
Draft Copy

Design Patterns in Separation Logic

Neelakantan R. Krishnaswami Jonathan
Aldrich

Carnegie Mellon University
{neelk,jonathan.aldrich}@cs.cmu.edu

Lars Birkedal Kasper Svendsen
Alexandre Buisse

IT University of Copenhagen
{birkedal,kasv,abui}@itu.dk

Abstract
Object-oriented programs are notable for making use of both
higher-order abstractions and mutable, aliased state. Either feature
alone is challenging for formal verification, and the combination
yields very flexible program designs and correspondingly difficult
verification problems. In this paper, we show how to formally spec-
ify and verify programs that use several common design patterns in
concert.

Categories and Subject Descriptors F.3 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms Separation Logic, Design Patterns, Formal Veri-
fication

1. Introduction
The widespread use of object-oriented languages creates an oppor-
tunity for designers of formal verification systems, above and be-
yond a potential “target market”. Object-oriented languages have
been used for almost forty years, and in that time practitioners
have developed a large body of informal techniques for structuring
object-oriented programs called design patterns(4). Design patterns
were developed to both take best advantage of the flexibility object-
oriented languages permit, and to control the potential complexities
arising from the unstructured use of these features.

This pair of characteristics make design patterns an excellent
set of benchmarks for a program logic. First, design patterns use
higher order programs to manipulate aliased, mutable state. This is
a difficult combination for program verification systems to handle,
and attempting to verify these programs will readily reveal weak-
nesses or lacunae in the program logic. Second, the fact that pat-
terns are intended to structure and modularize programs means that
we can use them to evaluate whether the proofs in a program logic
respect the conceptual structure of the program – we can check to
see if we need to propagate conceptually irrelevant information out
of program modules in order to meet our proof obligations. Third,
we have the confidence that these programs, though small, actually
reflect realistic patterns of usage.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this paper, we describe Idealized ML, a core higher-order
imperative language, and a specification language based on separa-
tion logic for it. Then, we give good specifications for and verify
the following programs:

• We prove a collection and iterator implementation, which builds
the Java aliasing rules for iterators into its specification, and
which allows the construction of new iterators from old ones
via the composite and decorator patterns.
• We prove a general version of the flyweight pattern (also known

as hash-consing in the functional programming community),
which is a strategy for aggressively creating aliased objects to
save memory and permit fast equality tests. This also illustrates
the use of the factory pattern.
• We prove a general version of the subject-observer pattern in a

way that supports a strong form of information hiding between
the subject and the observers.

Finally, we give machine-verified proofs of the correctness of
the iterator and flyweight patterns in the Ynot extension of Coq,
and compare them with the paper proofs. We also see that proper
treatment of the subject-observer pattern seems to call for the use
of an impredicative type theory.

2. Formal System
The formal system we present has three layers. First, we have a core
programming language we call Idealized ML. This is a simply-
typed functional language which isolates all side effects inside a
monadic type (22). The side effects include nontermination and
the allocation, access, and modification of general references (in-
cluding pointers to closures). Then, we give an assertion language
based on higher-order separation logic (3) to describe the state of
a heap. Separation logic allows us to give a clean treatment of is-
sues related to specifying and controlling aliasing, and higher-order
predicates allow us to abstract over the heap. This enables us to en-
force encapsulation by hiding the exact layout of a module’s heap
data structures. Finally, we have a specification logic to describe
the effects of programs, which is a first-order logic whose atomic
propositions are Hoare triples {P}c{a : A. Q}, which assert that
if the heap is in a state described by the assertion P , then execut-
ing the command c will result in a postcondition state Q (with the
return value of the command bound to a). specifications.

Programming Language. The core programming language we
have formalized is an extension of the simply-typed lambda cal-
culus with a monadic type constructor to represent side-effecting
computations. The types of our language are the unit type 1, the
function space A → B, the natural number type N, the reference
type ref A, as well as the option type option A and the mutable
linked list type list A. In addition, we have the monadic type©A,
which is the type of suspended side-effecting computations produc-

1 2008/11/24

Types A ::= 1 | A→ B | list A | option A | N | ref A | ©A
Pure Terms e ::= () | x | e e′ | λx : A. e | Nil | Cons(e, e′) | None | Some(e)

| case(e, Nil→ e′, Cons(x, xs)→ e′′) | case(e, None→ e′, Some x→ e′′)
| z | s(e) | prec(e, ez, x. es) | fix e | [c]

Computations c ::= e | letv x = e in c | run e | newA(e) | !e | e := e′

Figure 1. Types and Syntax of the Programming Language

ing values of type A. Side effects include both heap effects (such
as reading, writing, or allocating a reference) and nontermination.

We maintain such a strong distinction between pure and impure
code for two reasons. First, it allows us to validate very powerful
equational reasoning principles for our language: we can validate
the full β and η rules of the lambda calculus for each of the pure
types. This simplifies reasoning even about imperative programs,
because we can relatively freely restructure the program source to
follow the logical structure of a proof. Second, when program ex-
pressions appear in assertions – that is, the pre- and post-conditions
of Hoare triples – they must be pure. However, allowing a rich set
of program expressions like function calls or arithmetic in asser-
tions makes it much easier to write specifications. So we restrict
which types can contain side-effects, and thereby satisfy both re-
quirements. The pure terms of the language are typed with the typ-
ing judgment Γ ` e : A, given in Figure 2, and which can be
read as “In variable context Γ, the pure expression e has type A.”
Computations are typed with the judgment Γ ` c÷A (also in Fig-
ure 2), which can be read as “In the context Γ, the computation c is
well-typed at type A .”

We have () as the inhabitant of 1, natural numbers z and s(e),
functions λx : A. e, optional expressions None and Some e, and
list expressions Nil and Cons(e, e′). Nil is the constructor for an
empty list, and Cons(e, e′) is the constructor for a cons-cell. In
Figure 2, ELISTCONS states the tail of a list is of reference type
ref list A, which means that our list type is a type of mutable lists.
We also have the corresponding eliminations for each type, includ-
ing case statements for option types and list types. For the natural
numbers, we add a primitive recursion construct prec(e, ez, x. es).
If e = z, this computes ez , and if e = s(e′), it computes
es[(prec(e′, ez, x. es))/x]. This bounded iteration allows us to im-
plement (for example) arithmetic operations as pure expressions.

Suspended computations [c] inhabit the monadic type ©A.
These computations are not immediately evaluated, which allows
us to embed them into the pure part of the programming language.
Furthermore, we can take fixed points of monad-valued functions
(EFIX), which gives us a general recursion facility. (We restrict fix
to monad-valued domains because of the possibility of nontermina-
tion. Also, we will write recursive functions as syntactic sugar for
fix.) As CPURE shows, we can treat any pure expression of type A
as a computation that coincidentally has no side-effects. In CRUN,
a suspended computation of type©A can be forced to execute with
the run e command.

In CLET, we have a sequential composition letv x = e in c. In-
tuitively, the behavior of this command is as follows. We evaluate e
until we get some [c′], and then evaluate c′, modifying the heap and
binding its return value to x. Then, in this augmented environment,
we run c. The fact that monadic commands have return values ex-
plains why our sequential composition is also a binding construct.
Finally, we have computations newA(e), !e, and e := e′, which let
us allocate, read and write references, respectively.

This language has been given a typed denotational semantics,
which for space reasons we do not give here. The details of the
semantics (including the assertion and specification levels) can be
found in the companion tech report (8).

Assertion Language. The sorts and syntax of the assertion
language are given in Figure 3. The assertion language is a version
of separation logic, extended to higher order.

In ordinary Hoare logic, a predicate describes a set of program
states (in our case, heaps), and a conjunction like p ∧ q means that
a heap in p ∧ q is in the set described by p and the described by q.
While this is a natural approach, aliasing can become quite difficult
to treat – if x and y are pointer variables, we need to explicitly state
whether they alias or not. This means that as the number of vari-
ables in a program grows, the number of aliasing conditions grows
quadratically. With separation logic, we add the spatial connectives
to address this difficulty. A separating conjunction p ∗ q means that
the state can be broken into two disjoint parts, one of which is in
the state described by p, and the other of which is in the state de-
scribed by q. The disjointness property makes the noninterference
of p and q implicit. This avoids the unwanted quadratic growth in
the size of our assertions. In addition to the separating conjunction,
we have its unit emp, which is true of the empty heap, and the
points-to relation e 7→ e′, which holds of the one-element heap in
which the reference e has contents e′. A heap is described by the
“magic wand” p−∗q, when we can merge it with any disjoint heap
described by p, and the combination is described by q.

The universal and existential quantifiers ∀x : ω. p and ∃x : ω. p
are higher-order quantifiers ranging over all sorts ω. The sorts in-
clude the language types A, the sort of propositions prop, function
spaces over sorts ω ⇒ ω′, and mathematical sequences seq ω.
Constructors for terms of all these sorts in the syntax given in
Figure 3. For the function space, we include lambda-abstraction
and application. For sequence sorts, we have sequence-formers
ε for the empty sequence and p · ps for adding one element to
a sequence, as well as a primitive iteration construct over se-
quences, precseq(p, pε, (x, acc). p·). With iteration, we can write
constructor-level map and filter functions (as in functional pro-
gramming) and use them in our specifications. Our examples will
also make use of finite sets and functions, without formalizing them
in our syntax.

Finally, we include the atomic formulas S valid, which are
assertions that a specification S holds. This facility is useful when
we write assertions about pointers to code – for example, the
assertion r 7→ cmd ∧ ({p}run cmd{a : A. q}) valid says that
the reference r points to a monadic term cmd, whose behavior is
described by the Hoare triple {p}run cmd{a : A. q}.

Specification Language. Given programs and assertions about
the heap, we need specifications to relate the two. We begin with
the Hoare triple {p}c{a : A. q}. This specification represents the
claim that if we run the computation c in any heap the predicate p
describes, then if c terminates, it will end in a heap described by
the predicate q. Since monadic computations can return a value in
addition to having side-effects, we add the binder a : A to the third
clause of the triple to let us name and use the return value in the
postcondition.

We then treat Hoare triples as one of the atomic proposition
forms of a first-order intuitionistic logic (see Figure 3). The other
form of atomic proposition are the specifications {p}, which are
specifications saying that an assertion p is true. These formulas
are useful for expressing aliasing relations between defined predi-

2 2008/11/24

Γ ` e : A Γ ` e′ : ref list A

Γ ` Cons(e, e′) : list A
ELISTCONS

Γ ` c÷A
Γ ` [c] :©A EMONAD

Γ ` e : (A→©B)→ (A→©B)

Γ ` fix e : A→©B EFIX

Γ ` e :©A Γ, x : A ` c÷B
Γ ` letv x = e in c÷B CLET

Γ ` e : A

Γ ` e÷A CPURE
Γ ` e :©A

Γ ` run e÷A CRUN
Γ ` e : A

Γ ` newA(e)÷ ref A
CREFNEW

Γ ` e : ref A

Γ ` !e÷A CREFREAD
Γ ` e : ref A Γ ` e′ : A

Γ ` e := e′ : 1
CREFWRITE

Figure 2. Selected Typing Rules

Assertion Sorts ω ::= A | ω ⇒ ω | seq ω | prop

Assertion p ::= e | x | λx : ω. p | p q
Constructors | prec(p, pε, (x, acc). p·) | ε | p · ps

| > | p ∧ q | p ⊃ q | ⊥ | p ∨ q
| emp | p ∗ q | p−∗q | e 7→ e′

| ∀x : ω. p | ∃x : ω. p | S valid

Specifications S ::= {p}c{a : A. q} | {p}
| S and S′ | S implies S′ | S or S′

| ∀x : ω. S | ∃x : ω. S

Figure 3. Syntax of Assertions and Specifications

cates, without necessarily revealing the implementations. In addi-
tion, we can form specifications with conjunction, disjunction, im-
plication, and universal and existential quantification over the sorts
of the assertion language.

Having a full logic of triples also lets us express program mod-
ules as formulas of the specification logic. We can expose a module
to a client as a collection of existentially quantified functions vari-
ables, and provide the client with Hoare triples describing the be-
havior of those functions. Furthermore, modules can existentially
quantify over predicates to grant client programs access to mod-
ule state without revealing the actual implementation. A client pro-
gram that uses an existentially quantified specification cannot de-
pend on the concrete implementation of this module, since the ex-
istential quantifier hides that from it – for example, we can expose
a table(t,map) predicate that does not reveal whether a hash table
is implemented with single or double hashing.

3. Iterators, Composites and Decorators
The iterator pattern is a design pattern for uniformly enumerating
the elements of a collection. The idea is that in addition to a
collection, we have an auxiliary data structure called the iterator,
which has an operation next. Each time next is called, it produces
one more element of the collection, with some signal when all of
the elements have been produced. The iterators are mutable data
structures whose invariants depend on the collection, itself another
mutable data structure. Therefore, most object oriented libraries
state that while an iterator is active, a client is only permitted to call
methods on a collection that do not change the collection state (for
example, querying the size of a collection). If destructive methods
are invoked (for example, adding or removing an element), it is no
longer valid to query the iterator again.

We also support operations to create new iterators from old
ones, and to aggregate them into composite iterators. For exam-
ple, given an iterator and a predicate, we can construct a new itera-
tor that only returns those elements for which the predicate returns
true. This sort of decorator takes an iterator object, and decorates

it to yield an iterator with different behavior. Likewise, we can take
two iterators and a function, and combine them into a new, compos-
ite iterator that returns the result of a parallel iteration over them.
These sorts of synthesized iterators are found in the itertools
library in the Python programming language, the Google Java col-
lections library, or the C5 library (6) for C#.

Aliasing enters into the picture, above and beyond the restric-
tions on the underlying collections, because iterators are stateful
objects. For example, if we create a filtering iterator, and advance
the underlying iterator, then what the filtering iterator will return
may change. Even more strikingly, we cannot pass the same itera-
tor twice to a parallel iteration constructor – the iterators must be
disjoint in order to correctly generate the two sequences of elements
to combine.

Below, we give a specification of an iterator pattern. We’ll begin
by describing the interface informally, in English, and then move on
to giving formal specifications and explaining them.

The interface consists of two types, one for collections, and one
for iterators. The operations the collection type supports are 1) cre-
ating new mutable collections, 2) adding new elements to an exist-
ing collection, and 3) querying a collection for its size. Adding new
elements to a collection is a destructive operation which modifies
the existing collection, whereas getting a collections size does not
modify the collection.

The interface that the iterator type supports are 1) creating
a new iterator on a collection, 2) destructively getting the next
element from an iterator (returning an error value if the iterator
is exhausted), and 3) operations to produce new iterators from old.
The iterator transformations we support are 1) a filter operation,
which takes an iterator along with a boolean predicate, and returns
an iterator which enumerates the elements satisfying the predicate,
and 2) a parallel map operation, which takes two iterators and a
two-argument function, and returns an iterator which returns the
result of enumerating the elements of the two iterators in parallel,
and applying the function to each pair of elements.

The aliasing protocol that our iterator protocol will satisfy is
essentially the same as the one the Java standard libraries specify
in their documentation.

• Any number of iterators can be created from a given collection.
Each of these iterators has the collection as its underlying state.
• An iterator constructed from other iterators has underlying state

consisting of its arguments, as well as their backing states.
• An iterator is valid as long as none of its underlying state has

been destructively modified from the time of the iterator’s cre-
ation. An iterators underlying state consists of any collections
it depends on, as well as any iterators it was constructed from.
• It is legal to call functions on an iterator only when it is in

a valid state. Performing a destructive operation on any part
of an iterator’s underlying state invalidates it. For example,

3 2008/11/24

adding an element to a collection in an iterator’s underlying
state will invalidate it, as will trying to get elements from any
other iterators in its underlying state.

Now, we will describe the specification in detail. The type of
collections is just the type of mutable linked lists, consisting of
pointers to list cells. (For simplicity, we only consider lists of natu-
ral numbers.) An iterator is an element of a recursive tree structure
in the style of an ML datatype declaration. (In Java, we would have
a class hierarchy for iterators.) If it is an iterator over a single col-
lection, then it will be in the branch Coll r, where r is a pointer to a
linked list – a finger into the middle of the collection. For filtering
iterators, we use a constructor of the form Filter(p, i), where p is a
boolean predicate function and i is the iterator whose elements we
are selectively yielding. We give pairwise mapping iterators via a
constructor Map2(f, i1, i2), which enumerates elements of i1 and
i2 in parallel, and applies the binary function f to those pairs to
produce the yielded elements.

Collection Type Ac = ref list N
Iterator Type Ai = Coll of ref Ac

| Filter of ((N→ bool)×Ai)
| Map2 of ((N× N→ N)×Ai ×Ai)

1 ∃coll : Ac × seq N× prop⇒ prop.
2 ∃iter : Ai × Pfin(Ac × seq N× prop)× seq N⇒ prop.
3 ∃newcoll : 1→©Ac, size : Ac →©N, add : Ac × N→©1.
4 ∃newiter : Ac →©Ai, filter : (N→ bool)×Ai →©Ai.
5 ∃map2 : (N× N→ N)×Ai ×Ai →©Ai.

∃next : Ai →©(option N).

6 {emp}run newcoll(){a : Ac. ∃P. coll(a, ε, P)}
and

7 ∀c, P, xs. {coll(c, xs, P)}
run size(c)
{a : N. coll(c, xs, P) ∧ a = |xs|}

and
8 ∀c, P, x, xs. {coll(c, xs, P)}

run add(c, x)
{a : 1. ∃Q. coll(c, x · xs,Q)}

and
9 ∀c, P, xs. {coll(c, xs, P)}

run newiter(c)
{a : Ai. coll(c, xs, P) ∗ iter(a, {(c, xs, P)}, xs)}

and
10 ∀p, i, S, xs. {iter(i, S, xs)}

run filter(p, i)
{a : Ai. iter(a, S, filter p xs)}

and
∀f, i, S,xs, i′, S′, xs′.

11 {iter(i, S, xs) ∗ iter(i′, S′, xs′) ∧ S ∩ S′ = ∅}
12 run map2(f, i, i′)
13 {a : Ai. iter(a, S ∪ S′,map f (zip xs xs′))}

and
14 ∀i, S. {colls(S) ∗ iter(i, S, ε)}

run next(i)
{a : option N. colls(S) ∗ iter(i, S, ε) ∧ a = None}

and
15 ∀i,S, x, xs. {colls(S) ∗ iter(i, S, x · xs)}

run next(i)
{a : option N. colls(S) ∗ iter(i, S, xs) ∧ a = (Some x)}

colls(∅) ≡ emp
colls({(c, xs, P)} ∪ S) ≡ coll(c, xs, P) ∗ colls(S)

In this specification, the predicate coll(c, xs, P) (on line 1) is
a three place predicate describing the state of a collection. The
first argument c names the collection object that owns this state
in the heap. The second argument, xs, is the abstract sequence
that the collection c currently represents. As c is mutated, xs can
change. The final argument, P , represents the abstract state of the

collection. We use this argument to track whether an operation
that uses c makes any destructive changes to it. Since the iterator
protocol asks that we not call any destructive operations, this field
lets us track whether a function has made such a change, or not,
without actually revealing the internal state of the collection to a
client.

The predicate iter(i, S, xs) (on line 2) is the predicate describ-
ing the state of an iterator. The first argument i is the iterator con-
structor which owns this heap state. The finite set S is a set of triples
describing the support of the iterator – the triples (c, xs, P) in this
set describe all the collections the iterator will examine in its enu-
meration. That is, the collections in the support are the collections
that are in i’s underlying state. (We track the iterators in an under-
lying state by another mechanism, which we will describe subse-
quently.) The third argument, xs, is a sequence corresponding to
the elements that the iterator has yet to produce.

newcoll (specified on line 6) creates a new, empty collection,
unaliased with any other collection. The postcondition specifies
that the collection is empty, and that it begin in some arbitrary
abstract state. size(c) (line 7) takes a collection c, and returns the
number of elements in c. The abstract state P of the coll(c, xs, P)
predicate is unchanged in the pre- and post-conditions, indicating
that this function does not change the abstract state. add(c, x) (line
8) takes a collection c, and imperatively adds the element x to
the collection. The abstract state is existentially quantified in the
postcondition, indicating that it can be modified by the call to add.
This ensures that clients cannot assume that the abstract state is the
same before and after a call to add.

newiter(c) (line 9) takes a collection c, and returns an iterator
over it. The returned iterator predicate iter(a, {(c, xs, P)}, xs)
states that a is the iterator object, whose support is the collection
{(c, xs, P)}, and which will produce the elements xs (the same as
the elements of c).

filter(p, i) (line 10) takes a boolean function p and an iterator
i, and returns a new iterator which will enumerate only those
elements which for which p returns true. (We express this with
a logical function filter called on the sequence xs.) Note that
filter(p, i) consumes the original iterator state iter(i, S, xs) – the
postcondition state only mentions the state associated with the
return value of the the call to filter. This reflects the fact that the
filtered iterator takes ownership of the underlying iterator, in order
to prevent third parties from making calls to next(i) and possibly
changing the state of the filtered iterator.

This is also why the support only needs to track the collections
in each iterator’s underlying state. When we take ownership of the
argument’s iterator state, we prevent third parties from being able
to call functions on the argument after creating the new iterator.
This takes advantage of the resource-conscious nature of separation
logic: a specification must have access to its footprint, and so we
can hide state inside a predicate to control which operations are
allowed.

map2(f, i1, i2) (lines 11-13) takes a binary function f , and
two iterators i1 and i2. From an initial state iter(i1, S, xs) ∗
iter(i2, S

′, ys), a call to map2 will return a new iterator, whose
support is the union of each argument’s support, and whose supply
of values is the result of pairing the elements of i1 and i2 and ap-
plying f to them. As with filter, map2 takes ownership of the state
of its argument iterators and consumes them in the postcondition.

next(i) (lines 14-15) takes an iterator i as an argument. In each
precondition we ask for both an iterator predicate iter(i, S,−),
and the collections colls(S). colls(S) iterates over the set S,
joining each (c, xs, P) in S into a large separated conjunction
coll(c1, xs1, P1) ∗ . . . ∗ coll(ck, xsk, Pk). This expresses the re-
quirement that we need all of the collections i depends on, all in
the correct abstract state.

4 2008/11/24

If the iterator is exhausted, next(i) returns None (line 14). If the
iterator still has elements (i.e., is in a state iter(i, S, x · xs)), it re-
turns the first element as Some x, and sets the state to iter(i, S, xs)
in the postcondition (line 15). We give two specifications purely for
readability; it lets us avoid giving a cumbersome combined specifi-
cation.

For space reasons, we cannot give the complete proof, so we
give the implementation of this module and its predicates below:

1 list(c, ε) ≡ c 7→ Nil
2 list(c, x · xs)≡ ∃c′. c 7→ Cons(x, c′) ∗ list(c′, xs)
3 coll(c, xs, P) ≡ list(c, xs) ∧ P ∧ exact(P)

4 iter(Map2(f, i1, i2), S, xs)≡
∃xs1, xs2, S1, S2.
xs = (map f (zip xs1 xs2)) ∧ (S = S1] S2) ∧
iter(i1, S1, xs1) ∗ iter(i2, S2, xs2)

5 iter(Filter(p, i), S, xs) ≡
∃xs′. xs = filter p xs′ ∧ iter(i, S, xs′)

6 iter(Coll(l), {(c, xs, P)}, zs) ≡
∃c′, ys. xs = ys · zs ∧ l 7→ c′∗
(coll(c, xs, P)−∗

[(coll(c, xs, P) ∧ (segment(c, c′, ys) ∗ list(c′, zs)))]
7 segment(c, c′, ε) ≡ c = c′ ∧ emp
8 segment(c, c′, x · xs) ≡ ∃c′′. c 7→ Cons(x, c′′) ∗ segment(c′′, c′, xs)
9 newcoll() ≡ [newref list NNil]

10 size(lst) ≡ [letv cell = [!lst] in
11 run case(cell,
12 Nil→ [0],
13 Cons(h, t)→ [letv n = size(t) in n+ 1])]

14 add(c, x) ≡ [letv cell = [!c] in
15 letv r = [newref list Ncell] in
16 c := Cons(x, r)]

17 newiter(c) ≡ [letv r = [newref ref list N(c)] in Coll r]

18 filter(p, i) ≡ [Filter(p, i)]

19 map2(f, i1, i2) ≡ [Map2(f, i1, i2)]

20 next(Coll r) ≡ [letv list = [!r] in
21 letv cell = [!list] in
22 run case(cell,Nil→[None],
23 Cons(x, t)→

[letv dummy = [r := t] in
Some x])]

24 next(Filter(p, i)) ≡ [letv v = next(i) in
25 run case(v,None→ [None]
26 Some x→

if(p x,[Some x],
next(Filter(p, i))))]

27 next(Map2(f, i1, i2)) ≡
[letv v1 = next i1 in

28 letv v2 = next i2 in
29 case(v1, None→ None,
30 Some x1 → case(v2, None→ None,
31 Some x2 → Some(f(x1, x2))))]

The inductive predicate list(c, xs) is defined on lines 1-2. It
says that c is an empty list if it is a pointer to the value Nil, and that
is a non-empty list if c points to Cons(x, c′), where x is the first
element of the sequence and c′ disjointly represents the tail of the
list.

The predicate coll(c, xs, P) (line 3) is defined as the conjunc-
tion of a linked list predicate list(c, xs) and an exact predicate P .
An exact predicate is one that is true of exactly one heap, and the
conjunction of P with list(c, xs) ensures that this linked list can-
not be modified at all, without changing P . This is a relatively com-
mon idiom when verifying programs whose invariants depend on a
notion of destructive update. It is necessary because the predicate
list(c, xs) can be maintained even when c is modified. Concretely,

suppose that xs is nonempty. Then any modification of c which
changes c’s tail to some different physical list representing the same
tail sequence will still satisfy the predicate list(c, xs). However, if
a predicate is known to be exact, then there is exactly one heap it
can be, and so no other heaps can satisfy it.

The inductive definition of iter is on lines 4-6. The base case
(line 6) is the most complex. In essence, it says that the iterator’s
pointer is a finger into the middle of the list, c′.

We express this requirement with the clause coll(c, xs, P) ∧
(segment(c, c′, ys) ∗ list(c′, zs)), which says that heap associ-
ated with the collection can be viewed in two ways, both as the
collection itself, and as a partial list segment representing what
has already been seen, together with the remainder of the list be-
ginning at c′. However, the iterator state does not own the col-
lection; this clause will only hold if we have the collection state
in addition to the iterator. We use the magic wand to say this:
it means that when we supply the iterator with coll(x, xs, P),
then we can view the state in this way. So as a whole, the predi-
cate iter(Coll(l), {(c, xs, P)}, zs) can be read as “the iterator is a
pointer l to some c′, such that if we are given the collection state
coll(c, xs, P), then c′ is a pointer into the middle of the list, with
zs as the remaining elements”.

The reason we go to this effort is to simplify the specification
and proof of client programs – we could eliminate the use of the
magic wand in the base case if iterators owned their collections,
but this would complicate verifying programs that use multiple it-
erators over the same collection, or which want to call pure methods
on the underlying collection. In those cases, the alternative would
require us to explicitly transfer ownership in the proofs of client
programs, which is quite cumbersome, and forces clients to reason
using the magic wand. The current approach isolates that reasoning
within the proof of the implementation.

On line 5, the Filter(p, i) case says that i must have some
iterator state with the same support S, and a sequence of elements
xs′ that yield xs once filtered. We use the logical function filter,
defined at the assertion level, to describe the effect on the iterator’s
logical sequence. On line 4, we specify iter for the Map2(f, i1, i2)
case. We assert that the support S must be divisible into two disjoint
parts, one for i1 and one for i2, and that there is iterator state for i1
and i2, and that the sequences i1 and i2 combine to yield the output
sequence.

In both of these cases, we define the behavior of the imperative
linked list in terms of purely functional sequences. This is a very
common strategy in many verification efforts, but here we see that
we can use it in a local way – in the base case, we are forced to
consider issues of aliasing and ownership, but in the inductive cases
we can largely avoid that effort.

The collection operations are mostly straightforward – newcoll
(line 9) allocates a new linked list, size (lines 10-13) recursively
traverses the list to calculate the length, and add (lines 14-16) adds
a cons cell to the front of the list. newiter (lines 17) allocates a
pointer to the front of the list, and then wraps that in the Coll
constructor. For filter (line 18) and map2 (line 19), we just apply
the constructor to the arguments and then return the result.

next (lines 20-31) recursively walks down the structure of the
iterator tree, and combines the results from the leaves upwards. The
base case is the Coll r case (lines 20-23). The iterator pointer is
doubly-dereferenced, and then the contents examined. If the end
of the list has been reached and the contents are Nil, then None
is returned to indicate there are no more elements. Otherwise, the
pointer r is advanced, and the head returned as the observed value.
The Filter(p,i) case (lines 24-26) will return None if i is exhausted,
and if it is not, it will pull elements from i until it finds one
that satisfies p, calling itself recursively until it succeeds or i is
exhausted. Finally, in the Map2(f, i1, i2) case (lines 27-31), next

5 2008/11/24

will draw a value from both i1 and i2, and will return None if either
is exhausted, and otherwise it will return f applied to the pair of
values.

Below, we give an example use of this module in annotated
program style:

1 {emp}
2 letv c1 = newcoll() in
3 {∃P ′1. coll(c1, ε, P ′1)}
4 {coll(c1, ε, P1)}
5 letv () = add(c1, 4) in
6 {∃P ′2. coll(c1, 4 · ε, P ′2)}
7 {coll(c1, 4 · ε, P2)}
8 letv () = add(c1, 3) in
9 letv () = add(c1, 2) in
10 {coll(c1, 2 · 3 · 4 · ε, P4)}
11 letv c2 = newcoll() in
12 letv () = add(c2, 3) in
13 letv () = add(c2, 5) in
14 {coll(c2, 5 · 3 · ε,Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
15 letv i1 = newiter(c1) in
16 {iter(i1, {(c1, 2 · 3 · 4 · ε, P4)}, 2 · 3 · 4 · ε)

∗ coll(c2, 5 · 3 · ε,Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
17 letv i′1 = filter(even?, i1) in
18 {iter(i′1, {(c1, 2 · 3 · 4 · ε, P4)}, 2 · 4 · ε)

∗ coll(c2, 5 · 3 · ε,Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
19 letv i2 = newiter(c2) in
20 {iter(i′1, {(c1, 2 · 3 · 4 · ε, P4)}, 2 · 4 · ε)

∗ iter(i2, {(c2, 5 · 3 · ε,Q2)}, 5 · 3 · ε)
∗ coll(c2, 5 · 3 · ε,Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}

21 letv i = map2(plus, i′1, i2) in
22 {iter(i, {(c1, 2 · 3 · 4 · ε, P4), (c2, 5 · 3 · ε,Q2)}, 7 · 7 · ε)

∗ coll(c2, 5 · 3 · ε,Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
23 letv n = size(c2) in
24 {n = 2 ∧ iter(i, {(c1, 2 · 3 · 4 · ε, P4), (c2, 5 · 3 · ε,Q2)}, 7 · 7 · ε)

∗ coll(c2, 5 · 3 · ε,Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}
25 letv x = next(i) in
26 {n = 2 ∧ x = Some 7 ∧

iter(i, {(c1, 2 · 3 · 4 · ε, P4), (c2, 5 · 3 · ε,Q2)}, 7 · ε)
∗ coll(c2, 5 · 3 · ε,Q2) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}

27 add(c2, 17)
28 {n = 2 ∧ x = Some 7 ∧

iter(i, {(c1, 2 · 3 · 4 · ε, P4), (c2, 5 · 3 · ε,Q2)}, 7 · ε)
∗ (∃Q3. coll(c2, 17 · 5 · 3 · ε,Q3)) ∗ coll(c1, 2 · 3 · 4 · ε, P4)}

In line 1 of this example, we begin in an empty heap. In
line 2, we create a new collection c1, which yields us the state
∃P ′1. coll(c1, ε, P ′1), with an existentially quantified abstract state.

Because P ′1 is existentially quantified, we do not know what
value it actually takes on. However, if we prove the rest of the
program using a freshly-introduced variable P1, then we know that
the rest of the program will work for any value of P1, because free
variables are implicitly universally quantified. So it will work with
whatever value P ′1 had. So we drop the quantifier on line 4, and try
to prove this program with the universally-quantified P1.1

This permits us to add the element 4 to c1 on line 5. Its specifi-
cation puts the predicate coll() on line 6 again into an existentially
quantified state P ′2. So we again replace P ′2 with a fresh variable
P2 on line 7, and will elide these existential introductions and un-
packings henceforth.

In lines 8-9, we add two more elements to c1, and on lines 11-
13, we create another collection c2, and add 3 and 5 to it, as can
be seen in the state predicate on line 14. On line 15, we create the
iterator i1 on the collection c1. The iter predicate on line 16 names
i1 as its value, and lists c1 in state P4 as its support, and promises
to enumerate the elements 2, 3, and 4.

1 A useful analogy is the existential elimination rule in the polymorphic
lambda calculus: we prove that we can use an existential by showing that
our program is well-typed no matter what the contents of the existential are.

On line 17, filter(even?, i1) creates the new iterator i′1. This
iterator yields only the even elements of i1, and so will only yield
2 and 4. On line 18, i1’s iterator state has been consumed to make
i′1’s state. We can no longer call next(i1), since we do not have the
resource invariant needed to prove anything about that call. Thus,
we cannot write a program that would break i′1’s representation
invariant.

On line 19, we create a third iterator i2 enumerating the ele-
ments of c2. The state on line 20 now has predicates for i′1, i2,
c1 and c2. On line 21, map2(plus, i′1, i2) creates a new iterator i,
which produces the pairwise sum of the elements of i′1 and i2, and
consumes the iterator states for i′1 and i2 to yield the state for the
new iterator i. Note that the invariant for i does not make any men-
tion of what it was constructed from, naming only the collections it
needs as support.

On line 23, the size call on c2 illustrates that we can call non-
destructive methods while iterators are active. The call to next(i)
on line 24 binds Some 7 to x, and the the iterator’s sequence
argument (line 27) shrinks by one element. On line 28, we call
add(c2, 17) the state of c2 changes to ∃Q3. coll(c, 17 ·5 ·3 · ε,Q3)
(line 27). So we can no longer call next(i), since it needs c2 to be
in the state Q2.

Discussion. This example shows a pleasant synergy between
higher-order quantification and separation logic. We can give a
relatively simple specification to the clients of the collection library,
even though the internal invariant is quite subtle (as the use of the
magic wand suggests). Higher-order logic also lets us freely define
new data types, and so our specifications can take advantage of
the pure, non-imperative nature of the mathematical world, as can
be seen in the specifications of the filter and map2 functions –
we can use equational reasoning on purely functional lists in our
specifications, even though our algorithms are imperative.

4. The Flyweight and Factory Patterns
The flyweight pattern is a style of cached object creation. Whenever
a constructor method is called, it first consults a table to see if an
object corresponding to those arguments has been created. If it has,
then the preexisting object is returned. Otherwise, it allocates a new
object, and updates the table to ensure that future calls with the
same arguments will return this object. Because objects are re-used,
they become pervasively aliased, and must be used in an immutable
style to avoid surprising updates. (Functional programmers call this
style of value creation “hash-consing”.)

This is an interesting design pattern to verify, for two reasons.
First, the constructor has a memo table to cache the result of
constructor calls, which needs to be hidden from clients. Second,
this pattern makes pervasive use of aliasing, in a programmer-
visible way. In particular, programmers can test two references for
identity in order to establish whether two values are equal or not.
This allows constant-time equality testing, and is a common reason
for using this pattern. Therefore, our specification has to be able to
justify this reasoning.

Below, we specify a program that uses the flyweight pattern to
create and access glyphs (i.e., refs of pairs of characters and fonts)
of a particular font f . We have a function newglyph to create new
glyphs, which does the caching described above, using a predicate
variable I to refer to the table invariant; and a function getdata to
get the character and font information from a glyph.

Furthermore, these functions will be created by a call to another
function, make flyweight, which receives a font as an argument
and will return appropriate newglyph and getdata functions.

Flyweight(I : prop,
newglyph : char→©glyph,
getdata : glyph→©(char × font),

6 2008/11/24

f : font) ≡
1 ∃glyph : glyph× char × font⇒ prop.

2 ∀c, S. {I ∧ chars(S)}
run newglyph(c)
{a : glyph. I ∧ chars({(a, (c, f))} ∪ S)}

and
3 ∀l, c, f, P. {glyph(l, c, f) ∧ P}

run getdata(l)
{a : char × font. glyph(l, c, f) ∧ P ∧ a = (c, f)}

and
4 {∀l, l′, c, c′. I ∧ glyph(l, c, f) ∧ glyph(l′, c′, f ′) ⊃

(l = l′ ⇐⇒ (c = c′ ∧ f = f ′))}
chars(∅) ≡ >
chars({(l, (c, f))} ∪ S) ≡ glyph(l, c, f) ∧ chars(S)

In the opening , we informally parametrize our specification
over the predicate variable I , the function variable newglyph, the
function variable getdata, and the variable f of font type. The
reason we do this instead of existentially quantifying over them will
become clear shortly, once we see the factory function that creates
flyweight constructors.

On line 1, we assert the existence of a three-place predicate
glyph(l, c, f), which is read as saying the glyph value l is a glyph
of character c and font f .

On line 2, we specify the newglyph procedure. Its precondition
says the pre-state must be the private flyweight state I , and that
this state overlaps with the character state for the glyph/data pairs
in S. The definition of chars takes a set of glyph/data pairs and
produces the conjunction of glyph(l, c, f) for all the (l, (c, f)) ∈
S. Running newglyph(c) will yield a postcondition state in which
(a, (c, f)) is added to the set S – that is, the postcondition state is
I ∧ chars(S) ∧ glyph(a, c, f).

The intuition for this specification is that I represents the private
state of the memo table. We use an ordinary conjunction instead of
the separating conjunction in the definition of chars to say that the
different glyphs may alias with each other, and with the private state
I . In other words, even though the newglyph function returns a new
glyph value, the ownership of the state associated with that value is
not transferred – it remains with the constructor. All the client can
know is that some glyph state exists for the value it created, and
that the glyph state is owned by the constructor.

On line 3, we specify the getdata function. If the predicate
glyph(r, c, f) is in the precondition, then getdata(r) will return
(c, f). To enforce the flyweight invariant that the glyph objects
are read-only, we conjoin the pre- and post-conditions with an
arbitrary predicate variable P . Since P must be preserved for any
instantiation, we know that getdata cannot make any changes to
the underlying data. (It might be possible to internalize this style
of argument into the logic via some sort of relational parametricity
proof. However, we have not yet done so.)

Finally, on lines 4, we give an axiom about the interaction
of I and glyph(l, c, f), which says that if we know that I ∧
glyph(l, c, f) ∧ glyph(l′, c′, f ′) holds, then l = l′ holds if and
only c = c′ and f = f ′. This axiom gives clients the ability to
take advantage of the fact that we are caching object creation and
conclude that two calls to newglyph with the same arguments will
yield the same result.

Requiring an axiom of separation hold of the abstract predicates
is how we state reasoning principles about aliasing as part of the
interface of a module. When we verify the implementation, we will
need to give concrete definitions of I and glyph, and show that the
formula is actually a tautology of separation logic.

The specification of the flyweight factory looks like this:

1 ∃make flyweight : font→©((char→©glyph)×
(glyph→©(char × font))).

2 ∀f. {emp}
run make flyweight(f)
{a. ∃I : prop. I ∧ Flyweight(I, fst a, snd a, f) valid}

Here, we assert the existence of a function make flyweight,
which takes a font f as an input argument, and returns two func-
tions to serve as the getchar and getdata functions of the flyweight.
In the postcondition, we assert the existence of some private state
I , which contains the table used to cache glyph creations.

This pattern commonly arises when encoding aggressively
object-oriented designs in a higher-order style — we call a func-
tion, which creates a hidden state, and returns other procedures
which are the only way to access that state. This style of specifica-
tion resembles the existential encodings of objects into type theory.
The difference is that instead of making the fields of an object an
existentially quantified value (?), we make use of existentially-
quantified state.

Below, we define make flyweight and its predicates:

1 make flyweight ≡
λf :font.

2 [letv t = newtable() in
3 letv newglyph =
4 [λc.[letv x = lookup(t, c) in
5 run case(x,None→ [letv r = [newglyph(c, f)] in

6 letv = update(t, c, r) in r],
7 Some r → [r])] in
8 letv getdata = [λr. [!r]] in
9 (newglyph, getdata)]

glyph(r, c, f) ≡ r 7→ (c, f) ∗ >
I ≡ table(t,mapping) ∗ refs(mapping, dom(mapping))

refs(mapping, ∅) ≡ emp
refs(mapping, {c} ∪D) ≡ mapping(c) 7→ (c, f) ∗ refs(f,D)

In this implementation we have assumed the existence of a
hash table implementation with operations newtable, lookup, and
update, whose specifications we omit for space reasons. The
make flyweight function definition takes a font argument f , and
then in its body it creates a new table t. It then constructs two
functions as closures which capture this state (and the argument f)
and operate on it. In lines 4-7, we define newglyph, which takes a
character and checks to see (line 5) if it is already in the table. If it
is not (lines 5-6), it allocates a new glyph reference, stores it in the
table, and returns the reference. Otherwise (line 7), it returns the
existing reference from the table. On lines 8, we define getdata,
which dereferences its pointer argument and returns the result. This
implementation does no writes, fulfilling the promise made in the
specification. The definition of the invariant state I describes the
state of the table t (and mapping), which are hidden from clients.

Observe how the post-condition to make flyweight nests the
existential state I with the validity assertion to specialize the fly-
weight spec to the dynamically created table. Each created fly-
weight factory receives its own private state, and we can reuse spec-
ifications and proofs with no possibility that the wrong getdata will
be called on the wrong reference, even though they have compatible
types.

5. Subject-Observer
The subject-observer pattern is one of the most characteristic pat-
terns of object-oriented programming, and is extensively used in
GUI toolkits. This pattern features a mutable data structure called
the subject, and a collection of data structures called observers
whose invariants depend on the state of the subject. Each observer
registers a callback function with the subject to ensure it remains in

7 2008/11/24

sync with the subject. Then, whenever the subject changes state, it
iterates over its list of callback functions, notifying each observer
of its changed state. While conceptually simple, this is a lovely
problem for verification, since every observer can have a different
invariant from all of the others, and the implementation relies on
maintaining lists of callback functions in the heap.

In our example, we will model this pattern with one type of
subjects, and three functions. A subject is simply a pair, consisting
of a pointer to a number, the subject state; and a list of observer
actions, which are imperative procedures to be called with the
new value of the subject whenever it changes. There is a function
newsub to create new subjects; a function register, which attaches
observer actions to the subject; and finally a function broadcast,
which updates a subject and notifies all of its observers of the
change.

We give a specification for the subject-observer pattern below:

1 ∃sub : As × N× seq ((N⇒ prop)× (N→©1)).
2 ∃newsub : N→©As,
3 ∃register : As × (N→©1)→©1,
4 ∃broadcast : As × N→©1.

5 ∀n. {emp}run newsub(n){a : As. sub(a, n, ε)}
and

6 ∀f,O, s, n, os.(∀i, k.{O(i)}run f(k){a : 1. O(k)})
7 implies {sub(s, n, os)}
8 run register(s, f)
9 {a : 1. sub(s, n, (O, f) · os)}

and
10 ∀s, i, os, k. {sub(s, i, os) ∗ obs(os)}

run broadcast(s, k)
{a : 1. sub(s, k, os) ∗ obs at(os, k)}

obs(ε) ≡ emp
obs((O, f) · os)≡ (∃i. O(i)) ∗ obs(os)
obs at(ε, k) ≡ emp
obs at((O, f) · os, k)≡ O(k) ∗ obs at(os, k)

On line 1 we assert the existence of a three-place predicate
sub(s, n, os). The first argument is the subject s’s whose state
this predicate represents. The second argument n is the data the
observers depend on, and the field os is a sequence of callbacks
paired their invariants. That is, os is a sequence of pairs, consisting
of the observer functions which act on a state, along with the
predicate describing what that state should be.

On lines 2-4, we assert the existence of newsub, register and
broadcast, which create a new subject, register a callback, and
broadcast a change, respectively.

register is a higher order function, which takes a subject and an
observer action its two arguments. The observer action is a function
of type N → ©1, which can be read as saying it takes the new
value of the subject and performs a side-effect. Because register
depends on code, its specification must say how this observer action
should behave. register’s specification on lines 6-9 accomplishes
this via an implication over Hoare triples. It says that if the function
f is a good observer callback, then it can be safely registered with
the subject. Here, a “good callback” f is one that takes an argument
k and sends an observer state to O(k). If this condition is satisfied,
then register(s, f) will add the pair (O, f) to the sequence of
observers in the sub predicate.

broadcast updates a subject and all its interested observers.
The precondition state of broadcast(s, k) requires the subject state
sub(s, n, os), and all of the observer states obs(os). The definition
obs(os) takes the list of observers and yields the separated conjunc-
tion of the observer states. So when broadcast is invoked, it can
modify the subject and any of its observers. Then, after the call, the
postcondition puts the sub predicate and all of the observers in the

same state k. The obs at(os, k) function generates the separated
conjunction of all the O predicates, all in the same state k.

The implementation follows:

1 As ≡ ref N× ref list (N→©1)

2 sub(s, n, os) ≡fst s 7→ n ∗ list(snd s,map snd os) ∧Good(os)

3 Good(ε) ≡ >
4 Good((O, f) · os) ≡ (∀i, k. {O(i)}run f(k){a : 1. O(k)}) valid

∧Good(os)

5 register(s, f) ≡ [letv cell = [!(snd s)] in
6 letv r = [newref list (N→©1)cell] in

7 snd s := Cons(f, r)]

8 broadcast(s, k) ≡
9 [letv dummy = [fst s := k] in loop(k, snd s)]
10 loop(k, list) ≡

[letv cell = [!list] in
11 run case(cell,Nil→ [()],
12 Cons(f, tl)→ [letv dummy = f(k) in
13 run loop(k, tl)])

14 newsub(n) ≡ [letv data = newNn in
15 letv callbacks = newlist (N→©1)Nil in

16 (data, callbacks)]

In line 1, we state concrete type of the subject As is a pair of a
pointer to a reference, and a pointer to a list of callback functions.
(This is not an existential quantifier. Since our language is simply
typed, we have no form of type abstraction and simply use As
as an abbreviation.) On line 2, we define the three-place subject
predicate, sub(s, n, os). The first two subclauses of the predicate’s
body describe the physical layout of the subject, and assert that
the first component of s should point to n, and that the second
component of s should be a linked list containing the function
pointers in os. (The list predicate is described in Section 3, when
we give the definition of the iterator predicates.)

Then we require that os be “Good”. Good-ness is defined on
lines 3 and 4, and says a sequence of predicates and functions is
good when every (O, f) pair in the sequence satisfies the same
validity requirement the specification of register demanded – that
is, that each observer function f update O properly. Note that we
interleave assertions and specifications to constrain the behavior of
code stored in the heap.

Next, we give the implementations of register and broadcast.
register, on lines 5-7, adds its argument to the list of callbacks.
Though the code is trivial, its correctness depends on the fact the
Good predicate holds for the extended sequence — we use the
fact that the argument f updates O properly to establish that the
extended list remains Good.

broadcast, on lines 8-9, updates the subject’s data field (the
first component), and then calls loop (on lines 10-13) to invoke
all the callbacks. loop(k, snd s) just recurs over the list and calls
each callback with argument k. The correctness of this function
also relies on the Good predicate – each time we call one of the
functions in the observer list, we use the hypothesis of its behavior
given in Good(os) to be able to make progress in the proof.

Below, we give a simple piece of client code using this interface.

1 {emp}
2 letv s = newsub(0) in
3 {sub(s, 0, ε)}
4 letv d = newN(0) in
5 letv b = newbool(true) in
6 {sub(s, 0, ε) ∗ d 7→ 0 ∗ b 7→ true}
7 letv () = register(s, f) in
8 {sub(s, 0, (double, f) · ε) ∗ double(0) ∗ b 7→ true}
9 letv () = register(s, g) in
10 {sub(s, 0, (even, g) · (double, f) · ε) ∗ double(0) ∗ even(0)}
11 broadcast(s, 5)

8 2008/11/24

12 {sub(s, 5, (even, g) · (double, f) · ε) ∗ double(5) ∗ even(5)}
13 {sub(s, 5, (even, g) · (double, f) · ε) ∗ d 7→ 10 ∗ b 7→ false}
14 f ≡ λn : N. [d := 2× n]
15 double(n)≡ d 7→ (2× n)
16 g ≡ λx : N. [b := even?(x)]
17 even(n) ≡ b 7→ even?(n)

We start in the empty heap, and create a new subject s on line 2.
On line 4, we create a new reference to 0, and on line 5, we create a
reference to true. So on line 6, the state consists of a subject state,
and two references. On line 7, we call register on the function f
(defined on line 14), which sets d to twice its argument. To the
observer list in sub, we add f and the predicate double (defined
on line 15), which asserts that indeed, d points to two times the
predicate argument. On line 8, we call register once more, this
time with the function g (defined on line 16) as its argument, which
stores a boolean indicating whether its argument was even into the
pointer b. Again, the state of sub changes, and we equip g with
the even predicate (defined on line 17) indicating that b points to
a boolean indicating whether the predicate argument was even or
not. Since d 7→ 0 and b 7→ true are the same as double(0) and
even(0), so we can write them in this form on line 10. We can now
invoke broadcast(s, 5) on line 11, and correspondingly the states
of all three components of the state shift in line 12. In line 13, we
expand double and even to see d points to 10 (twice 5), and b
points to false (since 5 is odd).

Discussion. One nice feature of the proof of the subject-
observer implementation is that the proofs are totally oblivious
to the concrete implementations of the notification callbacks, or
to any details of the observer invariants. Just as existential quan-
tification hides the details of a module implementation from the
clients, the universal quantification in the specification of register
and broadcast hides all details of the client callbacks from the
proof of the implementation – since they are free variables, we are
unable to make any assumptions about the code or predicates be-
yond the ones explicitly laid out in the spec. Another benefit of the
passage to higher-order logic is the smooth treatment of observers
with differing invariants; higher-order quantification lets us store
and pass formulas around, making it easy to allow each callback to
have a totally different invariant.

6. Ynot Experiments
In this section we give a brief description of our experiments with
translating the design pattern specifications and implementations
from the earlier sections into Hoare Type Theory (HTT) and veri-
fying them in the Ynot implementation of HTT. More details can
be found in the technical report (27).

These experiments serve to (1) increase our confidence in the
earlier given specifications and implementations and their associ-
ated paper proofs; (2) provide a starting point for a comparison of
the specification logic of the present paper and the Ynot type the-
ory; (3) exercise the Ynot implementation.

Ynot is an axiomatic extension to the Coq proof assistant, that
supports writing, reasoning about, and extracting higher-order,
dependently-typed programs with side-effects (16). Coq already
includes a powerful functional language that supports dependent
types, but that language is limited to pure, total functions. Ynot
extends Coq with support for computations that may have effects
such as non-termination, accessing a mutable store, and throw-
ing/catching exceptions. The axioms of Ynot form a small trusted
computing base which has been formally justified in previous work
on Hoare Type Theory (HTT) (14; 12; 21).

As in the specification logic described in the earlier sections,
Ynot also makes use a monads, to ensure a monadic separation

of effects and pure Coq. In Ynot specifications are types and one
of the types is the monadic type of computations {P}x : τ{Q};
if a computation has this type and it is run in a heap i satisfying
P and it terminates, then it will produce a value x of type τ and
result in a new heap j such that the predicateQ(i, j) holds. Loosely
speaking, we may thus think of Ynot as a type theory corresponding
to the specification logic for Idealized ML presented earlier under
a Curry-Howard style correspondence. Following this intuition, we
have experimented with translating the earlier described design
pattern specifications and implementations into Ynot and formally
verified them in Ynot. We now describe the translations and the
lessons learned.

Note first, however, that in Ynot post-conditions are expressed
in terms of both the initial and the final heap. This is an alternative
to the use of logical variables as expressed by universally quantify-
ing over variables whose scope extends to both the pre- and post-
condition. We can thus translate an Idealized ML specification,

∀x : τ. {P (x)} comp {a : 1. Q(x)}

into the following Ynot type

{λi : heap. ∃x : τ. P x i}
a : 1

{λi : heap. λj : heap. ∀x : τ. P x i→ Q x j}

where i is the initial heap and j is the terminal heap. We will usually
abbreviate this type as follows:

{i. ∃x. P x i} a : 1 {i j. ∀x. P x i→ Q x j}

6.1 Flyweight in Ynot
Besides Hoare triples, Idealized ML’s specification language con-
tains specifications of the form {P}, for asserting that P is true.
In the flyweight specification this is used to express that calling
getdatawith the same character multiple times, produces the same
reference. In HTT we can express that a proposition P is true by
returning an element of the subset type, {x : 1 | P}, where x is not
free in P .

The assertion language of Idealized ML also contains an expres-
sion for asserting that a given specification holds. In the Flyweight
specification this is used in the post-condition ofmake flyweight,
to assert that the code returned implements a Flyweight. In HTT,
we can express the same by simply giving a more precise type for
the return value of the make flyweight computation.

In the Ynot implementation, we have generalized the specifica-
tion, such that the computation can generate a flyweight for values
of an arbitrary monotype. The flyweight factory computation there-
fore also has to take as an argument, a function, αeq , for deciding
equality between α values.

The rest of the specification can be translated almost directly
into HTT, however, we have made a few changes, to simplify the
formal verification of the implementation in Ynot.

• In the specification of newchar, instead of using a set to as-
sociate arguments with objects, we have used a partial function
(i.e., a total function from α to option loc).
• In the above specification the predicate I has to specify the rep-

resentation of both the object table and the objects. We have
split I into two predicates, table and refs, and changed the
precondition of newchar to the HTT equivalent of table(...) ∗
(refs(...)∧ chars(S)), to make it explicit that the object table
and the objects are in separate subheaps, to simplify verifica-
tion.

9 2008/11/24

The final HTT type of the Flyweight factory thus looks as follows:
Πα : mono. Παeq : (Πx : α. Πy : α. {z : 1 | x = y}+ {z : 1 | x 6= y}).
{i. emp i}
r : Σtable : (α→ option loc)→ heap→ Prop.

Σrefs : (α→ option loc)→ heap→ Prop.

Σobjat : loc→ α→ heap→ Prop.

Σprf1 : {x : 1 | ∀h, l, l′, a, a′, f. objat l a h ∧ objat l′ a′ h ∧
refs f h→ (l = l′ ↔ a = a′)}.

Πa : α.

{i. ∃f. (table f ∗ (λh. allobjat(α, objat, f, h) ∧ refs f h)) i}
l : loc

{i j. ∀f. (table f ∗ (λh. allobjat(α, objat, f, h) ∧ refs f h)) i→
((∀l′. f a = Some l′ → l = l′) ∧
(table f [a 7→ l] ∗ (λh. allobjat(α, objat, f [a 7→ l], h) ∧

refs f [a 7→ l] h)) j)} ×
Πl : loc.

{i. ∃a : α, objat l a i}
r : α

{i j. ∀a : α, objat l a i→ (i = j ∧ r = a)}
{i j. ((fst r) [] ∗ (λh. allobjat(α, fst (snd (snd r)), [], h) ∧

(fst (snd r)) [] h)) j}

where

allobjat(α, objat, f, h) ≡ ∀l : loc, o : α. f o = Some l →
(objat l o ∗ (λh. True)) h

and [] ≡ (λx. None).
We were able to formally verify that the earlier given implemen-

tation of the Flyweight pattern has the above type in Ynot.2

6.2 Iterators in Ynot
The translation of the Iterator specification and implemenation and
the formal verification in Ynot was straightforward, except for the
verification of next, when the iterator is a Map2.3 In that case, the
implementation makes two recursive calls to next that each work
on two subheaps of the initial heap and the current Ynot imple-
mentation based on the nextvc tactic (see (16)) for simplifying
proof obligations forces one to prove some preciseness properties
because of the use of binary post-conditions. It is unclear whether
the preciseness problem encountered is a limitation of binary post-
conditions in general or the current Ynot implementation; we think
it is the latter. We did not finish the proof for next in this case, ei-
ther with or without nextvc (without nextvc the proof became too
long for us to finish by hand). New versions of Ynot should provide
better tactic support for such examples. We did succeed in complet-
ing the formal verification of the iterator pattern without the Map2
iterator.

6.3 Subject-Observers in Ynot
The Idealized ML implementation of the subject-observer pattern
uses an assertion S valid in the predicate good to express that
callback functions are ”good”. HTT does not support this form of
assertion. However, since specifications are types, we can express
the type of pairs of (O, f) such that f is a good call function with
respect to the predicate O with the following type:
T ≡ ΣO : N→ heap→ Prop.

(Πm : N. {i. ∃k : N. O k i} a : 1 {i j. ∀k : N. O k i→ O m j})

2 The Coq script was 780 lines long.
3 The Coq script was 2122 lines long.

Hence, we can restrict the quantification of os in the specification
of broadcast and register to lists of good callback functions,
list T . We can thus express the subject-observer pattern with the
following HTT type:
Σα : Type. Σsub : α× N× list T → heap→ Prop.

Πn : N. {i. emp i}a : α{i j. sub (a, n, []) j} ×
Πa : α. Πt : T.

{i. ∃n : N, os : list T.sub (a, n, os) i}
r : 1

{i j. ∀n : N, os : list T. sub (a, n, os) i→ sub (a, n, t :: os) j} ×
Πa : α. Πm : N.
{i. ∃n : N, os : list T. (sub (a, n, os) ∗ obs os) i}
r : 1

{i j. ∀n : N, os : list T. (sub (a, n, os) ∗ obs os) i
→ (sub (a,m, os) ∗ obs at (os,m)) j}

In the Idealized ML implementation of the subject-observer, the
registered callback functions are stored in the heap. Since types and
specifications are separate in Idealized ML, the type of these com-
putations can be very weak, i.e., N → ©1, because the specifica-
tion language allows us to express that if these are ”good” callback
functions then the broadcast computation will do a broadcast when
performed. In HTT there is no separate specification language, so
these callback functions have to be stored with a much stronger
type, so that it is possible to infer from their type that they are
”good” callback functions when they are retrieved from the heap.4

Ynot is based on the predicative version of HTT(14) in which
dependent sums are predicative, i.e., for Σx : A.B to be a mono-
type, both A and B have to be monotypes. Since the type of heaps
in Ynot is defined as a subset of the type N × Σα : mono.α and
mono is not a monotype, it follows that the T type above is not
a monotype either and that values of type T cannot be stored in
the heap. It is thus unclear whether it is possible to give an imple-
mentation of the above type in Ynot; the obvious attempt leads to
a universe inconsistency error in Coq, reflecting the predicativity
issues just discussed.

The impredicative version of HTT (21) has an impredicative
sum type, ΣTx : A.B, which is a monotype if B is. Hence, in the
impredicative version of HTT, we can store values of type T , by
using impredicative sums. We conjecture that the implementation
derived from translating the Idealized ML implementation has the
above type in impredicative HTT.

7. Related Work
The proof system is a synthesis of O’Hearn and Reynolds’s (25)
work on separation logic, with Reynolds’s system of specification
logic (24) for Algol, which introduced the idea of turning Hoare
triples into the atomic formulas of a program logic. Birkedal, Bier-
ing, and Torp-Smith (3) first extended separation logic to higher-
order.

Parkinson developed a version of separation logic for Java in his
doctoral dissertation (17). His logic does not have a notion of im-
plications over specifications, instead using behavioral subtyping to
determine what specification dynamically dispatched method calls
could have. Parkinson and Bierman have also introduced a notion
of abstract predicate family (19) related to the higher-order quan-
tification of Birkedal et al.

4 In the technical report (27) we discuss an alternative translation into HTT
based on the idea that implications between specifications in Idealized
ML should be translated into function types in HTT, but that leads to an
implementation that does not capture subject-observer pattern because it
essentially results in a functional implementation.

10 2008/11/24

In addition to systems based on separation, there is also a line of
research based on the concept of object invariants and ownership.
The Java modeling language (JML) (9) and the Boogie methodol-
ogy (1) are two of the most prominent systems based on this re-
search stream. In Boogie, each object tracks its owner object with
a ghost field, and the ownership discipline enforces that the heap
have a tree structure. This allows the calculation of frame proper-
ties without explosions due to aliasing, even though the specifica-
tion language remains ordinary first-order logic.

In his dissertation, Parkinson gave as an example a simple it-
erator protocol, lacking the integration with composites we have
exhibited. Subsequently, we formalized a similar account of iter-
ators (7), again lacking the integration with composites. Jacobs,
Meijer, Piessens and Schulte (5) extend Boogie with new rules for
the coroutine constructs C# uses to define iterators. Their solution
typifies the difficulties ownership-based approaches face with itera-
tors, which arise from the fact that iterators must have access to the
private state of a collection but may have differing lifetimes. This
work builds on Barnett and Naumann’s generalization of owner-
ship to friendship (2), which allows object invariants to have some
dependency on non-owned objects.

The subject-observer pattern has been the focus of a great deal
of effort, given its prominence in important applications. Simulta-
neously with our own initial formulation, Parkinson gave an ex-
ample of verifying the subject-observer protocol (18). Recently,
Parkinson and Distefano (20) have implemented a tool to verify
these programs, and have demonstrated several examples includ-
ing a verification of a subject-observer pattern specified along these
lines. The tool includes automatic generation of loop invariants.

The work of Barnett and Naumann is also capable of reason-
ing about the subject-observer pattern, but only if all of the pos-
sible observers are known at verification. Leino and Schulte (10)
made use of Liskov and Wing’s concept of history invariants or
monotonic predicates (11) to give a more modular solution. More
recently, Shaner, Naumann and Leavens (26) gave a “gray-box”
treatment of the subject-observer pattern. Instead of tracking the
specifications of the observers in the predicate, they give a model
program that should approximates the behavior of any actual noti-
fication method.

Pierik, Clarke and de Boer (23) formalize another extension to
the Boogie framework which they name creation guards, specif-
ically to handle flyweights. They consider flyweights an instance
of a case where object invariants can be invalidated by the alloca-
tion of new objects, and add guards to their specifications to control
allocation to the permitted cases.

Acknowledgments
This work was supported in part by NSF grant CCF-0541021, NSF
grant CCF-0546550, DARPA contract HR00110710019, and the
United States Department of Defense.

References
[1] M. Barnett, K. Leino, and W. Schulte. The Spec# Programming

System: An Overview. Proceedings CASSIS 2004, 2005.

[2] M. Barnett and D. Naumann. Friends Need a Bit More: Maintaining
Invariants Over Shared State. Mathematics of Program Construction
(MPC), 2004.

[3] B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines,
higher-order separation logic, and abstraction. ACM TOPLAS,
29(5):24, 2007.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Long-
man Publishing Co., Inc. Boston, MA, USA, 1995.

[5] B. Jacobs, E. Meijer, F. Piessens, and W. Schulte. Iterators revisited:
Proof rules and implementation. Proceedings FTfJP, 2005.

[6] N. Kokholm. An extended library of collection classes for .NET.
Master’s thesis, IT University of Copenhagen, Copenhagen, Denmark,
2004.

[7] N. R. Krishnaswami. Reasoning about iterators with separation logic.
In SAVCBS ’06, pages 83–86, New York, NY, USA, 2006. ACM.

[8] N. R. Krishnaswami. The semantics of higher-order separation logic
for a higher-order language. Technical report, Carnegie Mellon Uni-
versity, 2008.

[9] G. Leavens, A. Baker, and C. Ruby. JML: a Java modeling language.
Formal Underpinnings of Java Workshop (at OOPSLA’98), 1998.

[10] K. R. M. Leino and W. Schulte. Using history invariants to verify
observers. In European Symposium on Programming (ESOP), pages
80–94. Springer, 2007.

[11] B. H. Liskov and J. M. Wing. Behavioural subtyping using invariants
and constraints. In Formal Methods for Distributed Processing: a
Survey of Object-Oriented Approaches, pages 254–280. Cambridge
University Press, New York, NY, USA, 2001.

[12] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract Pred-
icates and Mutable ADTs in Hoare Type Theory. In In Proceedings
of European Symposium on Programming’07, volume 4421 of Lecture
Notes in Computer Science, pages 189–204. Springer, 2007.

[14] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separa-
tion in Hoare Type Theory. In In Proceedings of International Confer-
ence on Functional Programming’06, pages 62–73, Portland, Oregon,
2006.

[16] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: Reasoning with the awkward squad. In In Proceedings of
International Conference on Functional Programming’08, 2008.

[17] M. Parkinson. Local Reasoning for Java. PhD in Computer Science,
University of Cambridge, August 2005.

[18] M. Parkinson. Class invariants: The end of the road. Proceedings
IWACO, 2007.

[19] M. Parkinson and G. Bierman. Separation logic and abstraction.
SIGPLAN Not., 40(1):247–258, 2005.

[20] M. Parkinson and D. Distefano. jstar: Towards practical verification
for java. In OOPSLA, 2008, to appear.

[21] R. L. Petersen, L. Birkedal, A. Nanevski, and G. Morrisett. A realiz-
ability model for impredicative Hoare Type Theory. In In Proceedings
of European Symposium on Programming’08, 2008.

[22] F. Pfenning and R. Davies. A judgmental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11(4):511–540,
2001.

[] B. C. Pierce and D. N. Turner. Statically typed friendly functions via
partially abstract types. Technical Report ECS-LFCS-93-256, Uni-
versity of Edinburgh, LFCS, Apr. 1993. Get by anonymous ftp from
ftp.dcs.ed.ac.uk in pub/bcp/friendly.ps.Z. Also available
as INRIA-Rocquencourt Rapport de Recherche No. 1899.

[23] C. Pierik, D. Clarke, and F. de Boer. Creational Invariants. Proceed-
ings FTfJP, 2004.

[24] J. C. Reynolds. An introduction to specification logic. In Proceedings
of the Carnegie Mellon Workshop on Logic of Programs, page 442,
London, UK, 1984. Springer-Verlag.

[25] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Logic in Computer Science (LICS 2002), pages 55–74.
IEEE Computer Society, 2002.

[26] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular verification
of higher-order methods with mandatory calls specified by model
programs. In R. P. Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S.
Jr., editors, OOPSLA, pages 351–368. ACM, 2007.

[27] K. Svendsen, A. Buisse, and L. Birkedal. Verifying design patterns in
Hoare Type Theory. Technical Report ITU-TR-2008-112, IT Univer-
sity of Copenhagen, sep 2008.

11 2008/11/24

