) (in much the same way as as-
semblies and modest sets are characterized in standard realizability toposes)
and show the validity of some logical principles in RT(A,A]).

Note Added in Print

This book is a slight revision of the author’s Ph.D. thesis [Bir99].
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Chapter 1

Introduction

In this thesis we are concerned with developing theories of types and com-
putability via realizability. Briefly, this means that we develop and study
various categories defined via notions of realizability and show how these
can be used to model type theories and logics, especially logics to reason
about computability. The thesis consists of two parts

Part I A General Notion of Realizability

Part II Local Realizability Toposes and a Modal Logic for Computability

The two parts can be read independently — at the end of this introduction
we give a more detailed overview of the dependence of the individual chap-
ters. We now describe the background for our work and overview the results
obtained.

1.1 A General Notion of Realizability

Realizability has been used successfully to give models of various logics and
type theories in logic and computer science, see, e.g., [Tro98, Hyl82, Lon94,
vO99, BCRS98] for many recent references. Typically, the realizers are
drawn from some untyped universe, which provides a model of untyped
computation for realizers. Examples of such universes of realizers include the
natural numbers with Kleene application and models of the untyped lambda
calculus (including term models); more generally, any partial combinatory
algebra (PCA).

In December 1996, Dana Scott defined the category Equ of equilogical
spaces and showed that it forms a cartesian closed category. In Equ ob-
jects are topological T0-spaces with arbitrary equivalence relations on them
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2 Introduction

and morphisms are equivalence classes of equivalence preserving continuous
functions. Scott also gave an equivalent presentation of the category Equ,
namely as partial equivalence relations over the category of algebraic lat-
tices. The category Equ is of interest from a computer science perspective
since it contains many subcategories of domains (as used in denotational
semantics).

In my study of the category Equ, I observed that it was advantageous
to think of the setup as a generalized form of realizability, where we think of
the category of algebraic lattices as providing a typed model of computation
for realizers. Indeed, in a joint paper with Bauer and Scott [BBS98] we show
how Equ provides a model of dependent type theory, proceeding by analogy
to models constructed over PCA’s.

In this thesis we make the analogy precise and suggest a common general
framework of which both the model in [BBS98] and also models based on
PCA’s are instances. Our general notion of realizability is embodied in the
definition of a weakly closed partial cartesian category (WCPC-category),
which is just a weak version of a partial cartesian closed category [RR88].
We prove a couple of results concerning realizability over WCPC-categories;
in particular, we characterize when a WCPC-category gives rise to a topos
(in a certain way).

We then show how to construct categories of so-called assemblies and
modest sets (partial equivalence relations) over any WCPC-category — in
the case where the WCPC-category is obtained from a PCA, these categories
are the usual categories of assemblies and modest sets over a PCA.

The main results are that the categories of assemblies and modest sets
both provide split models of dependent type theory and that they also model
a dependent predicate logic with which one can reason about the types and
terms in the dependent type theory.

As a consequence, we conclude that Equ models dependent predicate
logic over dependent type theory. In Appendix A we present this model by
writing out explicitly what the interpretation of the calculus is.

1.2 Local Realizability Toposes and a Modal Logic
for Computability

In the second part of the thesis we consider a relative notion of computability,
developed via realizability. We now describe the motivation for this work,
the approach we take, and then give an overview of our results.
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1.2.1 Background and Motivation

Suppose we wish to design a new programming language, or extend an ex-
isting one, with a richer collection of basic types than is usually found in
existing programming languages. For example, we might want to have a type
of real numbers (with arbitrary precision) as a basic type, with associated
basic operations. Such types contain elements which are not computable
since the types contain uncountably many elements. However, it still makes
sense to consider computable operations on such not necessarily computable
data types. For instance, the addition of real numbers can be implemented
by a computable operation and work correctly also for non-computable real
numbers. Of course, we will only want to add to our programming lan-
guage those operations that are computable, not the rest. To help us decide
which types and which operations it makes sense to consider adding to a
programming language, we then seek a framework in which we can study
computable operations operating on not necessarily computable data types.
At the same time, we are naturally interested in a framework with a rich col-
lection of types and with an accompanying logic to reason about the types.
We remark that even if one is not interested in programming languages, it
is certainly of fundamental interest to have a framework in which to study
computability of operations on a wider collection of types than the usual
ones.

Scott had the idea that we can consider the usual category PER(P) of
partial equivalence relations over the graph model P of the lambda calculus
and then ask, for a morphism f , whether it is computable by asking whether
it is represented by a member of the sub-PCA RE , the recursively enumer-
able graph model. This idea is a good step in the right direction since the
category of partial equivalence relations over P contains a wide collection of
standard mathematical spaces (the category of countably-based T0-spaces
is a full subcategory) and, moreover, asking whether a morphism is com-
putable by asking whether it is represented by a recursively enumerable set
is surely a sensible notion of computable. Indeed, one can define a subcat-
egory PER(P, RE) of PER(P) which is full-on-objects and which only has
computable morphisms, and this category provides an example of a suitable
framework in which to study computable operations on not necessarily com-
putable data. To obtain an expressive logic to reason about the objects and
morphisms in PER(P,RE ), it would be advantageous if this category was
a full subcategory of a topos. It is a consequence of my results that this is
indeed the case.

Scott also suggested that one can obtain a model of modal logic in the
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realizability style for reasoning about computability. The idea is to have
an extra logical operation ] on formulas ϕ, with formulas ϕ interpreted
by subsets ϕ of P and with the formula ]ϕ realized by ϕ ∩ RE , i.e., by
computable realizers. Scott showed that ], interpreted in this way, satisfies
the formal laws for the box operator from S4. It is a consequence of my
results that this modal logic may be extended from the propositional case
to predicate logic over a wide collection of types such that it can be used
to reason about computability of operations operating on not necessarily
computable data.

1.2.2 Approach and Overview of Results

Generalizing the ideas described above a bit, we are considering a situation
where we have a PCA A, which we think of as the set of continuous realizers,
with a sub-PCA A] ⊆ A, which we think of as the computable realizers.
There are many other examples besides P and RE ; we describe others later
on.

Given A and A] we consider the standard realizability toposes RT(A)
and RT(A]) [HJP80]. Very roughly speaking, we think of RT(A) as hav-
ing continuous objects and continuous morphisms, and of RT(A]) as having
computable objects and computable morphisms. We then identify a third
category RT(A,A]), which roughly speaking represents the world of con-
tinuous objects and computable morphisms. This category RT(A,A]) is a
topos, the relative realizability topos on A with respect to the subalgebra
A].

The toposes RT(A) and RT(A]) are not particularly well-related by
themselves; one of the purposes of the relative realizability topos RT(A,A])
is to remedy this defect. We show that the three toposes are related to each
other as indicated in the following diagram, in which the three functors on
the left leg constitute a so-called local geometric morphism, while the right
leg is a logical morphism (a filter-quotient).

RT(A,A])

{{wwwwwww

##FFFFFFF

RT(A])

;;wwwwwww
;;wwwwwww

RT(A)

Moreover, we show that the local geometric morphism is in fact localic, that
is, RT(A,A]) is a localic topos over RT(A]).

We thus obtain an understanding of the basic categorical relationship
between the three toposes. Since we are chiefly interested in computable
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morphisms, we then seek to get a deeper understanding of the relationship
between the internal logics of the two toposes RT(A,A]) and RT(A]). We
do so by axiomatizing (parts of) the relationship between RT(A,A]) and
RT(A]). The goal is to put axioms of one of the two toposes such that,
given those axioms, one can reconstruct the other topos and the local map
between them. The idea is, of course, that such an axiomatization can
help in obtaining the better understanding of the relationship between the
internal logics we seek.

To make our axiomatization applicable to other examples of local maps
(and also to avoid having to make too many detailed and complicated con-
crete calculations with realizability toposes) we in fact give an elementary
axiomatization of arbitrary local maps of toposes. Afterwards, we then in-
stantiate our general theory to our particular relative realizability case.

Thus we suggest axioms on a topos E equipped with a Lawvere-Tierney
topology j, such that if E and j satisfies these axioms, then we can construct
a topos F and show that there is a local geometric morphism from E to F .
In our approach, E corresponds to RT(A,A]) and F corresponds to RT(A]).
This approach may be a little bit surprising: it is not based on assuming the
existence of an internal locale in a topos, corresponding to RT(A]), and then
putting axioms on that locale. One advantage of taking the point of view
that we take here, that is, the viewpoint corresponding to that of RT(A,A]),
is that our axiomatization will be more general and not only apply to localic
local maps but to arbitrary local maps. In a sense, our approach may be
seen as analogous to the approach taken in synthetic domain theory (SDT).
In SDT a category of domains is singled out abstractly as a full subcategory
of a category of general sets. Here we are taking the category RT(A,A])
with continuous objects and computable morphisms as given and we are
abstractly singling out a full subcategory of “computable objects,” namely
RT(A]). The main result is that our axioms for local maps are sound and
complete in the sense that, if the axioms are satisfied, then we indeed get
a local map (completeness) and, conversely, given a local map, the axioms
are indeed satisfied (soundness).

Based on the axiomatic work, we describe, for any local map E → F ,
the connection between the internal logics of E and F . Moreover, we derive
a modal logic for local maps, which can be used to reason further about the
relationship between E and F .

Since our original example local map is in fact localic, we then specialize
our study of the relationships between the internal logics to the case of localic
local maps. We show how the modal logic in this case can be phrased in
terms of operations on an internal locale. The internal locale is local in a
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obvious sense which we describe in Chapter 9. Moreover, we define a notion
of local tripos and show that any local tripos gives rise to a localic local
map of toposes and that any localic local maps of toposes arise from a local
tripos. The approach using local triposes has the advantage over internal
locales that it can be easier to recognize a local tripos than a local internal
locale, as explained in Chapter 9.

After the abstract study of local maps of toposes and their internal logic,
we return to the relative realizability model and show how the modal logic
is interpreted there. It turns out that it indeed is a generalization of Scott’s
original idea of a modal logic for computability mentioned in the previ-
ous section. Moreover, we show that the local geometric morphism from
RT(A,A]) to RT(A]) is not open. This result can be seen as partly justi-
fying our choice of axiomatizing local maps and not some smaller class of
maps of toposes. We also describe how some of the standard results for
realizability toposes concerning the double-negation topology work out in
RT(A,A]), and we show that RT(A,A]) can also be described as the exact
completion of a suitable category of partitioned assemblies.

Our work forms part of the research of the Logics of Types and Compu-
tation group at Carnegie Mellon University [SAB+]. Indeed we see our work
as providing a foundation for more concrete studies of the notion of relative
computability. Here we thus stick to the abstract level of a PCA A with a
sub-algebra A] and only occasionally consider more concrete examples. In
his forthcoming Ph.D.-thesis [Bau00], Andrej Bauer considers the notion of
relative computability in the case of A = P and A] = RE .

1.2.3 Historical Remarks

I learned about Scott’s suggestion of the category of PER’s over P as a suit-
able category for studying computable operations on not necessarily com-
putable data in 1997. Scott’s idea of a modal operator for computability
is from January 1998. We learned about the topos RT(A,A]) in February
1998 from Thomas Streicher, who suggested it as a suitable framework for
studying computable analysis. A couple of months later, however, Martin
Hyland was kind enough to let us know that the construction of the topos
RT(A,A]) has in fact been known for a long time [Pit81, Page 15, item (ii)].
Martin Hyland suggested me to show that RT(A,A]) is localic over RT(A])
(Hyland new this was the case, see the comments to Theorem 5.4.8) and
also to try to axiomatize the local map from RT(A,A]) to RT(A]). The
elementary axiomatization of local maps was carried out jointly with Steven
Awodey and some of the results of Part II of the thesis have been published
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in our joint paper with Awodey and Scott [ABS99].

1.3 Synopsis

The essential dependencies of the various chapters is outlined in the follow-
ing diagram (the dotted arrow means that Chapter 6 is the motivation for
Chapter 7, but mathematically Chapter 7 does not depend on Chapter 6).
Part I consists of Chapters 3–4 and Appendix A and Part II consists of
Chapters 5–10, as indicated by the dotted boxes. Note that Chapters 7–9
can be read independently of the rest of Part II.

1. Introduction
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and Categorical Logic
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9. Logic and
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10. More on the
Relative Realizability

Topos RT(A,A])
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11. Conclusion and
Future Work

We now outline the content of the remaining chapters.
In Chapter 2 we recall some of the basic theory of fibrations and cate-

gorical logic, which we make use of in the remainder of the thesis.
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In Chapter 3 we begin by recalling some of the theory of categories
of partial maps [RR88]. Based on this theory we define the notion of
a WCPC-category. We define a notion of pretripos and show that every
WCPC-category gives rise to a pretripos, which can then be used to define
categories of so-called assemblies and modest sets over the WCPC-category.
We prove that the categories of assemblies and modest sets provide split
models of dependent type theory. In the section on realizability pretriposes
and universal objects we characterize when a WCPC-category gives rise to
a topos and we describe how some of the constructions used in Part I are
related to constructions used in Part II of the thesis.

In Chapter 4 we extend the results of the previous chapter by showing
that the categories of assemblies and modest sets over a WCPC-category
provide models of dependent predicate logic. We also show how to model
subset and quotient types.

In Chapter 5 we recall some of the theory of triposes, which we shall
make use of in the subsequent chapters. We also include a couple of results
on triposes, which apparently have not been published before, see Proposi-
tion 5.4.7 and Theorem 5.4.8. We recall how the standard realizability tripos
over a PCA is defined. Furthermore, we recall the definition of what we term
the relative realizability tripos over a PCA A with respect to a sub-PCA A].

In Chapter 6 we study the relationship between RT(A,A]), RT(A]),
and RT(A). We prove that there is a localic local geometric morphism from
RT(A,A]) to RT(A]) (Theorem 6.2.3) and show, using results of Pitts, that
RT(A) is a filter-quotient of RT(A,A]) (Section 6.1).

In Chapter 7 we present an elementary axiomatization of local maps
of toposes. We recall the definition of a general local map from [Law86,
Law89, JM89]. We give an overview of our approach to the axiomatization
in Section 7.2 — the approach is based on results of Kelly and Lawvere
concerning orthogonal and coorthogonal subcategories and essential local-
izations of toposes [KL89] — and then proceed to present the axioms after
developing a couple of needed definitions and properties. We show that
the axioms are sound and complete in a suitable sense (Theorems 7.3.41
and 7.3.44).

In Chapter 8 we study the relationship between the internal logics
of two toposes connected via a local map. In doing so we make use of
our axiomatic study from the previous chapter, and we extend, in a way,
Lawvere’s picture of a local map as an adjoint cylinder (see Chapter 7) to
also cover the internal logics. Moreover, we describe a modal logic for local
maps. One can think of this modal logic as the internal logic of the given
local map. We include a couple of examples of applications of the modal
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logic.
In Chapter 9 we specialize the treatment of the previous chapter to

localic local maps. Two additional points of view arise from the assumption
that the local map is localic. First we take the point of view of tripos theory
and show that the modal logic resulting from the localic local map is just
a particular case of tripos logic. We define a notion of local tripos and
show that any local tripos gives rise to a localic local map of toposes and,
moreover, that any localic local map of toposes comes from a local tripos.
The actual tripos that results from a localic local map is naturally one given
on an internal locale (complete Heyting algebra). Thus we next take the
point of view of internal locale theory and describe the modal operators as
certain easily given internal maps on an internal locale. We further observe
that a substantial part of the modal logic follows from very weak assumptions
(whenever one has an internal locale in some topos).

In Chapter 10 we then finally return to the relative realizability topos
RT(A,A]). We show how the abstract definitions used in the axiomatic
treatment of local maps are instantiated in RT(A,A]). Moreover, we show
how the modal logic for localic local maps is interpreted via the local map
from RT(A,A]) to RT(A]). We show that the local map from RT(A,A]) to
RT(A]) is not open (so does not preserve all of first-order logic). We also
use the chapter to collect some other specific results regarding RT(A,A]),
including a treatment of the double-negation topology and the fact that
RT(A,A]) can be seen as an exact completion. Most of these results are
simply obtained by verifying that known results for standard realizability
toposes can be carried over to the relative realizability setting.

In Chapter 11 we finally conclude and present some suggestions for
future work.

1.4 Prerequisites and Guidelines

We assume familiarity with basic category theory as in [Mac71]. Some ac-
quaintance with dependent type theory, (intuitionistic) logic, and categor-
ical logic will also be useful. For the second part of the thesis we further
assume familiarity with basic topos theory [MM92, Joh77] (for the most
part, [MM92] suffices) and with (internal) locales / complete Heyting alge-
bras [FS79, Joh82].

Some of the chapter introductions will require more background than the
chapter itself; that is, various notions used in the introduction of a chapter
will be recalled and defined in the chapter itself. In the beginning of the
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thesis we will spell out more details than we will towards the end. We
should also mention that we do not always refer to the original source of
some result; in particular, for background material we seek to refer to easily
accessible material. Finally, when we recall standard preliminary material
(in particular, in Chapters 2 and 5 and in Section 3.6.1) we state at the
beginning of the relevant chapter/section which sources we use; we do not
explicitly mark every single recalled definition or result as such.



Chapter 2

Preliminaries on Fibrations
and Categorical Logic

In this chapter we recall some background material on fibrations and cat-
egorical logic which we use in the sequel. In Section 2.1 we describe our
notational conventions for basic category theory and logic. In Section 2.2
we recall the basic definitions and results from fibred category theory that
we shall need. Furthermore, we give a very rough sketch of how logics
can be interpreted in suitable fibrations and recall a categorical descrip-
tion of logic. Our presentation is based very closely on [Jac99] to which
the reader is referred to for further background and details. There are
several other good introductory sources on fibrations and categorical logic
besides [Jac99], see, e.g., [Bén85, Bor94b, Pho93] for material on fibrations
and [Her93, Pav90, Tay86, Tay99, Pho93, Cro93] for categorical models of
type theory and logic in fibred and indexed categories.

Readers familiar with fibrations and categorical logic as in [Jac99] may
skip this chapter.

2.1 Notational Preliminaries

In this section we describe our notational conventions for category theory
and logic. We follow [Jac99].

2.1.1 Category Theory

Arbitrary categories are written as A, B, C, . . . in open face. Arbitrary
toposes are written as E , F , . . . in calligraphy. Specific categories, like Set,

11
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are written in bold face. We generally use capital letters for objects and
write X ∈ C to express that X is an object of C. We generally use lower
case letters for morphisms (also called maps, or arrows) of a category. The
homset C(X,Y ) is the collection of morphisms from X to Y in a category
C. Unless otherwise stated, categories are assumed to be locally small, that
is, with C(X,Y ) a set (not a proper class), for all objects X and Y in C.
We also sometimes write HomC(X,Y ) for C(X,Y ). The notations f : X →

Y and X
f //Y are also used for f ∈ C(X,Y ). We write X � Y for

monomorphisms and X � Y for epimorphisms. The opposite of a category
C is written Cop and equivalence of categories A and B is written A ' B.

The identity morphism on an object X is written idX or simply id .
Composition of morphisms f : X → Y and g : Y → Z is written g ◦ f
or simply gf . A natural transformation between functors F,G : A → B is
written with a double arrow as α : F ⇒ G. We generally use 1 for a terminal
object. Binary products are written X×Y with projections π : X×Y → X
and π′ : X × Y → Y and tuples 〈f, g〉 : Z → X × Y for f : Z → X and
g : Z → Y . We often write δ or δ(X) or δX for the diagonal 〈id , id〉 : X →
X×X, and δ or δ(I,X) for the “parameterized diagonal” 〈id , π′〉 : I×X →
(I×X)×X, which duplicates X, with parameter I. The exponent object of
objects X and Y is Y X or X ⇒ Y , and the corresponding evaluation map
is written Ev: Y X ×X → Y . Abstractions are written Λ(f) : Z → Y X for
f : Z ×X → Y .

An initial object is usually denoted 0. For binary coproducts we write
X + Y with coprojections κ : X → X + Y and κ′ : Y → X + Y and cotuples
[f, g] : X + Y → Z where f : X → Z and g : Y → Z.

For functors F and G in an adjunction F a G (F left adjoint to G),
the natural isomorphism B(FX, Y ) ∼= A(X,GY ) is often written as a bijec-
tive correspondence between morphisms f : FX → Y and g : X → GY via
double lines:

FX
f //Y

=========
X g

//GY

The transpose of f : FX → Y is often written as f̂ : X → GY and the
transpose of g : X → GY is often written as ǧ : FX → Y .

For the rest we follow usual categorical notation, as in the standard
reference [Mac71].



2.2 Preliminaries on Fibrations and Categorical Logic 13

2.1.2 Logic

We standardly use many-typed (= many-sorted) logic and we do not restrict
ourselves to logic over simple type theory, but also allow logics over depen-
dent type theory. Contexts of variable declarations will be written explicitly
at all times, e.g., we write

n : N | n+ 5 = 7 ` n = 2

for a logical entailment. Here | is used to separate the type theoretic context
n : N from the logical context n + 5 = 7. The reason for carrying along
these contexts comes from their important categorical rôle as indices (in the
fibrational terminology, the context indicates in which fibre we are).

We write ⊥ for falsum (falsehood), ∨ for disjunction, > for truth, ∧ for
conjunction, and ⊃ for implication. Negation ¬ will be defined as ¬ϕ ≡
ϕ ⊃ ⊥. Existential and universal quantification will be written in typed
form ∃x : σ. ϕ and ∀x : σ. ϕ. All these proposition formers will be used with
their standard rules. Higher-order logic will be described via a distinguished
(constant) type Prop : Type, which enables quantification over propositions,
as in ∀α : Prop. ϕ.

Unless otherwise mentioned, logics will always be intuitionistic.

2.2 Preliminaries on Fibrations and Categorical
Logic

2.2.1 Fibrations

Let p : E→ B be a functor. For an object I ∈ B, the fibre or fibre category
EI over I is the category with

objects X ∈ E for which pX = I.

morphisms X → Y in EI are morphisms f : X → Y in E for which
pf = id I .

An object X ∈ E satisfying pX = I is said to be above I; similarly, a
morphism f in E with pf = u is said to be above u. A morphism in E is
said to be vertical if it is above some identity morphism in B. For X,Y ∈ E
and u : pX → pY in B, we sometimes write

Eu(X,Y ) = { f : X → Y in E | f is above u } ⊆ E(X,Y ).
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Definition 2.2.1. Let p : E→ B be a functor.

1. A morphism f : X → Y is cartesian over u : I → J if pf = u and if
every g : Z → Y in E for which one has pg = u◦w for some w : pZ → I,
uniquely determines an h : Z → X in E above w with f ◦ h = g. In a
diagram:

Z
g

''PPPPPPPPPPPPPPP

h   @
@

@
@

X
f
// Y

in E

pZ
pg

''OOOOOOOOOOOOOO

w
��@@@@@@@@

I u
// J

in B.

Since a morphism f : X → Y can only be cartesian over its underlying
map pf in B, we just call f cartesian if this is the case.

2. The functor p : E → B is a fibration if for every Y ∈ E and u : I →
pY in B, there is a cartesian morphism f : X → Y in E above u.
Sometimes a fibration will be called a fibred category or a category
(fibred) over B.

We often write
E

p
��
B

for a fibration p : E → B and refer to E as the total

category and to B as the base category. When the functor p is clear from

context, we often simply write
E

��
B

(pronounced “E over B”).

We often say that a cartesian morphism f : X → Y over u : I → pY is
a cartesian lifting of u. Cartesian liftings are unique up-to-isomorphism:
if f and f ′ are both cartesian over the same map, then there is a unique
vertical isomorphism ϕ with f ′ ◦ϕ = f (indeed we have that B/J(p(−), u) ∼=
E/Y (−, f)).

We write B→ for the arrow category of B with

objects morphisms ϕ : X → I in B.
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morphisms (ϕ : X → I) → (ψ : Y → J) are pairs of morphisms (u, f)
with u : I → J and f : X → Y for which the diagram

X
f //

ϕ

��

Y

ψ
��

I u
// J

commutes.

We write cod: B→ → B for the codomain functor. As the reader can verify,
the functor cod is a fibration if and only if B has pullbacks. We refer to
it as the codomain fibration on B. The fibre category over I is the slice
category B/I and cartesian morphisms in B→ coincide with pullback squares
in B.

We write Mono (B) for the full subcategory of B→ on the objects ϕ : X →
I which are monomorphisms in B. If B has pullbacks, then the restricted

codomain functor
Mono (B)

��
B

is again a fibration since the pullback of a monomor-

phism is a monomorphism. Note that all the fibres of Mono (B) are pre-
ordered categories. Such a fibration for which all the fibres are preorders,
will be called a fibred preorder.

We write Sub(B) for the category obtained from Mono (B) by taking

subobjects as objects. If B has pullbacks,
Sub(B)

��
B

is referred to as the fibra-

tion of subobjects or the subobject fibration of B. The fibres Sub(I)
over objects I ∈ B are partial orders.

Cloven and Split Fibrations

Let
E

p
��
B

be a fibration. Then for each u : I → J in the base B and each X ∈ E

above J , there is a cartesian lifting • → X. Assume now that we choose for
each such u a specific cartesian lifting and write it as

u(X) : u∗(X)→ X.

Having made such choices, every map u : I → J in B determines a functor
u∗ : EJ → EI . For an object X ∈ EJ , one takes u∗(X) to be the domain
of the chosen cartesian lifting u(X) : u∗(X) → X. For a map f : X → Y
in EJ , one takes u∗(f) to be the unique map from u∗(X) to u∗(Y ) with
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u(Y ) ◦ u∗(f) = f ◦ u(X). Such functors u∗ are referred to as reindexing
functors, substitution functors , relabelling functors , or sometimes
also as change-of-base functors or pullback functors . We mostly use
the first two names.

For two composable morphisms

I
u // J

v // K

in B, in general one does not have equality u∗v∗ = (v◦u)∗ but only a natural
isomorphism

u∗v∗ ⇒ (v ◦ u)∗. (2.1)

Likewise, there are natural isomorphisms

id ⇒ (id)∗. (2.2)

These natural transformations satisfy certain coherence conditions, but we
shall not go into that here [Jac99].

Definition 2.2.2.

1. A fibration is called cloven if it comes equipped with a cleavage,
that is, with a choice of cartesian liftings. This cleavage then induces
substitution functors u∗ between the fibres, as above.

2. A fibration is called split if the induced substitution functors are such
that the canonical natural transformations in (2.1) and (2.2) are iden-
tities:

id = (id)∗ and u∗v∗ = (v ◦ u)∗.

The cleavage involved is then often called a splitting.

If B is a category with chosen pullbacks, then the codomain fibration on
B is cloven, but in general it is not split. The subobject fibration, on the
other hand, is trivially split since the fibres are partial orders. We shall see
more examples of split fibrations in Chapter 3.

Indexed Categories

Definition 2.2.3.
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1. A B-indexed category is a pseudo functor Ψ: Bop → Cat. It
consists of a mapping which assigns to each object I ∈ B a category
Ψ(I) and to each morphism u : I → J a functor Ψ(u) : Ψ(J) → Ψ(I),
often simply denoted u∗ when no confusion arises. Additionally, a
pseudo-functor involves natural isomorphisms

ηI : id ⇒ (id I)∗ for I ∈ B
µu,v : u∗v∗ ⇒ (v ◦ u)∗ for I u //J

v //K in B

which satisfy the coherence conditions:

u∗

ηIu
∗

{{wwwwwwwwwww
u∗ηJ

##GGGGGGGGGGG

(id I)∗u∗ µidI ,u

// u∗ u∗(idJ)∗µu,idJ
oo

for I u //J

u∗v∗w∗
u∗µv,w //

µu,vw∗

��

u∗(w ◦ v)∗

µu,w◦v

��
(v ◦ u)∗w∗ µv◦u,w

// (w ◦ v ◦ u)∗

for I u //J
v //K

w //L

2. A split (also called strict) B-indexed category is just a functor
Ψ: Bop → Cat; it is an indexed category for which the η’s and µ’s in
item 1 are identities.

Proposition 2.2.4. Let
E

p
��
B

be a fibration with a cleavage. The assignment

I 7→ EI and u 7→ (the substitution functor u∗)

determines a B-indexed category. This indexed category is split whenever
the cleavage of p is a splitting.

Definition 2.2.5 (Grothendieck construction). Let Ψ: Bop → Cat be
an indexed category. The Grothendieck completion

∫
B

Ψ (or simply
∫

Ψ)
of Ψ is the category with

objects (I,X) where I ∈ B and X ∈ Ψ(I).

morphisms (I,X) → (J, Y ) are pairs (u, f) with u : I → J in B and
f : X → u∗(Y ) = Ψ(u)(Y ) in Ψ(I).
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Composition and identities in
∫

Ψ involve the isomorphisms η and µ from
Definition 2.2.3. The identity on (I,X) is the pair (id , ηI(X)), where

ηI : idΨ(I) ⇒ (id I)∗.

And composition in
∫

Ψ of

(I,X)
(u,f) // (J, Y )

(v,g) // (K,Z)

is defined as
I

u // J
v // K

X
f

// u∗(Y )
u∗(g)

// u∗v∗(Z)
∼=

µu,v(Z)
// (v ◦ u)∗(Z)

The required equalities for identity and composition follow from the coher-
ence diagrams in Definition 2.2.3. In fact, these conditions capture precisely
what is required for

∫
Ψ to be a category.

Proposition 2.2.6. Let Ψ: Bop → Cat be a B-indexed category.

1. The first projection

∫
Ψ

��
B

is a cloven fibration. It is split whenever Ψ is

split.

2. Turning a cloven fibration into an indexed category (as in Proposi-
tion 2.2.4) and then again into a fibration yields a fibration which is
equivalent to the original one.

3. Moreover, turning an indexed category first into a fibration and then
into an indexed category yields a result which is “essentially the same”
as the original (in a sense which can be made precise).

Change-of-base for Fibrations

Lemma 2.2.7. Let
E

p
��
B

be a fibration and let K : A→ B be a functor. Form

the pullback in Cat

A ×B E //

K∗(p)

��

E

p

��
A

K
//
B.
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In this situation, the functor K∗(p) is also a fibration. It is cloven or split
in case p is cloven or split.

Here we are using ordinary pullbacks of categories: A ×B E has pairs
(I ∈ A, X ∈ E) with KI = pX as objects.

Proof. Given an object (J, Y ) ∈ A ×B E and a morphism u : I → J in A, let
f : X → Y be the cartesian lifting of Ku : KI → KJ in B. The pair (u, f)
is then K∗(p)-cartesian over u.

Categories of Fibrations

Let
E

p
��
B

and
D

q
��
B

be two fibrations over B. A fibred functor from p to q is

a functor H : E→ D such that the diagram

E

p
��???????
H //

D

q
���������

B

commutes and, moreover, such that H preserves cartesian morphisms.
Fibrations over B and fibred functors among such constitute a 2-category

Fib(B) with 2-cells natural transformations τ between fibred functors for
which every component of τ is vertical.

A fibred functor among split fibrations over B is split if it is preserves
the splitting on-the-nose.

If H : E → D is a fibred or split fibred functor as above, then for each
object I ∈ B, one obtains by restriction a functor HI : EI → DI between the
fibres over I. For u : I → J in B, writing u∗ for the reindexing functor EJ →
EI and u] for the reindexing functor DJ → DI , one has that u]HJ

∼= HIu
∗.

Fibrewise Structure and Fibred Adjunctions

Definition 2.2.8. Let � be some categorical property or structure (e.g.,
some limit, colimit, or exponent).

1. We say a fibration has fibred �’s or fibrewise �’s if all fibre categories
have �’s and reindexing functors preserve �’s. A split fibration has
split fibred �’s if all fibres have chosen �’s and the reindexing functors
induced by the splitting preserve �’s on-the-nose.
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2. A fibred functor H from
E

p
��
B

to
D

q
��
B

preserves �’s if for each I ∈ B the

functor HI preserves �’s. For the split version, one requires preserva-
tion on-the-nose.

For example, for a category B with finite limits, the codomain fibration
B
→

��
B

always has fibred finite limits. The subobject fibration on such B has

split fibred finite limits. A category B is locally cartesian closed (i.e., all
slices are cartesian closed) if and only if the codomain fibration on B is fibred
cartesian closed (i.e., has fibred finite products and exponents).

The following definition and the following three lemmas express that a
fibred categorical notion is a property of all fibres, preserved by reindexing.

Definition 2.2.9.

1. An adjunction between fibrations over the same base B is an adjunction

in the 2-category Fib(B). Explicitly, let
E

p
��
B

and
D

q
��
B

be fibrations over

B. Then a fibred adjunction over B is given by fibred functors F ,
G as in

E

p
��???????

F
++
D

q
���������

G

kk

B

together with vertical natural transformations

η : idE ⇒ GF and ε : FG⇒ idD

satisfying the usual triangular identities Gε◦ηG = id and εF ◦Fη = id .

2. A split fibred adjunction over B between split fibrations p and q
consists of a fibred adjunction as above for which the functors F and
G are split.

Lemma 2.2.10. A fibration
E

p
��
B

has a fibred terminal object if and only if

the unique morphism from p to the terminal object in Fib(B) has a fibred
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right adjoint, say 1, as in

E

!=p
++

p
  @@@@@@@@ ⊥ B

1

kk

idB~~~~~~~~~~

B.

Lemma 2.2.11. Let
E

p
��
B

and
D

q
��
B

be fibrations over B and let H : E→ D be

a fibred functor from p to q. Then H has a fibred left (resp. right) adjoint
iff both

1. For each object I ∈ B, the functor HI : EI → DI has a left (resp. right)
adjoint K(I).

2. The Beck-Chevalley condition holds, i.e., for every map u : I → J
in B and for every pair of reindexing functors

EJ
u∗ // EI DJ

u] // DI

the canonical natural transformation1

K(I)u] ⇒ u∗K(J) (resp. u∗K(J)⇒ K(I)u])

is an isomorphism.

Lemma 2.2.12. Let
E

p
��
B

and
D

q
��
B

be split fibrations over B and let H : E→ D

be a split fibred functor. Then H has a split fibred left (resp. right) adjoint
iff both items 1 and 2 in the previous lemma hold, but in item 2 with the
canonical map being an identity.

Two fibrations
E

p
��
B

and
D

q
��
B

over the same base B are equivalent if there

are fibred functors F : E → D and G : D → E over B with vertical natural
isomorphisms GF ∼= idE and FG ∼= idD.

1 Obtained as the transpose of u]X
u]η //u]HJKJX ∼= HI(u

∗KJX) across the adjunc-
tion K(I) a HI . In the sequel we do not write out explicitly how such canonical natural
transformations are obtained.
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Fibred Products and Coproducts

Definition 2.2.13. Let B be a category with cartesian products and let
E

p
��
B

be a fibration. We say that p has simple products (resp. simple

coproducts) if both

• for every pair of objects I, J ∈ B, every “weakening functor”

EI

π∗I,J // EI×J

induced by the projection πI,J : I × J → I, has a right adjoint
∏

(I,J)

(resp. a left adjoint
∐

(I,J)).

• the Beck-Chevalley condition holds: for every u : K → I in B and
J ∈ B in the diagram

EI
u∗ //

π∗I,J
��

EK

π∗K,J
��

EI×J

UU

(u×id)∗
// EK×J

UU

the canonical natural transformation

u∗
∏

(I,J) ⇒
∏

(K,J)(u× id)∗

(resp.
∐

(K,J)(u× id)∗ ⇒ u∗
∐

(I,J))

is an isomorphism.

Definition 2.2.14. Let B be a category with pullbacks and let
E

p
��
B

be a

fibration. We say that p has products (resp. coproducts) if both

• for every morphism u : I → J , every substitution functor u∗ has a
right adjoint

∏
u (resp. left adjoint

∐
u)

• the Beck-Chevalley condition holds: for every pullback in B of the
form

K
v //

r

��

L

s

��
I u

// J
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the canonical natural transformation

s∗
∏
u ⇒

∏
v r
∗ (resp.

∐
v r
∗ ⇒ s∗

∐
u)

is an isomorphism.

Clearly, if a fibration has products (resp. coproducts), then it also has
simple products (resp. coproducts).

A split fibration has split (simple) products (resp. split (simple)
coproducts if it has (simple) products and the isomorphism mentioned in
the Beck-Chevalley condition is an identity (for the adjoints to the reindexing
functors induced by the splitting).

Remark 2.2.15. The Beck-Chevalley condition in the definition of (simple)
products comes from the fact that (simple) products are an instance of fibred
adjunctions [Her93], which, by Lemma 2.2.11, are described equivalently via
adjunctions among the fibres and a Beck-Chevalley condition.

Lemma 2.2.16. Consider a fibration for which each reindexing functor has
both a left

∐
and a right adjoint

∏
. Then Beck-Chevalley holds for coprod-

ucts
∐

iff it holds for products
∏

.

For a category B with finite limits, the codomain fibration
B
→

��
B

on B has

1. coproducts
∐
u given by composition:

∐
u(ϕ : Y → J) = ϕ ◦ u

2. simple products
∏

(I,J) iff B is cartesian closed

3. products
∏
u iff B is locally cartesian closed.

Definition 2.2.17. A fibration is called complete if it has products
∏
u

and fibred finite limits. Dually, a fibration is cocomplete if it has coprod-
ucts

∐
u and fibred finite colimits.

The following lemma will be used in the categorical description of logics
and type theories. In logic it corresponds to the equivalence of ∃x : σ. (ϕ ∧
ψ(x)) and ϕ ∧ ∃x : σ. ψ(x), if x does not occur free in ϕ.

Lemma 2.2.18. Let
E

p
��
B

be a fibred cartesian closed category.
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1. Suppose p has simple coproducts. For each pair of objects I, J ∈ B and
each pair of objects Y ∈ EI , Z ∈ EI×J , the canonical morphism (the
Frobenius map)∐

(I,J)(π
∗
I,J(Y )× Z) // Y ×

∐
(I,J)(Z)

is an isomorphism.

2. Suppose now p has coproducts. Then for each u : I → J in B, Y ∈ EJ
and Z ∈ EI , the canonical morphism (the Frobenius map)∐

u(u∗(Y )× Z) // Y ×
∐
u(Z)

is an isomorphism.

Even if there are no fibred exponents around, the Frobenius map can still
be an isomorphism. In that case we shall speak of (simple) coproducts
with the Frobenius property, or of (simple) coproducts satisfying
Frobenius.

2.2.2 Categorical Logic

In the sequel we shall make use of fibrations and indexed categories to de-
scribe models of logics and type theories. Moreover, we shall often assume
given a fibration with certain properties, and then use its internal logic to
make new constructions and prove properties.

An interpretation of a logical theory in a given fibration is formally
defined by a kind of functorial semantics, namely as a morphism of fibra-
tions from a certain classifying fibration of the logic to the given fibration.
See [Jac99] for a precise detailed treatment. Here we just sketch the general
idea and include a description of fibred equality.

The general idea for interpreting many-sorted logic in a fibration
E

p
��
B

is

as follows. Types and terms are interpreted as objects and morphisms in the
base category. Contexts Γ are interpreted as objects I of the base category
(e.g., as the product of all the types of the variables in the context). A
formula Γ ` ϕ : Prop in context Γ is interpreted as an object in EI , the fibre
over the object I interpreting the context Γ. Substitution of a term in a
formula is interpreted by reindexing the interpretation of the formula along
the map in the base interpreting the term. Thus, if we have a formula

x : σ ` ϕ : Prop
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and a term

Γ `M : σ

with

• Γ interpreted by I

• σ interpreted by J

• x : σ ` ϕ : Prop interpreted by X ∈ EJ

• Γ `M : σ interpreted by a morphism m : I → J

then the formula ϕ with M substituted for x, that is,

Γ ` ϕ[M/x] : Prop

is interpreted by m∗(X) in the fibre over I.
When Γ, x : σ ` ϕ : Prop is a formula, and Γ ` M : σ is a term, we

sometimes simply write Γ ` ϕ(M) : Prop for Γ ` ϕ[M/x] : Prop.
Entailment Γ | ϕ ` ψ is interpreted as the existence of an arrow from

the interpretation of ϕ to the interpretation of ψ in EI (where I is again
the interpretation of Γ). Since in logic one does not typically distinguish
between different proofs of the same entailment, fibrations for interpreting
logics will typically be preorder fibrations. More general fibrations will be
used to model type theories (where one does distinguish between different
terms).

Fibred Equality

We recall the categorical description of equality in terms of left adjoints to
contraction functors δ∗. The approach is due to Lawvere [Law68]; we
follow the presentation in [Jac99].

In a category with products we write, for objects I and J ,

I × J
δ=δ(I,J)=〈id ,π′〉 // (I × J)× J

for the “parameterized” diagonal which duplicates J , with parameter I.

Definition 2.2.19. Let
E

p
��
B

be a fibration on a base category B with finite

products.
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1. Then p is said to have (simple) equality if both

• for every pair I, J ∈ B, each contraction functor δ(I, J)∗ has a
left adjoint

EI×J
EqI,J=

∐
δ(I,J) // E(I×J)×J

• the Beck-Chevalley condition holds: for each map u : K → I in
B, the canonical natural transformation

EqK,J(u× id)∗ ⇒ ((u× id)× id)∗EqI,J
is an isomorphism.

2. If p is a fibration with fibred finite products ×, then we say that p has
equality with the Frobenius property or equality satisfying
Frobenius if it has equality as described above in such a way that for
all objects X ∈ E(I×J)×J and Y ∈ EI×J , the canonical map

EqI,J(δ∗(X)× Y ) // X × EqI,J(Y )

is an isomorphism.

Let
E

p
��
B

be a fibration with equality. Assume that p has a terminal object

functor 1: B→ E, which for each I ∈ B gives the terminal object in the fibre
over I. For parallel maps u, v : I → J in B we write

Eq(u, v) def= 〈〈id , u〉, v〉∗
(
EqI,J(1)

)
∈ EI ,

where 1 = 1(I×J) is the terminal object in the fibre over I×J . This yields
an equality predicate in the fibre over the domain I of the maps u and v. We
think intuitively of the predicate Eq(u, v) at i ∈ I as the truth of u(i) =J v(i)
in the “internal logic of the fibration p”. Formally, we say that u, v : I → J
are internally equal if there is a morphism (a “proof”) 1 → Eq(u, v) in
the fibre over I. This need not be the same as external equality of u, v
which simply means that u = v as morphisms of B. External equality always
implies internal equality. In case internal equality is the same as external
equality, we say that the fibration has very strong equality.

Let B be a category with finite limits and consider the subobject fibration
Sub(B)

��
B

on B. For maps u, v : I → J in B, one can easily verify that Eq(u, v)

is the equalizer of u and v. Subobject fibrations therefore always have very
strong equality. See [Jac99, Section 3.5] for some examples of fibrations
which do not have very strong equality.
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Chapter 3

A General Notion of
Realizability for Type
Theory

We define a general notion of realizability to be a weakly closed partial carte-
sian category (WCPC-category), which encompasses both partial combina-
tory algebras and algebraic lattices (and many more), see Section 3.1. Using
this notion of realizability we show how to construct categories of so-called
assemblies and modest sets (partial equivalence relations) over them. We
then also show that the so constructed categories provide models of depen-
dent type theory. Throughout the chapter we focus mostly on assemblies;
then in Section 3.7 we briefly show how to obtain corresponding results for
modest sets. The main result of the chapter is Theorem 3.6.20, which says
that the category of assemblies provides a split model of dependent type
theory. We also characterize when a WCPC-category gives rise to a topos.
We now provide an outline of the chapter.

Rather than going straight from the general notion of realizability to the
category of assemblies there-over, we proceed in stages, making use of ideas
and notions from categorical logic. This approach has the advantage that
it allows us to state and prove results at a more general level. Moreover,
we emphasize the connection to tripos theory [HJP80, Pit81], which we
shall make use of in later chapters. Furthermore, we shall see that in the
construction of models for dependent type theory we can reason abstractly
using the internal logic of a realizability pretripos; we do not need to go into
detailed manipulation of realizers.

Thus in Section 3.3, after recalling in Section 3.2 the notions of regular
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categories and regular fibrations, we show how to define a category of as-
semblies over any regular fibration and we show that the so-defined category
of assemblies is regular.

In Section 3.4 we define a notion of pretripos, which is a weak version
of tripos [HJP80, Pit81]. We further show that any WCPC-category gives
rise to a pretripos over Set. We also characterize precisely when a WCPC-
category gives rise to a topos; this is the case iff the WCPC-category has a
so-called universal object of which all other objects are retracts.

A pretripos is a regular fibration and in Section 3.5 we show that the
category of assemblies over a pretripos is locally cartesian closed, thus giving
rise to a non-split model of dependent type theory.

In the following section, 3.6, we briefly review some of the problems of
modelling dependent type theory and then show in Theorem 3.6.20 how
to obtain a split model of dependent type theory from any realizability
pretripos. This is the main result of this chapter.

Then in Section 3.7 we show how to define a category of modest sets over
any realizability pretripos and that it also provides a model of dependent
type theory. Our account of these models of dependent type theory is a
general uniform account in the sense that the already mentioned model of
dependent type theory in Equ [BBS98] and also models based on assem-
blies over partial combinatory algebras (see, e.g., [LM91, Jac99]) are special
instances. We further relate the category of modest sets to the category of
assemblies.

As already mentioned, our approach in this chapter is inspired by the
tripos-theoretic approach to realizability over partial combinatory algebras
[HJP80, Pit81]. In our joint paper with Aurelio Carboni, Pino Rosolini and
Dana Scott [BCRS98], see also [CR99], we have developed a complemen-
tary approach to the general notion of realizability for type theory. The
complementary approach is based on the theory of exact categories and ex-
act completions, generalizing the exact-completion approach to realizability
over partial combinatory algebras. In the theory of realizability over partial
combinatory algebras, it has been very useful to have complementary view-
points, and we believe the same holds for our general notion of realizability
for type theory. In Section 3.8 we relate our approach in this chapter to
our approach in [BCRS98]. One advantage of the approach in this chapter
is that it easily facilitates the description of split models of dependent type
theory.

Finally, in Section 3.9 I discuss some other closely related work of Abram-
sky [Abr95], Lambek [Lam94], and Longley [Lon99].

Throughout the chapter we shall see that we leave many interesting
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questions open. (In particular, we do not undertake a thorough study of a
suitable 2-category of WCPC-categories, which would generalize Longley’s
2-category of partial combinatory algebras and applicative transformations.)
In Section 3.10 we suggest a number of questions for future work.

In this chapter we focus on the general notion of realizability and how
it can be used to model dependent type theory; in the following chapter we
show how the general notion of realizability can also be used to model logics
over the dependent type theory. In Appendix A, I have worked out in very
concrete terms a particularly interesting example, namely the dependent
type theory and predicate logic for Equ. It is basically straightforward to
do so using the theorems proved in this and the following chapter. I have
nevertheless chosen to include this treatment for the following reasons. First,
I hope it may make the abstract treatment in this and the following chapter
more accessible to readers not thoroughly familiar with [Jac99]. Indeed it
may be helpful to read the appendix in parallel with the treatment in this
and the following chapter. Second, we note that when one wants to use
the type theory and logic to construct objects or prove properties about the
model, one often needs to know what the interpretation is in concrete terms
and so it makes sense to actually work it out.

3.1 A General Notion of Realizability

In this section we define the notion of a weakly closed partial cartesian cate-
gory (WCPC-category). We shall show how such a category can be seen as
a general universe of realizers. In particular, in Section 3.1.2 we show that
any partial combinatory algebra gives rise to a weakly closed partial carte-
sian category. We review the definition of a partial combinatory algebra in
Section 3.1.1.

Our notion of a WCPC-category is just a weak version of a cartesian
closed category of partial maps. We thus begin by recalling the definition of
a partial cartesian category from [RR88]. The wording “partial cartesian” is
a shortening of “partial maps on a cartesian category.” There is an excellent
overview of categories of partial maps in [RR88] to which we refer the reader
for much more information on categories of partial maps and their history
than we can include here. See also [Ros86].

The following definitions (3.1.1–3.1.7) are from [RR88, Page 101].

Definition 3.1.1. A p-category is a category C endowed with a bifunctor
× : C×C→ C which is called product, a natural transformation ∆: (−)→
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(−×−) which is called the diagonal and two families of natural transforma-
tions { p−,Y : (−×Y )→ (−) | Y ∈ C } and { qX,− : (X×−)→ (−) | X ∈ C }
which are called projections, satisfying the identities

pX,X∆X = idX = qX,X∆X

pX,Y (idX × pY,Z) = pX,Y×Z

qX,Y (pX,Y × idZ) = qX×Y,Z

(pX,Y × qX,Y )∆X×Y = idX×Y
pX,Z(idX × qY,Z) = pX,Y×Z

qX,Z(qX,Y × idZ) = qX×Y,Z .

Finally we require that the associativity and commutativity isomorphisms
α and τ defined as below by

αX,Y,Z = ((idX × pY,Z)× qY,ZqX,Y×Z)∆X×(Y×Z)

: X × (Y × Z)→ (X × Y )× Z

and

τX,Y = (qX,Y × pX,Y )∆X×Y : X × Y → Y ×X

are natural in all variables (the components need not be so).
A p-functor F : C→ D between p-categories is a functor preserving prod-

ucts, projections, and diagonals up to a natural isomorphism.

Definition 3.1.2. Given a map f : X → Y in the p-category C, the do-
main dom f : X → Y of f is the composite map pX,Y (idX×f)∆X : X → X.

Definition 3.1.3. A map f : X → Y in a p-category C is total if dom f =
id . We denote the subcategory of total maps Ct.

Example 3.1.4. Let Ptl denote the category of sets and partial functions.
It is a p-category with total category the usual category Set of sets and
total functions.

For all objects X and Y in a p-category C, the maps idX , pX,Y , qX,Y ,
and ∆X are total. If morphisms f : X → Y and g : Y → Z are both total,
then their composite gf : X → Z is total. The subcategory Ct of total maps
has binary cartesian products. A p-functor maps total maps to total maps.

Definition 3.1.5. A p-category C is said to be a partial cartesian cate-
gory if the subcategory Ct of total maps has a terminal object (and so has
finite products).

A partial cartesian category C is also called a p-category with a one-
element object.
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Remark 3.1.6. Let C be a partial cartesian category. If on every hom-set
C(X,Y ), the extension order is defined as

ϕ ≤ ψ ⇐⇒ ϕ = ψ ◦ domϕ,

then this defines a structure of a bicategory of partial maps on C [RR88,
Proposition 3.4]. See loc. cit. and [Car87] for more on bicategories of partial
maps.

Definition 3.1.7. Let C be a partial cartesian category. Then C is said to
be closed if, for every object X in C, there is an adjunction

Ct

(X×−)

⊥
//
C,

[X⇀−]
oo

that is, for all Y and Z in C, there is a natural isomorphism

C(X × Y ,Z) ∼= Ct(Y, [X ⇀ Z]).

The object [X ⇀ Z] is referred to as the partial exponential of X and Z.

In elementary terms, the above definition says that C is closed if, for all
X and Z in C, there exists an object [X ⇀ Z] and a morphism ε : [X ⇀
Z]×X → Z in C such that, for all objects Y , all morphisms f : Y ×X → Z
in C, there exists a unique map f ′ : Y → [X ⇀ Z] in Ct (note that f ′ is
total!), such that the following diagram commutes in C:

[X ⇀ Z]×X ε // Z

Y ×X
f

99rrrrrrrrrrr
f ′×idX

OO

Let C be a partial cartesian category. Then we say that C is weakly closed if
C satisfies the definition of being closed except that the required morphism
f ′ is only required to exist, not to be unique. Explicitly:

Definition 3.1.8. Let C be a partial cartesian category. Then we say that
C is weakly closed if, for all X and Z in C, there exists an object [X ⇀ Z]
and a morphism e : [X ⇀ Z] × X → Z in C such that, for all objects Y ,
all morphisms f : Y ×X → Z in C, there exists a (not necessarily unique)
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map f ′ : Y → [X ⇀ Z] in Ct (note that f ′ is total!), such that the following
diagram commutes in C:

[X ⇀ Z]×X e // Z

Y ×X
f

99rrrrrrrrrrr
f ′×idX

OO

We refer to ([X ⇀ Z], e) as the weak partial exponential of X and Z.

For simplicity we refer to a weakly closed partial cartesian category as a
WCPC-category.

Example 3.1.9. The category Ptl of sets and partial functions is a WCPC-
category. (In fact, it is not only weakly closed but closed.)

Definition 3.1.10. A WCPC-functor is just a p-functor.

Note that a p-functor preserves products and domains and thus maps
total morphisms to total morphisms.

We may think of a WCPC-category C as a general universe of realizers
as follows. The category C is a p-category because realizers may be only
partially defined. Intuitively, [X ⇀ Z] is a set of realizers of functions from
X to Z. There may be more than one realizer for each function from X to
Z, hence f ′ is only required to exist, not to be unique.

Example 3.1.11. Observe that, trivially, any cartesian closed category is
a WCPC-category. Recall that the category ALat of algebraic lattices and
Scott continuous functions is cartesian closed [DP90, GHK+80]; hence ALat
is a WCPC-category.

Next, we will show that any partial combinatory algebra gives rise to a
WCPC-category, that is not necessarily closed.

3.1.1 Partial Combinatory Algebras

We recall the definition of a partial combinatory algebra and present a couple
of examples; readers familiar with partial combinatory algebras can skip this
section. More detailed treatments of partial combinatory algebras can, for
example, be found in [Lon94] or in [Bee85].

A partial combinatory algebra (PCA) consists of a set A together
with a partial application function · : A×A ⇀ A and two distinct elements
K,S ∈ A satisfying, for all x, y, and z in A,

Kx ↓, Sx ↓, Sxy ↓, and Kxy ' x, Sxyz ' xz(yz),
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where P ↓ means that P is defined and where Kleene equality P ' Q
means that P is defined if and only if Q is defined, and in that case they
are equal.1 As above, we often write xy for x · y. Letting I = SKK ∈ A one
has that I · a = a, for all a ∈ A. A total combinatory algebra is just a
PCA in which application is total (i.e., ab ↓, for all a, b ∈ A).

We often simply write A for a PCA (A, ·,K,S). In such a PCA A one
has combinatory completeness: for every polynomial term M(x1, . . . , xn)
built from variables x1, . . . , xn, constants c for c ∈ A, and application ·,
there is an element a ∈ A such that for all b1, . . . bn ∈ A,

ab1 · · · bn−1 ↓ and ab1 · · · bn ' [[M ]](b1, . . . , bn),

where [[M ]] is the partial function An ⇀ A obtained by interpreting the
polynomial M . To prove this one uses Schönfinkels abstraction rules to
define functional abstraction:

λx. x = I = SKK

λx.M = KM if x is not free in M

λx.MN = S(λx.M)(λx.N).

Combinatory completeness is then obtained by taking a = λx1 · · ·xn.M .
Note also the pairing in PCAs, as in the untyped lambda calculus:

〈x, y〉 = λz. zxy = S(SI(Kx))(Ky)

with projections

πx = xK and π′x = x(KI).

Then 〈x, y〉 ↓ and π〈x, y〉 = x, π′〈x, y〉 = y (but not 〈πx, π′x〉 = x — in
general no surjective pairing function can be encoded [Bar85, Page 134]).
Finite sequences can also be encoded as in the untyped lambda calculus (see,
e.g., [Bar85, Page 134]). We write

[x1, x2, . . . , xn]

for an encoding of the finite sequence of x1, x2, . . . , xn ∈ A and we write πi
for an encoding of the i’th projection function.

1In other treatments of partial combinatory algebras one will often find that K and
S are not part of the structure of a partial combinatory algebra, but are just required to
exist; see, e.g., [Bee85].
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Let (A, ·,K,S) be a PCA. We say that a subset B ⊆ A is a sub partial-
combinatory-algebra of A (sub-PCA) if and only if B contains K and
S and is closed under partial application. Note that if B is a sub-PCA of
(A, ·,K,S) then any element defined using lambda calculus and constants
from B is again an element of B .

Convention 3.1.12. For sets X,Y ⊆ A we write X ⊃ Y for the set

{ f ∈ A | ∀a ∈ X. f · a ↓ and f · a ∈ Y }.

We sometimes write f : X ⊃ Y for f ∈ (X ⊃ Y ).

Example 3.1.13. Consider the set N of natural numbers equipped with
Kleene application: m · n ' {m}(n) , where {m} denotes the partial
recursive function coded by m. The existence of K and S with the required
properties is an immediate consequence of the S-M-N theorem. We refer to
this PCA as K1 , or Kleene’s first model.2

Example 3.1.14. Let Λ denote the set of terms of the untyped lambda
calculus over a countably infinite set of variables. Let Λ/β be its quotient
modulo β-equality (see, e.g., [Bar85]) with the induced application. This de-
fines a total combinatory algebra: for K and S we may take the equivalence
classes of the lambda terms λx, y. x and λx, y, z. xz(yz).

Example 3.1.15. Let N denote the set of natural numbers and let P = PN
be its powerset. Suppose that 〈−,−〉 : N × N → N is a coding function for
pairs and that [−, · · · ,−] : PfinN→ N is a coding function for finite subsets
of N. Recall that P can be viewed as a topological space with the Scott
topology and that a function f : P → P then is continuous if and only if
f preserves inclusion and f(

⋃
Ai) =

⋃
(fAi) whenever A0 ⊆ A1 ⊆ · · · ⊆ P.

For a continuous function f : P→ P, we define the graph of f to be the set

Graph(f) = { 〈[x1, . . . , xn], y〉 | y ∈ f({x1, . . . , xn}) } ∈ P.

Since f is continuous, it is completely determined by its graph: for any
A ∈ P, f(A) = { y | ∃x1, . . . , xn ∈ A. 〈[x1, . . . , xn], y〉 ∈ Graph(f) }. The
operation

A ·B = { y | ∃x1, . . . , xn ∈ B. 〈[x1, . . . , xn], y〉 ∈ A }

is a continuous application operation · : P× P→ P, and (P, ·) forms a total
combinatory algebra, called the graph model.

2The definition of K1 is dependent on a particular encoding of the partial recursive
functions as natural numbers; however, for most purposes, the choice of encoding will be
irrelevant.
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Example 3.1.16. Let RE denote the recursively enumerable (r.e.) subsets
of N. If in the previous example we take the coding functions 〈−,−〉 and
[−, · · · ,−] to be recursive, then (RE , ·) forms a sub-PCA of (P, ·) as, clearly,
K and S may be chosen to be r.e. subsets. We refer to RE as the recursively
enumerable graph model.

There are many more examples of partial combinatory algebras (see, for
example, [Lon94]).

3.1.2 Constructing a WCPC-category from a Partial Com-
binatory Algebra

We now show how any partial combinatory algebra in a direct way gives
rise to a WCPC-category. Let (A, ·) be a PCA. By an A-definable (total)
function we mean a function f from A to A for which there exists an
element a ∈ A such that, for all b ∈ A, a · b ↓ and a · b = f(b). The set
of A-definable functions form a monoid under composition; we refer to this
monoid as the monoid of A-definable functions. By an A-definable
partial function we mean a partial function f from A to A for which there
exists an element a ∈ A such that, for all b ∈ A, we have that a · b ' f(b).

Definition 3.1.17. Let (A, ·) be a PCA.

1. We define the category C(A)t to be the idempotent splitting of the
monoid of A-definable total functions. That is, objects are total A-
definable idempotents and a morphism f : X → Y is an A-definable
total function such that Y fX = f . The identity on X is X itself and
composition is composition of total functions.

2. We define the category C(A) induced by A to be the category with
objects total A-definable idempotents (i.e., same objects as C(A)t) and
with morphisms f : X → Y A-definable partial functions f satisfying
that Y fX = f (as partial functions). The identity on X is X and
composition is composition of partial functions.

Of course, this definition is related to and inspired by the work of
Dana Scott [Sco80] and the treatment of C-monoids in [LS86]. We do not
pause here to study what universal property C(A) may have, but content
ourselves with showing that C(A) indeed is a WCPC-category:

Proposition 3.1.18. Let A be a PCA. Then the category C(A) induced by
A is a WCPC-category and its subcategory of total maps is equivalent to
C(A)t.
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Proof. The bifunctor × : C(A)→ C(A) is defined on objects X and Y by

X × Y = λz. 〈X(πz), Y (π′z)〉

and on morphisms f : X → X ′ and g : Y → Y ′ by

f × g = λz. 〈f(πz), g(π′z)〉.

The diagonal natural transformation ∆ is given by

∆X : X → X ×X = λx. 〈Xx,Xx〉

and the projections are given by

pX,Y : X × Y → X = π ◦ (X × Y )
qX,Y : X × Y → Y = π′ ◦ (X × Y )

It can then be verified that the induced isomorphisms αX,Y,Z and τX,Y indeed
are natural in all variables, so that C(A) indeed is a p-category.

By definition f : X → Y is total in the sense of a p-category if pX,Y (idX×
f)∆X : X → X equals the identity on X. Note that, f : X → Y entails that
fX = f (as partial functions). Further note that, for all a ∈ A,

pX,Y (idX × f)∆X(a) = pX,Y (idX × f)〈X(a), X(a)〉

=

{
pX,Y 〈X(a), f(X(a))〉 if f(X(a)) is defined
undefined otherwise

=

{
X(a) if f(a) is defined
undefined otherwise.

Since the identity on X is X itself, we clearly have that f is total in the
sense of a p-category just in case f is a morphism of C(A)t.

To show that C(A) is a partial cartesian category, it just remains to
show that C(A)t has a terminal object. The terminal object 1 in C(A)t is
the idempotent λx.K.

It now only remains to show that C(A) is weakly closed. For objects X
and Y in C(A) we define [X ⇀ Z] to be the (total) idempotent

λf. λx. Z(f(X(x))).

(Note that [X ⇀ Z] of course is A-definable, by the element

λa. λb. aZ(a(aX(b))) ∈ A,
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where aX and aZ witness the definability of X and Z.) The morphism
e : [X ⇀ Z]×X → Z is defined to be the (partial) function λu. (πu)(π′u).
Let f : Y ×X → Z be any morphism in C(A) and define f ′ : Y → [X ⇀ Z]
to be λy. [X ⇀ Z](λx. f〈Y y, x〉). Note that f ′ is total. One can then verify
that the diagram

[X ⇀ Z]×X e // Z

Y ×X
f

99rrrrrrrrrrr
f ′×idX

OO

commutes in C(A), as required.

Convention 3.1.19. We will often refer to the category C(A) induced by a
PCA A as the WCPC-category induced by A, thus implicitly referring
to the above proposition.

For a PCAA, we define a morphism U : C(A) → Ptl of WCPC-categories
as follows. On an object X ∈ C(A), we set

U(X) = {X(a) | a ∈ A },

and for a morphism f : X → Y in C(A), we set

U(f) = f.

Note that U indeed is a WCPC-functor; in particular U maps C(A)t into
Set and U applied to the terminal object in C(A)t is a terminal object in
Set.

3.2 Regular Categories and Regular Fibrations

In Section 3.2.1 we recall the definition of a regular category and some basic
properties of regular categories; the material is entirely standard and may
be skipped if you are familiar with regular categories. In Section 3.2.2 we
recall the definition of a regular fibration from [Jac99]. Readers familiar
with [Jac99] may skip this section.

3.2.1 Regular Categories

We recall the definition of a regular category and some basic properties.
See, for example, [BGvO71, FS90, Bor94b] for more background on regular
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categories. First recall that a regular epimorphism is an epimorphism
which occurs as a coequalizer, i.e., e : Y → Z is a regular epimorphism if
there exists a pair of morphisms f, g : X → Y such that

X
f //

g
// Y

e // Z

is a coequalizer diagram. Also recall that a category is said to be left exact,
or lex for short, if it has all finite limits: equalizers, pullbacks, etc.. Also
recall that a kernel pair (f0, f1) of an arrow f : X → Y is the pullback of f
with itself, as in the following diagram:

K
f0 //

f1

��

X

f

��
X

f
// Y.

Finally, recall that, in a category with pullbacks, a regular epimorphism is
the coequalizer of its kernel pair.

Definition 3.2.1. A category C is regular when

1. C has finite limits;

2. every kernel pair has a coequalizer;

3. regular epimorphisms are stable under pullbacks (i.e., the pullback of
a regular epimorphism along any morphisms is again a regular epimor-
phism).

It follows that a regular category is the same as a left exact category
with a (regular epi, mono) stable factorization system [FK72]. Indeed, the
image of a morphism f is obtained as the coequalizer of the kernel pair of
f .

A functor F : C → D is exact (also called regular) if it preserves fi-
nite limits and coeqalizers of kernel pairs (or, equivalently, preserves finite
limits and regular epis). Note that we use the term “exact” in the sense of
Barr [BGvO71]; in particular, it should not be confused with exact in the
sense of preserving finite limits and finite colimits.
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3.2.2 Regular Fibrations

Recall from [Jac99, Definition 4.2.1, Page 233] that a regular fibration
E

p
��
B

is a fibration which

1. is a fibred preorder;

2. has finite products in its base category B;

3. has fibred finite products (for > and ∧);

4. has fibred equality (EqI,J a δ(I, J)∗) satisfying Frobenius (for =);

5. has simple coproducts (
∐

(I,J) a π∗I,J) satisfying Frobenius (for ∃).

Remark 3.2.2. A category B is regular if and only if
Sub(B)

��
B

is a regular

fibration [Jac99, Theorem 4.4.4]. In particular, if B is a topos, then the
subobject fibration on B is a regular fibration which is equivalent, as a
regular fibration, to the fibration obtained from the split indexed category
B(−,ΩB), where ΩB is the subobject classifier of B.

A regular fibration models regular logic, the fragment of first-order (intu-
itionistic) logic using only =, ∧, >, and ∃.

3.3 Assemblies over Regular Fibrations

For any regular fibration, we may define a category of assemblies over it
as follows. For particular regular fibrations, this construction specializes to
assemblies over algebraic lattices as in [BBS98] and assemblies over partial
combinatory algebras [CFS88, FS87, Car95, Lon94], see Examples 3.6.10
and 3.6.11 in Section 3.6.2. The definition below is phrased using the internal
language of a regular fibration; in the remark following the definition we
recall what those logical definitions mean in categorical terms.

Definition 3.3.1. Let
E

p
��
B

be a regular fibration. Define Asm(p) to be the

category with

objects pairs (X,EX) with X ∈ B, EX ∈ EX , satisfying that, for
all global elements cX : 1→ X in B,

∅ | ∅ ` EX(cX)
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is valid in the logic of p.

morphisms from (X,EX) to (Y,EY ) are morphisms f : X → Y in B
for which

x : X | EX(x) ` EY (f(x))

is valid in the logic of p.

Identities and composition are as in B. That is, the identity morphism on
(X,EX) is the identity on X and the composition of two morphisms is the
composition of the morphisms in B.

Remark 3.3.2. The condition on objects in the above definition can be
expressed categorically as follows. For all global elements cX : 1 → X in
B, >1 ≤1 c∗X(EX) in the fibre E1 over 1. The condition on morphisms
f : (X,EX)→ (Y,EY ) can be expressed categorically as follows: we require
that EX ≤ f∗(EY ) in the fibre EX over X.

Proposition 3.3.3. Let
E

p
��
B

be a regular fibration. If B is regular, 1 is reg-

ular projective in B, and p has coproducts satisfying the Frobenius property,
then Asm(p) is a regular category.

Proof. The terminal object is (1B, T1B).
The product of (X,EX) and (Y,EY ) is (X × Y,E ) where

(x, y) : X × Y ` E (x, y) def= EX(x) ∧ EY (y)

with projections π and π′ the projections of X × Y . (Categorically, E is
π∗(EX) ∧ π′∗(EY ).)

The equalizer of f, g : (X,EX)→ (Y,EY ) is (Z,EZ), where

Z
m // X

f //

g
// Y

is an equalizer diagram in B, and EZ is defined as follows:

z : Z ` EZ(z) def= EX(m(z)).

Categorically, EZ = m∗EX .
It remains to show that Asm(p) has stable images. So suppose

f : (X,EX)→ (Y,EY )
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in Asm(p). Then f : X → Y in B and we can consider the image factoriza-
tion of f in B (since B is regular):

X
f //

e "" ""EEEEEEEE Y

Im(f)
<< m

<<yyyyyyy

Let W = Im(f) and let

w : W ` EW (w) def= ∃x : X. e(x) = w ∧ EX(x).

Categorically, EW =
∐
e EX . We then claim that

1. (W,EW ) is an object of Asm(p);

2.

(X,EX)
f //

e && &&LLLLLLLLLL
(Y,EY )

(W,EW )
99 m

99rrrrrrrrr

forms an image factorization in Asm(p);

3. images as in item 2 are stable under pullback.

Ad 1: Let cW : 1 → W be any global element. By definition of EW
we are to show that

∅ | ∅ ` ∃x : X. e(x) = cW ∧ EX(x)

is valid in the logic of p. Since e : X � W is an epi and 1 is regular
projective in B, there is a morphism x : 1→ X in B such that ex = cw. By
the assumption that (X,EX) ∈ Asm(p), we have the required. (We here
use that external existence implies internal existence [Jac99, Page 255] and
that external equality implies internal equality.)

Ad 2: We first verify that e and m are indeed morphisms of Asm(p).
For e we are to show that

x : X | EX(x) ` EW (e(x)) (3.1)
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is valid in the logic of p. By definition of EW , we have that (3.1) is equivalent
to

x : X | EX(x) ` ∃x : X. e(x) = e(x) ∧ EX(x),

which is clearly valid. For m we are to show that

y : W | EW (y) ` EY (m(y))

is valid in the logic of p, that is, that

y : W | ∃x : X. e(x) = y ∧ EX(x) ` EY (m(y)) (3.2)

is valid in the logic of p. But (3.2) is clearly valid because, reasoning in-
ternally, under the given assumption, m(y) = m(e(x)) = f(x) (the latter
because externally we have f = me); f is an arrow in Asm(p); and EX(x)
holds by assumption.

We now verify that m ◦ e is indeed an image factorization of f . So
suppose that f also factors as h ◦ g, as in the diagram

(X,EX)
f //

e

&& &&LLLLLLLLLL

g

�� ��:::::::::::::::::
(Y,EY )

(W,EW )
99
m

99rrrrrrrrr

(Z,EZ)
BB

h

BB����������������

Then h ◦ g is also a factorization of f in B; hence there exists a unique
u : W → Z in B such that

u ◦ e = g and h ◦ u = m

in B. Thus it suffices to show that u is an arrow in Asm(p), i.e., to show
that

y : W | EW (y) ` EZ(u(y))

is valid in the logic of p. We show this by arguing in the logic of p: Suppose
that EW (y), i.e., that ∃x : X. e(x) = y ∧ EX(x). Then u(y) = g(x) and
thus, as EX(x) and g is an arrow in Asm(p), also EZ(g(x)) = EZ(u(y)), as
required.
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Ad 3: Suppose that

(P,EP ) h′ //

f ′

��

(X,EX)

f
��

(Z,EZ) g
// (Y,EY )

is a pullback in Asm(p). We are to show that the bottom square in

(P,EP )

e′
����

h′ // (X,EX)

e
����

(U,EU )
��

m′

��

h //___ (W,EW )
��
m

��
(Z,EZ) g

// (Y,EY )

is a pullback (where (U,EU ) is the image of f ′ and (W,EW ) is the image of
f). By stability of image factorizations in B we have that both squares in
the diagram

P

e′
����

h′ // X

e
����

U
��

m′

��

h //___ W
��
m

��
Z g

// Y

are pullbacks in B. Thus it suffices to show that

Eu
def=
∐
e′ EP

is isomorphic to

(m′)∗EZ ∧ h∗EW .
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But this is easy:

Eu =
∐
e′ Ep

=
∐
e′((f

′)∗EZ ∧ (h′)∗EX)
∼=
∐
e′((e

′)∗(m′)∗EZ ∧ (h′)∗EX)
∼= (m′)∗EZ ∧

∐
e′(h

′)∗EX) by Frobenius
∼= (m′)∗EZ ∧ h∗

∐
e EX by Beck-Chevalley

= (m′)∗EZ ∧ h∗EW .

(Note the use of the Frobenius and Beck-Chevalley conditions; they explains
the assumption in the proposition regarding coproducts along all maps in
B.)

For assemblies constructed over a regular fibration we may define functors
to and from the base category as follows, generalizing the case of assemblies
over a partial combinatory algebra (see, e.g., [Lon94]).

Definition 3.3.4. Let
E

p
��
B

be a regular fibration. Define the functor∇ : B→

Asm(p) as follows:

∇(X) = (X,>X) and ∇(f : X → Y ) = f.

Further, let Γ: Asm(p)→ B be the functor defined as follows:

Γ(X,EX) = X and Γ(f) = f.

Note that ∇ is clearly full and faithful and that Γ is faithful.

Proposition 3.3.5. Let
E

p
��

Set
be a regular fibration. The functor

Γ: Asm(p)→ B

is left adjoint to ∇:

Asm(p)
Γ

⊥
//
B.

∇
oo

Proof. Clearly,

Γ(X,EX) = X // Y
===================
(X,EX) // (Y,>Y ) = ∇(Y )

because, for any f : X → Y in B, we trivially have that x : X | EX(x) `
>Y (f(x)) is valid in p.
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Proposition 3.3.6. Let
E

p
��
B

be a regular fibration satisfying the condition

os Proposition 3.3.3 so that Asm(p) is regular. Then both ∇ and Γ are
regular functors.

Proof. The functor ∇ preserves limits as a right adjoint (Proposition 3.3.5).
It clearly preserves image factorizations. The functor Γ preserves regular
epis as a left adjoint. It clearly preserves finite limits.

Remark 3.3.7. For a regular fibration
E

p
��

Set
over Set, the functor

Γ: Asm(p)→ Set

is naturally isomorphic to the global sections functor HomAsm(p)(1,−).

We leave the question of what universal property the construction of the
category of assemblies over a regular fibration satisfies. Some useful ideas for
answering this question can be found in Longley’s thesis [Lon94], in which
Longley gave a universal property for the construction of the category of
assemblies over a partial combinatory algebra.

3.4 Pretriposes

Consider a regular fibration
E

p
��

Set
over Set with coproducts satisfying Frobe-

nius. We now know that the category of assemblies Asm(p) is regular. In

this section we show that by imposing further conditions on
E

p
��

Set
besides

regularity, the resulting category Asm(p) is locally cartesian closed.3 In
Section 3.4.1 we show that any WCPC-category gives rise to a fibration
over Set meeting these conditions. We restrict attention to fibrations with
base category Set since those suffice for our applications — the interested
reader should not have any difficulty with generalizing the development to
more general base categories.

Definition 3.4.1. A fibration
E

p
��

Set
is called a pretripos if

3Recall that a category C is locally cartesian closed if every slice C/X is cartesian
closed. A locally cartesian closed category has finite limits.
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1. it is a fibred preorder;

2. it is fibred cartesian closed (for >, ∧, ⊃);

3. it has coproducts ∃u a u∗ along all maps u : I → J in the base Set;

4. it has products u∗ a ∀u along all maps u : I → J in the base Set.

If, in addition,
E

p
��

Set
has fibred finite coproducts (for ⊥, ∨), we say that the

fibration is a pretripos with disjunction.

Recall from Chapter 2 that it is part of the definition of having coprod-
ucts and products that the Beck-Chevalley condition holds. A pretripos
(with disjunction) is said to be split if it is a split fibration, reindexing pre-
serves the (bi)cartesian closed structure on the nose, and the Beck-Chevalley
conditions hold with equality and not only isomorphisms.

Remarks 3.4.2.

(i) The name “pretripos” has been chosen to reflect the fact that such
a fibration is weak version of a tripos [HJP80, Pit81] (see also Chap-
ter 5): the essential difference is that a pretripos with disjunction is
not required to have a generic object.

(ii) A pretripos
E

p
��

Set
is a regular fibration: since we have coproducts along

all maps and p is fibred cartesian closed, Frobenius automatically holds
for ∃ and we have equality satisfying Frobenius [Jac99, Lemma 1.9.12].

Hence if
E

p
��

Set
is a pretripos, Asm(p) is a (well-defined) regular category

by Proposition 3.3.3.

(iii) A pretripos with disjunction models predicate logic and is a first-order
hyperdoctrine in the sense of Pitts [Pit99] and a first-order fibration in
the sense of Jacobs [Jac99].4 (“First-order” is perhaps a bit misleading

4The only difference between a first-order fibration over Set in the sense of Ja-
cobs [Jac99] and a pretripos with disjunction is that we require products and coproducts
along all morphisms, not only projections. As mentioned in [Jac99, 4.3.7, Page 253], for
a first-order fibration one may in fact define left and right adjoints to u∗ for all maps
u : I → J , but they will not necessarily satisfy the Beck-Chevalley condition. We require
explicitly that these adjoints do satisfy the Beck-Chevalley condition. This extra require-
ment is needed for Proposition 3.3.3, it is met in all our applications and, moreover, it
makes the connection with the standard definition of tripos [HJP80] very simple: a tripos
is a pretripos with disjunction with a weak generic object, see Chapter 5.
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since it only refers to the fact that we cannot quantify over all relations;
it is possible to quantify over all types, including higher types, so
the logic, which a pretripos models, is more like what is sometimes
called λ-logic [AB97]) Thus there are many examples of pretriposes;
in particular, any tripos over Set is a pretripos with disjunction.

3.4.1 Realizability Pretriposes

Let C be a WCPC-category and U : C → Ptl a WCPC-functor. We now

show how to define a pretripos
UFam(C)

��
Set

over Set from C and U . We refer to

it as the realizability pretripos over C, thus omitting explicit mentioning
of U (which we think of as a forgetful functor). The idea is as for realizability
triposes over partial combinatory algebras [HJP80], the difference being that
here the realizers will be drawn from C instead of from a PCA. By a realizer
we shall mean a morphism f in C.

We define a functor Ψ: Setop → Cat as follows. For a set I, Ψ(I) is
the preorder with objects pairs of the form (A,ϕ), where A is an object of
C and ϕ : I → P (UA) in Set. The less-than-or-equal relation is denoted `
and the objects are preordered by decreeing that

(A,ϕ) ` (B,ψ)

if and only if

∃g ∈ C(A,B). ∀i ∈ I. ∀a ∈ ϕ(i). U(g)(a) ↓ and U(g)(a) ∈ ψ(i).

We refer to the objects of Ψ(I) as predicates on I or just as predicates.
When the object A is clear from context we sometimes just write ϕ for
(A,ϕ). Further, we sometimes write (A,ϕ)(i) for ϕ(i). We refer to the
object A in (A,ϕ) as the underlying object of realizers for ϕ.

For a morphism u : I → J , Ψ(u) is essentially composition:

Ψ(u)(A,ϕ : J → P (UA)) = (A,ϕ ◦ u : I → P (UA)).

Note that Ψ(u) is indeed monotone, hence a well-defined functor. Moreover,
Ψ is clearly a functor, i.e., Ψ is a split indexed category. The resulting split

fibration (obtained by the Grothendieck construction) is written
UFam(C)

��
Set

.

The fibred cartesian closed structure is given as follows. In the fibre over
I,

> = (1, i 7→ U1),
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where 1 is the terminal object in the category of total maps Ct. The object
> is indeed the terminal object in the fibre over I, because for any other
object (A,ϕ : I → P (UA)), there exists a map g : A → 1 in Ct which U
maps to a total function U(g) so that g realizes (A,ϕ) ` >.

For predicates (A,ϕ) and (B,ψ) over I, define (A,ϕ) ∧ (B,ψ) to be

(A×B, i 7→ { (a, b) | a ∈ ϕ(i) and b ∈ ψ(i) }).

(Note that this definition makes sense because U preserves products.) It is
straightforward to see that ∧ so defined gives binary products in the fibre
over I.

For exponentials (implication), we define (A,ϕ) ⊃ (B,ψ) to be

([A ⇀ B],
i 7→ { g ∈ U [A ⇀ B] | ∀a ∈ ϕ(i). U(e)(g, a) ↓ and U(e)(g, a) ∈ ψ(i) }),

where ([A ⇀ B], e) is the weak partial exponential of A and B. (Note that
this definition makes sense because U preserves products.) Let us verify the
adjunction:

(A,ϕ1) ∧ (B,ϕ2) ` (C,ϕ3)
=======================
(A,ϕ1) ` ((B,ϕ2) ⊃ (C,ϕ3)) = ([B ⇀ C], ψ).

Suppose (A,ϕ1) ∧ (B,ϕ2) ` (C,ϕ3) via realizer h : A×B → C. Then there
exists an h′ : A→ [B ⇀ C] in Ct such that the diagram

[B ⇀ C]×B
e

%%LLLLLLLLLLL

A×B

h′×idB

OO

h
// C,

commutes, where ([B ⇀ C], e) is the weak exponential of B and C. We
claim that h′ is a realizer for (A,ϕ1) ` (B,ϕ2) ⊃ (C,ϕ3). Indeed, let
i ∈ I be arbitrary and let a ∈ ϕ1(i) be arbitrary. Note that U(h′)(a)
is defined because U(h′) is total since h′ is so. It remains to show that
U(h′)(a) ∈ ((B,ϕ2) ⊃ (C,ϕ3))(i). To this end, let b ∈ ϕ2(i) be arbitrary.
Then we have that

U(e)(U(h′)(a), b) = U(e)(U(h′)(a), U(id)b)
= U(e) ◦ U(h′ × id)(a, b)
= U(e ◦ h′ × id)(a, b)
= U(h)(a, b)
∈ ϕ3(i) by assumption.
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For the other direction, suppose h′ : A→ [B ⇀ C] is a realizer for (A,ϕ1) `
(B,ϕ2) ⊃ (C,ϕ3). We then claim that e ◦ 〈h′, idB〉 : A × B → C is a
realizer for (A,ϕ1) ∧ (B,ϕ2) ` (C,ϕ3). Indeed, let i ∈ I and (a, b) ∈
((A,ϕ1)∧(B,ϕ2))(i) be arbitrary. By assumption U(h′)(a) ↓ and U(h′)(a) ∈
((B,ϕ2) ⊃ (C,ϕ3))(i), so for all b ∈ ϕ2(i), we have that U(e)(U(h′)a, b) ↓
and U(e)(U(h′)a, b) = U(e ◦ 〈h′, idB〉)(a, b) ∈ ϕ3(i). The required follows.

It is easy to verify that, for any u : I → J in the base category Set, the
reindexing functor u∗ preserves the fibred cartesian closed structure on the

nose. In summa, we now have that
UFam(C)

��
Set

is split fibred cartesian closed.

Let u : I → J ∈ Set and suppose (A,ϕ) is a predicate in the fibre over
I. For the coproduct along u we define

∃u(A,ϕ) = (A, j 7→
⋃
i∈I
{ϕ(i) | u(i) = j }).

(Note that in the typical case, where u = π′ : I × J → J , then ∃u(A,ϕ)
simplifies to (A, j 7→

⋃
i∈I ϕ(i, j)).)

It is easy to verify that ∃u a u∗. For the Beck-Chevalley condition,
suppose that

P
k //

h
��

K

v

��
I

u // J

is a pullback in Set. Now ∃hk∗ = u∗∃v because, using that P is a pullback,
we have

u∗∃v(A,ϕ) = (A, i 7→
⋃
k′∈K
{ϕ(k′) | v(k′) = u(i) })

= (A, i 7→
⋃
k′∈K
{ϕ(k′) | ∃p ∈ P. h(p) = i and k(p) = k′ })

= (A, i 7→
⋃
p∈P
{ϕ(k(p)) | h(p) = i })

= ∃hk∗(A,ϕ).

Thus we have split coproducts.
For the product along u we define ∀u(A,ϕ) to be(

[1 ⇀ A], j 7→
⋂
i∈I

(
(u(i) =J j) ⊃ ϕ(i)

))
,
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where

• [1 ⇀ A] is the weak partial exponential of the terminal object 1 in Ct
and A

•
(
u(i) =J j

)
=
⋃
{U1 | u(i) = j }

•
(
(u(i) =J j) ⊃ ϕ(i)

)
equals

{ g ∈ U [1 ⇀ A] | ∀b ∈ (u(i) =J j). U(e)(g, b) ↓ and U(e)(g, b) ∈ ϕ(i) }

(Note that in the typical case, where I 6= ∅ and u = π′ : I × J → J , then
∀u(A,ϕ) simplifies to (A, j 7→

⋂
i∈I ϕ(i, j)).)

For the adjointness we are to show

(B,ψ) ` ∀u(A,ϕ)
===============

u∗(B,ψ) = (B,ψ ◦ u) ` (A,ϕ)

in UFam(C)J
in UFam(C)I

To this end, suppose first that h : B → [1 ⇀ A] is a realizer for (B,ψ) `
∀u(A,ϕ). That means that

∀j ∈ J. ∀b ∈ ψ(j). U(h)(b) ↓ and U(h)(b) ∈ ∀u(A,ϕ),

where U(h)(b) ∈ ∀u(A,ϕ) means that

∀i ∈ I. ∀t ∈ (u(i) =J j). U(e)(U(h)(b), t) ↓ and U(e)(U(h)(b), t) ∈ ϕ(i).

It is helpful to consider the underlying diagram of realizers in C:

[1 ⇀ A]× 1 e // A

B × 1
e◦h×id

99ttttttttttt
h×id

OO

Let us write 〈id , !〉 : B → B × 1 for the composite (id×!) ◦∆B in C, where
! : B → 1 is the unique (total) morphism in Ct from B to 1. We then claim
that

e ◦ (h× id) ◦ 〈id , f〉 : B → A

realizes u∗(B,ψ) = (B,ψ ◦ u) ` (A,ϕ). To show the claim, let i ∈ I and
b ∈ ψ(u(i)) be arbitrary. Using the fact that U(!) is total and that U
preserves ×, we see that

U(e ◦ (h× id) ◦ 〈id , !〉)(b) = U(e ◦ (h× id))(b, U(!)b)
= U(e)(U(h)(b), U(!)b),
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which is defined and in ϕ(i) by the assumptions. Hence we have shown the
claim. For the other direction, suppose h : B → A in C realizes (B,ψ ◦ u) `
(A,ϕ) over I. That means that

∀i ∈ I. ∀b ∈ ψ(u(i)). U(h)(b) ↓ and U(h)(b) ∈ ϕ(i).

Consider the following diagram in C.

[1 ⇀ A]× 1 e // A

B × 1
h◦pB,1

99ttttttttttt
h′×id

OO

Here ([1 ⇀ A], e) is the weak partial exponential of 1 and A, and thus
there exists a (total) morphism h′ : B → [1 ⇀ A] in Ct such that the shown
diagram commutes. We claim that h′ realizes (B,ψ) ` ∀u(A,ϕ) over J . To
show the claim, let j ∈ J and b ∈ ψ(j) be arbitrary. Note that U(h′)(b) is
defined since h′ is total. Let i ∈ I be arbitrary and suppose t ∈ u(i) =J j
(if there is no such t then we are trivially done). Using that U preserves ×
and projections, we have that

U(e)(U(h′)(b, t) = U(e ◦ (h′ × id))(b, t)
= U(h ◦ pB,1)(b, t)
= U(h)(b),

which is defined and in ϕ(i) by the assumption that b ∈ ψ(j), t ∈ (u(i) =J j)
(so that j = u(i)), and h is a realizer. This completes the proof of the
adjointness. The Beck-Chevalley condition holds because it holds for ∃, see
Lemma 2.2.16.

Summarizing we have proved the following theorem.

Theorem 3.4.3. Let C be a WCPC-category. Then
UFam(C)

��
Set

is a split pre-

tripos.

For a WCPC-category C and a morphism U : C → Ptl of WCPC-

categories, we refer to the induced pretripos
UFam(C)

��
Set

as the realizability

pretripos over C.
For a realizability pretripos we have an interpretation of equality by

Remark 3.4.2(ii). Working out the general approach to interpreting equality
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(see Chapter 2 or [Jac99]) we get the following. For two functions (terms)
u, v : I → J in Set, the interpretation of the predicate

i : I | ∅ ` u(i) =J v(i) (3.3)

is (
1, i 7→

{
U1 if u(i) = v(i)
∅ otherwise

)
.

Hence the predicate in (3.3) is internally valid iff, for all i ∈ I, u(i) = v(i)
as elements of J . In other words, u and v are internally equal iff they are

externally equal (i.e., equal as functions in Set), so the equality in
UFam(C)

��
Set

is very strong.
We now present our two main example of realizability pretriposes.

Example 3.4.4. For the category ALat of algebraic lattices, we define
U : ALat → Ptl to be the composition of the forgetful functor from ALat
to Set and the inclusion functor from Set into Ptl. When we refer to the

realizability pretripos
UFam(ALat)

��
Set

over ALat it is always understood that

we refer to this functor U : ALat→ Ptl just defined.

Example 3.4.5. By Proposition 3.1.18 we know that a PCA A generates

a WCPC-category. When we refer to the realizability pretripos
UFam(C(A))

��
Set

over the WCPC-category induced by A, the functor U : C(A) → Ptl is al-
ways assumed to be the functor U from Page 39. In this case, the realizability

pretripos
UFam(C(A))

p
��

Set
is equivalent as a preorder fibration over Set to the

standard realizability tripos
UFam(P A)

��
Set

over the partial combinatory algebra

A (as defined in [HJP80], see also Chapter 5). In other words, there are
fibred functors F : UFam(C(A)) → UFam(PA) and G : UFam(PA) →
UFam(C(A)) over Set such that FG ∼= id and GF ∼= id , both vertically.
Over 1, the functor F is defined by

F (X,ϕ ∈ P (UX)) = ϕ

(recall that UX = {X(a) | a ∈ A } ⊆ A, so ϕ can indeed be viewed as a
subset of A and the definition thus makes sense). Over 1, the functor G is
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defined by

G(ψ) = (idA, ψ),

where idA = λx. x. The isomorphism G(F (X,ϕ)) ∼= (X,ϕ) is realized by
X, which is both a morphism X → idA and a morphism idA → X in C(A).
The isomorphisms F (G(ψ)) ∼= ψ is realized by idA (in both directions).
We give a more general treatment of this example below when we consider
realizability pretriposes and universal objects.

Realizability Pretriposes with Disjunction

Definition 3.4.6. Let C be a p-category. Then we say that C has a weak
initial object if it has a weak initial object in the traditional sense, that is,
if there exists an object 0 in C such that for all objects X ∈ C, there exists
a morphism f : 0→ X in C.

Definition 3.4.7. Let C be a p-category. Then we say that C has weak
binary coproducts if, for any pair of objects X and Y in C, there exists an

object X+Y in C and a diagram X
κ //X + Y Y

κ′oo in Ct such that, for

all diagrams X
f //Z Y

goo in C, there exists a morphism u : X +Y → Z
in C such that

X
κ //

f ##GGGGGGGGG X + Y

u

��

Y
κ′oo

g
{{wwwwwwwww

Z

commutes in C. We refer to the morphisms κ and κ′ as injections. Note
that they are required to be total.

We say that a p-category has weak finite coproducts if it has a weak
initial object and weak binary coproducts.

In case a WCPC-category C has weak finite coproducts, then the weak
realizability tripos over C has disjunction:

Theorem 3.4.8. Let C be a WCPC-category with weak finite coproducts.

Then
UFam(C)

��
Set

is a split pretripos with disjunction.
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Proof. By Theorem 3.4.3 we just have to show that
UFam(C)

��
Set

has fibred finite

coproducts.
In the fibre over I, the initial object is

⊥ = (0, ∅),

where 0 is the weak initial object.

For predicates (A,ϕ1) and (B,ϕ2) over I, let A
κ //A+B B

κ′oo be
the weak coproduct of A and B. Then (A,ϕ1) ∨ (B,ϕ2) is defined to be(

A+B, i 7→ {U(κ)(a) | a ∈ ϕ1(i) } ∪ {U(κ′)(b) | b ∈ ϕ2(i) }
)
.

It is easy to verify that these definitions give split fibred finite coproducts
(the totality of κ and κ′ is used to show (A,ϕ1) ` (A,ϕ1) ∨ (B,ϕ2) and
(B,ϕ2) ` (A,ϕ1)∨(B,ϕ2)); note in particular that they are preserved under
reindexing since reindexing is just composition.

Both of our main examples, the WCPC-category C(A) induced by a PCA
A and the category of algebraic lattices ALat have weak finite coproducts,
as expressed by the following two propositions.

Proposition 3.4.9. Let (A, ·) be a partial combinatory algebra and let C(A)
be the WCPC-category induced by (A, ·). Then C(A) has weak finite coprod-
ucts.

Proof. The weak initial object 0 is the terminal object 1 in Ct, i.e., λx. K.
For any other object X in C, the always undefined partial function is a
morphism from 0 to X.

The weak binary coproduct of objects X and Y is X κ //X + Y Y
κ′oo

with

X + Y = λz. if πz = K then 〈K, X(π′z)〉 else 〈KI, Y (π′z)〉,

which is A-definable in a standard way, and with

κ = λx. 〈K, Xx〉
κ′ = λy. 〈KI, Y y〉.

Note that κ and κ′ are both total, as required.

Suppose now given a diagram X
f //Z Y

goo in C. Then

u = λa. if πa = K then f(π′a) else g(π′a)
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is an A-definable partial function, which is a morphism in C making the
diagram

X
κ //

f ##GGGGGGGGG X + Y

u

��

Y
κ′oo

g
{{wwwwwwwww

Z

commute, as required.

Corollary 3.4.10. Let (A, ·) be a partial combinatory algebra and let C(A)
be the WCPC-category induced by (A, ·). The realizability pretripos over
C(A) has split disjunction.

Proposition 3.4.11. The category ALat has weak finite coproducts.

Remark 3.4.12. The category ALat does not have true finite coproducts
because it is cartesian closed and it has the fixed point property (i.e., every
endomorphism has a fixed point), see [HP90]. Thus, to get the desired
Corollary (3.4.14), it really is important that Proposition 3.4.8 only requires
weak coproducts.

Proof. Any object A in ALat (necessarily with a non-empty underlying set)
is a weak initial object: for any object B, the constant ⊥ function from A
to B is a morphism in ALat.

For the weak coproduct of A and B in ALat, view A and B as objects of

Top0 and let A κ //A+B B
κ′oo be the coproduct of A and B in Top0.

Then use the embedding theorem (see, e.g., [GHK+80, Lemma 3.4, (ii)])
to embed A + B into an algebraic lattice C, via an embedding i. We now

show that A
i◦κ //C B

i◦κ′oo is a weak coproduct in ALat. Let X be any
other algebraic lattice and suppose f : A → X and g : B → X in ALat.
View X, f and g in Top0. Then there exists a unique continuous function
u : A + B → X in Top0 such that f = u ◦ κ and g = u ◦ κ′. Now consider
the following diagram in Top0.

A
κ //

f

  AAAAAAAAAAAAAAAAAA A+B

u

��

� _

i
��

B
κ′oo

g

~~}}}}}}}}}}}}}}}}}}

C

v

��
X.



58 A General Notion of Realizability for Type Theory

Since X is an algebraic lattice, it is a continuous lattice. Hence X is an
injective object in Top0 with respect to subspace embeddings [GHK+80,
Section II.3]. Thus the map A+B

u //X extends along the subspace in-
clusion A+B � � //C to a map v from C to X such that the diagram above
commutes. This completes the proof of the proposition.

Remark 3.4.13. A concrete representation of a weak coproduct

A
i //C B

i′oo

in ALat of A and B can be obtained by letting C = Sigma2 × A × B
(Σ = {⊥ ≤ >}), and letting

i : A→ C = x 7→ ((⊥,>), x,⊥B)
i′ : B → C = x 7→ ((>,⊥),⊥A, x).

Corollary 3.4.14. The realizability pretripos over ALat has split disjunc-
tion.

Proof. By Theorem 3.4.8 and Proposition 3.4.11.

Realizability Pretriposes and Universal Objects

Example 3.4.5 is an instance of a more general phenomenon, which we now
describe. For the remainder of this subsection we assume that the reader
is familiar with tripos theory, see Chapter 5. Let us say that a category C
has a universal object V if all objects X in C are retracts of V . Observe
that C(A) has a universal object, namely idA (as implicitly explained in
Example 3.4.5). We can now show that (when U is faithful) the realizability
pretripos over such a category C has a generic object just in case C has a
universal object.

Theorem 3.4.15. Let C be a WCPC-category and suppose U : C→ Ptl is

a faithful functor. Then C has a universal object if and only if
UFam(C)

��
Set

has

a generic object.

Proof. Suppose C has a universal object V . We then claim that

(V, id : P (UV )→ P (UV ))
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is a generic object for
UFam(C)

��
Set

. To show the claim, suppose that (A,ϕ : I →

P UA) is any predicate in the fibre over I. Then by the assumption on C,
the object A is a retract of V , that is, there are morphisms r and s in C

A
s
// V

roo

such that rs = idA. Since U(rs) = U(r)U(s) = U(id) = id , we have that
U(s) is a total function. Thus P (Us) is a morphism from P (UA) to P (UV )
in Set. We now show that (A,ϕ) ∼= (P (Us) ◦ ϕ)∗(V, id) in the fibre over I,
which completes the proof of the claim. Recall that (P (Us) ◦ ϕ)∗(V, id) =
(V, P (Us)◦ϕ). Clearly s is a realizer for (A,ϕ) ` (V, P (Us)◦ϕ), since U(s)
is total. For the other direction, note that r is a realizer for (V, P (Us)◦ϕ) `
(A,ϕ), since for all i ∈ I, all a ∈ P (Us)(ϕ(i)), we have that a = U(s)(b) for
some b ∈ ϕ, so U(r)(a) = U(r)(U(s)(b)) = b ∈ ϕ.

For the other direction suppose that
UFam(C)

��
Set

is a that there is a weak

generic object (W,ψ : V → P (UW ), over some V ∈ Set. Let A ∈ C be
arbitrary. We show that A is a retract of W to conclude that W is a universal
object in C. Consider the predicate (A,ϕ) over U(A), with ϕ : U(A) →
P (UA) the function a 7→ {a}. Since (W,ψ) is a weak generic object, there
exists a morphism f : U(A)→ V in Set, such that

(A,ϕ) ∼= f∗(W,ψ)

in the fibre over UA. Hence there are morphisms s : A→W and r : W → A
in C such that

∀a ∈ UA. ∀b ∈ ϕ(a). U(s)(b) ↓ and U(s)(b) ∈ ψ(f(a))

and

∀a ∈ UA. ∀b ∈ ψ(f(a)). U(r)(b) ↓ and U(r)(b) ∈ ϕ(a).

Recalling that ϕ(a) = {a} we get that

∀a ∈ UA. U(r)(U(s)(a)) ↓ and U(r)(U(s)(a)) ∈ ϕ(a) = {a}

so

∀a ∈ UA. U(rs)(a) = a

and thus U(rs) = idUA. Since U is faithful by assumption, we conclude that
rs = idA in C, thus completing the proof that A is a retract of W .
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Corollary 3.4.16. Let C be a WCPC-category with weak finite coproducts
and suppose U : C→ Ptl is a faithful functor. Then C has a universal object

if and only if
UFam(C)

��
Set

is a tripos.

Proof. Immediate from Theorems 3.4.15 and 3.4.8.

Remark 3.4.17. For C be a WCPC-category, the tripos-to-topos construc-

tion applied to
UFam(C)

��
Set

yields a category which is equivalent to the exact

completion (Asm(C) )ex/reg of Asm(C). Indeed Asm(C) is a reflective sub-
category of (Asm(C) )ex/reg. Hence some of the results we present in the
following (such as Theorem 3.5.1) could also be obtained by showing that
(Asm(C) )ex/reg has certain good properties which are then reflected down
to Asm(C). For concreteness, however, we have decided to show directly
that Asm(C) has the properties we are interested in. For more remarks on
the relation to categories obtained via exact completions, see Section 3.8.

In fact, we can strengthen the above results to characterize exactly when the

tripos-to-topos construction applied to
UFam(C)

��
Set

yields a topos. To do so we

apply a result of Pitts who characterized (in 1982) when the tripos-to-topos
construction applied to a pretripos with disjunction yields a topos [Pit99].
(Pitts calls a pretripos with disjunction a hyperdoctrine.) Pitts showed
in particular that the tripos-to-topos construction applied to the pretripos
UFam(C)

��
Set

(for C a WCPC-category) yields a topos iff the following axiom

holds:5

Axiom 3.4.18 (CA). For all sets X there is a set PX and a predicate
InX ∈ UFam(C)X×PX such that, for any set I and R ∈ UFam(C)X×I , the
sentence

∀i : I. ∃s : PX. ∀x : X. InX(x, s) ⊃⊂ R(x, i)

is satisfied in
UFam(C)

��
Set

.

5In fact, Pitts assumed that the pretripos has disjuction, but going through his proof
one sees that disjunctions are not needed.
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Theorem 3.4.19. Let C be a WCPC-category and suppose U : C → Ptl

is a faithful functor. Then C has a universal object if and only if
UFam(C)

��
Set

satisfies the axiom (CA).

Proof. By Theorem 3.4.15, if C has a universal object, then
UFam(C)

��
C

is a

tripos and thus it also satisfies the axiom (CA).

For the other direction, suppose that
UFam(C)

��
C

satisfies the axiom (CA).

Let X = 1 and let Σ denote the object PX in (CA). Let V ∈ C be the
underlying object of In = In1, which exists qua (CA). We show that V
is a universal object in C. Let A ∈ C be arbitrary, let I = UA and let
R(a) = {a}. By (CA) the following sentence is valid in the realizability
pretripos:

∀a : UA. ∃s : Σ. In(s) ⊃⊂ R(a).

Thus there is a realizer in

⋂
a∈UA

(⋃
s∈Σ

In(s) ⊃⊂ R(a)

)
⊆ U([V ⇀ A]× [A ⇀ V ]).

It follows, as in the proof of Theorem 3.4.15, that A is a retract of V .

Remark 3.4.20. When I first tried to show the theorem above (using the
same idea as is currently employed in the proof), I failed to see that what
I had written down was actually a proof. It was not until I saw a very
similar proof of Peter Lietz and Thomas Streicher [Lie] that I realized that
it worked. See Section 3.9 for a description of the relation of our work to
the work of Lietz and Streicher.

Corollary 3.4.21. For C be a WCPC-category and U : C→ Ptl a faithful

functor, the tripos-to-topos construction applied to
UFam(C)

��
Set

yields a topos

iff C has a universal object.

A further corollary is that the tripos-to-topos construction applied to the
realizability tripos induced by the category of algebraic lattices does not
produce a topos, since clearly ALat does not have a universal object (for
cardinality reasons).
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Realizability Preriposes and Splitting of Total Idempotents

One may also observe that
UFam(C(A))

��
Set

is equivalent, as a preorder fibra-

tion over Set, to
UFam(M(A))

��
Set

, where M(A) is the monoid of partial A-

definable functions. This observation is also an instance of a more general
phenomenon, which we now describe.

Let C be a category and let U : C→ Ptl be a functor. Define Split(C, U)
to be the category with objects the idempotents of C that are mapped by U
into Set and with morphisms f : X → Y morphisms f in C satisfying that
Y fX = f . The identity on X is X itself and composition of morphisms is
composition in C. The functor U induces a functor Split(U) : Split(C, U)→
Ptl6 defined by setting Split(U)(X) equal to the image of U(X) for an
object X (recall that X is an idempotent X : A → A in C) and by setting
Split(U)(f) = f for a morphism f . Observe that C(A) is Split(M(A), U0) for
U0 : M(A)→ Ptl the inclusion functor and that U : C(A)→ Ptl as defined
on Page 39 is Split(U0).

Proposition 3.4.22. Let C be a category and let U : C→ Ptl be a functor.

Then
UFam(C)

��
Set

is equivalent, as a preorder fibration, to
UFam(Split(C))

��
Set

.

Proof. The proof is essentially as in Example 3.4.5 (define functors F and
G in the same manner to prove the equivalence).

3.5 Assemblies over Pretriposes

Let
E

p
��

Set
be a pretripos. Recall from Remark 3.4.2(ii) that p then in particular

is a regular fibration. Therefore we may construct the category of assemblies,
Asm(p), over it. In this section we show that Asm(p) is locally cartesian
closed. Moreover, we show that if p has disjunction, then Asm(p) has finite
coproducts.

Theorem 3.5.1. Let
E

p
��

Set
be a pretripos. Then Asm(p) is locally cartesian

closed.
6The functor Split(U) really arises because Split(−) in a suitable sense is a 2-functor

and Split(Ptl, id) is equivalent to Ptl.
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Proof. By Proposition 3.3.3 we already know that Asm(p) is regular, so
it suffices to consider local closure. It suffices to show, see, e.g., [Jac99,
Proposition 1.9.8], that for each morphism u : (I,EI)→ (J,EJ), the pullback
functor

u∗ : Asm(p)/(J,EJ)→ Asm(p)/(I,EI)

has a right adjoint
∏
u. We define

∏
u as follows. Let ϕ : (X,EX)→ (I,EI)

be an object over (I,EI). Then set
∏
u(ϕ) def= ψ, where the domain of ψ is( ∐

j∈J

{
f : { i ∈ I | u(i) = j } → X | ϕ(f(i)) = i and E ′j(f) valid in p

}
,

E
)
,

and

E ′j(f) def= ∀i : { i ∈ I | u(i) = j }. EI(i) ⊃ EX(f(i))

E (j, f) def= EJ(j) ∧ E ′j(f)

ψ(j, f) def= j.

It is easy to see that the domain of ψ is a well-defined object and that ψ is
a well-defined morphism into (J,EJ).

For a morphism f : ϕ→ ϕ′ in Asm(p)/(I,EI), we define∏
u(f) def= (j, g) 7→ (j, f ◦ g).

It is straightforward to verify that this operation is well-defined.
Let ϕ and ψ =

∏
u(ϕ) be as above and suppose ζ : (Y,EY ) → (J,EJ).

We are to show (confusing an object in the slice category with its domain)
that

u∗(Y,EY ) // (X,EX)
====================
(Y,EY ) //

∏
u(X,EX)

in Asm(p)/(I,EI)

in Asm(p)/(J,EJ),

where

u∗(Y,EY ) = ({ (i, y) | u(i) = ζ(y) },EI ∧ EY ).

Suppose f : u∗(Y,EY ) → (X,EX). Then define its transpose to be f̂ =
y 7→ (ζ(y), λi. f(i, y)). Note that f̂ is a morphism: under the assumption
that EY (y), we are to show that E (f̂(y)), that is, E (ζ(y), λi. f(i, y)) =
EJ(ζ(y)) ∧ E ′ζ(y)(f). But EJ(ζ(y)) holds as ζ is a morphism and

y : Y | EY (y) ` E ′ζ(y)(f) = ∀i : { i ∈ I | u(i) = ζ(y) }. EI(i) ⊃ EX(f(i, y)
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holds by the assumption on f . Thus f̂ is a morphism in Asm(p). Moreover,
it is a morphism over (J,EJ) because clearly ψf̂ = ζ.

For the other direction, suppose that g : (Y,EY ) →
∏
u(X,EX) over

(J,EJ). Then define ǧ : u∗(Y,EY ) → (X,EX) by (i, y) 7→ π′(g(y))(i). Note
that the application of π′(g(y)) to i is well-defined, that is, i is really in
the domain of π′(g(y)) because u(i) = ζ(y) and π(g(y)) = ψ(g(y)) = ζ(y)
since g is a map from ζ to ψ over (J,EJ). To verify that ǧ is a well-defined
morphism in Asm(p) we are to show that

{ (i, y) ∈ I × Y | u(i) = ζ(y) } | EI(i) ∧ EY (y) ` EX(π′(g(y))(i)),

but this holds because g is a morphism. Finally, ǧ is a morphism over (I,EI),
that is, ϕ◦ǧ = u∗(ζ) because u∗(ζ)(i, y) = i and ϕ◦ǧ(i, y) = ϕ(π′(g(y))(i)) =
i since π′(g(y))(i) ∈ ϕ−1(i) by assumption.

We have now defined the transposes. It is straightforward to see that
they constitute an isomorphism, that is, ˇ̂

f = f and ˆ̌g = g (for the latter use
that g is a map in the slice category). The correspondence is natural and
we thus have the required adjunction.

Remark 3.5.2. For
E

p
��

Set
a pretripos, the functor ∇ : Set → Asm(p) (see

Definition 3.3.4) preserves exponentials and Set is an exponential ideal of
Asm(p) since Set is a full reflective subcategory and the reflector U pre-
serves finite products, see Propositions 3.3.5 and 3.3.6.

Theorem 3.5.3. Let
E

p
��

Set
be a pretripos with disjunction. Then Asm(p)

has finite coproducts.

Proof. The initial object is (∅,⊥∅) (trivially an object in Asm(p) since there
are no global elements). For any object (X,EX), the unique function ! from
∅ to X in Set is also (the unique) morphism in Asm(p) from (∅,⊥∅) to
(X,EX), since trivially, x : ∅ | ⊥∅ ` EX(!(x)).

The coproduct of (X,EX) and (Y,EY ) is (X + Y,E ), where

X
κ //X + Y Y

κ′oo

is the usual set-theoretic coproduct and where

v : X + Y | E (v) def=
(
∃x : X. v = κ(x) ∧ EX(x)

)
∨(

∃y : Y. v = κ′(y) ∧ EY (y)
)
.
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Note that (X + Y,E ) is indeed a well-defined object and that clearly

κ : (X,EX)→ (X + Y,E ) and κ : (Y,EY )→ (X + Y,E )

are morphisms in Asm(p). Suppose

f : (X,EX)→ (Z,EZ) and g : (Y,EY )→ (Z,EZ).

Then there exists a unique map u : X + Y → Z in Set such that u ◦ κ = f
and u◦κ′ = g. It suffices to verify that u is also a map (X+Y,E )→ (Z,EZ)
in Asm(p), i.e., that

v : X + Y | E (v) ` EZ(u(v))

holds in the logic of p. But that is easy to see, arguing in the internal
language of p and using that external equality implies internal equality.

It follows from Corollary 3.4.10 that the category of assemblies constructed
over the realizability pretripos over the WCPC-category induced by a PCA
has finite coproducts. Likewise, by Corollary 3.4.14 we get that the category
of assemblies constructed over the realizability pretripos over the category
of algebraic lattices has finite coproducts.

3.6 Assemblies over Realizability Pretriposes

Let C be a WCPC-category and let
UFam(C)

p
��

Set
be the realizability pretripos

over C, cf. Section 3.4.1. In the preceding section we saw that Asm(p)
then is locally cartesian closed. Referring to Seely’s [See84] seminal work,
we therefore have a model of dependent type theory. However, there are
some problems with interpreting dependent type theory directly in locally
cartesian closed categories. The main problem is to make sure that the
actual interpretation function is well-defined, which is problematic because
the substitution functors (pullback functors) do not commute on the nose
but only up to (canonical) isomorphism. See for example, [Luo94, Pit95,
Mog95, Reu95, Hof94] for a more thorough discussion of this issue.

We shall therefore make a point of describing a model of dependent
type theory in a so-called “split” way, so as to avoid the problems with
interpreting dependent type theory.

For the technical development, we make use of B. Jacobs’ fibrational
description of models of dependent type theory [Jac91, Jac93, Jac99], which
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is related to display-map categories [Tay86, HP89], categories with attributes
[Car78, Mog91], D-categories [Ehr88], and thorough fibrations [Pav90]. See
[Jac93] or [Jac99] for a comprehensive introduction. We recall the needed
definitions below in Section 3.6.1 and then in Section 3.6.2 we show how
to define a split fibration which is equivalent to the codomain on Asm(p)
and which thus models dependent type theory. Our treatment generalizes
the results for assemblies and modest sets over partial combinatory algebras
(see, for example, [Jac99]) and assemblies and modest sets over algebraic
lattices [BBS98], see Examples 3.6.10 and 3.6.11 in Section 3.6.2.

In Appendix A we present the calculus of dependent type theory and
sketch how it is interpreted in very concrete terms for the particular case
of modest sets over algebraic lattices (see Section 3.7 for modest sets). For
the reader who is not familiar with closed comprehension categories and the
interpretation of dependent type theory in such, it may be useful to read
Appendix A in parallel with the more abstract treatment in this section.

In Subsection 3.6.3 we show that for assemblies over realizability pretri-
poses with disjunction, the finite coproducts in Asm(p) (see Theorem 3.5.3
in the previous section) are disjoint and stable under pullback.

3.6.1 Comprehension Categories

In this subsection we recall the notion of a comprehension category and
some accompanying definitions from [Jac99, Section 9.3] and [Jac93]. In
the mentioned references, the connection between comprehension categories
and so-called weakening and contraction comonads is described in detail;
we shall not need those concepts here. We remark that the definition of a
comprehension category is inspired by Lawvere’s categorical notion of com-
prehension [Law68].

Definition 3.6.1. Let
E

p
��
B

be a fibration and let P : E → B
→ be a functor

satisfying

1. cod ◦P = p : E→ B;

2. for each cartesian map f in E, the induced square P(f) in B is a
pullback.

Such a functor P will be called a comprehension category (on p). We
shall often write {−} = dom ◦P : E → B. Thus P is a natural transforma-
tion {−} ⇒ p.
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Such a comprehension category P will be called full if P is a full and
faithful functor E → B

→. And it is called split (or cloven), whenever the
fibration cod ◦P = p is split (or cloven).

Note that it is not required that the base category B has all pullbacks.

Definition 3.6.2. Consider a comprehension category P : E → B
→ on

E

p
��
B

and a fibration
D

q
��
B

in a situation

D

q

��
E

{−}
))

p

55
�� ��
�� P B.

1. We say that q has P-products (resp. coproducts) if there is for each
X ∈ E an adjunction

(P X)∗ a
∏
X (resp.

∐
X a (P X)∗)

plus a Beck-Chevalley condition: for each cartesian map f : X → Y in
E, the canonical natural transformation

(pf)∗
∏
Y ⇒

∏
X {f}

∗ (resp.
∐
X {f}

∗ ⇒ (pf)∗
∐
Y )

is an isomorphism.

2. We say that q has P-equality if for each X ∈ E there is an adjunction

EqX a δ∗X ,

where δX is the unique mediating diagonal

〈id , id〉 : {X} → {(P X)∗(X)}

in

{X}
id

((

id

""

δX

&&MMMMMM

{(P X)∗(X)} π′ //

π

��

{X}

PX
��

{X}
PX

// pX
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where π = P((P X)∗(X)) and π′ = {P X(X)} are the pullback pro-
jections. Additionally, there is a Beck-Chevalley requirement: for each
cartesian map f : X → Y ∈ E, the canonical natural transformation

EqX{f}
∗ ⇒ {f ′}∗EqY

should be an isomorphism—where f ′ is the unique morphism in E over
{f} in

(P X)∗(X)
f ′ //___

��

(P Y )∗(Y )

��
X

f // Y

Example 3.6.3. Let B be a category with finite limits. Then id : B→ → B
→

is a comprehension category on the codomain fibration
B
→

��
B

. Products and

coproducts with respect to this comprehension category are products and
coproducts along all morphisms in B. The diagonal on a family X → I is
the mediating map X → X ×I X.

Convention 3.6.4. Let P : E → B
→ be a comprehension category and

write p = cod ◦P : E → B for the fibration involved. For an object X ∈ E,
the corresponding morphism P X in B will be called a projection or a dis-
play map. We therefore often write πX for P X, when the functor P is
understood from context. An induced reindexing functor π∗X = (P X)∗ will
be called a weakening functor.

Definition 3.6.5. A fibration
E

p
��
B

with a terminal object functor 1: B→ E

is said to admit comprehension if this functor 1 has a right adjoint, which
we commonly write {−} : E→ B. We then have adjunctions

p a 1 a {−}.

In this situation we get a functor E → B
→ by X 7→ p(εX), where εX is

the counit 1{X} → X of the adjunction (1 a {−}) at X. This functor is
actually a comprehension category, see [Jac99, Page 574] or [Jac93]. In such
a situation, we shall call this functor a comprehension category with
unit. And we shall say that p admits full comprehension if this induced
comprehension category is full (i.e., E→ B

→ is a full and faithful functor).
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Definition 3.6.6. Let P : E → B
→ be a comprehension category. We say

that P has products if its underlying fibration
E

p
��
B

—where p = cod ◦P—

has products with respect to the comprehension category P : E → B
→, see

Definition 3.6.1.

Similarly we say that P has coproducts if the fibration
E

��
B

has coproducts

with respect to P.

And P has equality if
E

��
B

has equality with respect to P.

Definition 3.6.7. Let P : E→ B
→ be a comprehension category.

1. We say that P has strong coproducts if it has coproducts as above
in such a way that the canonical maps κ are isomorphisms in

{Y } κ
∼=
//

π

��

{
∐
X(Y )}

π

��
{X} π

// pX.

2. Similarly, P has strong equality if we have canonical isomorphisms

{Y } κ
∼=
//

π

��

{EqX(Y )}

π

��
{X}

δ
// {π∗X(X)}.

The canonical maps {Y } → {
∐
X(Y )} and {Y } → {EqX(Y )} arise by ap-

plying the functor {−} = dom ◦P to the composites

Y
η−→ π∗X

∐
X(Y ) −→

∐
X(Y ) and Y

η−→ δ∗XEqX(Y ) −→ EqX(Y ).

Definition 3.6.8. A closed comprehension category (CCompC) is a
full comprehension category with unit, which has products and strong co-
products, and which has a terminal object in its base category. It will be
called split if all of its fibred structure is split.

For details of how to interpret dependent type theory in a closed com-
prehension category (and a detailed account of the exact rules of dependent
type theory), see [Jac99]. See also Appendix A for a concrete example.
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3.6.2 A Model of Dependent Type Theory

Let C be a WCPC-category and let
UFam(C)

p
��

Set
be the realizability pretripos

over C. Note that an object in Asm(p) is of the form (X, (A,E )), where X
is an object in Set and (A,E ) is an object in UFam(C)X , that is, A is an
object in C and E is a function X → P (UA).

Convention 3.6.9. We write objects (X, (A,E )) ∈ Asm(p) as triples (X,A,E ),
leaving out a pair of parentheses.

Note that the condition on objects (X,A,E ) in Asm(p) regarding global
elements now simplifies to the familiar [Lon94, BBS98] condition ∀x ∈
X. E (x) 6= ∅. Indeed the following two examples show how our setup spe-
cializes to the cases of assemblies over PCA’s and over algebraic lattices.

Example 3.6.10. Let A be a PCA. Recall from Example 3.4.5 that the

induced realizability pretripos
UFam(C(A))

p
��

Set
is equivalent to the standard re-

alizability tripos over a A. Since the first-order structure is defined categor-
ically, it is preserved by the equivalence functors. From the preceding it is
easy to verify that the category Asm(p) of assemblies over p is equivalent to
the usual category of assemblies Asm(A) over A as defined, e.g., in [Lon94].

Example 3.6.11. Let
UFam(ALat)

p
��

Set
be the realizability pretripos over ALat.

Then Asm(p) is equivalent to the category of assemblies over ALat as
defined in [BBS98].

Convention 3.6.12. For C a WCPC-category, we often write Asm(C) for
Asm(p) where p is the realizability pretripos over C. (This choice of notation
is in accordance with [BBS98], where we write Asm(ALat) for the category
of assemblies over ALat.)

We now proceed to show how to define a split closed comprehension
category for the category of assemblies over a realizability pretripos, thus
obtaining a model of dependent type theory. Our definitions and results are
generalizations of corresponding results for assemblies over partial combina-
tory algebras and assemblies over algebraic lattices, see [Jac99] and [BBS98].

Convention 3.6.13. For the remainder of this section, let C be a WCPC-

category and let
UFam(C)

p
��

Set
be the realizability pretripos over C.
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Definition 3.6.14. Define UFam(Asm(p)) to be the category with

objects triples (I,A, (Xi,Ei)i∈XI ), where

I = (XI , AI ,EI) ∈ Asm(p),

and (Xi, A,Ei) ∈ Asm(p), for all i ∈ XI .

morphisms (I,A, (Xi,Ei)i∈XI )→ (J,B, (Yj ,E ′j)j∈XJ ), with

I = (XI , AI ,EI) and J = (XJ , AJ ,EJ),

are pairs

(f, (fi)i∈XI )

such that f : I → J in Asm(p) and such that

∅ | ∅ ` ∀i : XI . ∀x : Xi. EI(i) ⊃ (Ei(x) ⊃ E ′f(i)(fi(x)))
(3.4)

is valid in the logic of p.

The identity on object (I, A, (Xi,Ei)i∈XI ) with I = (XI , AI ,EI), is

(id , (id i)i∈XI ).

The composition of (f, (fi)i∈XI ) and (g, (gj)j∈XJ ) is (g ◦ f, (gf(i) ◦ fi)i∈XI ).

Remark 3.6.15. Categorically, the second quantifier in (3.4) is given as ∀π
with π the projection

∐
i∈XI Xi → XI in Set. The U in UFam(Asm(p))

refers to the fact that a family (I, A, (Xi,Ei)i∈XI ) over an object I is uniform
in the sense that all the existence predicates Ei have the same underlying
object A ∈ C as object of realizers.

Proposition 3.6.16. The forgetful functor UFam(Asm(p)) → Asm(p)
given by (I,A, (Xi,Ei)i∈XI ) 7→ I and (f, (fi)i∈XI ) 7→ f is a split fibration
which is equivalent, as a fibration, to the codomain fibration over Asm(p).

Proof. Let (J,B, (Yj ,E ′j)j∈XJ ), with J = (XJ , AJ ,EJ), be an object in the
category UFam(Asm(p)) and suppose u : I → J in Asm(p) with I =
(XI , AI ,EI). Then we can form a family u∗(J,B, (Yj ,E ′j)j∈XJ ) over I as
(I,B, (Yu(i),E ′u(i))i∈XI ). There is then an associated cartesian lifting

(u, (id)i∈XI ) : (I,B, (Yu(i),E
′
u(i))i∈XI )→ (J,B, (Yj ,E ′j)j∈XJ )
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over u. This choice of liftings forms a splitting.
Define the functor P as in

UFam(Asm(p)) P //

((PPPPPPPPPPPP
Asm(p)→

codxxqqqqqqqqqq

Asm(p)

by mapping an object (I,A, (Xi,Ei)i∈XI ), with I = (XI , AI ,EI), to

(
∐
i∈XI Xi, AI ×A,E ) π→ I,

with

(i, x) :
∐
i∈XI Xi ` E (i, x) def= EI(i) ∧ Ei(x).

(In more detail, note that Ei : Xi → P (UA) so may be viewed as a function∐
i∈XI Xi → P (U(A)), (i, x) 7→ Ei(x), i.e., a predicate in the fibre over∐
i∈XI Xi in the fibration p. Furthermore, EI : XI → P (UAI) is a pred-

icate over XI , so may be reindexed to a predicate π∗(EI) over
∐
i∈XI Xi

(where π :
∐
i∈XI Xi → XI). Finally, E can be defined as the predicate over∐

i∈XI Xi which is the conjunction of π∗(EI) and Ei. Note that E thus is a
function

∐
i∈XI Xi → P (U(AI ×A)).)

The functor P maps a morphism

(u, (fi)i∈XI ) : (I, A, (Xi,Ei)i∈XI )→ (J,B, (Yj ,E ′j)j∈XJ ),

with I = (XI , AI ,EI) and J = (XJ , AJ ,EJ), to the square

(
∐
i∈XI Xi, AI ×A,E )

{u,f} //

π

��

(
∐
j∈XI Yj , AJ ×B,E

′)

π

��
I u

// J

where {u, f} is the function (i, x) 7→ (u(i), fi(x)). We are to show that
{u, f} is a well-defined morphism in Asm(p), i.e., that

(i, x) :
∐
i∈XI Xi | E (i, x) ` E ′(u(i), fi(x))

holds in the logic of p. Unwinding the definitions this amounts to showing
that

(i, x) :
∐
i∈XI Xi | EI(i) ∧ Ei(x) ` EJ(u(i)) ∧ E ′u(i)(fi(x))
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holds in p, but this holds since (u, (fi)i∈XI ) is a morphism in the category
UFam(Asm(p)).

One can now verify that P is a full and faithful fibred functor. Moreover
we can define a fibred functor Q : Asm(p)→ → UFam(Asm(p)) mapping
ϕ : X → I, with I = (XI , AI ,EI) and X = (XX , AX ,EX) to the family
(I, AX , (Xi,Ei)i∈XI ) with Xi = ϕ−1(i) and Ei(x) = EX(x). A morphism
(u, f) as in

X
f //

ϕ

��

Y

ψ
��

I u
// J

is mapped by Q to (u, (f)i∈XI ). It can then be verified that Q is also a
fibred functor and that PQ ∼= id vertically and that QP ∼= id vertically.

Consider the fibration
UFam(Asm(p))

��
Asm(p)

. It is easy to see that

(I, 1C, (1Set,>1)i∈XI )

is the terminal object in the fibre over I = (XI , AI ,EI), where 1C is the
terminal object in C and 1Set = {∗} is the terminal object in Set. The
terminal object functor

1: Asm(p)→ UFam(Asm(p))

maps an object I = (XI , AI ,EI) to the terminal object over I and a mor-
phism u : I → J to the morphism (u, (λx. ∗)i∈XI ). Define the functor {−}
by

{−} = dom ◦P : UFam(Asm(p))→ Asm(p).

Lemma 3.6.17. The functor {−} is right adjoint to the terminal object
functor 1. Moreover, 1 is full and faithful.

Proof. It is straightforward to see that, for any I ∈ Asm(p), we have I ∼=
{1(I)}. Thus the unit η : id ⇒ {} ◦ 1 of the adjunction is an isomorphism,
and hence the left adjoint 1 is full and faithful [Mac71, dual of Theorem 1,
Page 88].

Since P (defined in the proof of Proposition 3.6.16) is full and the terminal
object functor has a right adjoint we get the following corollary.
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Corollary 3.6.18. The functor P : UFam(Asm(p))→ Asm(p)→ is a split
full comprehension category with unit.

We now proceed to show that the comprehension category has split prod-
ucts and strong split coproducts. To this end, let X = (I, A, (Xi,Ei)i∈XI ) be
a family over I = (XI , AI ,EI) and let πX : {X} = (

∐
i∈XI Xi, AI×A,E )→ I

be the associated projection. We are to show that π∗X has a right adjoint∏
X , which satisfies the Beck-Chevalley condition. Define

∏
X

(
(
∐
i∈XI Xi, AI ×A,E ), C, (Zk,E ′k)k∈

∐
i∈XI

Xi

)
to be (

I,W, (Ui,E ′′i )i∈XI
)
,

where W = [1 ⇀ [A ⇀ C]] is the weak partial exponential of 1 and and
[A ⇀ C], the weak partial exponential of A and C in C and where

Ui = { f : Xi →
⋃
x∈Xi

Z(i,x) | ∀x ∈ Xi. f(x) ∈ Z(i,x) and E ′′i (f) is valid in p }

f : Ui | E ′′i (f) def= ∀x : Xi. Ei(x) ⊃ E ′(i,x)(f(x)).

Remark 3.6.19. It may be useful to explicitly state how the existence
predicate E ′′i is interpreted in the realizability pretripos. Recall that for
each i ∈ XI , we are given a set Xi (an object in the base category) and a
predicate

(A,Ei) ∈ UFam(C)Xi

in the fibre over Xi. We omit the A in the following. Moreover, for each
(i, x) ∈

∐
i∈XI Xi we are given a predicate

(C,E ′(i,x)) ∈ UFam(C)Z(i,x)

in the fibre over Z(i,x). We omit the C in the following. Consider the
following diagram

Ei (π′∗Ei ⊃ a∗E ′(i,x)) E ′(i,x) ∀π(π′∗Ei ⊃ a∗E ′(i,x))

Xi Ui ×Xi
π′oo a //

π

33Z(i,x) Ui,
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where a is the function (f, x) 7→ f(x). The bottom row is in the base
category and the columns above each object in the base shows objects in
the fibre over the corresponding base object. For example, Ei is above Xi

because Ei is in the fibre over Xi. The predicates Ei and E ′(i,x) are reindexed
to the fibre over Ui × Xi, as shown, and the implication of the resulting
predicates is formed there. Then the ∀π functor is applied to get the resulting
predicate over Ui. This is the predicate E ′′i defined logically above. Note
that π′∗Ei and a∗E ′(i,x) have the same underlying objects of realizers (A and
C) as Ei and E ′(i,x). By the definition of ⊃ in the realizability pretripos, the
underlying object of realizers for (π′∗Ei ⊃ a∗E ′(i,x)) is the weak exponential
[A ⇀ C] of A and C. Then W = [1 ⇀ [A ⇀ C]] is the underlying object of
realizers for the resulting predicate obtained by applying ∀π. That explains
why we above use W as the object of realizers for the family (Ui,E ′′i )i∈XI .

The action of
∏
X on a morphism (id , (f(i,x))(i,x)∈

∐
i∈XI

Xi
) is defined to

be (id , (g 7→ λx ∈ Xi. f(i,x)(g(x)))i∈XI ), which is easily seen to be a well-
defined morphism.

We now proceed to show that we have an adjunction

UFam(Asm(p))I

π∗X

⊥
//
UFam(Asm(p)){X},∏

X

oo

that is,

π∗X (I,B, (Yi,Ei)i∈XI ) //
(
{X}, C, (Zk,E ′k)k∈

∐
i∈XI

Xi

)
==============================================
(I,B, (Yi,Ei)i∈XI ) //

∏
X
(
{X}, C, (Zk,E ′k)k∈

∐
i∈XI

Xi

)
Using the definitions of π∗X and

∏
X we are to show(

{X}, B, (Yi,Ei)(i,x)∈
∐

i∈XI
Xi

)
//
(
{X}, C, (Zk,E ′k)k∈

∐
i∈XI

Xi

)
====================================================

(I,B, (Yi,Ei)i∈XI ) // (I,W, (Ui,E ′′i )i∈XI )

Thus suppose (id , (g(i,x))(i,x)∈
∐

i∈XI
Xi

) is a morphism

(
{X}, B, (Yi,Ei)(i,x)∈

∐
i∈XI

Xi

)
//
(
{X}, C, (Zk,E ′k)k∈

∐
i∈XI

Xi

)
.



76 A General Notion of Realizability for Type Theory

We define the transpose of this morphism to be

(id, (y 7→ λx ∈ XI . g(i,x)(y))i∈XI ).

We have to show that it is a well-defined morphism from (I,B, (Yi,Ei)i∈XI )
to (I,W, (Ui,E ′′i )i∈XI ) in UFam(Asm(p))I . Thus we are to show that

∅ | ∅ ` ∀i : XI . ∀y : Yi. EI(i) ⊃ (Ei(y) ⊃ E ′′i (λx ∈ XI . g(i,x)(y)))

is valid in the logic of the realizability pretripos p. Arguing in the logic of p,
let i : XI and y : Yi and suppose that EI(i) and Ei(y). Then for any x : Xi

such that Ei(x) we have, by the assumption that (id , (g(i,x))(i,x)∈
∐

i∈XI
Xi

)

is a morphism, that E ′(i,x)(g(i,x)(y)), as required by the definition of E ′′i .
For the other transpose, suppose that (id , (hi)i∈XI ) is a morphism from

(I,B, (Yi,Ei)i∈XI ) to (I,W, (Ui,E ′′i )i∈XI ) in UFam(Asm(p))I . We define
its transpose to be

(id , (y 7→ hi(y)(x))
(i,x)∈

∐
i∈XI

Xi
).

This is a well-defined morphism because, arguing in the logic of the real-
izability pretripos p, for all (i, x) :

∐
i∈XI Xi, for all y : Yi, supposing that

E (i, x) and Ei(y) we have that E ′(i,x)(hi(y)(x)), by the assumption that
(id , (hi)i∈XI ) is a morphism.

It is straightforward to verify that the transposition operations are in-
verses and suitably natural. (The point is that the transposes are as in the

family fibration
Fam(Set)

��
Set

(see [Jac99]); all we really need to verify is that

the transposes are well-defined morphisms but this we have already done.)
Thus we have now shown that π∗X a

∏
X .

For the Beck-Chevalley condition we are to show that for a pullback

(
∐
i∈XI Xu(i), AI ×B,E )

{u,id} //

πX

��

(
∐
j∈XJ Xj , AJ ×B,E ′)

πY

��
I u

// J

in Asm(p), we have that the canonical natural transformation

u∗
∏
Y ⇒

∏
X {u, id}

∗

is an identity (not only iso, because we claim to have split products). This
is tedious but straightforward to verify.
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For the comprehension category to have strong split coproducts (mod-
elling dependent sums) we need, with notation as in the previous para-
graph, to have left adjoints

∐
X to π∗X for projections πX , satisfying a Beck-

Chevalley condition. Define∐
X

(
(
∐
i∈XI Xi, AI ×A,E ), C, (Zk,E ′k)k∈

∐
i∈XI

Xi

)
to be (

I,A× C, ({ (x, z) | x ∈ Xi and z ∈ Z(i,x) }i,E ′′i )i∈XI
)
,

where, for all i ∈ XI ,

(x, z) : { (x, z) | x ∈ Xi and z ∈ Z(i,x) }i | E ′′i (x, z) def= Ei(x) ∧ E ′(i,x)(z).

On a morphism (id , (f(i,x))(i,x)∈
∐

i∈XI
Xi

) we define
∐
X to give

(id , ((x, z) 7→ (x, f(i,x)(z)))i∈XI ),

which is easily seen to be a well-defined morphism.
We leave the verification of the adjunction

∐
X a π∗X to the reader.

(Again, the proof is essentially as for
Fam(Set)

��
Set

and one just has to verify

that the transposes are well-defined morphisms by arguing in the logic of
the realizability pretripos p.)

Again it is straightforward to verify that the Beck-Chevalley condi-
tion holds, i.e., referring to the pullback in the previous paragraph, that∐
X {u, id}

∗ ⇒ u∗
∐
Y is an identity. This shows then that we have split

coproducts. To have strong split coproducts, we have to show that the
canonical maps κ in(∐

(i,x)∈
∐
i∈XI

Xi
Xi, (AI ×A)× C,E

)
κ //

π

��

(∐
i∈XI { (x, z) | x ∈ Xi, z ∈ Z(i,x) }, AI × (A× C), E′

)
π

��
(
∐
i∈XI Xi, AI ×A,E

′′)
πX

// I

is an isomorphism. But κ is just the map ((i, x), z) 7→ (i, (x, z)) which clearly
has an inverse. Hence we have strong coproducts.

In summa, we have proved the following theorem.

Theorem 3.6.20. The functor P : UFam(Asm(p))→ Asm(p)→ is a split
closed comprehension category. Hence, we have a split model of dependent
type theory.
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3.6.3 Stable and Disjoint Coproducts

By Theorem 3.5.3 we know that the category of assemblies constructed
over a pretripos with disjunction has finite coproducts. In this subsection
we prove that if the pretripos is a weak realizability tripos, then the finite
coproducts are stable and disjoint. Stability and disjointness are important
for the interpretation of logic by means of subobjects. We begin by recalling
(e.g., from [CLW93]) the definition of stability and disjointness.

Definition 3.6.21. In a category with finite coproducts and pullbacks along
injections, coproducts are said to be disjoint if for any finite sum Y =
Y1 + · · · + Yn, the pullback Yi ×Y Yj is isomorphic to 0 (the initial object,
i.e., the empty sum) whenever i 6= j, and all injections are monic:

0 ∼= Yi ×Y Yj //

��

Yj
��

��
Yi // // Y.

Definition 3.6.22. In a category with finite sums and pullbacks along their
injections, a coproduct diagram

X
κ // X + Y Y

κ′oo

is said to be universal or stable if pulling it back along any morphism into
X + Y gives a coproduct diagram.

Theorem 3.6.23. Let C be a WCPC-category with weak finite coproducts

and let
UFam(C)

p
��

Set
be the induced realizability pretripos with disjunction. Then

Asm(p) has stable and disjoint finite coproducts.

Proof. By Theorem 3.5.3 it suffices to show that the coproducts are stable
and disjoint. Disjointness follows from disjointness of coproducts in Set
and the explicit description of pullbacks and coproducts in Asm(p). For
stability we reason as follows. Consider the following diagram in Asm(p).

P //

π

��

κP

xxrrrrrrrrrrrr (X,A,EX)

κ

��
P +Q //___ (Z,C,EZ)

f // (X + Y, V,E )

Q //

π

OO

κQ

ffLLLLLLLLLLLL
(Y,B,EY ),

κ′

OO
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where P is the pullback of (X,A,EX) along f and Q is the pullback of
(Y,B,EY ) along f and P + Q is the coproduct of P and Q. We are to
show that P //(Z,C,EZ) Qoo is a coproduct diagram. We do this by
showing that (Z,C,EZ) is isomorphic to P +Q. By the universal property
of P + Q, there is a unique morphism from P + Q to (Z,C,EZ) such that
the two triangles on the left in the diagram above commute. Consider the
function g from Z to the underlying set of P +Q defined by

z 7→

{
κP (z, x) if f(z) = κ(x) for some x ∈ X
κQ(z, y) if f(z) = κ′(y) for some y ∈ Y .

(This is a well-defined function since κ and κ′ are monic.) Clearly, if g is a
morphism from (Z,C,EZ) to P + Q in Asm(p) it establishes the required
isomorphism since g is the unique map in Set such that gπ = κP and
gπ = κQ. We now proceed to show that g is a well-defined morphism, that
is, that

z : Z | EZ(z) ` EP+Q(g(z)) (3.5)

is valid in the logic of p, where EP+Q is the underlying existence predicate
of P +Q. (Note that we here follow our convention of leaving out the object
of realizers when it is clear from context, e.g. writing EZ(z) for (C,EZ)(z).)
Using that f is a morphism we have that

z : Z | EZ(z) ` (∃x : X. f(z) = κ(x) ∧ EX(x))∨
(∃y : Y. f(z) = κ′(y) ∧ EY (y)),

from which the required follows, using that equality is very strong in p (see
Page 54).

The following corollaries are then obtained using 3.4.10 and 3.4.14.

Corollary 3.6.24. Let (A, ·) be a partial combinatory algebra and let C(A)

be the WCPC-category induced by (A, ·). Let
UFam(C(A))

p
��

Set
be the realizability

pretripos over C(A). Then Asm(p) has stable and disjoint finite coproducts.

Corollary 3.6.25. Let
UFam(ALat)

p
��

Set
be the realizability pretripos over ALat.

Then Asm(p) has stable and disjoint finite coproducts.
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3.7 Modest Sets over Realizability Pretriposes

In this section we show how we can also generalize the construction of the
category of modest sets over a PCA(see, e.g., [Hyl82, LM91, Lon94]) and
over algebraic lattices [BBS98]. Given the work we have done with assem-
blies, the development in this section is quite straightforward and standard
and we shall leave the verification of many details to the interested reader.

Convention 3.7.1. For the remainder of this section, let C be a WCPC-

category and let
UFam(C)

p
��

Set
be the realizability pretripos over C. As before,

we sometimes write Asm(C) for Asm(p).

Definition 3.7.2. An object (X,A,E ) ∈ Asm(p) is called modest if

∀x, x′ ∈ X.
(
E (x) ∩ E (x′) 6= ∅ =⇒ x = x′

)
.

Definition 3.7.3. The full subcategory of Asm(p) formed by the modest
sets is referred to as the category of modest sets over the realizability

pretripos
UFam(C)

p
��

Set
and is denoted Mod(p) (or Mod(C)).

Remark 3.7.4. We defined a category of assemblies over any regular fibra-
tion over Set, but the definition of modest sets is only given for realizability
pretriposes. It may be possible to suitably generalize the definition of mod-
est sets to work over more general fibrations but the resulting definition
would probably not be as concrete as the above (where we explicitly use
intersection of sets of realizers) and we have thus decided to stick with this
definition since it also covers all our applications.

Example 3.7.5. Let A be a PCA and let C(A) be the induced WCPC-
category (see Definition 3.1.17). Then the category of modest sets over

the realizability pretripos
UFam(C(A))

p
��

Set
is equivalent to the usual category

Mod(A) of modest sets over A as defined, e.g., in [Lon94].

Example 3.7.6. Let
UFam(ALat)

p
��

Set
be the realizability pretripos over ALat.

Then Mod(p) is equivalent to the category of modest sets over ALat as
defined in [BBS98]. This category is equivalent to the category Equ of
equilogical spaces mentioned in the introduction to this chapter; see [BBS98].
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Just as for modest sets over PCAs there is an equivalent definition in
terms of partial equivalence relations:

Definition 3.7.7. The category PER(C) of partial equivalence rela-
tions over C is the category with

objects pairs (A,R) with A ∈ C and R a partial equivalence rela-
tion on U(A);

morphisms (A,R)→ (B,S) are equivalence classes of morphisms

f : A→ B

that satisfy

∀a, a′ ∈ U(A). a R a′ =⇒ U(f)(a) ↓ and U(f)(a′) ↓
and U(f)(a) S U(f)(a′);

with two such f and f ′ equivalent iff

∀a ∈ U(A). a R a =⇒ U(f)(a) S U(f ′)(a).

By analogy with the situation over PCAs we have the following propo-
sition (we omit the easy proof).

Proposition 3.7.8. The category PER(C) is equivalent to Mod(p).

Let I denote the inclusion functor Mod(p)→ Asm(p).

Proposition 3.7.9. Mod(p) is a regular category and the inclusion I is
exact.

Proof. Finite limits and image factorizations are calculated as in Asm(p);
one just need to verify that the resulting existence predicates are all modest,
but that is straightforward.

Define the functor R : Asm(p)→Mod(p) as follows. On objects (X,A,E ),
let R(X,A,E ) = (X/∼, A,E ′), where ∼ is the transitive closure of ^ in X
with x ^ x′ iff E (x)∩E (x′) 6= ∅ and E ′([x]) =

⋃
x′∈[x] E (x′). On morphisms

f , let R(f) be the mapping [x] 7→ [f(x)].

Proposition 3.7.10. There is an adjunction R a I and R preserves prod-
ucts. Thus Mod(p) is an exponential ideal of Asm(p).

Proof. Simple verification.
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In fact, Mod(p) is also locally cartesian closed and we can define the cat-
egory UFam(Mod(p)) of uniform modest sets in much the same way as
UFam(Asm(p)) is defined (the definition has been written out for p the
realizability pretripos over ALat in [BBS98]). Then we again get that the
projection UFam(Mod(p))→Mod(p) is a split fibration which is equiva-
lent as a fibration to the codomain fibration over Mod(p), via a functor

P : UFam(Mod(p))→Mod(p)→.

One can also show that this functor is a split closed comprehension category.
Thus we also get a split model of dependent type theory over Mod(p).

3.8 Relation to Regular and Exact Completions

As mentioned in the introduction to this chapter, in our work with Carboni,
Rosolini and Scott [BCRS98] we have developed a complementary approach
to a general notion of realizability for type theory, based on the theory of
exact categories and exact completions. The approach in [BCRS98], see
also [CR99], is a generalization of “the exact-completion approach to realiz-
ability toposes” as found in [RR90], see also [Car95], whereas the approach
in this chapter is a generalization of “the tripos-theoretic approach to real-
izability toposes” as found in [HJP80, Pit81].

In this section we briefly relate the approach in [BCRS98] to the ap-
proach in this chapter. For this section only, we assume that the reader has
some knowledge of regular and exact completions (the material included
in [BCRS98] suffices; for an in-depth treatment see [Car95, CV98]).

Convention 3.8.1. For the remainder of this section, let C be a WCPC-
category and let U : C→ Ptl be a WCPC-functor.

Recall the following definition from [CR99]. (It is slightly different from
a related definition in [BCRS98], which is geared more towards situations
where all realizers are total.)

Definition 3.8.2. The category F(C) is the category with

objects triples (X,A, σ), where X ∈ Set, A ∈ C, and σ : X →
U(A) in Set;

morphisms f : (X,A, σ) → (Y,B, τ) are functions f : X → Y in Set
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such that there exists a g : A→ B in C such that

X
f //

σ
��

Y

τ
��

U(A)
U(g)

// U(B)

commutes in Ptl (note that only U(g) may be partial).

Remark 3.8.3. Let A be a PCA and let C(A) be the WCPC-category
induced by A. Then F(C(A)) is equivalent to the category of partitioned
assemblies over A, as defined in [CFS88, RR90].

The following proposition is straightforward to show (very similar results
can be found in [CR99]), and we omit the proof.

Proposition 3.8.4. Let C be a WCPC-category and suppose U : C → Ptl
is a WCPC-functor. Then F(C) has all finite limits.

We briefly recall the explicit description of the regular completion of
a lex category [Car95], which we shall use below. For further information
about the regular completion of a lex category, see [Car95].

Let C be a lex category. Then the regular completion of C is the
category (C )reg/lex with

objects morphisms

U

f

��
V

of C;

morphisms

X

f
��
Y

[l]−→
U

g

��
V

are equivalence classes of morphisms l : X → U such that
glf0 = glf1, where f0, f1 are the structural maps of the
kernel of f , with two such arrows l and l′ equivalent if
gl = gm.
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The following is an easy generalization of [Car95, Lemma 6.1] (which deals
with the special case where the WCPC-category is the one induced by the
Kleene PCA).

Proposition 3.8.5. The category Asm(C) is equivalent to (F(C) )reg/lex.

Proof. The proof is essentially as in [Car95, Lemma 6.1].7 Define the functor
G : (F(C) )reg/lex → Asm(C) as follows. An object

(X,A, σ)

f
��

(Y,B, τ)

in (F(C) )reg/lex is mapped to the object (Im(f),E ), where

E (y) def= { a ∈ U(A) | ∃x ∈ X. f(x) = y ∧ σ(x) = a }.

A morphism

(X,A, σ)

f
��

(Y,B, τ)

[l]−→

(X ′, A′, σ′)

g

��
(Y ′, B′, τ ′)

is mapped by G to the function y 7→ g(l(x)), where x ∈ f−1(y). By the
fact that [l] is a morphism in (F(C) )reg/lex, this function is well-defined, in
particular independent of the choice of representative for [l]. Now one can
verify that G indeed is a functor and that it is full,8 faithful and essentially
surjective as in [Car95, Proof of Lemma 6.1].

Corollary 3.8.6. There is an equivalence of categories (Asm(C) )ex/reg '
(F(C) )ex/lex.

Proof. By Proposition 3.8.5 using that (F(C) )ex/lex ' ((F(C) )reg/lex )ex/reg.

7Carboni [Car95] uses another, but equivalent, formulation of the category of assemblies
than we do. The proof here just combines Carboni’s proof with the equivalence between
the two equivalent definitions of the category of assemblies.

8To show that G is full, one uses choice in Set.
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In [CR99, Page 13] it is shown that F(C) is weakly locally cartesian closed
(see loc. cit. for a precise definition) when C is weakly cartesian closed.
The same construction can be used to show that also F(C) is weakly lo-
cally cartesian closed when C is a WCPC-category. We can then conclude
using [CR99] that (F(C) )ex/lex is locally cartesian closed. Thus, by Propo-
sition 3.8.5 and by using properties of the exact completion of a regular
category, we have that Asm(C) is a full subcategory of (F(C) )ex/lex. Fur-
thermore, one can show that Asm(C) is equivalent to the full subcategory

of (F(C) )ex/lex on those pseudo-equivalence relations X1

r1 //
r2
//X0 for which

〈r1, r2〉 is monic. It follows by [BCRS98, Theorem 4.3] that Asm(C) is a
reflective subcategory with exponentials computed as in (F(C) )ex/lex. By
Proposition 3.7.10 we can then conclude that Mod(C) is also a reflective
subcategory of (F(C) )ex/lex with exponentials in Mod(C) computed as in
(F(C) )ex/lex.

3.9 Other Related Work

In a talk in Cambridge, August 1995, Samson Abramsky [Abr95] made some
observations related to the ones I have made in this chapter.9 Abramsky’s
and my work were done independently and I did not hear about Abramsky’s
work until I had finished the work reported here. Abramsky showed that if
a category C is cartesian closed, then the category of assemblies and modest
sets over it are both locally cartesian closed. He further showed that if C
has weak coproducts then the category of assemblies and modest sets have
coproducts. Abramsky proceeded by analogy to realizability over PCA’s,
defining the categories of assemblies and modest sets directly without using
a notion of pretripos. Abramsky’s result is a special case of ours where the
underlying WCPC-category C is in fact cartesian closed and the functor
U : C → Ptl is the global sections functor followed by the inclusion of Set
into Ptl.

In [Lam94] Lambek describes a generalized construction of a category
of PER’s sending a category C to a category CR, whose objects are pairs
(α,A) where A is an object of C and α is a family (αC)C∈C of PER’s αC on
HomC(C,A) and whose morphisms (α,A) → (β,B) are equivalence classes
of morphisms f : A → B in C which (for all C ∈ C) respect the PER’s;

9I thank Jaap van Oosten for bringing this fact to my attention and for providing
me with a copy of his notes from the talk. Also thanks to Samson Abramsky, who via
email communicated the contents of his talk to me and provided me with the reference to
Lambek’s work described in the following.
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two such f ’s are equivalent iff they induce the same map on the quotients.
Thus compared to the definition of PER(C), the difference is that in CR,
the PER’s have arbitrary stages of definition (they are not just PER’s on
global elements). Lambek observes that if C is cartesian closed, then CR is
so as well, and if C has weak products (coproducts), then CR has products
(coproducts); he does not consider weak closure and he does not consider
categories of partial maps.

Independently of the work reported here, John Longley has recently
suggested another general framework encompassing both typed and untyped
realizability [Lon99]. Longley defines a type world to be any non-empty
set T of (names for) types equipped with binary operations × and → for
forming product and arrow types. (There is no requirement that T be freely
generated in any sense.) Longley then defines a partial combinatory type
structure (or PCTS) over a type world T to a family of non-empty sets

{At | t ∈ T }

together with partial “application” functions

·t,u : At→u ×At → Au

such that, for all types t, u, and v, there exist elements

kt,u ∈ At→u→t
st,u,v ∈ A(t→u→v)→(t→u)→(t→v)

pairt,u ∈ At→u→t×u
fstt,u ∈ At×u→t

sndt,u ∈ At×u→u

satisfying the following, for all appropriately types a, b, and c (we have left
out the application operations)

kab = a

sab ↓
sabc ≥ (ac)(bc)
fst(pairab) = a

snd(pairab) = b,

where x ≥ y means that if x is defined then y is defined and x = y.
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For any such PCTS A, Longley then defines a category of assemblies and
shows that it is regular and locally cartesian closed.

I will leave a detailed analysis of the relationship between Longley’s
notion of PCTS and my notion of WCPC-category and the induced notions
of categories of assemblies for future work. However, I conjecture that given
a PCTS we may define a category C with objects At for t in the type world
and with morphisms partial PCTS-definable functions. There is then an
inclusion functor U : C → Ptl, and the conjecture is that Split(C, U) is a
WCPC-category D satisfying that the category Asm(D) of assemblies over
D is equivalent to Longley’s category of assemblies over the given PCTS.

Peter Lietz and Thomas Streicher [Lie] have, in the context of Longley’s
PCTS’s, shown some results closely related to our Theorems 3.4.15 and
3.4.19 characterizing when the tripos-to-topos construction applied to the
realizability tripos over a WCPC-category yields a topos. In particular,
Lietz and Streicher show that a PCTS has a universal type iff it gives rise to
a topos and iff it is equivalent to a partial combinatory algebra (in a suitable
sense).

3.10 Future Work

There are many interesting questions for future work. One of the most inter-
esting is “what is a suitable notion of morphism between WCPC-categories
C and D ?” Such a morphism should induce morphisms between the in-
duced realizability pretriposes over C and D (and then functors between the
induced categories of assemblies over C and D). The right notion should
include Longley’s notion of applicative transformation between partial com-
binatory algebras [Lon94]. We believe that a good notion of morphism
from C to D would be a profunctor from C to D, possibly satisfying some
extra conditions. The result should be a (bi)category of WCPC-categories,
generalizing Longley’s category of partial combinatory algebras and applica-
tive transformations [Lon94]. Another interesting question is what universal
property C(A) has.





Chapter 4

A General Notion of
Realizability for Logic

In the previous chapter we saw how to obtain a model of an expressive type
theory, based on our general notion of realizability. In this chapter we show
that we can also obtain an expressive predicate logic to reason about the
types and terms in the type theory.

We shall restrict attention to realizability over a WCPC-category C with
weak finite coproducts. Recall from the previous Chapter 3 that the induced

realizability pretripos
UFam(C)

��
Set

then has disjunction and that the category

of assemblies Asm(C) (and also the category of modest sets Mod(C)) then
is regular, locally cartesian closed, and has stable and disjoint finite co-
products. It follows easily (using [Jac99, Lemma 4.5.2]) that Asm(C) is
a logos1 and hence, by [Jac99, Theorem 4.5.5] that the subobject fibration
Sub(Asm(C))

��
Asm(C)

is a first-order fibration.2 This means that we have a model of

predicate logic over the simple type theory of Asm(C). In this chapter we
show how to get a model of predicate logic over the dependent type theory
of Asm(C) (described in Section 3.6.2) so that we can have entailments of

1Recall, e.g. from [Jac99, Section 4.5], that a logos is a regular category with a strict
initial object 0 (i.e., every morphism X → 0 is an isomorphism), with stable binary joins
∨ in each subobject poset Sub(I) and with right adjoints

∏
u for each pullback functor

u∗ : Sub(J)→ Sub(I).
2A first-order fibration is a regular fibration (see Section 3.2.2) which is fibred

bicartesian closed and which has simple products
∏

(I,J), see [Jac99, Section 4.2] for more
details.

89
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the form

x1 : σ1, . . . , xn : σn | ϕ1, . . . , ϕm ` ψ,

where x1 : σ1, . . . , xn : σn is a dependent type context and ϕ1, . . . , ϕm is an
ordinary proposition context. Moreover, we show how to get a model of full
subset types and of quotient types. Subset types allow formation of types
using predicates as in

Γ, x : σ ` ϕ : Prop

Γ ` {x : σ | ϕ } : Type

Quotient types allow formation of types using relations as in

Γ, x : σ, x′ : σ ` R(x, x′) : Prop

Γ ` σ/R : Type

where, intuitively, σ/R is the type of equivalence classes of σ generated by
the least equivalence relation containing R.

In Section 4.1 we show how to get a model of dependent predicate logic.
In Section 4.2 we describe dependent subset types and in Section 4.3 we cover
dependent quotient types. In each of these three sections, we first recall the
abstract categorical definition of a model (for dependent predicate logic, etc.)
from [Jac99] and then prove that our particular model satisfies the abstract
definition. We only describe the models for Asm(C); similar results, with
the same definitions, hold for Mod(C) (because Mod(C) is a fibred retract
of Asm(C)). In Section 4.4 we present an equivalent formulation of the
subobject fibration which can be used to give a very simple description of
the logical operations. It is used in Appendix A, where we present a very
concrete description of the calculus of dependent predicate logic and its
interpretation in Mod(ALat).

Convention 4.0.1. For the remainder of this chapter let C be a WCPC-
category with weak finite coproducts and let U : C → Ptl be a morphism
of WCPC-categories. Write Asm(C) for the category of assemblies over

the realizability pretripos
UFam(C)

p
��

Set
with disjunction induced by C and U .

As in the previous chapter, we write (X,A,E ) for an object (X, (A,E )) in
Asm(C), i.e., X is a set, A is an object of C and E is a function X →
P (UA), such that E (x) is non-empty, for all x ∈ X.

Before embarking on the dependent predicate logic, let us mention the
following fact.
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Fact 4.0.2. The regular subobject fibration
RegSub(Asm(C))

��
Asm(C)

is a split higher-

order fibration.3 Its logic is classical.

This fact is a straightforward generalization of [Jac99, Proposition 5.3.9];
it is based on the observation that the regular subobjects of an object
(X,A,E ) ∈ Asm(C) are in one-to-one correspondence with the powerset
of X (this follows easily from the description of equalizers in Asm(C), see
the proof of Proposition 3.3.3; see also [Jac99, Lemma 5.3.8]). The split
generic object is ∇(2) (with ∇ defined in 3.3.4) — this object is not modest
and thus the regular subobject fibration on Mod(C) only forms a first-
order fibration. The logic is classical because predicates on (X,A,E ) are
modelled by subsets of X with the connectives interpreted by the boolean
algebra operations on PX.

In the dependent predicate logic described in the following, we model
predicates by arbitrary subobjects and not regular subobjects, for the usual
reason that the intuitionistic logic is the most expressive (allows to reason
about a wider collection of subobjects). Indeed, the regular subobjects are
then exactly the double-negation closed subobjects.

4.1 Dependent Predicate Logic

We recall the definition of a DPL-structure from [Jac99, Section 11.2].

Definition 4.1.1. Consider the following diagram

D

q
��??????? E

P //

p

��

B
→

cod}}||||||||

B

where
D

q
��
B

is a preorder fibration and P : E → B
→ is a comprehension cate-

gory. Suppose this structure satisfies the following conditions

1. P is a closed comprehension category (for type formers
∏

,
∐

, and 1);

3A split higher-order fibration
E

p
��
B

is a split first-order fibration with B cartesian

closed and with a split generic object, where a split generic object of p is an object
Ω ∈ B together with a collection of isomorphisms θI : B(I,Ω)→ ObjEI natural in I; that
is θJ(u ◦ v) = v∗(θI(u)) for v : J → I. See [Jac99, Chapter 5] for details.
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2. q is a fibred bicartesian closed preorder fibration (for >, ∧, ⊥, ∨, ⊃);

3. q has P-products ∀, P-coproducts ∃, and P-equality Eq.

We then say that the structure is a DPL-structure.

Remark 4.1.2. Our definition differs from [Jac99, Definition 11.2.1] in that
we have left out the requirement of a generic object (since we shall not be
dealing with higher-order logic in this chapter).

Theorem 4.1.3. The structure

Sub(Asm(C))

))SSSSSSSSSSSSSS
UFam(Asm(C)) P //

��

Asm(C)→

codvvmmmmmmmmmmmmm

Asm(C)

forms a split DPL-structure.

Proof. Condition 1 in the definition of DPL-structure is met by Theo-
rem 3.6.20; condition 2 holds by the remarks in the introduction to this chap-
ter; and condition 3 holds since Asm(C) is regular (by Proposition 3.3.3)
and locally cartesian closed (by Theorem 3.5.1). Regularity entails that
the subobject fibration has coproducts along all maps in the base cate-
gory [Jac99, Theorem 4.4.4]; this gives the required P-coproducts and also
P-equality Eq. Local cartesian closure entails that the subobject fibration
has products along all maps in the base category [Jac99, Theorem 4.5.5]; in
particular we have the required P-products.

4.2 Dependent Subset Types

We recall the definition of dependent subset types from [Jac99, Section 11.2].
Consider a DPL-structure

D

q
��??????? E

P //

p

��

B
→

cod}}||||||||

B
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as defined in 4.1.1. Then we can form the diagram

FamP(D)

��

//GF

@A

FamP (q)

//

D

q

��
E

//
{−}=dom ◦P

//

p

��

B

B

where FamP(D) is defined by change-of-base and FamP(q) is defined to be
the composite FamP(D) → E → B. The fibred terminal object functor
> : E→ FamP(D) is induced by the terminal object functor > : B→ D to q,
namely as X 7→ (X,>({X})). In this situation, we say the DPL-structure
has (dependent) subset types if there is a fibred right adjoint {−} to >
in the situation:

E >
//

p
��======== FamP(D)

{−}
vv

FamP (q)zzvvvvvvvvvv

B

(Note that we overload the notation and use {−} for two distinct functors
FamP(D) → E and E → B.) Such an adjoint induces a (faithful) fibred
subset projection functor FamP(D)→ V(E) over E, where V(E) � � //E→ is
the full subcategory of vertical maps (with respect to p). That is, objects of
V(E) are objects of E→ (arrows of E) which by p are mapped to the identity
in B. The fibred subset projection functor is given as follows. For an object
(X,ϕ) ∈ FamP , the counit ε(X,ϕ) : >{(X,ϕ)} → (X,ϕ) induces a morphism
π(ε(X,ϕ)) : {(X,ϕ)} → X in E (where π is the functor FamP(D) → E).
The assignment (X,ϕ) 7→ π(ε(X,ϕ)) extends to a functor FamP(D)→ V(E)
over E, the fibred subset projection functor. We then say that we have
full dependent subset types if the fibred subset projection functor is full.
See [Jac99, Sections 4.6 and 11.2] for more details. See Page 256 for the
logical rule for full subset types.

We can now prove that we indeed have full dependent subset types.
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Theorem 4.2.1. The DPL-structure

Sub(Asm(C))

))SSSSSSSSSSSSSS
UFam(Asm(C)) P //

��

Asm(C)→

codvvmmmmmmmmmmmmm

Asm(C)

has full dependent subset types.

Proof. The proof is essentially as the proof for toposes in [Jac99, Proposi-
tion 11.2.4], combined with the proof of Proposition 3.6.16.

Consider the following diagram

FamP(Sub(Asm(C)))

��

//GF

@A

FamP (q)=p◦π′

//

Sub(Asm(C))

q

��
UFam(Asm(C)) //

{−}=dom ◦P
//

p=cod ◦P

��

Asm(C)

Asm(C).

We are to show that functor > has a fibred right adjoint {−} as in the
situation

UFam(Asm(C))
>

//

p
((QQQQQQQQQQQQQ

FamP(Sub(Asm(C)))

{−}
qq

FamP (q)uullllllllllllll

Asm(C),

where, for an object X = (I, A, (Xi,Ei)i∈XI ) with I = (XI , AI , EI), >(X ) =

(X ,>{X}). Define the functor {−} as follows. An object (X , K // ϕ //{X})
with X as before and with K = (XK , AK ,EK) is mapped to

(I,AK , (Zi,E ′i)i∈XI ),

where Zi
def= {x ∈ XK | π(ϕ(x)) = i } and E ′i(x) def= EK(x). On a morphism

from (X , K // ϕ //{X}) to (Y, L // ψ //{Y}) we let

{
(
(u, (fi)i∈XI ), (g1, g2)

)
} = (u, (g1)i∈I)
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(which is well-defined because, by definition of FamP(Sub(Asm(C))), we
have that (g1, g2) : ϕ → ψ in Asm(C)→.) A tedious verification, which we
omit here, then shows that {−} is a fibred functor, i.e., that it preserves
cartesian morphisms (one uses that a morphism in

(
(u, (fi)i∈XI ), (g1, g2)

)
is cartesian in FamP(Sub(Asm(C))) iff (g1, g2) is cartesian in

Sub(Asm(C))

��
Asm(C)

over {(u, (fi)i∈XI )}.)
In the fibre over I, the adjoint equivalence

>(X ) = (X ,>{X})
f // (Y, ϕ : K → {Y})

============================
X

h
// {(Y, ϕ : K → {Y})}

in FamP(Sub(Asm(C)))I

in UFam(Asm(C))I

is given as follows. Suppose that

X = (I, A, (Xi,Ei)i∈XI ) and Y = (I,B, (Yi,E ′i)i∈XI ).

For f =
(
(id , (fi)i∈XI ), (g1, g2)

)
, where necessarily (by definition of category

FamP(Sub(Asm(C))))

g2 = {(id , (fi)i∈XI )} = (i, x) 7→ (i, fi(x)),

the adjoint transpose f̂ is (id , (x 7→ g1(i, x))i∈XI ). For h = (id , (hi)i∈XI ),
the adjoint transpose ȟ is((

id , (x 7→ π′(ϕ(hi(x))))i∈XI
)
,
(
(x, i) 7→ (hi(x)), (x, i) 7→ ϕ(hi(x))

))
.

We omit the straightforward verification that the adjoint transposes are
well-defined morphisms.

The unit η of the adjunction is given by

ηX : {>(X )} → X = (id , (x 7→ (i, x))i∈XI )

(note that {>(X )} = (I, AI × A, ({i} ×Xi,E ′i)i∈XI ), when X is as given
above.)

The counit ε of the adjunction is given by

ε : >{(X , K ϕ //X )} → (X , K ϕ //X )

=
(

(id , (x 7→ π′(ϕ(x)))i∈XI ),
(
(i, x) 7→ x, (i, x) 7→ (i, π′(ϕ(x)))

))
.

The remaining details of the verification that this establishes a fibred ad-
junction are left to the reader.
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To show that we have full dependent subset types, note that the in-

duced fibred subset projection functor maps (X , K ϕ //X ) to the object

{(X , K ϕ //X )} → X in V(UFam(Asm(C))) which is the morphism

(id , (x 7→ π′(ϕ(x)))i∈XI )

in UFam(Asm(C)). Unravelling the definitions, one easily sees that the
functor is full, as required. This completes the proof of the theorem.

4.3 Dependent Quotient Types

We recall the definition of dependent quotient types from Section 11.2 in
[Jac99]. Consider a DPL-structure

D

q
��??????? E

P //

p

��

B
→

cod}}||||||||

B

as defined in 4.1.1. Write {{−}} for cod ◦δ, where δ(X) is the diagonal map
used in Definition 3.6.2 to define equality. Thus {{−}}maps an object X ∈ E
to

{{X}} = {(P X)∗(X)} //

��

{X}

PX
��

{X}
PX

// pX.

Type theoretically, {{−}} maps a dependent type Γ ` σ : Type to the context
(Γ, x : σ, x′ : σ) that extends Γ with two variables of type σ. Now consider
the category of relations, obtained by change-of-base as in

RFamP(D)

π

��

//GF

@A

RFamP (q)

//

D

q

��
E

Eq

EE

{{−}}=cod ◦δ
//

p

��

B

B,
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where RFamP(q) is the composite RFamP(D)→ E→ B. The fibred equality
object functor Eq: E→ RFamP(D) is induced by the equality Eq in q with
respect to P, namely as X 7→ (X,Eq(>{X})). We say that the DPL-
structure has dependent quotient types if there is a fibred left adjoint Q
to Eq in the situation:

RFamP(D)

RFamP (q) %%KKKKKKKKKK

Q

((
E

p
����������Eq

oo

B.

Such an adjoint induces a “canonical quotient map” functor RFamP(D) →
V(E) commuting with the domain functor dom: V(E) → E, where as
in the previous section V(E) � � //E→ is the full subcategory of vertical
maps (with respect to p). The canonical quotient map functor is given
as follows. For an object (X,R) ∈ RFamP(D), the unit η(X,R) : (X,R) →
EqQ(X,R) induces a morphism π(η(X,R)) : X → Q(X,R) (where π is the
functor RFamP(D)→ E). The assignment (X,R) 7→ π(η(X,R)) extends to a
functor RFamP(D) → V(E) over E, the canonical quotient functor, which
commutes with the domain functor dom: V(E)→ E. We shall say that we
have full or effective dependent quotient types if this functor is full and
faithful, when restricted to equivalence relations. See [Jac99, Sections 4.8
and 11.2] for more details.

We can now prove that we have quotient types.

Theorem 4.3.1. The DPL-structure

Sub(Asm(C))

))SSSSSSSSSSSSSS
UFam(Asm(C)) P //

��

Asm(C)→

codvvmmmmmmmmmmmmm

Asm(C)

has quotient types.

Proof. Consider the following diagram, in which RFam is defined by change-
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of-base,

RFam

��

//GF

@A

RFam(q)

//

Sub(Asm(C))

q

��
UFam(Asm(C))

Eq

DD

{{−}}=cod ◦δ
//

p

��

Asm(C)

Asm(C)

and where RFam(q) is the composite RFam→ UFam(Asm(C))→ Asm(C).
For an object X = (I, A, (Xi,EI)i∈XI ) in UFam(Asm(C)), where I =
(XI , AI ,EI), functor {{−}} acts as follows:

{{X}} =
(∐

(i,x)∈
∐

i∈XI
Xi
Xi, (AI ×A)×A,E

)
,

where E ((i, x), x′) = EI(i) ∧ Ei(x) ∧ Ei(x′). The action of the functor on
morphisms is the obvious one.

The fibred equality functor Eq is defined as in the definition of dependent
quotient types. Let us work out explicitly what the action of Eq is on objects.

Eq(X ) =
(
X ,Eq(>{X})

)
by definition of Eq

=
(
X ,Eq({X} // id //{X})

)
by definition of >

=
(
X ,
∐
δ(X )({X} //

id //{X})
)

by definition of Eq, see Thm. 4.1.3

=
(
X , Im({X} //

δ(X ) //{{X}})
)

by [Jac99, Theorem 4.4.4]

∼=
(
X ,
(
{ ((i, x), x′) ∈

∐
(i,x)∈

∐
i∈XI

Xi
Xi | x = x′ }, AI×A,E

))
by proof of Prop. 3.3.3,

where E ((i, x), x′) = E (i, x) = EI(i) ∧ Ei(x).
We are to show that Eq has a fibred left adjoint Q, as in

RFam

RFam(q) %%KKKKKKKKKK

Q
,,

UFam(Asm(C))

p
vvmmmmmmmmmmmmEq

oo

Asm(C).
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For each I ∈ Asm(C), we define functor QI : RFamI → UFam(Asm(C))I
among the fibres over I; we shall omit the straightforward verification that
this defines a fibred functor Q. For (X , R) ∈ RFamI , with X as above and
with R // m //{{X}} and R = (XR, AR,ER), define

QI(X , R) = (I,A, (Xi/≈i, E′i)i∈XI ),

where ≈i is the least equivalence relation on Xi (this least equivalence rela-
tion exists since Xi ∈ Set) containing ∼i with

x ∼i x′ ⇐⇒ there exists an r ∈ XR such that m(r) = ((i, x), x′)

and where E′i([x]) =
⋃
x′∈[x]Ei(x

′). On a morphism(
(id , (fi)i∈XI ), (g1, g2)

)
: (X , R)→ (Y, S)

in RFamI , with Y = (I,B, (Yi,E ′′i )i∈XI ) (and, necessarily, g2 equal to
((i, x), x′) 7→ ((i, fi(x)), fi(x′))) we define QI to give(

id , ([x] 7→ [fi(x)])i∈XI
)
.

In the fibre over I, the adjoint correspondence

QI(X , R)
f // Y

================
(X , R)

h
// Eq(Y)

is given as follows. If f = (id , (fi)i∈XI ), let

f̂ =
(
(id , (x 7→ fi[x])i∈XI ), (g1, g2)

)
,

where g2((i, x), x′) = ((i, fi[x]), fi[x′]) and g1(r) = g2(m(r)). If

h =
(
(id , (hi)i∈XI ), (g1, g2)

)
,

let

ȟ = (id , ([x] 7→ hi(x))i∈XI )

(this is easily seen to be well-defined, in particular independent of the choice
of representative of [x]). Using these definitions one can verify that Q is a
fibred left adjoint to Eq, as required.

The canonical quotient map X → Q(X , R) is (id , (x 7→ [x])i∈XI ).
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Remark 4.3.2. Our model does not support so-called full or effective quo-
tients, that is, we cannot show that the following rule is sound

Γ, x : σ, x′ : σ ` “R(x, x′) is an equivalence relation”
Γ `M : σ Γ `M ′ : σ

Γ | [M ]R =σ/R [M ′]R ` R(M,M ′)

The reason is that, when we form the quotient Q(X , R) (for R an equivalence
relation) we forget about the realizers for r ∈ XR (see the proof above), so
from just knowing that two quotients are equal we cannot produce a realizer
for the fact that representatives are related.

Indeed, by Proposition 4.8.6 in [Jac99] we know that the subobject fi-
bration of a category B only has full or effective quotients in case B is exact4

— and Asm(C) is not exact.5 Had we instead of Asm(C) been working
with (Asm(C) )ex/reg (see Section 3.8), then the above rule would have been
available. We chose to stick with Asm(C) because it is a bit more con-
crete and, moreover, the results obtained for Asm(C) also apply directly
for Mod(C), allowing us to conclude that we get a model of type theory
and logic in the category of equilogical spaces or, equivalently, Mod(ALat).
See Appendix A for a concrete treatment.

4.4 For a Concrete Description

In this section we define a fibration over Asm(C) and show that it is equiva-

lent to the subobject fibration
Sub(Asm(C))

��
Asm(C)

. The equivalent fibration is used

in Appendix A to give a concrete description of the interpretation of the
dependent predicate logic.

We define a split indexed category Ψ: Asm(C)op → Cat. For an object
I = (XI , AI ,EI), we let Ψ(I) be the poset obtained as the partial order
reflection6 of the following preorder. The objects of the preorder are the ob-

jects in the fibre UFam(C)XI over XI of the realizability pretripos
UFam(C)

p
��

Set
.

4Recall that an exact category is a regular category in which each equivalence relation
is effective, i.e., a kernel pair of its quotient.

5We know that the category Asm(C) is in general not exact because the category of
assemblies over a PCA is not exact (see, e.g., [Jac99, Exercise 6.2.5]).

6The partial order reflection of a preorder ≤ is the partial order obtained by iden-
tifying objects X and Y for which X ≤ Y and Y ≤ X.
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The order of the preorder is defined as follows: (B,ϕ) ≤ (C,ψ) iff

∀i : XI . EI(i) ⊃ (ϕ(i) ⊃ ψ(i))

holds in the logic of the realizability pretripos p. (We here follow the con-
vention of leaving out the underlying object of realizers B for a predicate
(B,ϕ) in the realizability pretripos when it is clear from context.) Note
that objects in Ψ(I) are equivalence classes of objects (B,ϕ). We do not
distinguish notationally between an object (B,ϕ) and its equivalence class.

For a morphism u : I → J in Asm(C), with I as above and J =
(XJ , AJ ,EJ), Ψ(u) is the functor

(B,ϕ) 7→ (B,ϕ ◦ u).

This definition is clearly independent of the choice of representative of the
equivalence class for (B,ϕ). Moreover, using the fact that u is a morphism
in Asm(C) and thus that ∀i : XI . EI(i) ⊃ EJ(u(i)) is valid in the logic of
p, it is easy to see that Ψ(u) indeed is a functor.

We write
UFam(C)

��
Asm(C)

for the split fibration obtained by the Grothendieck

construction applied to Ψ. (Note that we use the same name UFam(C) for

the total category of the fibration
UFam(C)

��
Asm(C)

as for the total category of the

realizability pretripos
UFam(C)

p
��

Set
even though the two categories are distinct.

This should not cause any confusion since we shall never consider the total
categories in isolation, but only as part of the two distinct fibrations.)

Proposition 4.4.1. There is a fibred equivalence

Sub(Asm(C)) ' //

''PPPPPPPPPPPP
UFam(C)

xxppppppppppp

Asm(C)

over Asm(C).

Proof. We define fibred functors

F : Sub(Asm(C))→ UFam(C) and G : UFam(C)→ Sub(Asm(C))

over Asm(C) and show that they form a fibred equivalence.
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For I = (XI , AI ,EI), define functor FI : Sub(Asm(C))I → UFam(C)I
as follows. Let FI(ϕ : (Y,B,EY )� I) be (B,ϕ′ : XI → P (Γ(B))) with

ϕ′(i) =

{
∅ if i /∈ Imϕ

EY (y) if ϕ(y) = i for some y ∈ Y .

Note that ϕ′ is a well-defined function since ϕ is monic. It is easy to see
that FI is independent of the choice of representative for the subobject
represented by ϕ. Moreover, FI is a functor since if ϕ ≤ ψ in Sub(I), i.e., if
there is a morphism m such that

(Y,B,EY ) m //
$$

ϕ
$$IIIIIIIII

(Z,C,EZ)
zz

ψ
zzuuuuuuuuu

I

commutes, then FI(ϕ) = (B,ϕ′) ≤ (C,ψ′) = FI(ψ) in UFam(C)I because
m is a morphism in Asm(C).

With I as above, define functor GI as follows. For a predicate (B,ϕ) ∈
UFam(C)I , let GI(B,ϕ) be the subobject

({ i ∈ XI | ϕ(i) 6= ∅ }, AI ×B,E )� I

represented by the identity function and where E (i) = EI(i) ∧ ϕ(i). GI is
independent of the choice of representative for (B,ϕ) and is easily seen to
be a functor.

We show that GI ◦ FI = id . Now GI(FI(ϕ : (Y,B,EY )� I)) equals

({ i ∈ XI | ϕ(y) = i for some unique y }, AI ×B,E )

with E (i) = EI(i)∧EY (y) for y the unique y such that ϕ(y) = i. We are to
show that there is an isomorphism

({ i ∈ XI | ϕ(y) = i for some unique y }, AI ×B,E )
m
∼=
//
(Y,B,EY )

n
oo

in Asm(C). But if we let m(i) be the unique y such that ϕ(y) = i and let
n(y) = ϕ(y), then it is easy to see that m and n are well-defined morphisms
and that the constitute the required isomorphism.

We next show that FI ◦GI = id . Now FI(GI(B,ϕ)) = (AI ×B,ϕ′) with
ϕ′(i) = EI(i)∧ϕ(i). Clearly, (AI ×B,ϕ′) ≤ (B,ϕ), that is, ∀i : XI . EI(i) ⊃
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(ϕ′(i) ⊃ ϕ(i)) holds in the logic of p. For the other direction, we have that

(B,ϕ) ≤ (AI ×B,ϕ′)
⇐⇒ ∀i : XI . EI(i) ⊃ (ϕ(i) ⊃ ϕ′(i)) holds in the logic of p
⇐⇒ ∀i : XI . EI(i) ⊃ (ϕ(i) ⊃ EI(i) ∧ ϕ(i)) holds in the logic of p.

Hence (B,ϕ) and (AI ×B,ϕ′) represent the same object in UFam(C)I , as
required. (Here we crucially use that the ordering in UFam(C)I is defined
not just as in the fibre over XI in the realizability pretripos, but also using
EI(i).)

It remains to show that the FI ’s and the GI ’s constitute fibred func-
tors. Thus we are to show that, for any u : I → J in Asm(C), for all
ϕ ∈ Sub(Asm(C))J and all (B,ψ) ∈ UFam(C)J .

FI(u∗(ϕ)) = u](FJ(ϕ)) and GI(u](B,ψ)) = u∗(GJ(B,ψ)),

where we write u∗ for reindexing in the subobject fibration (i.e., pullback

along u) and u] for reindexing along u in
UFam(C)

��
Asm(C)

(i.e., composition with

u). Both equalities are straightforward to show and we omit the details.

Since the logical structure of
Sub(Asm(C))

��
Asm(C)

is defined categorically, it is pre-

served by the equivalence of Proposition 4.4.1. Hence we conclude by The-
orem 4.1.3 that

UFam(C)

((QQQQQQQQQQQQQ
UFam(Asm(C)) P //

��

Asm(C)→

codvvmmmmmmmmmmmmm

Asm(C)

forms a split DPL-structure. It is not hard to show (either directly or via
the equivalence in Proposition 4.4.1 and Theorem 4.1.3) that

1. The split fibred bicartesian closed structure (>, ∧, ⊥, ∨, and ⊃) is
given exactly by the corresponding structure of the realizability pre-
tripos.

2. The split P-products are explicitly given as follows. Let

X = (I, A, (Xi,Ei)i∈XI ) ∈ UFam(Asm(C))I .
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Then {X} = (
∐
i∈XI Xi, AI × A,E ) with E (i, x) = EI(i) ∧ Ei(x). For

projection πX : {X} → I, the right adjoint ∀X (satisfying the Beck-
Chevalley condition)

UFam(C)I

π∗X

⊥
//
UFam(C)X

∀X
oo ,

is given by

∀X
(
B,ϕ :

∐
i∈XI Xi → P (UB)

)
= ([A ⇀ B], i 7→

⋂
x∈Xi

(Ei(x) ⊃ ϕ(i, x))),

where [A ⇀ B] is the weak partial exponential of A and B.

3. The split P-coproducts are explicitly given as follows. Let I, X and
π∗X be as in the previous item. Then the left adjoint ∃X (satisfying
the Beck-Chevalley condition)

UFam(C)X
∃X
⊥
//
UFam(C)I

π∗X

oo ,

is given by

∃X
(
B,ϕ :

∐
i∈XI Xi → P (UB)

)
= (A×B, i 7→

⋃
x∈Xi

(Ei(x) ∧ ϕ(i, x))).

4. The split P-equality is given as follows. Let I, X and π∗X be as in the
previous items. Then

{π∗X {X}} =
(∐

(i,x)∈
∐

i∈XI
Xi
Xi, (AI ×A)×A,E ′)

)
with E ′ the obvious existence predicate. For the diagonal

δX : {X} → {π∗X {X}} = (i, x) 7→ ((i, x), x)

the left adjoint EqX (satisfying the Beck-Chevalley condition)

UFam(C)X

EqX

⊥
//
UFam(C){π∗X {X}}

δ∗X

oo ,
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is given by

EqX (B,ϕ)((i, x), x′) =

{
ϕ(i, x) if x = x′,
∅ otherwise.

We now show that we can get similar results for the modest sets.

Definition 4.4.2. Define the split fibration
UFam(C)

��
Mod(C)

by change-of-base as

in

UFam(C)

��

// UFam(C)

��
Mod(C) // Asm(C),

where the functor across the bottom is the inclusion. (Note that the category
UFam(C) on the left in the diagram is different from the UFam(C) on the
right.)

Proposition 4.4.3. There is a fibred equivalence

Sub(Mod(C)) ' //

''PPPPPPPPPPPP
UFam(C)

xxppppppppppp

Mod(C)

over Mod(C).

Proof. The proof is as the proof of Proposition 4.4.1; the only thing to note
is that the domain of the subobject GI(B,ϕ) (with GI as in the proof of
Proposition 4.4.1) indeed is a modest set.

See Appendix A for a very concrete treatment of the interpretation of de-
pendent predicate logic in Equ 'Mod(ALat).

4.5 Future Work

What we have presented here is of course only the first stage, in the sense
that we would like to have a wider collection of types, such as inductive,
coinductive, and recursive types, and to be able to reason about those types
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in the predicate logic. To establish the existence of such a wider collection of
types and accompanying sound reasoning principles, one would naturally as-
sume more about the underlying WCPC-category of realizers. For instance,
in the case of Equ 'Mod(ALat) we have established, in joint work with
Andrej Bauer, the existence of a wide collection of inductive and coinduc-
tive types (W- and M-types). By employing general results of Hermida and
Jacobs [HJ96] we have then shown that accompanying induction and coin-
duction reasoning principles are sound. The details of this work will appear
elsewhere.
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Chapter 5

Preliminaries on Tripos
Theory

In this chapter we recall some of the theory of triposes which we shall make
use of in the following chapters. We also include a couple of new results
on triposes, see Proposition 5.4.7 and Theorem 5.4.8. The notion of tripos
was invented by Hyland, Johnstone and Pitts [HJP80] and the theory of
triposes (over general base categories) was developed by Pitts in his Ph.D.-
thesis [Pit81]; see also [Pit99] for a retrospective survey. There is also a useful
recap of the basics of tripos theory in [Jac99]. Here we only recall parts of the
theory, and refer to the referenced papers for an in-depth treatment and for
more examples. Apart from the new results mentioned above, our treatment
is standard and closely follows the published papers, except that we present
triposes as fibrations instead of indexed categories (we have chosen to do so
because elsewhere we mostly use fibrations).

5.1 Definition and Examples

5.1.1 Definition and Definability Results

A tripos is a weak tripos with disjunction which has a (weak) generic object.
Explicitly we define:

Definition 5.1.1. Let B be a finitely complete category. A B-tripos, or a

tripos over B, is a fibration
P

p
��
B

over B which

1. is a fibred bicartesian closed preorder (for >, ∧, ⊃, ⊥, and ∨); such

109
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a preorder is called a Heyting pre-algebra and we write `I for the
preorder in the fibre PI ;

2. has coproducts ∃u a u∗ along all maps u : I → J in the base B;

3. has products u∗ a ∀u along all maps u : I → J in the base B;

4. has a weak generic predicate: for each object I of B there is an
object PI in B and an object ∈I in PI×PI , such that given any ϕ in
PI×J , there is a map {ϕ} : J → PI in B with (id I × {ϕ})∗ ∈Ia` ϕ in
PI×J .

(Recall from Definition 2.2.14 that the Beck-Chevalley condition is re-
quired to hold for ∀u and ∃u.)

Just as all the second-order logical connectives and quantifiers can be
defined from ⊃ and ∀ alone, for a tripos, the operations >, ∧, ⊥, ∨, and ∃
can all be defined from ⊃, ∀ and ∈, see [HJP80, Theorem 1.4].

When the base category B is cartesian closed, item 4 in the definition
can be replaced by:

4’. There is a weak generic predicate σ ∈ PΣ over some object Σ,
such that given any ϕ ∈ PI , there is a map {ϕ} : I → Σ in B with
{ϕ}∗ a`I ϕ.

Such a weak generic predicate is called a weak generic object in [Jac99,
Definition 5.2.8, Page 326].

Readers familiar [Jac99] will note that the notion of a tripos over a
cartesian closed category is closely related to the notion of a higher-order
fibration from [Jac99]. Besides a minor technical difference regarding Beck-
Chevalley (see the footnote on Page 48), the difference is that a tripos is
only required to have a weak generic object whereas a higher-order fibration
is required to have a true generic object, i.e., for a higher-order fibration the
map {ϕ} is not only required exist but also to be unique.1

A tripos (like a higher-order fibration) models intuitionistic higher-order
logic without the following extensionality rule for entailment:

Γ ` P,Q : σ → Prop Γ, x : σ | Θ, Px ` Qx Γ, x : σ | Θ, Qx ` Px
Γ | Θ ` P =σ→Prop Q

For a higher-order fibration, if the fibres are not only preorders but in fact
partial orders, then the fibration models the above extensionality rule (by a

1Thus the definition of tripos given in [Jac99, Definition 5.3.3] is in one sense more
restrictive than the original definition given in [HJP80, Pit81].
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simple argument analogous the proof of Theorem 5.3.7 in [Jac99]), but for
a tripos this is not so because of the lack of uniqueness associated with a
weak generic object.

A tripos
P

p
��
B

in which each fibre PI actually is B(I,Σ), for some object

Σ ∈ B, and in which reindexing is given by composition, will be called
canonically presented. We then write p = B(−,Σ). When B is cartesian
closed a B-tripos can, without loss of generality, always be assumed to be
canonically presented [HJP80, Pit81]. A canonically presented tripos over a
topos is split iff it has fibre-wise quantification, see [Pit81]. For a canonically
presented split E-tripos p (for E a topos), with fibre over I the homset
E(I,Σ), all the structure of the fibres can be defined in terms of operations
on Σ. The subset Dp ⊆ E(1,Σ) consisting of those ϕ : 1 → Σ with >1 `1 ϕ
is called the designated truth values. Given the set of designated truth
values, the preorder `I in the fibre over I is given by

ϕ `I ψ iff ∀I(ϕ ⊃ ψ) ∈ Dp,

where I denotes the unique map I → 1 in E . So a canonically presented
split E-tripos p (for E a topos) may be specified by

1. an object Σ of E ;

2. maps ⊃p : Σ× Σ→ Σ (for implication) and
∧

p : (ΩE)Σ → Σ in E (for
universal quantification);

3. a subset Dp of E(1,Σ),

satisfying various relations, see [HJP80, 1.4].

5.1.2 Topos Examples

The following example is quite trivial, but useful, e.g., in connection with
geometric morphisms as in Section 6.2. Let E be a topos. Then the subobject
fibration on E is a tripos. It can be canonically presented as E(−,ΩE), where
ΩE is the subobject classifier of E .

5.1.3 Localic Examples

Let H be an internal locale in a topos E . The canonical E-tripos p on
H is given by E(−,H), that is, the fibre over I is E(I,H) and reindexing is
given by composition. The Heyting algebra structure on each fibre E(I,H)
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is given by the internal structure on H; quantification is given fibre-wise
by the internal inf map

∧
H : (ΩE)H → H; and there is just one designated

truth value in Dp, namely the top element >H : 1→ H.

Remark 5.1.2. Note that the canonical tripos on a locale is not obtained
by viewing the locale as a WCPC-category and then doing realizability over
it.

Remark 5.1.3. If Φ� H is a filter on H, we can modify p by taking

Dp = {h : 1→ H | h factors through Φ� H }

and still get a tripos. More generally, if
P

p
��
B

is a B-tripos and Φ ⊆ P1 is a

filter, we can redefine the preorder on each fibre PI by

ϕ `I ψ iff ∀I(ϕ ⊃ ψ) ∈ Φ

and get a new B-tripos, which we call pΦ.

5.1.4 Realizability Examples

Let A be a partial combinatory algebra (PCA) in Set. (We here restrict
attention to PCA’s in Set, but one can also consider internal PCA’s in other

toposes.) We define the standard realizability tripos
UFam(A)

p
��

Set
over A

in the following way (we write out the structure explicitly to ease some
calculations later on).

As predicates on a set I one takes functions ϕ : I → PA, ordered by

ϕ `I ψ ⇐⇒ ∃a ∈ A. ∀i ∈ I. a ∈ (ϕ(i) ⊃ ψ(i)),

where, recall, for sets X,Y ⊆ A,

X ⊃ Y = { f ∈ A | ∀a ∈ X. f · a ↓ and f · a ∈ Y }.

The bicartesian closed structure for these predicates on I is given by:

>I = λi ∈ I. A
⊥I = λi ∈ I. ∅

ϕ ∧ ψ = λi ∈ I. { 〈a, b〉 | a ∈ ϕ(i) and b ∈ ψ(i) }
ϕ ∨ ψ = λi ∈ I. { 〈K, a〉 | a ∈ ϕ(i) } ∪ { 〈KI, b〉 | b ∈ ϕ(i) }
ϕ ⊃ ψ = λi ∈ I. ϕ(i) ⊃ ψ(i).
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For u : I → J in Set, and ϕ : I → P (A), put

∀u(ϕ) = λj ∈ J.
⋂
i∈I

(
(u(i) =J j) ⊃ ϕ(i)

)
∃u(ϕ) = λj ∈ J.

⋃
i∈I
{ϕ(i) | u(i) = j },

where

(u(i) =J j) =

{
A if u(i) = j
∅ else.

(In case I = ∅, the above intersection over I equals A.) It is easy to check
that ψ ` ∀u(ϕ) ⇐⇒ (ψ ◦ u) ` ϕ and ∃u(ϕ) ` ψ ⇐⇒ ϕ ` (ψ ◦ u) and that
Beck-Chevalley holds for these products and coproducts. In case u is epi,
the definition of ∀u may be simplified to

∀u(ϕ) = λj ∈ J.
⋂
i∈I
{ϕ(i) | u(i) = j }, if u is epi.

The assignment I 7→ (P A)I extends to a functor (i.e., a split indexed cate-
gory) Setop → Cat with reindexing by composition. The resulting fibration

(obtained by the Grothendieck construction) is the tripos
UFam(A)

p
��

Set
with

generic predicate id : (PA)→ (PA) over PA.

In the standard realizability tripos
UFam(A)

p
��

Set
over A, the designated truth

values Dp is the set of inhabited subsets of A.
Let A] ⊆ A be a sub-PCA of A. Then, as noted in [Pit81, Page 15],

taking D to be all those 1→ PA corresponding to subsets A′� A through
which some a : 1 → A in A] factors results in a new tripos. We call this
tripos the relative realizability tripos over A and A] and denote it
UFam(A,A])

r��
Set

. Explicitly, predicates over I are maps ϕ : I → PA, all the

logical operations are given as for
UFam(A)

p
��

Set
, but the preorder is defined as

ϕ `I ψ ⇐⇒ ∃a ∈ A]. ∀i ∈ I. a ∈ (ϕ(i) ⊃ ψ(i)),

that is, the required realizer has to come from the sub-PCA A]. We shall
return to this example in the following chapter.
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We also recall the following observation from [Pit81, Page 15]: For the

tripos
UFam(A,A])

r��
Set

, the inhabited subsets of A form a filter

Φ ⊆ UFam(A,A])1

and rΦ (see previous section) is the standard realizability tripos
UFam(A)

p
��

Set

over A. We shall return to this observation in Section 6.1 in Chapter 6.

5.2 Tripos to Topos Construction

From each B-tripos p, with B finitely complete, one can construct a topos,
which will be denoted B[p]. The construction is a direct generalization of the
construction by Higgs and Fourman-Scott [FS79] of the topos of H-valued
sets of a locale H.

Definition 5.2.1. Let
P

p
��
B

be a tripos. Write B[p] for the category with

objects pairs (I,≈I) where I ∈ B is an object of the base category
and ≈I∈ PI×I is an “equality” predicate on I. The latter
is required to be symmetric and transitive in the logic of
p. This means that validity in p is required of:

i1, i2 : I | i1 ≈I i2 ` i2 ≈I i1
i1, i2, i3 : I | i1 ≈I i2, i2 ≈I i3 ` i1 ≈I i3.

morphisms f : (I,≈I) → (J,≈J) are equivalence classes of relations
F ∈ PI×J from I to J that are

• extensional:

i1, i2 : I, j1, j2 : J | i1 ≈I i2, j1 ≈J j2, F (i1, j1)
` F (i2, j2)

• strict:

i : I, j : J | F (i, j) ` (i ≈I i) ∧ (j ≈J j)

• single-valued:

i : I, j1, j2 : J | F (i, j1), F (i, j2) ` j1 ≈J j2
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• total:

i : I | i ≈I i ` ∃j : J. F (i, j)

The equivalence relation on these relations F is logical
equivalence (in the internal language) as described by iso-
morphisms in the fibre. To emphasize, F and F ′ are related
iff they are isomorphic in the fibre PI×J . Equivalently, F
and F ′ are related iff

i : I, j : J | ∅ ` F (i, j) ⊃⊂ F ′(i, j)

is valid in the logic of p. For convenience, we usually write
representatives F instead of equivalence classes [F ]. A rela-
tion F which is extensional, strict, single-valued and total,
will also be called a functional relation.

Sometimes we omit the subscript and write ≈ for ≈I . Further, we write
|i1 ≈I i2| for i1 ≈I i2 (the vertical bars are just used for bracketing to make
expressions easier to read). We write E I(i) or E (i) for |i ≈I i|. Thus E I(−)
is a unary predicate on I, defined categorically by E I(−) = 〈id , id〉∗(≈I) ∈
PI .

The identity morphism on an object (I,≈I) of B[p] is the (equivalence
class of the) relation ≈I itself:

i1, i2 : I ` i1 ≈I i2.

Composition of (I,≈I) F //(J,≈J) G //(K,≈K) is the composite relation
G ◦ F ,

i : I, k : K ` ∃j : J. F (i, j) ∧G(j, k).

The fundamental theorem of tripos theory is:

Theorem 5.2.2. For
P

p
��
B

a tripos, the category B[p] is a topos.

Examples 5.2.3.

(i) Let E be a topos. If we apply the tripos to topos construction to
the subobject fibration of E (the tripos from Section 5.1.2 we get, of
course, back the topos E itself.
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(ii) For a canonical tripos p = E(−,H) on an internal localeH in a topos E ,
the resulting topos E [p] is the topos of H-valued sets [FS79], equivalent
to the category of E-valued sheaves on the locale H.

(iii) For a standard realizability tripos
UFam(A)

p
��

Set
over a PCA A, we de-

note the resulting topos Set[p] by RT(A) and refer to it as the re-
alizability topos over A. In case A is K1 , RT(A) is the effective
topos [Hyl82]. The topos Set[r] obtained from the relative realizabil-

ity tripos
UFam(A,A])

r��
Set

over PCA’s A and A] (with A] a sub-PCA of

A) is denoted RT(A,A]) and referred to as the relative realizability
topos over A and A].

We now present some of the structure of B[p] that we shall use in the
sequel.

5.2.1 Finite Limits

The terminal object in B[p] is the terminal object 1 ∈ B with equality
predicate

x : 1, x′ : 1 ` |x ≈1 x
′| def= >.

We shall write 1 = (1,≈1) ∈ B[p] for this object. For each object (I,≈I) in
B[p], the (equivalence class of the) predicate E (i) ∈ PI ∼= P1×I is the unique
morphism from (I,≈I) to 1.

The product of (I,≈I) and (J,≈J) is the object I×J ∈ B together with
equality predicate

z, w : I × J ` |πz ≈I πw| ∧ |π′z ≈I π′w|.

The projection (I,≈) (I × J,≈)oo //(J,≈) maps are given by the pred-
icates

z : I × J, i : I ` |πz ≈I i| ∧ EJ(π′z)
z : I × J, j : J ` |π′z ≈J j| ∧ E I(πz).

The tupling of two maps F : (K,≈) → (I,≈) and G : (K,≈) → (J,≈) in-
volves the predicate

k : K, z : I × J ` F (k, πz) ∧G(k, π′z).
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For parallel maps F and G, an equalizer

(I,≈) //
≈ // (I,≈)

F ,,

G
22 (J,≈)

is obtained by taking as new equality predicate ≈ on I,

i1, i2 : I ` |i1 ≈ i2|
def= |i1 ≈ i2| ∧ ∃j : J. F (i1, j) ∧G(i2, j)

This predicate ≈ is also the equalizer map ≈ : (I,≈)→ (I,≈) of F , G.

5.2.2 Monomorphisms and Epimorphisms

A morphism F : (I,≈) → (J,≈) in B[p] is a monomorphism if and only if
one has in the internal language of p

i1, i2 : I, j : J | F (i1, j) ∧ F (i2, j) ` |i1 ≈I i2| i.e. single-valued in i

Similarly, F is epi in B[p] iff

j : J | ∅ ` ∃i : I. F (i, j) i.e. total in j

is valid in the logic of p.

5.2.3 Subobjects and Powerobjects

To understand the nature of the subobjects in B[p] one uses so-called strict
predicates. For an object (I,≈) ∈ B[p], a strict predicate on (I,≈) is a
predicate A ∈ PI which satisfies in p

i1, i2 : I | A(i1), i1 ≈I i2 ` A(i2) and i : I | A(i) ` E I(i).

We form a category SPred(p) of ⊃⊂-equivalence classes of strict predicates
by stipulating that a morphism from a strict predicate A on (I,≈) to a strict
predicate B on (J,≈) consists of a map F : (I,≈)→ (J,≈) in B[p] for which
we have in p

i : I | A(i) ` ∃j : J. F (i, j) ∧B(j).

As usual, we do not distinguish notationally between a strict predicate and
its equivalence class.
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The forgetful functor
SPred(p)

��
B[p]

is a poset fibration. The order in the fibre

over (I,≈) is the order inherited from p’s fibre over I: for strict predicates
A, B on (I,≈) one has

A ≤ B in SPred(p) over (I,≈) ⇐⇒ i : I | A(i) ` B(i) in p.

(On the left, ≤ is a partial order between the equivalence classes of A and
B; on the right ` is a preorder.) For a morphism F : (I,≈)→ (J,≈) in B[p]
and a strict predicate B on (J,≈), one gets a strict predicate on (I,≈) by

i : I ` F ∗(B)(i) def= ∃j : J. F (i, j) ∧B(j).

Strict predicates on (I,≈) correspond to subobjects of (I,≈) in B[p] in the
sense that there is an isomorphism of fibred categories,

Sub(B[p])
∼= //

%%KKKKKKKKK
SPred(p)

yyttttttttt

B[p].

Indeed, given a subobject represented by a monic M : (Y,≈)� (X,≈), we
get a strict predicate on (X,≈): x : X ` ∃y : Y. M(y, x). Given a strict
predicate R on (X,≈) we get a new object ||R|| by changing the equality on
X to x, x′ : X ` x ≈X x′ ∧ R(x), and then x, x′ : X ` x ≈X x′ ∧ R(x) is a
functional relation representing a monomorphism ||R||� (X,≈).

Given an object (X,≈X) in B[p], its powerobject P (X,≈X) has under-
lying object PX (given by item 4 in Definition 5.1.1) and equality

R, S : PX ` |R ≈PX S| def= ∀x : X. (x ∈X R ⊃⊂ x ∈X S) ∧ EPX(R)

where

EPX(R) def=
(
∀x, x′ : X. x ∈X R ∧ x ≈X x′ ⊃ x′ ∈X R

)
∧(

∀x : X. x ∈X R ⊃ EX(x)
)
.

The subobject classifier of B[p] is the object

Ω = (Σ,≈Ω),

where Σ ∈ B is the object over which the generic predicate of p lies and ≈Ω

is logical equivalence:

p, q : Σ ` |p ≈Ω q| def= (p ⊃⊂ q).
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For a strict predicate A on (I,≈) we get a characteristic map char(A) :
(I,≈)→ (Σ,≈) in B[p] by

i : I, p : Σ ` char(A)(i, p) def= E (i) ∧ |A(i) ⊃⊂ p|.

5.2.4 Exponentials

In case B is cartesian closed, as will most often be the case in our examples,
the exponentials of B[p] can be described explicitly in the following way.

Let Σ ∈ B be the object over which the generic predicate in p lies. Then
for the exponent of (I,≈) and (J,≈) we take P (I × J) = ΣI×J as the
underlying object with existence predicate

f : P (I × j) ` E (f) def= “f is a functional relation”.

That is,

E (f) def=
(
∀i1, i2 : I. ∀j1, j2 : J. |i1 ≈I i2| ∧ |j1 ≈J j2| ∧ f(i1, j1) ⊃ f(i2, j2)

)
∧(

∀i : I. ∀j : J. f(i, j) ⊃ E I(i) ∧ EJ(j)
)
∧(

∀i : I. ∀j1, j2 : J. f(i, j1) ∧ f(i, j2) ⊃ |j1 ≈J j2|
)
∧(

∀i : I. E I(i) ⊃ ∃j : J. f(i, j)
)
.

The equality predicate on the object P (I × J) underlying the exponent
(I,≈)⇒ (J,≈) is then

f, g : P (I × J) ` |f ≈ g| def= E (f) ∧ E (g) ∧ ∀i : I. ∀j : J. f(i, j) ⊃⊂ g(i, j).

The evaluation map Ev: ((I,≈)× (J,≈))→ (J,≈) is given by

f : P (I × g), i : I, j : J ` Ev(f, i, j) def= f(i, j) ∧ E (f).

For a morphism H : (K,≈) × (I,≈) → (J,≈), the exponential transpose
Λ(H) : (K,≈)→ (I,≈)⇒ (J,≈) is given by

k : K, f : I × J ` Λ(H)(k, f) def= E (k) ∧ E (f) ∧
∀i : I. ∀j : J. H(f, i, j) ⊃⊂ f(i, j).

5.2.5 The internal logic

The internal logic of B[p] (i.e., the internal logic of the subobject fibration on
B[p]) is most conveniently described as the internal logic of (the equivalent,

see above) fibration
SPred(p)

��
B[p]

of strict predicates. If, for the time being we

mark its connectives with a tilde ·̃, then expressed in terms of the connectives
of p, which are written in ordinary fashion, we have



120 Preliminaries on Tripos Theory

• propositional connectives in the fibre over (I,≈) are ⊥̃ = ⊥, ∨̃ = ∨,
>̃ = E I , ∧̃ = ∧, A⊃̃B = E I ∧(A ⊃ B).

• For a strict predicate A over (I,≈) and a morphism
F : (I,≈)→ (J,≈),

∃̃F (A)(j) = ∃i : I. F (i, j) ∧A(i),

∀̃F (A)(j) = E (j) ∧ ∀i : I. F (i, j) ⊃ A(i).

In the special case where (I,≈) is (H,≈)× (J,≈) and F is the projec-
tion (H,≈)× (J,≈)→ (J,≈), the resulting equations are

∃̃h : H. A(h, j) = ∃h : H. E (h) ∧A(h, j) = ∃h : H. A(h, j),

∀̃h : H. A(h, j) = E (j) ∧ ∀h : H. E (h) ⊃ A(h, j).

The generic object of
SPred(p)

��
B[p]

is the strict predicate

p : Σ ` true(p) def= |p ⊃⊂ >|.

on the subobject classifier Ω = (Σ,⊃⊂)

5.3 The “Constant Objects” Functor

Definition 5.3.1. Let B be a finitely complete category and
P

p
��
B

a tripos.

The constant p-object on an object X ∈ B, denoted ∇p(X), has under-
lying object X and equality predicate x, x′ : X | (x ≈∇X x′) def= ∃δX (>X),
where δX : X → X ×X is the diagonal map in B. For each map f : X → Y
in B, ∃〈idX ,f〉(>X) ∈ PX×Y represents a map ∇p(f) : ∇p(X)→ ∇p(Y ). This
defines a functor ∇p : B→ B[p].

The constant objects functor is left exact.

Remark 5.3.2. The constant objects functor is so named because in lo-
calic examples it indeed assigns constant sheaves to objects from the base
category. In early writings [HJP80, Pit81, Hyl82], the functor was denoted
∆p; we follow the newer notational convention [CFS88, HRR90] of writing
∇p for the functor because it, in realizability examples, is right adjoint to
the global sections functor Γ and not left adjoint.
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The topos B[p] looks like being “generated by 1” over B, in the following
sense. Every object (X,≈) of B[p] occurs as a subquotient of a constant
p-object

(X,EX) // //

����

∇p(X)

(X,≈)

in B[p] (the quotient map is represented by the equality predicate on X).

5.4 Geometric Morphisms of Triposes

Geometric morphisms of triposes generalize continuous functions of locales,
and just as a continuous function of locales give rise to geometric morphism
of sheaves on locales, a geometric morphism of triposes gives rise to a geo-
metric morphism of the induced toposes.

Suppose that l : P → Q is a fibred functor between triposes
P

p
��
B

and

Q

q
��
B

and that l preserves fibred finite limits (> and ∧). Then for an object

(X,≈) in B[p], l(X,≈) = (X, l(≈)) is a well-defined object of B[q]. However,
since l does not necessarily preserve existential quantification (∃), given a
functional relation F ∈ PX×Y representing a morphism f : (X,≈) → (Y,≈
), l(F ) ∈ QX×Y will only be a partial functional relation, i.e., strict,
extensional, and single-valued, but not necessarily total. Using a notion of
complete object we shall see how to extend l to morphisms in B[p].

Definition 5.4.1. Let p be a tripos over B. An object (Y,≈) ∈ B[p] is
complete if given a partial functional relation F from (X,≈) to (Y,≈),
there is f : X → Y in B such that

x : X | ∅ ` ∃y : Y. F (x, y) ⊃⊂ F (x, fx)

is valid in the logic of p.

Remark 5.4.2. In [HJP80, Pit81] a complete object was called “weakly
complete” but since it is not weak in any sense, we just the word complete.

Proposition 5.4.3. Let
P

p
��
B

be a tripos. Any object (X,≈) ∈ B[p] is iso-

morphic to a complete one.
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Proof Sketch. (X,≈) is isomorphic to the complete object S(X,≈), where
S(X,≈) is the subobject ||SX || � P (X,≈X) of the powerobject of (X,≈)
given by the strict predicate SX ∈ PPX :

R : PX | SX(R) def= ∃x : X.
(
x ≈X x ∧ ∀x′ ∈ X. (x′ ∈X R ⊃⊂ x ≈X x′)

)
.

See [HJP80, Pit81] for more details.

Lemma 5.4.4. Suppose that l : P → Q is a fibred functor from
P

p
��
B

to
Q

q
��
B

preserving fibred finite limits. Let (X,≈) and (Y,≈) be objects of B[P] and
suppose (Y,≈) is complete. Then for any functional relation F from (X,≈)
to (Y,≈), l(F ) is a functional relation from l(X,≈) to l(Y,≈).

Thus given any f = [F ] : (X,≈) → (Y,≈) in B[p] with (Y,≈) complete, we
can define l(f) to be [l(F )]. Using Proposition 5.4.3 we can then extend l
to a left exact functor B[p]→ B[q]. For more details, see [Pit81].

Definition 5.4.5. Let B be a finitely complete category and let
P

p
��
B

and
Q

q
��
B

be triposes over B. A geometric morphism f : p→ q is given by a pair of
fibred functors f∗ : Q→ P and f∗ : P→ Q over B, as in

P

p
��>>>>>>>

f∗

> ++
Q

q
���������f∗

kk

B

such that f∗ is a fibred left adjoint of f∗ and such that f∗ preserves fibred
finite limits.

Given such a geometric morphism f , since f∗ and f∗ both preserve fibred
finite limits, we get induced left exact functors f∗ and f∗ between B[p] and
B[q] defined as above. In fact, since f∗ preserves existential quantification (as
a fibred left adjoint), f∗ may be constructed without recourse to completions.

Proposition 5.4.6. Let f = (f∗, f∗) be a geometric morphism of triposes,
as in

P

p
��????????

f∗

> ++
Q

q
��~~~~~~~~

f∗
kk

B.
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Then f = (f∗, f∗) : B[p]→ B[q] is a geometric morphism of toposes.

Proof Sketch. Suppose, without loss of generality by Proposition 5.4.3, that
(X,≈) ∈ B[p] is complete. The counit ε(X,≈) : f∗f∗(X,≈) → (X,≈) is
represented by the functional relation

E(x, x′) = f∗f∗(x ≈ x) ∧ x ≈ x′.

For any g = [G] : f∗(Y,≈) → (X,≈), the associated unique morphism
g : (Y,≈)→ f∗(X,≈), as in the diagram

f∗(X,≈X) f
∗
f∗(X,≈X)

ε // (X,≈X)

(Y,≈Y )

g

OO�
�
�

f
∗(Y,≈Y )

f
∗
g

OO

g

88ppppppppppp

is represented by the functional relation G given by

G(y, x) = f∗(G(y, x)) ∧ (y ≈ y).

See [Pit81] for more details.

The following observation is easy, but useful in the following. It has
probably been know to Hyland and Pitts, but I have not seen it written
down anywhere, so I include a proof here.

Proposition 5.4.7. Let B be a finitely complete category and let
P

p
��
B

and

Q

q
��
B

be B-triposes. Suppose f = (f∗, f∗) : p → q is a geometric morphism of

triposes. Suppose further that f∗ is full and faithful and that f∗ preserves
existential quantification. Then also the induced functor f∗ is full and and
faithful.

Note that whenever f∗ has a fibred right adjoint, it preserves existential
quantification (as a fibred left adjoint).

Proof. We show that the unit η : id ⇒ f∗f
∗ is an isomorphism, from which it

follows that f∗ is full and faithful [Mac71, Dual of Theorem 1, Section IV.3].
Now since f∗ preserves existential quantification, both f∗ and f∗ may be

constructed without recourse to completions so that f∗(X,≈) = (X, f∗ ≈)
and f∗(Y,≈) = (Y, f∗ ≈). The unit η : id ⇒ f∗f

∗ is then given by the
functional relation η(x, x′) = |x ≈ x∧ f∗f∗(x ≈ x′)| : (X,≈)→ (X, f∗f∗ ≈).
But f∗f∗ ∼= id by the assumption that f∗ is full and faithful, so η(x, x′) ∼=
x ≈ x′, the identity on (X,≈), as required.
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The following theorem was known to Martin Hyland but apparently has
never been published.2 We include a proof here. See [Joh77, Joh79a, Joh81]
for more on localic geometric morphisms.

Theorem 5.4.8. Let B be a finitely complete category and let
P

p
��
B

and
Q

q
��
B

be B-triposes. Suppose f = (f∗, f∗) : p → q is a geometric morphism of
triposes. Then B[p] is localic over B[q] via the induced geometric morphism
f = (f∗, f∗) : B[p]→ B[q].

Proof. We want to prove that B[p] is equivalent to the category of B[q]-
valued sheaves on the internal locale f∗(ΩB[p]) in B[q]. As usual [Joh77,
Joh79a, Joh81] it suffices to show that, for all X ∈ B[p], there exists a
Y ∈ B[q] and a diagram

S // //

����

f
∗
Y

X

in B[p] presenting X as a subquotient of f∗Y for Y an object of B[q]. Write
∇p : B → B[p] for the constant objects functor for p. Then, as noted in
Section 5.3, for any X ∈ B[p], there exists an object I ∈ B and a diagram

S // //

����

∇p(I) = (I,∃δI (T ))

X

(5.1)

in B[p] presenting X as a subquotient of a constant object ∇p(I). Now since
f∗ is the inverse image of a geometric morphism of triposes, f∗ preserves
existential quantification (as a fibred left adjoint), so f

∗(∇q(I)) ∼= ∇p(I),
and the diagram in (5.1) is the required diagram.

5.5 Topologies and Sub-Triposes

The notion of a Lawvere-Tierney topology on a tripos is a generalization
of the notion of a nucleus (or j-operator) on a locale and just as a nucleus

2Martin Hyland suggested me to prove an instance of this result for some specific
realizability triposes. I found a proof and saw that it applied in general to arbitrary
triposes as shown here; a fact that Hyland, as expected, was aware of.
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on a locale gives rise to a subtopos of the topos of sheaves on the locale, a
Lawvere-Tierney topology on a tripos gives rise to a subtopos of the topos
resulting from the tripos.

We confine ourselves to the case when the tripos p is a canonically pre-
sented tripos on an object Σ in a topos E , i.e., when the fibre over I is
E(I,Σ), and reindexing is given by composition.

Definition 5.5.1. A (Lawvere-Tierney) topology on a canonically pre-

sented E-tripos
P

p
��
E

is an inflationary, idempotent, left exact fibred functor

J : P→ P over E .

Such a topology on p = E(−,Σ) can be specified by a map J : Σ→ Σ in
E satisfying

• p, q : Σ | ∅ ` (p ⊃ q) ⊃ (Jp ⊃ Jq)

• ∅ | ∅ ` J(>)

• p : Σ | ∅ ` J(Jp) ⊃ Jp

in the logic of p.
Such a map J : Σ → Σ represents a strict predicate on Ω = (Σ,⊃⊂) ∈

E [p], which is the generic j-dense subobject of Ω. That is, the classifying
map of the subobject ||J ||� Ω is a Lawvere-Tierney topology j : Ω→ Ω in
E [p], as in

||J || //
��

��

1

>
��

Ω
j
// Ω,

where, recall, ||J || = (Σ,≈J) with |p ≈J q| = (p ⊃⊂ q) ∧ J(p).
Let ShjE [p] be the sheaf subtopos corresponding to a topology J on p.

Then ShjE [p] is equivalent to E [pJ ] for some canonically presented E-tripos
pJ , described as follows. Tripos pJ is also canonically presented on Σ, but
⊃, ∀, and D are redefined by letting

• ⊃pJ be Σ× Σ id×J //Σ× Σ
⊃P //Σ, i.e., (ϕ ⊃pJ ψ) = (ϕ ⊃P Jψ),

• (∀F )(ϕ) be (∀F )(Jϕ),

• 1
p //Σ be in DpJ iff 1

p //Σ J //Σ is in Dp.
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Thus ϕ `pJ ψ iff ϕ `p Jψ, whilst >, ∧, ⊥, ∨, and ∃ remain unchanged.
Let f = (f∗, f∗) : p → q be a geometric morphisms between E-triposes.

Then J = f∗f
∗ is a topology on q and the surjection-inclusion factoriza-

tion [MM92] of the induced geometric morphism f : E [p] → E [q] takes the
form

E [p] // E [qJ ] � � // E [q].

Thus f is an inclusion iff f∗f∗ ∼= id , and in this case we shall say that f is
an inclusion of triposes.



Chapter 6

The Relative Realizability
Topos RT(A,A])

In the present chapter we initiate our study of the relative realizability topos
RT(A,A]) obtained from the relative realizability tripos in Section 5.1.4 by
the standard tripos-to-topos construction. We show how RT(A,A]) relates
the standard realizability toposes RT(A]) and RT(A); in particular, we prove
that there is a localic local geometric morphism from RT(A,A]) to RT(A]).
In Chapters 7–9 we study local geometric morphisms at an abstract level,
and in Chapter 10 we then return to study RT(A,A]) in more detail.

For the remainder of this chapter, we let A be a PCA and let A] ⊆ A
be a sub-PCA of A. Recall from the introduction in Chapter 1 that we are
thinking of the realizers from A as “continuous” and of the realizers from A]

as “computable.” Thus we shall call elements of A continuous realizers
and elements of A] computable realizers.

Example 6.0.2. There are many examples of PCA’s A with a sub-PCA
A]. Here are a few:

1. A = P, the graph model of the lambda calculus, see Example 3.1.15,
and let A] = RE , the recursively enumerable graph model, see Exam-
ple 3.1.16. Note that P has a continuum of (countable) sub-PCA’s.

2. A is Kleene’s second model NN , see [Bee85, Section VI.7.4], and A]

is the sub-model of recursive functions from N to N , see [Bee85, Sec-
tion VI.7.5].

3. A is van Oosten’s combinatory algebra B for sequential computation
and A] is its effective subalgebra Beff , see [vO99, Lon98].

127
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Convention 6.0.3. Let
UFam(A)

p
��

Set
and

UFam(A])
q
��

Set
be the standard realizabil-

ity tripos over A and A], respectively, and let
UFam(A,A])

r��
Set

be the relative

realizability tripos over A and A]. We denote the resulting realizability
toposes in the following way:

RT(A) = Set[p]
RT(A]) = Set[q]

RT(A,A]) = Set[r].

Before going into the relationship between RT(A,A]) and RT(A) and
RT(A]), let us for emphasis write out explicitly what the object and mor-
phisms of RT(A,A]) are. Objects of RT(A,A]) are pairs (X,≈X) with
X ∈ Set a set and ≈X : X × X → PA a non-standard equality predicate
with computable realizers for symmetry and transitivity. Thus we require
that both (

A] ∩
⋂

x,x′∈X

(
(x ≈X x′) ⊃ (x′ ≈X x)

))
6= ∅

(
A] ∩

⋂
x,x′,x′′∈X

(
(x ≈X x′) ∧ (x′ ≈X x′′) ⊃ (x ≈X x′′)

))
6= ∅,

hold, where, for p, q ∈ PA,

p ∧ q = { 〈a, b〉 | a ∈ p and b ∈ q }
p ⊃ q = { a ∈ A | ∀b ∈ p. a · b ∈ q },

see Section 5.1.4.
A morphism f : (X,≈X) → (Y,≈Y ) is an equivalence class f = [F ] of

(PA)-valued functional relations F : X×Y → PA with computable realizers
for functionality. That is, we require that(

A] ∩
⋂

x,x′∈X,y,y′∈Y

(
(x ≈X x′) ∧ (y ≈Y y′) ∧ F (x, y) ⊃ F (x′, y′)

))
6= ∅

(
A] ∩

⋂
x∈X,yY

(
F (x, y) ⊃ (x ≈X x) ∧ (y ≈Y y)

))
6= ∅(

A] ∩
⋂

x,∈X,y,y′∈Y

(
F (x, y) ∧ F (x, y′) ⊃ (y ≈Y y′)

))
6= ∅

(
A] ∩

⋂
x,∈X

(
(x ≈X x) ⊃

⋃
y∈Y

F (x, y)
))
6= ∅
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all hold.
Two such F and F ′ are equivalent just in case(

A] ∩
⋂

x,∈X,y∈Y

(
F (x, y) ⊃⊂ F ′(x, y)

))
6= ∅.

We now see that, intuitively speaking, it makes sense to think of objects of
RT(A,A]) as objects with continuous realizers for existence and equality of
objects, and of morphisms f = [F ] as computable maps, since the realizers
for functionality of F are required to be computable. Thus the slogan is:

Slogan. RT(A,A]) has “continuous objects and computable morphisms.”

Remark 6.0.4. The relative realizability tripos
UFam(A,A])

r��
Set

underlying the

topos RT(A,A]) can also be obtained from a WCPC-category: consider the
monoid M(A,A]) of A]-definable partial functions from A to A and the func-
tor U0 : M(A,A])→ Ptl the inclusion functor. Let C = Split(M(A,A]), U0)
and let U = Split(U0) (see Page 62). Then C is a WCPC-category and
the pretripos generated by C and U is equivalent to the realizability tripos
UFam(A,A])

r��
Set

.

6.1 On the Relation Between RT(A,A]) and RT(A)

Recall from Section 5.1.4 that the inhabited subsets of A form a filter Φ in the
fibre over 1 in the tripos r and that tripos p is exactly rΦ, see Remark 5.1.3.
Then as in [Pit81, Page 26], we can define a filter Φ̂ of subobjects of 1 in
RT(A,A]) = Set[r] consisting of

||ϕ||� 1,

with ||ϕ|| = (1, (∗, ∗) 7→ ϕ(∗)), for each ϕ ∈ Φ. Then as Pitts remarks [Pit81,
Page 26], the filter-quotient RT(A,A])Φ̂ is equivalent to Set[rΦ] = Set[p] =
RT(A). Under this equivalence, the logical functor RT(A,A])→ RT(A,A])Φ̂
is identified with the obvious functor from RT(A,A])→ RT(A) which is the
identity on objects. See [MM92, Joh77, LM82] for more on filter-quotients
(also called filter-powers).
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6.2 On the Relation Between RT(A,A]) and RT(A])

We now define three fibred functors over Set among the triposes q and r
underlying RT(A,A]) and RT(A]), as in

UFam(A])
∆ --

∇
11

q
&&LLLLLLLLLL

UFam(A,A])Γoo

r
xxppppppppppp

Set.

The functors are defined by

∆(ψ : I → PA]) = ψ

Γ(ϕ : I → PA) = λi. A] ∩ ϕ(i)

∇(ψ : I → PA]) = λi.
⋃

ϕ∈P A

(
ϕ ∧

(
A] ∩ ϕ ⊃ ψ(i)

))
,

with ∧ and ⊃ calculated as in r’s fibre over 1, i.e., in UFam(A,A])1.
The above equations give the action of the functors on objects. The

action of each of the functors on a morphism is the identity action. (Recall
that in UFam(A]) there is a morphism u : ψ → ψ′, with ψ ∈ UFam(A])I
and ψ′ ∈ UFam(A])J exactly if ψ is less than ψ′◦u in the fibre UFam(A])I .
Likewise for UFam(A,A]).) It is easy to see that ∆ and Γ are well-defined
fibred functors and that ∇ preserves cartesian morphisms (recall that the
cartesian morphism over u is u itself) and that r∇ = q. To verify that
the functors are well-defined, it thus only remains to verify the functoriality
of ∇. To this end, suppose that u : ψ → ψ′ in UFam(A]), i.e., that
ψ ≤UFam(A])I

ψ′ ◦ u. Then there is a realizer c ∈ A] such that

c ∈
⋂
i∈I

(
ψ(i) ⊃ ψ′(u(i))

)
.

Let

d = λx. 〈πx, λy. c(π′(x)(y))〉.

Then d ∈ A] (since c ∈ A]) and it is easy to verify that

d ∈
⋂
i∈I

(
∇(ψ)(i) ⊃ ∇(ψ′)(u(i)),

as required.
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Theorem 6.2.1. Under these definitions it follows that

1. (∆,Γ) is a geometric morphism of triposes from r to q.

2. (Γ,∇) is a geometric morphism of triposes from q to r.

3. For all I ∈ Set, ∆I and ∇I are both full and faithful.

Remark 6.2.2. Item 3 is equivalent to ∆ and ∇ being full and faith-
ful [Jac99, Exercise 1.7.2].

Proof. It is easy to see that ∆ is left adjoint to Γ using that A] is closed
under the partial application of A. Further, it is clear that ∆ preserves finite
limits and is full and faithful since `q

I and `r
I are defined in the same way

(requiring computable realizers).
By Lemma 2.2.11 it suffices to show that ∇I is left adjoint to ΓI , for

all I ∈ Set (the Beck-Chevalley condition in Lemma 2.2.11 is easily seen to
hold). Since q and r are both fibred preorders, we just have to show that

ϕ `r
I ∇ψ ⇐⇒ Γϕ `q

I ψ,

for all ϕ ∈ UFam(A,A])I and all ψ ∈ UFam(A])I . To this end, suppose
ϕ `r

I ∇ψ, via a realizer c ∈ A]. Let

d = λx. π(c(x))(π′(c(x))) ∈ A].

It is easy to verify that d is a a realizer for Γϕ `q
I ψ.

For the other direction, suppose d ∈ A] is a realizer for Γϕ `q
I ψ. Then

c = λx. 〈x, λy. d(y)〉 ∈ A]

is a realizer for ϕ `r
I ∇ψ.

Since ∆ is full and faithful and since ∆ a Γ a ∇, also ∇ is full and
faithful [MM92, Lemma 1, Section VII.4], completing the proof of the the-
orem.

By Proposition 5.4.6 these geometric morphisms (∆,Γ) and (Γ,∇) of tri-
poses lift to two geometric morphisms between the induced toposes, as in

RT(A])
∆ --

∇
11
RT(A,A]),Γoo ∆ a Γ a ∇.

(Here we do not distinguish notationally between the functors at the tripos
level and at the topos level). In particular, ∆ preserves finite limits. By
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Proposition 5.4.7, ∆: RT(A]) → RT(A,A]) is full and faithful and thus,
by [MM92, Lemma 1, Section VII.4], also ∇ : RT(A]) → RT(A,A]) is full
and faithful. Hence Γ∆ ∼= 1 ∼= Γ∇. The geometric morphisms (∆,Γ) is
therefore a connected surjective geometric morphism and (Γ,∇) : RT(A])→
RT(A,A]) is an embedding (see [MM92, Chapter VII] or [Joh77, Chapter 4]
for more on different classes of geometric morphisms). By Theorem 5.4.8,
RT(A,A]) is localic over RT(A]) via the geometric morphism (∆,Γ). Sum-
marizing we have:

Theorem 6.2.3. The geometric morphism (∆,Γ) : RT(A,A]) → RT(A])
is a localic local map of toposes.

Proof. (∆,Γ) is localic as remarked above and it is local since Γ has a right
adjoint ∇ for which Γ∇ ∼= 1.

Local maps of toposes have been studied by Johnstone and Moerdijk [JM89]
and provide an instance of what Lawvere has called unity and identity of
opposites [Law91, Law89]. We will have a lot more to say about local maps
in the following chapters.

For future use we now state explicitly some of the data given by the
adjunction ∆ a Γ.

Consider first the adjunction ∆ a Γ. Since Γ at the level of triposes
has a right adjoint, both ∆ and Γ are defined defined without recourse to
completions so that ∆(Y,≈Y ) = (Y,≈Y ) and Γ(X,≈X) = (X,Γ ≈X). As
already observed, the unit η : 1⇒ Γ∆ is naturally isomorphic to the identity.
The counit ε : ∆Γ ⇒ 1 at an object (X,≈) ∈ RT(A,A]) is represented by
the functional relation E given by

E(x, x′) = ∆Γ(x ≈ x) ∧ (x ≈ x′)
= (x ≈ x) ∩A] ∧ (x ≈ x′)

(see the proof sketch of Proposition 5.4.6). For a morphism

g = [G] : ∆(Y,≈Y )→ (X,≈X)

in RT(A,A]), the associated unique morphism g : (Y,≈Y ) → Γ(X,≈X), as
in the diagram

Γ(X,≈X) ∆Γ(X,≈X) ε // (X,≈X)

(Y,≈Y )

g

OO�
�
�

∆(Y,≈Y )

∆g

OO

g

77ppppppppppp
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is represented by the functional relation G given by

G(y, x) = Γ(G(y, x)) ∧ (y ≈Y y)
= G(y, x) ∩A] ∧ (y ≈Y y)
∼= G(y, x) ∩A]

(the last isomorphism since G is strict and ∆ is the identity).
Regarding the adjunction Γ a ∇, note that since∇ at the level of triposes

does not preserve existentials, ∇ : RT(A])→ RT(A,A]) is constructed using
completions and is therefore not so easily described explicitly. Since we shall
not need to calculate with this adjunction explicitly, we do not include a
detailed treatment of it here.

Geometric Morphisms from Set to RT(A,A]) and RT(A])

Following Pitts [Pit81, Examples 4.9, Page 53] there is a geometric morphism
of triposes as in

Sub(Set)
δq

--

%%JJJJJJJJJJ
UFam(A])

γq

>mm

q
yyrrrrrrrrrr

Set

explicitly given by

γq(ψ : I → PA]) = { i ∈ I | ψ(i) 6= ∅ }

δq(I ′ ⊆ I) = i 7→

{
A] if i ∈ I ′,
∅ otherwise.

We denote the resulting geometric morphism by (Γq,∇q) = (γq, δq), as in

Set
∇q
>
//
RT(A])

Γq
oo

As the notation suggests, ∇q is indeed the constant objects functor from
Section 5.3.

Explicitly, Γq may be described as follows. An object (I,≈I) is mapped
to the quotient set Dom(∼)/∼, where i ∼ i ⇐⇒ |i ≈I i| 6= ∅. A morphism
f = [F ] : (I,≈) → (J,≈) is mapped to the function which maps [i] to [j]
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iff F (i, j) 6= ∅. The functor Γq is isomorphic to the global sections functor
HomRT(A])(1,−).

Explicitly, the functor ∇q maps an object I ∈ Set to the object (I,≈I)
with

|i ≈I i| =

{
A] if i = i′,

∅ otherwise.

A function f : I → J is mapped to the morphism [F ] with

F (i, j) =

{
A] if f(i) = j

∅ otherwise.

In much the same way, we get an geometric morphism of triposes as in

Sub(Set)
δr ..

%%JJJJJJJJJJ
UFam(A,A])

γr

>mm

r
xxqqqqqqqqqqq

Set

with the functors explicitly given by

γr(ϕ : I → PA) = { i ∈ I | ϕ(i) 6= ∅ }

δp(I ′ ⊆ I) = i 7→

{
A if i ∈ I ′,
∅ otherwise.

We denote the resulting geometric morphism by (Γr,∇r) = (γr, δr), as in

Set
∇r

>
//
RT(A,A]).

Γr

oo

Explicitly, Γr may be described analogously to Γq, i.e., an object (I,≈I
) is mapped to quotient set Dom(∼)/∼, where i ∼ i ⇐⇒ |i ≈I i| 6=
∅. But notice that Γr is not (isomorphic to) the global sections functor
HomRT(A,A])(1,−)! For a concrete counter-example, suppose A] is a proper
sub-PCA of A and consider the object (I,≈I) in RT(A,A]) with |i ≈I i′| =
A \ A]. Then Γr(I,≈I) is isomorphic to the terminal object of Set, a one-
element set. But HomRT(A,A])(1, (I,≈I)) is empty (there is no functional
relation with a realizer in A] for totality).
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The functor ∇r maps an object I ∈ Set to the object (I,≈I) with

|i ≈I i|
def=

{
A if i = i′,

∅ otherwise.

A function f : I → J is mapped by ∇r to the morphism [F ] with

F (i, j) =

{
A if f(i) = j,

∅ otherwise.

For the record state the following observation.

Proposition 6.2.4. The functors δq and δr preserve coproducts (existential
quantification ∃).

Proof. We just consider δq; the reasoning is similar for δr. Let u : I → J in
Set. For I ′ ⊆ I, let u∗(I ′) denote the image of I ′ under u. Then

δq(∃u(I ′ ⊆ I)) = δq(u∗(I ′) ⊆ J)

= j 7→

{
A] if j ∈ u∗(I ′),
∅ otherwise,

and

∃u(δq(I ′ ⊆ I)) = ∃u(ψ) where ψ(i) = A] if i ∈ I ′, ∅ otherwise

= j 7→
⋃
{ψ(i) | u(i) = j }

= j 7→

{
A] if ∃i ∈ I ′.u(i) = j

∅ otherwise.

Since δq(∃u(I ′ ⊆ I)) = ∃u(δq(I ′ ⊆ I)), we have the required.

Theorem 6.2.5. Consider the following diagram, all fibred over Set,

UFam(A]) UFam(A,A])

Sub(Set)

∆
--

∇
11

γq

##

Γoo

γr

{{

δq

cc

δr

;;

∆ a Γ a ∇,
γq a δq

γr a δr.
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1. ∆ ◦ δq ∼= δp

2. Γ ◦ δp ∼= δq

3. γq ◦ Γ a ∇ ◦ δq

Proof. Straightforward.

This theorem then extends to the level of toposes in the obvious way. Ex-
plicitly we have the following.

Theorem 6.2.6. Consider the following diagram of toposes and functors:

RT(A]) RT(A,A])

Set

∆
--

∇
11

Γq

$$

Γoo

Γr

zz

∇q

cc

∇r

;;

∆ a Γ a ∇,
Γq a ∇q

Γr a ∇r.

Then

1. ∆ ◦ ∇q
∼= ∇r

2. Γ ◦ ∇r
∼= ∇q

3. Γq ◦ Γ a ∇ ◦∆r



Chapter 7

An Elementary
Axiomatization of Local
Maps of Toposes

In this chapter we present an elementary axiomatization of local maps of
toposes. The axioms are shown to be sound and complete in the sense that
whenever a topos satisfies the axioms then it gives rise to a local map and,
moreover, any local map of toposes satisfies the axioms. Below we first recall
the definition of a local map of toposes in Section 7.1. In Section 7.2 we
then describe the approach to the axiomatization that we will take and we
recall some material on orthogonal and coorthogonal categories from [KL89].
Finally, in Section 7.3 we present our axiomatization of local maps and show
that they are sound and complete. We first present a number of definitions
of relevant concepts and prove some properties of these concepts before we
suggest the actual axioms and prove that they are sound and complete. Our
development will be done in category-theoretic language but sometimes we
also include corresponding treatments phrased in the internal language of
the relevant toposes.

As explained in the previous chapter the axiomatization presented here
is motivated by our study of the relationship between the relative realiz-
ability topos RT(A,A]) and the realizability topos RT(A]). In this chapter,
however, we stay completely general and concern ourselves with arbitrary
local maps of toposes. It can thus be read independently of the rest of the
thesis.

137
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7.1 Local Maps of Toposes

Before recalling the definition of a local map, we recall the standard notion
of a bounded geometric morphism [Joh77, Section 4.4]. For explanatory
remarks on this definition, see loc. cit.. All of this chapter, except Sec-
tion 7.3.2, and also the following chapters, in which we focus on localic local
maps, can be read without worrying about boundedness.

Definition 7.1.1. Let f = (f∗, f∗) : E → F be a geometric morphism and
let G be an object of E .

1. G is an object of generators for E over F (via f) if, for any X ∈ E ,
there exist an object Y ∈ F , and a diagram

S

����

// // f∗(Y )×G

X

in E presenting X as a subquotient of f∗(Y )×G.

2. The geometric morphism f : E → F is bounded if E has an object of
generators over F via f .

Recall that a geometric morphism f : E → F is localic if f is bounded
and the object of generators is the terminal object 1. In other words, localic
geometric morphisms are a special case of bounded geometric morphisms.

We now recall the definition of a local map of toposes [Law86, Law89,
JM89] (see in particular [JM89, Proposition 1.4]).

Definition 7.1.2. Let E and F be elementary toposes. A geometric mor-
phism f = (f∗, f∗) : E → F is local if it is a bounded geometric morphism
and if the direct image functor f∗ has a right adjoint f ! which is full and
faithful.

Examples 7.1.3.

(i) Let X be a topological space, and suppose that there is a generic point
x ∈ X, that is, a point x whose only neighborhood is the whole space.
The space X could, e.g., be a Scott domain (viewed as a topologi-
cal space with the Scott topology) with the point x the least element
⊥ of X. Then the geometric morphism (∆,Γ): Sh(X) → Set from
the topos of sheaves on X to Set is local. The reason is that in this
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case the global sections functor Γ is seen to coincide with the stalk
functor F 7→ Fx (use, e.g., [MM92, Section II.5, Pages 83–84]) and
therefore, by [MM92, Lemma II.6.7, Page 93] it has a right adjoint
(the sky-scraper sheaf functor Skyx concentrated at x). Here the ob-
ject of generators is the coproduct, in Sh(()X), of all the (sheafified)
representables. A more abstract description of this example can be
found in Section 9.2.

(ii) The geometric morphism (∆,Γ): RT(A,A]) → RT(A]) from the rel-
ative realizability topos over A and A] to the standard realizability
topos over A] is local, see Theorem 6.2.3.

(iii) Let C be a small category with finite limits and i : D � � //C a full
subcategory, closed under finite limits. The geometric morphism Ĉ→
D̂ between the presheaf categories with direct image the restriction i∗

along i is then a local map.

(iv) The topological topos of Johnstone [Joh79b] is local over Set.

(v) The “gros” topos of sheaves for the open cover topology on a suitable
small subcategory of topological spaces, see [MM92, Chapter III, Sec-
tion 2] is local over Set. Indeed the global sections functor has a left
adjoint sending sets to (functors represented by) indiscrete spaces and
a right adjoint defined by means of indiscrete spaces. According to
Johnstone and Moerdijk [JM89], the definition of “gros topos” does
not yet seem to admit a precise definition, but Lawvere [Law86] has
argued that the property of being local should be part of the definition
of a gros topos. We hope that our axiomatization of local maps may
prove useful in establishing a suitable definition of gros topos. We
remark that one may consider the exact completion (Top )ex/lex of the
category of topological spaces Top as an example of a gros non-topos
which is “local” over Set [CR99, MS99].

For more examples of local maps, see [ABS99, JM89] and the references
therein.

Local maps of toposes have been pictured in an interesting way by Law-
vere [Law86, Law89, Law91] as a so-called adjoint cylinder — from [Law91]
we quote:

By a level in a category of Being, I mean a (“downward”) functor, from
it to a smaller category which has both left and right adjoints which
are full inclusions. Such a pair of categories and triple of functors
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is a unity-and-identity-of-opposites (UIO) in the sense that the big
category unites the two opposite subcategories which in themselves are
identical with the smaller category. One can picture the big category as
a (horizontal) cylinder, some objects of which lie on the identical right
or left ends. The two ends are opposite not only because we picture
them so, but for the intrinsic reason of adjointness; every object in
the category lies on a unique horizontal thread, two objects lying on
the same thread iff the downward functor assigns to them isomorphic
objects in the smaller (or lower) category.

The adjoint cylinder is pictured as follows:

X− X+

_ 


��
4__



��

4
_

X____ ____

222222222222222222YY

∆

������������������EE

∇

��

Γ

F

E

(7.1)

7.2 Approach to Axiomatization

In this section we recall some background material from [KL89] and outline
the approach we take to the axiomatization of local maps.

For the remainder of this section, let E and F be two elementary toposes
with adjoint functors between them, as in the situation

E

Γ

��
F

∆

BB

∇

\\

∆ a Γ a ∇, ∆ full and faithful and lex. (7.2)

Recall that a full subcategory B of a category A is said to be replete if,
whenever X ∈ B and X ∼= Y in A, then also Y ∈ B.

By analogy to topological examples [Joh79b, Law89, Law86] in the situa-
tion in (7.2) we refer to the objects in the replete image of ∆ as the discrete
objects and to the objects in the replete image of ∇ as the codiscrete ob-
jects.
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Note that since ∆ is full and faithful we have, by [MM92, Lemma 1,
Section VII.4, Page 369] (or [KL89, Proposition 2.3, Page 297]), that also ∇
is full and faithful.

In the situation above we thus have a geometric morphism (Γ,∇) : F →
E , whose direct image functor, ∇, is full and faithful. It follows by standard
results [MM92, Corollary 7, Section VII.4, Page 375] that there is a Lawvere-
Tierney topology j on E and an equivalence F e

'
//ShjE such that the

diagram of geometric morphisms

F
(Γ,∇) //

e
'

!!CCCCCCCCCCC E

ShjE
?�

i

OO

commutes up to a natural isomorphism e∗i∗ ∼= Γ. Here i = (i∗, i∗) = (a, i)
with a the associated sheaf functor and i the inclusion of sheaves. From the
proof of [MM92, Corollary 7, Section VII.4, Page 375] it follows that

e = (e∗, e∗) = (Γ ◦ i,a ◦∇).

From the equivalence F e
'
//ShjE it follows that the associated sheaf func-

tor a has a left exact left adjoint, namely ∆ ◦ Γ ◦ i a a. Summarizing we
thus have the following situation

E

Γ
������

��������
a

BBBBBBB

  BBBBBB

F

∆

44

∇

JJ

a∇ --ShjE

∆Γi

VV

i

jj

Γi
ll

∆ a Γ a ∇,
∆Γi a a a i,
Γia ∼= Γ,
a∇Γi ∼= id ,
Γia∇ ∼= id ,
∆ full and faithful and lex,
∇ full and faithful.

(7.3)

We now state a couple of conventions and then recall the notion of an es-
sential localization from [KL89].

Convention 7.2.1. For the remainder of this chapter we will confuse F
with its full replete image along ∆ in E . In other words, we will assume ∆
is just an inclusion functor. Moreover, we abbreviate and use subcategory to
mean a full replete subcategory.
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Recall that a subcategory B of a category A is reflective if the inclusion
of B in A has a left adjoint, called the reflector. A reflective subcategory B
of a lex category A is said to be a localization of A if the reflector preserves
finite limits, and a localization B of A is an essential localization if the
reflector has a left adjoint. Thus in our situation (7.3), ShjE is an essential
localization of E .

Dually, we say that a subcategory B of A is coreflective if the inclusion
of B in A has a right adjoint, called the coreflector. A coreflective subcat-
egory B of a category A with finite colimits is said to be a colocalization
of A if the coreflector preserves finite colimits, and a colocalization B of A
is said to be an essential colocalization of A if the coreflector has a right
adjoint. Thus in our situation (7.3), F is an essential colocalization of E .

We shall make use of the fact that reflective subcategories can be char-
acterized by an orthogonality condition. Therefore we recall the following
definitions and notation from [FK72], see also [KL89, Bor94a].

Let f : A → B be a morphism in a category C and let X be an object
of C. Then we say that f and X are orthogonal and write f ⊥ X when
C(f,X) : C(B,X) → C(A,X) is a bijection, that is, if for all a : A → X,
there exists a unique b : B → X such that

A
a //

f
��

X

B

b

>>}
}

}
}

commutes. Moreover, we say f and X are coorthogonal and write X > f
when C(X, f) : C(X,A) → C(X,B) is a bijection, that is, if for all b : X →
B, there exists a unique a : X → A such that

A

f

��
X

a
>>}

}
}

}

b
// B

commutes.1

For a subcategory B of A we write B⊥ for the class of all morphisms
orthogonal to every X ∈ B, and given a class of morphisms D of a category

1Comparing with the terminology in [Bor94a], f and X are orthogonal in our sense
if f is orthogonal to X in the sense of item (1) in Definition 5.4.2 of [Bor94a]; and f
and X are coorthogonal in our sense if X is orthogonal to f in the sense of item (2) in
Definition 5.4.2 of [Bor94a].
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A, we write D⊥ for the subcategory given by those X ∈ A orthogonal to
every f ∈ D. Likewise, for a subcategory B of A we write B> for the class of
all morphisms coorthogonal to every X ∈ B, and given a class of morphisms
D of a category A, we write D> for the subcategory given by those X ∈ A
coorthogonal to every f ∈ D.

Further recall that orthogonality conditions describe reflective subcate-
gories and that, dually, coorthogonality conditions describe coreflective sub-
categories:

Proposition 7.2.2. Let B be a reflective subcategory of A with reflector
R : A → B. Write D for the class of all morphisms f in A inverted by R
( i.e., for which R(f) is iso). Then B = D⊥ and, moreover, B⊥ = D.

Proof. See [Bor94a, Proposition 5.4.4] or [KL89, Proposition 2.1].

Thus by Proposition 7.2.2 (see also [Joh77]), the category ShjE is exactly
D⊥, where D is the class of morphisms inverted by the associated sheaf
functor a. Moreover, by Convention 7.2.1, F is precisely D>, where D is
the class of morphisms inverted by Γ.

Following Kelly and Lawvere [KL89], an ordered pair (B,C) of subcat-
egories of A is called an associated pair (of A) if B is reflective, C is
coreflective, and B⊥ = C

>.
The following is (part of) Theorem 2.4 in [KL89].

Theorem 7.2.3.

1. Let (B,C) be an associated pair of A, with

A

R

⊥
//
B

I
oo and C

J

⊥
//
A

S
oo ,

where I and J are the inclusions. Then

(a) each of B and C is uniquely determined by the other, since we
have C = B

⊥> and B = C
>⊥;

(b) the functors SI : B → C and RJ : C → B are mutually inverse
equivalences;

(c) B is an essential localization and C is an essential colocalization.

2. Moreover, every localization B of a category A forms part of an asso-
ciated pair (B,C); and if U : B→ A is any left adjoint of the reflector
R : A → B, we can describe C = B

⊥> alternatively as the full replete
image of U .
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For the proof of the theorem, which uses (1) that the counit of the
adjunction R a I is iso since I is full and faithful and (2) that the unit of
the adjunction J a S is iso since J is full and faithful, see [KL89]. Here we
just mention that in item (1c), the left adjoint to R is JSI and the right
adjoint to S is IRJ . Thus given an associated pair (B,C) of A, we have the
following situation:

A

S
������

�������� R

??????

��??????

C

J

44

IRJ

JJ

RJ ,,
B

JSI

TT

I

jj

SI
ll

J a S a IRJ,
JSI a R a I,
SIRJ ∼= id ,
RJSI ∼= id ,
J, I full and faithful,
IRJ, JSI full and faithful.

(7.4)

Note that in (7.3), the pair (ShjE ,F) is an associated pair of E . Moreover,
by item (1a) in Theorem 7.2.3 and by Proposition 7.2.2 we have that F =
(ShjE)⊥> = D>, where D is the class of all morphisms inverted by a. Thus,
comparing (7.4) with the situation in (7.3), we see that from just knowing
that (ShjE ,F) is an associated pair, everything in (7.3) follows, except that
∆ (and thus ∆Γi) is lex.

Recall that our goal is to axiomatize when a topos E is local over another
topos F , as in (7.2). By the preceding discussion it is now clear that it
suffices to axiomatize the situation in (7.3) and that, moreover, it suffices to
show that

(ShjE ,F) is an associated pair of E and ∆ is lex. (7.5)

(To be pedantic, by showing (7.5), we really show that E is local over the
replete image of F along ∆ in E , see Convention 7.2.1, but from this it, of
course, follows that E is local over F since F is equivalent to its full replete
image along ∆ in E .)

We already know how to describe ShjE by means of axioms on E , namely
by a Lawvere-Tierney topology j. Also note that ShjE is always a reflective
subcategory of E . As explained above, F = D>, where D is the class of
morphisms inverted by a. Hence, given a topology j such that F ' ShjE ,
to show (7.5), it suffices to show that

D> is a coreflective subcategory of E and the inclusion D> � � //E is lex.
(7.6)

This is the approach we shall take. We shall assume given a topos E with
a topology j and then impose further axioms on E and j allowing us to
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prove (7.6). Let us emphasize that D> is completely well-defined given just
E and j — D> is the full subcategory of coorthogonal objects to the class
of all morphisms inverted by the associated sheaf functor a, which we, of
course, know exists given E and j.

7.3 Axiomatization

For the remainder of this section, let E be a topos and j a Lawvere-Tierney
topology on E . We write ShjE for the full subcategory of sheaves with inclu-
sion i and associated sheaf functor a. Let Dj be the class of all morphisms
inverted by a and define DjE to be D>j , the full subcategory of coorthogonal
objects to Dj . We refer to the objects in DjE as the discrete objects and
to DjE as the category of discrete objects.2

Remark 7.3.1. As yet, we do not have a very satisfactory internal (in the
internal logic of E) definition of discrete object. The problem is that the
definition above involves quantification over all objects of the topos and
thus it is not straightforward to internalize it. (Of course, in the end, for
a topos satisfying the axioms, we can say that an object is discrete if it is
isomorphic to it’s own associated discrete object, which can be found in the
internal logic, but that is not very illuminating.)

Lemma 7.3.2. The category DjE has finite colimits and the inclusion

DjE � � // E

preserves them.

Proof. Because discrete objects are coorthogonal to morphisms inverted by
a and they only occur on the left in the definition of coorthogonal. In more
detail, suppose e : X → Y is inverted by a and suppose (Ci)i∈I is a finite

2Regarding the choice of terminology: We call the objects in DjE “discrete” by analogy
to the topological examples, as mentioned in Section 7.2. We would have liked to call
the objects “cosheaves” since they are exactly the objects which are coorthogonal to
the morphisms inverted by a and sheaves are the objects which are orthogonal to the
morphisms inverted by a. However, “cosheaf” has already been used to describe something
else, namely a sheaf valued in an opposite category [Bun95, Ber91]. Of course, “discrete”
has also been used for other concepts (e.g., in the theory of realizability [HRR90]), but
it seems nevertheless more innocuous to use the term “discrete” here as well. Do note,
however, that in [HRR90] discrete is used to describe an orthogonal object, whereas here
is it used to describe a coorthogonal object.
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diagram of discrete objects. Then

HomE(lim−→Ci, Y ) ∼= lim←− (HomE(Ci, Y ))
∼= lim←− (HomE(Ci, X))
∼= HomE(lim−→Ci, X),

as required.

Definition 7.3.3. Let j be a Lawvere-Tierney topology in a topos E and
write V 7→ V for the associated closure operation on subobjects V � X.
We say j is principal if, for all X ∈ E , the closure operation on Sub(X)
has a left adjoint U 7→ (U)◦, called interior, that is,

(U)◦ ≤ V ⇐⇒ U ≤ V in Sub(X).

Remark 7.3.4. The interior operation is not assumed to commute with
pullback. It follows (e.g., by the fact that externalization of internal cat-
egories is a locally full and faithful 2-functor, see [Jac99]) that in general
the interior operation is not induced by an internal map on the subobject
classifier Ω in the topos E .

Lemma 7.3.5. A topology j in a topos E is principal iff, for all X ∈ E,
there exists a least dense subobject UX of X.

Proof. Suppose j is principal. Let X ∈ E and let UX = (X)◦. By the unit of
the adjunction, we have X ≤ (X)◦ in Sub(X), so UX = X and UX is dense.
Suppose V ∈ Sub(X) is dense. Then X ≤ V , so by adjointness UX ≤ V , as
required.

For the other direction, suppose UX is the least dense subobject ofX ∈ E .
Write (X)◦ for UX . To show the required adjunction it suffices to show (1)
that (V )◦ ≤ V and (2) that (V )◦ ≥ V (from which we get the counit and
the unit). Write V ≤d X to denote that V is a dense subobject of X.

For (1), note that

V ≤d V always true

=⇒ (V )◦ ≤ V since (V )◦ is least dense in V .

For (2), note that

(V )◦ ≤d V by definition

=⇒ V ≤ (V )◦ by density (in fact, (V )◦ = V ).

This completes the proof of the lemma.
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Suppose given a topos E with a principal topology j. Then by the lemma,
for all X ∈ E there exists a least dense subobject UX in Sub(X). We now
show that the operation X 7→ UX extends to a functor on E . To this end,
suppose f : X → Y and consider the following diagram

UX //___
##

##HHHHHHHHH
f∗(UY ) //
��

��

UY
��

��
X // Y,

where the right hand square is a pullback. Now note that, since j-closure
commutes with pullback, we have that f∗(UY ) = f∗(UY ) = f∗Y = X, so
f∗(UY ) is dense in X, and thus UX ≤ f∗(UY ) in Sub(X). Hence there is
an arrow UX → f∗(UY ) as shown in the diagram above. Letting U(f) be
the composite arrow across the top in the diagram above, we clearly get a
functor U : E → E .

We now show that functor U is idempotent. Write V ≤d X to denote
that V is a dense subobject of X. By definition, U(U(X)) ≤d U(X) and
U(X) ≤d X, from which it follows3 that U(U(X)) ≤d X. Hence U(U(X)) ≥
U(X) since U(X) is the least dense subobject in X. Thus U(U(X)) = U(X)
and U is idempotent.

We write X 7→ (X)◦ : E → E for the functor U . We refer to this functor
as the interior functor. (Note that this notation and terminology is in
accordance with Definition 7.3.3.)

Remark 7.3.6. Expressed using the internal logic of E , a Lawvere-Tierney
topology j : Ω → Ω in E is principal if, for each type X, there is an atomic
predicate UX : X → Ω satisfying the following axiom and rule (the rule is a
scheme, for any predicate ϕ : X → Ω on X):

dense
` ∀x : X. j(UX(x))

` ∀x : X. j(ϕ(x))
least dense

` ∀x : X. UX(x) ⊃ ϕ(x)

Using the atomic predicates, the interior functor X 7→ (X)◦ can be defined
as X 7→ {x : X | UX } (where {x : X | UX } of course denotes the subset

3In a topos with a Lawvere-Tierney topology j, we always have that if U is a dense
subobject of V and V is a dense subobject of W , then U is a dense subobject of W , see,
e.g., [Jac99, Exercise 5.6.2(iii)].
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type of X given by the predicate UX). This defines a functor because if
f : X → Y , then ∀x : X. UX(x) ⊃ UY (f(x)), because by the least-dense rule
it suffices to show that ∀x : X. j(UY (f(x)) is valid in E , but this holds since
by the density axiom, ∀y : Y. j(Uy(y)). Formally, (f)◦ is thus λx. i(f(o(x))),
where i and o are the injections and projections associated with the subset
types. We shall leave out those injections and projections in the following,
when giving further examples of reasoning using the internal language.

Lemma 7.3.7. The interior functor X 7→ (X)◦ : E → E preserves monomor-
phisms.

Proof. For a mono m : X � Y , we get the following diagram in E

X // // Y

(X)◦
OO

OO

(m)◦
// (Y )◦
OO

OO

from which it follows that (m)◦ is monic (since postcomposing with (X)◦�
X gives a monic).

For future use, we record the following easy corollary of Lemma 7.3.5.

Corollary 7.3.8. Let E be a topos with a principal topology j. Then we
have that, for all X ∈ E, for all V ∈ Sub(X),

(V )◦ = V and (V )◦ = (V )◦ in Sub(X).

The following lemma says that interior commutes with taking images
(existential quantification). For f : X → Y in E we write ∃f for the left
adjoint to the pullback functor f∗ : Sub(Y )→ Sub(X).

Lemma 7.3.9. Let E be a topos with a principal topology j. Let X,Y ∈ E,
V ∈ Sub(X), and f : X → Y in E. Then ∃f ((V )◦) ∼= ((∃fV )◦).

Proof. Because it holds for the right adjoints, f∗(V ) ∼= (f∗V ) [MM92].

Remark 7.3.10. We rephrase the above lemma using the internal language
of E . Let f : X → Y in E and let Z = { y : Y | ∃x : X. f(x) =Y y }. Then

` ∀y : Z. UZ(y) ⊃⊂ ∃x : X. f(x) =Y y ∧ UX(x) (7.7)

is valid in E .
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Lemma 7.3.11. Let E be a topos with a principal topology j. The interior
functor X 7→ (X)◦ : E → E preserves epis.

Proof. Let f : X � Y be an epi and let m : (X)◦ � X be the interior of
X. Since f is epic, the image Im(f) of f equals Y . By Lemma 7.3.9, we get
that Im(fm) = ∃f ((X)◦) = (∃fX)◦ = (Im(f))◦ = (Y )◦. Write

(X)◦ e // // Im(fm) // n // Y

for the image factorization of fm. Thus there is an epic e : (X)◦ � Im(fm) =
(Y )◦ and it just remains to verify that this epic indeed is (f)◦. To this end,
consider the diagram defining (f)◦ = hg:

(X)◦ //
g //
%%

m
%%KKKKKKKKK

f∗((Y )◦) h //
��

��

(Y )◦= Im(fm)
��
n

��
X

f
// // Y.

Now ne = fm = nhg, so e = hg = (f)◦ since n is monic, completing the
proof of the lemma.

Remark 7.3.12. The above lemma can also easily be proved in the internal
language: Suppose f : X → Y is epi, i.e., ∀y : Y. ∃x : X. f(x) = y. We are
to show that

∀y : { y : Y | UY (y) }. ∃x : {x : X | UX(x) }. f(x) = y.

It suffices to show that

∀y : Y. UY (y) ⊃ ∃x : X. f(x) = y ∧ UX(x). (7.8)

But, letting Z ′ = Im(f) we have that Z ′ = Y , as f is epi, so (7.8) is
equivalent to

∀y : Z ′. UZ′(y) ⊃ ∃x : X. f(x) = y ∧ UX(x),

which holds by Remark 7.3.10.

Definition 7.3.13. Let E be a topos with a principal topology j. We then
say that X ∈ E is open if (X)◦ ∼= X.
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Remark 7.3.14. Phrased using the internal language, an object X is open
if and only if ∀x : X. UX(x) holds. The reader is warned against confusing
this definition of open with the topological notion of an open set (in the
same way as one should not confuse the closure operation associated with a
Lawvere-Tierney topology with topological closure [Joh77, Page 78]).

In the following development the open objects play a role similar to the role
separated objects play for sheaves. Indeed, just like every sheaf is separated,
we have that every discrete object is open:

Lemma 7.3.15. Let E be a topos with a principal topology j. Then every
discrete object C ∈ DjE is open.

Proof. Since m : (C)◦ � C is dense, we have that a(m) is iso (again us-
ing [Joh77, Proposition 3.42]). Thus, since C is discrete, there is a unique
lift of the identity across m as in

(C)◦
��
m

��
C

id
==|

|
|

|

id
// C,

from which we see that C ∼= (C)◦.

We have the following alternative characterization of openness.

Lemma 7.3.16. Let E be a topos with a principal topology j. Let X ∈ E
and write ∆X : X � X ×X for the diagonal. Then X is open if and only
if (∆X)◦ = ∆X in Sub(X ×X).

Proof. Consider the diagram

(X)◦ // //

(∆X)◦ ""DDDDDDDD X
��

∆X��~~~~~~~

X ×X.

Now X is open iff (X)◦ ∼= X iff (∆X)◦ = ∆X in Sub(X ×X). (The point
is just that the domain of ∆X is X.)

Lemma 7.3.17. Let E be a topos with a principal topology j. Then a quo-
tient of an open object is open.
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Proof. Suppose X is open and that e : X � Y is a quotient of X. Then by
Lemma 7.3.9 and using the assumption that X ∼= (X)◦ we have that

Y ∼= Im(e) = ∃eX ∼= ∃e((X)◦) ∼= (∃eX)◦ ∼= (∃e((X)◦))◦,

so ∃e((X)◦) is open, so Y is open.

Remark 7.3.18. In the internal language the argument goes as follows.
Suppose X is open and that e : X � Y is a quotient map. Since X is open,
i.e., ∀x. UX(x), and e is epic, we have ∀y : Y. ∃x : X. f(x) : y ∧ UX(x). By
Remark 7.3.10 and using that e is epic so that the image of f equals Y ,
we have that ∀y : Y. UY (y) ⊃⊂ ∃x : X. f(x) = y ∧ UX(x). Combining the
properties we then get that ∀y : Y. UY (y), so Y is open.

Definition 7.3.19. Let E be a topos with a principal topology j. We define
OjE to be the full subcategory of E of open objects.

Given a topos E with a topology j, the category of separated objects is a
reflective subcategory of E . Analogously, we here find that (for a principal
topology) the category of open objects is a coreflective subcategory of E .

Lemma 7.3.20. Let E be a topos with a principal topology j. Then OjE is
a coreflective subcategory of E.

Proof. The functor X 7→ (X)◦ is right adjoint to the inclusion of OjE into
E .

As mentioned before, given a topos E with topology j, an object X is a sheaf
iff X is orthogonal to the class of all morphisms inverted by the associated
sheaf functor a. Recall that one does not need to consider orthogonality with
respect to all morphisms inverted by a, but can restrict attention to dense
monos—indeed, the usual definition of a sheaf just requires orthogonality
with respect to dense monos [MM92]. We shall now show that also in the
case of discrete objects, we need not require coorthogonality with respect to
all morphisms inverted by a but just with respect to a smaller class of what
we shall call codense epis.

Definition 7.3.21. Let E be a topos with a principal topology j and let
e : X � Y be an epi. Write ∆X � X×X for the diagonal and write Ke for
the kernel of e, viewed as a subobject of X ×X. We say that e is codense
if (Ke)◦ = (∆X)◦ in Sub(X ×X).
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Lemma 7.3.22. Let E be a topos with a principal topology j and write a
for the associated sheaf functor. Then an epi e : X � Y is codense iff a(e)
is iso.

Proof. Suppose that a(e) is iso. Consider the kernel pair of e

Ke
k //

k′
// X

e // // Y.

as a subobject of X ×X

Ke
// 〈k,k

′〉 // X ×X.

We are to show that (Ke)◦ = (∆X)◦ in Sub(X ×X). We immediately
have that Ke ≥ ∆X because the kernel pair of a morphism is always an
equivalence relation. Hence, by functoriality of interior, (Ke)◦ ≥ (∆X)◦. It
remains to show that (Ke)◦ ≤ (∆X)◦. By adjointness and Corollary 7.3.8
this is equivalent to Ke ≤ (∆X)◦ = ∆X . But Ke ≤ Ke, so it suffices to
show that Ke ≤ ∆X . Recall [MM92, Corollary 8, Section V.4, Page 233]
that a induces an isomorphism ClSubj(E) ∼= SubShjE(aE) between j-closed
subobjects of E and subsheaves of aE. Hence it suffices to show that

a(Ke) ≤ a(∆X) in SubShjE(aX × aX).

Now since a is lex, a preserves kernel pairs, so

aKe = Ka e
//// aX

a e
∼=
// aY.

is a kernel pair. But a e is iso by assumption, hence monic, so aKe = Ka e =
∆aX , so we have the required.

For the other direction, suppose e : X � Y is a codense epi. We are
to show that a e is iso. Since a as a left adjoint preserves epis, a e is epic,
so it suffices to show that a e is monic. Let Ke be the kernel of e viewed
as a subobject of X ×X. Since e is codense we get the following series of
implications

(Ke)◦ = (∆X)◦ by definition

=⇒ (Ke)◦ = (∆X)◦

=⇒ Ke = ∆X by Corollary 7.3.8
=⇒ Ka e = aKe = a(∆X) = ∆aX (∗)
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where the implication (∗) follows since a is lex and

ClSubE(E) ∼= SubShjE(aE),

see above. Since the kernel of a e is the diagonal, we conclude that a e is
monic, completing the proof of the proposition.

Remark 7.3.23. Recall [Joh77, Definition 3.41] that a morphism f : X →
Y is almost monic if the diagonal ∆X : X � X × X is dense in the
kernel of f . Moreover, for an epimorphism e, the morphism a(e) is iso
iff e is is almost monic [Joh77, Corollary 3.43]. It thus follows immedi-
ately by the above lemma that a codense epi is an epi which is almost
monic. In the internal logic, a morphism e : X → Y is almost monic iff
∀x, x′ : X. e(x) = e(x′) ⊃ j(x = x′) is valid (this description follows from
the fact that e is almost monic iff e is internally injective in the fibration
of j-closed subobjects [Jac99, Page 357–358]; using the description of the
closed subobject fibration in loc. cit. one arrives at the here given description
in terms of the internal logic of E).

Remark 7.3.24. We note that just like the pullback of a dense mono is
again a dense mono, it is easy to see, using the previous lemma, that the
pushout of a codense epi is again a codense epi.

Now follows the promised proposition which allows to determine whether an
object is discrete just by testing for coorthogonality with respect to codense
epis.

Proposition 7.3.25. Let E be a topos with a principal topology j. Then C
is discrete if and only if C is coorthogonal to the class all codense epis in E.

To prove the proposition we shall make use of the following lemma.

Lemma 7.3.26. Let E be a topos with a principal topology j. Suppose C ∈ E
and that C is coorthogonal to the class all codense epis in E. Then, for all
dense subobjects m : Y � X and all morphisms f : C → X, there exists a
unique f ′ : C → Y such that mf ′ = f , as in

Y
��
m

��
C

f ′
>>}

}
}

}

f
// X.
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Proof. Let C, m : Y � X, and f : C → X be as in the lemma. Consider
the following diagrams

Y
��
m

��
C

f ′
88r

r
r

r
r

r
f

// X

u

��
v

��
W

e
����
P

aY
��
am, ∼=
��

aX

au

��
a v

��
aW

a e
����

aP,

where u, v is the cokernel pair of m and e is the coequalizer of u, v. Since a
is a left adjoint, it preserves cokernel pairs and coequalizers, so au,a v is the
cokernel pair of am, which is an iso by assumption that m is dense. Hence
au = a v. Therefore a e, the coequalizers of au,a v is an iso and thus, by
Lemma 7.3.22 e is codense. Since euf = evf : C → P and since C > e by
assumption, we get that uf = vf by uniqueness. Hence f factors uniquely
through the equalizer of u, v. But m is the equalizer of u, v (as every mono
in a topos is the equalizer of its cokernel pair, see [Joh77, 1.28]), so f factors
uniquely through m via an f ′ as shown in the diagram above.

Proof of Proposition 7.3.25. We only need to show the right-to-left implica-
tion; the other is trivial by Lemma 7.3.22. Suppose C ∈ E and that C > e
for all codense epis e. We are to show that C > h for all morphisms h
such that a(h) is iso. So suppose h : X → Y is such that a(h) is iso and let
f : C → Y be arbitrary. Consider the following diagrams

X

e
����

h

��

I
��

m

��
C

f
//

f ′

88r
r

r
r

r
r

f ′′

BB�
�

�
�

�
�

�
�

�
Y

aX

a e
����

ah, ∼=

��

a I
��

am
��

aY,

where me is the image factorization of h and the diagram on the right is a
applied to this image factorization. Since a preserves image factorizations
and ah is iso by assumption, we have that am is iso and that a e is iso. Hence
m is dense and, by Lemma 7.3.22, e is codense. Thus by Lemma 7.3.26, there
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exists a unique f ′ : C → I such that mf ′ = f . By assumption C > e, so
there exists a unique f ′′ : C → X such that ef ′′ = f ′. The morphism f ′′ is
the required unique morphism showing that C > h.

We now define an operation, called exterior, on quotients, which one can
think of as a dual operation to the traditional closure operation on subob-
jects.

Definition 7.3.27. Let E be a topos with a principal topology j. For an
epi e : X � Y , we define the exterior of e, written ẽ : X � Ỹ , to be the
coequalizer of the interior (Ke)◦ of the kernel pair Ke of e.

Expressed in a diagram the definition looks like:

Ke
k

&&LLLLLLLL

k′ &&LLLLLLLL Ỹ= CoEq(km, k′m)

h

�����
�
�
�

X

ẽ
;; ;;vvvvvv

e $$ $$IIIIII

(Ke)◦
OO

m

OO

km
88qqqqqq

k′m

88qqqqqq
Y

(7.9)

By the universal property of the coequalizer, since ekm = ek′m, there is a
unique map h : Ỹ → Y such that hẽ = e, as shown in the diagram. Since e
is epic, h is also epic.

Lemma 7.3.28. Referring to the diagram (7.9) above, the epi h is codense.

Proof. By Lemma 7.3.22 it suffices to show that ah is iso. Apply a to the
diagram (7.9). Since m : (Ke)◦ � Ke is dense, a(m) is iso. Hence, since a
preserves kernel pairs and coequalizers, ah is iso.

Clearly, the exterior operation e 7→ ẽ on epis e : X � Y induces a well-
defined operation on quotients of X. By definition of the ordering of quo-
tients of X [AHS90, Page 113], the quotient represented by ẽ is greater than
the quotient represented by e. In fact, it can easily be verified that the exte-
rior operation induces a functor −̃ : Quot(X)→ Quot(X) on the quotients
of X.

Lemma 7.3.29. Let E be a topos with a principal topology j. For any
X ∈ E, the exterior functor Quot(X)→ Quot(X) is idempotent.
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Proof. Consider the following diagram

((Ke)◦)◦

d=(c)◦

���
�
�

(Ke)◦

c

���
�
�

b

""EEEEEEEE

(Kẽ)◦ // a // Kẽ

n1

##FFFFFFFFF n2

##FFFFFFFFF Ke

m1

��
m2

��
X˜̃e

uuuujjjjjjjjjjjjjjjjjjjjj

ẽ||||yyyyyyyyyy
e
����˜̃

Y a
// // Ỹ

b

// //

d̃

oooo
Y,

where Ke

m1 //
m2

//X is the kernel of e; ẽ is the coequalizer of m1b,m2b; and

Kẽ

n1 //
n2

//X is the kernel of ẽ. By the universal property of this kernel pair,

there exists a unique c : (Ke)◦ → Kẽ such that m1b = n1c and m2b =
n2c. Now let a : (Kẽ)◦ � Kẽ be the interior and let d = (c)◦ as shown
in the diagram. Since interior is idempotent, ((Ke)◦)◦ = (Ke)◦, and the
top left square commutes. Let ˜̃e be the coequalizer of n1a, n2a. Then ˜̃e
also coequalizes m1b,m2b so there exists a unique d̃ : Ỹ → ˜̃

Y , proving that

Ỹ ≥ ˜̃
Y in Quot(X). Since we already have that ˜̃Y ≥ Ỹ , we conclude that

Ỹ = ˜̃
Y in Quot(X), as required.

Recall that for a dense subobject X � Y , the closure X of X is Y . We
have a similar property for codense epis and the exterior operation:

Lemma 7.3.30. Let E be a topos with a principal topology j. For any
quotient e : X � Y for which e is codense, the exterior Ỹ of Y is equal to
X, as quotients of X.

Proof. Consider the diagram (7.9). Since e is codense, we have by definition
that (Ke)◦ = (∆X)◦ as subobjects of Sub(X ×X). Hence Ỹ is isomorphic
to the coequalizer of the diagonal and thus isomorphic to X.

By Lemmas 7.3.28 and 7.3.30 it follows that if e : X � Y is a quotient, then
the exterior of the induced quotient h : Ỹ � Y is equal to Ỹ (as quotients
of Ỹ ).
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We can now finally state some conditions under which we can prove
that the category of discrete objects is coreflective in the ambient topos E .
For simplicity, and because its an important example, we first consider the
axiomatization of localic local maps in Subsection 7.3.1. In the following
Subsection 7.3.2 we consider the axiomatization of arbitrary (bounded) lo-
cal maps. See [Joh77, Joh81] for more on bounded and localic geometric
morphisms. One may think of the localic and boundedness conditions as
size-conditions, expressing that E is generated over DjE , in the sense that E
is the category DjE-valued sheaves on an internal site in DjE .

7.3.1 Axioms for Localic Local Maps

For E an elementary topos with a topology j we suggest the following ax-
ioms for localic local maps.

Axiom 1 j is principal.

Axiom 2 For all X ∈ E , there exists a discrete object C and a diagram

S // //

����

C

X

in E , presenting X as a subquotient of C.

Axiom 3 For all discrete C ∈ E , if X � C is open, then X is also discrete.

Axiom 4 For all discrete C,C ′ ∈ E , C × C ′ is discrete.

Completeness

Theorem 7.3.31. Let E be a topos with a topology j and suppose that E and
j satisfy Axioms 1–4 for localic local maps. Then the category of discrete
objects DjE is coreflective in E.

Proof. We show how to construct an associated discrete object for any object
X ∈ E . By Axiom 2, we have a diagram

S // m //

e
����

CX

X
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in E presenting X as a subquotient of a discrete object CX . Now consider
the following diagram

(K(e)◦)◦ // // K(e)◦

�� ��
(S)◦ //m //

(e)◦

����zzzzuuuuuuuuu
S // //

e

����

C

˜(X)◦ h
// // (X)◦ // // X

Since interior preserves epimorphisms by Lemma 7.3.11, (e)◦ : (S)◦ → (X)◦

is epic. The exterior ˜(X)◦ of the interior (X)◦ of X is obtained in the
standard way, as the coequalizer of the interior (K(e)◦)◦ of the kernel pair
K(e)◦ of (e)◦. By Axiom 3, (S)◦ is discrete and thus also (K(e)◦)◦ is discrete

by Axioms 3 and 4. Hence ˜(X)◦ is obtained as the coequalizer

(K(e)◦)◦ //// (S)◦ // //˜(X)◦

of a diagram of discrete objects and thus, by Lemma 7.3.2, ˜(X)◦ is discrete.
We claim that ˜(X)◦ � (X)◦� X is couniversal among arrows from discrete
objects into X, thus establishing the existence of a right adjoint to the
inclusion DjE � � //E . Indeed, let C be any discrete object and let f : C → X
be arbitrary. Consider the following diagram

˜(X)◦
h //____ (X)◦ // // X

C.

f ′′

OO�
�
�
�

f ′

<<y
y

y
y

y
y

f

66mmmmmmmmmmmmmmmmmmmmmmmm

Since the interior functor (−)◦ : E → OjE is right adjoint to the inclusion of
open objects into E by Lemma 7.3.20, there is a unique morphism f ′ making
the right triangle commute. Then since h is a codense epi by Lemma 7.3.28
and C is discrete, we have by Proposition 7.3.25 that C > h, so there exists
a unique f ′′ making the left triangle commute. This shows the required
couniversality, completing the proof of the theorem.

Corollary 7.3.32. Let E be a topos with a topology j and suppose that
E and j satisfy Axioms 1–4 for localic local maps. Then the category of
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discrete objects DjE is equivalent to ShjE and the associated sheaf functor
a : E → ShjE has a left adjoint.

Proof. By Theorem 7.3.31 and the discussion in Section 7.2.

Theorem 7.3.33. Let E be a topos with a topology j and suppose that E and
j satisfy Axioms 1–4 for localic local maps. Then the inclusion DjE � � //E
is left exact and finite limits in DjE are computed as in E.

To prove the theorem it is useful to name the inclusion functor and the
coreflector, as follows:

DjE
L

⊥
//
E ,

R
oo

where

L a R and R ◦ L ∼= id .

Thus L is the inclusion of discrete objects and R is the associated discrete
functor. Recall that R is a known to have right adjoint, by Corollary 7.3.32.

The proof of the theorem proceeds by a series of lemmas. The main tool
is the following lemma, which seems to be folklore (a related argument is
in [Fre72, 2.61]).

Lemma 7.3.34. Let E and F be toposes and suppose the functor F : E → F
preserves finite products, monomorphisms, and pushouts. Then F is left
exact.

By this lemma and the following (which, of course, is stated under the
assumptions of Theorem 7.3.33),

Lemma 7.3.35. The functor LR : E → E preserves finite products, mono-
morphisms, and all colimits.

we can then conclude that

Corollary 7.3.36. The functor LR : E → E is left exact.

Using this fact, we can complete the proof of Theorem 7.3.33:

Lemma 7.3.37. The functor L : DjE → E is left exact and finite limits in
DjE are computed as in E.
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Let us now proceed with the proofs of the above mentioned lemmas.

Proof of Lemma 7.3.34. We need to show that F preserves equalizers, for
which we use the fact that

E
e // X

f //

g
// Y

is an equalizer if and only if

E
e //

e

��

X

〈1,g〉
��

X 〈1,f〉
// X × Y

is a pullback. The advantage of the latter formulation is that it consists
entirely of monomorphisms. Hence it suffices to show that F preserves
pullbacks of monomorphisms. Let the outer square below be such a pullback

L // //
��

��

N
��

n

��

~~

~~}}}}}}}

P
c

  A
A

A
A

M //
m

//
>>

>>~~~~~~~
X,

where P is the pushout, P = M +LN . (Recall that, in a topos, the pushout
of a monic is monic, so M � P and N � P are both monic.) Note that
L = M ∩X N . In fact, P is the union, P = M ∪X N . This can be shown
either categorically or, perhaps more easily, in the internal logic. (Internally
speaking, P is the disjoint union of the two subsets M and N of X with two
elements in the disjoint union being equal iff they come from the intersection
of M and N . Thus P is the union of M and N .) Hence the canonical map
c : P → X is monic.

By applying F to the inner diagram above we get a pushout of monics,
since F preserves pushouts and monics. A pushout of monics is a pullback
in a topos [Joh77]. Since the connecting map Fc is still monic, the outer
square is then also a pullback.

Proof of Lemma 7.3.35. We are to show that LR : E → E preserves prod-
ucts, monos, and all colimits. It preserves all colimits since both L and R
are left adjoints.
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To show that LR preserves the terminal object 1, it suffices to show that
1 is discrete. By Axiom 2, we can present 1 as a subquotient of a discrete
object C,

S // //

����

C

1.

Since S � 1 is epic, it follows that the unique morphism from C to 1 is
also epic. Hence 1 is a quotient of a discrete object, and thus discrete by
Lemma 7.3.17.

Binary products are preserved by Axiom 4.
It remains to show that LR preserves monos. Thus let m : M � N be

a monomorphism in E . For clarity, let us denote the composite functor LR
by d. We write ε : d⇒ id for the counit of the adjunction L a R. Consider
the following diagram

dM
dm

��
εM

**

(u)◦

��
u

��

X V T R P N K H
E

B
?

;
8

6

(m∗dN)◦
v

^^

&&

a
&&LLLLLLLLL

m∗dN // c //

b
��

dN

εN
��

M //
m

// N,

where the inner square is a pullback. The outer square commutes by defini-
tion of dm. Hence by the universal property of the pullback, there exists a
unique morphism u : dM → m∗dN such that

bu = εM and cu = dm.

Since (m∗dN)◦ is an open subobject of a discrete object dN , (m∗dN)◦ is
discrete by Axiom 3. Hence by couniversality of εM , there exists a unique
morphism v : (m∗dN)◦ → dM such that

εMv = ba.

We now claim that

v(u)◦ = 1 (7.10)
(u)◦v = 1 (7.11)
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that is, that dM is isomorphic to (m∗dN)◦, from which it easily follows
that dm = ca(u)◦ is monic, as required. Equation (7.10) follows from couni-
versality of εM (εMvu = ba(u)◦ = bu = εM , so vu = 1). To see that
equation (7.11) holds, note that both for x = a and for x = a(u)◦v, we have
that mbx = εNcx. Therefore, by uniqueness of the mediating arrow to the
pullback, we get that a = a(u)◦v, from which it follows that 1 = (u)◦v since
a is monic.

Proof of Corollary 7.3.36. By Lemmas 7.3.35 and 7.3.34, the functor

LR : E → E

is left exact.

Proof of Lemma 7.3.37. We are to show that L : DjE → E is left exact.
L preserves finite products because the terminal object 1 in E discrete

and also terminal in DjE and the product (formed in E) of two discrete
objects X and Y is again discrete by Axiom 4.

It remains to show that L preserves equalizers. We first show that L
preserves monos.

So let

X // m // Y

be a mono in DjE . Apply functor L and form the image factorization of Lm
in E to get

LX // Lm //

!! !!CCCCCCCC LY

I.
==

=={{{{{{{

Now apply functor R to get

X // m //

∼=
��

Y

∼=
��

RLX // RLm //

## ##HHHHHHHHH RLY

RI.
;;

;;wwwwwwww

Note that functor R preserves epis as a left adjoint and monos as right
adjoint. Hence the morphism RLX → RI is epic. It is also monic (since
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by postcomposing with RI → RLY ∼= Y we get a mono m), so iso. Thus
RLX ∼= RI .

Apply L again to get

LX // Lm //

∼=
��

LY

∼=
��

LRLX // LRLm //

∼= %%KKKKKKKKK LRLY

LRI.
99

99tttttttt

Since LR is left exact by Corollary 7.3.36, LRI is the image factorization of
Lm, so LRI � LRLY is monic, and hence Lm is monic. This completes
the proof that L preserves monos.

We now proceed to show that L preserves equalizers. Let

X // m // Y
f //

g
// Z

be an equalizer in DjE . Apply L and form the equalizer E of Lf and Lg in
E

LX // Lm // LY
Lf //

Lg
// LZ

E
77

n

77ppppppppppp

Apply the functor R to get

X // m //

∼=
��

Y

∼=
��

f //

g
// Z

∼=
��

RLX // RLm // RLY
RLf //

RLg
// RLZ

RE
77 Rn

77nnnnnnnnnnn

u

>>

>
4

)
� �

�
�

Since m : X � Y is an equalizer, there exists a unique arrow u : RE → X
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such that Rn = m ◦ u. Finally, apply L one more time to get

LX // Lm //

∼=
��

v

''

p
x

��
4

F
N

LY

∼=
��

Lf //

Lg
// LZ

∼=
��

LRLX // LRLm // LRLY
LRLf //

LRLg
// LRLZ

LRE
66 LRn

66mmmmmmmmmmmm

Lu

>>

Since LR is left exact by Corollary 7.3.36, LRn is the equalizer of Lf and
Lg, so there is a unique arrow v : LX → LRE, as shown in the diagram. It
now suffices to show that

v ◦ Lu = 1 (7.12)
Lu ◦ v = 1 (7.13)

because then LX ∼= LRE and thus Lm : LX → LY is an equalizer. For
equation (7.12), note that

LRn ◦ v ◦ Lu = Lm ◦ Lu = LRn

from which we conclude that v ◦ Lu = 1 since LRn is monic (since LR
preserves monos by Corollary 7.3.36). For (7.13), note that

Lm ◦ Lu ◦ v = LRn ◦ v = Lm

from which we get that Lu ◦ v = 1, since Lm is monic (because m is and
because L preserves monos, as shown above).

Thus L also preserves equalizers, and we have completed the proof of
the lemma.

We can now conclude that our axioms for localic local maps are complete
in the sense that for a topos E with a topology j satisfying the axioms for
localic local maps we indeed do get a localic local map from E to DjE ' ShjE :

Corollary 7.3.38. Let E be a topos with a topology j and suppose that E
and j satisfy Axioms 1–4 for localic local maps. Then there is a localic local
map from E to DjE ' ShjE.

Proof. By Theorems 7.3.31, 7.3.33, and 7.2.3 (see the explanation after The-
orem 7.2.3).
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Soundness

The following proposition tells us that if we have a local map of toposes
then the associated topology is principal.

Proposition 7.3.39. Let E be a topos with topology j. If the associated
sheaf functor a : E → ShjE has a left adjoint L, then the topology j is prin-
cipal.

Proof. By Lemma 7.3.5 it suffices to show that for every object X, there is a
least dense subobject. Let ε denote the counit of the adjunction L a a and let
m : V � X be an arbitrary dense subobject of X. Then by [Joh77, Propo-
sition 3.42], a(m) : a(V ) → a(X) is an iso. Hence, also La(m) : La(V ) →
La(X) is an iso. Now, let UX be the image of εX : La(X)→ X and let UV
be the image of εV : La(V )→ V and consider the following diagram

LaV
∼= //

{{{{wwwwwwww

εV

��

LaX

{{{{wwwwwwwww

εX

��

UV oo
∼= //_________

##

##GGGGGGGG
UX

##

##GGGGGGGG

V //
m

// X

Since m : V → X is monic, the image UV of εV is the same as the image of
m ◦ εV = εX ◦ La(m) (the latter equality by naturality of ε). Since La(m)
is iso, the image of εX ◦ La(m) is the image of εX , that is, UX . In summa,
UV is isomorphic to UX , as depicted in the diagram above. Hence UX ≤ V
for any dense subobject V . It remains to show that UX is in fact dense. To
this end, note that

aLaX

yyyyttttttttt

a(εX)

��

aUX
%%

%%JJJJJJJJ

aX

is also an image factorization, as a preserves such (since a by assumption is
both left and right adjoint). Moreover, by [MM92, Lemma 1, Section VII.4,
Page 369], L is full and faithful since i is, so the unit η : aL ⇒ id is iso.
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Hence a(εX) is iso (since a(εX) ◦ ηaX = id) and thus we also have that
aUX � aX is iso. We conclude by [Joh77, Proposition 3.42] that UX � X
is dense.

The following theorem expresses that our axioms are sound.

Theorem 7.3.40. Every localic local map of toposes satisfies Axioms 1–4
for localic local maps.

Proof. Let E and F be toposes with adjoint functors between them as in
the situation

E

Γ

��
F

∆

BB

∇

\\

∆ a Γ a ∇, ∆ full and faithful and lex.

Suppose further that E is localic over F , i.e., that for all X ∈ E , there exists
a C ∈ F and a diagram of the form

S // //

����

∆C

X

in E . Then by the discussion in Section 7.2, there is a topology j in E
such that F ' ShjE and F ' DjE . So it suffices to show that Axioms 1–4
are satisfied. Axiom 1 holds by Proposition 7.3.39. Axiom 2 holds by the
assumption that E is localic over F , since the discrete objects are the replete
image in E of F along ∆. Axiom 4 holds since ∆ is lex. For Axiom 3 let
X � C be an arbitrary subobject of a discrete object C. Consider the
following diagram in E

J(˜(X)◦) // //

e
����

C ∼= J((̃C)◦)

∼=

��

(X)◦
��

��
X // // C,

where J is the inclusion DjE � � //E of the discrete objects, and X 7→
˜(X)◦ : E → DjE is the coreflector. Note that the top horizontal arrow in the
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diagram above is monic because the coreflector as a right adjoint preserves
monos and because the inclusion of discrete objects is lex by the assump-
tion that the given map is local. The vertical arrows are the counits of the
coreflection adjunction, so the diagram commutes by naturality. Hence e
is also monic and thus iso, so ˜(X)◦ ∼= (X)◦. Therefore, if X is open (i.e.,
X ∼= (X)◦), then ˜(X)◦ ∼= X and X must be discrete.

7.3.2 Axioms for Bounded Local Maps

For E an elementary topos with a topology j we consider the following
axioms for bounded local maps.

Axiom 1 j is principal.

Axiom 2a There is an object G ∈ E such that, for all X ∈ E , there exists
a discrete object C and a diagram

S // //

����

C ×G

X

in E , presenting X as a subquotient of C ×G.

Axiom 2b There is a discrete object G′ and a diagram

G′ // // (G)◦ // // G

in E .

Axiom 3 For all discrete C ∈ E , if X � C is open, then X is also discrete.

Axiom 4 For all discrete C,C ′ ∈ E , C × C ′ is discrete.

Completeness

Theorem 7.3.41. Let E be a topos with a topology j and suppose that E
and j satisfy Axioms 1, 2a, 2b, 3 and 4 for bounded local maps. Then the
category of discrete objects DjE is coreflective in E.

Proof. We show how to construct an associated discrete object for any object
X ∈ E . Let G, G′, and S be as in Axioms 2a and 2b. The construction of
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the associated discrete object is contained in the following diagram:

(T )◦ // //

����

e

�� ��

T // //

����

C ×G′

����
(S)◦

∼= //

����

(S)◦ //
f //

��

��

C × (G)◦
��

��
S

����

// // C ×G

(X)◦ // // X.

The right-most vertical arrows are induced in the obvious way from the ar-
rows G′ � (G)◦ � G given by Axiom 2b. The morphism f : (S)◦ → C ×
(G)◦ is obtained as follows. Applying the interior functor to the morphism
S � C × G gives a morphism (S)◦ � (C ×G)◦, monic by Lemma 7.3.7.

Moreover, applying the interior functor to the product projections C C ×Gπoo π′ //G
gives morphisms

(C)◦ ∼= C (C ×G)◦oo // (G)◦,

where (C)◦ ∼= C since C is discrete and thus open by Lemma 7.3.15. It fol-
lows that there is a unique morphism from (C ×G)◦ to the product C×(G)◦.
Composing this morphism with the (S)◦ � (C ×G)◦ gives the morphism
f shown in the diagram. It can be verified that f then is monic. Object
T is obtained as a pullback as shown. Since pulling back in a topos pre-
serves epimorphisms, T � (S)◦ is epic. The morphism (T )◦ � (S)◦ is the
interior functor applied to the epi T � (S)◦; it is epic since the interior
functor preserves epis by Lemma 7.3.11. By Axiom 4, C × G′ is discrete
and thus, by Axiom 3, also (T )◦ is discrete. Finally, the epi (S)◦ � (X)◦ is
obtained by applying the interior functor to S � X, and e is the composite
epi (T )◦ � (S)◦ � (X)◦.

Now take the exterior of e to get ˜(X)◦. By the same argument as in the
proof of Theorem 7.3.31, this is the associated discrete object of X.

Theorem 7.3.42. Let E be a topos with a topology j and suppose that E and
j satisfy Axioms 1–4 for bounded local maps. Then the inclusion DjE � � //E .
is lex.

Proof. As the proof of Theorem 7.3.33.
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Corollary 7.3.43. Let E be a topos with a topology j and suppose that E
and j satisfy Axioms 1–4 for bounded local maps. Then there is a bounded
local map from E to DjE ' ShjE.

Proof. By Theorems 7.3.41, 7.3.42, and 7.2.3 (see the explanation after The-
orem 7.2.3).

Soundness

Theorem 7.3.44. Every bounded local map of toposes satisfies the axioms
for bounded local maps.

Proof. The proof proceeds as the proof of Theorem 7.3.40. With notation
as in that proof, Axiom 2b holds since the associated sheaf functor a has a
left adjoint L and we have, by Proposition 7.3.39, a diagram of the form

LaG // // (G)◦ // // G

in E . Since ShjE ' DjE , we have that LaG is isomorphic to a discrete
object, proving that Axiom 2b holds. Axiom 2a holds by the assumption
that the given local map is bounded. Axioms 1, 3, and 4 hold as in the proof
of Theorem 7.3.40.

7.4 More Properties of Open Objects

Convention 7.4.1. For the remainder of this section we assume given a
bounded local map f : E → F of toposes. Then there is a principal topology
j in E such that F ' ShjE and the associated sheaf functor a has a left
adjoint L.

Under the assumptions stated in the above convention we now draw some
easy conclusions about the open objects.

Corollary 7.4.2. Any open object in E is a quotient of a discrete object.

Proof. By Corollary 7.3.32 and the proof of Proposition 7.3.39, the interior
(X)◦ of an object X is obtained as the image of the counit εX : LaX → X
of L a a:

LaX // // (X)◦ // // X.

Thus, if X is open (i.e., (X)◦ ∼= X), the image of εX is X and X is a quotient
of LaX.
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Remark 7.4.3. Combining the above corollary with Lemma 7.3.15 and
Lemma 7.3.17 we conclude that: The open objects of E are exactly the quo-
tients of the discrete objects in E.

Proposition 7.4.4. The category of open objects OjE is closed under finite
colimits in E.

Proof. The initial object is discrete, hence open. By Corollary 7.4.2, any
two open objects X and Y are both quotients of discrete objects, say CX
and CY . Thus also the coproduct X +Y is a quotient of the discrete object
CX +CY (CX +CY is discrete by Lemma 7.3.2) and hence X+Y is open by
Lemma 7.3.17. Finally, a coequalizer of a pair of morphisms between two
open objects, each covered by a discrete object, is of course also covered by
a discrete object, hence is open by Lemma 7.3.17.

Proposition 7.4.5. The interior functor X 7→ (X)◦ : E → E preserves pre-
serves finite products.

Proof. To show that the interior functor preserves the terminal object 1, it
suffices to show that 1 is open. But we already know that 1 is discrete and
hence it is also open.

Now for binary products, letX, Y be objects in E . Consider the following
diagram in E

LaX

e1
����

LaX × LaY

e
����

oo // LaY

e2
����

(X)◦
��

m1

��

(X)◦ × (Y )◦
��

m

��

oo // (Y )◦
��
m2

��
X X × Y //oo Y,

where miei are the image factorizations of the counits εX and εY of the
coreflection L a a. The morphism e is e1 × e2 and the morphism m is
m1 × m2, so e is epic and m is monic. Now since a preserves products,
a(X × Y ) ∼= aX × aY . By Axiom 4, L preserves binary products, so
La(X × Y ) ∼= LaX × LaY . Thus, (X × Y )◦, the image factorization of
the counit εX×Y , is isomorphic to the image factorization of εX × εY = me,
that is, (X × Y )◦ ∼= (X)◦ × (Y )◦, as required.

Corollary 7.4.6. The category OjE of open objects has finite products and
they are computed as in E and thus preserved by the inclusion OjE � � //E .
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Proof. The terminal object is open. Let L denote the inclusion functor
OjE � � //E and let R denote the right adjoint X 7→ (X)◦, see Lemma 7.3.20.
From the adjunction L a R is follows that the product X ×OjE Y of X,Y ∈
OjE in OjE is R(LX ×E LY ), where ×E denotes the product in E . But
R(LX ×E LY ) = (X ×E Y )◦ ∼= (X)◦ × (Y )◦ ∼= X ×E Y by Proposition 7.4.5
and since X and Y are open.

Proposition 7.4.7. Let f : C → D be a morphism between discrete objects
C and D in E and suppose X � D is an open subobject of D. Then f∗(X),
the pullback of X along f , as in the diagram

f∗(X) //
��

��

X
��

��
C

f
// D,

is open.

Proof. By Axiom 3, X is discrete (as an open subobject as a discrete object).
The discrete objects are closed under finite limits in E by Theorem 7.3.42,
and thus f∗(X) is also discrete, and hence open by Lemma 7.3.15.





Chapter 8

Logic and Local Maps of
Toposes

Suppose given a topos E with a topology j satisfying the axioms for bounded
local maps set out in the previous chapter. There results a local map of
toposes

E

Γ

��
DjE

∆

CC

∇

\\

∆ a Γ a ∇

with ∆ the inclusion of the discrete objects and Γ the associated discrete
object functor with right adjoint ∇. In this chapter we ask: What can
we then say about the relationship between the internal logic of the topos
of discrete objects DjE and the internal logic of E itself ? In particular,
we would like to know when the interpretation of a sentence with basic
types and predicates interpreted in DjE agrees with the interpretation of
the sentence in E . This way we can obtain information about E in terms of
DjE . This approach is advantageous in situations where we have a better
understanding of the topos of discrete objects than of the topos E itself, for
example, in the case where E is the relative realizability topos RT(A,A])
and DjE is the standard realizability topos RT(A]). Our point of view is
thus analogous to the point of view of Hyland who investigates when the
logic of a sheaf subtopos (Set) agrees with the logic of a given topos (the
effective topos) [Hyl82, Section 5].

In Section 8.1 we briefly recall the logic of sheaves and its relation to
the logic of E . In Section 8.2 we then develop the logic of discrete objects.

173
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In more details, we define a fibration of open subobjects, prove that it is
equivalent to the fibration of closed subobjects, and that the logic of DjE is
obtained from the fibration of open subobjects by change-of-base along the
inclusion of discrete objects. This is much like the logic of sheaves, which is
obtained from the fibration of closed subobject by change-of-base along the
inclusion of the sheaves. Thus we extend the adjoint-cylinder picture to the
logics of sheaves and discrete objects. We prove that the interpretation of a
certain class of stable formulas (encompassing geometric formulas, of course)
is preserved by the inclusion of the discrete objects into E . In Section 8.3 we
define a modal logic for local maps. We both describe the syntactic calculus
and also its interpretation given any local map of toposes. The modality ]
is interpreted by the interior operator and it satisfies the usual properties of
the box operator from S4. The modal logic can be seen as a kind of internal
logic for local maps (resp. local toposes over a fixed base topos) and it is
useful to obtain more relationships between the logic of discrete objects and
the logic of E . We give two sample applications in this direction.

Much as the closure operation is important when relating the logic of
sheaves to the logic of E , the interior operation is important, when relating
the logic of the discrete objects to the logic of E . The closure operation
is a logical operation in the logic of E , in the sense that it is a map on
the subobject classifier Ω of E or, equivalently, it is a natural operation on
subobjects which commutes with pullback. In logical terms, this means that
the closure operation commutes with substitution (as one would expect of
any well-behaved logical connective / operation). For the interior operation
this is not the case, see Remark 7.3.4. This fact has two consequences: (1)
when we describe the fibration of open subobjects in Section 8.2, substitution
(reindexing) is defined in a slightly more subtle way than usual; and (2)
when we consider the interior operator as a modal operator in our modal
logic for local maps in Section 8.3, we restrict attention to a subcollection
of types from E satisfying that for predicates on these types interior does
indeed commute with substitution. We remark that it is classical that there
is a problem of noncommutativity of substitution with respect to modal
operators, see [GM87] and the references therein.

8.1 The Logic of Sheaves

In this section we briefly recall how the logic of sheaves, i.e., the internal logic
of the subobject fibration on ShjE , relate to the logic of E . The material
presented in this section is standard; we follow [Jac99], see also [Hyl82,



8.1 The Logic of Sheaves 175

MM92].

Proposition 8.1.1. Let j : Ω→ Ω be a Lawvere-Tierney topology in a topos
E and let Ωj be the image of j. Since closure commutes with pullback, we get

a split fibration
ClSubj(E)

��
E

of closed subobjects. It is a higher-order fibration

with extensional entailment, in which:

• >j, ∧j, ⊃j, and ∀j are as for ordinary subobjects.

• ⊥j = ⊥, X ∨j Y = X ∨ Y , ∃j(X) = ∃(X), and Eqj(X) = Eq(X), and
thus ¬j(X) = X ⊃ ⊥.

• true : 1� Ωj is a split generic object.

We have here labelled the connectives etc. in
ClSubj(E)

��
E

with a subscript j.

Hence closure (−) defines a fibred functor Sub(E)→ ClSubj(E) over E which
preserves all this structure except the generic object.

For the proof of the proposition, see, e.g., [Jac99, Proposition 5.6.6].
Suffice it here to recall that closure commutes with finite meets and that for
subobjects X,Y ∈ Sub(Y ),

X ⊃ Y = X ⊃ Y = X ⊃ Y

(Both equalities are not too difficult to show; the first can be found explicitly
in [Wil94, Proposition 9.11, Page 46], the second can be found in [Jac99,
Proposition 5.6.6]. One can also see these equalities as an application of
Freyd’s theorem [FS90] that a full reflective subcategory is an exponential
ideal if the reflector (in this case closure) preserves products.) Also, for
X ∈ ClSubj(E)(I × J), i.e., X closed,

∀j : J. X = ∀j : J. X.

Let us write out explicitly what the above proposition says with regard
to first-order logic. For all objects (types) I, J ∈ E , all closed subobjects
(predicates in the closed subobject fibration) X,Y ∈ ClSubj(I) and Z ∈
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ClSubj(I × J), and morphisms (terms) x, x′ : 1→ X

(x =j x
′) = x = x′

>j = >
X ∧j Y = X ∧ Y

⊥j = ⊥
X ∨j Y = X ∨ Y
X ⊃j Y = X ⊃ Y
¬jX = X ⊃ ⊥

∃jj : J. Z = ∃j : J. Z
∀jj : J. Z = ∀j : J. Z

Moreover, substitution in
ClSubj(E)

��
E

is interpreted as it is in
Sub(E)

��
E

, i.e., by

pullback.
Recall that when I ∈ E is a sheaf, a subobject X � I in E is closed

iff X � I is a subobject in ShjE . Therefore one can show the following
proposition (see, e.g., [Jac99, 5.7.11] and [Joh77] for more details).

Proposition 8.1.2. There is a change-of-base situation

Sub(ShjE) //

��

ClSubj(E)

��
ShjE � � // E .

Propositions 8.1.1 and 8.1.2 taken together give us a translation of the
first-order logic of ShjE into the first-order logic of E . For ϕ first-order
formula with basic types and basic predicates interpreted as sheaves, write
[[ϕ]]ShjE for the interpretation of ϕ in the subobject fibration on ShjE . If we
view the interpretation of the basic types as objects of E and the interpre-
tation of the atomic predicates as closed subobjects on those objects in E ,
the interpretation [[ϕ]]j of ϕ in the closed subobject fibration equals [[ϕ]]ShjE .
Moreover, by Proposition 8.1.1, if ϕ is built up from atomic predicates and
>, ∧, ⊃, and ∀ (i.e., ϕ is a negative formula), then [[ϕ]]j equals [[ϕ]], the
interpretation of ϕ in logic of E . For more results of this nature, see [Hyl82].
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8.2 The Logic of Discrete Objects

Recall from Chapter 7 that when I ∈ E is a discrete object, a subobject
X � I is open iff X is discrete iff X � I is a subobject in DjE . We will
use this fact to get results, analogous to those for sheaves recalled in the
previous section, relating the logic of the discrete objects to the logic of E .

Definition 8.2.1. We define OpenSubj(E) to be the full subcategory of
Sub(E) on the open subobjects.

Proposition 8.2.2. The codomain functor cod: OpenSubj(E) → E is a

fibration
OpenSubj(E)

��
E

with reindexing of X � J along u : I → J given by

(u∗(X))◦, the interior of the pullback of X along u.

Proof. Consider the following diagrams.

Y
��

ψ

��

h //_____

h′ ''PPPPPPP

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

++

g

(I ×J X)◦

u

''PPPPPPPPPPPPP��

��

m

H

w

((PPPPPPPP

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

++

v
I ×J X //
��

��

X
��
ϕ

��
I u

// J

H

w
((QQQQQQQQ

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

++

v

I u
// J

Here ϕ : X � J is an open subobject over J and u : I → J is a map in
the base category E . (I ×J X)◦ is the interior of the pullback of X along
u and u : (I ×J X)◦ → X is obtained as the interior functor applied to the
morphism I ×J X → X (here we use that X is open, i.e., X ∼= (X)◦). We
claim that u is a cartesian lifting over u. Thus suppose that ψ : Y � H is an
open subobject of H and that (g, v) is a map from ψ : Y � H to ϕ : X � J
in OpenSubj(E), i.e., ϕg = vψ, see the diagram above. Suppose further
that v factors as uw, for some w : H → I, shown in the diagram. Then by
the universal property of the pullback, there exists an h′ : Y → I ×J X such
that wψ and ϕm both factor through h′. Let h be the interior of h′. Then

uh = g and uw = v
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so (g, v) : ψ → ϕ in OpenSubj(E) via factors via (h,w). Moreover, (h,w)
is the unique such over w since m is monic, completing the proof that u is

cartesian over u and thus that
OpenSubj(E)

��
E

is a fibration.

Proposition 8.2.3. The interior operation and the closure operation estab-
lish a fibred equivalence as in

OpenSubj(E)

%%LLLLLLLLLLL

−
,,

' ClSubj(E)

zzuuuuuuuuuu
()◦

mm

E .

Proof. Note first that by Corollary 7.3.8,

1. for X � I an open subobject, (X)◦ = (X)◦ = X

2. for X � I a closed subobject, (X)◦ = X = X

Thus it only remains to show that closure and interior are fibred functors.
Closure is fibred because, for any open X � J and any map u : I → J in the
base, (u∗X)◦ = (u∗X) = u∗(X). Interior is fibred because, for any closed
X � J and any map u : I → J in the base, (u∗X)◦ = (u∗((X)◦))◦ (the ≥
is obvious, for the other direction use adjointness: (u∗X)◦ ≤ (u∗((X)◦))◦ iff
u∗X ≤ u∗((X)◦) iff u∗X ≤ u∗X, which holds).

Proposition 8.2.4. The fibration
OpenSubj(E)

��
E

of open subobjects is a higher-

order fibration with extensional entailment, in which: (we label the connec-

tive etc. in
OpenSubj(E)

��
E

with a subscript ◦)

• ⊥◦, ∨◦, ∃◦, Eq◦ are as for ordinary subobjects.

• >◦ = (>)◦, X ∧◦ Y = (X ∧ Y )◦, X ⊃◦ Y = (X ⊃ Y )◦, (∀◦)fX =
(∀fX)◦, and thus ¬◦(X) = (X ⊃ ⊥)◦.

• true : 1� Ω is a split generic object.

Hence interior (−)◦ defines a fibred functor Sub(E)→ OpenSubj(E) over E
which preserves all this structure, except the generic object.
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Proof. The first-order structure is defined categorically and thus preserved
along equivalences. Hence we can use Proposition 8.2.3 to derive what the

logical operations are in
OpenSubj(E)

��
E

: Let I and J be objects of E , f : I → J

in E , and suppose X,Y are open subobjects of J . Then we have:

• ⊥◦ = (⊥j)◦ = (⊥)◦ = (⊥)◦ = ⊥ since ⊥ is the initial object which is
discrete and thus open.

• For ∨◦ we argue as follows.

X ∨◦ Y = (X ∨j Y )◦

= (X ∨ Y )◦

= (X ∨ Y )◦

= (X ∨ Y )◦ see below
= X ∨ Y by Proposition 7.4.4

For the equation (X ∨ Y )◦ = (X ∨ Y )◦ note that we clearly have that
the ≥ direction holds. For the other direction note that by adjointness

(X ∨ Y )◦ ≤ (X ∨ Y )◦

holds iff

(X ∨ Y ) ≤ X ∨ Y (8.1)

holds. But clearly X ≤ X ∨ Y and likewise Y ≤ X ∨ Y , and therefore
(since ∨ is the least upper bound operation) we have that (8.1) holds.

• For ∃◦ we argue as follows.

(∃◦)fX = ((∃j)fX)◦

= (∃fX)◦

= (∃fX)◦

= ∃f (X)◦ by Lemma 7.3.9
= ∃f (X)◦

= ∃fX since X is open
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• Eq◦ is a special case of ∃◦ (since we show that we have left adjoints ∃f
for all morphisms f in the base, not only the projections).

• >◦ = (>j)◦ = (>)◦.

• For ∧◦ we argue as follows:

X ∧◦ Y = (X ∧j Y )◦

= (X ∧ Y )◦

= ((X ∧ Y ))◦

= (X ∧ Y )◦

• For ⊃◦ we argue as follows:

X ⊃◦ Y = (X ⊃j Y )◦

= (X ⊃ Y )◦

= (X ∧ Y )◦.

• For ∀◦ we argue as follows:

(∀◦)fX = ((∀j)fX)◦

= (∀fX)◦.

It only remains to show that true : 1 � Ω is a split generic object. Let
X � I be an open subobject of I and let χ : I → Ω be the characteristic
map of X in E , i.e., χ is the unique map making the square below a pullback
diagram.

(X)◦ ∼= X //

��

1

true

��
I χ

// Ω

Since 1 is open, the interior of X is isomorphic to X. Thus the reindexing

of true : 1 → Ω along χ in
OpenSubj(E)

��
E

, that is, the interior of the pullback

of 1 along χ, is X itself.
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Let us write out explicitly what the above proposition says with regard
to first-order logic. For all objects (types) I, J ∈ E , all open subobjects
(predicates in the open subobject fibration) X,Y ∈ OpenSubj(I) and Z ∈
OpenSubj(I × J), and morphisms (terms) x, x′ : 1→ X

(x =◦ x′) = (x = x′)
>◦ = (>)◦

X ∧◦ Y = (X ∧ Y )◦

⊥◦ = ⊥
X ∨◦ Y = X ∨ Y
X ⊃◦ Y = (X ⊃ Y )◦

¬◦X = (X ⊃ ⊥)◦

∃◦j : J. Z = ∃j : J. Z

∀◦j : J. Z = (∀j : J. Z)◦

Moreover, substitution in
OpenSubj(E)

��
E

is interpreted as the interior of the

pullback.

Proposition 8.2.5. There is a change-of-base situation

Sub(DjE) //

��

OpenSubj(E)

��
DjE � � // E .

Proof. For X � J an open subobject of a discrete object J . Then X itself
is discrete, by Axiom 3 in Section 7.3.2. Moreover, since the discrete objects
are closed under finite limits in E , the pullback u∗(X) of X along a map
u : I → J between discrete objects is discrete and hence also open. Thus

the reindexing of X along u in
OpenSubj(E)

��
E

, namely (u∗(X))◦ is equal to (as

subobjects of I) the reindexing of X in Sub(DjE), namely u∗(X).

Combining the above proposition with Proposition 8.1.2 we have the follow-
ing picture, complementing the adjoint cylinder picture (where the discrete
objects come in to E on the left, the sheaves come in to E on the right, and
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the category of discrete objects is equivalent to the category of sheaves).

Sub(DjE) //

��

OpenSubj(E)

%%KKKKKKKKKKK

%%KKKKKKKKKKK

−
,,

' ClSubj(E)

{{vvvvvvvvvv
()◦

mm Sub(ShjE)oo

��
DjE � � // E ShjE? _oo

Combining Propositions 8.2.5 and 8.2.4, we of course derive a translation
of the internal logic of DjE into the logic of E . Since we are restricting
attention to the discrete objects in the base, we can make some simplifi-
cations compared to what we get directly from Proposition 8.2.4 (see also
the explicit treatment after that proposition): Since open subobjects X and
Y of a discrete object I are in fact discrete (by Axiom 3) and since the
inclusion of discrete objects is left exact, X ∧◦ Y = (X ∧ Y )◦ simplifies to
X ∧◦ Y = X ∧ Y and >◦ = (>)◦ simplifies to >. Moreover, we have the
following two lemmas, which tell us that we can simplify the definition of ⊃
and ∀.

Lemma 8.2.6. Let I be an object of E and let X,Y ∈ SubE(I) be subobjects
of I. Suppose that I is discrete and that X is open. Then (X ⊃ Y )◦ =
(X ⊃ (Y )◦)◦.

Proof. Note first that (X ⊃ Y )◦ ≤ X ⊃ (Y )◦:

(X ⊃ Y )◦ ≤ X ⊃ (Y )◦

⇐⇒ (X ⊃ Y )◦ ∧X ≤ (Y )◦

⇐⇒ (X ⊃ Y )◦ ∧ (X)◦ ≤ (Y )◦ since X is open
⇐⇒ ((X ⊃ Y ∧X))◦ ≤ (Y )◦ since (X ⊃ Y )◦, (X)◦ both disc.
⇐⇒ (Y )◦ ≤ (Y )◦

Hence, using that interior is idempotent, we also have that (X ⊃ Y )◦ ≤
(X ⊃ (Y )◦)◦. The other direction, (X ⊃ (Y )◦)◦ ≤ (X ⊃ Y )◦ is obvious,
since (Y )◦ ≤ Y .

Lemma 8.2.7. Let u : I → J be a morphism of discrete objects in E and
let X ∈ SubE(I) be a subobject of I. Then (∀uX)◦ = (∀uX)◦.

Proof. It is clear that (∀uX)◦ ≤ (∀uX)◦ since X ≤ X. For the other direc-
tion we reason as follows. By adjointness, (∀uX)◦ ≤ (∀uX)◦ holds iff

∀uX ≤ (∀uX)◦ ≤ ∀uX.
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We show that in fact

∀uX = ∀uX. (8.2)

By taking left adjoints (8.2) holds iff, for any subobject Y of J ,

u∗(Y )◦ = (u∗Y )◦.

But, by Proposition 7.4.7, u∗(Y )◦ = (u∗(Y )◦)◦ and clearly (u∗(Y )◦)◦ ≤
(u∗Y )◦. Thus it remains to show that (u∗Y )◦ ≤ u∗(Y )◦. This follows since
by adjointness it is equivalent to u∗Y ≤ u∗(Y )◦ = u∗(Y )◦ = u∗Y , which is
true.

Corollary 8.2.8. Let u : I → J be a morphism of discrete objects in E and
let X ∈ SubE(I) be a subobject of I. Then (∀u(X)◦)◦ = (∀uX)◦.

Proof. Using Lemma 8.2.7 (twice) we get (∀u(X)◦)◦ = (∀u(X)◦)◦ = (∀uX)◦ =
(∀uX)◦.

Using the two lemmas above the first-order logic of DjE (i.e., the inter-
nal logic of the subobject fibration on DjE) can be written out explicitly
as follows. We label the connectives with a subscript d. For all objects
(types) I, J ∈ DjE , all subobjects in DjE (corresponding to open subobjects
in E) X,Y ∈ SubDjE(I) and Z ∈ SubDjE(I × J), and morphisms (terms)
x, x′ : 1→ X

(x =d x
′) = (x = x′)
>d = >

X ∧d Y = (X ∧ Y )
⊥d = ⊥

X ∨d Y = X ∨ Y
X ⊃d Y = (X ⊃ Y )◦

¬dX = (X ⊃ ⊥)◦

∃dj : J. Z = ∃j : J. Z
∀dj : J. Z = (∀j : J. Z)◦

(8.3)

(Note that negation has also been simplified thanks to Lemma 8.2.6.)

Substitution in
Sub(DjE)

��
DjE

is interpreted by pullback in DjE , which, when

we view the types in E , is the same as pullback in E .



184 Logic and Local Maps of Toposes

We see that the geometric part of the logic (>, ∧, ⊥, ∨, ∃) is interpreted
exactly as in E . This should come as no surprise because the inclusion of
the discrete objects into E is the inverse image of a geometric morphism and
thus it preserves geometric logic.

8.2.1 Preservation of Validity of Stable Formulas

We now aim to show that a wider class of sentences than the class of geo-
metric sentences is preserved by the inclusion of the discrete objects,

Let Γ ` ϕ : Prop be a formula of first-order logic over a first-order many-
sorted language. Suppose that the basic types of the language are inter-
preted in E by discrete objects and that the atomic predicates are interpreted
by open subobjects of discrete objects in E , corresponding to subobjects in
DjE . We then write [[Γ ` ϕ : Prop]] for the interpretation of Γ ` ϕ : Prop in
E , i.e., in the subobject fibration over E . Likewise, we write [[Γ ` ϕ : Prop]]d
for the interpretation of Γ ` ϕ : Prop in DjE , i.e., in the subobject fibration
over DjE . For notational simplicity we often abbreviate and write [[ϕ]] for
[[Γ ` ϕ : Prop]] and [[ϕ]]d for [[Γ ` ϕ : Prop]]d. Moreover, we allow ourselves to
consider [[ϕ]]d ∈ SubDjE([[Γ]]d) as a subobject in E , thus eliding the inclusion
functor from discrete objects into E (here [[Γ]]d denotes the discrete object
interpreting Γ). Finally, we say that Γ ` ϕ : Prop is valid in E , written in
short as E � ϕ, iff > ≤ [[ϕ]] in SubE([[Γ]]), where [[Γ]] is the interpretation of
Γ.1 Likewise, we say that Γ ` ϕ : Prop is valid in DjE , written DjE � ϕ, if
>d ≤ [[ϕ]]d in SubDjE([[Γ]]d).

Definition 8.2.9. Let Γ ` ϕ : Prop be a formula of first-order logic over a
first-order many-sorted language. We say that ϕ is stable if, for all subfor-
mulas (ψ ⊃ ϑ) of ϕ, the formula ψ is geometric.

Lemma 8.2.10. Let Γ ` ϕ : Prop be a formula of first-order logic over a
first-order many-sorted language. If ϕ is stable, then ([[ϕ]])◦ = [[ϕ]]d.

Proof. The proof is by structural induction on ϕ. Note that [[ϕ]]d is discrete,
and thus open, so ([[ϕ]]d)◦ = [[ϕ]]d. For ϕ atomic we clearly have [[ϕ]] =
[[ϕ]]d and thus also ([[ϕ]])◦ = [[ϕ]]d. Given the result for atomic formulas,
for ϕ a geometric formula, we clearly also find that [[ϕ]] = [[ϕ]]d — see

the explicit description of the logical operations in
Sub(DjE)

��
DjE

on Page 183.

1Take note that E � ϕ refers to the interpretation [[ϕ]] where atomic predicates are
interpreted by open subobjects.
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Hence also ([[ϕ]])◦ = [[ϕ]]d. It remains to consider implication and universal
quantification.

Suppose that ϕ ≡ ψ ⊃ ϑ. Then we have that

[[ψ ⊃ ϑ]]d = ([[ψ]]d ⊃ [[ϑ]]d)◦ see definition of ⊃d on Page 183
= (([[ψ]])◦ ⊃ ([[ϑ]])◦)◦ by induction hypothesis
= (([[ψ]])◦ ⊃ [[ϑ]])◦ by Lemma 8.2.6
= ([[ψ]] ⊃ [[ϑ]])◦ since ψ is geometric by stability of ϕ,

as required.
Finally, suppose that ϕ ≡ ∀x : X. ψ. Then we have that

[[∀x : X. ψ]]d = (∀x : X. [[ψ]]d)◦ see definition of ∀d on Page 183
= (∀x : X. ([[ψ]])◦)◦ by induction
= (∀x : X. [[ψ]])◦ by Corollary 8.2.8
= ([[∀x : X. ψ]])◦,

as required.

Theorem 8.2.11. Let Γ ` ϕ : Prop be a formula of first-order logic over a
first-order many-sorted language. If Γ ` ϕ : Prop is stable, then E � ϕ iff
DjE � ϕ.

Proof. Let I = [[Γ]] = [[Γ]]d be the discrete object interpreting Γ. Then,
writing ≤d for the ordering in SubDjE(I) and writing ≤ for the ordering in
SubE(I), we have that

DjE � ϕ
⇐⇒ >d ≤d [[ϕ]]d
⇐⇒ > ≤ [[ϕ]]d since >d = >, see Page 183
⇐⇒ > ≤ ([[ϕ]])◦ by Lemma 8.2.10
⇐⇒ > ≤ [[ϕ]] since I is discrete and thus open
⇐⇒ E � ϕ.

8.3 A Modal Logic for Local Maps

So far in this chapter we have only used the interior operation as a semanti-
cal operation; we have not considered it syntactically as a logical operator.



186 Logic and Local Maps of Toposes

We do so in this section. As explained in the introduction to this chapter,
interior is not a logical operation in the subobject fibration over E because
it does not commute with substitution. However, when we restrict attention
to discrete objects, interior does commute with substitution, see Proposi-
tion 8.3.2 below.

The following definition makes precise the idea of considering the logic
of E restricted to discrete objects.

Definition 8.3.1. We define the fibration
Pred

��
DjE

of E-predicates over DjE by

change-of-base as in

Pred //

��

Sub(E)

��
DjE � � // E .

Thus in the internal logic of
Pred

��
DjE

, types and terms are interpreted by

objects and morphisms of DjE and predicates over a type σ, interpreted by
a discrete object I, are interpreted as subobjects of I in E . In other words,
we consider all the predicates of E , but only on types and terms from DjE .

The fibration
Pred

��
DjE

is clearly a first-order fibration. (In general it does not

have a generic object since the subobject classifier Ω in E in general is not
a discrete object). We now show that interior commutes with substitution

(reindexing) in
Pred

��
DjE

.

Proposition 8.3.2. Let u : I → J be a morphism between discrete objects I
and J in E and suppose X � J is a subobject of J . Then (u∗X)◦ = u∗((X)◦)
as subobjects of I.

Proof. First note that by Proposition 7.4.7, u∗((X)◦) is open. Thus u∗((X)◦) =
(u∗((X)◦))◦ ≤ (u∗X)◦. The other direction always holds (regardless of I and
J being discrete): (u∗X)◦ ≤ u∗((X)◦) iff u∗X ≤ u∗((X)◦) = u∗X.

It is instructive to note that the above proposition can also be seen as a
corollary to the following observation:

Proposition 8.3.3. Let I be a discrete object and let X � I be a subobject
of I in E. Then the interior (X)◦ of X is ∆ΓX (up to isomorphism).
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Proof. Consider the following commutative diagram

∆ΓX
εX //

��
∆Γm

��

X
��
m
��

∆ΓI εI
// I,

where εI and εX are the counits. Since I is discrete the arrow εI across the
bottom is iso. Since ∆ and Γ are both left exact, ∆Γm is monic. Thus
m ◦ εX = εI ◦ ∆Γm is monic, and hence εX is monic. Therefore (X)◦ =
Im(εX) ∼= ∆ΓX.

Now Proposition 8.3.2 is obtained from Proposition 8.3.3 simply by recalling
that ∆ and Γ are left exact and thus commute with pullback.

By Proposition 8.3.2, the interior operation is a logical operation in
Pred

��
DjE

.

So is, of course, also the closure operation. In the next subsection we describe
how the interior and closure operations can be axiomatized, so as to obtain
what we will refer to as a modal logic for local maps. In the syntactic calculus
we denote interior by ] and closure by [. The choice of this notation comes
from our use of ] in our realizability model RT(A,A]). In Subsection 8.3.2

we prove that
Pred

��
DjE

, as expected, provides a model for the syntactic calculus.

8.3.1 Axiomatization of a Modal Logic for Local Maps

We describe an extension of standard intuitionistic first-order logic. As usual
we write logical entailment as Γ | Θ ` ψ, where Γ is a context of the form
x1 : σ1, . . . , xn : σn giving types σi to variables xi, and where ψ is a formulas
with free variables in Γ, and Θ is a list of formulas with free variables in Γ.
We write ∅ for an empty list of assumptions. There are two additional logical
operations: if ϕ is a formula, also ]ϕ and [ϕ are formulas. Substitution of
terms for variables in these new formulas is defined in the obvious way:

(]ϕ)[M/x] ≡ ](ϕ[M/x]) and ([ϕ)[M/x] ≡ [(ϕ[M/x]).

There are the usual rules of many-sorted first-order intuitionistic logic plus
the following axioms and rules:

(8.4)
Γ | ]ϕ ` ϕ

(8.5)
Γ | ]ϕ ` ]]ϕ
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(8.6)
Γ | ∅ ` ](>)

(8.7)
Γ | ]ϕ ∧ ]ψ ` ](ϕ ∧ ψ)

Γ | ]ϕ ` ψ
======== (8.8)
Γ | ϕ ` [ψ

(8.9)
x : σ, y : σ | x =σ y ` ](x =σ y)

Note that Rule (8.7) is a double-rule which can be applied in both directions.
Intuitively, Axiom (8.4) says that ] is a deflationary operation, Axiom (8.5)
then says that ] is idempotent, Axioms (8.6) and (8.7) say that ] is left
exact, Rule (8.7) says that ] is left adjoint to [, and Axiom (8.9) expresses
that all the types are discrete and hence equality is ].

From the above axioms and rules one can derive that all of the following
hold (for notational simplicity, we here leave out the context Γ, which does
not change):

ϕ ` ψ
(8.10)

]ϕ ` ]ψ

ϕ ` ψ
(8.11)

[ϕ ` [ψ

(8.12)
](ϕ ∧ ψ) ` ]ϕ ∧ ]ψ

(8.13)
](ϕ ⊃ ψ) ` ]ϕ ⊃ ]ψ

(8.14)
ϕ ` [ϕ

(8.15)
[ϕ a` [[ϕ

(8.16)
[> ` >

(8.17)
[(ϕ ∧ ψ) a` [ϕ ∧ [ψ

∅ ` ϕ
(8.18)

∅ ` ]ϕ

(8.19)
][ϕ a` ]ϕ

(8.20)
[]ϕ a` [ϕ

The proofs of the above rules are obtained simply by formalizing the usual
categorical proofs. For example, (8.10) is proved as follows:

ϕ ` ψ

identity
]ψ ` ]ψ

(8.8)
ψ ` []ψ

cut
ϕ ` []ψ

(8.8)
]ϕ ` ]ψ
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As another example, (8.18) is proved as follows:

(8.6)
> ` ]>

> ` ϕ
(8.10)

]> ` ]ϕ
cut

> ` ]ϕ

Note that (8.4), (8.5), (8.6), and (8.18) together express that ] has the formal
properties of the box operator in the modal logic S4. That is why we refer
to the first-order logic axiomatized in this section as a modal logic for local
maps. It should be observed that [ is not the usual diamond, however, which
is (classically) left rather than right adjoint to box.

The following principles of inference for the quantifiers can be derived:

Γ | ∅ ` ](∀x : σ. ϕ)
============== (8.21)
Γ | ∅ ` ∀x : σ. ]ϕ

(8.22)
Γ | ](∃x : σ. ϕ) a` ∃x : σ. ]ϕ

Rule (8.21) is derived as follows (using Rules (8.4) and (8.18)):

Γ | > ` ∀x : σ. ϕ
==============

Γ, x : σ | > ` ϕ
============
Γ, x : σ | > ` ]ϕ

==============
Γ | > ` ∀x : σ. ]ϕ

(Here we are also using the so-called mate-rule for ∀:

Γ | Θ, ϕ ` ∀x : σ. ψ
===============
Γ, x : σ | Θ, ϕ ` ψ

See, e.g., [Jac99, Lemma 4.1.8, Page 230] for the derivation of this double-
rule.)

The equivalence in Rule (8.22) is proved as follows. First note that, for
any Γ ` ψ we have:

Γ | ](∃x : σ. ϕ) ` ψ
===============
Γ | ∃x : σ. ϕ ` [ψ
==============

Γ, x : σ | ϕ ` [ψ
============
Γ, x : σ | ]ϕ ` ψ

==============
Γ | ∃x : σ. ]ϕ ` ψ
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(Here we are also using the so-called mate-rule for ∃:

Γ | Θ,∃x : σ. ϕ ` ψ
===============
Γ, x : σ | Θ, ϕ ` ψ

See, e.g., [Jac99, Lemma 4.1.8, Page 230] for the derivation of this double-
rule.) Hence by plugging in ∃x : σ. ]ϕ for ψ, we get ](∃x : σ. ϕ) ` ∃x : σ. ]ϕ.
Likewise, by plugging in ](∃x : σ. ϕ) for ψ we get ∃x : σ. ]ϕ ` ](∃x : σ. ϕ),
thus completing the proof of Rule (8.22).

8.3.2 A Model for the Modal Logic for Local Maps

Proposition 8.3.4. The fibration
Pred

��
DjE

is a model for the modal logic for

local maps.

Proof. The interpretation of types and terms is given in the standard way.
with ] interpreted by the interior operation and [ interpreted by the closure
operation. Substitution is interpreted correctly by Proposition 8.3.2. The

standard first-order logic is interpreted soundly since
Pred

��
DjE

is a first-order

fibration. The new axioms and rules of the modal logic for local maps clearly
validated: Rules (8.4) and (8.5) hold by the fact that interior is deflationary
and idempotent, see Definition 7.3.3 and Lemma 7.3.5. Rule (8.6) is sound
since > is interpreted by the maximal subobject of the discrete object I
interpreting Γ — I being discrete entails that I is open and thus that I ≤I
(I)◦ in PredI = SubE(I). Rule (8.7) is sound because supposing that Γ
is interpreted by discrete object I and that ϕ and ψ are interpreted by
X and Y in PredI , respectively, then (X)◦ and (Y )◦ are discrete (as open
subobjects of a discrete object), so the pullback (X)◦∧ (Y )◦ is discrete, and
thus open, so (X)◦ ∧ (Y )◦ = ((X)◦ ∧ (Y )◦)◦ ≤ (X ∧ Y )◦. For Rule (8.9)
note that the equalizer of a pair of morphisms between discrete objects in
E is discrete, since the discrete objects are closed under finite limits. Hence
the equality predicate of two terms is interpreted by a discrete and hence
open subobject.

8.3.3 Applications of the Modal Logic for Local Maps

In this subsection we present a couple of examples of applications of the
logic of discrete objects and the modal logic for local maps.
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Observe that the definition of the logical predicates in
Sub(DjE)

��
DjE

in (8.3)

on Page 183 can now be seen as a syntactic translation from formulas ϕ
of first-order logic into formulas of the modal logic for local maps. We
write |ϕ| for the translation. It is defined in the obvious way — view (8.3)
syntactically and replace the interior operation in the defining equations
with a ]. Explicitly:

|(x = x′)| = (x = x′)
|>| = >

|ϕ ∧ ψ| = |ϕ| ∧ |ψ|
|⊥| = ⊥

|ϕ ∨ ψ| = |ϕ| ∨ |ψ|
|ϕ ⊃ ψ| = ](|ϕ| ⊃ |ψ|)
|¬ϕ| = ](|ϕ| ⊃ ⊥)

|∃j : J. ϕ| = ∃j : J. |ϕ|
|∀j : J. ϕ| = ](∀j : J. |ϕ|)

(8.23)

Note that for ϕ a geometric formula, |ϕ| = ϕ.
In the following discussion it will be convenient to assume that our basic

language of formulas contains two kinds of relation symbols: R, S, . . . , and
R], S], . . . . When considering a first-order formula ϕ and its interpretation

in
Sub(E)

��
E

we will assume that the relational symbol R] is interpreted by

the interior of the interpretation of the relational symbol R. Likewise when
considering ϕ a formula of the modal logic for local maps. Finally, when

considering ϕ a formula of the logic of
Sub(DjE)

��
DjE

, the formula ϕ must not

contain any relational symbols of the form R (i.e., all relational symbols
must be of the form R]). The translation given above is defined on atomic
relational symbols as follows:

|R]| = ]R and |R| = R.

We write2

• [[ϕ]] for the interpretation of ϕ in
Sub(E)

��
E

2As on Page 184 we really interpret sequents Γ ` ϕ : Prop, but we shall not make that
explicit in this section.
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• [[ϕ]]m for the interpretation of ϕ in
Pred

��
DjE

• [[ϕ]]d for the interpretation of ϕ in
Sub(DjE)

��
DjE

and we write

• E � ϕ if [[ϕ]] is valid in
Sub(E)

��
E

• Pred � ϕ if [[ϕ]]m is valid in
Pred

��
DjE

• DjE � ϕ if [[ϕ]]d is valid in
Sub(DjE)

��
DjE

We then have that

1. If ϕ a formula of first-order logic in which all relational symbols are of
the form R] and if all the basic types in ϕ are interpreted by discrete
objects, then DjE � ϕ iff Pred � |ϕ|.

2. If ϕ is a formula of first-order logic and all the basic types in ϕ are
interpreted by discrete objects, then E � ϕ iff Pred � ϕ.

Using the conventions established here, we now consider two sample appli-
cations of the modal logic for local maps.

External Axiom of Choice

For objects I and J in an arbitrary topos E , let us say that the (external)
axiom of choice holds from I to J , written EAC(X,Y ), if, for any subobject
R � I × J , if ∀i : I. ∃j : J. R(i, j) is valid (in the subobject fibration over
E) then there exists a morphism f : I → J in such that ∀i : I. R(i, f(i)) is
valid (in the subobject fibration over E).

Proposition 8.3.5. Let I and J be discrete objects and suppose that the
external axiom of choice holds from I to J in DjE. Then also the external
axiom of choice holds from I to J in E.
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Proof. We argue as follows:

E � ∀i : I. ∃j : J. R(i, j)
=⇒ Pred � ∀i : I. ∃j : J. R(i, j)
=⇒ Pred � ](∀i : I. ∃j : J. ]R(i, j)) by modal logic

=⇒ Pred � |∀i : I. ∃j : J. R](i, j)|
=⇒ DjE � ∀i : I. ∃j : J. R](i, j)

so by EAC(I, J) in DjE , there exists an f : I → J such that

=⇒ DjE � ∀i : I. R](i, f(i))
=⇒ Pred � ](∀i : I. ]R(i, f(i)))
=⇒ Pred � ∀i : I. R(i, f(i)) by modal logic
=⇒ E � ∀i : I. R(i, f(i)).

Church’s Thesis

In this example we show that if the topos of discrete objects satisfies the
arithmetic form of Church’s Thesis (in the sense of, e.g., [TvD88, Tro73]),
then a ]’ed version is satisfied by E .

Observe that E has a natural numbers object if and only if DjE has a
natural numbers object, because both ∆: DjE → E and Γ: E → DjE are
inverse images of geometric morphisms and as such they preserve the natural
numbers object (see, e.g., [Joh77, Proposition 6.12]).

For the remainder of this subsection we assume that DjE has a natural
numbers object N which thus also is the natural numbers object of E .

Recall from Kleene’s Normal Form Theorem that the basic predicates
of recursion theory can be defined from Kleene’s T -predicate and output
function U : N → N , see, e.g., [TvD88]. The predicates T � N × N × N
and U(−) = (−) are both primitive recursive. Hence their interpretation is
preserved by the inclusion DjE � � //E (i.e., the interpretation of T in DjE
agrees with the interpretation of T in E). Indeed, a predicate R on N is
primitive recursive iff there is a primitive recursive function χR : N → N
such that χR(n) = 1 iff R(n) holds. Hence to show that the interpretation
of primitive recursive predicates is preserved by the inclusion DjE � � //E , it
suffices to note that equality is preserved, which it is (see =d on Page 183),
and that the interpretation of primitive recursive functions is preserved. The
latter holds as expressed by the following lemma.
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Lemma 8.3.6. Let n : N `M : N be a term built up from the clauses defin-
ing the class of primitive recursive functions (see, e.g., [TvD88, Defini-
tion 3.1.2]). Then the interpretation of n : N ` M : N in the topos DjE
(a morphism from N to N in DjE) is the same as the interpretation in E.

Proof. By induction on the construction of the term M . For the zero con-
stant, the successor, and the projections, the result follows since the natural
numbers object N in DjE is also the natural numbers object in E and be-
cause the discrete objects are closed under products in E . For composition,
the result follows since DjE is a full subcategory (so closed under composition
in E). For definition by recursion, we use the formulation of a natural num-
bers object involving parameters (see, e.g., [LS86, Exercise 9.4]): The clause
for definition by recursion says that if f : Nn → N and g : Nn+2 → N are
primitive recursive, then there is a primitive recursive function h : Nn → N
such that

h(0, x1, . . . , xn) = f(x1, . . . xn)
h(Sy, x1, . . . , xn) = g(h(y, x1, . . . xn), y, x1, . . . xn).

Given interpretations f : Nn → N and g : Nn+2 → N of primitive recursive
terms f : Nn → N and g : Nn+2 → N, the interpretation of the primitive
recursive term h : Nn → N is h = π ◦ k, where k is the unique morphism
making the diagram below commute

Nn
〈0,id〉 // N ×Nn

〈S,id〉 //

k
��

N ×Nn

k
��

Nn
〈f,0,id〉

// N ×N ×Nn
〈g,S,id〉

// N ×N ×Nn.

Since this is a diagram only involving discrete objects, the interpretation in
DjE and in E is of course the same.

In summary, T and U are interpreted in the same way in E as in DjE .
We recall the following definition from [TvD88, Section 4.3].

Definition 8.3.7. The arithmetical form of Church’s Thesis is the
schema

CT0 ∀n. ∃m. ϕ(n,m) ⊃ ∃k. ∀n. ∃m.
(
ϕ(n,Um) ∧ T (k, n,m)

)
,

where all the variables range over the type of natural numbers N and where
ϕ is a formula.
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Proposition 8.3.8. Let ϕ be a formula and suppose that the ϕ instance of

CT0 holds in
Sub(DjE)

��
DjE

. Then the following formula holds in
Pred

��
DjE

:

](∀n. ∃m. |ϕ|(n,m)) ⊃ ∃k. ∀n. ∃m.
(
|ϕ|(n,Um) ∧ T (k, n,m)

)
.

Proof. By the fact that DjE � ϕ iff Pred � |ϕ| we get that

](∀n. ∃m. |ϕ|(n,m)) ⊃ ∃k. ]∀n. ∃m.
(
|ϕ|(n,Um) ∧ T (k, n,m)

)
holds in

Pred

��
DjE

. The required then follows by the modal logic, using that ]

commutes with ∃ and that ](]ϕ ⊃ ψ) a` ]ϕ ⊃ ]ψ.

Thus, in particular, if all geometric instances of CT0 hold in DjE , then all
geometric instances of

CT]
0 ](∀n. ∃m. ϕ(n,m)) ⊃ ∃k. ∀n. ∃m.

(
ϕ(n,Um) ∧ T (k, n,m)

)
hold in

Pred

��
DjE

.





Chapter 9

Logic and Localic Local
Maps of Toposes

Suppose given a topos E with a topology j satisfying the axioms for localic
local maps set out in the Chapter 7. There results a localic local map of
toposes

E

Γ

��
DjE

∆

CC

∇

\\

∆ a Γ a ∇

with (∆,Γ) the localic local map, ∆ the inclusion of the discrete objects and
Γ the associated discrete object functor with right adjoint ∇. All the results
from the previous chapter applies, since a localic local map is of course a
special case of a bounded local map.

In this chapter we investigate two additional simple points of view that
result from the extra assumption that the local map is localic. In Section 9.1
we take the point of view of tripos theory and show that the modal logic
resulting from the localic local map is just a particular case of tripos logic.
We define a notion of local tripos and show that any local tripos gives rise
to a localic local map of toposes and, moreover, that any localic local map
of toposes comes from a local tripos. The actual tripos that results from
a localic local map is naturally one given on an internal locale (complete
Heyting algebra). In Section 9.2 we take the point of view of internal locale
theory and describe the modal operators as certain easily given internal
maps on an internal locale. We further observe that a substantial part of

197
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the modal logic follows from very weak assumptions (whenever one has an
internal locale in some topos).

9.1 Local Triposes

Consider the fibration
Pred

��
DjE

obtained in the previous chapter by change-of-

base as in

Pred //

��

Sub(E)

��
DjE � � // E .

Note that, for any I ∈ DjE , we have that

PredI = SubE(∆I) ∼= E(∆I,ΩE) ∼= DjE(I,ΓΩE) (9.1)

where ΩE is the subobject classifier in E and where the isomorphisms are
natural in I.

Since E is localic over DjE via (∆,Γ), E is the topos of DjE-valued
sheaves on the internal locale ΓΩE in DjE [Joh77, Joh81] In other words,
Pred

��
DjE

is (equivalent to) the canonical DjE-tripos on the internal locale ΓΩE

and the modal internal logic of
Pred

��
DjE

is a particular example of tripos logic.

Moreover, E is the topos obtained by the tripos-to-topos construction applied

to the tripos
Pred

��
DjE

.

We now define a notion of local tripos and show that any local tripos
gives rise to a localic local map of toposes and, moreover, that any localic
local map of toposes comes from a local tripos. In the following section we
take the viewpoint of the internal locale theory, and consider a notion of
local internal locale. The internal locale theory point of view is perhaps
more standard. Thus one may reasonably ask: what is the advantage of
considering a notion of local tripos to describe a localic local map? The
answer is that it can be much easier to recognize a local tripos rather than
a local internal locale. We shall return to this point and make it clearer in
the following.
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Definition 9.1.1. Let
P

p
��
F

be a canonically-presented tripos on an object

Σ in a topos F . The tripos p is said to be local if it comes together with
maps I, J : Σ→ Σ in F satisfying that

1. p : Σ | Ip ` p

2. p : Σ | Ip ` IIp

3. ∅ | ∅ ` I(>)

4. p, q : Σ | Ip ∧ Iq ` I(p ∧ q)

5.
p, q : Σ | Ip ` q
============
p, q : Σ | p ` Jq

all hold in the logic of p.

Note that the axioms and rules that have to hold for I and J are just
as for ] and [ in the modal logic for local maps in Section 8.3.1.1 In other
words, a local tripos models the modal logic for local maps, and we shall
feel free to use the modal logic in the following when reasoning about local
triposes.

Proposition 9.1.2. Let p = F(−,Σ) be a local tripos qua I, J : Σ → Σ.
Then J is a Lawvere-Tierney topology on p.

Proof. One first shows from item (5) in the definition of local tripos that
I and J are functorial. Then since I is deflationary, J is seen to be infla-
tionary as a right adjoint to I. Moreover, since I is idempotent, J is also
idempotent, again using adjointness. Finally, J preserves limits as a right
adjoint. Further details are left to the reader.

Let p = F(−,Σ) be a local F-tripos qua I, J : Σ → Σ. We define a new
canonically presented F-tripos pI as follows (in the following we prove that
pI so defined indeed is a tripos). Let IΣ be the image of I in F . Tripos pI
is canonically presented on IΣ. The ordering is defined as in p, that is, for
ϕ,ψ ∈ F(X, IΣ) (pI ’s fibre over X ∈ F), we have ϕ `pI ψ iff ϕ `p ψ.

Since J is a topology by Proposition 9.1.2 we have a well-defined F-tripos
pJ as in Section 5.5.

1The only exception is that we in the definition of local tripos have left out the rule for
equality – the rule for equality follows since equality in a tripos is given using existential
quantification and truth > and I commutes with existential quantification as a left adjoint
and with > by item (3).
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It is easy to verify that composing with I : Σ→ Σ gives a fibred functor,
also denoted I, from pJ to pI over F . Likewise, composing with J : Σ→ Σ
gives a fibred functor, also denoted J , from pI to pJ over F .

Lemma 9.1.3. Functor I is a fibred left adjoint to J and the triposes pI
and pJ are equivalent, as fibrations over I, via the functors I and J .

Proof. Since both pI and pJ are canonically presented, it suffices to consider
the fibre over 1. Note first that Ip a` IJp and that Jp a` JIp in tripos
p (by the modal logic for local maps, see (8.19) and (8.20)). Adjointness is
shown as follows, for p : Σ and q : IΣ,

p `pJ Jq
============

p `p JJq
==========
p `p Jq

========
Ip `p q
======
Ip `pI q

For the equivalence, note first that IJ ∼= id because, for q : IΣ,

q `pI IJq
========
q `p IJq
=======
q `p Iq

and

IJq `pI q
========
IJq `p q
=======
Jq ` Jq

(note that q `p Iq since q : IΣ, so Iq = q). Next note that JI ∼= id because,
for p : Σ,

JIp `pJ p
========
JIp `p Jp

and

p `pJ JIp
==========
p `p JJIp

=========
p `p JIp
=======
Ip ` Ip

By the lemma it follows that pI has all the first-order structure required in
the definition of a tripos (since it is defined categorically and thus preserved
by equivalence functors). It is clear that id : IΣ → IΣ is a generic object
for pI and thus pI is indeed a tripos as claimed.

We now show that every local tripos gives rise to a localic local map of
toposes.
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Theorem 9.1.4. Let p = F(−,Σ) be a local F-tripos qua I, J : Σ → Σ.
Then p gives rise to a localic local map of toposes from F [p] to F [pI ].

Proof. Write P for the total category of p and PI for the total category of
pI . We define three fibred functors over F , as in

PI

pI   AAAAAAA

∆
((

J

66 P

p
����������

Ioo

F

∆ a I a J.

Functor ∆ is simply the inclusion functor. Functor I is induced by compos-
ing with I : Σ→ Σ and functor J is induced by composing with J : Σ→ Σ.
It is easy to see that all three functors are fibred, since p and pI are canon-
ically presented, and that ∆ is left adjoint to I and that I is left adjoint
to J . The functor ∆ is left exact since IΣ is closed under finite limits in
Σ by items (3) and (4) in the definition of a local tripos. Hence (∆, I) is a
geometric morphism of triposes, as is also (I, J). Functor ∆ is clearly full
and faithful and thus, by [MM92, Lemma 1, Section VII.4] we also have that
J is full and faithful (it is also straightforward to verify directly that J is
full and faithful).

It follows now, in the same way as in Section 6.2, that the geometric
morphism from F [p] to F [q] induced by (∆, I) is a localic local map.

Conversely, we have:

Theorem 9.1.5. Every localic local map of toposes arises from a local tripos
(in the way given by the proof of Theorem 9.1.4).

Proof. We use the notation from the introduction to this chapter and the

introduction to this section. There we have already noted that
Pred

��
DjE

is a

tripos. Call it p. Moreover, we also know that DjE [p] is the topos E .

Both the interior operation and the closure operation on
Pred

��
DjE

are natural,

i.e., commute with pullback. Thus they induce internal maps

I, J : ΓΩE → ΓΩE

in DjE via an application of the Yoneda lemma to the natural isomorphisms
in (9.1) such that I is internally left adjoint to J and I preserves finite
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limits. Moreover, the internal map I is deflationary and idempotent since
the interior is so. Thus p is a local DjE-tripos, canonically presented on
ΓΩE .

Finally, it is clear that pI is equivalent to the tripos
Sub(DjE)

��
DjE

since an

open subobject of a discrete object is open. Hence DjE [pI ] is nothing but
DjE and the resulting local map from E to DjE is the one we started out
with.

Remark 9.1.6. Let p = F(−,Σ) be a local F-tripos qua I, J : Σ → Σ.
From the equivalence of pI and pJ and the description of implication and
forall quantification in pJ (see Section 5.5), we get that the implication ⊃pI

and forall quantification ∀pI in pI is given by

ϕ ⊃pI ψ = I(ϕ ⊃p Jψ) and (∀pI
F )(ϕ) = I(∀F (Jϕ)). (9.2)

It is not hard to show that, in fact, we can leave out the application of J
in (9.2), i.e.,

ϕ ⊃pI ψ
∼= I(ϕ ⊃p ψ) and (∀pI

F )(ϕ) ∼= I(∀F (ϕ)). (9.3)

Hence the definitions of ⊃pI and ∀pI are indeed as expected — in the case

where p is the tripos
Pred

��
DjE

, the tripos pI is equivalent to
Sub(DjE)

��
DjE

and the

definition of implication and forall quantification here is exactly given as
in (9.3) (see the definition of ⊃d and ∀d in (8.3) on Page 183).

Example 9.1.7. The relative realizability tripos
UFam(A,A])

r��
Set

from 5.1.4, see

also Chapter 6, is a local tripos. The maps I and J are given by ∆Γ and
∇Γ respectively, see Section 6.2.

In this realizability example, the topos E is the topos RT(A,A]) and
the topos DjE is the topos RT(A,A]) (see Chapter 10 for more on how our
abstract theory of local maps relate concretely to the relative realizability
model). Note that if we were just given the topos RT(A]) with the internal
locale ΓΩRT(A,A]) it would be quite hard to recognize the canonical tripos on
this locale as being local, because it is complicated to calculate with internal
adjoints etc. in RT(A]). That is one reason why it can be advantageous to
describe a localic local map of toposes via a local tripos (rather than just in
terms of internal locale theory).
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Example 9.1.8 (Extensional Realizability). Let A be a PCA and let
p be the standard Set-realizability tripos over A. Let PER(A) denote the
category of partial equivalence relations over A. Define a tripos r over Set by
taking predicates over sets I to be elements of PER(A)I , that is, I-indexed
families of PER’s. For two such families ϕ and ψ, we define the ordering
over I to be ϕ ` ψ iff there is an a ∈ A such that, for all i ∈ I, a is in
the domain of the PER ψ(i)ϕ(i) (the exponential in the category of PER’s).
See [Pit81, Section 1.6] and [vO97a] for more details. Then the tripos r is
local over p, since the forgetful functor mapping a PER to its domain has
both left and right (fibred) full and faithful adjoints. Over 1, the left adjoint
maps a subset of A to the discrete PER on the subset and the right adjoint
maps a subset of A to the PER with only one equivalence class. See [Pit81,
Example 4.9(iii)] and [vO97a] for more details.

9.2 Local Internal Locales

In this section we assume given a localic local map of toposes as in the
introduction to this chapter. As explained in the previous section (see in
particular the proof of Theorem 9.1.5), the interior operation and the closure

operation in the resulting internal modal logic
Pred

��
DjE

correspond to internal

maps I, J on the internal locale ΓΩE . In this section we employ some ab-
stract theory relating internal locales and localic toposes to conclude that
the internal maps have a very simple internal description. Moreover, we
observe that a substantial part of the modal logic results whenever one has
has an internal locale in a topos.

Convention 9.2.1. For brevity, we shall sometimes denote the topos DjE
of discrete objects simply by F . Also, we denote the internal locale ΓΩE
simply by Λ. (Thus Λ ∈ F .)

Let LTop/F denote the 2-category of localic F-toposes and let Locales(F)
denote the 2-category of internal locales in F and internal locale morphisms.
The latter is defined in the standard way as the opposite of the category
Frames(F) of internal frames in F and internal frame homomorphisms.
See, e.g., [MM92, Chapter IX] for a treatment of these categories in the case
where F = Set. See, e.g., [Joh79a] and [JT84] for more on internal locale
theory.

Recall that the 2-category LTop/F is equivalent to Locales(F) [Joh79a,
Theorem 2.7]. The topos F is the terminal object in LTop/F and the
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subobject classifier Ω = ΩF of F is the terminal object in Locales(F)
(see [Joh79a] for a proof of this fact). By the equivalence of LTop/F and
Locales(F), the unique geometric morphism (∆,Γ): E → F in LTop/F
corresponds to the unique internal locale map from Λ to Ω. We also denote
this unique locale map by (∆,Γ). Thus Γ: Λ→ Ω and ∆: Ω→ Λ are maps
in F , with ∆ internally left adjoint to Γ, and ∆ left exact, as depicted in:

∆ lex and Λ
Γ

>
//
Ω

∆
oo in F .

Likewise the geometric morphism (Γ,∇) : F → E , which is a point of E in
LTop/F , because

F
(Γ,∇) //

(id ,id)   @@@@@@@ E

(∆,Γ)���������

F

commutes in the 2-category of toposes and geometric morphisms (i.e., Γ∇ ∼=
id), corresponds to a point of Λ in Locales(F), that is, a map from the
terminal object Ω to Λ in Locales(F). We denote this point by (Γ,∇),
so ∇ : Ω → Λ in F . It also follows by the equivalence of LTop/F and
Locales(F) that Γ∆ = idΩ and Γ∇ = idΩ (see Lemma 2.8 and the bot-
tom of Page II.18 in [Joh79a] for more details). Summarizing we have the
following diagram in F :

Λ

Γ

��
Ω

∆

BB

∇

\\

∆ a Γ a ∇ and ∆ lex
Γ∆ = idΩ and Γ∇ = idΩ

in F (9.4)

We call an arbitrary internal locale Λ in an arbitrary topos F satisfying the
conditions set out in (9.4) a local internal locale.

Since the interior operation in
Pred

��
DjE

is simply the functor ∆Γ, see Proposi-

tion 8.3.3, we have that the corresponding internal map I on Λ is the internal
functor I = ∆Γ: Λ→ Λ. The internal map J : Λ→ Λ corresponding to the

closure operation in
Pred

��
DjE

is determined (by uniqueness of adjoints) by it

being the right adjoint to I. By composing adjoints we see that ∇Γ: Λ→ Λ
is right adjoint to I = ∆Γ and thus J = ∇Γ.
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Hence by abstract reasoning we have found out what the internal maps
I and J on Λ are. We remark that it is also possible to give a more down-
to-earth (but longer) derivation of what I and J are by employing (1) the
fact that I and J are obtained via the Yoneda lemma (see the proof of
Theorem 9.1.5) and (2) results of Johnstone [Joh79a] and Mikkelsen [Mik76]
concerning the unique internal map to the terminal locale.

We denote the top element in Λ by 1Λ and we write =Λ (or simply =) for
the equality on Λ. By [Joh79a] we have that ∆ and Γ are internally given
as

∆(p) =
∨
{ 1Λ | p },

Γ(x) = (x =Λ 1Λ),
(9.5)

where
∨

is of course the sup in Λ. The set { 1Λ | p } is written using an
abuse of notation; more properly we should write {x : Λ | x = 1Λ∧p }. Since
∇ is right adjoint to Γ we get in the usual way (see, e.g., [MM92, Proof of
Lemma IX.1.1, Page 474]) that ∇ is given by

∇(p) =
∨
{x | Γx ≤ p }

=
∨
{x | (x = 1Λ) ≤ p },

where ≤ is the ordering on Ω (i.e., implication ⊃).
Hence I and J are given by

I(x) = ∆Γ(x) =
∨
{ 1Λ | x = 1Λ },

J(x) = ∇Γ(x) =
∨
{ y |

∨
{ 1Λ | y = 1Λ } ≤ x }

=
∨
{ y | y = 1Λ ⊃ x = 1Λ }.

Example 9.2.2. Recall Example 7.1.3(i), where X is a topological space
with a generic point x. Then the base topos F is the category Set, Ω is
the 2-element set {0, 1}, and Λ = O(X) is the locale of open sets, where the
ordering is inclusion and for which

∨
is union of open sets. Using the above

formulas for ∆, Γ, and ∇ we find that ∆: 2→ O(X) is given by

∆(0) = ∅ and ∆(1) = X,

the map Γ: O(X)→ 2 is given by

Γ(U) =

{
1 if U = X,

0 otherwise,
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and ∇ is given by

∇(0) =
⋃

x/∈U,U∈O(X)

U and ∇(1) = X.

Thus I, J : O(X)→ O(X) are given by

I(U) =

{
X if U = X,

∅ otherwise,

J(U) =

{
X if U = X,⋃
x/∈V,V ∈O(X) V otherwise.

If X is a Scott domain (and the generic point x ∈ X thus is the bottom
element ⊥ ∈ X), then J(U) = X \ {⊥}, whenever U 6= X.

9.2.1 Some Remarks on the Existence of ∇

Let F be an arbitrary topos with subobject classifier Ω and an internal
locale Λ. Denote the unique locale map from Λ to Ω by (∆,Γ) as in:

∆ lex and Λ
Γ

>
//
Ω

∆
oo in F ,

where ∆ and Γ are given as in (9.5).
By (the internal) adjoint functor theorem, Γ has a right adjoint ∇ iff Γ

preserves all colimits, that is, iff internally in F we have

Γ(
∨
i∈I

xi) =Ω

∨
i∈I

Γxi (9.6)

⇐⇒
((∨

i∈I
xi
)

= 1Λ

)
≤Ω

(∨
i∈I

(xi = 1Λ)
)

⇐⇒
((∨

i∈I
xi
)

= 1Λ

)
⊃
(∨
i∈I

(xi = 1Λ)
)

⇐⇒
((∨

i∈I
xi
)

= 1Λ

)
⊃ ∃i : I. (xi = 1Λ). (9.7)

If Γ satisfies condition (9.6) or, equivalently, condition (9.7), we say that Γ
is additive.

Lemma 9.2.3. Suppose that Γ: Λ → Ω is additive (and thus has a right
adjoint ∇). Then Γ is epic.
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Proof. Γ is epic iff

∀p : Ω. ∃x : Λ. Γx =Ω p,

holds in the internal logic of F , that is, iff

∀p : Ω. ∃x : Λ. (x = 1Λ) ⊃⊂ p (9.8)

holds in the internal logic. We prove (9.8) by arguing internally. Let p be
an arbitrary element of Ω and take x to be ∆p =

∨
{ 1Λ | p }. We are then

to show that (∨
{ 1Λ | p } = 1Λ

)
⊃⊂ p.

Suppose first that p holds. Then 1Λ ∈ { 1Λ | p } so clearly
∨
{ 1Λ | p } = 1Λ.

For the other direction, suppose that∨
{ 1Λ | p } = 1Λ

holds. The set { 1Λ | p } is short for {x : Λ | x = 1Λ∧p }. By additivity of Γ,
see (9.7), there exists an x in {x : Λ | x = 1Λ ∧ p } such that x = 1Λ. Hence
there exists an x such that x = 1Λ ∧ p. Thus p holds, as required.

Corollary 9.2.4. Suppose that Γ: Λ→ Ω is additive (and thus has a right
adjoint ∇). Then ∆ is monic and Γ∆ = idΩ.

Proof. By Lemma 2.8 in [Joh79a] and Lemma 9.2.3 above.

By Corollary 9.2.4 the following proposition follows.

Proposition 9.2.5. Let Λ be an internal locale in a topos F and let (∆,Γ)
denote the unique map to the terminal locale Ω in F . Then Λ is local iff
Γ: Λ→ Ω is additive ( i.e., iff equation (9.7) holds).

This proposition is a special case of Proposition 1.7 of Johnstone and
Moerdijk [JM89]. Johnstone and Moerdijk prove that an F-topos E is local
iff there exists an internal local site for E in F , where a site D is local if it’s
underlying category has a terminal object t and, moreover, it is internally
valid in F that, whenever (di → t)i∈I is a cover in D, there exists an i : I
such that di → t has a section. Taking the site to be the internal locale
Λ with the usual sup-topology, we see that the condition of Johnstone and
Moerdijk is exactly our condition (9.7).
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Example 9.2.6. Continuing Example 9.2.2, note that the additivity condi-
tion in (9.7) says that whenever we have an open cover of X,

⋃
i∈I Ui = X,

then there exists an i ∈ I such that the open set Ui already covers X. That
this holds is clear since the generic point x ∈ X must be in one of the Ui’s
and the only open set containing x is X itself, so Ui must equal X.

Remark 9.2.7. It is interesting to note that for any internal locale Λ in any
topos F (i.e., even if Λ is not local), the induced interior map I = ∆Γ: Λ→
Λ satisfies the axioms and rules for the box operator in the propositional
modal logic S4: for all x, y : Λ,

I(x ⊃Λ y) `Λ Ix ⊃Λ Iy

Ix `Λ x

Ix `Λ IIx

`Λ x

`Λ Ix

(`Λ is of course the ordering ≤Λ on Λ). This can be proved directly using
the internal adjoints ∆ and Γ. However, it also follows directly by results of
Biermann and de Paiva [BdP96]: Let

(I, ε, δ)

be the comonad on Λ induced by ∆ a Γ. Thus

I = ∆Γ

and

ε : ∆Γ⇒ id

is the counit of ∆ a Γ and

δ = ∆ηΓ = id

with η : id ⇒ Γ∆ the unit of ∆ a Γ, which is an identity. Then (I, ε, δ) is in
fact a left exact (and thus suitably monoidal) comonad on Λ. Moreover, Λ
is a (internal) cartesian closed category with coproducts. Therefore we have
a model of intuitionistic propositional S4 modal logic [BdP96].



Chapter 10

More on the Relative
Realizability Topos RT(A,A])

We now return to consider the relative realizability topos RT(A,A]) from
Chapter 6 in the light gained from our analysis of local maps of toposes in
Chapters 7–9. That is the main point of this chapter. However, we also
use this chapter to collect some other specific material on RT(A,A]). Most
of this material is obtained by verifying that known results for standard
realizability toposes can be carried over to the relative realizability setting.

Let us now outline the contents of the chapter in more detail.
In Section 10.1 we explicitly characterize some of the objects and opera-

tions used in the abstract development in Chapters 7–9. We argue that the
interior operation can be seen intuitively to carve out the subset of com-
putable elements of an object. We also include a concrete treatment of the
associated discrete object functor.

In Section 10.2 we describe explicitly how the modal logic for local maps
is interpreted in RT(A]) and RT(A,A]).

In Section 10.3 we comment on the relationship between the logics of
RT(A,A]) and RT(A]); in particular we prove that the inclusion of RT(A])
into RT(A,A]) does not preserve all of first-order logic.

In Section 10.5 we present a number of facts concerning the double-
negation topology in RT(A,A]). Many of the properties concerning the
double-negation topology in standard realizability toposes also hold for the
relative realizability topos RT(A,A]). We also define subcategories of assem-
blies and modest sets over A with respect to A] and show that they have the
same relationships with each other and with RT(A,A]) as the correspond-
ing categories of assemblies and modest sets have for standard realizability

209
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toposes. Furthermore, we show that the interior operation has a particu-
larly simple description for ¬¬-separated objects and we present a concrete
example in which the interior operation indeed precisely returns the subset
of computable elements of an object.

In Section 10.6 we show that RT(A,A]) can also be described as the
exact completion of it’s full subcategory of projectives in the same way as
RT(A) can.

10.1 Some Objects and Maps in RT(A,A])

Recall that by Theorem 6.2.3, (∆,Γ): RT(A,A])→ RT(A]) is a localic local
map of toposes. Thus by the discussion in Section 7.2, we have the following
picture:

RT(A,A])

RT(A]) ShjRT(A,A])

Γ
��������

����������
a

?????????

��?????????
∆

88

∇

GG

a∇ ..

∆Γi

WW

i

ff

Γi
mm



10.1 Some Objects and Maps in RT(A,A]) 211

∆ a Γ a ∇,
∆Γi a a a i,
Γia ∼= Γ,
a∇Γi ∼= id ,
Γia∇ ∼= id ,
∆ f+f, lex,
∇ f+f.

In this section we identify the topology j in RT(A,A]). To this end we
first explicate what the subobject classifiers are in RT(A]) and RT(A,A])
(Subsection 10.1.1). Then we identify the topology j (Subsection 10.1.2) and
we describe what the discrete objects are in RT(A,A]) (Subsection 10.1.3).
Moreover, we show how to calculate the action of the interior operation
(Subsection 10.1.4), and we give a concrete treatment in the RT(A,A])
model of the associated discrete object functor (Subsection 10.1.5).

10.1.1 Subobject Classifiers in RT(A]) and RT(A,A])

By Section 5.2.3, the subobject classifier ΩRT(A,A]) in RT(A,A]) is given by

ΩRT(A,A]) = (PA,≈)

with

p, q : PA | p ≈ q def= p ⊃⊂ q = { 〈a, b〉 | a : p ⊃ q and b : q ⊃ p and a, b ∈ A }.

Note that the biimplication is given as in the tripos
UFam(A,A])

r��
Set

underlying

RT(A,A]). We simply write ΩRT(A,A]) = (PA,⊃⊂), and sometimes, when
no confusion can arise, we leave out the subscript on ΩRT(A,A]).

The subobject classifier, ΩRT(A]) in RT(A]) is given by

ΩRT(A,A]) = (PA],≈)

with

p, q : PA] | p ≈ q
def= p ⊃⊂ q = { 〈a, b〉 | a : p ⊃ q and b : q ⊃ p and a, b ∈ A] }.

Note that the biimplication is given as in the tripos
UFam(A])

q
��

Set
underlying

RT(A]), that is, it involves computable realizers from A]. We simply write
ΩRT(A]) = (PA],⊃⊂]), and sometimes, when no confusion can arise, we leave
out the subscript on ΩRT(A]).
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10.1.2 The topology j in RT(A,A])

Let Ω = ΩRT(A,A]) be the subobject classifier in RT(A,A]). By Section 5.5,
the Lawvere-Tierney topology j : Ω→ Ω classifies the strict predicate J on
Ω given by

J(p) def= ∇Γ(p) =
⋃

ϕ∈P A

(
ϕ ∧

(
ϕ ∩A] ⊃ p ∩A])

)
.

Thus by Section 5.2.3 the classifying map j : Ω → Ω is represented by the
functional relation

p, q : Ω | j(p, q) def= (p ⊃⊂ p) ∧ J(p) ⊃⊂ q
∼= J(p) ⊃⊂ q.

10.1.3 Discrete Objects in RT(A,A])

Since the functor ∆: RT(A]) → RT(A,A]) really is an identity functor,
an object in RT(A,A]) is discrete iff it is isomorphic to an object from
RT(A,A]). In other words, the discrete objects in RT(A,A]) are the replete
image of RT(A]) in RT(A,A]).

10.1.4 Interior in RT(A,A])

By the proof of Proposition 7.3.39, the interior of an object X ∈ RT(A,A])
is calculated as the image of the counit εX : ∆ΓiaX → X of ∆Γi a a. Since
Γia ∼= Γ, the is equivalent to taking the image of the counit εX : ∆ΓX → X
of ∆ a Γ.

Let (X,≈X) be an object of RT(A,A]). As explained on Page 132 the
counit at (X,≈X) of ∆ a Γ

ε(X,≈X) : ∆Γ(X,≈X)→ (X,≈X)

is represented by the functional relation

E(x, x′) = (x ≈X x) ∩A] ∧ (x ≈X x′).

Thus the interior of (X,≈X) (the image of ε(X,≈)) is

(X,≈X)◦ = (X,≈′),

where

x, x′ : X | x ≈′X x′
def= x ≈X x′ ∧ ∃x0 : X. (x0 ≈X x0) ∩A] ∧ (x0 ≈X x).
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Remark 10.1.1. Let us attempt to give an intuitive reading of the interior
operation. We think of an object (X,≈X) in RT(A,A]) as a set X with
a partial equivalence relation ≈X on it. Thus “elements” of (X,≈X) are
really to be thought of as equivalence classes of X w.r.t. ≈X . The par-
tial equivalence relation is given via continuous realizers, in the sense that
x ≈X x′ is a subset of A. We can say that an x0 ∈ X is “computable”
if (x0 ≈X x0) ∩ A] 6= ∅ and extend this to say that an element of (X,≈),
i.e., an equivalence class, is “computable” if the equivalence class contains
a computable representative. Thinking in this way, we read the interior of
an object (X,≈) as the subset of (X,≈) consisting of all the computable
elements (those equivalence classes that have a computable representative
x0). In Example 10.5.19 we give a concrete example where it is absolutely
clear that the interior really does give the computable elements.

Continuing in this intuitive style, we also note the difference between
∆Γ(X,≈X) and the interior (X,≈X)◦. The interior (X,≈X)◦ is a quotient of
∆Γ(X,≈X). indeed we can think of ∆Γ(X,≈X) as a refinement of (X,≈X)
in which the equivalence classes of (X,≈X) are possibly split up into several
equivalence classes since the partial equivalence relation ≈X ∩A] is finer
(makes more distinctions) than the partial equivalence relation ≈X . The
idea is that computably we cannot make as many identifications as we can
continuously.

Proposition 10.1.2. The subobject classifier Ω in RT(A,A]) is open.

Proof. The interior of Ω is (Ω)◦ = (PA,≈′), where

p, q : PA | p ≈′ q def= p ⊃⊂ q ∧ ∃r : PA. (r ⊃⊂ r) ∩A] ∧ (r ⊃⊂ p).

But clearly ≈′ is isomorphic to ⊃⊂ in UFam(A,A])P A×P A, that is,

p, q : PA | p ≈′ q a` p ⊃⊂ q

holds in the internal logic of the tripos q underlying RT(A,A]). The reason
is that we can just take r to be p — note that (r ⊃⊂ r) ∩ A] is trivially
realized by the identity function. Thus (Ω)◦ ∼= Ω.

The fact that Ω is open can be used to show that the open objects are not
closed under finite limits in RT(A,A]):

Proposition 10.1.3. The open objects in RT(A,A]) are not closed under
finite limits in RT(A,A]).
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Proof. Suppose for a contradiction that the open objects are closed under
finite limits. Let X be an open object and let U � X be any subobject of
X. Consider the following pullback diagram

U //
��

��

1

>
��

X χU
// ΩRT(A,A])

with χU the classifying map of U � X. Then by the assumption that the
open objects are closed under finite limits we get that U is open, since X,
1 and Ω (by the previous proposition) are all open. Thus we conclude that
any subobject U of an open object X is open, which is clearly not the case
(think of X = 1), and hence we have a contradiction.

Remark 10.1.4. From the above proposition we see that in general we
cannot expect the interior operator to commute with pullbacks along open
objects. Therefore we cannot in general enlarge the collection of types for
the modal logic for local maps from the discrete objects to the open objects.

10.1.5 The Associated Discrete Object Functor in RT(A,A])

The functor Γ is of course the associated discrete object functor. For ex-
planatory purposes we now work out the abstract construction of the associ-
ated discrete object functor (see the proof of Theorem 7.3.31) in RT(A,A]).
The hope is that this will give the reader a more intuitive understanding of
the abstract construction of the associated discrete object functor.

Let (X,≈X) be an object of RT(A,A]). Consider the diagram for the
associated discrete object functor’s action on (X,≈X):

(K(e)◦)◦ // // K(e)◦

�� ��
(X,E ′X) // m //

(e)◦

����yyyyrrrrrrrrrr
(X,EX) // //

e
����

(X, ∃δX (T ))

˜(X,≈X)◦ h
// // (X,≈′X) // // (X,≈X),

where
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• (X, ∃δX (T )) is an object of RT(A]) (i.e., is discrete), where ∃δX (T ) is
the constant equality:

∃δX (T )(x, x′) =

{
A if x = x′,

∅ otherwise.

• EX is given as

EX(x, x′) =

{
x ≈X x′ if x = x′,

∅ otherwise.

• e is represented by the (functional) relation ≈X .

• (X,≈′X) is the interior of X (see above).

• (X,E ′X) is the interior of X, with E ′X given as

EX(x, x′) =

{
(x ≈X x′) ∩A] if x = x′ and (x ≈X x′) ∩A] 6= ∅,
∅ otherwise.

Note that (X,E ′X) is an object of RT(A]) since the equality predicate
is PA]-valued — this phenomenon is an instance of the fact that an
open subobject of a discrete object, in this case (X, ∃δX (T )), is again
discrete.

• e0 is represented by the functional relation E0 given by

E0(x, x′) = E ′X(x, x) ∧ x ≈X x′.

• K(e)◦ is represented by a strict predicate on (X,E ′X)× (X,E ′X) given
by

K(e)◦(x, x
′) = E ′X(x) ∧ E ′X(x′) ∧ x ≈X x′.

• (K(e)◦)◦ is represented by a strict predicate on (X,E ′X) × (X,E ′X)
given by

(K(e)◦)
◦(x, x′) = E ′X(x) ∧ E ′X(x′) ∧ (x ≈X x′) ∩A]

∼= (x ≈X x′) ∩A]

(the isomorphism being in UFam(A,A])X×X).
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• ˜(X,≈X)◦ is therefore isomorphic to Γ(X,≈X) = (X,Γ ≈X), where,
recall, (Γ ≈X)(x, x′) = (x ≈X x′) ∩A].

Thus we have seen concretely how the associated discrete object functor
applied to an object (X,≈X) indeed gives Γ(X,≈X).

It was partly via concrete calculations such as these that I found the
abstract construction of the associated discrete object functor in the proof
of Theorem 7.3.31.

10.2 Interpretation of the Modal Logic in RT(A])
and RT(A,A])

By the results in Chapter 9, the fibration
Pred

��
RT(A,A])

obtained by change-of-

base as in

Pred //

��

Sub(RT(A,A]))

��
RT(A])

� �

∆
// RT(A,A])

is a local tripos which is a model of the modal logic for local maps described
in Section 8.3.

Thus in this model of the modal logic, types and terms are interpreted
in the standard way as objects and morphisms in RT(A,A]). A context
Γ = x1 : σ1, . . . , xn : σn is interpreted in the standard way as an object
I = X1 × · · · ×Xn in RT(A]), with Xi the object interpreting σi. Formulas
Γ ` ϕ : Prop in context Γ are interpreted as subobjects in E of ∆I = I
(with I the interpretation of Γ). As explained in Section 5.2.3, subobjects
in RT(A,A]) are equivalent to strict and extensional predicates in the tripos
UFam(A,A])

r��
Set

underlying RT(A,A]). In other words, if (I,≈I) is an object of

RT(A]) (a context), then a predicate ϕ in Pred(I,≈I) is a strict, extensional
predicate ϕ : I → PA; strict in the sense that

i : I | ϕ(i) ` i ≈I i (10.1)

holds in the logic of tripos r and extensional in the sense that

i, i′ : I | (i ≈I i′) ∧ ϕ(i) ` ϕ(i′) (10.2)
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holds in the logic of tripos r. We recall that (10.1) means that

∃a ∈ A]. ∀i ∈ I. ∀b ∈ ϕ(i). a · b ∈ (i ≈I i)

and that (10.2) means that

∃a ∈ A]. ∀i, i′ ∈ I. ∀b ∈ (i ≈I i′). ∀c ∈ ϕ(i). a · 〈b, c〉 ∈ ϕ(i′).

The atomic predicates >, ⊥, logical connectives ∧, ⊃, ∨, and quantifiers
∃ and ∀ are all interpreted in as in the logic of RT(A,A]) (see Section 5.2.5).

Consider a formula in context Γ ` ϕ : Prop with Γ interpreted by an
object (I,≈I) ∈ RT(A]) and ϕ interpreted as a strict, extensional predicate
ϕ : I → PA on (I,≈I). By Propositions 8.3.4 and 8.3.3, the interpretation
of the formula Γ ` ]ϕ : Prop is the strict predicate ]ϕ given by

(]ϕ)(i) = ϕ(i) ∩A].

Likewise the interpretation of the formula Γ ` [ϕ : Prop is, by Proposi-
tion 8.3.4 given by the closure operation associated with the topology j. By
Subsection 10.1.2 above, Γ ` [ϕ : Prop is thus explicitly interpreted as the
strict predicate [ϕ given by

([ϕ)(i) =
⋃

q∈P A

(
q ∧

(
q ∩A] ⊃ ϕ(i) ∩A])

)
.

As explained in Section 9.1, the internal locale Λ = Γ(ΩRT(A,A])) =
(PA,≈′) with

p, q : PA | p ≈′ q def= (p ⊃⊂ q) ∩A]

= { 〈a, b〉 ∈ A] | ∀c ∈ p. a · c ∈ q and ∀c ∈ q. b · c ∈ p }

is a generic object for the tripos
Pred

��
RT(A,A])

.

Summarizing we have that, for a type (objects) (J,≈J) in RT(A]) and
for strict and extensional predicates ϕ : J → PA and ψ : J → PA the
propositional operations are interpreted as follows (on the right hand side

of the equations we use the operations of the tripos
UFam(A,A])

r��
Set

— we recall

what they are by also giving the explicit set-theoretic definitions in terms
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of realizers).

>(j) = (j ≈J j)
(ϕ ∧ ψ)(j) = ϕ(j) ∧ ψ(j)

= { 〈a, b〉 | a ∈ ϕ(j) and b ∈ ψ(j) }
⊥(j) = ∅

(ϕ ∨ ψ)(j) = ϕ(j) ∨ ψ(j)
= { 〈K, a〉 | a ∈ ϕ(i) } ∪ { 〈KI, b〉 | b ∈ ϕ(i) }

(ϕ ⊃ ψ)(j) = (j ≈J j) ∧ (ϕ(j) ⊃ ψ(j))
= { 〈a, b〉 | a ∈ (j ≈J j) and b ∈ A and ∀c ∈ ϕ(j). b · c ∈ ψ(j) }

(]ϕ)(j) = ϕ(i) ∩A]

([ϕ)(j) =
⋃

q∈P A

(
q ∧

(
q ∩A] ⊃ ϕ(i) ∩A])

)
.

Given a strict and extensional predicate ϕ on (I,≈I)× (J,≈J) we have that

(∃j : (J,≈J). ϕ)(i) = ∃j : J. (j ≈J j) ∧ ϕ(i, j)

=
⋃
j∈J
{ 〈a, b〉 | a ∈ (j ≈J j) and b ∈ ϕ(i, j) }

(∀j : (J,≈J). ϕ)(i) = ∀j : J. (j ≈J j) ⊃ ϕ(i)

=
⋂
j∈J
{ a ∈ A | ∀b ∈ (j ≈J j). a · b ∈ ϕ(i) },

Finally, a closed predicate ϕ : 1 → PA is valid iff it contains a realizer in
A], so a (open) predicate ϕ : J → PA on (J,≈J) is valid iff (∀j : (J,≈J). ϕ)
contains a realizer in A].

10.3 On the Relationship Between the Logic of
RT(A]) and RT(A,A])

The results in Chapter 8 concerning the preservation of the interpretation
of stable formulas (Theorem 8.2.11) and the results concerning Church’s
Thesis all apply in our case of RT(A]) and RT(A,A]). It is natural to ask
if in fact a larger fragment of logic is preserved by the inclusion ∆ of the
discrete objects RT(A]) into RT(A,A]). In this section we prove a negative
result: we show that the geometric morphism (∆,Γ): RT(A,A])→ RT(A])
is not open. Recall that if a geometric morphism is open, then the inverse
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image functor (the inclusion ∆: RT(A])→ RT(A,A]) in this case) preserves
first-order logic. See [MM92, Section IX.6] and [Joh80] for more on open
maps of toposes.

Theorem 10.3.1. The geometric morphism (∆,Γ): RT(A,A]) → RT(A])
is not open.

Proof. Suppose for a contradiction that (∆,Γ) is open so that ∆: RT(A])→
RT(A,A]) preserves first-order logic. Since the functor RT(A,A])→ RT(A),
call it Q, from Section 6.1 is logical we then have that the composite functor

Q∆: RT(A])→ RT(A)

preserves first-order logic. Recall that ∆ preserves the natural numbers ob-
ject N in RT(A]) as an inverse image functor. Moreover, Q also preserves
the natural numbers object in RT(A,A]) since Q is logical and thus pre-
serves finite limits and finite colimits (this is enough to preserve the natural
numbers object by Freyd’s characterization of it, see [Joh77, Theorem 6.14]).
Hence Q∆ preserves the natural numbers object of RT(A]) and thus Q∆
preserves first-order arithmetic.

Now let A be the graph model PCA P from Example 3.1.15 and let A]

be the r.e. sub-model RE of P from Example 3.1.16. It is well-known that
RT(RE ) satisfies all instances of the arithmetical form of Church’s Thesis
CT0 (see Definition 8.3.7 in Section 8.3.3). So by applying Q∆ we also
get that RT(P) satisfies all instances of CT0. But since it is also known
that the valid first-order arithmetical sentences in RT(P) are exactly all the
classically true sentences we have a contradiction since CT0 is not valid
classically [TvD88, Section 4.3.3].

The idea of using the logical functor Q in this proof is due to Jaap
van Oosten.

10.4 On the Relation to RT(A)

In Section 6.1 we explained that RT(A) is the filter-quotient of RT(A,A]) by
the filter of subobjects of 1 consisting of all those subobjects of 1 correspond-
ing to inhabited subsets of A. We now remark that this (external) filter of
subobjects of 1 actually arises in the standard way [Joh77, Page 319] from
the internal filter on the internal locale Λ = Γ(ΩRT(A,A])) given (internally)
by

F = {x ∈ Λ | x 6= ⊥Λ }.



220 More on the Relative Realizability Topos RT(A,A])

(We sketch below how one proves this claim.) This means that in the logic
of RT(A]) we can describe

• the construction of RT(A,A]): by the tripos-to-topos construction on
the internal locale Λ

• the construction of RT(A): by the tripos-to-topos construction applied
to the internal locale Λ but with entailment of ϕ,ψ : X → Λ redefined
to mean (∀x : X. ϕ(x) ⊃ ψ(x)) ∈ F , where ∀ is interpreted by the
internal meet of Λ (see Section 5.1.3)

Whether these observations are of any practical import remains to be seen
since we can also describe all three realizability toposes in the logic of the

tripos
UFam(A,A])

r��
Set

which may be simpler to calculate with.

We now show that F is an internal filter. It of course suffices to show
that

∀x, y : Λ. (x 6= ⊥Λ) ∧ (y 6= ⊥Λ) ⊃ (x ∧Λ y) 6= ⊥Λ (10.3)

is valid in the internal logic of RT(A]). The intuitive argument is that Λ

is the internal poset reflection of the fibre over 1 in
UFam(A,A])

r��
Set

, and in

UFam(A,A])1 we of course have that if p and q are not empty (not the
least element), then p ∧ q is also not empty. This argument can be made
precise as follows.

We first observe that the subobject classifier Ω = (PA,⊃⊂) in RT(A,A])
is a quotient of ∇r(PA):

∇r(PA)

⊃⊂
����

Ω

(this is just as for standard realizability toposes [Hyl82]). Further, the partial
ordering ≤Ω on Ω is induced by the subobject R � ∇r(PA) × ∇r(PA)
represented by the strict relation

α, β : PA | R(α, β) = α ⊃ β.

Now, since Γ preserves both limits and colimits (as a right and left adjoint)
we get that Λ = Γ(Ω) internally in RT(A,A]) is a quotient of Γ(∇r(PA)),
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which by Theorem 6.2.6 is isomorphic to ∇q(PA). In a diagram, we have

∇q(PA)

⊃⊂]
����

Λ,

where the quotient morphism is represented by α ⊃⊂] β = (α ⊃⊂ β) ∩ A].
Further we get that that the partial ordering on Λ is represented by the
strict relation ΓR given by

α, β : PA | ΓR(α, β) = (α ⊃ β) ∩A],

where ⊃ is the implication in the tripos underlying RT(A,A]). The internal
conjunction map ∧Λ on Λ is induced by the conjunction map

∧∇q(P A) : ∇q(PA)×∇q(PA)→ ∇q(PA)

represented by the functional relation

α, β : PA | |α ∧∇q(P A) β|
def= α ∧ β,

where ∧ is the conjunction in the tripos underlying RT(A,A]). To show
that (10.3) is valid in RT(A]) it then suffices to show that

∀α, β : ∇q(PA). ¬(ΓR(α, ∅)) ∧ ¬(ΓR(β, ∅)) ⊃ ¬(ΓR(α ∧∇q(P A) β, ∅))

is valid in RT(A]). Unfolding the definitions, we see that it suffices to show
that

∀α, β : PA. (¬(ΓR(α, ∅)) ∧ (¬(ΓR(β, ∅))) ⊃ (¬(ΓR(α ∧∇q(P A) β)))

is valid in the tripos q underlying RT(A]). But this is clearly the case, the
identity λx. x is a realizer — note that the point is, as already mentioned
above, that if α and β are both non-empty, then also α ∧∇q(P A) β is non-
empty.

10.5 The Double-Negation Topology in RT(A,A])

In this section we present a number of definitions and facts about the ¬¬-
topology in RT(A,A]). The results are as one would expect, based on the
experience with standard realizability toposes over PCA’s. The proofs of
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the results are essentially the same as for a standard realizability topos over
a PCA, and we therefore do not include them. See, e.g., [HJP80, Pit81,
Hyl82, RR90, Car95, Jac99] for the proofs for RT(A). In Subsection 10.5.1
we describe the interior operation explicitly on ¬¬-separated objects. Fur-
thermore, we give a concrete example of the interior operation which serves
to show that we indeed can think of the interior operation as carving out
the computable elements of an object, cf. Remark 10.1.1.

Convention 10.5.1. Unless otherwise mentioned, the topology referred to
in this section is the ¬¬-topology.

Recall that RT(A,A]) is obtained from the tripos
UFam(A,A])

r��
Set

, see Chap-

ter 6. Consider the geometric morphism (Γr,∇r) : Set → RT(A,A]) from
Section 6.2. Recall that Γr(I,≈) = Dom∼/∼′ where ∼′ is the least equiva-
lence relation on Dom∼ containing ∼, with i ∼ i′ iff |i ≈ i′| 6= ∅. Further,
recall that ∇r(X) = (X,≈X) where

|x ≈X x′| =

{
A if x = x′,
∅ otherwise.

and that ∇r(X) ∼= (X,≈′X) where

|x ≈′X x′| =

{
{K} if x = x′,
∅ otherwise.

Lemma 10.5.2. The functor ∇ : Set→ RT(A,A]) preserves the initial ob-
ject.

It follows, as for the Effective Topos [Hyl82], that Set is equivalent to
the category of sheaves for the double negation topology ¬¬ in RT(A,A]).

Let (ϕ : I → PA) ∈ SPred(RT(A,A])) be a strict predicate on (I,≈) ∈
RT(A,A]). Then

¬¬ϕ = i 7→

{
E I(i) if ϕ(i) 6= ∅,
∅ otherwise.

Thus ϕ is closed iff

∃a ∈ A]. ∀i ∈ I.
(
ϕ(i) 6= ∅ =⇒ ∀b ∈ E I(i). a(b) ∈ ϕ(i)

)
.

Note that ϕ is dense if, for each i ∈ I,

E I(i) 6= ∅ =⇒ ϕ(i) 6= ∅.
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Lemma 10.5.3. The ¬¬-closed subobjects of (I,≈) ∈ RT(A,A]) corre-
spond to subsets of Γr(I,≈). More precisely, there is a change-of-base situ-
ation

ClSub¬¬(RT(A,A])) //

��

Sub(Set)

��
RT(A,A])

Γr

// Set.

Definition 10.5.4. An object (I,≈I) ∈ RT(A,A]) is canonically sepa-
rated if

|i ≈I i′| 6= ∅ =⇒ i = i′ and E I(i) 6= ∅

An object (I,≈I) ∈ RT(A,A]) is canonically modest if it is canonically
separated and, moreover,

E I(i) ∩ E I(i′) 6= ∅ =⇒ i = i′.

We often say that an object is canonically separated (or modest) if it iso-
morphic to a canonically separated (or modest) object.

Note that ∇r(X) is canonically separated, for all X ∈ Set.

Lemma 10.5.5. In the topos RT(A,A]) the following hold:

1. Every subobject of a canonically separated object is canonically sepa-
rated.

2. Every subobject of a canonically modest object is canonically modest.

3. If R ∈ SPred((I,≈)×(I,≈)) is a closed equivalence relation on (I,≈),
then (I,R) in the quotient (I,≈)� (I,R) is canonically separated, and
it is modest if (I,≈) is. Conversely, if (I,R) is canonically separated,
then R is closed.

Definition 10.5.6. Define Asm(A,A]) to be the subcategory of Asm(A)
with objects all the objects of Asm(A) and with morphisms those morphism
of Asm(A) that are tracked by a realizer from A]. That is, (X,EX) is an
object of Asm(A,A]) if X is a set and EX : X → PA is a function such that
EX(x) 6= ∅, for all x ∈ X. Further, f : (X,EX)→ (Y,EY ) is in Asm(A,A])
iff

x : X | EX(x) ` EY (f(x))

is valid in tripos r.
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The adjunction

RT(A,A])
Γr

⊥
//
Set

∇r

oo

restricts to an adjunction

Asm(A,A])
Γr

⊥
//
Set

∇r

oo

where ∇(X) = (X,EX), with EX(x) = A, and where Γr(X,EX) = X. We
repeat that Γr is not isomorphic to the global sections functor

HomAsm(A,A])(1,−).

Indeed HomAsm(A,A])(1, (X,EX)) is isomorphic to the underlying set of
Γ(X,EX), i.e., the set of elements x in X for which EX(x) ∩A] 6= ∅.

Theorem 10.5.7. The category Asm(A,A]) of assemblies is equivalent to
the full subcategory of RT(A,A]) on the canonically separated objects. It is
also equivalent to the full subcategory of separated objects.

Definition 10.5.8. The category Mod(A,A]) of modest sets over A
with respect to A] is defined to be the full subcategory of Asm(A,A])
on the modest objects, i.e., those (X,EX) satisfying that EX(x)∩EX(x′) 6=
∅ =⇒ x = x′, for all x, x′ ∈ X.

Definition 10.5.9. The category PER(A,A]) of partial equivalence re-
lations over A with respect to A] is the category with

objects partial equivalence relations on A

morphisms R→ S are equivalence classes of realizers b ∈ A] satisfying

a R a′ =⇒ b(a) S b(a′)

with two such b and b′ equivalent iff

a R a =⇒ b(a) S b′(a).

Proposition 10.5.10. The categories PER(A,A]) and Mod(A,A]) are
equivalent.
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The category PER(A,A]) is a small category and can be seen as an
internal category in Asm(A,A]) whose externalization consists of families of
partial equivalence relations with morphisms between such families tracked
uniformly by computable realizers. The externalization is complete as a
fibration (i.e., has coproducts and fibred finite limits) and thus PER(A,A])
is a small internally complete category in Asm(A,A]). The results and their
proofs are analogous to those for PER(A) and Asm(A), see, e.g., [Jac99],
and we do not include them here.

Definition 10.5.11. We define the following two objects of realizers in
RT(A,A]):

A = (A,≈A) and A] = (A],≈A])

where |a ≈A a′| = {a} ∩ {a′} and |a ≈A] a
′| = {a} ∩ {a′}.

Note that these two objects are both modest. We often simply write
them as (A,EA) with EA(a) = {a} and (A],EA]) with EA](a) = {a}.

Proposition 10.5.12. The category PER(A,A]) is equivalent to the full
subcategory of RT(A,A]) on the separated subquotients (X,EX) of (closed)
subobjects (Y,≈) of the object of realizers A.

(Y,≈) // //

����

(A,EA)

(X,EX)

Lemma 10.5.13. ∇ : Set→ RT(A,A]) preserves epimorphism.

Proposition 10.5.14. The category of Mod(A,A]) is a reflective subcat-
egory of Asm(A,A]), which again is a reflective subcategory of RT(A,A]).
Both of the reflectors preserve products, so both inclusions form exponential
ideals.

10.5.1 Interior and ¬¬-separated Objects

For ¬¬-separated objects the interior is nothing but the composite of func-
tors ∆ and Γ:

Proposition 10.5.15. Let (X,≈X) ∈ RT(A,A]) be ¬¬-separated. Then
the interior (X,≈X)◦ of (X,≈X) is isomorphic to ∆Γ(X,≈X).
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Proof. Recall from Section 10.1.4 that the interior of (X,≈X) is obtained by
taking the image of the counit ∆Γ(X,≈X)→ (X,≈X) of ∆ a Γ. Therefore
it clearly suffices to show that this counit is monic. Recall that the counit
is represented by the functional relation

E(x, x′) = (x ≈X x) ∩A] ∧ (x ≈X x′).

Using that we (by Theorem 10.5.7) may assume that (X,≈X) is canonically
separated, it is easy to see that E represents a monomorphism, i.e.,

x1, x2, x : X | E(x1, x) ∧ E(x2, x) ` (x1 ≈X x2) ∩A]

is valid in the logic of the tripos r underlying RT(A,A]) (it is realized by
the A]-realizer λx. π(π(x)).)

Using the above proposition we now embark on developing a concrete exam-
ple (see Example 10.5.19 below), which shows that the interior of an object
X in RT(A,A]) really does consist of the computable elements of X, as
hinted at in Remark 10.1.1. To this end we first establish a couple of simple
facts concerning exponentials.

Recall the following standard proposition concerning exponentials in
cartesian closed categories related by an adjunction.

Proposition 10.5.16. Let C and D be cartesian categories, with D closed,
and let

C

F

⊥
//
D

G
oo

be an adjunction with F full and faithful and product-preserving. Then XY

in C is isomorphic to G(FXFY ).

Proof.

C(Z,G(FY FX)) ∼= D(FZ,FY FX)
∼= D(FZ × FX,FY )
∼= D(F (Z ×X), FY )
∼= C(Z ×X,Y ).

Corollary 10.5.17. For objects X,Y ∈ RT(A]), the exponential Y X in
RT(A]) is isomorphic to Γ((∆Y )(∆X)).
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Corollary 10.5.18. For ¬¬-separated objects X,Y ∈ RT(A]), the expo-
nential XY in RT(A]) is isomorphic to the interior of the exponential of X
and Y in RT(A,A]).

Proof. Formally the proposition says that ∆(XY ) ∼= ((∆X)(∆Y ))◦ in the
topos RT(A,A]). This follows by Corollary 10.5.17 and Proposition 10.5.15.

Example 10.5.19. The point of this example is to demonstrate that, in a
concrete case, the interior of an object indeed consists of the computable
elements, cf. Remark 10.1.1.

Let A be the graph model PCA P from Example 3.1.15 and let A] be
the r.e. sub-model RE of P from Example 3.1.16.

The natural numbers objectN in RT(RE ) is the modest set (N,EN ) with
EN (n) = {{n}}. This is then also the natural numbers object in RT(P,RE )
and in RT(P).

The exponential NN of the natural numbers object N in RT(RE ) is the
modest set (X,EX) with underlying set X the set of recursive functions from
the natural numbers to the natural numbers, and with each EX(f) the set
of elements of RE tracking f .

The exponential NN in RT(P,RE ) is the same as in RT(P), namely
(NN ,E ) with NN the exponential in Set, i.e., the set of all set-theoretic
functions from the natural numbers to the natural numbers, and with E (f)
the set of elements of P tracking f .

By Corollary 10.5.18 we see that NN in RT(RE ) is isomorphic to the
interior of NN in RT(P). Thus we see that the interior indeed carves out
the computable elements of NN .

10.6 RT(A,A]) as an Exact Completion

In this section we show that RT(A,A]) can be described as an exact com-
pletion since regular projectives cover. The development is analogous to
the one for RT(A) in [RR90] and the proofs of the results are essentially
the same as for RT(A) and we therefore leave out most of them. We as-
sume familiarity with the exact and the regular completion of a left exact
category [Car95, CV98]).

Definition 10.6.1. We define PartAsm(A,A]), the category of parti-
tioned assemblies over A with respect to A], to be the category with
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objects surjective functions σ : X � I in Set, where I ⊆ A, and with mor-
phisms from σ : X � I to τ : Y � J functions from X to Y in Set for which
there exists an A]-definable function g such that

X
f //

σ
����

Y

τ
����

I g
// J

commutes in Set.

Note that PartAsm(A,A]) is a full subcategory of Asm(A,A]), so the
image of a partitioned assembly under the inclusion functor

PartAsm(A,A])
� � // Asm(A,A])

� � // RT(A,A])

is a separated object.

Proposition 10.6.2. An object X of RT(A,A]) is projective iff it is iso-
morphic to one of the form (P,≈P ) where, for any p, p′ ∈ P , |p ≈P p′|
contains at most one element, and where if |p ≈P p| = {a}, then also
|p ≈P p′| = {a} for any p′ such that |p ≈P p′| is non-empty.

The proof of the proposition proceeds in the appendix of [RR90, Ap-
pendix] and uses the following lemma.

Lemma 10.6.3. Any separated object (X,≈X) in RT(A,A]) is covered by
a projective (Q,≈Q) which is a subobject of (X,≈X) × (A,≈A), as in the
diagram

(Q,≈Q) // //

����

(X,≈X)× (A,≈A)

(X,≈X).

Proof. By Theorem 10.5.7, we may assume that (X,≈X) is canonically sep-
arated. Then define object (Q,≈Q) where Q = { (x, a) | x ∈ X and a ∈
|x ≈X x| } and

|(x, a) ≈Q (x′, a′)| =

{
{a} if x = x′ and a = a′,
∅ otherwise.

Then we have the required diagram.
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Corollary 10.6.4. RT(A,A]) has enough projectives: Let X be an arbitrary
object of RT(A,A]). Then there exists a projective P ∈ RT(A,A]), which
covers X. ( i.e., there is a cover P � X).

Proof. By the previous lemma, using that any object in RT(A,A]) is covered
by a separated object.

Corollary 10.6.5. The full subcategory of RT(A,A]) on the projective ob-
jects is closed under finite limits.

Proposition 10.6.6. The full subcategory of RT(A,A]) on the projective
objects is equivalent to the category PartAsm(A) of partitioned assemblies.

Theorem 10.6.7.

1. The category Asm(A,A]) is equivalent to (PartAsm(A,A]) )reg/lex.

2. The category RT(A,A]) is equivalent to (PartAsm(A,A]) )ex/lex and
to (Asm(A,A]) )ex/reg.

Corollary 10.6.8. The following objects in RT(A,A]) are projective:

1. The objects of realizers (A,EA) and (A],EA]).

2. The terminal object 1.

3. Any sheaf, i.e., any object in the image of ∇ : Set→ RT(A,A]).

Since all objects in Set are projective, we can rephrase item 3 in the above
corollary as “the functor ∇ : Set→ RT(A,A]) preserves projectives.”

Proposition 10.6.9. An object X in RT(A,A]) is projective iff it is inter-
nally projective.

Proof. Since 1 is projective, if X is internally projective then X is projective.
The other direction follows from the proof of the characterization of the
projectives, see [RR90, Appendix].

We write |X| for the cardinality of a set X. The cardinality of a parti-
tioned assembly (X,EX) is defined to be the cardinality of X.

The following is an easy generalization of a recent observation of Jaap
van Oosten, who showed that the countable partitioned assemblies generate
the effective topos.

Proposition 10.6.10. The partitioned assemblies of cardinality less than
or equal to |A]| generate RT(A,A]).
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Proof. Since every object is covered by a projective and the partitioned
assemblies are the projectives, it suffices to show that, for any pair of mor-
phisms f, g : X → Y in RT(A,A]) such that f 6= g and where X is a parti-
tioned assembly (|X|,EX), there exists a partitioned assembly P with car-
dinality less than |A]| and a map i : P → X such that f ◦ i 6= g ◦ i. Suppose
given such X, Y , f , and g and write F and G for functional relations rep-
resenting f and g, respectively. Then f 6= g means that

A] ∩

 ⋂
x∈|X|,y∈|Y |

(
F (x, y) ⊃ G(x, y)

) 6= ∅.
Thus for each a ∈ A], there exists a xa ∈ |X| such that a /∈

⋂
y∈|Y |

(
F (x, y) ⊃

G(x, y)
)
. Choose such an xa, for each a ∈ A], and let |P | be the set of all

such chosen xa’s. Let EP (x) = EX(x). Then P = (|P |,EP ) is a partitioned
assembly with cardinality less than or equal to |A]| and

A] ∩

 ⋂
x∈|P |,y∈|Y |

(
F (x, y) ⊃ G(x, y)

) 6= ∅.
Thus letting i : P → X be the obvious inclusion map, we have that f◦i 6= g◦i,
as required.

10.7 Logical Principles

In this section we consider the question of which of the logical principles
discussed in constructive mathematics [TvD88] are valid.

Recall that in any PCA, one can represent the natural numbers, see,
e.g., [Lon94, Section 1.1.3, Page 35] for a convenient representation in terms
of Curry numerals. Using this representation one finds that any realizability
topos has a natural numbers object N , which is a modest set with underlying
set the ordinary set of natural numbers and with each natural number n
realized by the set {n}, where n is the representation of n in the PCA.
See, e.g., [Lon94, Chapter 1] for more details. Recall that the inclusion
∆: RT(A]) → RT(A,A]) preserves natural numbers object, as the inverse
image of a geometric morphism. Therefore, the natural numbers object N
in RT(A]), represented as just described, is also a natural numbers object
in RT(A,A]).

Proposition 10.7.1. The internal axiom of choice

AC(N,X) ∀n : N. ∃x : X. ϕ(n, x) ⊃ ∃f : XN . ∀n : N. ϕ(n, f(n))
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(for ϕ� N ×X any subobject of N ×X) is valid in RT(A,A]).

Proof. Observe that N is a partitioned assembly. Therefore, by Proposi-
tion 10.6.6, N is projective and thus, by Proposition 10.6.9, also internally
projective, and hence AC(N,X) is valid. The proof can carried out explicitly
in the same manner as in [Hyl82, Section 9].

Proposition 10.7.2. Markov’s principle

MP ∀R : PN.
(
(∀n. R(n) ∨ ¬R(n)) ∧ ¬¬(∃n. R(n))

)
⊃ ∃n. R(n)

is valid in the internal logic of RT(A,A]).

Proof. The proof is as in Phoa [Pho93, Page 90] (Phoa gives the proof for
a schema, with no quantification over R, but the same proof works in our
case).

Proposition 10.7.3. The uniformity principle

UP ∀ϕ
(
∀X : PN. ∃n : N. ϕ(X,n) ⊃ ∃n : N. ∀X : PN. ϕ(X,n)

)
is valid in the internal logic of RT(A,A]).

Proof. The proof is as in [Hyl82, Section 15] (after noting that also Propo-
sition 14.3 in [Hyl82] carries over to RT(A,A])).

Proposition 10.7.4. The arithmetical form of Church’s thesis, CT0 (see
Definition 8.3.7) is not always valid in the internal logic of RT(A,A]), i.e.,
there exist PCA’s A and A] such that RT(A,A]) does not validate CT0.

Proof. Let A = P and A] = RE , see Examples 3.1.15 and 3.1.16. Sup-
pose RT(A,A]) = RT(P,RE ) satisfies CT0. Then since the logical functor
Q : RT(P,RE ) → RT(P) preserves first-order arithmetic also RT(P) vali-
dates CT0, a contradiction, see the proof of Theorem 10.3.1.





Chapter 11

Conclusion and Further
Research

We have suggested a general notion of realizability based on weakly closed
partial cartesian categories. We have shown that any weakly closed par-
tial cartesian category gives rise to categories of assemblies and modest sets
which model dependent predicate logic. The framework includes both stan-
dard realizability over partial combinatory algebras and also realizability
over typed models, such as the category of algebraic lattices. In particular,
the category Equ of equilogical spaces arises as modest sets over the cate-
gory of algebraic lattices and, therefore, Equ models dependent predicate
logic. As an application of the theory, we have detailed the interpretation
of dependent predicate logic in Equ in concrete terms. Further, we have
characterized when a weakly closed partial cartesian category gives rise to
a topos; it happens just in case the weakly closed partial cartesian category
has a universal object of which all other objects are retracts.

We have initiated a study of the relative realizability topos RT(A,A])
and shown that there is a localic local map of toposes from it to the stan-
dard realizability topos RT(A,A]) over A], for A] a sub partial combinatory
algebra of A. We have provided a complete axiomatization of local maps
of toposes and studied the connection between internal logics of toposes
connected via a local map. Moreover, we have developed a modal logic for
local maps. Special emphasis has been given to localic local maps, which
have been described both in terms of internal locales and in terms of local
triposes. We have shown how the modal logic is interpreted in the relative
realizability model RT(A,A]). An alternative view of RT(A,A]) has been
provided by showing that it arises as an exact completion in much the same
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way as standard realizability toposes does. The double-negation topology in
RT(A,A]) has been studied and the validity of a couple of logical principles
has been established. We have observed that RT(A) arises as a filter-quotient
of RT(A,A]) and that the filter is given internally on that internal locale in
RT(A]) for which RT(A,A]) is the category of RT(A])-valued sheaves.

There are many avenues for further research. We have already mentioned
some of them regarding the general notion of realizability, see Chapters 3
and 4. We now indicate some other directions for further research regarding
relative realizability and local maps.

11.1 Axioms for Local Maps of Toposes

It would be interesting to investigate if our axioms for local maps of toposes
could be generalized to local maps of pretoposes. This seems plausible since
our proofs mostly use elementary exactness properties and elementary prop-
erties of sheaves which should also hold for closure operators on pretoposes.
Naturally, one would then also like to know how the results concerning
logic and local maps generalizes to, say, Heyting pretoposes. Models could
probably be found by considering realizability over WCPC-categories with
morphisms definable via simply-typed lambda calculus.

As already hinted at, we hope that one can also use our axioms for
local maps as a first step towards a suitable axiomatic definition of gros
toposes [Law86]. As a first concrete question one may ask under what extra
axioms (besides those for local maps) does the inclusion of discrete objects
have a left exact left adjoint?

11.2 Logic and Local Maps of Toposes

We have not yet begun to investigate questions of completeness for the
modal logic for local maps. Suppose given a theory in the modal logic. A
good question then is whether we then construct a local map of toposes such
that the resulting model of the modal logic validates exactly the provable
sentences of the given theory ? Of course, the same question may be asked
for localic local maps. Other questions include:

• When does the tripos-to-topos construction applied to
Pred

��
DjE

yield E ?

We know that it does when E is localic over DjE , but it may happen
more generally.
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• What can be said in general about the logic for a local map when the
subobject classifier is open?

11.3 Relative Realizability

Regarding relative realizability, the most pressing next step is to explore
some concrete models and make use of the general results established here.
As mentioned before, Andrej Bauer is currently investigating the model
based on the graph model and its recursive enumerable submodel, see his
forthcoming thesis [Bau00].

Another interesting point of view which we have not discussed before in
this thesis is to consider A1 = (A]� A) as an internal partial combinatory
algebra in Set→. This was suggested to me by Jaap van Oosten. One can
show, as van Oosten pointed out to me, that RT(A,A]) is equivalent to
the topos obtained by the tripos-to-topos construction applied to the Set→-
tripos that results from taking the ¬¬-closed subsets of the internal PCA
A1. The toposes RT(A]) and RT(A) arise in the same way from the internal
PCA’s A0 = (A] → A]) and A2 = (A → A) in Set→. This viewpoint
allows for an alternative proof of the existence of the logical functor from
RT(A,A]) to RT(A). Pursuing this point of view a bit further, I have found
that RT(A,A]) is an open subtopos of the realizability topos constructed
over the internal PCA A1. (A similar result was proved by van Oosten,
who showed that the effective topos is an open subtopos of the realizability
topos constructed over the internal PCA (N → N) in Set→, see [vO97b].)
By taking RT(A,A])’s closed complement one gets a new topos, which may
reasonably be called the modified relative realizability topos since it arises in
the same way as the (standard) modified realizability topos arises [vO97b].
These and other related results will be described in detail elsewhere.





Appendix A

Dependent Type Theory and
Predicate Logic in Equ

In this appendix I present the calculus of dependent type theory and predi-
cate logic and sketch how it is modelled in Equ 'Mod(ALat). In Chap-
ters 3 and 4 we have already proved that Equ models dependent predicate
logic with full dependent subset types and with quotient types (see Theo-
rems 3.6.20, 4.1.3, 4.4.1, 4.2.1, and 4.3.1 which apply to Asm(ALat) and
Section 3.7 which, together with the remarks on Page 90, says that the rel-
evant results for Asm(ALat) also hold for Mod(ALat).) Here we merely
work out what the interpretation is in concrete terms. It is basically straight-
forward to do so using the above mentioned theorems and the explanation
in [Jac99] for how to interpret dependent type theory and predicate logic in
DPL-structures. We have nevertheless chosen to include this treatment for
the following reasons. First, we hope it may make the abstract treatment in
Chapters 3 and 4 more accessible to readers not familiar with [Jac99]. In-
deed it may be helpful to read this appendix in parallel with the treatment
in Chapters 3 and 4. Second, we note that when one wants to use the type
theory and logic to construct objects or prove properties about the model,
one often needs to know what the interpretation is in concrete terms and so
it makes sense to actually work it out.

We describe the syntax of the dependent type theory and predicate logic
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and sketch the interpretation of it in the DPL-structure

UFam(ALat)

))TTTTTTTTTTTTTTT
UFam(Mod(ALat)) P //

��

Mod(ALat)→

coduujjjjjjjjjjjjjjj

Mod(ALat).

In fact, to understand this appendix, it is not necessary to know what a DPL-
structure is; it suffices to know the definitions of the categories Mod(ALat),
UFam(Mod(ALat)) and UFam(ALat) and also the definition of the ac-
tion of the functor {−} : UFam(Mod(ALat)) → Mod(ALat) on objects
(Definitions 3.7.3, 3.6.14 and 4.4.2). To make this appendix self-contained,
however, we repeat those definitions here.

For a set A we write P A for the powerset of A. For A an algebraic
lattice, we do not distinguish notationally between A and its underlying
set. Category Mod(ALat) has as objects triples of the form (X,A,E ) with
X ∈ Set, A ∈ ALat, and E : X → P A a function in Set satisfying that
whenever x 6= x′, we have that E (x)∩E (x′) = ∅. Morphisms f : (X,A,E )→
(Y,B,E ′) are functions f : X → Y in Set for which there exists a g ∈ BA

(i.e., a continuous function from A to B in ALat) such that ∀x ∈ X. ∀a ∈
E (x). g(a) ∈ E ′(f(x)). Composition and identities are as in Set. For such
functions E : X → P A and E ′ : Y → P B we often write E (x) ∧ E ′(y) for
{ 〈a, b〉 | a ∈ E (x) and b ∈ E ′(y) }.

Category UFam(Mod(ALat)) has as objects triples of the form

(I,A, (Xi,Ei)i∈XI )

with I = (XI , AI ,EI) ∈ Mod(ALat) and (Xi, A,Ei) ∈ Mod(ALat), for
all i ∈ XI . A morphism (I, A, (Xi,Ei)i∈XI ) → (J,B, (Yi,E ′i)i∈XJ ), with
J = (XJ , AJ ,EJ), is a pair (f, (fi)i∈XI ) such that f : I → J in Mod(ALat)
and such that there exists a g : BAI×A satisfying

∀i ∈ XI . ∀ai ∈ EI(i). ∀x ∈ Xi. ∀a ∈ Ei(x). g(ai, a) ∈ E ′f(i)(fi(x)).

The identity is (id , (id)i∈XI ) and the composition of

(f, (fi)i∈XI ) and (g, (gj)j∈XJ )

is (gf, (gf(i)fi)i∈XI ).
Category UFam(ALat) has as objects pairs of the form (I, (B,ϕ)) with

I = (XI , AI ,EI) ∈Mod(ALat) and (B,ϕ) an equivalence class of “predi-
cates,” where B ∈ ALat, and ϕ : XI → P B in Set, with two such (B,ϕ)
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and (C,ψ) equivalent iff there exist continuous functions g ∈ CA×B and
h ∈ BA×C such that

∀i ∈ XI . ∀a ∈ EI(i). ∀b ∈ ϕ(i). g(a, b) ∈ ψ(i)

and

∀i ∈ XI . ∀a ∈ EI(i). ∀c ∈ ψ(i). h(a, c) ∈ ϕ(i).

A morphism u : (I, (B,ϕ)) → (J, (C,ψ)) in UFam(ALat) is a morphism
u : I → J in Mod(ALat) for which there exists a continuous function
g : CAI×B such that

∀i ∈ XI . ∀a ∈ EI(i). ∀b ∈ ϕ(i). g(a, b) ∈ ψ(u(i)).

Finally, functor {−} : UFam(Mod(ALat)) → Mod(ALat) is defined
as follows. On an object X = (I, A, (Xi,Ei)i∈XI ) with I = (XI , AI ,EI),
{X} =

(∐
i∈XI Xi, AI × A,E

)
with E (i, x) = EI(i) ∧ Ei(x) = { 〈a, b〉 |

a ∈ EI(i) and b ∈ Ei(x) }. On a morphism (f, (fi)i∈XI ), {(f, (fi)i∈XI )} =
(i, x) 7→ (f(i), fi(x)).

Sequents and Their Interpretation Sequents have one of the following
forms:

1. Γ: Ctx

2. Γ ` σ : Type

3. Γ `M : σ

4. Γ `M = N : σ

5. Γ ` σ = τ : Type

6. Γ ` ϕ : Prop

7. Γ | Θ ` ϕ

Sequent 1 is used for context formation. A context Γ is interpreted as
an object I in the base category Mod(ALat) of the DPL-structure. For
the remainder of this paragraph suppose that Γ is interpreted by I =
(XI , AI ,EI) ∈ Mod(ALat). Sequent 2 is for type formation. A type
σ in context Γ, written Γ ` σ : Type, is interpreted as an object X =
(I, A, (Xi,Ei)i∈XI ) in UFam(Mod(ALat))I , i.e., in the fibre over I. For
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the remainder of this paragraph suppose that Γ ` σ : Type is interpreted
by this X ∈ UFam(Mod(ALat))I . Sequent 3 is for term formation.
A term Γ ` M : σ is interpreted as a morphism 1(I) → X in the fibre
UFam(Mod(ALat))I over I. Equivalently [Jac99, Page 619], the term is
interpreted as a section to the projection πX : {X} → I in Mod(ALat).
Sequent 4 is conversion equality of terms; if Γ ` M = N : σ, then the
terms Γ ` M : σ and Γ ` N : σ are interpreted as equal morphisms. Like-
wise, sequent 5 is for type equality; if Γ ` σ = τ : Type, then the types
Γ ` σ : Type and Γ ` τ : Type are interpreted by the same objects in the fi-
bre UFam(Mod(ALat))I over I. Sequent 6 is for formation of propositions
in context. A proposition in context Γ ` ϕ : Prop is interpreted as an object
ϕ in the fibre UFam(ALat))I over I, i.e., as an equivalence class (B,ϕ)
with ϕ : XI → P B. Note that we do not distinguish notationally between
syntax and semantics here. We often omit the underlying algebraic lattice
of realizers B from (B,ϕ) when it is clear from context. For the remainder
of this paragraph, suppose that the proposition in context Γ ` ϕ : Prop is
interpreted by object (B,ϕ) ∈ UFam(ALat)I . Finally, the sequent 7 is
for logical entailment. In Γ | Θ ` ϕ, the Θ is a sequence (ϕ1, . . . , ϕm) of
propositions in context Γ with m ≥ 0 (if m = 0, we write Θ = ∅ and the
interpretation is Θ = > — see below for the interpretation of >), and se-
quent Γ | Θ ` ϕ is interpreted as (ϕ1 ∧ · · · ∧ ϕm) ≤I ϕ in the fibre over I in
UFam(ALat). Thus Γ | Θ ` ϕ is valid or holds iff (ϕ1 ∧ · · · ∧ ϕm) ≤I ϕ
in UFam(ALat)I .

Convention A.0.1. For an object I = (XI , AI ,EI) ∈ Mod(ALat) we
sometimes write |I| for the underlying set XI of I. Moreover, when given
objects X = (I, A, (Xi,Ei)i∈XI ) and Y = (I,B, (Yi,E ′i)i∈XI ) in the category
UFam(Mod(ALat))I , we will often omit the prime on E ′i and just write Y
as (I,B, (Yi,Ei)i∈XI ); it will be clear from context which Ei is meant.

We present the rules and their interpretation in the following order.
First we cover the rules of basic dependent type theory, then the dependent
predicate logic and finally dependent subset and quotient types. But first a
couple of remarks concerning the conversion sequents for terms, 4, and types,
5: We leave out the rules making term conversion and type conversion into
congruence relations. Then the only remaining rule associated with type
conversion is the following:

Γ `M : σ Γ ` σ = τ : Type
conversion

Γ `M : τ
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Its interpretation is trivial (the interpretation of M stays the same) since
Γ ` σ : Type and Γ ` τ : Type are interpreted by the same semantic objects.
This completes the description of the interpretation of the sequents for term
conversion and type conversion; below we include the basic rules for term
conversion.

Rules for Context Formation The start rule for context formation is

∅ : Ctx

which is interpreted by the terminal object 1 ∈Mod(ALat). There is one
other rule for context formation:

Γ ` σ : Type

(Γ, x : σ) : Ctx

with the side-condition that x is assumed not to be bound in Γ (this side-
condition is completely standard and we shall not be more precise about
it and leave it implicit in the following). Suppose Γ is interpreted by
I = (XI , AI ,EI) ∈Mod(ALat) and that Γ ` σ : Type is interpreted by X =
(I, A, (Xi,Ei)i∈XI ) ∈ UFam(Mod(ALat))I . Then (Γ, x : σ) : Ctx is inter-
preted as {X} ∈Mod(ALat). We recall that {X} equals (

∐
i∈XI Xi, AI ×

A,E ) with E (i, x) = EI(i) ∧ Ei(i) = { 〈a, b〉 | a ∈ EI(i) and b ∈ Ei(x) }.

Structural Rules for Dependent Type Theory We now consider
the basic structural rules of dependent type theory. The interpretation is
straightforward, although notationally a bit messy.

The projection rule

Γ ` σ : Type
projection

Γ, x : σ ` x : σ

is interpreted as follows. Suppose Γ is interpreted as I = (XI , AI ,EI) and
Γ ` σ : Type is interpreted as X = (I,A, (Xi,Ei)i∈XI ). Then the term
Γ, x : σ ` x : σ is interpreted as the morphism(

(i, x) 7→ i, (∗ 7→ x)
(i,x)∈

∐
i∈XI

Xi

)
from the terminal object over {X} to Y in the fibre over {X}, where Y =
({X}, A, (Xi,Ei)(i,x)∈

∐
i∈XI

Xi
). Equivalently, the term is interpreted as the

section (i, x) 7→ ((i, x), x) from {X} to {Y} in Mod(ALat).
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In the following, let J stand for an arbitrary expression which may occur
on the right of a turnstile Γ in one of the sequents 2, 3, 4, or 5.

We write X[A/x] for the substitution of A for x in X. It is defined in
the usual capture-avoiding way (see, e.g., [Jac99] for details).

The substitution rule for types

Γ `M : σ Γ, x : σ,∆ ` J
substitution for types

Γ,∆[M/x] ` J [M/x]

is interpreted as follows. To simplify the notation we will assume ∆ = y : τ
— the more general case is not more difficult, just even more notationally
cumbersome. There two cases, depending on the form of J .

If J = σ′ : Type and

• Γ is interpreted by I = (XI , AI ,EI)

• Γ ` σ : Type is interpreted by X = (I,A, (Xi,Ei)i∈XI )

• Γ `M : σ is interpreted by a section M : I → {X} in Mod(ALat)

• Γ, x : σ ` τ : Type is interpreted by

Y = ({X}, B, (Y(i,x),E(i,x))(i,x)∈
∐

i∈XI
Xi

)

• Γ, x : σ,∆ ` σ′ : Type is interpreted by

Z = ({Y}, C, (Z((i,x),y),E((i,x),y))((i,x),y)∈
∐

(i,x)∈··· Yi
)

then Γ,∆[M/x] ` J [M/x] is interpreted by

Z∗ = (W,C, (Z(m(i),y),E(m(i),y))(i,y)∈
∐

i∈XI
Ym(i)

),

where W = (
∐
i∈XI Ym(i), AI ×B,E) with E(i, y) = EI(i) ∧ Em(i)(y).

If J = M ′ : σ′ and we assume the same interpretation for the fixed
components as above and

• Γ, x : σ,∆ ` M ′ : σ′ is interpreted by a morphism from the terminal
object over {Y} to Z or equivalently a section M ′ : {Y} → {Z} of the
form ((i, x), y) 7→ (((i, x), y), z((i,x),y))
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then Γ,∆[M/x] ` J [M/x] is interpreted by the section W → {Z∗} mapping
(i, y) to z(m(i),y).

The contraction rule for types

Γ, x : σ, y : σ,∆ ` J
contraction for types

Γ, x : σ,∆[x/y] ` J [x/y]

is interpreted as follows. To simplify the notation we will assume that ∆ =
z : τ with z 6= y. Again there are two cases, depending on the form of J .

If J = τ ′ : Type and

• Γ is interpreted by I = (XI , AI ,EI)

• Γ ` σ : Type is interpreted by X = (I,A, (Xi,Ei)i∈XI ) so that

(Γ, x : σ, y : σ) : Ctx

is interpreted by

Y =
(
{X}, A, (Xi,Ei)(i,x)∈

∐
i∈XI

Xi

)
• Γ, x : σ, y : σ ` τ : Type is interpreted by

Z =
(
{Y}, B, (Z((i,x),x′),E((i,x),x′))((i,x),x′)∈

∐
(i,x)∈

∐
i∈XI

Xi
Xi

)
• Γ, x : σ, y : σ, z : τ ` τ ′ : Type is interpreted by

W =
(
{Z}, C, (W(((i,x),x′),z),E(((i,x),x′),z))(((i,x),x′),z)∈

∐
((i,x),x′)∈··· Z((i,x),x′)

)
then Γ, x : σ,∆[x/y] ` J [x/y] is interpreted by(

V,C, (W(((i,x),x),z),E(((i,x),x′),z))((i,x),z)∈|V |
)
,

where V =
(∐

(i,x)∈
∐

i∈XI
Xi
Z((i,x),x), AI × A × B,E

)
with E ((i, x), z) =

EI(i) ∧ Ei(x) ∧ E((i,x),x)(z).

If J = M : τ ′ and we assume the same interpretation for the fixed com-
ponents as above and
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• Γ, x : σ, y : σ, z : τ ` M : τ ′ is interpreted by a morphism from the ter-
minal object over {Z} to W or equivalently as a section M : {Z} →
{W} of the form (((i, x), x′), z) 7→ ((((i, x), x′), z), w(((i,x),x′),z))

then Γ, x : σ, z : τ ` ∆[x/y] ` J [x/y] is interpreted by the section mapping
((i, x), z) to (((i, x), z), w(((i,x),x),z)).

The weakening rule for types

Γ ` σ : Type Γ ` J
weakening for types

Γ, x : σ ` J

is interpreted as follows.
If J = τ : Type and

• Γ is interpreted by I = (XI , AI ,EI)

• Γ ` σ : Type is interpreted by X = (I,A, (Xi,Ei)i∈XI )

• Γ ` τ : Type is interpreted by Y = (I,B, (Yi,Ei)i∈XI )

then Γ, x : σ ` J is interpreted as Z = ({X}, B, (Yi,Ei)(i,x)∈
∐

i∈XI
Xi

).

If J = M : τ and we assume the same interpretation for the fixed com-
ponents as above and

• Γ `M : τ is interpreted by a section I → {Y} mapping i to (i, yi)

then Γ, x : σ ` J is interpreted as the section (i, x) 7→ ((i, x), yi) : {X} →
{Z}, where Z is as above.

The exchange rule for types

Γ, x : σ, y : τ,∆ ` J x not free in τ
exchange for types

Γ, y : τ, x : σ,∆ ` J

is interpreted as follows. For notational simplicity we assume ∆ = ∅. If
J = τ ′ : Type and

• Γ is interpreted by I = (XI , AI ,EI)

• Γ ` σ : Type is interpreted by X = (I,A, (Xi,Ei)i∈XI )

• Γ ` τ : Type is interpreted by Y = (I,B, (Yi,Ei)i∈XI )
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• Γ, x : σ, y : τ ` τ ′ : Type is interpreted by

Z =
(∐

(i,x)∈
∐

i∈XI
Xi
Yi, C, (Z((i,x),y),E((i,x),y))((i,x),y)∈···

)
then Γ, y : τ, x : σ ` τ ′ : Type is interpreted by(∐

(i,y)∈
∐

i∈XI
Yi
Xi, C, (Z((i,y),x),E((i,y),x))((i,y),x)∈···

)
.

If J = M : τ ′ the interpretation is similarly obvious.

Having covered the basic structural rules we now go on to consider the
different type formers and their introduction and elimination rules.

Rules for Unit Type The singleton (unit) type

` 1: Type

is interpreted as the terminal object in the fibre UFam(Mod(ALat))1 over
the terminal object in Mod(ALat); explicitly, as the object(

1Mod(ALat), 1ALat, (1Set,>1)∗∈|1|
)

with 1Mod(ALat) = (1Set, 1ALat,>1) and >1 = λx. {id1ALat}.

The term

` 〈〉 : 1

is interpreted as the identity arrow on 1 ∈ Mod(ALat) (or, equivalently,
as the identity arrow on 1 ∈ UFam(Mod(ALat))1.

The associated term conversion rule for the unit type is

Γ `M : 1

Γ `M = 〈〉 : 1
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Rules for Dependent Product Types The formation rule for depen-
dent product

Γ, x : σ ` τ : Type

Γ ` Πx : σ. τ : Type

is interpreted as follows. If

• Γ is interpreted by I = (XI , AI ,EI)

• Γ ` σ : Type is interpreted by X = (I,A, (Xi,Ei)i∈XI )

• Γ, x : σ ` τ : Type is interpreted by

Y = ({X}, B, (Y(i,x),E(i,x))(i,x)∈
∐

i∈XI
Xi

)

then Γ ` Πx : σ. τ : Type is interpreted by Z = (I,BA, (Ui,E ′′i )i∈XI ), where

Ui = { f : Xi →
⋃
x∈Xi

Y(i,x) | ∀x ∈ Xi. f(x) ∈ Y(i,x) and E ′′i (f) 6= ∅ }

and

E ′′i (f) = { g ∈ BA | ∀x ∈ Xi. ∀a ∈ Ei(x). g(a) ∈ E(i,x)(f(x)) }.

The introduction rule

Γ, x : σ `M : τ

Γ ` λx : σ. M : Πx : σ. τ

is interpreted as follows. If Γ; (Γ ` σ : Type); (Γ, x : σ ` τ : Type); and
(Πx : σ. τ : Type) are interpreted as above and

• Γ, x : σ `M : τ is interpreted as a morphism from the terminal object
over {X} to Y in the fibre UFam(Mod(ALat)){X} or, equivalently,
as a section M : {X} → {Y} mapping (i, x) to ((i, x), y(i,x))

then Γ ` λx : σ. M : Πx : σ. τ is interpreted as the section I → {Z} (with
Z as above) mapping i to (i, x ∈ Xi 7→ y(i,x)).

The elimination rule

Γ `M : Πx : σ. τ Γ ` N : σ

Γ `MN : τ [N/x]

is interpreted as follows. If Γ; (Γ ` σ : Type); (Γ, x : σ ` τ : Type); and
(Πx : σ. τ : Type) are interpreted as above, and
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• Γ ` M : Πx : σ. τ is interpreted as the section M : I → {Z} mapping
i ∈ XI to (i, fi)

• Γ ` N : σ is interpreted as the section I → {X} mapping i ∈ XI to
(i, xi)

then Γ `MN : τ [N/x] is interpreted as the section from I to {W} given by
i 7→ (i, fi(xi)), where W = (I,B, (Y(i,xi),E(i,xi))i∈XI )

There are the usual (β)- and (η)-conversions for dependent product types
(we write them in a simplified form, omitting contexts etc.):

(λx : σ. M)N = M [N/x]
λx : σ. Mx = M

with the usual proviso that in the (η)-conversion the variable x is not allowed
to occur free in M .

Rules for Strong Dependent Sum Types The formation rule for de-
pendent sum

Γ, x : σ ` τ : Type

Γ ` Σx : σ. τ : Type

is interpreted as follows. If

• Γ is interpreted by I = (XI , AI ,EI)

• Γ ` σ : Type is interpreted by X = (I,A, (Xi,Ei)i∈XI )

• Γ, x : σ ` τ : Type is interpreted by

Y = ({X}, B, (Y(i,x),E(i,x))(i,x)∈
∐

i∈XI
Xi

)

then Γ ` Σx : σ. τ : Type is interpreted as

Z =
(
I, A×B, (Zi,E ′′i )i∈XI

)
,

where Zi = { (x, y) | x ∈ XI and y ∈ Y(i,x) }, and E ′′i (x, y) = Ei(x) ∧
E(i,x)(y) = { 〈a, b〉 | a ∈ Ei(x) and b ∈ E(i,x)(y) }.

The introduction rule

Γ ` σ : Type Γ, x : σ ` τ : Type

Γ, x : σ, y : τ ` 〈x, y〉 : Σx : σ. τ
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is interpreted as follows. Suppose that Γ; (Γ ` σ : Type); (Γ, x : σ ` τ : Type);
and (Γ ` Σx : σ. τ : Type) are interpreted as above. Let W be the interpre-
tation of (Γ, x : σ, y : τ) : Ctx, that is,

W =
(∐

(i,x)∈
∐

i∈XI
Xi
Y(i,x), (AI ×A)×B,E

)
with E ((i, x), y) = EI(i) ∧ Ei(x) ∧ E(i,x)(y).

Let Z∗ be Z “reindexed to the context Γ, x : σ, y : τ ,” that is,

Z∗ =
(
W,A×B, (Zi,E ′′i )((i,x),y)∈|W |

)
.

Then Γ, x : σ, y : τ ` 〈x, y〉 : Σx : σ. τ is interpreted as the section

((i, x), y) 7→
(
((i, x), y), (x, y)

)
from W to {Z∗}, or, equivalently, as the morphism

(id , (∗ 7→ (x, y))((i,x),y)∈|W |)

from the terminal object to Z∗ in the fibre over W .

The (strong) elimination rule

Γ, z : Σx : σ. τ ` ρ : Type Γ, x : σ, y : τ ` Q : ρ[〈x, y〉/z]
(strong)

Γ, z : Σx : σ. τ ` (unpack z as 〈x, y〉 in Q) : ρ

is interpreted as follows. (The variables x and y are bound in the sum
elimination term unpack z as 〈x, y〉 in Q.) Suppose that Γ; (Γ ` σ : Type);
(Γ, x : σ ` τ : Type); and (Γ ` Σx : σ. τ : Type) are interpreted as above.
Then (Γ, z : Σx : σ. τ) : Ctx is interpreted as V = (

∐
i∈XI Zi, AI×(A×B),E )

with E (i, (x, y)) = EI(i) ∧ Ei(x) ∧ E(i,x)(y). If

• Γ, z : Σx : σ. τ ` ρ : Type is interpreted as

V =
(
V,C, (V(i,(x,y)),E(i,(x,y)))(i,(x,y))∈|V |

)
• Γ, x : σ, y : τ ` Q : ρ[〈x, y〉/z] is interpreted as the section

((i, x), y) 7→
(
((i, x), y), v(i,(x,y))

)
from W to

{
(
W,C, (V(i,(x,y)),E(i,(x,y)))((i,x),y)∈|W |

)
},

where W as above is the interpretation of (Γ, x : σ, y : τ) : Ctx
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then Γ, z : Σx : σ. τ ` (unpack z as 〈x, y〉 in Q) : ρ is interpreted as the
section

(i, (x, y)) 7→
(
(i, (x, y)), v(i,(x,y))

)
from V to {V}.

There are the usual (β)- and (η)-conversions:

unpack 〈M,N〉 as 〈x, y〉 in Q = Q[M/x,N/y]
unpack P as 〈x, y〉 in Q[〈x, y〉/z] = Q[P/z].

The strong elimination rule for sums can equivalently be formulated via
the perhaps more familiar rules

Γ ` P : Σx : σ. τ

Γ ` πP : σ

Γ ` P : Σx : σ. τ

Γ ` π′P : τ [πP/x]

with conversions π〈M,N〉 = M , π′〈M,N〉 = N , and 〈πP , π′P 〉 = P .
See [Jac99, Section 10.1] for the correspondence between the two formula-
tions.

Structural Rules for Dependent Predicate Logic There are the fol-
lowing structural rules for dependent predicate logic.

Γ ` ψ : Prop
identity

Γ | ψ ` ψ

Γ | Θ ` ϕ Γ | Θ′, ϕ ` ψ
cut

Γ | Θ,Θ′ ` ψ

Γ | Θ ` ψ Γ ` ϕ : Prop
weakening for propositions

Γ | Θ, ϕ ` ψ

Γ | Θ, ϕ, ϕ ` ψ
contraction for propositions

Γ | Θ, ϕ ` ψ

Γ | Θ, ϕ, χ,Θ′ ` ψ
exchange for propositions

Γ | Θ, χ, ϕ,Θ′ ` ψ
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Γ `M : σ Γ, x : σ,∆ | Θ ` ψ
substitution for propositions

Γ,∆[M/x] | Θ[M/x] ` ψ[M/x]

Given what we have said before, to understand the interpretation of
these structural rules we only need to explicate how substitution of terms for
variables in propositions is interpreted. We go through the interpretation
of the substitution rule for propositions in detail. Suppose for notational
simplicity that ∆ = (y : τ). Then if

• Γ is interpreted as I = (XI , AI ,EI).

• Γ ` σ : Type is interpreted as X = (I, A, (Xi,Ei)i∈XI ).

• Γ `M : σ is interpreted as a section I → {X} mapping i to (i, xi).

• (Γ, x : σ) : Ctx is interpreted as {X}.

• Γ, x : σ ` τ : Type is interpreted as

Y =
(
{X}, B, (Y(i,x),E(i,x))(i,x)∈

∐
i∈XI

Xi

)
.

• (Γ, x : σ,∆): Ctx is interpreted as {Y}.

• Γ, x : σ,∆ ` Θ: Prop (we here think of Θ as a proposition, the con-
junction of its constituent propositions) is interpreted as the predicate

(AΘ,Θ: |{Y}| → P AΘ).

• Γ, x : σ,∆ ` ψ : Prop is interpreted as predicate (Aψ, ψ : |{Y}| → P Aψ).

• Γ ` τ [M/x] : Type is interpreted as “the reindexing of Y along M”,
that is,

Y∗ =
(
I,B, (Y(i,xi),E(i,xi))i∈XI

)
.

• (Γ, τ [M/x]) : Ctx is interpreted as {Y∗}.

• (Γ, τ [M/x]) ` Θ[M/x] : Prop is interpreted as the reindexing of ψ along
the map (i, y) 7→ ((i, xi), y) : {Y∗} → {Y}, that is, as Θ′ = (i, y) 7→
Θ((i, xi), y).
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• (Γ, τ [M/x]) ` ψ[M/x] : Prop is interpreted as the reindexing of ψ along
the map (i, y) 7→ ((i, xi), y) : {Y∗} → {Y}, that is, as ψ′ = (i, y) 7→
ψ((i, xi), y).

and Γ, x : σ,∆ | Θ ` ψ is interpreted as the inequality Θ ≤ ψ in the fibre
UFam(ALat){Y} then Γ,∆[M/x] | Θ[M/x] ` ψ[M/x] is interpreted as the
inequality Θ′ ≤ ψ′ in UFam(ALat){Y∗}.

Formation Rules for Propositions In the following explanation of the
interpretation of the formation rules for propositions we always assume that

• Γ: Ctx is derivable and is interpreted by I = (XI , AI ,EI)

• Γ ` ϕ : Prop is derivable and is interpreted by ϕ : XI → P Aϕ

• Γ ` ψ : Prop is derivable and is interpreted by the subobject ψ : XI →
P Aψ

For brevity, in many cases we do not show the formation of the propositions
as formal rules. The propositions and their interpretations are described as
follows.

• The atomic proposition

Γ `M : σ Γ ` N : σ

Γ ` (M =σ N) : Prop

is interpreted as follows. Suppose that Γ ` σ : Type is interpreted
as X = (I,A, (Xi,Ei)i∈XI ) and that M is interpreted as a section
i 7→ (i,mi) : I → {X} and that N is interpreted as a section i 7→
(i, ni) : I → {X}. Then Γ ` (M =σ N) : Prop is interpreted as the
predicate XI → P AI given by

i 7→

{
EI(i) if mi = ni,
∅ otherwise.

• Γ ` > : Prop is interpreted by the predicate XI 7→ P 1ALat given by
i 7→ {id1}.

• Γ ` ϕ ∧ ψ : Prop is interpreted by the predicate XI → P (Aϕ ×Aψ)
given by i 7→ ϕ(i) ∧ ψ(i) = { 〈a, a′〉 | a ∈ ϕ(i) and a′ ∈ ψ(i) }.

• Γ ` ⊥ : Prop is interpreted by the predicate XI → P 1ALat given by
i 7→ ∅.



252 Dependent Type Theory and Predicate Logic in Equ

• Γ ` ϕ∨ψ : Prop is interpreted by the predicate XI → (Σ×Σ)×A×B,
where Σ is the algebraic lattice ⊥ ≤ >, given by

i 7→
(
{(⊥,>)} × ϕ(i)× {⊥Aψ}

)
∪
(
{(>,⊥)} × {⊥Aϕ} × ψ(i)

)
• Γ ` ϕ ⊃ ψ : Prop is interpreted by the predicate XI → P ((Aψ)(Aϕ))

given by

i 7→ { g ∈ (Aψ)(Aϕ) | ∀a ∈ ϕ(i). g(a) ∈ ψ(i) }.

• Γ ` ¬ϕ : Prop is an abbreviation for Γ ` ϕ ⊃ ⊥ : Prop. Working out
the interpretation according to the above we find that Γ ` ¬ϕ : Prop
is interpreted by the predicate XI → P 1ALat given by

i 7→

{
∅ if ϕ(i) 6= ∅,
{id1} if ϕ(i) = ∅.

Hence Γ ` ¬¬ϕ : Prop is interpreted as

i 7→

{
∅ if ϕ(i) = ∅,
{id1} if ϕ(i) 6= ∅.

Under the equivalence given by Proposition 4.4.3, this is a regular sub-
object of I, so in Mod(ALat), the regular subobjects of I correspond
to double-negation closed subobjects of I.

The formation rule for the universal quantifier

Γ, x : σ ` ϕ : Prop

Γ ` ∀x : σ. ϕ : Prop

is interpreted as follows. If

• Γ ` σ : Type is interpreted as X = (I, A, (Xi,Ei)i∈XI )

• Γ, x : σ ` ϕ : Prop is interpreted as a predicate
∐
i∈XI Xi → P Aϕ

then Γ ` ∀x : σ. ϕ : Prop is interpreted as the predicate XI → P ((Aϕ)(AI))
given by

i 7→
⋂
x∈Xi

{ g ∈ ((Aϕ)(AI)) | ∀a ∈ Ei(x). g(a) ∈ ϕ(i, x) }.
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The formation rule for the existential quantifier

Γ, x : σ ` ϕ : Prop

Γ ` ∃x : σ. ϕ : Prop

is interpreted as follows. If Γ; (Γ ` σ : Type); and (Γ, x : σ ` ϕ : Prop) are
interpreted as above in the description of the formation rule for universal
quantification, then Γ ` ∃x : σ. ϕ : Prop is interpreted as the predicate XI →
P (AI ×Aϕ) given by

i 7→
⋃
x∈Xi

(Ei(x) ∧ ϕ(i, x)).

Logical Rules for Dependent Predicate Logic The logical rules are
shown in Figure A.1, copied from [Jac99, Section 4.1]. Note that proposi-
tional equality (M =σ M ′) includes term conversion, so internal equality
in the logic includes external equality. See [Jac99, Section 4.1] for further
comments and for equivalent adjoint formulations of some of the rules.

Dependent Subset Types The formation rule for dependent subset
types

Γ, x : σ ` ϕ : Prop

Γ ` {x : σ | ϕ } : Type

is interpreted as follows. If

• Γ: Ctx is interpreted by I = (XI , AI ,EI)

• Γ ` σ : Type is interpreted by X = (I,A, (Xi,Ei)i∈XI )

• Γ, x : σ ` ϕ : Prop is interpreted by predicate ϕ :
∐
i∈XI Xi → P Aϕ

then Γ ` {x : σ | ϕ } : Type is interpreted by

(I,Aϕ, (Zi,E ′i)i∈XI ) ∈ UFam(Mod(ALat))I ,

where Zi
def= {x ∈ Xi | ϕ(i, x) 6= ∅ }, and Ei(x) def= ϕ(i, x).

The introduction rule

Γ, x : σ ` ϕ : Prop Γ, y : τ `M : σ Γ, y : τ | ∅ ` ϕ[M/x]

Γ, y : τ ` i(M) : {x : σ | ϕ }

is interpreted as follows. Suppose Γ; (Γ ` σ : Type); and (Γ, x : σ ` ϕ : Prop)
are interpreted as above. If
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Γ | Θ ` > Γ | Θ,⊥ ` ψ

Γ | Θ ` ϕ Γ | Θ ` ψ

Γ | Θ ` ϕ ∧ ψ

Γ | Θ ` ϕ ∧ ψ

Γ | Θ ` ϕ

Γ | Θ ` ϕ ∧ ψ

Γ | Θ ` ϕ

Γ | Θ ` ϕ

Γ | Θ ` ϕ ∨ ψ

Γ | Θ ` ψ

Γ | Θ ` ϕ ∨ ψ

Γ | Θ, ϕ ` χ Γ | Θ, ψ ` χ

Γ | Θ, ϕ ∨ ψ ` χ

Γ | Θ, ϕ ` ψ

Γ | Θ ` ϕ ⊃ ψ

Γ | Θ ` ϕ ⊃ ψ Γ | Θ ` ϕ

Γ | Θ ` ψ

Γ, x : σ | Θ ` ψ

Γ | Θ ` ∀x : σ. ψ
(x not free in Θ)

Γ `M : σ Γ | Θ ` ∀x : σ. ψ

Γ | Θ ` ψ[M/x]

Γ `M : σ Γ | Θ ` ψ[M/x]

Γ | Θ ` ∃x : σ. ψ

Γ | Θ ` ∃x : σ. ψ Γ, x : σ | Θ′, ψ ` χ

Γ ` Θ,Θ′ ` χ
(x not free in Θ′, χ)

Γ `M = M ′ : σ

Γ | Θ `M =σ M
′

Γ | Θ `M =σ M
′ Γ | Θ `M ′ =σ M

′′

Γ | Θ `M =σ M
′′

Γ | Θ `M =σ M
′

Γ | Θ `M ′ =σ M

Γ | Θ `M =σ M
′ Γ | Θ ` ψ[M/x]

Γ | Θ ` ψ[M ′/x]

Figure A.1: Logical Rules for Dependent Predicate Logic
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• Γ ` τ : Type is interpreted as Y = (I,B, (Yi,Ei)i∈XI ).

• Γ, y : τ ` σ : Type is interpreted as “X reindexed to (Γ, y : τ) : Ctx,”
that is,

X ∗ = ({Y}, A, (Xi,Ei)(i,x)∈
∐

i∈XI
Yi

).

• Γ, y : τ `M : σ is interpreted by a section

(i, y) 7→ ((i, y), x(i,y)) : {Y} → {X ∗}

or, equivalently, as a morphism

(id , (y 7→ x(i,y))i∈XI ) : Y → X ∗

in UFam(Mod(ALat))I .

• Γ, y : τ ` ϕ[M/x] : Prop is interpreted as ϕ reindexed along M : {Y} →
{X}, that is, as

ϕ′ = (i, y) 7→ ϕ(i, x(i,y)) :
∐
i∈XI Yi → P Aϕ.

• Γ, y : τ | ∅ ` ϕ[M/x] is interpreted as an inequality >{Y} ≤ ϕ′ in
UFam(ALat){Y}. Thus there is a realizer g ∈ AI × B → Aϕ such
that

∀(i, y) ∈
∐
i∈XI Yi. ∀a ∈ EI(i). ∀b ∈ Ei(y). g(a, b) ∈ ϕ′(i, y).

then Γ, y : τ ` i(M) : {x : σ | ϕ } is interpreted as the section (i, y) 7→
((i, y), x(i,y)) (a well-defined morphism by the existence of realizer g).

The elimination rule

Γ ` N : {x : σ | ϕ }

Γ ` o(N) : σ

is interpreted as follows. If Γ; (Γ ` σ : Type); and (Γ, x : σ ` ϕ : Prop) is
interpreted as above and

• Γ ` N : {x : σ | ϕ } is interpreted as a section

i 7→ (i, zi) : I → {(I, Aϕ, (Zi,Ei)i∈XI )}
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then Γ ` o(N) : σ is interpreted as the section i 7→ (i, zi) : I → {X}.

The associated conversions are

o(i(M)) = M and i(o(N)) = N.

There are the following two associated logical rules.

Γ, x : σ | Θ, ϕ ` ψ

Γ, y : {x : σ | ϕ } | Θ[o(y)/x] ` ψ[o(y)/x]

and

Γ, y : {x : σ | ϕ } | Θ[o(y)/x] ` ψ[o(y)/x]
full subset types

Γ, x : σ | Θ, ϕ ` ψ

Dependent Quotient Types The formation rule for dependent quotient
types

Γ, x : σ, y : σ ` R(x, y) : Prop

Γ ` σ/R : Type

is interpreted as follows. If

• Γ: Ctx is interpreted as I = (XI , AI ,EI)

• Γ ` σ : Type is interpreted as X = (I, A, (Xi,Ei)i∈XI )

• Γ, x : σ, y : σ ` R(x, y) : Prop is interpreted as a predicate R : |{{X}}| →
P Aϕ with

{{X}} =
(∐

(i,x)∈
∐

i∈XI
Xi
Xi, (AI ×A)×A,E

)
then Γ ` σ/R : Type is interpreted as

(I,A, (Xi/≈i, E′i)i∈XI ),

where ≈i is the least equivalence relation on Xi containing ∼i with

x ∼i x′ ⇐⇒ R((i, x), x′) 6= ∅,
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and where E′i([x]) =
⋃
x′∈[x]Ei(x

′).

The introduction rule
Γ `M : σ

Γ ` [M ]R : σ/R

is interpreted as follows If Γ and Γ ` σ : Type are interpreted as above and

• Γ `M : σ is interpreted as the section i 7→ (i, xi) : I → {X}

then Γ ` [M ]R : σ/R is interpreted as the section i 7→ (i, [xi]).

The elimination rule
Γ ` τ : Type Γ, x : σ ` N : τ Γ, x : σ, y : σ | R(x, y) ` Nx =τ Ny

Γ, a : σ/R ` pick x from a in Nx : τ

is interpreted as follows. Suppose that Γ and Γ ` σ : Type are interpreted as
above and that

• Γ ` τ : Type is interpreted as Y = (I,B, (Yi,Ei)i∈XI ).

• Γ, x : σ ` N : τ is interpreted as the section

(i, x) 7→ ((i, x), y(i,x)) : I → {Y}.

• Γ, x : σ, y : σ | R(x, y) ` Nx =τ Ny is interpreted in the usual way.

Then Γ, a : σ/R ` pick x from a in Nx : τ is interpreted as the section

(i, [x]) 7→ (i, y(i,xi)) : {(I, A, (Xi/≈i, E′i)i∈XI )} → {Y},

where x is a chosen representative of [x] and ((i, x), y(i,xi)) is the result of
applying the given section to (i, x).

The associated (β)- and (η)-conversions are

(β) pick x from [M ]R in N = N [M/x]
(η) pick x from Q in N [[x]R/a] = N [Q/a].

In the (η)-conversion it is assumed that x does not occur free in N .

There is the following associated logical rule.

Γ `M : σ Γ `M ′ : σ

Γ | R(M,M ′) ` [M ]R =σ/R [M ′]R

(We do not have effective or full quotients, see Remark 4.3.2.)
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[Pav90] D. Pavlović. Predicates and Fibrations. PhD thesis, University
of Utrect, 1990. 2, 3.6

[Pho93] W. Phoa. An introduction to fibrations, topos theory, the ef-
fective topos and modest sets. Technical report, University of
Edinburgh, 1993. 2, 10.7

[Pit81] A.M. Pitts. The Theory of Triposes. PhD thesis, University of
Cambridge, 1981. 1.2.3, 3, (i), 3.8, 5, 1, 17, 5.1.4, 5.3.2, 5.4.2,
5.4, 5.4, 5.4, 6.1, 6.2, 9.1.8, 10.5

[Pit95] A.M. Pitts. Categorical logic. Technical Report 367, University
of Cambridge Computer Laboratory, May 1995. 94 pages. 3.6

[Pit99] A.M. Pitts. Tripos theory in retrospect. In L. Birkedal and
G. Rosolini, editors, Tutorial Workshop on Realizability Seman-



266 Bibliography

tics, FLoC’99, Trento, Italy, 1999, volume 23 of Electronic Notes
in Theoretical Computer Science. Elsevier, 1999. (iii), 3.4.1, 5

[Reu95] B. Reus. Program Verification in Synthetic Domain Theory.
PhD thesis, Ludwig-Maximilians-Universität München, Novem-
ber 1995. 3.6

[Ros86] G. Rosolini. Continuity and Effectiveness in Topoi. PhD thesis,
University of Oxford, 1986. 3.1

[RR88] E.P. Robinson and G. Rosolini. Categories of partial maps. In-
formation and Computation, 79:95–130, 1988. 1.1, 1.3, 3.1, 3.1.6

[RR90] E.P. Robinson and G. Rosolini. Colimit completions and the
effective topos. Journ. Symb. Logic, 55:678–699, 1990. 3.8,
3.8.3, 10.5, 10.6, 10.6, 10.6

[SAB+] D.S. Scott, S. Awodey, A. Bauer, L. Birkedal, and J. Hughes.
Logics of Types and Computation at Carnegie Mellon University.
http://www.cs.cmu.edu/Groups/LTC/. 1.2.2

[Sco80] D.S. Scott. Relating theories of the lambda calculus. In J.R.
Hindley and J.P. Seldin, editors, To H.B. Curry: Essays in Com-
binatory Logic, pages 403–450. Academic Press, 1980. 3.1.2

[See84] R.A.G. Seely. Locally cartesian closed categories and type the-
ory. Math. Proc. Camb. Phil. Soc., 95:33–48, 1984. 3.6

[Tay86] P. Taylor. Recursive Domains, Indexed Categories and Polymor-
phism. PhD thesis, University of Cambridge, 1986. 2, 3.6

[Tay99] P. Taylor. Practical Foundations of Mathematics. Number 59 in
Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, 1999. 2

[Tro73] A.S. Troelstra, editor. Metamathematical Investigation of Intu-
itionistic Arithmetic and Analysis, volume 344 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin, 1973. 23

[Tro98] A.S. Troelstra. Handbook of Proof Theory, volume 137 of Stud-
ies in Logic and the Foundations of Mathematics, chapter VI:
Realizability, pages 407–473. Elsevier Science B.V., 1998. 1.1

[TvD88] A.S. Troelstra and D. van Dalen. Constructivism in Mathemat-
ics. North-Holland, 1988. 2 volumes. 23, 8.3.6, 23, 10.3, 10.7



Bibliography 267

[vO97a] J. van Oosten. Extensional realizability. Annals of Pure and
Applied Logic, 84:317–349, 1997. 9.1.8

[vO97b] J. van Oosten. The modified realizability topos. Journal of Pure
and Applied Algebra, 116:273–289, 1997. 11.3

[vO99] J. van Oosten. A combinatory algebra for sequential functionals
of finite type. In S.B. Cooper and J.K. Truss, editors, Models
and Computability, pages 389–406. Cambridge University Press,
1999. 1.1, 3

[Wil94] J.T. Wilson. The Assembly Tower and Some Categorical and
Algebraic Aspects of Frame Theory. PhD thesis, School of Com-
puter Science, Carnegie Mellon University, May 1994. Alos avail-
able as Technical Report CMU–CS–94–186, School of Computer
Science, Carnegie Mellon University. 8.1





Index

Symbols
pick x from a in Nx (elimination term

for dependent quotient type),
259

(−)∨ (transposition), 12
(−)∧ (transposition), 12
(I,≈) (object in B[p]), 116
(I,≈I) (object in B[p]), 116
(F(C) )ex/lex (exact completion of F(C)),

87
(C )reg/lex (regular completion of the

left exact category C), 86
0 (initial object), 12
0 (weak initial object in a p-category),

57
1 (fibred terminal object functor), 21
1 (terminal object), 12
1 (unit type), 247
=d (equality in subobject fibration on

discrete objects), 185
B ⊆ A (B is a sub partial combina-

tory algebra of A), 38
F ⇒ G (natual transformation), 12
HI (restriction of fibred functor H to

fibre over I), 19
I (includion functor Mod(p)→ Asm(p)),

84
Ke (kernel of morphism e), 153
M (term), 241
M = N (conversion of terms), 241
PI (underlying object of weak generic

predicate in a tripos), 112
P ' Q (P and Q are Kleene equal),

37
Q (dependent quotient type functor),

99

R (reflection functor Asm(p)→Mod(p)),
84

T (Kleene’s T predicate), 195
U (Kleene’s output function), 195
U (underlying functor C(A) → Ptl),

41
U (underlying functor ALat→ Ptl),

56
UX (least dense subobject of object

X in a topos), 148
V ≤d X (V is a dense subobject of

X), 148
X + Y (coproduct in a category), 12
X + Y (weak binary coproduct in a

p-category), 57
X ⇒ Y (exponential of X and Y in

a cartesian closed category),
12

X
f−→ Y (f is a morphisms from X

to Y ), 12
X ×Z Y (product of X and Y in the

slice over Z), 19
X � Y (monomorphism from X to

Y ), 12
X ⊃ Y (set of realizers mapping X

into Y ), 38
X × Y (categorical product of X and

Y ), 12
X � Y (epimorphism from X to Y ),

12
Y X (exponential ofX and Y in a carte-

sian closed category), 12
[[M ]] (interpretation of polynomial term

M in a PCA), 37
[[ϕ]] (interpretation of ϕ in E with atomic

types interpreted by discrete

269



270 Index

objects and atomic predicates
interpreted by open subob-
jects), 186

[[ϕ]] (interpretation of ϕ in subobject
fibration over E), 193

[[ϕ]]d (interpretation of ϕ in subobject
fibration over DjE), 194

[[ϕ]]d (interpretation of ϕ in the sub-
object fibration on discrete
objects), 186

[[ϕ]]m (interpretation of ϕ in the model
for the logic for local maps of
toposes), 194

[M ]R (introduction term for depen-
dent quotient type), 259

[X ⇀ Z] (partial exponential of X
and Z), 35

[f, g] (cotuple of maps f and g), 12
[x1, x2, . . . , xn] (coding of sequence in

a PCA), 38
ClSubj(E) (j-closed subobjects of ob-

ject E), 154
ClSubj(E) (category of j-closed sub-

objects of topos E), 177∐
(coproduct for comprehension cat-

egory), 70∐
(coproduct), 22

∆ (diagonal for a p-category), 34
∆ (inclusion functor RT(A])→ RT(A,A])),

133
∆ (inclusion functor UFam(A]) →

UFam(A,A]), fibred over Set),
132

∆ (inclusion of discrete objects func-
tor), 142

∆ (internal function Ω→ Λ), 206
∆X � X ×X (diagonal at X), 153
DjE (subcategory of discrete objects

of topos E determined by topol-
ogy j in E), 147

E (i) (existence predicate induced by
a tripos), 117

E I (existence predicate on object I
induced by a tripos), 117

Γ (context, type environment), 241

Γ (functor RT(A,A])→ RT(A])), 133
Γ (functor UFam(A,A])→ UFam(A]),

fibred over Set), 132
Γ (internal function Λ→ Ω), 206
Γ (underlying object functor Asm(p)→

B), 48
Γ, x : σ (context extension), 243
Γ | Θ ` ϕ (logical entailment in con-

text Γ), 241
Γq (functor Set[q]→ Set induced by

Set-tripos q), 135
Graph(f) (graph of function f in the

graph model), 38
Λ (internal locale induced by localic

local map of toposes), 205
Λ (set of untyped lambda terms), 38
Λ(f) (abstraction of f in a CCC), 12
Λ/β (set of untyped lambda terms mod-

ulo β-equality), 38
Mono (B) (category of monos of B),

15
Ωj (image of topology j : Ω→ Ω in a

topos), 177
OjE (subcategory of open objects of

topos E with principal topol-
ogy j), 153

OpenSubj(E) (category of open sub-
objects of topog E with prin-
cipal topology j), 179

Πx : σ.τ (dependent product type),
248

Pred (category of DjE-indexed fami-
lies of subobjects of E), 188∏

(product for comprehension cate-
gory), 70∏

(product), 22
Quot(X) (quotients of object X), 157
RT(A) (standard realizability topos over

A), 118
RT(A,A]) (relative realizability topos

over A] ⊆ A), 118
RegSub(Asm(C)) (category of Asm(C)-

indexed regular subobjects of
Asm(C)), 93



Index 271

⇒ (exponential in a cartesian closed
category), 12

SPred(p) (category of strict predicates
for a tripos p), 119

ShjE (sheaf subtopos of E induced by
topology j in E), 143

ShjE [p] (sheaf subtopos of E [p] cor-
responding to topology j on
E-tripos p), 127

Σ (object in the base category of a
tripos over which the weak
generic object lies), 112

Σx : σ. τ (dependent sum type), 249
Sub(B) (category of subobjects of B),

15
Θ (context of logical assumptions), 241
a (associated sheaf functor), 143
⊥ (falsum), 13
⊥d (falsum in subobject fibration on

discrete objects), 185
⊥j (falsum in closed subobject fibra-

tion), 177
⊥◦ (falsum in open subobject fibra-

tion), 180
· (appliation in partial combinatory

algebra), 37
char(A) (characteristic map of predi-

cate A in a topos), 121
cod (codomain functor), 15
a (adjunction), 12
↓ (defined), 37
〈f, g〉 (binary tuple of maps f , g), 12
〈x, y〉 (coding of pairing in a PCA),

37
〈x, y〉 (pair term for dependen sum

type), 250
δ (diagnoal map from X to X×X for

some object X), 12
δ (parameterized diagonal from I×X

to (I ×X)×X), 12
δ(I,X) (parameterized diagonal from

I ×X to (I ×X)×X), 12
δ(X) (diagnoal map from X to X ×

X), 12

δX (diagnoal map from X to X×X),
12

∅ (empty context), 243
∃ (existential quantification), 13
∃d (existential quantification in sub-

object fibration on discrete
objects), 185

∃j (existential quantification in closed
subobject fibration), 177

∃◦ (existential quantification in open
subobject fibration), 180

[ (syntactic closure operator), 189
∀ (universal quantification), 13
∀d (universal quantification in subob-

ject fibration on discrete ob-
jects), 185

∀j (universal quantification in closed
subobject fibration), 177

∀◦ (universal quantification in open
subobject fibration), 180

∈I (weak generic membership predi-
cate over I×PI in a tripos),
112

κ (first coprojection into binary co-
product), 12

κ′ (second coprojection into binary co-
product), 12

λ (functional abstraction in a partial
combinatory algebra), 37

λx : σ. M (abstraction term (for de-
pendent product type)), 248

∧ (conjunction), 13
∧d (conjunction in subobject fibration

on discrete objects), 185
∧j (conjunction in closed subobject fi-

bration), 177
∧◦ (conjunction in open subobject fi-

bration), 180
∨ (disjunction), 13
∨d (disjunction in subobject fibration

on discrete objects), 185
∨j (disjunction in closed subobject fi-

bration), 177
∨◦ (disjunction in open subobject fi-

bration), 180
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P (powerset of natural numbers, un-
derlying set for the graph model),
38

Ptl (category of sets and partial func-
tions), 34

V(E) (category of vertical maps for a
fibration with total category
E), 95

F(C) (category of partitioned assem-
blies over C), 85

D⊥ (subcategory of objects orthog-
onal to every morphism in
D), 145

D> (subcategory of objects coorthog-
onal to every morphism in
D), 145

id (identity morphism on some ob-
ject), 12

idX (identity morphism on objectX),
12

dom f (domain of map f in a p-category),
34

Ev (evaluation map from Y X ×X to
Y in a CCC), 12

CT0 (arithmetical form of Church’s
Thesis), 196

Eq (equality for comprehension cate-
gory), 70

Eq (equality functor), 26
Eqj (equality in closed subobject fi-

bration), 177
Eq◦ (equality in open subobject fibra-

tion), 180
FamP(Sub(Asm(C))) (families of

UFam(Asm(C))-indexed sub-
objects of Asm(C)), 96

FamP(q) (fibration q : D → B rein-
dexed along comprehension
category P : E→ B), 95

FamP(D) (category of E-indexed pred-
icates D for a comprehension
category P : E→ B), 95

HomC(X,Y ) (collection of morphisms
from X to Y in category C),
12

Im(f) (the image of a morphisms f),
151

MP (Markov’s Principle), 233
M(A) (monoid of A-definable functions),

64
RFam (category of UFam(Asm(C))-

indexed subobjects of Asm(C)),
100

RFamP(q) (fibration of RFamP(D) over
B for q : D → B a fibration
and P : E → B a compre-
hension category), 99

RFamP(D) (total category of fibra-
tion of predicates q : D→ B

reindexed along {{−}} : E→
B for comprehension category
P : E→ B), 99

Split(−) (splitting 2-functor), 64
Split(C, U) (splitting of the idempo-

tents of C that U : C→ Ptl
maps to total functions), 64

UP (Uniformity Principle), 233
Dp (designated truth values of tripos

p), 113
N (the type of natural numbers), 196
Prop (the type of propositions), 13
Type (the kind of types), 13
〈〉 (unit term), 247
i(M) (introduction term for dependent

subset type), 255
o(N) (elimination term for dependent

subset type), 257
unpack z as 〈x, y〉 in Q (elimination

term for dependent sum type),
250

| (separation of type theoretic and log-
ical context), 13

∇ (functor RT(A])→ RT(A,A])), 133
∇ (functor UFam(A])→ UFam(A,A]),

fibred over Set), 132
∇ (inclusion functor B → Asm(p)),

48
∇ (inclusion of codiscrete objects func-

tor), 142
∇ (internal function Ω→ Λ), 206
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∇p (constant-objects functor for tri-
pos p), 122

¬ (negation), 13
¬¬ (double negation topology), 223
¬d (negation in subobject fibration on

discrete objects), 185
¬◦ (negation in open subobject fibra-

tion), 180
U (closure of subobject U in a topos

with a topology), 148
f (geometric morphism of toposes in-

duced by geometric morphism
f of triposes), 125

π (first projection for coding of pairs
in a PCA), 37

π (first projection from categorical prod-
uct), 12

π′ (second projection for coding of pairs
in a PCA), 37

π′P (second projection of P term),
251

πX (projection associated to X for
comprehension category), 71

πP (first projection of P term), 251
P (comprehension category), 69
� (monomorphism), 12
⇀ (partial function), 37
] (syntactic interior operator), 189
σ (type (in context)), 241
σ (weak generic predicate in a tripos),

112
σ = τ (conversion of types), 241
' (Kleene equality), 37
' (equivalence of categories), 12
⊃ (implication), 13
⊃j (implication in closed subobject fi-

bration), 177
⊃◦ (implication in open subobject fi-

bration), 180
τ (type (in context)), 241
AC(N,X) (internal axiom of choice

from N to X), 233
EAC(X,Y ) (external axiom of choice

from X to Y ), 194
> (fibred terminal object functor), 95

> (truth), 13
>H (top element of (internal) locale

H), 114
>d (truth in subobject fibration on

discrete objects), 185
>j (truth in closed subobject fibra-

tion), 177
>◦ (truth in open subobject fibration),

180
true (strict predicate representing the

generic object in B[p] for a
B-tripos p), 122

� (epimorphism), 12
� (semantic validity), 186
ϕ (formula), 241
ϕ(M) (formula ϕ with M substituted

free variable), 25
`I (preorder in the fibre over I in a

tripos), 112
{x : σ | ϕ } (dependent subset type),

255
{−} (dependent subset type functor),

95
{ϕ} (weak classifying map of predi-

cate ϕ in a tripos), 112
{m} (the partial recursive function coded

by m), 38
f : X → Y (f is a morphisms from X

to Y ), 12
f : X ⊃ Y (f is a realizer mapping X

into Y ), 38
g◦f (composition of morphisms g and

f), 12
gf (composition of morphisms g and

f), 12
p−,Y (first projection for a p-category),

34
qX,− (second projection for a p-category),

34
u∗ (substitution functor along u), 16
F a G (F is left adjoint of G), 12
MN (application term (for dependent

product type)), 248
X > f (morphism f is coorthogonal

to object X), 144
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A ' B (equivalence of categories of A
and B), 12

C(A) (WCPC-category induced by A),
39

EI (fibre category over an object I in
a fibration with total cate-
gory E), 13

Eu (collection of morphisms above u
for a fibration with total cat-
egory E), 13

Asm(A,A]) (category of assemblies
over A with respect to A]),
225

Asm(p) (category of assemblies over
a regular fibration p), 43

Asm(C) (category of assemblies over
WCPC-category C), 73

Equ (category of equilogical spaces),
83

Frames(F) (category of internal frames
in F), 205

LTop/F (2-category of localic F-toposes),
205

Locales(F) (2-category of internal lo-
cales in F), 205

Mod(A,A]) (category of modest sets
over A with respect to A]),
226

Mod(A) (category of modest sets over
PCA A), 83

Mod(p) (modest sets over realizabil-
ity pretripos p), 83

Mod(C) (modest sets over WCPC-
category C), 83

PER(A,A]) (category of partial equiv-
alence relations over A with
respect to A]), 227

PER(A) (category of partial equiva-
lence relations over A), 205

PER(C) (category of partial equiva-
lence relations over WCPC-
cateory C), 83

PartAsm(A,A]) (category of parti-
tioned assemblies over A with
respect to A]), 229

Set (category of sets and total func-
tions), 34

UFam(A,A]) (total category of rela-
tive realizability tripos over
PCA A with respect to sub-
PCA A] ⊆ A), 115

UFam(A) (total category of standard
realizability tripos over A),
114

UFam(PA) (total category of stan-
dard realizability tripos over
PCA A), 57

UFam(C) (category of Asm(C)-indexed
predicates), 103

UFam(C) (total category of realiz-
ability pretripos over C), 51

UFam(ALat) (total category of real-
izability pretripos over ALat),
73

UFam(Asm(p)) (category of uniform
Asm(p)-indexed families of
assemblies), 73

p = B(−,Σ) (canonically presented
B-tripos p on object Σ ∈ B),
113

pI (tripos induced by local tripos p
qua I and J), 201

pJ (tripos induced by topology J on
tripos p), 127

π′ (second projection from categorical
product), 12

σ/R (dependent quotient type), 258
ϕ[M/x] (formula ϕ with M substi-

tuted for x), 25
{{−}} (functor induced by a compre-

hension category), 98
{−} (functor E→ B induced by com-

prehension category), 69
f ⊥ X (morphism f is orthogonal to

object X), 144
B/I (slice category of B over object

I), 15
B[p] (topos generated from B-tripos

p), 116
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B
⊥ (the collection of all morphisms

orthogonal to every X in B),
144

B
> (the collection of all morphisms

coorthogonal to every X in
B), 145

B
→ (arrow category of B), 14
C(A)t (idempotent splitting of monoid

of A-definable functions), 39
C(X,Y ) (collection of morphisms from

X to Y in category C), 12
Ct (category of total maps for p-category

C), 34
C

op (opposite of category C), 12

A
A-definable function, 39
A-definable partial function, 39
additive internal function, 208
adjoint cylinder, 142
adjunction

fibred, 20
split fibred, 20

almost monic morphism, 155
arrow category, 14
assemblies, 43
associated pair (of subcategories), 145
axioms for bounded local maps, 169
axioms for localic local maps, 159

B
base category, 14
Beck-Chevalley condition, 21
bounded geometric morphism, 140

C
canonically modest (for double-negation

topology), 225
canonically presented tripos, 113
canonically separated (for double-negation

topology), 225
cardinality of partitioned assembly, 231
cartesian, 14
cartesian lifting, 14
cartesian over, 14

category
p-, 33
(fibred) over (a base category),

14
arrow, 14
base, 14
closed comprehension, 72
closed partial cartesian, 35
colocalization of, 144
comprehension, 69
comprehension category with unit,

71
coreflective, 144
essential colocalization of, 144
essential localization of, 144
exact, 102
fibre, 13
fibred, 14
full comprehension, 69
indexed, 17
left exact, 42
lex, 42
localization of, 144
of assemblies, 43
of discrete objects, 147
of modest sets, 83
of partial equivalence relations,

83
of vertical maps, 95
partial cartesian, 34
reflective, 144
regular, 42
split comprehension, 69
split indexed, 17
total, 14
weakly closed partial cartesian,

35
change-of-base functor, 16
Church’s thesis

arithmetical form, 196
cleavage, 16
closed (for double-negation topology),

224
closed comprehension category, 72
closed partial cartesian category, 35



276 Index

cloven fibration, 16
cocomplete fibration, 23
codense epimorphism, 153
codiscrete object, 142
codomain fibration, 15
colocalization, 144

essential, 144
combinatory algebra

partial, 37
total, 37

complete fibration, 23
complete object, 123
completion (of a category)

regular, 86
comprehension (for a fibration), 71
comprehension category, 69

closed, 72
full, 69
split, 69
with coproducts, 71
with products, 71
with strong coproducts, 71
with strong equality, 72
with unit, 71

computable realizer, 129
constant object (from a tripos), 122
context, 241
context formation in DPL, 243
continuous function, 38
continuous realizer, 129
contraction functor, 25
conversion of terms, 241
conversion of types, 241
coorthogonal, 144
coproducts

disjoint, 81
stable, 81
universal, 81

coproducts (for a comprehension cat-
egory), 71

coproducts (for a fibration), 22
simple, 22
split (simple), 23
with Frobenius property, 24

coreflective subcategory, 144

D
dense (for double-negation topology),

224
dependent predicate logic, 239
dependent product type in DPL, 248
dependent quotient type in DPL, 258
dependent quotient types

effective (or full), 99
dependent subset type in DPL, 255
dependent subset types, 95

full, 95
dependent sum type in DPL, 249
dependet quotient types, 99
designated truth values, 113
diagonal (for a p-category), 34
discrete object, 142
disjoint coproducts, 81
display map, 71
domain (for a p-category), 34
DPL, see dependent predicate logic
DPL-structure, 94

E
effective (or full) dependent quotient

types, 99
effective equivalence relations, 102
epimorphism

codense, 153
regular, 42

equality
external, 26
internal, 26
Kleene, 37

equality (for a fibration), 26
very strong, 26
with Frobenius property, 26

equilogical spaces, 1
equivalence relations

effective, 102
equivalent fibrations, 21
essential colocalization, 144
essential localization, 144
exact category, 102
exact functor, 42
exponential
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partial, 35
weak partial, 36

exterior, 157
external equality, 26
externally equal, 26

F
fibration, 14

cloven, 16
cocomplete, 23
codomain, 15
complete, 23
equivalent, 21
first-order, 91n
of subobjects, 15
regular, 43
split, 16
split higher-order, 93n
with (simple) equality, 26
with comprehension, 71
with full comprehension, 71

fibre, 13
fibre category, 13
fibred adjunction, 20

split, 20
fibred category, 14
fibred functor, 19

split, 19
fibred preorder, 15
fibred structure, 19

split, 19
first-order fibration, 91n
formula

negative, 178
stable, 186

formulas of DPL, 241
Frobenius property, 24
full comprehension (for a fibration),

71
full comprehension category, 69
function

A-definable, 39
continuous, 38

functional relation, 117
partial, 123

functor
change-of-base, 16
contraction, 25
exact, 42
fibred, 19
interior, 149
p, 34
pseudo, 17
pullback, 16
reflector, 144
regular, 42
reindexing, 16
relabelling, 16
split fibred, 19
substitution, 16
WCPC, 36
weakening, 71

G
generic object

split, 93n
geometric morphism

bounded, 140
local, 140

geometric morphisms of triposes, 124
graph (of a function), 38
graph model, 39

recursively enumerable, 39
Grothendieck construction, 17

H
Heyting pre-algebra, 112
higher-order fibration

split, 93n

I
inclusion (of triposes), 128
indexed category, 17

split, 17
injections (for weak binary coproducts),

58
interior (of subobjects), 148
interior functor, 149
internal equality, 26
internal locale
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local, 206
internally equal, 26

K
Kleene application, 38
Kleene equality, 37
Kleene’s first model, 38

L
lifting

cartesian, 14
local geometric morphism, 140
local internal locale, 206
local tripos, 201
localic local map of toposes, 134
localization, 144

essential, 144
logical entailment, 241
logos, 91n

M
map, see morphism
modest object, 83
modest sets, 83
morphism

above, 13
almost monic, 155
codense epimorphism, 153
coorthogonal, 144
orthogonal, 144
projection, 71
total (in a p-category), 34
vertical, 13

morphisms
display, 71

N
negative formula, 178

O
object

above, 13
codiscrete, 142
complete, 123
discrete, 142
modest, 83

of generators, 140
of realizers, 51, 227
one-element, 34
open, 151
split generic object, 93n
universal, 61
weak initial, 57

one-element object, 34
open object, 151
orthogonal, 144

P
p-category, 33
p-functor, 34
partial cartesian category, 34

closed, 35
weakly closed, 35

partial combinatory algebra, 37
graph model, 39
Kleene’s first model, 38
recursively enumerable graph model,

39
sub, 38

partial combinatory type structure, 88
partial equivalence relations, 83
partial exponential, 35

weak, 36
partial function

A-definable, 39
partial functional relation, 123
partial order reflection, 102n
PCA, see partial combinatory algebra
pretripos, 50

realizability, 51
split, 50
with disjunction, 50

principal topology, 148
product (for a p-category), 33
products (for a comprehension cate-

gory), 71
products (for a fibration), 22

simple, 22
split (simple), 23

projection morphism, 71
projections (for a p-category), 34
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pseudo functor, 17
pullback functor, 16

Q
quotient types

dependent, 99
effective (or full) dependent, 99

R
realizability pretripos, 51

over a WCPC-category, 56
predicates, 51

realizability topos, 118
realizer

computable, 129
continuous, 129

recursively enumerable graph model,
39

reflective subcategory, 144
regular category, 42
regular completion (of a category), 86
regular epimorphism, 42
regular fibration, 43
regular functor, 42
regular logic, 43
reindexing functor, 16
relabelling functor, 16
relative realizability topos, 118
relative realizability tripos, 115
replete subcategory, 142

S
simple coproducts (for a fibration), 22
simple products (for a fibration), 22
split comprehension category, 69
split fibration, 16
split fibred adjunction, 20
split fibred functor, 19
split fibred structure, 19
split generic object, 93n
split higher-order fibration, 93n
split indexed category, 17
splitting, 16
stable coproducts, 81
stable formula, 186

standard realizability tripos, 114
strict predicate, 119
strong coproducts (for a comprehen-

sion category), 71
strong equality (for a comprehension

category), 72
subobject fibration, 15
subset types

(dependent), 95
full dependent, 95

substitution functor, 16

T
term, 241
topology

principal, 148
topology on a tripos, 127
topos

realizability, 118
relative realizability, 118

total category, 14
total combinatory algebra, 37
total morphism (in a p-category), 34
tripos, 111

canonically presented, 113
constant object, 122
local, 201
on a locale, 113
relative realizability, 115
standard realizability, 114

type, 241
type environment, 241
type world, 88

U
unit term, 247
unit type in DPL, 247
universal coproducts, 81
universal object, 61

V
vertical morphism, 13
very strong equality, 26

W
WCPC-category, 36
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WCPC-functor, 36
weak binary coproducts (for a p-category),

57
weak finite coproducts (for a p-category),

58
weak generic predicate, 112
weak initial object, 57
weak partial exponential, 36
weakening functor, 71
weakly closed partial cartesian cate-

gory, 35
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