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We contribute the first denotational semantics of polymorphic dependent type theory extended by an equational

theory for general (higher-order) reference types and recursive types, based on a combination of guarded

recursion and impredicative polymorphism; because our model is based on recursively defined semantic worlds,

it is compatible with polymorphism and relational reasoning about stateful abstract datatypes. We then extend

our language with modal constructs for proof-relevant relational reasoning based on the logical relations as

types principle, in which equivalences between imperative abstract datatypes can be established synthetically.

Finally we decompose our store model as a general construction that extends an arbitrary polymorphic call-

by-push-value adjunction with higher-order store, improving on Levy’s possible worlds model construction;

what is new in relation to prior typed denotational models of higher-order store is that our Kripke worlds

need not be syntactically definable, and are thus compatible with relational reasoning in the heap. Our work

combines recent advances in the operational semantics of state with the purely denotational viewpoint of

synthetic guarded domain theory.

CCS Concepts: • Theory of computation→ Type theory; Abstraction; Categorical semantics; Denota-
tional semantics.

1 INTRODUCTION
The combination of parametric polymorphism and general reference types in denotational semantics

is notoriously difficult, though neither feature presents any serious difficulties on its own.

(1) Parametric polymorphism can be modelled in a complete internal category à la Hyland

[1988]; for instance, the category of partial equivalence relations has “large” products over

the category of assemblies, which contains the assembly of all partial equivalence relations.

(2) General reference types can be modeled via a Kripke world-indexed state monad, where

the worlds assign syntactic types to locations in the heap, as in the possible worlds model

of thunk storage by Levy [2002, 2003a].

The two techniques described above are not easily combined: in order to support parametric

reasoning in the presence of reference types, it is necessary at a minimum for the Kripke worlds to

assign semantic types to locations rather than only syntactic types. But a semantic type should

itself be a family of (sets, predomains, etc.) indexed in Kripke worlds; thus one attempts to solve a

domain equation of that defines a preorderW of Kripke worlds simultaneously with the category

of functors [Oles 1986; Reynolds 1981] fromW to the category of predomains:

W � Loc ⇀fin. SemType SemType � [W, Predomain] (∗)

There are already a few problems with the “domain equation” presented above. For one, the

collection of predomains is not itself a predomain, but it could be replaced by the domain of finitary

projections of some universal domain [Coquand et al. 1994]. The more fundamental problem is

that it remains unclear how to interpret type connectives on SemType; for instance, Birkedal et al.
[2010, §5] provide an explicit counterexample to demonstrate that a naïve interpretation of the

reference type cannot coexist with recursive types in the presence of semantic worlds.
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1.1 Step-indexing and guarded domain theory
The difficulties outlined above have been side-stepped by the introduction of step-indexing [Ahmed

2004; Appel et al. 2007] and its semantic counterpart metric/guarded domain theory [America and

Rutten 1987; Birkedal et al. 2011b; Rutten and Turi 1992], which proceed by stratifying recursive

definitions in their finite approximations. This stratification was axiomatized by Birkedal et al.

[2011a] in synthetic guarded domain theory / SGDT via the later modality ▶ : 𝒮 𝒮 which

comes equipped with a point next : id𝒮 ▶; the standard model of SGDT is the topos of trees

𝒮 = Pr𝜔 where the later modality is defined like so:

(▶𝐴)𝑛 = lim←−−𝑘<𝑛𝐴𝑘 next𝑛
𝐴
𝑥 = 𝑘 ↦→ 𝑥 |𝑘

In the setting of SGDT, any recursive definition has a unique fixed point if its recursive variables

are guarded by an application of ▶. In categorical terms, 𝒮 is algebraically compact with respect to

locally contractive endofunctors. Letting U be a type universe in a model 𝒮 of synthetic guarded

domain theory, it is easy to solve the following approximate domain equation:

W � Loc ⇀fin. ▶SemType SemType � [W,U]

The preorderW of Kripke worlds and the collection of semantic types SemType both exist as

objects of𝒮; it is even possible to define a suitable connective ref : SemType SemType. We may

also define an indexed type of heaps H : W→ U; unfortunately it is quite unclear to define the

indexed state monad for H as a connective on SemType. For instance, the standard definition of

the indexed state monad [Levy 2004; Plotkin and Power 2002; Power 2011] runs into obvious size

problems given that SemType ∉ U and thusW ∉ U:

T𝐴𝑤 =
∏

𝑤′≥𝑤 H𝑤
′ → ∑

𝑤′′≥𝑤′ H𝑤
′′ ×𝐴𝑤 ′′ (∗)

Indeed, the definition above cannot be executed in the standard model 𝒮 = Pr𝜔 when U is

the Hofmann–Streicher lifting of a Grothendieck universe from Set. This problem is side-stepped

in operational models, where U is replaced by a set of predicates on syntactical expressions of

the programming language being modeled and T is defined by a guarded version of weakest

preconditions as in Birkedal et al. [2011a]:

T𝐴𝑤 = {𝑢 ∈ Val | ∀𝑤 ′ ≥ 𝑤,ℎ ∈ H𝑤 ′ .wp(𝑤 ′, ℎ,𝑢 ()){(𝑤 ′′, ℎ′, 𝑣) ↦→ 𝑣 ∈ 𝐴𝑤 ′′}}
wp(𝑤,ℎ, 𝑒){Φ} = (𝑒 ∈ Val ∧ Φ(𝑤,ℎ, 𝑒)) ∨ ∃𝑤 ′, ℎ′, 𝑒′ .(ℎ; 𝑒) ↦→ (ℎ′; 𝑒′) ∧ ▶wp(𝑤 ′, ℎ′){Φ}

Operational methods worked in 𝒮 only because the set of predicates is a complete lattice: we

may compute the join and intersection of arbitrarily large families of predicates. This observation

will ultimately form the basis for our own non-operational solution; rather than giving up on

denotations, we will work in a different model of synthetic guarded domain theory that contains an

impredicative universe U, i.e. one closed under universal and (thus) existential types à la System F;

then we can define the indexed state monad as follows without encountering size problems:

T𝐴𝑤 =∀𝑤′≥𝑤H𝑤
′ →∃𝑤′′≥𝑤′H𝑤

′′ ×𝐴𝑤 ′′

This approach raises the question: does there in fact exist a model of synthetic guarded domain

theory with an impredicative universe? We answer in the affirmative, constructing a model in

presheaves on a well-founded order internal to a realizability topos [van Oosten 2008]. Our model

of SGDT is thus an instance of the relative-topos-theoretic generalization of synthetic guarded

domain theory introduced by Palombi and Sterling [2022].
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1.2 This paper: impredicative guarded dependent type theory with reference types
Our denotational model of higher-order store was immediately suited for generalization to depen-

dent types; this scalability is one of many advantages our abstract category-theoretic methods.

Justified by this model, we have defined Impredicative Guarded Dependent Type Theory (iGDTT)
and its extension with general reference types (iGDTTref

) and their equational theory.

iGDTTref
is the first language to soundly combine “full-spectrum” dependently typed program-

ming and equational reasoning with both higher-order store and recursive types. The necessity of

semantics for higher-order store with dependent types is not hypothetical: both Idris 2 and Lean 4

are dependently typed, higher-order functional programming languages [Brady 2021; De Moura

and Ullrich 2021] that feature a Haskell-style IO monad with general IORef types [Jones 2001], but

until now these features have had no semantics. In fact, our investigations have revealed a subtle

problem in the IO monads of both Idris and Lean: as higher-order store is inherently impredicative,

it does not make sense to close multiple nested universes under the IO monad [Coquand 1986].

Many real-world examples require one to go beyond simple equational reasoning; to this end, we

defined an extension iGDTTref
lrat

with constructs for synthetic, proof-relevant relational reasoning

for data abstraction and weak bisimulation based on the logical relations as types (LRAT) principle
of Sterling and Harper [2021], which axiomatizes a generalization of the parametricity translation

of dependent type theory [Bernardy et al. 2012; Bernardy and Moulin 2012].

1.3 Discussion of related work
1.3.1 Operational semantics of higher-order store. The most thoroughly developed methods for giv-

ing semantics to higher-order store are based on operational semantics [Ahmed 2004]; accompanying

the operational semantics of higher-order store is a wealth of powerful program logics for modu-

lar reasoning about higher-order effectful and even concurrent programs based on higher-order

separation logic [Bizjak and Birkedal 2018; Jung et al. 2018; Svendsen and Birkedal 2014].

We are motivated to pursue denotations for three reasons. First, denotational methods are

amenable to the use of general theorems from other mathematical fields to solve difficult domain

problems, whereas operational methods tend to require one to solve every problem “by hand”

without relying on standard lemmas. Secondly, a good denotational semantics tends to simplify

reasoning about programs, as the exponents of the DeepSpec project have argued [Xia et al. 2019].

Finally and most profoundly, there is an emerging need to program directly with actual spaces, as in

differentiable and probabilistic programming languages [Abadi and Plotkin 2019; Vákár et al. 2019].

Although operational and denotational semantics are different in both purpose and technique,

there is nonetheless a rich interplay between the two traditions. First of all, the idea of step-indexing

and its approximate equational theory lies at the heart of our denotational semantics; second, the

wealth of results in operationally based models and program logics for higher-order store suggest

several areas for future work in our denotational semantics. For instance, it would be interesting to

rebase a program logic such as Iris atop our synthetic denotational model; likewise, operationally

based works such as those of Ahmed et al. [2009]; Dreyer et al. [2010] suggest many improvements

to our notion of semantic world to support richer kinds of correspondence between programs.

1.3.2 Denotational semantics of state. There is a rich tradition of denotational semantics of state,

ranging from a single reference cell [Moggi 1991] to first-order store [Plotkin and Power 2002] and

storage of pointers [Kammar et al. 2017], and even higher-order store with syntactic worlds [Levy

2004]. None of these approaches is compatible with relational reasoning for polymorphic/abstract

types, as they all rely on the semantic heap being classified by syntactically definable types.
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Untyped metric semantics and approximate locations. A somewhat different untyped approach

to the denotational semantics of higher-order store with recursive types and polymorphism was

pioneered by Birkedal et al. [2010] in which one uses metric/guarded domain theory to define a

universal domainD, and then develops a model of System Fref𝜇 in predicates onD. Because predicates
form a complete lattice, it is possible to interpret the state operations as we have discussed in

Section 1.1. An important aspect of this class of models is the presence of approximate locations,

which op. cit. have shown to be non-optional.
1

Comparison. Our own model resembles a synthetic version of that of Birkedal et al. [2010],

but there are some important differences. Our model is considerably more abstract and more

general than that of op. cit.; whereas Birkedal et al. must solve a very complex metric domain

equation to construct a universal domain, we may use the realizability topos generated by any

partial combinatory algebra, and thus we do not depend on any specific choice of universal domain.

Moreover, we argue that ours is a typed model: we depend only on the combination of guarded

recursion and an impredicative universe, and although the principle source of such structures

is realizability on untyped partial combinatory algebras [Lietz and Streicher 2002], we do not

depend on any of the details of realizability. Because of the generality and abstractness of our model

construction, scaling up to full dependent type theory has offered no resistance.

1.3.3 Higher-order store in Impredicative Hoare Type Theory. Realizability models of impredicative

type theory have been used before to give a model of so-called Impredicative Hoare Type Theory

(iHTT), an extension of dependent type theory with a monadic “Hoare” type for stateful compu-

tations with higher-order store [Svendsen et al. 2011]. However, in contrast to our monadic type

in iGDTTref
, iHTT does not support equational reasoning about computations: all elements of a

Hoare type are equated and one can only reason via the types. Moreover, the Hoare type in op. cit.

only supports untyped locations with substructural reference capabilities that change as the heap

evolves (the so-called “strong update”); thus non-Hoare types are not indexed in worlds.

1.3.4 Linear dependent type theory. Another approach to the integration of state into dependent

type theory is contributed by Krishnaswami et al. [2015], who develop an adjoint linear–non-linear

dependent type theory LNLd with a realizability model in partial equivalence relations. Like iHTT,
the theory of op. cit. uses capabilities for references with strong update; unlike iHTT, the account
of store in LNLd enjoys a rich equational theory. What is missing from LNLd is any account of

general recursion, which normally arises from higher-order store via backpatching or Landin’s

Knot; indeed, LNLd carefully avoids the general recursive aspects of higher-order store via linearity.
One of the main advances of our own paper over both iHTT and LNLd is to model a dependently

typed equational theory for full store with general recursion.

1.3.5 Effectful dependent type theory. We have not attempted any non-trivial interaction between

computational effects and the dependent type structure of our language, in contrast to the work

of Pédrot and Tabareau [2019] on dependent call-by-push-value: our iGDTTref
language can be

thought of as a purely functional programming language extended with a monad for stateful

programming with Haskell-style IORefs.
Our polymorphic call-by-push-value (cbpv) decomposition of the store model is mainly inspired

by the work of Vákár [2017] on dependently typed generalizations of Levy’s adjunction models of

cbpv [Levy 2003b]. Our work is also closely related to the syntactical account of dependent cbpv

by Pédrot and Tabareau [2019], but it is not directly comparable as op. cit. have focused mainly on

1
Indeed, even in our own model the presence of approximate locations can be detected using Thamsborg’s observation on

the correspondence between metric and ordinary domain theory [Thamsborg 2010, Ch. 9].
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a syntactic weaning translation that tracks the Eilenberg–Moore algebra models of cbpv, whereas

our own model is not of this form. We expect, however, that our model would be related in some

form to the forcing translation of op. cit.

1.4 Structure and contributions of this paper
Our contributions are as follows:

• In Section 2 we introduce impredicative guarded dependent type theory (iGDTT)
as a user-friendly metalanguage for the denotational semantics of languages involving

polymorphism, general reference types and recursive types. In Section 2.4 as a case study,

we construct a simple denotational model of Monadic System Fref𝜇 , a language with general

reference types, polymorphic types, and recursive types in iGDTT. Finally in Section 2.5
we describe our Coq library for iGDTT in which we have formalized the higher-order state

monad and reference types.

• In Section 3 we describe iGDTTref
, an extension of iGDTT with general reference types

and a monad for higher-order store. iGDTTref
is thus a full-spectrum dependently typed

programming language with support for higher-order effectful programming. To illustrate

the combination of higher-order store with dependent types, we define and prove the

correctness of an implementation of factorial defined via Landin’s knot / backpatching.
• In Section 4we describe iGDTTref

lrat
, an extension of iGDTTref

with constructs for synthetic

proof-relevant relational reasoning based on the logical relations as types principle [Ster-
ling and Harper 2021]. iGDTTref

lrat
can be used to succinctly exhibit bisimulations between

higher-order stateful computations and abstract data types, which we demonstrate in two

case studies involving imperative counter implementations (Sections 4.3 and 4.4).

• In Section 5, we describe general results for constructing models of iGDTT and iGDTTref
lrat

,

with concrete instantiations given by a combination of realizability and internal presheaves.

The results of this section justify the consistency of iGDTTref
lrat

as a language for relational

reasoning about higher-order stateful computations.

• In Section 6 we decompose our model of higher-order store as a generic model construc-
tion that applies to any polymorphic adjunction model of call-by-push-value. Thus our

model of higher-order store can be combined modularly with other computational effects,

extending the result of Levy [2003b] for monomorphic higher-order store and syntactic

worlds to the more difficult case of polymorphism and semantic worlds.

• In Section 7 we conclude with some reflections on directions for future work.

2 IMPREDICATIVE GUARDED DEPENDENT TYPE THEORY
In this section we describe an extension of guarded dependent type theory with an impredicative

universe; guarded dependent type theory is a dependently typed interface to synthetic guarded

domain theory. The purpose of this impredicative guarded dependent type theory (iGDTT) is to
serve as ametalanguage for the denotational semantics of programming languages involving general

reference types, just as ordinary guarded dependent type theory can be used as a metalanguage for

denotational semantics of programming languages with recursive functions [Paviotti et al. 2015]

and recursive types [Møgelberg and Paviotti 2016].

2.1 Universe structure: quantifiers and reflection
The core iGDTT language is modelled off of Martin-Löf type theory with a pair of impredicative

base universes (P ⊆ U) ∈ V0 ∈ V1 ∈ . . ., as in the version of the calculus of inductive constructions
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with impredicative Set.
2
The universes U,V𝑖 are closed under dependent products, dependent sums,

finite enumerations [𝑛], inductive types (W-types), and extensional equality types with equality

reflection. We assert that P is both proof-irrelevant and univalent, and moreover closed under

extensional equality types. Proof-irrelevance means that for any 𝑃 : P and 𝑝, 𝑞 : 𝑃 we have 𝑝 = 𝑞;

univalence means that if 𝑃 ↔ 𝑄 then 𝑃 = 𝑄 .3

What makes U, P impredicative is that we assert an additional connective for universal types

with abstraction, application, 𝛽-, and 𝜂-laws.

impredicativity

S ∈ {U, P} 𝐴 : V𝑖 𝑥 : 𝐴 ⊢ 𝐵𝑥 : S

∀𝑥 :𝐴
𝐵𝑥 : S

The universal type automatically gives rise to an impredicative encoding of existential types. The

naïve encoding∃𝑥 :𝐴 𝐵𝑥 ≜
∗ ∀𝐶 :S

(∀𝑥 :𝐴
(𝐵𝑥 → 𝐶)

)
→ 𝐶 does not in fact have the correct universal

property as its 𝜂-law holds only up to parametricity, but we may use the method of Awodey et al.

[2018] to define a correct version of the existential type. It will be simplest to do so in two steps:

first define the reflection ∥−∥S : V𝑖 → S, and then apply this reflection to the dependent sum.

Theorem 2.1. The inclusion S V𝑖 has a left adjoint ∥−∥S : V𝑖 → S.

Proof. For reasons of space, we give only the definition of ∥−∥S. The reflection is constructed in

two steps; first we define the “wild” reflection |−|S : V𝑖 → S by an impredicative encoding, which

is unfortunately too unconstrained to have the universal property of the left adjoint:

|−|S : V𝑖 → S
|𝐴|S ≜∀𝐶 :S (𝐴→ 𝐶) → 𝐶

We therefore constrain |𝐴|S by a naturality condition, encoded as a structure ok𝐴 : |𝐴|S → S
defined using universal and equality types like so:

ok𝐴 : |𝐴|S → S
ok𝐴𝛼 ≜∀𝐶,𝐷 :S∀𝑓 :𝐶→𝐷∀ℎ:𝐴→𝐶

𝛼 𝐷 (𝑓 ◦ ℎ) = 𝑓 (𝛼 𝐶 ℎ)
∥−∥S : V𝑖 → S
∥𝐴∥S ≜

∑
𝛼 : |𝐴 |S ok𝐴𝛼

This completes the construction of the reflection. □

We will write pack : 𝐴→ ∥𝐴∥S for the unit of the reflection; via the universal property of the

adjunction, maps into types classified by S can be defined by pattern matching, e.g. let pack𝑥 =

𝑢 in 𝑣 ; by virtue of the constraint ok𝐴, these destructuring expressions satisfy a desirable 𝜂-law.

With the reflection in hand, it is possible to give a correct encoding of the existential type:

𝐴 : V𝑖 𝑥 : 𝐴 ⊢ 𝐵𝑥 : S

∃𝑥 :𝐴 𝐵𝑥 ≜
∑

𝑥 :𝐴 𝐵𝑥

S

The naïve impredicative encoding would have worked for P because it is already proof-irrelevant;
but for uniformity, we present the reflections for P,U simultaneously.

2.2 The later modality and delayed substitutions
The remainder of iGDTT—the guarded fragment—is the same in prior presentations [Bizjak

et al. 2016]; to summarize, we have a type operator ▶ called the later modality equipped with a

fixed-point operator. We defer a proper exposition of guarded type theory to Bizjak et al. [2016];

2
We mean that every element of P is also classified by U, but we do not assert that P is classified by U.
3
This is also called propositional extensionality.
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intuitively, however, the type ▶𝐴 contains elements of 𝐴 which only become available one ‘step’ in

the future. We have chosen to present ▶ using the delayed substitutions 𝜉 { Ξ of op. cit.:

𝜉 { Ξ Ξ ⊢ 𝐴 type

▶[𝜉] .𝐴 type

𝜉 { Ξ Ξ ⊢ 𝑎 : 𝐴

next[𝜉] .𝑎 : ▶[𝜉] .𝐴 · { ·
𝜉 { Ξ 𝑎 : ▶[𝜉] .𝐴
(𝜉, 𝑥 ← 𝑎) { Ξ, 𝑥 : 𝐴

The delayed substitution attached to the introduction and formation rules allows an element of

▶𝐴 to strip away the ▶-modalities from a list of terms, thereby rendering ▶ an applicative functor

in the sense of McBride and Paterson [2008]:

𝑓 ⊛ 𝑎 ≜ next[𝑥 ← 𝑓 , 𝑦 ← 𝑎] .𝑥𝑦

All universesX ∈ {U, P,V𝑖 } are closed under ▶. We have equational laws governing both delayed

substitutions and the ▶/next constructors; we will not belabor them here, referring instead to

op. cit. for a precise presentation. In the case of empty delayed substitutions 𝜉 = ·, we will write
▶𝐴 and next𝑎 for ▶[·] .𝐴 and next[·] .𝑎 respectively. A guarded fixed point combinator is included:

𝑥 : ▶𝐴 ⊢ 𝑓 𝑥 : 𝐴

gfix𝑥 .𝑓 𝑥 : 𝐴

𝑥 : ▶𝐴 ⊢ 𝑓 𝑥 : 𝐴

gfix𝑥 .𝑓 𝑥 = 𝑓 (next (gfix𝑥 .𝑓 𝑥)) : 𝐴

2.3 Guarded domains and the lift monad
By construction, all types in iGDTT support a guarded fixed-point operator (▶𝐴→ 𝐴) → 𝐴;

without an algebra structure ▶𝐴 → 𝐴, however, such a fixed point operator is insufficient to

interpret general recursion. We will define a guarded domain to be a type equipped with exactly

such an algebra structure below.

Definition 2.2. Wedefine a guarded domain to be a type𝐴 together with a function𝜗𝐴 : ▶𝐴→ 𝐴,

i.e. an algebra for the later modality viewed as an endofunctor.

Given a guarded domain 𝐴, we define the delay map 𝛿𝐴 : 𝐴→ 𝐴 to be the composite 𝜗𝐴 ◦ next.
A guarded domain can be equipped with a fixed point combinator 𝜇𝐴 : (𝐴→ 𝐴) → 𝐴 satisfying

𝜇𝐴 𝑓 = 𝑓 (𝛿𝐴 (𝜇𝐴 𝑓 )). In particular, we define 𝜇𝐴 𝑓 ≜ gfix𝑥 . 𝑓 (𝜗𝐴𝑥).

Example 2.3. Each universe X ∈ {P,U,V𝑖 } carries the structure of a guarded domain, as we may

define 𝜗X𝐴 ≜ ▶[𝑋 ← 𝐴] .𝑋 . Note that we have 𝛿X𝐴 = ▶𝐴.

Because the universe is itself a guarded domain, the same fixed point combinators can be used to

interpret both recursive programs and recursive types as pointed out by Birkedal and Møgelberg

[2013]; this is a significant improvement over ordinary (synthetic) domain theory, where more

complex notions of algebraic compactness are required to lift recursion to the level of types.

Construction 2.4 (Guarded lift monad). We will write GDom(X) for the universe of guarded

domains in a universe X; the forgetful functor J : GDom(X) X has a left adjoint L ⊣ J that freely
lifts a type to a guarded domain, which we may compute by taking a fixed point:

L𝐴 ≜ 𝜇X 𝜆𝑋 .𝐴 + 𝑋 𝜗L𝐴 ≜ inr

Unfolding definitions, we have solved the guarded domain equation L𝐴 = 𝐴 + ▶L𝐴; we will
write 𝜂 : 𝐴→ L𝐴 for the left injection. When it causes no confusion, we will leave the forgetful

functor J implicit; thus we refer to L : X X as the guarded lift monad.
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2.4 Case study: denotational semantics of Monadic System Fref𝜇

Already we have enough machinery to explore a simple possible worlds model of System Fref𝜇 , a

polymorphic language with general reference types. Even in this simple case, the tension between

polymorphism and general reference types is evident and we require both the impredicative and

guarded-recursive features of iGDTT to construct the semantic worlds that underly the model.

We emphasize that the entire construction takes place internally to iGDTT.
For the moment, we only sketch the interpretation of types in our model. We will return to this

point in Section 5, when we use a similar definition of semantic worlds to construct a model for a

version of full iGDTT extended with general references.

2.4.1 Recursively defined semantic worlds and heaps. We define a functionWorld : V0 V0 taking

a type 𝐴 : V0 to the preorder of finite maps N⇀fin. 𝐴, where the order is given by graph inclusion.

Next we define T : V0 to be the guarded fixed point of the operator that sends𝐴 : ▶V0 to the type of

functors [World(▶[𝑧 ← 𝐴]𝑧),U]; thus we haveT = [World(▶T),U]. Finally we defineW to be the

preorderWorld(▶T). Thus we have solved the domain equationW = N⇀fin. ▶[W,U] andwe have
T = ob[W,U] . The object T can be seen to be a guarded domain, setting 𝜗T𝐴 ≜ 𝜆𝑤.▶[𝑋 ← 𝐴] .𝑋𝑤 .

We extend the above to a functor heap :W◦ [W,U] as follows, writingW◦ for the opposite
of the preorderW, by defining heap𝑤𝑤 ′ ≜

∏
𝑖∈ |𝑤 | 𝜗T (𝑤𝑖)𝑤 ′. Here we have used |𝑤 | to denote

the support of the finite mapping𝑤 . We will write H𝑤 for heap𝑤 𝑤 and H : V0 for the dependent

sum

∑
𝑤:obW H𝑤 .

2.4.2 Higher-order state monad and reference types. We now define a strong monad T on [W,U],
a variation on the standard state monad suitable for computations involving state and general

recursion. Recalling that L : U→ U is the guarded lift monad, we define T below:

T : [W,U] → [W,U]
(T𝐴)𝑤 ≜∀𝑤′≥𝑤 H𝑤′ → L∃𝑤′′≥𝑤′ H𝑤′′ ×𝐴𝑤 ′′

Theorem 2.5. T is a strong monad and T𝐴𝑤 is a guarded domain for each 𝐴 : T and𝑤 :W.

Next we define a semantic reference type connective ref : T → T . For each 𝐴 : T , the type
ref𝐴 essentially picks out those locations in the current world which contain elements of type 𝐴:

(ref𝐴)𝑤 ≜ {𝑙 ∈ |𝑤 | | ▶[𝐵 ← 𝑤𝑙] .𝐴 = 𝐵}

2.4.3 Synthetic model of Monadic System Fref𝜇 . We may now implement a denotational semantics

of Monadic System Fref𝜇 in iGDTT; the direct-style call-by-value version of System Fref𝜇 can then be

interpreted separately à la Moggi in the standard way. We specify the domains of interpretation for

each form of judgment below:

⟦Ξ ⊢⟧ : V ⟦Ξ | Γ ⊢⟧, ⟦Ξ ⊢ 𝜏 type⟧ : ⟦Ξ⟧ → T ⟦Ξ | Γ ⊢ 𝑒 : 𝜏⟧ :∀𝜉 :⟦Ξ⊢⟧⟦Ξ | Γ ⊢⟧𝜉 → ⟦Ξ ⊢ 𝜏 type⟧𝜉

Individual type connectives are interpreted below:

⟦Ξ ⊢ ∀𝛼.𝜏 type⟧𝜉𝑤 ≜∀𝑋 :T⟦Ξ ⊢ 𝜏 type⟧(𝜉, 𝑋 )𝑤
⟦Ξ ⊢ ∃𝛼.𝜏 type⟧𝜉𝑤 ≜ ∃𝑋 :T⟦Ξ ⊢ 𝜏 type⟧(𝜉, 𝑋 )𝑤
⟦Ξ ⊢ 𝜇𝛼.𝜏 type⟧𝜉 ≜ 𝜇T (𝜆𝑋 .⟦Ξ, 𝛼 ⊢ 𝜏 type⟧(𝜉, 𝑋 ))
⟦Ξ ⊢ ref 𝜏 type⟧𝜉 ≜ ref (⟦Ξ ⊢ 𝜏 type⟧𝜉)
⟦Ξ ⊢ T𝜏 type⟧𝜉 ≜ T (⟦Ξ ⊢ 𝜏 type⟧𝜉)

Function and product types are interpreted using the cartesian closure of [W,U]; note that

functor categories with relatively large domain are not typically cartesian closed, but in our case
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the impredicativity of U ∈ V ensures cartesian closure. Next we interpret the state operations as

families of natural transformations in [W,U]:

⟦Ξ | Γ ⊢ get𝜏𝑙 : T𝜏⟧𝜉𝑤𝛾𝑤 ′ℎ ≜
let 𝑖 ≜ ⟦Ξ | Γ ⊢ 𝑙 : ref 𝜏⟧𝜉𝑤 ′𝛾 |𝑤′ ;
𝑥 ← 𝜗 (next[𝑧 ← ℎ𝑖] .𝜂𝑧);
𝜂 (pack (𝑤 ′, (ℎ, 𝑥)))

⟦Ξ | Γ ⊢ set𝜏 𝑙 𝑒 : T 1⟧𝜉𝑤𝛾𝑤 ′ℎ ≜
let 𝑖 ≜ ⟦Ξ | Γ ⊢ 𝑙 : ref 𝜏⟧𝜉𝑤 ′𝛾 |𝑤′ ;
let 𝑥 ≜ ⟦Ξ | Γ ⊢ 𝑒 : 𝜏⟧𝜉𝑤 ′𝛾 |𝑤′
𝜂 (pack (𝑤 ′, (ℎ[𝑖 ↦→ next𝑥], ())))

⟦Ξ | Γ ⊢ new𝜏 𝑒 : T (ref 𝜏)⟧𝜉𝑤𝛾𝑤 ′ℎ ≜
let 𝑖 = fresh |𝑤 ′ |;
let𝑤 ′′ ≜ 𝑤 ′ ∪ {𝑖 ↦→ next (⟦Ξ ⊢ 𝜏 type⟧)};
let 𝑥 ≜ ⟦Ξ | Γ ⊢ 𝑒 : 𝜏⟧𝜉𝑤 ′′𝛾 |𝑤′′ ;
𝜂 (pack (𝑤 ′′, (ℎ |𝑤′′ ∪ {𝑙 ↦→ next𝑥}, 𝑖)))

Above in the interpretation of the new𝜏 operator, we have assumed a deterministic “allocator”

fresh : obW → N that chooses an unused address for a new reference cell. Note that the naturality

conditions of the interpretation do not depend in any way on the behavior of fresh.

2.4.4 Abstract steps in the equational theory of higher-order store. Notice that our interpretation of

the getter must invoke the ▶-algebra structure on T𝐴 as the heap associates to each location 𝑖 an

element of 𝜗T (𝑤𝑖). For this reason, equations governing reads to the heap do not hold on the nose

but rather hold up to an abstract “step”.

For example, given 𝑙 : ref𝐴 we might expect the equation ⟦set𝐴 𝑙 𝑎; get𝐴𝑙⟧ = ⟦set𝐴 𝑙 𝑎; ret𝑎⟧ to
hold, but the call to 𝜗 in the former denotation will prevent them from agreeing in our model. This

behavior is familiar already from the work of Escardó [1999]; Paviotti et al. [2015] on denotational

semantics of general recursion in guarded/metric domain theory: the guarded interpretation of

recursion forces a more intensional notion of equality that counts abstract steps. Thus in order to

properly formulate the equations that do hold, we must account for these abstract steps. To this

end, we extend Monadic System Fref𝜇 by a new primitive effect step : T 1 that takes an abstract step:

⟦Ξ | Γ ⊢ step : T 1⟧𝜉𝑤𝛾𝑤 ′ℎ ≜ 𝛿 (𝜂 (pack (𝑤 ′, (ℎ, ()))))

With the above in hand, we may state and prove the expected equations for state:

Theorem 2.6. Our denotational semantics of Monadic System Fref𝜇 validates the following equations:

Ξ | Γ ⊢ 𝑙 : ref 𝜏 Ξ | Γ ⊢ 𝑢 : 𝜏

Ξ | Γ ⊢ set𝜏 𝑙 𝑢; get𝜏𝑙 ≡ step; set𝜏 𝑙 𝑢; ret𝑢 : T𝜏

Ξ | Γ ⊢ 𝑙 : ref 𝜏

Ξ | Γ ⊢ (𝑥 ← get𝜏𝑙 ; set𝜏 𝑙 𝑥) ≡ step : T 1

Ξ | Γ ⊢ 𝑢, 𝑣 : 𝜏

Ξ | Γ ⊢ (𝑥 ← new𝜏 𝑢; set𝜏 𝑥 𝑣 ; ret𝑥) ≡ new𝐴 𝑣 : T (ref 𝜏)
Ξ | Γ ⊢ 𝑙 : ref 𝜏 Ξ | Γ ⊢ 𝑢, 𝑣 : 𝜏

Ξ | Γ ⊢ set𝜏 𝑙 𝑢; set𝜏 𝑙 𝑣 ≡ set𝜏 𝑙 𝑣 : T 1

Proof. Immediate upon unfolding the denotational semantics of the given equations. □

2.5 Formal case study: presheaf model of higher-order store in Coq
Although the semantics of iGDTT are admittedly quite sophisticated (see Section 5), one of its

advantages is that it is quite straightforward to extend existing proof assistants such as Coq [Coq

Development Team 2016] and Agda [Norell 2009] with the axioms of iGDTT. Thus a practitioner
of programming language semantics can define “naïve” synthetic models of effects such as higher-

order store in a proof assistant without needing to know the category theory that was required to

invent and justify iGDTT.
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To validate the use of iGDTT for formal semantics of programming languages, we have postu-

lated the axioms of iGDTT in a Coq library and used it to formalize the construction of the indexed

state monad T defined in Section 2.4.2 as well as the reference type connective. In our formalization,

we decompose T as the horizontal composition of several adjunctions and thus obtain the monad

laws for free by taking T to be the monad of the composite adjunction.

2.5.1 Axiomatizing the impredicative universe. We take Coq’s Set universe to be the impredicative

universe U of iGDTT; it is possible to execute Coq with the flag -impredicative-set, but we
have found it simpler to implement the impredicativity by means of a local pragma as follows:

#[bypass_check(universes = yes)]
Definition All {A : Type} {B : A -> Set} : Set :=
forall x : A, B x.

For iGDTT’s predicative universes V𝑖 we use Coq’s predicative universes Type@{i}. We formal-

ize the left adjoint to the inclusion Set ↩→ Type@{i}, verifying its universal property using the

argument of Awodey et al. [2018].

2.5.2 Axiomatizing guarded recursion. Next we axiomatize the later modality in Coq. Coq’s implicit

universe polymorphism ensures that the following axioms land not only in Type but in Set as well:

Axiom later : Type -> Type.
Notation "▶ A" := (later A) (at level 60).
Axiom next : forall A, A -> ▶ A.
Axiom loeb : forall A (f : ▶ A -> A), A.
Axiom loeb_unfold : forall A (f : ▶ A -> A), loeb f = f (next (loeb f)).

We do not include the general delayed substitutions in our axiomatization, because they are too

difficult to formalize; for our case study, the following special case of delayed substitutions suffices:

Axiom dlater : ▶ Type -> Type.
Axiom dlater_next_eq : forall A, ▶ A = dlater (next A).

2.5.3 Formalizing guarded interaction trees. Building on the above and several other axioms of

guarded recursion that we omit for lack of room, we formalize a notion of guarded algebraic

effect based on containers [Abbott et al. 2005]. Given a container E = (𝑆 : U, 𝑃 : 𝑆 → U), we may

view each 𝑠 : 𝑆 as the name of an effect operation for which 𝑃𝑠 is the continuation arity. Writing

PE𝑋 =
∑

𝑠 :𝑆

∏
𝑝 :𝑃𝑠 𝑋 for the polynomial endofunctor presented by E, we may consider for each 𝐴

the free PE algebra generated by 𝐴 and the (co)-free PE coalgebra generated by 𝐴; the former is

the inductive type of finite (terminating) computations of a value of type 𝐴 that use the effects

specified by E, whereas the latter is the coinductive type of possibly infinite computations. The

latter are referred to as interaction trees by Xia et al. [2019], who have propelled a resurgence in

their use for reasoning about code in first-order languages via denotational semantics.

We formalize a guarded version of interaction trees, obtained by solving the guarded domain

equation 𝑋 = 𝐴 + PE▶𝑋 using loeb in Set.

Record Container := {op : Set; bdry : op -> Set}.
Inductive ITree_F (E : Container) A T : Set) : Set :=
| Ret (r : A)
| Do (e : E) (k : bdry e -> T).
Definition ITree (E : Container) (A : Set) : Set :=
loeb (fun T => ITree_F (dlater T)).
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We develop a free-forgetful adjunction for each container E; in particular, we prove that

ITree E A is the free (PE ◦ ▶)-algebra generated by 𝐴. The reason for developing guarded inter-

action trees is that there is a particular container E for which ITree E is the guarded lift monad L
of Paviotti et al. [2015], which we have discussed in Section 2.3. Nonetheless, the extra generality

allows us to modularly add other effects such as failure or printing, etc.

2.5.4 Recursively defined worlds, presheaves, and the state monad. We start by defining the category

of finite maps of elements of a given type:

Definition world : Type -> Category.type := ...

Then we define the collections of semantic worlds and semantic types by solving a guarded

domain equation, where we write SET for the category induced by the impredicative Set universe.

Definition F (T : Type) : Type := [world T, SET].
Definition T : Type := loeb (fun T => F (dlater T)).
Definition W : Category.type := world T.
Definition heap (w : W) : Type := ...
Definition H : Type := {w : W & heap w}.

We have also formalized the reference type connective as a map ref : T -> T , exactly as

in the informal presentation of Section 2.4.2. Our formalization of the state monad differs from

our informal presentation in two ways: firstly we have generalized over an arbitrary container E
specifying computational effects (e.g. printing, failure, etc.), and secondly we found it simpler to

decompose it into the following sequence of simpler adjunctions, whose definition involves the

impredicative All quantifier that we axiomatized earlier:

[
W◦, Alg E

] [
W◦, Set

]
[H, Set] [W, Set][

W◦, Forget
]

[
W◦, ITree E

]
⊥

∆heap

∃heap
⊥

∀heap

∆heap

⊥

We did not formalize the state operations, but there is no obstacle to doing so.

3 IMPREDICATIVE GUARDED DEPENDENT TYPE THEORY WITH REFERENCE TYPES
In this section, we detail an extension iGDTTref

of iGDTT with general reference types and a state

monad. iGDTTref
can serve as both an effectful higher-order programming language in its own right,

and as a dependently typed metalanguage for the denotational semantics of other programming

languages involving higher-order store. Later on we will extend iGDTTref
with relational constructs

to enable the verification of stateful programs inside the type theory. Denotational semantics for

these extensions of iGDTT are discussed in Section 5.

3.1 Adding reference types to iGDTT
In this section, we extend the iGDTT language with the following constructs:

(1) a monad T : U→ U,
(2) a later algebra structure 𝜗T𝐴 : ▶T𝐴→ T𝐴 parameterized in 𝐴 : U such that:

𝑢 : T𝐴 𝑥 : 𝐴 ⊢ 𝑣𝑥 : T𝐵
𝛿T𝐵 (𝑥 ← 𝑢; 𝑣𝑥) = (𝑥 ← 𝛿T𝐴𝑢; 𝑣𝑥) = (𝑥 ← 𝑢;𝛿T𝐵 (𝑣𝑥)) : T𝐵

We will write step : T 1 for the generic effect 𝛿T 1 (ret ()); the rule above ensures that step
commutes with all operations in the monad.
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(3) a reference type connective closed under the following rules:

𝐴 : U

ref𝐴 : U

𝑙 : ref𝐴
get𝐴𝑙 : T𝐴

𝑙 : ref𝐴 𝑢 : 𝐴

set𝐴 𝑙 𝑢 : T 1

𝑢 : 𝐴

new𝐴 𝑢 : T (ref𝐴)

𝑙 : ref𝐴 𝑢 : 𝐴

set𝐴 𝑙 𝑢; get𝐴𝑙 = step; set𝐴 𝑙 𝑢; ret𝑢 : T𝐴
𝑙 : ref𝐴

(𝑥 ← get𝐴𝑙 ; set𝐴 𝑙 𝑥) = step : T 1

𝑢, 𝑣 : 𝐴

(𝑥 ← new𝐴 𝑢; set𝐴 𝑥 𝑣 ; ret𝑥) = new𝐴 𝑣 : T (ref𝐴)
𝑙 : ref𝐴 𝑢, 𝑣 : 𝐴

set𝐴 𝑙 𝑢; set𝐴 𝑙 𝑣 = set𝐴 𝑙 𝑣 : T 1

3.2 Programming with higher-order store and dependent types
3.2.1 Type dependency in the heap. Because the universe U is closed under dependent types

(including equality types, etc.), there is no obstacle to storing elements of dependent types in the

heap. For instance, it is easy to allocate a reference that can only hold even integers; as an example,

we consider a program that increments an even integer in place, abbreviating𝑇 ≜ {𝑧 : Z | isEven 𝑧}:
𝑀 : ref𝑇 → T 1

𝑀 ≜ 𝜆𝑙 .𝑥 ← get𝑇 𝑙 ; set𝑇 𝑙 (𝑥 + 2)

3.2.2 Recursion via back-patching. To illustrate higher-order store, we can give a more sophisticated

example involving backpatching via Landin’s knot, writing ⊥ : L𝛼 for the divergent element 𝜇𝑥 .𝑥 .

patch :∀𝛼 :U ((𝛼 → T𝛼) → (𝛼 → T𝛼)) → T (ref (𝛼 → T𝛼))
patch𝛼 𝐹 ≜ 𝑟 ← new𝛼→T𝛼 (𝜆_.⊥); set𝛼→T𝛼 𝑟 (𝐹 (𝜆𝑥.𝑓 ← get𝛼→T𝛼𝑟 ; 𝑓 𝑥)); ret 𝑟

knot :∀𝛼 :U ((𝛼 → T𝛼) → (𝛼 → T𝛼)) → 𝛼 → T𝛼
knot𝛼 𝐹 𝑥 ≜ 𝑟 ← patch𝛼 𝐹 ; 𝐹 (𝜆𝑧.𝑓 ← get𝛼→T𝛼𝑟 ; 𝑓 𝑧) 𝑥

We can use the backpatching knot to give a somewhat contrived computation of the factorial:

fact′ : (N→ TN) → N→ TN
fact′ 𝑓 0 ≜ ret 1

fact′ 𝑓 (𝑛 + 1) ≜ 𝑚 ← 𝑓 𝑛; ret ((𝑛 + 1) ×𝑚)

fact : N→ TN
fact ≜ knotN fact′

Lemma 3.1. Entirely inside of iGDTTref
we may prove the following correctness lemma given a

reference implementation goodFact : N→ N:

∀𝑛:N fact𝑛 = (_← patchN fact′; step𝑛 ; ret (goodFact𝑛))

Proof. We proceed by induction on 𝑛; the base case is immediate:

fact 0 = 𝑟 ← patchN fact′; fact′ (. . .) 0
= _← patchN fact′; ret 1

= _← patchN fact′; ret (goodFact 0)
Next we fix 𝑛 : N such that fact𝑛 = (_← patchN fact′; step𝑛 ; ret (goodFact𝑛)):
fact (𝑛 + 1)

= 𝑟 ← patchN fact′; fact′ (𝜆𝑥.𝑓 ← getN→TN𝑟 ; 𝑓 𝑥) (𝑛 + 1)
= 𝑟 ← patchN fact′;𝑚 ← (𝑓 ← getN→TN𝑟 ; 𝑓 𝑛); ret ((𝑛 + 1) ×𝑚)
= 𝑟 ← patchN fact′; 𝑓 ← getN→TN𝑟 ;𝑚 ← 𝑓 𝑛; ret ((𝑛 + 1) ×𝑚)
= 𝑟 ← patchN fact′; step;𝑚 ← fact′ (𝜆𝑥.𝑓 ← getN→TN𝑟 ; 𝑓 𝑥) 𝑛; ret ((𝑛 + 1) ×𝑚)
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= 𝑟 ← patchN fact′;𝑚 ← fact′ (𝜆𝑥.𝑓 ← getN→TN𝑟 ; 𝑓 𝑥) 𝑛; step; ret ((𝑛 + 1) ×𝑚)
=𝑚 ← fact𝑛; step; ret ((𝑛 + 1) ×𝑚) by def.

= _← patchN fact′; step𝑛 ; step; ret ((goodFact𝑛 + 1) × 𝑛) by i.h.

= _← patchN fact′; step𝑛+1; ret (goodFact (𝑛 + 1)) □

Remark 3.2. Note that we do not have the equation fact𝑛 = ret (goodFact𝑛); to understand why
this is the case, there are two things to take note of. First of all, the abstract steps taken by each

access to the heap are explicitly tracked by the equational theory of iGDTTref
as an instance of the

step effect. Secondly, even though the allocations carried out by patch are no longer active upon

return, the equational theory of iGDTTref
cannot “garbage collect” them.

4 LOGICAL RELATIONS AS TYPES FOR RECURSION AND HIGHER-ORDER STORE
Like any dependent type theory, iGDTTref

is equipped with a “built-in” notion of equality, but

it is too fine to serve as a basis for reasoning about the equivalence of effectful programs. For

instance, we have already seen that even the most basic programs governing reading and writing

to a reference may differ in the number of steps they take. Accordingly, we will construct a coarser

notion of equivalence between programs in the form of a logical relation over iGDTTref
.

In particular, we discuss an extension of the axioms of iGDTTref
which supports proof-relevant

binary relational reasoning in the sense of Sterling and Harper [2021]’s logical relations as types
(LRAT) principle.

4
The result is iGDTTref

lrat
, a new dependent type theory with lightweight features

for verifying the equivalence of effectful computations. In addition to capturing the traditional

“method of candidates” reasoning, iGDTTref
lrat

includes a notion of weak bisimulation [Møgelberg

and Paviotti 2016; Paviotti 2016]. The inclusion of weak bisimulation is crucial; without it, only

programs that read from the heap in lockstep could ever be related.

Finally, we show how our synthetic approach simplifies two standard examples from Birkedal

et al. [2010] concerning equivalent implementations of imperative counters.

4.1 Logical relations as types: a synthetic approach to relational reasoning
The logical relations as types principle states that logical relations can be treated synthetically as

ordinary types in the presence of certain modal operators that exist in categories of logical relations.

Thus LRAT is an abstraction of logical relations that avoids the bureaucracy of analytic approaches;

the “work” that goes into conventional logical relations arguments has not disappeared, but has

been refactored into general results of category theory that are much simpler to establish directly

than almost any of their practical consequences in programming languages.

We execute the LRAT extension iGDTTref
lrat

of iGDTTref
by postulating disjoint propositions

𝚽l,𝚽r : P representing the left- and right-hand sides of a correspondence; the idea is that these

propositions will generate modal operators that allow us to think of any type as a correspondence,

and then project out the left, right, and “middle” parts of the correspondence.

𝚽l,𝚽r : P
_ : 𝚽l _ : 𝚽r

_ : ⊥
We define𝚽 to be the disjunction𝚽l∨𝚽r; as𝚽l,𝚽r are disjoint, this disjunction in P becomes the

coproduct 𝚽l + 𝚽r in U. The modalities that we consider in this paper are all left exact, idempotent,

monadic modalities in the sense of Rijke et al. [2020]. Left exactness means that they preserve finite

limits, and idempotence means that the multiplication map 𝑇 2 → 𝑇 is a natural isomorphism. In

this section, let 𝑇 be an arbitrary left exact idempotent monad.

4
The LRAT language is also referred to in other contexts as synthetic Tait computability; see Sterling [2021].



14 Jonathan Sterling, Daniel Gratzer, and Lars Birkedal

Definition 4.1 (Modal types). We will refer to a type 𝐴 as 𝑇 -modal when the unit map 𝜂𝐴 :

𝐴 𝑇𝐴 is an isomorphism.

Notation 4.2 (Modal elimination). Idempotent monadic modalities enjoy an elimination rule with

a universal property: for any 𝑇 -modal type 𝐶 , the function (𝑇𝐴→ 𝐶) (𝐴→ 𝐶) induced by

precomposition with the unit is an isomorphism. We reflect this in our notation as follows:

𝐶 is 𝑇 -modal 𝑢 : 𝑇𝐴 𝑥 : 𝐴 ⊢ 𝑓 𝑥 : 𝐶

(𝑥 ← 𝑢; 𝑓 𝑥) : 𝐶

. . . 𝑎 : 𝐴 𝑥 : 𝐴 ⊢ 𝑓 𝑥 : 𝐶

(𝑥 ← 𝜂𝑎; 𝑓 𝑥) = 𝑓 𝑎 : 𝐶

𝐶 is 𝑇 -modal 𝑥 : 𝑇𝐴 ⊢ 𝑓 𝑥, 𝑔𝑥 : 𝐶 𝑥 : 𝐴 ⊢ 𝑓 (𝜂𝑥) = 𝑔 (𝜂𝑥) : 𝐶 𝑢 : 𝑇𝐴

𝑓 𝑢 = 𝑔𝑢 : 𝐶

Let 𝜙 : P be a proposition.

Definition 4.3. A type 𝐴 is called 𝜙-transparent when the constant map 𝐴 (𝜙 → 𝐴) is an
isomorphism; on the other hand, 𝐴 is called 𝜙-sealed when the projection map 𝜙 ×𝐴 𝜙 is an

isomorphism. Equivalently,𝐴 is 𝜙-sealed exactly when 𝜙 implies that𝐴 is a singleton; we will write

★ : 𝐴 for the unique element of any ⊤-sealed type 𝐴.

Intuitively, a 𝜙-transparent type is one that “thinks” 𝜙 is true; conversely, a 𝜙-sealed type is one

that “thinks” 𝜙 is false and thus contracts to a point under 𝜙 . The 𝜙-transparent and 𝜙-sealed types

are each governed by modalities, referred to as open and closed respectively.

Definition 4.4 (Open modality). We will write 𝜙 ⇒ 𝐴 for the implicit function space 𝜙 → 𝐴,

which we refer to as the open modality for 𝜙 ; we will leave both the 𝜆-abstraction and application

implicit in our notation. Likewise, given an element𝐴 : 𝜙 ⇒ Uwe will write 𝜙 ⇒ 𝐴 for the implicit

dependent product of 𝐴; this is the dependent open modality.5

Definition 4.5 (Closed modality). We will write 𝜙 •𝐴 for the following quotient inductive type,

which we shall call the closed modality associated to 𝜙 :

quotient data 𝜙 •𝐴 : U where
𝜂𝜙• : 𝐴→ 𝜙 •𝐴
★ : {_ : 𝜙} → 𝜙 •𝐴
_ : {_ : 𝜙,𝑢 : 𝜙 •𝐴} → 𝑢 = ★

(We use curly braces to indicate implicit arguments.) Put another way, 𝜙 •𝐴 is the quotient of the

coproduct 𝜙 +𝐴 under the P-valued equivalence relation 𝑢 ∼ 𝑣 ⇐⇒ 𝜙 ∨ (𝑢 = 𝑣). The elimination

rule for 𝜙 •𝐴 is thus a case statement with a side condition:

𝑥 : 𝜙 •𝐴 ⊢ 𝐶𝑥 : U 𝑥 : 𝐴 ⊢ 𝑓 𝑥 : 𝐶 (𝜂𝑥) _ : 𝜙 ⊢ 𝑔 : 𝐶★ 𝑥 : 𝐴, _ : 𝜙 ⊢ 𝑓 𝑥 = 𝑔 : 𝐶★ 𝑢 : 𝜙 •𝐴
case 𝑢 of 𝜂𝜙•𝑥 ↩→ 𝑓 𝑥 | ★ ↩→ 𝑔 : 𝐶𝑢

Note that we have only assumed an elimination rule for motives valued in U.

Remark 4.6 (Effectivity). Any equivalence relation valued in P is effective, as P satisfies propo-
sitional extensionality; thus the quotient in Definition 4.5 is effective. The only subtlety worth

noting is that although the equivalence relation 𝜙 ∨ (𝑢 = 𝑣) is by definition a pushout in P of the
projections 𝜙 ← 𝜙 ∧ (𝑢 = 𝑣) → 𝑢 = 𝑣 , this pushout need not be preserved by the inclusion P U;
this parallels the fact that in semantics, the union of two regular subobjects need not be regular.

Fact 4.7. A type 𝐴 : U is 𝜙-transparent if and only if it is modal for the open modality 𝜙 ⇒ −; the
type 𝐴 : U is 𝜙-sealed if and only if it is modal for the closed modality 𝜙 • −.
5
The implicitness is only a matter of convenient notation; it plays no mathematical role.
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In light of Fact 4.7, it is instructive to point out that the elimination form for the closed modality

(𝑥 ← 𝑢; 𝑓 𝑥) can be implemented by case 𝑢 of 𝜂𝜙•𝑥 ↩→ 𝑓 𝑥 | ★ ↩→ ★.

Notation 4.8. Because 𝚽l and 𝚽r are disjoint, an element of 𝚽⇒ 𝐴 is precisely the same as a

pair of an element of 𝚽l ⇒ 𝐴 and an element of 𝚽r ⇒ 𝐴. We will write [𝚽l ↩→ 𝑎𝐿,𝚽r ↩→ 𝑎𝑅] for
such a pair; this notation reflects the fact that any element of 𝚽⇒ 𝐴 is canonically a case split.

Remark 4.9. In other applications of LRAT such as those of Sterling and Angiuli [2021]; Sterling

and Harper [2022], case splits were included for 𝜙 ∨𝜓 even when 𝜙 and𝜓 are not disjoint. This is

possible in the internal language of a topos, but not in the iGDTTwhere the universe of propositions

is meant to lie withinV𝑖 , which will be interpreted by a quasitopos rather than a true topos. Roughly
the issue is that in a quasitoposℰ, the union of two regular subobjects need not be regular unless

ℰ is quasiadhesive [Johnstone et al. 2007].

Extension types. Given a type 𝐴, a proposition 𝜙 and an element 𝑎 : 𝜙 ⇒ 𝐴 we will write

{𝐴 | 𝜙 ↩→ 𝑎} for the subtype {𝑥 : 𝐴 | 𝜙 ⇒ 𝑥 = 𝑎} ⊆ 𝐴. We will write {𝐴 | 𝜙 ↩→ 𝑎,𝜓 ↩→ 𝑏, . . .} for
the extension type {𝐴 | 𝜙 ∨𝜓 ∨ . . . ↩→ [𝜙 ↩→ 𝑎,𝜓 ↩→ 𝑏, . . .]} when 𝜙,𝜓 are disjoint.

Remark 4.10 (LRAT axiomatizes the parametricity translation). In the synthetic setting, to each

type 𝐴 we may associate the span (𝚽l ⇒ 𝐴) ←− 𝐴 −→ (𝚽r ⇒ 𝐴) given by the units of the open

modalities for𝚽l,𝚽r; this should be thought of as the span that𝐴 is taken to in the binary parametric-

ity translation. Indeed, given 𝑢l : 𝚽l ⇒ 𝐴 and 𝑢r : 𝚽r ⇒ 𝐴 the subtype {𝐴 | 𝚽l ↩→ 𝑢l,𝚽r ↩→ 𝑢r}
can be thought of as the type of proofs that 𝑢l and 𝑢r are related in the correspondence. It is in this

sense that LRAT axiomatizes the parametricity translation.

A final axiom of the synthetic relational extension of iGDTT is the refinement type.
6
Given a

type 𝐴 : 𝚽⇒ U and a family of 𝚽-sealed types 𝐵 : (𝚽⇒ 𝐴) → U, we may consider

∑
𝑥 :𝚽⇒𝐴 𝐵𝑥 .

The refinement type is a new code for this dependent sum, written [𝚽 ↩→ 𝑥 : 𝐴 | 𝐵𝑥], that enjoys
the following additional principle of type equality: the refinement type becomes equal to 𝐴 in the

presence of _ : 𝚽. In other words, the refinement type is governed by the interface presented in

Fig. 1. We have not assumed that any proposition 𝜙 : P besides 𝚽 is equipped with a refinement

type connective.

Notation 4.11 (Copattern notation). We will often define elements of [𝚽 ↩→ 𝑥 : 𝐴 | 𝐵𝑥] using
Agda-style “copattern” notation; for instance, the pair of declarations on the left is meant to denote

the single declaration on the right:[
𝚽 ↩→ 𝑢 ≜ 𝑎
𝑢 ≜ 𝑏

]
⇝ 𝑢 ≜ [𝚽 ↩→ 𝑎 | 𝑏]

4.2 The state monad in iGDTTref
lrat

In Section 3.1, we extended iGDTT with general reference types and a state monad T. In this

section, we add to the axiomatization of iGDTTref
lrat

constructs governing the weak bisimulation

of stateful computations. The following two rules enable exhibiting a correspondence between two

computations that take different numbers of steps:

step
l

: {T 1 | 𝚽l ↩→ step,𝚽r ↩→ ret ()} step
r

: {T 1 | 𝚽l ↩→ ret (),𝚽r ↩→ step}
6
In prior presentations of synthetic logical relations [Sterling and Angiuli 2021; Sterling and Harper 2021], the role played

here by the refinement type connective (first introduced by Sterling and Harper [2022]) was instead played by the so-called

realignment axiom. The two are interderivable [Gratzer et al. 2022, §5], but the refinement type connective is both more

direct and provides stronger geometrical intuition.
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formation

𝐴 : 𝚽⇒ 𝐴 𝐵 : (𝚽⇒ 𝐴) → U 𝚽⇒ ∀𝑥 : 𝐴. 𝐵𝑥 � 1

[𝚽 ↩→ 𝑥 : 𝐴 | 𝐵𝑥] : {U | 𝚽 ↩→ 𝐴}

introduction

. . . 𝑎 : 𝚽⇒ 𝐴 𝑏 : 𝐵𝑎

[𝚽 ↩→ 𝑎 | 𝑏] : {[𝚽 ↩→ 𝑥 : 𝐴 | 𝐵𝑥] | 𝚽 ↩→ 𝑎}

elimination

. . . 𝑢 : [𝚽 ↩→ 𝑥 : 𝐴 | 𝐵𝑥]
𝑢 : 𝐵𝑢

computation

. . . 𝑎 : 𝚽⇒ 𝐴 𝑏 : 𝐵𝑎

[𝚽 ↩→ 𝑎 | 𝑏] = 𝑏 : 𝐵𝑎

uniqeness

. . . 𝑢 : [𝚽 ↩→ 𝑥 : 𝐴 | 𝐵𝑥]
𝑢 = [𝚽 ↩→ 𝑢 | 𝑢] : [𝚽 ↩→ 𝑥 : 𝐴 | 𝐵𝑥]

Fig. 1. The interface to the refinement type connective.

Example 4.12. With the above in hand, it is possible exhibit a correspondence between two

computations that access the memory different numbers of times. Let 𝑟 : ref Z and consider the

programs𝑀l, 𝑀r defined below:

𝑀l ≜ 𝑥 ← getZ𝑟 ; setZ 𝑟 (𝑥 + 1);𝑦 ← getZ𝑟 ; setZ 𝑟 (𝑦 + 1); ret ()
𝑀r ≜ 𝑥 ← getZ𝑟 ; setZ 𝑟 (𝑥 + 2); ret ()

We may define a correspondenceM : {T 1 | 𝚽l ↩→ 𝑀l,𝚽r ↩→ 𝑀r} as follows:
M ≜ 𝑥 ← getZ𝑟 ; stepl; setZ 𝑟 (𝑥 + 2); ret ()

WhileM is evidently of type T 1, it remains to argue that it is equal to𝑀l (resp.𝑀r) under the

assumption 𝚽l (resp. 𝚽r). Both claims follow from equational reasoning; assuming 𝚽l we compute:

𝚽l ↩→ 𝑀l = 𝑥 ← getZ𝑟 ; setZ 𝑟 (𝑥 + 1);𝑦 ← getZ𝑟 ; setZ 𝑟 (𝑦 + 1); ret ()
= 𝑥 ← getZ𝑟 ; step; setZ 𝑟 (𝑥 + 1); setZ 𝑟 (𝑥 + 1 + 1); ret ()
= 𝑥 ← getZ𝑟 ; step; setZ 𝑟 (𝑥 + 1 + 1); ret ()
= 𝑥 ← getZ𝑟 ; step; setZ 𝑟 (𝑥 + 2); ret ()
= 𝑥 ← getZ𝑟 ; stepl; setZ 𝑟 (𝑥 + 2); ret ()
=M

Likewise, assuming 𝚽r we have the following:

𝚽r ↩→ 𝑀r = 𝑥 ← getZ𝑟 ; setZ 𝑟 (𝑥 + 2); ret () = 𝑥 ← getZ𝑟 ; stepl; setZ 𝑟 (𝑥 + 2); ret () =M

4.3 Case study: local references and closures
In this section we consider a synthetic version of an example from Birkedal et al. [2010, §6.3]

concerning a correspondence between two imperative counter modules constructed using a local

reference and two closures. Whereas op. cit. needed to work inside the model, the combination

of dependent types and synthetic relational constructs enables us to work directly in the type

theory. Consider the following two implementations of an imperative counter module using local

references, one of which counts up and the other counts down:

𝑀l, 𝑀r : T (T 1 × TZ)
𝑀l ≜ (𝑟 ← newZ 0; ret (incr 𝑟, getZ𝑟 ))
𝑀r ≜ (𝑟 ← newZ 0; ret (decr 𝑟, 𝑥 ← getZ𝑟 ; ret (−𝑥)))

incr, decr : ref Z→ T 1

incr 𝑟 ≜ 𝑥 ← getZ𝑟 ; setZ 𝑟 (𝑥 + 1)
decr 𝑟 ≜ 𝑥 ← getZ𝑟 ; setZ 𝑟 (𝑥 − 1)
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We wish to construct a correspondence between𝑀l and𝑀r, i.e. an elementM : {T (T 1 × TZ) |
𝚽l ↩→ 𝑀l,𝚽r ↩→ 𝑀r}. To do so, we define a correspondence on Z describing the heap invariant

using a refinement type:

Z : {U | 𝚽 ↩→ Z}
Z ≜ [𝚽 ↩→ 𝑥 : Z | 𝚽 • {(𝑖l : {Z | 𝚽l ↩→ 𝑥}, 𝑖r : {Z | 𝚽r ↩→ 𝑥}) | 𝑖l = −𝑖r}]

Exegesis 4.13. It is important to understand why the invariantZ is defined the way it is.

(1) First we attach an element 𝑥 : 𝚽 ⇒ Z, which is in particular a pair of a “left” element

𝑥l : 𝚽l ⇒ Z and a “right” element 𝑥r : 𝚽r ⇒ Z with no conditions whatsoever.

(2) We wish to assert that 𝑥r is the negation of 𝑥l; but this is not type correct, because these

partial integers lie in disjoint worlds.

(3) Instead we will glue onto the partial integer 𝑥 = [𝚽l ↩→ 𝑥l,𝚽r ↩→ 𝑥r] a pair of total integers
𝑖l, 𝑖r : Z restricting under 𝚽l,𝚽r to 𝑥l, 𝑥r such that 𝑖l = −𝑖r.

(4) It is necessary to hide the attachment of (𝑖l, 𝑖r) to 𝑥 underneath the closed modality 𝚽 • −,
since otherwiseZ would restrict to strictly more than just Z under 𝚽. Without the closed

modality, the formation rule for the refinement type employed here would not apply.

With the invariantZ in hand, we will construct a new counter implementationM that allocates

an element ofZ; this new counter implementation should restrict “on the left” to𝑀l and “on the

right” to𝑀r. We divide the construction into three main subroutines initM , tickM , and readM :

M : {T (T 1 × TZ) | 𝚽l ↩→ 𝑀l,𝚽r ↩→ 𝑀r,}
M ≜ (𝑟 ← newZ initM ; ret (tickM 𝑟, readM 𝑟 ))

For the initialization, it is simple enough to construct an element ofZ showing that 0 = −0.

initM : {Z | 𝚽 ↩→ 0}
𝚽 ↩→ initM ≜ 0

initM ≜ 𝜂𝚽• (0, 0)

Next we describe the operation that ticks the counter, factoring through an auxiliary operation

updM that witnesses the preservation of theZ correspondence by the change to the reference cell.

tickM : {refZ → T 1 | 𝚽l ↩→ incr,𝚽r ↩→ decr}
tickM𝑟 ≜ 𝑥 ← getZ𝑟 ; setZ 𝑟 (updM𝑥)

updM : {Z → Z | 𝚽l ↩→ 𝜆𝑥.𝑥 + 1,𝚽r ↩→ 𝜆𝑥.𝑥 − 1}
𝚽l ↩→ updM𝑥 ≜ 𝑥 + 1

𝚽r ↩→ updM𝑥 ≜ 𝑥 − 1

updM𝑥 ≜ (𝑖l, 𝑖r) ← 𝑥 ;𝜂
𝚽• (𝑖l + 1, 𝑖r − 1)

In the definition of updM𝑥 , we have used the Kleisli extension for the closed modality 𝚽 • −.
The well-typedness of our definition follows from the fact that 𝑖l = −𝑖r implies 𝑖l + 1 = −(𝑖r − 1).
Finally we construct a function to read the contents of the local state, factoring through a function

tidyM that verifies the correspondence between 𝑥 and −𝑥 in the output:

readM : {refZ → TZ | 𝚽l ↩→ 𝜆𝑟 .getZ𝑟,𝚽r ↩→ 𝜆𝑟 .𝑥 ← getZ𝑟 ; ret (−𝑥)}
readM𝑟 ≜ 𝑥 ← getZ𝑟 ; ret (tidyM𝑥)

tidyM : {Z → Z | 𝚽l ↩→ 𝜆𝑥.𝑥,𝚽r ↩→ 𝜆𝑥.−𝑥}
tidyM𝑥 ≜
case 𝑥 of
𝜂𝚽• (𝑖l, 𝑖r) ↩→ 𝑖l
★ ↩→ [𝚽l ↩→ 𝑥,𝚽r ↩→ −𝑥]
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Bisimulation of denotations. By interpreting the correspondenceM in our semantic model (see

Section 5), it will follow that the results of initializing𝑀l, 𝑀r with any heap are weakly bisimilar,

i.e. equal up to computation steps. In fact, this particular example exhibits a strong bisimulation.

4.4 Case study: correspondences in abstract data types
We may adapt our previous example to exhibit a simulation between two implementations of an

abstract data type for imperative counters as in Birkedal et al. [2010, §6.2]. In particular, consider

the following abstract data type:

COUNTER ≜ ∃𝛼 :U T𝛼 × (𝛼 → T 1) × (𝛼 → TZ)

We consider the following two implementations of COUNTER:

𝑀l ≜ pack (ref Z, (newZ 0, incr, 𝜆𝑟 .getZ𝑟 ))
𝑀r ≜ pack (ref Z, (newZ 0, decr, 𝜆𝑟 .𝑥 ← getZ𝑟 ; ret (−𝑥)))

We may construct a correspondence between these two imperative counter structures as follows,

re-using the constructions of Section 4.3.

M : {COUNTER | 𝚽l ↩→ 𝑀l,𝚽r ↩→ 𝑀r}
M = pack (refZ, (newZ initM, tickM, readM))

Bisimulation of denotations. As in Section 4.3, by interpreting the correspondenceM into the

semantic model of Section 5 we may exhibit a weak (in fact, strong) bisimulation between the

denotations of𝑀l and𝑀r when initialized with any heap.

5 SEMANTIC MODELS OF iGDTT AND iGDTTref
lrat

Thus far we have introduced a series of type theories—iGDTT, iGDTTref
, and iGDTTref

lrat
—but

we have not yet proven that these type theories are consistent. In this section we justify all three

theories by constructing semantic models.

In Section 5.1 we show to build a model of iGDTT based combining realizability and the topos

of trees. In Section 5.2, we show that presheaves internal to a model of iGDTT also assemble into

a model of iGDTT. Using this, we then lift a base model to a model of iGDTTref
lrat

in Section 5.4

by taking presheaves on a carefully chosen category and constructing a more sophisticated version

of the possible-worlds model introduced in Section 2.4. It proves most convenient to pass directly

from a model of iGDTT to a model of iGDTTref
lrat

rather than constructing an intermediate model

of iGDTTref
. Of course, any model of iGDTTref

lrat
is (by restriction) a model of iGDTTref

. We

return, however, to the construction of a model specifically of iGDTTref
directly from iGDTT in a

far more general context in Section 6.

The construction of this sequence of models immediately yields the consistency of all three type

theories. The particular models, however, show more than this. We use our model constructions to

argue that a relation constructed in iGDTTref
lrat

induces a weak bisimulation between the related

programs in the induced model of iGDTTref
.

Remark 5.1. Unlike the rest of the paper, throughout this section we assume knowledge of

category theory. In particular, in addition to the basic concepts of category theory we assume

some familiarity with categorical realizability (assemblies, modest sets, etc.). We refer the reader to

Streicher [2017]; van Oosten [2008] for a thorough introduction.
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5.1 Constructing base models of iGDTT
A concrete model of iGDTT can be constructed using a combination of realizability and presheaves.

Rather than belabor the already well-studied interpretation of dependent type theory into well-

adapted categories (e.g. locally cartesian closed categories, topoi, etc.) [Hofmann 1997], we describe

and exhibit the relevant categorical structure needed to interpret the nonstandard aspects of iGDTT:
impredicative universes and guarded recursion.

Let 𝒮 be a realizability topos and let (O, ≤, ≺) be a separated intuitionistic well-founded
poset in 𝒮, i.e. a poset (O, ≤) equipped with a transitive subrelation ≺ ⊆ ≤ ⊆ O × O satisfying the

following additional conditions:

(1) separation: the object O is an assembly and both ≤, ≺ are regular subobjects,

(2) left compatibility: if 𝑢 ≤ 𝑣 and 𝑣 ≺ 𝑤 then 𝑢 ≺ 𝑤 ,

(3) right compatibility: if 𝑢 ≺ 𝑣 and 𝑣 ≤ 𝑤 then 𝑢 ≺ 𝑤 ,

(4) well-foundedness: every element of O is ≺-accessible, where the ≺-accessible elements are

defined to be the smallest subset 𝐼 ⊆ O such that if 𝑣 ∈ 𝐼 for all 𝑣 ≺ 𝑢, then 𝑢 ∈ 𝐼 .

Remark 5.2. In classical mathematics, the appropriate notion of well-founded poset is considerably

simpler as we tend to define 𝑥 ≺ 𝑦 ⇔ 𝑥 ≤ 𝑦 ∧ 𝑥 ≠ 𝑦. This simpler style of well-founded order is

particularly inappropriate for intuitionistic mathematics (e.g. the mathematics of a realizability

topos), in which O need not have decidable equality. Our definition of intuitionistic well-founded

posets is inspired by Taylor’s analysis of intuitionistic ordinals [Taylor 1996].

Given a hierarchy of Grothendieck universes𝒰𝑖 in Set such that ΓO ∈ 𝒰0, we conclude:

Theorem 5.3. The category of internal diagrams
7
ℰ =

[
O◦,𝒮

]
is a model of iGDTT in which:

(1) the predicative universes V𝑖 are modelled by the Hofmann–Streicher liftings [Hofmann and

Streicher 1997] of the universes of 𝒰𝑖 -small assemblies in 𝒮,

(2) the impredicative universes P,U ∈ V𝑖 is modelled by the Hofmann–Streicher liftings of the

universes of ¬¬-closed propositions and of modest sets in 𝒮 respectively,

(3) the later modality ▶ is computed explicitly by the equation (▶𝐴)𝑢 = lim←−−𝑣≺𝑢𝐴𝑣 .

Proof. The guarded recursive aspects follow from the general results of Palombi and Sterling

[2022]; for the rest, it can be seen that the Hofmann–Streicher lifting of a pair of universes preserves

impredicativity of the lower universe when O is internal to the upper universe. Our interpretation

of P is automatically univalent and satisfies proof irrelevance, and the only subtle point is that it is

closed under equality. This follows because every type classified by either U or V is ¬¬-separated
(since they are assemblies), which means precisely that their equality predicates are ¬¬-closed. □

We describe the “standard” instantiation of Theorem 5.3 in Example 5.4 below.

Example 5.4 (Standard model of iGDTT). Let Eff be the effective topos [Hyland 1982], namely

the realizability topos constructed from Kleene’s first algebra; there is a modest intuitionistic

well-founded poset 𝜔 in Eff given by the natural numbers object of the topos under inequality and

strict inequality. Then

[
𝜔◦, Eff

]
is model of iGDTT according to Theorem 5.3.

From the non-emptiness of 𝜔 it follows immediately that

[
𝜔◦, Eff

]
is a non-trivial topos, i.e. one

in which the initial object is not inhabited. Thus we obtain the following corollary:

Corollary 5.5. iGDTT is consistent.

7
We refer to Borceux [1994, §8.1] for discussion of internal diagrams.
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Remark 5.6 (Strong andweak completeness). It is important that eachV𝑖 be built from a subuniverse

of small assemblies rather than of more general types in 𝒮: the full internal subcategory spanned

by modest sets is strongly complete over assemblies, but only weakly complete over the rest of

𝒮 [Hyland et al. 1990]. Weak completeness is insufficient to interpret∀.
5.2 The Hofmann–Streicher lifting of a model of iGDTT
Letℰ be an elementary topos model of iGDTT e.g., Example 5.4; we will show that for certain

internal categories C inℰ, the topos of internal diagrams [C,ℰ] is a model of iGDTT. To avoid
confusion, we will write things like U,V𝑖 for constructs of ℰ and U,V𝑖 for the corresponding

constructs that we will define in the category of internal diagrams [C,ℰ].
Let C be a category internal to V0, i.e. a category object inℰ whose object of objects and hom

objects are classified by the universe V0. Then following Hofmann and Streicher [1997] we may

lift each universe X ∈ {P,U,V𝑖 } ofℰ to a universe X in [C,ℰ], setting X𝑐 = [𝑐 ↓ C,X]. The only
surprise is thatU remains classified byV𝑖 , considering the fact that the coslice 𝑐 ↓ C is large relative

to U. Nevertheless we have U ∈ V𝑖 because U is impredicative in V𝑖 ; by an explicit computation, it

follows that U can be encoded by an element of V𝑖 using only∀, ∑, and (=) in each fiber. The

impredicativity of U in V𝑖 likewise ensures that U is impredicative over V𝑖 .
Closure under the constructs of guarded dependent type theory then follows once again from the

general results of Palombi and Sterling [2022] concerning the pointwise lifting of guarded recursion

from the base into presheaves. It can also be seen that good properties of the later modality are

preserved by this lifting; ifℰ is globally adequate in the sense of op. cit. and C has an initial object,

then the [C,ℰ] is also globally adequate. Global adequacy means that the global points of ▶N are

the actual natural numbers. Summarizing:

Lemma 5.7. Letℰ be an elementary topos model of iGDTT and let C be a category internal to

V0 ∈ ℰ. The category of internal diagrams [C,ℰ] is a model of iGDTT in which:

(1) all universes are modelled by the Hofmann–Streicher liftings [Hofmann and Streicher 1997] of

the corresponding universes inℰ;

(2) the later modality ▶ is computed pointwise, i.e. we have (▶𝐴)𝑐 = ▶(𝐴𝑐).
Strict extension structures. In order to construct the store model in Section 5.4, we will require that

the impredicative universeU also supports a strict extension structure. While we require this property

in only one concrete setting, it is most natural to define with respect to an arbitrary dominance

1ℰ Σ ∈ ℰ, i.e. a universe of propositions closed under truth and dependent conjunction.

Recall that for any 𝜙 : Σ, a partial element 𝐴 : 𝜙 ⇒ U can be extended to a total element 𝐵 : U
that restricts to𝐴 up to isomorphism e.g., by setting 𝐵 to 𝜙 ⇒ 𝐴. In Section 5.4, however, we require

the ability to choose an extension which agrees exactly with 𝐴 under 𝜙 . We say a universe X has a

strict extension structure when this is possible i.e., when it validates following rules:

strict extension

𝜙 : Σ 𝐴 : 𝜙 ⇒ X
𝜙∗𝐴 : X

strict extension intro

𝜙 : Σ 𝐴 : 𝜙 ⇒ X 𝑎 : 𝜙 ⇒ 𝐴

⟨𝜙⟩𝑎 : 𝜙∗𝐴

𝜙 : Σ 𝐴 : 𝜙 ⇒ X _ : 𝜙

𝜙∗𝐴 ≡ 𝐴 : X

𝜙 : Σ 𝐴 : 𝜙 ⇒ X 𝑎 : 𝜙 ⇒ 𝐴 _ : 𝜙

⟨𝜙⟩𝑎 ≡ 𝑎 : 𝐴

Fortunately, given a dominance Σ we are always able to replace a universe X with a new

universe equipped with an extension structure without perturbing the collection of types it classifies

(Lemma 5.9). The idea is to replace X with its Σ-partial map classifier.
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Definition 5.8 (Partial element classifier). Let 𝐴 be a type and let Σ be a dominance; the Σ-
partial map classifier 𝐴+ is defined to be the dependent sum

∑
𝜙 :Σ 𝜙 ⇒ 𝐴. We have a natural

transformation 𝜂 : id (−)+ sending each 𝑎 : 𝐴 to the pair (⊤, 𝑎) : 𝐴+.

For any universe X that classifies each 𝜙 : Σ, we have an algebra structure Π : X+ X for the

raw endofunctor −+, sending each 𝐴 : X+ to its dependent product Π𝑄 = 𝜋1𝑄 ⇒ 𝜋2𝑄 . Viewing X
as an internal groupoid, we see that Π is a “pseudo-algebra” structure for the pointed endofunctor

−+, as each Π(⊤, 𝐴) is isomorphic to 𝐴.8 It can be seen that a strict extension structure for X is

exactly the same thing as a strictification of Π, i.e. a strict algebra for the pointed endofunctor −+
that is additionally isomorphic to Π.9

Lemma 5.9 (Strictification). Let Σ be a dominance such that each 𝜙 : Σ is classified by X; then
there exists a universe X𝑠 equipped with a strict extension structure for Σ such that X and X𝑠 are
strongly equivalent internal categories.

Proof. We set X𝑠 to be the Σ-partial element classifier X+ itself. The strict algebra structure
𝛼 : X++ X+ is given by the multiplication operation of the partial element classifier monad, i.e.

the dependent conjunction of the dominance Σ. The strictness of the algebra structure follows
from the fact that Σ is univalent, like any dominance. The equivalence X+ X is given by the

pseudo-algebra Π. □

We therefore combine Lemma 5.7 with Lemma 5.9 to obtain the following theorem.

Theorem 5.10. Letℰ be an elementary topos model of iGDTT and let C be a category internal to

V0 ∈ ℰ. The category of internal diagrams [C,ℰ] is a model of iGDTT in which:

(1) the universes P,V𝑖 are modelled by Hofmann–Streicher lifting;

(2) the impredicative universe U ∈ V𝑖 is modelled by a universe strongly equivalent to the

Hofmann–Streicher lifting of U : ℰ, but equipped with a strict extension structure for P;
(3) the later modality ▶ is computed pointwise, i.e. we have (▶𝐴)𝑐 = ▶(𝐴𝑐).

We will use this result twice: first to extend models of iGDTT with constructs for relational

reasoning and parametricity (Section 5.3), and second to extend models of iGDTT with higher-

order store (Section 5.4). The culmination of this process is a standard model for iGDTTref
lrat

that

modularly combines realizability and presheaves.

5.3 Logical relations as types in the span model of iGDTT
Prior to the modeling iGDTTref

lrat
, we expose the construction of the span model of iGDTT on

top of a base model. This intermediate model does not possess the necessary structure to interpret

references, but it does support the relational primitives of iGDTTref
lrat

. We will eventually use

iGDTT itself as an internal language within this model in Section 5.4 to build the store model.

5.3.1 The span model. Given a topos modelℰ of iGDTT we may take the topos Spanℰ of spans

in ℰ, which can be constructed as a category of diagrams [C,ℰ] where C is the generic span

{L← C→ R} viewed as an internal poset in U ∈ ℰ. Whenℰ is the category of presheaves on a

well-founded poset O computed in a realizability topos such as Eff as in Section 5.1, we obtain

from Theorem 5.10 a new model of iGDTT in Spanℰ in which all guarded constructs are com-

puted pointwise. The span model Spanℰ contains propositions 𝚽l,𝚽r given by the representables

yC◦L, yC◦R respectively. The span model is moreover closed under the refinement type connective

8
A similar observation is made by Escardó [2021] in his investigation of injective types in univalent mathematics.

9
Algebras for the pointed endofunctor −+ play an important role in the recent work of Awodey on Quillen model structures

in cubical sets [Awodey 2021], from whom we have borrowed some of our notation.
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[𝚽 ↩→ 𝑥 : 𝐴 | 𝐵𝑥] where 𝚽 = 𝚽l ∨ 𝚽r is the (disjoint) disjunction as usual; this follows as the

subterminals 𝚽l,𝚽r have pointwise decidable image inℰ [Orton and Pitts 2016].

5.3.2 Modal geometry of the span model. We may further unravel the open and closed modalities

of Spanℰ to provide additional computational and geometric intuition. First we comment that the

propositions 𝚽l,𝚽r,𝚽 are concretely realized by the spans {1ℰ ← ∅ℰ → ∅ℰ}, {∅ℰ ← ∅ℰ → 1ℰ},
and {1ℰ ← ∅ℰ → 1ℰ} respectively.

Characterization of open modalities. For any subterminal object 𝜙 1Spanℰ , the subcategory of

Spanℰ spanned by 𝜙-transparent objects can be expressed as the slice Spanℰ ↓ 𝜙 . But in the case

of the specific propositions that we have distinguished, more explicit computations are available:

(1) A 𝚽-transparent object is one that is isomorphic to a product span {𝑋l ← 𝑋l × 𝑋r → 𝑋r}.
(2) A 𝚽l-transparent object is one that is isomorphic to a digram of the form {𝑋l ← 𝑋l → 1ℰ}.
(3) A 𝚽r-transparent object is one that is isomorphic to a digram of the form {1ℰ ← 𝑋r → 𝑋r}.
Thus we compute the open modalities explicitly:

(1) The openmodality (𝚽⇒ −) takes a span {𝑋l ← �̃� → 𝑋r} to the span {𝑋l ← 𝑋l × 𝑋r → 𝑋r}.
(2) The open modality (𝚽l ⇒ −) takes a span {𝑋l ← �̃� → 𝑋r} to the span {𝑋l ← 𝑋l → 1ℰ}.
(3) The open modality (𝚽r ⇒ −) takes a span {𝑋l ← �̃� → 𝑋r} to the span {1ℰ ← 𝑋r → 𝑋r}.
Based on the above, it is easy to see (e.g.) that 𝚽⇒ 𝐴 is isomorphic to (𝚽l ⇒ 𝐴) × (𝚽r ⇒ 𝐴).

Characterization of closed modality. Here we give an analogous discussion of the closed modality.

A 𝚽-sealed object is one that is isomorphic to a diagram of the form {1ℰ ← �̃� → 1ℰ}. Then the

closed modality (𝚽 • −) takes a span {𝑋l ← �̃� → 𝑋r} to the span {1ℰ ← �̃� → 1ℰ}.

5.3.3 Synthetic weak bisimulation. In the span model of iGDTT, we may define a new type con-

nective L̃ : {U→ U | 𝚽 ↩→ L} that expresses a weak bisimulation between two computations; in

other words, we will have 𝚽 ⇒ L̃𝐴 = L𝐴 and hence both 𝚽l ⇒ L̃𝐴 = L𝐴 and 𝚽r ⇒ L̃𝐴 = L𝐴.
Given 𝑢l : 𝚽l ⇒ L𝐴 and 𝑢r : 𝚽r ⇒ L𝐴, an element of {L̃𝐴 | 𝚽l ↩→ 𝑢l,𝚽r ↩→ 𝑢r} will be a proof
that 𝑢l and 𝑢r are weakly bisimilar. Because 𝐴 itself can be any type (e.g. any synthetic correspon-

dence), our definition of L̃𝐴 can be seen to be an adaptation of the lifting of a correspondence from

Møgelberg and Paviotti [2016]. We define L̃𝐴 by solving a guarded recursive domain equation in U:

L̃𝐴 ≜ [𝚽 ↩→ 𝑢 : L𝐴 | WeaklyBisimilar𝐴𝑢]

data Done𝐴 : (𝚽⇒ L𝐴) → U where
stop : (𝑎 : 𝚽⇒ 𝐴) → Done𝐴 (𝜂𝑎)
waitR : (𝑎 : 𝚽⇒ 𝐴,𝑛 : N≥1) → Done𝐴 [𝚽l ↩→ 𝜂𝑎,𝚽r ↩→ 𝛿𝑛𝜂𝑎]
waitL : (𝑎 : 𝚽⇒ 𝐴,𝑛 : N≥1) → Done𝐴 [𝚽l ↩→ 𝛿𝑛𝜂𝑎,𝚽r ↩→ 𝜂𝑎]

quotient data WeaklyBisimilar𝐴 : (𝚽⇒ L𝐴) → U where
done : {𝑢 : 𝚽⇒ L𝐴} → Done𝐴𝑢 →WeaklyBisimilar𝐴𝑢
step : (𝑢 : ▶L̃𝐴) →WeaklyBisimilar𝐴 (𝜗L𝐴 𝑢)
★ : {_ : 𝚽, 𝑢 : L𝐴} →WeaklyBisimilar𝐴𝑢
_ : {_ : 𝚽, 𝑢 : L𝐴, 𝑝 : WeaklyBisimilar𝐴𝑢} → 𝑝 = ★

We have ensured thatWeaklyBisimilar𝐴 is valued in 𝚽-sealed types by defining it as a quotient

inductive definition; here again we recall Remark 4.6. Thus the use of the refinement type in L̃𝐴 is

well-defined. We note that L̃𝐴 enjoys a similar interface to that of L𝐴; in particular, it inherits the
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structure of a guarded domain from its components, meaning that it supports recursion:

𝚽 ↩→ 𝜗L̃𝐴𝑢 ≜ 𝜗L𝐴 𝑢
𝜗L̃𝐴𝑢 ≜ step (next[𝑥 ← 𝑢] . 𝑥)

Likewise, we may define a unit map 𝜂 : 𝐴→ L̃𝐴 as follows:

𝚽 ↩→ 𝜂 𝑎 ≜ 𝜂 𝑎
𝜂 𝑎 ≜ done (stop𝑎)

In order to define the Kleisli extension for L̃𝐴 we must first define an operation that adds a step

on the left or on the right; we define the left-handed stepper 𝛿l below, and treat 𝛿r symmetrically.

𝛿l : L̃𝐴→ L̃𝐴
𝚽 ↩→ 𝛿l𝑢 ≜ [𝚽l ↩→ 𝛿𝑢,𝚽r ↩→ 𝑢]
𝛿l𝑢 ≜ case𝑢 of

done (stop𝑎) ↩→ done (waitL 1𝑎)
done (waitL𝑎 𝑛) ↩→ done (waitL (𝑛 + 1) 𝑎)
done (waitR𝑎 𝑛) ↩→ step (next (waitR? (𝑛 − 1) 𝑎))
step𝑢′ ↩→ step (next[𝑥 ← 𝑢′] . 𝛿l𝑥)
★ ↩→ [𝚽l ↩→ 𝛿𝑢,𝚽r ↩→ 𝑢]

waitR? : (𝑎 : 𝚽⇒ 𝐴) (𝑛 : N) → Done𝐴 [𝚽l ↩→ 𝜂𝑎,𝚽r ↩→ 𝛿𝑛𝜂𝑎]
waitR? 𝑎 0 ≜ stop𝑎
waitR? 𝑎 (𝑛 ≥ 1) ≜ waitR𝑎 𝑛

To see that the case analysis in 𝛿l𝑢 is well-defined as a map out of the quotient, it suffices to

observe that all clauses return 𝛿𝑢 under 𝚽l and 𝑢 under 𝚽r. Next we define stepl, stepr to be the

generic effects 𝛿l (ret ()) and 𝛿r (ret ()) respectively. We finally define the Kleisli extension for L̃ as

well, extending the Kleisli extension for L:

𝚽 ↩→ b̃ind𝑢 𝑓 ≜ bind𝑢 𝑓
b̃ind𝑢 𝑓 ≜ case𝑢 of

done𝑑 ↩→ finalize𝑑 𝑓
step𝑢′ ↩→ step (next[𝑥 ← 𝑢′] . b̃ind𝑥 𝑓 )
★ ↩→ bind𝑢 𝑓

finalize (stop𝑎) 𝑓 ≜ 𝑓 𝑎
finalize (waitL𝑛 𝑎) 𝑓 ≜ 𝛿𝑛

l
(𝑓 𝑎)

finalize (waitR𝑛 𝑎) 𝑓 ≜ 𝛿𝑛
r
(𝑓 𝑎)

5.4 Higher-order store in the possible worlds model of iGDTTref
lrat

We recall the construction of the categoryW internal to V0 as well as the objects of heaps H𝑤 from

Section 2.4.1. In this section, we apply Theorem 5.10 to [W, Spanℰ] to construct a dependently

typed version of the store model. In our previous model, the collection of types was global and did

not depend on Kripke worlds; in the new version, the types themselves depend on heap shapes.

We define the reference type as follows, writing 𝐵 |𝑤′ : [𝑤 ′ ↓W,U] for the obvious restriction of

𝐵 : [W,U] to the coslice:

𝐴 : U ⊢ ref𝐴 : U
ref𝑤 (𝐴 : [𝑤 ↓W,U]) (𝑤 ′ ≥ 𝑤) ≜ {𝑖 ∈ |𝑤 ′ | | ▶[𝐵 ← 𝑤 ′𝑖] .𝐵 |𝑤′ = 𝐴 |𝑤′ }
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We define the internal state monad and its ▶-algebra structure as follows, using the weak

bisimulation monad L̃ pointwise:

𝐴 : U ⊢ T𝐴 : U

T𝑤𝐴𝑤1 ≜∀𝑤2≥𝑤1

H𝑤2
→ L̃ ∃𝑤3≥𝑤2

H𝑤3
×𝐴𝑤3

𝐴 : U ⊢ 𝜗T𝐴 : ▶T𝐴→ T𝐴
𝜗𝑤,T𝑤𝐴𝑚𝑤

′ℎ ≜ 𝜗 (next[𝑢 ←𝑚] .𝑢𝑤 ′ℎ)

𝐴 : U ⊢ ret𝐴 : 𝐴→ T𝐴
ret𝑤,𝐴𝑎𝑤

′ℎ ≜ 𝜂 (pack (𝑤 ′, (ℎ, 𝑎 |𝑤2
)))

𝐴, 𝐵 : U ⊢ bind𝐴,𝐵 : T𝐴 × (𝐴→ T𝐵) → T𝐵
bind𝑤,𝐴,𝐵 (𝑚,𝑘)𝑤 ′ℎ = pack (𝑤 ′′, (ℎ′, 𝑎)) ←𝑚𝑤ℎ;𝑘𝑤′′𝑎𝑤

′′ℎ′

The steppers step, step
l
, step

r
: T 1 are defined pointwise using the corresponding constructs of

L̃. We define the generic effects for the getter and setter below:

𝐴 : U ⊢ get𝐴 : ref𝐴→ T𝐴
get𝑤,𝐴𝑙𝑤

′ℎ ≜
𝑥 ← 𝜗 (next[𝑧 ← ℎ𝑙] .𝜂𝑧);
𝜂 (pack (𝑤 ′, (ℎ, 𝑥)))

𝐴 : U ⊢ set𝐴 : ref𝐴 ×𝐴→ T 1

set𝑤,𝐴 (𝑙, 𝑥)𝑤 ′ℎ ≜
𝜂 (pack (𝑤 ′, (ℎ[𝑙 ↦→ 𝑥 |𝑤′ ], ∗)))

The allocator is the only subtle part; it is here that we will need to use the strict extension

structure that we have assumed on U inℰ.

𝐴 : U ⊢ new𝐴 : 𝐴→ T (ref𝐴)
new𝑤,𝐴𝑥𝑤

′ℎ ≜
let 𝑖 = fresh |𝑤 ′ |;
let𝑤 ′′ = 𝑤 ′ ∪ {𝑖 ↦→ next (𝜆𝑤0.(𝑤0 ≥ 𝑤 ′)∗ (𝐴𝑤0))};
let ℎ′ = ℎ |𝑤′′ ∪ {𝑖 ↦→ next𝑥 |𝑤′′ };
𝜂 (pack (𝑤 ′′, (𝑖, ℎ′)))

The problem solved by strict extension above is the following: a type𝐴 : U at world𝑤 has extent

only on the coslice𝑤 ↓W, and yet to extend the world by a new cell we must provide a type that

has extent on all ofW. We use strict extension to extend 𝐴 to a global type in a way that agrees

strictly with 𝐴 after𝑤 ′ ≥ 𝑤 . We synthesize the preceding discussion into the following result:

Theorem 5.11. Let ℰ be an elementary topos model of iGDTT. The lifting of this model to

[W, Spanℰ] extends to a model of iGDTTref
lrat

.

Proof. Applying Theorem 5.10 we obtain a model of iGDTT. The relational constructs of

iGDTTref
lrat

(𝚽l, 𝚽r, etc.) are lifted pointwise from Spanℰ. The remaining constructs—those gov-

erning state—are interpreted using the above definitions of T, new, get, and set. □

Recalling that iGDTTref
embeds into iGDTTref

lrat
, we obtain the following by the same reasoning

as Corollary 5.5:

Corollary 5.12. Both iGDTTref
and iGDTTref

lrat
are consistent.

Fix a closed term 𝑀 : TN. Inspecting the interpretation of 𝑀 within [W, Spanℰ], we see that
it corresponds to a global element of ⟦𝑀⟧ : 1 TN in [W, Spanℰ]. AsW possesses an initial

object (the empty heap), ⟦𝑀⟧ is determined by its instantiation ⟦𝑀⟧∅ : 1 T∅N.
Given any semantic world𝑤 and heap ℎ : H𝑤 , we therefore may run 𝑡∅ to obtain an element L̃N

within Spanℰ. We present this using iGDTT as the internal language of Spanℰ:

run : (𝑤 :W) → H𝑤 → L̃N
run𝑤 ℎ 𝑡 = (𝑤 ′, ℎ′, 𝑛) ← 𝑡∅ 𝑤 ℎ;𝜂 (𝑛)

Denote the restriction of ⟦𝑀⟧ by 𝚽l (resp. 𝚽r) by ⟦𝑀⟧l (resp. ⟦𝑀⟧r). The preceding discussion

substantiates the claim made in Section 4.3:
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Theorem 5.13. Fix a closed term𝑀 : TN in iGDTTref
lrat

. For any𝑤 :W and a heap ℎ : H𝑤 , there is

an element ofWeaklyBisimilarN [𝚽l ↩→ run𝑤 ℎ ⟦𝑀⟧l,𝚽r ↩→ run𝑤 ℎ ⟦𝑀⟧r] i.e. a weak bisimulation

between the results of executing ⟦𝑀⟧l and ⟦𝑀⟧r.

6 CALL-BY-PUSH-VALUE DECOMPOSITION OF POLYMORPHISM & STATE
The model of higher-order store in iGDTTref

that we constructed in Section 3 is a special case of a

much more general construction on models of polymorphic call-by-push-value that we describe

here. The results of the current section allow one to incorporate additional computational effects

modularly in the spirit of algebraic effects.

We defer a formal presentation of the syntax of polymorphic call-by-push-value to Appendix A;

but for intuition, we assume the following judgmental structure:

(1) Ψ ⊢ means that Ψ is a type context.

(2) Ψ ⊢ 𝐴 vtype means that 𝐴 is a value type in context Ψ.
(3) Ψ ⊢ 𝑋 ctype means that 𝑋 is a computation type in context Ψ.
(4) Ψ; Γ ⊢ means that Γ is a value context in type context Ψ.
(5) Ψ; Γ ⊢ 𝑉 : 𝐴 means that 𝑉 is a value of type 𝐴 in context Ψ; Γ.
(6) Ψ; Γ | 𝑋 ⊢ 𝐾 : 𝑌 means that 𝐾 is a stack from 𝑋 and 𝑌 in context Ψ; Γ.
(7) Ψ; Γ ⊢ 𝑀 : 𝑋 means that𝑀 is computation of type 𝑋 in context Ψ; Γ.

The results of this section will be stated at the level of categorical semantics rather than syntax.

In paritcular, we define a categorical notion of model for polymorphic call-by-push-value inspired

by that of Vákár [2017], generalizing Levy’s adjunction models [Levy 2003b] to account for the

parameterization of types over kinds.

Definition 6.1. A fibered cbpv model is given by the following data:

(1) a category ℬ of kinds equipped with finite products,

(2) a fibered category 𝒞 overℬ of value types and values, with a fibered terminal object

(3) a fibered category 𝒟 overℬ of computation types and stacks

(4) a full comprehension structure {−} : 𝒞 Pℬ,

(5) a fibered functor U : 𝒟 𝒞 over ℬ with a fibered left adjoint F ⊣ U .

In other words, we require the following fibered structure over ℬ depicted in Diagram 1 below;

note that Pℬ may be only a displayed rather than fibered category unless ℬ has pullbacks, but this

does not prevent stating the conditions of a fully faithful displayed functor {−} : 𝒞 Pℬ.

𝒟 𝒞 Pℬ

F

U

⊥
{−}

(1)

A fibered cbpv model is a categorical semantics for the judgments and adjunctives of polymorphic

cbpv in the following way:

(1) a type context Ψ ⊢ denotes an object of ℬ,

(2) a value context Ψ; Γ ⊢ denotes an object of 𝒞Ψ,

(3) a value type Ψ ⊢ 𝐴 vtype denotes an object of 𝒞Ψ,

(4) a computation type Ψ ⊢ 𝑋 ctype denotes an object of 𝒟Ψ,

(5) a value Ψ; Γ ⊢ 𝑉 : 𝐴 denotes a morphism Γ 𝐴 in 𝒞Ψ,

(6) a stack Ψ; Γ | 𝑋 ⊢ 𝐾 : 𝑌 denotes a morphism 𝜋∗Γ𝑋 𝜋∗Γ𝑌 in𝒟{Γ}Ψ , where 𝜋Γ : {Γ}Ψ Ψ ∈
ℬ is induced by the comprehension structure,
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(7) a computation Ψ; Γ ⊢ 𝑀 : 𝑋 denotes a morphism F Γ 𝑋 in 𝒟Ψ or, equivalently, a mor-

phism Γ U𝑋 in 𝒞Ψ.

Example 6.2. The ordinary adjunction models of cbpv are a special case of the above. Let 𝒮 be a

locally 𝒱-indexed category. Then let ℬ be 𝒱, let 𝒞 be the simple fibration of 𝒱, and let 𝒟𝐴 have

the same objects as 𝒮 such that a morphism 𝑋 𝑌 in𝒟𝐴 is given by an element of 𝒮
𝐴
(𝑋,𝑌 ).

Definition 6.3. A polymorphic fibered cbpv model is a fibered cbpv model such that 𝒞 is

equipped with a weak generic object and 𝒟 has simple products in the sense of Jacobs [1999]. We

will write vtp ∈ ℬ for the base of the generic object and val ∈ 𝒞vtp for its fiber.

In a polymorphic fibered cbpv model, the generic object represents the type context extension

Ψ, 𝛼 ⊢ and the simple products implement the polymorphic types∀𝛼
𝑋 [𝛼].

6.1 Preliminaries on fibered categories
Let ℬ be a category with finite limits and let C be an internal category in ℬ; letℰ be a fibered

category over ℬ. There is a category [C,ℰ]ℬ over internal diagrams over ℬ. An internal dia-

gram 𝐹 ∈ [C,ℰ]ℬ is given by a displayed object ob𝐹 ∈ ℰobC and a vertical morphism hom𝐹 :

𝜕∗
0
ob𝐹 𝜕∗

1
ob𝐹 ∈ ℰhomC satisfying internal versions of the functor laws.

In the special case of the fundamental fibered category Pℬ overℬ, an element of [C, Pℬ]ℬ is

the same as an internal diagram in ℬ in the sense of Borceux [1994]. Such an internal diagram

𝐹 ∈ [C, Pℬ]ℬ gives rise to an internal total category C ⋉ 𝐹 ∈ ℬ, whose object of objects obC⋉𝐹 is

the sum

∐
obC ob𝐹 where ob𝐹 ∈ ℬ ↓ obC is the displayed object associated to 𝐹 .

6.2 The polymorphic store model construction
Let ℬ be a locally cartesian closed category (so that Pℬ is a locally small fibered category) and let

(𝒞,𝒟, {−},U, F) be a polymorphic fibered cbpv model over ℬ such that 𝒞 has both products and

coproducts over ℬ in the sense of Jacobs [1999, Definition 1.9.4].

LetW,H be internal categories in ℬ such that H is discrete, and let 𝑠 : H obW be a function.

We may define a new stateful polymorphic fibered cbpv model indexed in worlds drawn fromW

with states in H. We define ℬ to be the category of internal diagrams [W, Pℬ]ℬ.

We will define a fibered category 𝒞 overℬ.

(1) For Ψ ∈ ℬ, a displayed object 𝐴 ∈ 𝒞Ψ is given by an internal diagram 𝐴 ∈ [W⋉ Ψ,𝒞]ℬ.

(2) For𝜓 : Φ Ψ ∈ ℬ, a displayed morphism 𝑓 : 𝐴 𝐵 in 𝒞 over𝜓 is given by a morphism

𝑓 :W⋉𝜓 · 𝐴 𝐵 in [W⋉ Ψ,𝒞]ℬ.

We define𝒟 overℬ in a similar fashion to the above, flipping the variance.

(1) For Ψ ∈ ℬ, a displayed object𝑋 ∈ 𝒟Ψ is given by an internal diagram𝑋 ∈
[
(W⋉ Ψ)◦,𝒟

]
ℬ.

(2) For 𝜓 : Φ Ψ ∈ ℬ, a displayed morphism 𝑘 : 𝑋 → 𝑌 over 𝜓 is given by a morphism

𝑘 : 𝐴 W⋉𝜓 ∗𝐵 in

[
(W⋉ Φ)◦,𝒟

]
ℬ.

Construction 6.4 (Comprehension structure). We define the comprehension {−} : 𝒞 P
ℬ

by

applying the existing comprehension structure {−} : 𝒞 Pℬ pointwise.

Construction 6.5 (The lifted store span). The basic notion of store H is a discrete internal ℬ-

category indexed in the internal category of worldsW; in the fibered store model, we will treat

the total internal categoryW⋉ Ψ of Ψ ∈ [W, Pℬ]ℬ as an internal category of worlds and thus we
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must define the corresponding notion of store HΨ. We achieve this by pullback as follows:

W⋉ Ψ

W

𝑝Ψ

HΨ

H

𝑠Ψ

𝑠

(W⋉ Ψ)◦

W◦

𝑠◦Ψ

𝑝◦Ψ

𝑠◦

Construction 6.6 (The left adjoint). We may define a functor F : 𝒞 𝒟 overℬ using the fact

that 𝒞 has ℬ-coproducts; the component FΨ is the following composite: [
(W⋉ Ψ)◦,𝒟

]
ℬ

[
(W⋉ Ψ)◦,𝒞

]
ℬ[HΨ,𝒞]ℬ[W⋉ Ψ,𝒞]ℬ

[
W⋉ Ψ◦, F

]
ℬ

∐
𝑠◦Ψ∆𝑠Ψ

Lemma 6.7. The functor F : 𝒞 𝒟 is fibered overℬ.

Proof. Explicitly, for any 𝑓 : Φ Ψ ∈ ℬ we need for the canonical map 𝑓 ∗FΨ FΦ 𝑓 ∗ to be

an isomorphism. Because the base change 𝑓 ∗ acts by precomposition, this can be checked with an

explicit computation starting from a diagram 𝐴 ∈ [W⋉ Ψ,𝒞]ℬ; we will use internal notations to

facilitate our computation:

𝑓 ∗FΨ𝐴 = 𝑓 ∗
[
(W⋉ Ψ)◦, F

]
ℬ

∐
𝑠◦Ψ ∆𝑠Ψ

[𝑤,𝜓 ↦→ 𝐴𝑤𝜓 ]
= 𝑓 ∗

[
(W⋉ Ψ)◦, F

]
ℬ

∐
𝑠◦Ψ
[𝑤, (𝜓,ℎ) ↦→ 𝐴𝑤𝜓 ]

= 𝑓 ∗
[
(W⋉ Ψ)◦, F

]
ℬ

[
𝑤,𝜓 ↦→∐

𝑤′≥𝑤
∐

ℎ∈H𝑤′ 𝐴𝑤
′𝜓 |𝑤′

]
= 𝑓 ∗

[
𝑤,𝜓 ↦→ F

(∐
𝑤′≥𝑤

∐
ℎ∈H𝑤′ 𝐴𝑤

′𝜓 |𝑤′
) ]

=
[
𝑤,𝜙 ↦→ F

(∐
𝑤′≥𝑤

∐
ℎ∈H𝑤′ 𝐴𝑤

′ (𝑓𝑤𝜙) |𝑤′
) ]

=
[
(W⋉ Φ)◦, F

]
ℬ

[
𝑤,𝜙 ↦→∐

𝑤′≥𝑤
∐

ℎ∈H𝑤′ 𝐴𝑤
′ (𝑓𝑤𝜙) |𝑤′

]
=
[
(W⋉ Φ)◦, F

]
ℬ

∐
𝑠◦Φ
[𝑤, (𝜙,ℎ) ↦→ 𝐴𝑤 (𝑓𝑤𝜙)]

=
[
(W⋉ Φ)◦, F

]
ℬ

∐
𝑠◦Φ ∆𝑠Φ

[𝑤,𝜙 ↦→ 𝐴𝑤 (𝑓𝑤𝜙)]
=
[
(W⋉ Φ)◦, F

]
ℬ

∐
𝑠◦Φ ∆𝑠Φ

𝑓 ∗ [𝑤,𝜓 ↦→ 𝐴𝑤𝜓 ]

= FΦ 𝑓 ∗𝐴 □

Construction 6.8 (The right adjoint). We define a right adjoint U : 𝒟 𝒞 using the fact that 𝒞

has ℬ-products; the component UΨ is the following composite:[
(W⋉ Ψ)◦,𝒟

]
ℬ

[
(W⋉ Ψ)◦,𝒞

]
ℬ [HΨ,𝒞]ℬ [W⋉ Ψ,𝒞]ℬ

[
(W⋉ Ψ)◦,U

]
ℬ ∆𝑠◦Ψ

∏
𝑠Ψ

Lemma 6.9. The functor U : 𝒟 𝒞 is fibered overℬ.

Proof. Fix 𝑋 ∈
[
(W⋉ Ψ)◦,𝒟

]
ℬ and 𝑓 : Φ Ψ.

𝑓 ∗UΨ𝑋 = 𝑓 ∗
∏

𝑠Ψ ∆𝑠◦Ψ

[
(W⋉ Ψ)◦,U

]
ℬ [𝑤,𝜓 ↦→ 𝑋𝑤𝜓 ]

= 𝑓 ∗
∏

𝑠Ψ ∆𝑠◦Ψ
[𝑤,𝜓 ↦→ U (𝑋𝑤𝜓 )]

= 𝑓 ∗
∏

𝑠Ψ
[𝑤, (𝜓,ℎ) ↦→ U (𝑋𝑤𝜓 )]
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= 𝑓 ∗
[
𝑤,𝜓 ↦→∏

𝑤′≥𝑤
∏

ℎ∈H𝑤′ U (𝑋𝑤
′ (𝜓 |𝑤′ ))

]
=
[
𝑤,𝜙 ↦→∏

𝑤′≥𝑤
∏

ℎ∈H𝑤′ U (𝑋𝑤
′ ((𝑓𝑤𝜙) |𝑤′ ))

]
=
∏

𝑠Φ
[𝑤, (𝜙,ℎ) ↦→ U (𝑋𝑤 (𝑓𝑤𝜙))]

=
∏

𝑠Φ ∆𝑠◦Φ
[𝑤,𝜙 ↦→ U (𝑋𝑤 (𝑓𝑤𝜙))]

=
∏

𝑠Φ ∆𝑠◦Φ

[
(W⋉ Φ)◦,U

]
ℬ [𝑤,𝜙 ↦→ 𝑋𝑤 (𝑓𝑤𝜙)]

=
∏

𝑠Φ ∆𝑠◦Φ

[
(W⋉ Φ)◦,U

]
ℬ 𝑓
∗ [𝑤,𝜙 ↦→ 𝑋𝑤𝜙]

= UΦ 𝑓
∗𝑋 □

Construction 6.10 (The generic object). The weak generic object of𝒞 is built from the weak generic

object of 𝒞 using the Hofmann–Streicher construction. If 𝒞 is split, then 𝒞 is likewise split and

the Hofmann–Streicher construction yields a split generic object.

Lemma 6.11. The fibered category 𝒟 has simple products overℬ.

Corollary 6.12. The data (𝒞,𝒟, {−},U, F) consistute a polymorphic fibered cbpv model overℬ.

Example 6.13 (Instantiation of the polymorphic store construction). Let 𝜔 be the assembly of

natural numbers equipped with the usual partial order. Then ℬ =
[
𝜔◦,AsmA

]
is a model of

guarded recursion; internal to ℬ we have a universe U of presheaves of modest sets, which we

may assume to come equipped with a strict extension structure. We may construct a preorder of

worldsW as in the previous sections using U, and we likewise may define the discrete category of

heaps H. We define 𝒞 to be the full internal subcategory spanned by U; the comprehension {−} is
simply the inclusion of presheaves of modest sets into presheaves of assemblies. We define𝒟 to be

category of algebras for the endofunctor ▶ : 𝒞 𝒞. The free-forgetful adjunction U ⊣ F induced

by the endofunctor ▶ then serves as an appropriate input for the polymorphic store construction.

Remark 6.14. From Example 6.13 we obtain a model of higher-order store in a topos, and it is

natural to compare it to our explicit dependently typed store model from Section 5.4. This is not

immediately possible because (1) the construction in this section yields a fibered monad whereas

that of Section 5.4 yields an internal monad on a universe, and (2) the model from Section 5.4 takes

place in spans to account for relational reasoning up to weak bisimulation, whereas we have not

accounted for relational reasoning in this section. We may nonetheless compare these two models

by (1) restricting the fibered monad to an internal monad, and (2) considering either “hand” of the

span model; on this footing, the two models of higher-order store coincide.

7 CONCLUSIONS AND FUTUREWORK
Dependent type theory with higher-order store. We have defined denotational semantics for

higher-order store and polymorphism in impredicative guarded dependent type theory (iGDTT);
this denotational semantics, in turn, justifies the extension of impredicative guarded dependent

type theory with general reference types and a (higher-order) state monad, a theory that we call

iGDTTref
. Although denotational semantics for higher-order state are a priori desirable in general,

they are essentially mandatory in the case of dependent type theory — an area in which operational

methods have proved disappointingly unscalable.

Relational reasoning atop an intensional equational theory. The equational theory of store that we

model is, however, quite intensional: reads from the store leave behind “abstract steps” that cannot

be ignored. Thus in order to support reasoning about stateful computation, we have extended

iGDTTref
with constructs for proof-relevant relational reasoning based on the logical relations
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as types (LRAT) principle: in iGDTTref
lrat

, it is possible to exhibit correspondences between stateful

computations that combine weak bisimulation for computation steps with parametricity for abstract

data types. Because we have “full-spectrum” dependent type theory at our disposal, bisimulation

arguments that in prior work required unfolding a very complex operational or denotational

semantics can be carried out totally naïvely within the type theory.

7.1 Future work
7.1.1 Swapping and dropping allocations. Our account of correspondences on worlds and stateful

computations is somewhat provisional; althoughwe support storing relational invariants in the heap

and working “up to” computation steps, it is not possible in our model to exhibit a correspondence

between two programs that allocate differently, even if this does not affect their observable behavior.

Two things are currently missing from our model:

(1) Swapping of independent allocations. To identify (𝑟 ← newZ 5; 𝑠 ← newZ 6;𝐴𝑢 𝑟 𝑠) with the

reordered program (𝑠 ← newZ 6; 𝑟 ← newZ 5;𝑢 𝑟 𝑠), we would need the relational inter-

pretation of worlds to allow the left-hand world to differ from the right-hand world by a

permutation.

(2) Dropping of inactive allocations. Ours is a model of global state and allocation: thus the

denotations of (𝑟 ← newZ 5; ret ()) and ret () are distinct. One of our goals for future work
is to extend our relational layer to account for such identifications, potentially by adapting

the ideas of Kammar et al. [2017] who have themselves extended the classic Plotkin–Power

account of local state [Plotkin and Power 2002] to support storage of pointers. We believe

such an adaptation is plausible, but many questions remain unanswered in the space between

storage of ground types and pointers with syntactic worlds and full thunk storage with

semantic worlds.

We believe that it may be possible to address the limitations outlined above using nominal

techniques [Gabbay and Pitts 2002; Pitts 2016, 2013]; it is also worth considering the relationship

between the logical relations as types principle and the proof-relevant logical relations for swapping

and dropping employed by Benton et al. [2013].

7.1.2 More sophisticated Kripke worlds. We also expect that it may be profitable to build on prior

work in the operational semantics of state [Ahmed et al. 2009; Dreyer et al. 2010] involving yet

more sophisticated Kripke worlds to facilitate local reasoning on the heap. Such sophistication

inevitably draws one in the direction of proper program logics, however, which is another area of

future work.

7.1.3 Higher-order separation logic for modular reasoning about stateful programs. Closely related

to the question of Kripke worlds broached above, it is reasonable to consider layering atop our type

theory the higher-order separation logic of Iris [Jung et al. 2015] to support modular reasoning

about stateful programs. Semantically there is no obstacle to defining the Kripke worlds in terms

of a resource algebra that incorporates higher-order ghost state [Bizjak and Birkedal 2018], but

it remains an open question how to surface the details of this Kripke model in dependent type

theory in a useful way. Although logic-enriched dependent type theory is well-understood [Jacobs

1999; Phoa 1992; Taylor 1999], we expect that satisfactorily developing the theory of higher-order

separation logic over dependent types may require some new ideas.
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A SYNTAX OF POLYMORPHIC CALL-BY-PUSH-VALUE
In this section we describe the syntax of a version of call-by-push-value with polymorphism and

higher-order store. First we describe the structure of contexts and judgments:

(1) Ψ ⊢ means that Ψ is a type context.

(2) Ψ ⊢ 𝐴 vtype means that 𝐴 is a value type in context Ψ.
(3) Ψ ⊢ 𝑋 ctype means that 𝑋 is a computation type in context Ψ.
(4) Ψ; Γ ⊢ means that Γ is a value context in type context Ψ.
(5) Ψ; Γ ⊢ 𝑉 : 𝐴 means that 𝑉 is a value of type 𝐴 in context Ψ; Γ.
(6) Ψ; Γ | 𝑋 ⊢ 𝐾 : 𝑌 means that 𝐾 is a stack from 𝑋 and 𝑌 in context Ψ; Γ.
(7) Ψ; Γ ⊢ 𝑀 : 𝑋 means that𝑀 is computation of type 𝑋 in context Ψ; Γ.

The structure of contexts is described below; contexts contain type variables and value variables.

· ⊢
Ψ ⊢ (𝛼 ∉ Ψ)

Ψ, 𝛼 ⊢
Ψ; Γ ⊢ Ψ ⊢ 𝐴 vtype (𝑥 ∉ Γ)

Ψ; Γ, 𝑥 : 𝐴 ⊢
𝛼 ∈ Ψ

Ψ ⊢ 𝛼 vtype

(𝑥 : 𝐴) ∈ Γ
Ψ; Γ ⊢ 𝑥 : 𝐴

A.1 Stack composition

Ψ; Γ | 𝑋 ⊢ ■ : 𝑋

Ψ; Γ | 𝑋 ⊢ 𝐾 : 𝑌 Ψ; Γ | 𝑌 ⊢ 𝐿 : 𝑍

Ψ; Γ | 𝑋 ⊢ 𝐾 ;𝐿 : 𝑍

Ψ; Γ |𝑊 ⊢ 𝐽 : 𝑋 Ψ; Γ | 𝑋 ⊢ 𝐾 : 𝑌 Ψ; Γ | 𝑌 ⊢ 𝐿 : 𝑍

Ψ; Γ |𝑊 ⊢ 𝐽 ; (𝐾 ;𝐿) ≡ (𝐽 ;𝐾);𝐿 : 𝑍

Ψ; Γ | 𝑋 ⊢ 𝐾𝑌
Ψ; Γ | 𝑋 ⊢ ■;𝐾 ≡ 𝐾𝑌

Ψ; Γ | 𝑋 ⊢ 𝐾𝑌
Ψ; Γ | 𝑋 ⊢ 𝐾 ;■ ≡ 𝐾𝑌

A.2 Stack dismantling

Ψ; Γ ⊢ 𝑀 : 𝑋 Ψ; Γ | 𝑋 ⊢ 𝐾 : 𝑌

Ψ; Γ ⊢ 𝑀 ⋄𝐾 : 𝑌

Ψ; Γ ⊢ 𝑀 : 𝑋

Ψ; Γ ⊢ 𝑀 ⋄ ■ ≡ 𝑀 : 𝑋

Ψ; Γ ⊢ 𝑀 : 𝑋 Ψ; Γ | 𝑋 ⊢ 𝐾 : 𝑌 Ψ; Γ | 𝑌 ⊢ 𝐿 : 𝑍

Ψ; Γ ⊢ 𝑀 ⋄𝐾 ;𝐿 ≡ (𝑀 ⋄𝐾) ⋄ 𝐿 : 𝑍

A.3 Left adjunctives

Ψ ⊢ 𝐴 vtype

Ψ ⊢ F𝐴 ctype

Ψ; Γ ⊢ 𝑉 : 𝐴

Ψ; Γ ⊢ ret𝑉 : F𝐴

Ψ; Γ, 𝑥 : 𝐴 ⊢ 𝑁 [𝑥] : 𝑋

Ψ; Γ | F𝐴 ⊢ �̃�𝑥 . 𝑁 [𝑥] : 𝑋

Ψ; Γ ⊢ 𝑉 : 𝐴 Ψ; Γ, 𝑥 : 𝐴 ⊢ 𝑁 [𝑥] : 𝑋

Ψ; Γ ⊢ ret𝑉 ⋄ �̃�𝑥 . 𝑁 [𝑥] ≡ 𝑁 [𝑉 ] : 𝑋

Ψ; Γ | F𝐴 ⊢ 𝐾 : 𝑋

Ψ; Γ | F𝐴 ⊢ 𝐾 ≡ �̃�𝑥 . ret𝑥 ⋄𝐾 : 𝑋

A.4 Right adjunctives

Ψ ⊢ 𝑋 ctype

Ψ ⊢ U𝑋 vtype

Ψ; Γ ⊢ 𝑀 : 𝑋

Ψ; Γ ⊢ thunk𝑀 : U𝑋

Ψ; Γ ⊢ 𝑉 : U𝑋

Ψ; Γ ⊢ force𝑉 : 𝑋

Ψ; Γ ⊢ 𝑀 : 𝑋

Ψ; Γ ⊢ force (thunk𝑀) ≡ 𝑀 : 𝑋

Ψ; Γ ⊢ 𝑉 : U𝑋

Ψ; Γ ⊢ 𝑉 ≡ thunk (force𝑉 ) : U𝑋
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A.5 Universal types
Ψ, 𝛼 ⊢ 𝑋 [𝛼] ctype
Ψ ⊢ ∀𝛼

𝑋 [𝛼] ctype
Ψ, 𝛼 ; Γ | 𝑋 ⊢ 𝐾 [𝛼] : 𝑌 [𝛼] (𝛼 ∉ Ψ; Γ)

Ψ; Γ | 𝑋 ⊢ pop𝛼. 𝐾 [𝛼] :∀𝛼
𝑌 [𝛼]

Ψ ⊢ 𝐴 vtype Ψ | 𝑋 ⊢ 𝐾 :∀𝛼
𝑌 [𝛼]

Ψ; Γ | 𝑋 ⊢ push𝐴;𝐾 : 𝑌 [𝐴]
Ψ ⊢ 𝐴 vtype Ψ, 𝛼 ; Γ | 𝑋 ⊢ 𝐾 [𝛼] : 𝑌 [𝛼]

Ψ; Γ | 𝑋 ⊢ push𝐴; pop𝛼. 𝐾 [𝛼] ≡ 𝐾 [𝛼] : 𝑌 [𝐴]

Ψ; Γ | 𝑋 ⊢ 𝐾 :∀𝛼
𝑌 [𝛼]

Ψ; Γ | 𝑋 ⊢ 𝐾 ≡ pop𝛼. push𝛼 ;𝐾 :∀𝛼
𝑌 [𝛼]

A.6 Reference types and computational effects
Ψ ⊢ 𝐴 vtype

Ψ ⊢ ref𝐴 vtype

Ψ; Γ ⊢ 𝑀 : 𝐴

Ψ; Γ ⊢ step;𝑀 : 𝑋

Ψ; Γ ⊢ 𝑉 : 𝐴 Ψ; Γ, 𝑥 : ref𝐴 ⊢ 𝑀 [𝑥] : 𝑋

Ψ; Γ ⊢ new𝑥 ≔ 𝑉 in 𝑀 [𝑥] : 𝑋

Ψ; Γ ⊢ 𝑉 : ref𝐴 Ψ; Γ, 𝑥 : 𝐴 ⊢ 𝑀 [𝑥] : 𝑋

Ψ; Γ ⊢ 𝑥 ?𝑉 .𝑀 [𝑥]
Ψ; Γ ⊢ 𝑉 : ref𝐴 Ψ; Γ ⊢𝑊 : 𝐴 Ψ; Γ ⊢ 𝑀 : 𝑋

Ψ; Γ ⊢ 𝑉 B𝑊 ;𝑀 : 𝑋

Ψ; Γ ⊢ 𝑉 : 𝐴 Ψ; Γ ⊢𝑊 : 𝐴 Ψ; Γ, 𝑥 : ref𝐴 ⊢ 𝑀 [𝑥] : 𝑋

Ψ; Γ ⊢ (new𝑥 ≔ 𝑉 in 𝑥 B𝑊 ;𝑀 [𝑥]) ≡ (new𝑥 ≔𝑊 in 𝑀 [𝑥]) : 𝑋

Ψ; Γ ⊢ 𝑉 : ref𝐴 Ψ; Γ ⊢𝑊 : 𝐴 Ψ; Γ, 𝑥 : 𝐴 ⊢ 𝑀 [𝑥] : 𝑋

Ψ; Γ ⊢ (𝑉 B𝑊 ;𝑥 ?𝑉 .𝑀 [𝑥]) ≡ (𝑉 B𝑊 ; step;𝑀 [𝑊 ]) : 𝑋

Ψ; Γ ⊢ 𝑈 : ref𝐴 Ψ; Γ ⊢ 𝑉 ,𝑊 : 𝐴 Ψ; Γ ⊢ 𝑀𝑋
Ψ; Γ ⊢ (𝑈 B 𝑉 ;𝑈 B𝑊 ;𝑀) ≡ (𝑈 B𝑊 ;𝑀) : 𝑋

We omit the rules that make step commute with all the effects described above.

A.7 The unit type
To pass between computations and stacks, we need to include a unit type.

Γ ⊢ 1 vtype Γ ⊢ () : 1

Γ ⊢ 𝑉 : 1

Γ ⊢ 𝑉 ≡ () : 1

A.8 Macro definitions
We include a few “macro expansions” to support more familiar notations for the focalized constructs

of the core calculus.

(𝑥 ← 𝑀 ;𝑁 [𝑥]) ≜ 𝑀 ⋄ �̃�𝑥 . 𝑁 [𝑥]
(Λ𝛼.𝑀 [𝛼]) ≜ ret () ⋄ pop𝛼. �̃�_. 𝑀 [𝛼]

𝑀 (𝐴) ≜ push𝐴; ret () ⋄ push𝐴; �̃�_. 𝑀 [𝛼]
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