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Abstract. As part of ongoing work on evaluating Milner’s bigraphi-
cal reactive systems, we investigate bigraphical models of context-aware

systems, a facet of ubiquitous computing. We find that naively encod-
ing such systems in bigraphs is somewhat awkward; and we propose a
more sophisticated modeling technique, introducing Plato-graphical mod-

els, alleviating this awkwardness. We argue that such models are useful
for simulation and point out that for reasoning about such bigraphical
models, the bisimilarity inherent to bigraphical reactive systems is not
enough in itself; an equivalence between the bigraphical reactive systems
themselves is also needed.

1 Introduction

The theory of bigraphical reactive systems, due to Milner and co-workers, is based
on a graphical model of mobile computation that emphasizes both locality and
connectivity [15, 19, 21]. A bigraph comprises a place graph, representing loca-
tions of computational nodes, and a link graph, representing interconnection
of these nodes. We give dynamics to bigraphs by defining reaction rules that
rewrite bigraphs to bigraphs; roughly, a bigraphical reactive system (BRS) is
a set of such rules. Based on methods of the seminal [16], any BRS has a la-
belled transition system, the behavioural equivalence (bisimilarity) of which is a
congruence.

There are two principal aims for the theory of bigraphical reactive systems:
(1) to model ubiquitous systems [28], capturing mobile locality in the place
graph and mobile connectivity in the link graph; and (2) to be a meta-theory
encompassing existing calculi for concurrency and mobility. To date, the theory
has been evaluated only wrt. the second aim: We have bigraphical understand-
ing of Petri nets [18], π-calculus [13, 15, 14], CCS [21], mobile ambients [13],
HOMER [5], and λ-calculus [19, 20].

The present paper initiates the evaluation of the first aim. We investigate
modeling of context-aware systems, a vital aspect of ubiquitous systems. A
context-aware application is an application that adapts its behaviour depending
on the context at hand [26], interpreting “context” to mean the situation in
which the computation takes place [10]. The canonical example of such a situa-
tion is the location of the device performing the computation; systems sensitive
to location are called location-aware. As an example, a location-aware printing



2 L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt, and H. Niss

system could send a user’s print job to a printer close by. (For notions of context
different from location, refer to [27]; for large-scale practical examples, see [1].)

To observe changes in the context, context-aware systems typically include
a separate context sensing component that maintains a model of the current
context. Such models are known as context models [12] or, more specifically,
location models [2]. The above-mentioned location-aware printing system would
need to maintain a model of the context that supports finding the printer closest
to a given device. Such models are informal. There are only very few formal
models of context-aware computing (refer to [11] for an overview). We point out
Context Unity [25]; in spirit, our proposal is somewhat closer to process calculi
than Context Unity is. However, bigraphs differ from traditional process calculi
in that we get to write our own reaction rules.

In overall terms, our contribution is two-fold.

– We find, perhaps surprisingly, that naively modeling context-aware systems
as BRSs is somewhat awkward; and

– we propose a more sophisticated modeling technique, in which the perceived
and actual context are both explicitly represented as distinct but overlapping
BRSs. We call such models Plato-graphical.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce bigraphs and bigraphical reactive systems. In Section 3, we discuss naive
bigraphical models of location-aware systems. In Section 4, we introduce our
Plato-graphical models of context-aware systems. In Section 5, we present two
example models. In Section 6, we discuss. Finally, in Section 7, we conclude and
note future work.

2 Bigraphs and Bigraphical Reactive Systems

We introduce bigraphs by example (the reader can find the relevant formal defi-
nitions of [15, 21] in Appendix A of [3]). Readers acquainted with bigraphs may
skip this section.

Here is a bigraph, A:

server
secret

office

pc pda pda

It has nodes (vertices), indicated by solid boxes. Each node has a control, written
in sans serif. Each control has a number of ports ; ports can be linked by edges,
indicated by lines. Here, the controls secret and office have no ports, all other
controls have one port. Nodes can be nested, indicated by containment. The two
outermost dashed boxes indicate roots. Roots have no controls; they serve solely
to separate different nesting hierarchies.
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The bigraph A ostensibly models two physically separate locations (because
of the two roots). The first contains a server, which in turn contains secret data;
the second contains an office, which in turn contains a PC and two PDAs. The
server and the PC are connected, as are the PDAs.

Here is another bigraph, B:

server

0

z

office

pc pda

1

B resembles A, except that the content of server has been replaced with a site −0,
one of the pdas has been replaced by a site −1, and there is an inner name z con-
nected to the remaining pda. Using sites and names, we can define composition
of bigraphs. For that, here is yet another bigraph C:

secret

z

pda

C has an outer name z. The bigraphs B and C compose to form A, i.e., A = B◦C.
Composition proceeds by plugging the roots of C into the sites of B (in order),
and fusing together the connections pda → z (in C) and z → pda (in B) removing
the name z in the process.

One cannot compose arbitrary bigraphs. For U ◦ V to be defined, U must
have exactly as many sites as V has roots, and the inner names of U must be
precisely the outer names of V . The sites and inner names are collectively called
the inner face; similarly, the roots and outer names are called the outer face. A
has inner face 〈0, ∅〉 (no holes, no inner names) and outer face 〈2, ∅〉 (two roots,
no outer names). We write A : 〈0, ∅〉 → 〈2, ∅〉. Similarly, B : 〈2, {z}〉 → 〈2, ∅〉
and C : 〈0, ∅〉 → 〈2, {z}〉.

The graphical representation used above is handy for modeling, but unwieldy
for reasoning. Fortunately, bigraphs have an associated term language [7, 17],
which we use (albeit in a sugared form) in what follows. The language is summa-
rized in Table 1. Here are, in order of increasing complexity, term representations
of the bigraphs A, B and C.

C = secret ‖ pdaz

A = /x./y.serverx(secret) ‖ office(pcx | pday | pday)

B = /x./y.serverx(−0) ‖ office(pcx | pday | −1) | y/z

Notice how, in B, edges are specified by first linking nodes to the same name,
then converting that name to an edge using the closure ‘/’.

We give dynamics to bigraphs by defining reaction rules. Example:
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Term Meaning

U ‖ V Concatenation (juxtaposition) of roots.
U | V Concatenation (juxtaposition) of children. (collect

the children of U and V under one root.)
U ◦ V Composition.
U(V ) Nesting. U contains V .
K~x(U) Ion. Node with control K of arity |~x|, ports con-

nected to the outer names of vector ~x. The node
contains U .

1 The barren (empty) root.
−i Site numbered i.

/x.U U with outer name x replaced by an edge.
x/y Connection from inner name y to outer name x.

Table 1. Sugared term language for bigraphs.

server

0

z

office

pc
pda

1 _

server

0

z

office

pc
pda

0 1

/x.serverx(−0) ‖ office(pcx | pdaz | −1)

−→ /x.serverx(−0) ‖ office(pcx | pdaz(−0) | −1)

This rule might model that if a PC in some office is linked to a server, a PDA
in the same office may use the PC as a gateway to copy data from the server.
The rule matches the bigraph A above, taking secret to the site −0 and pday to
the site −1, rewriting A to

A′ = /x./y.serverx(secret) ‖ office(pcx | pday(secret) | pday)

(We omit details on what it means to match connections; refer to one of [15,
21].)

It is occasionally convenient to limit the contexts in which a reaction rule
applies [4], i.e., we might want to limit the above example reaction rule to apply
only in the left wing of the building. To this end, bigraphs can be equipped
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with a sorting [13, 21, 18]. A sorting consists of a set of sorts (or types); all
inner and outer faces are then enriched with such a sort. Further, a sorting
must stipulate some condition on bigraphs, we then restrict our attention to the
bigraphs that satisfy that condition, thus outlawing some contexts. Obviously,
removing contexts may ruin the congruence property of the induced bisimilarity;
[13] and [21] give different sufficient conditions for a sorting to preserve that
congruence property.

This concludes our informal overview of bigraphs. Now on to the models.

3 Naive Models of Location-aware Systems

In this section, we attempt to model location-aware systems naively in bigraphs.
We will find the naive approach to be somewhat awkward. Due to space con-
straints we do not discuss other forms of context.

We use the place and link graphs for describing locations and interconnec-
tions directly, and we use reaction rules to implement both reconfiguration of the
context and queries on the context. The former is simply a non-deterministic
change in the context; the latter is a computation on the context that does
not change the context, except for producing an answer to some question. In
a location-aware system, a device moving would be a reconfiguration, whereas
computing the answer to the question “what devices are currently at the loca-
tion l” is a query.

We discuss the implementation of this query. (An implementation of the
query can be found in Appendix B in [3].) Incidentally, a query such as “find
nearest neighbor”, which conceptually is only slightly harder, is significantly
harder to implement. (Other examples plagued by essentially the same difficulties
can be found in [9].)

Consider the following bigraph representing devices (e.g., PDAs) located at
locations (e.g., offices, meeting rooms) within a building.

l = /w./x./y./z.loc (loc (loc (loc (devw) | loc (devx | devy))) | loc() | loc (devz))

Off-hand, finding all devices, say, beneath the root, looks straightforward: We
should simply recursively traverse the nesting tree. Unfortunately, such traversal
is quite complicated for the following reasons.

– The bigraphical reaction rules do not support recursion directly, so we must
encode a runtime stack by means of additional controls.

– Bigraphical reaction rules can be applied in any context, but when imple-
menting an operation such as the query we consider now, we need more
refined control over when rules can be applied; one may achieve this more
refined control by again using additional nodes and controls, essentially im-
plementing what corresponds to a program counter. This still leaves great
difficulty in handling concurrent operations, though.

– As a special case of the previous item, it is particularly difficult to express
that a reaction rule is intended to apply only in case something is not present
in the context.
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Summing up, the bigraphical rules that model physical action do not in general
provide the power to compute directly with a model of that action (because of
a lack of control structures). The slogan is “reconfiguring is easy, querying is
hard”.

In earlier work on evaluating bigraphs as a meta-theory (aim (2) mentioned in
the Introduction), reaction rules were used to encode the operational semantics
of a calculus or programming language. However, above we attempt to implement
a query directly as reaction rules. This seemingly innocuous difference will turn
out to have major implications for reasoning methods; more on this in Section 6.

We imagine that adding more flexibility to the reaction rules might make it
easier to program directly with bigraphs. One possible attempt is to use spatial
logics for bigraphs [6] in combination with sorting, to get control of the contexts
in which a particular reaction rule applies.

In the following sections, we propose another way to model context-aware
systems in bigraphs, where the reaction rules are not used to program directly
with but instead they are used (1) to represent transitions happening in the real
world and (2) to encode operational semantics of programming languages, within
which one can then implement queries on representations of the real world.

4 Plato-graphical Models of Context-aware Systems

The naive model of the previous section shares an important characteristic with
recent proposals of formal models for context-aware computation [4, 8, 25] that
comprise agents and contexts only: These models take the agent’s ability to de-
termine what is the present context as given. We contend that for some systems,
it is natural to model not only the actual context but also the agent’s represen-
tation of the actual context. We shall see that pursuing this idea will partially
alleviate the awkwardness seen in the previous Section.

We shall need some notation and definitions.

Notation 1. We write B = (K,R) to indicate that B is a bigraphical reactive
system with controls K and rules R, and write f ∈ B to mean that f is a bigraph
of B.

Definition 1 (Independence). Let B = (K,R) and B′ = (K′,R′) be bigraph-
ical reactive systems. Say that B and B′ are independent and write B ⊥ B′ iff K
and K′ are disjoint.

Definition 2 (Composite bigraphical reactive systems). Let B = (K,R)
and B′ = (K′,R′) be bigraphical reactive systems. Define the union B ∪ B′

point-wise, i.e., B ∪ B′ = (K ∪ K′,R∪R′), when K and K′ agree on the arities
of the controls in K ∩ K′.

Be aware that there are two ways of taking the union of two sets of parametrized

reaction rules: (1) merge the rules and then ground them, or (2) first ground the
rules and then merge them. In general, the resulting rule set of (1) is a superset
of the rule set of (2). We use approach (1).
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We propose a model of context-aware computing that comprises three bi-
graphical reactive systems: the context C; its representation or proxy P; and
the computational agents A. Drawing on classical work [23], specifically The
Allegory of the Cave, we call such a model Plato-graphical.

Definition 3 (Plato-graphical model). A Plato-graphical model is a triple
(C,P,A) of bigraphical reactive systems, such that M = C ∪ P ∪ A is itself a
bigraphical reactive system and C ⊥ A. A state of the model is a bigraph of M
on the form /~x.(C ‖ P ‖ A), where C ∈ C, P ∈ P, A ∈ A, and ~x is some vector
of names.

We emphasize the intended difference between C and P: Whereas an element
of C models a possible context, an element of P models a model of a possible
context. The independence condition ensures that agents can only directly ob-
serve or manipulate the proxy; not the context itself. (In the parlance of [25],
the independence condition ensures separability.) To query or alter the context,
agents must use the proxy as a sensor and actuator.

Using bigraphs as our basic formalism gives us two things. First, we can write
our own reaction rules. We claim that because of this ability, models become
remarkably straightforward and intuitive; hopefully, the reader will agree after
seeing our example models in the next section. Second, we automatically get
a bisimilarity that is a congruence. Thus, bisimilarity of agents is a very fine
equivalence: No state of the context and proxy can distinguish bisimilar agents.

Proposition 1. Let ∼ denote the bisimilarity in M, and let A, A′ ∈ A with A ∼
A′. For any C ∈ C, P ∈ P, and ~x, we have /~x.(C ‖ P ‖ A) ∼ /~x.(C ‖ P ‖ A′).

To get a less discriminating equivalence we can consider agents under a particular
state of the context, or a particular state of the system.

Definition 4. Let ∼ denote the bisimilarity in M, and let A, A′ ∈ A, C ∈ C
and P ∈ P. We say A and A′ are equivalent w.r.t. P iff P ‖ A ∼ P ‖ A′, and we
say A and A′ are equivalent w.r.t. C, P iff C ‖ P ‖ A ∼ C ‖ P ‖ A′.

We conjecture that the above forms of derived equivalences will prove useful for
reasoning about a given Plato-graphical system.

Working within the Plato-graphical model, we are free to emphasize any of
its three components, perhaps modeling P in great detail, but keeping C and A
abstract.

Definition 3 above does not impose any restriction on composition of states.
For example, assume that we have a Plato-graphical model M = (C,P,A),
that c, p and a are controls of C, P and A, respectively, and that p is not a
control of C. Then the bigraphs

F = c(−0 | −1) ‖ p ‖ a(−2) and G = c ‖ p ‖ a

are both states of M, but their composite F ◦ G = c(c | p) ‖ p ‖ a(a) is not a
state of M. This example implies that bisimilarity of states of a Plato-graphical
system may be too fine a relation: Conceivably, when comparing two states s
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and s′, we may wish to take into account only contexts C such that C◦s and C◦s′

are themselves states, i.e., we might want to outlaw F as a possible context for G.
We can achieve this finer control using place-sorting. So, we define a place-sorted
Plato-graphical model. The intuition behind our sorting is that we want to keep
controls of C, P and A separate when composing contexts of form C ‖ P ‖ A.

Notation 2. Denote by Si≤m a vector m0, . . . , mn−1 of sorts. We will write
Si≤m for a sorted interface 〈m, X, Si≤m〉 when we do not care about names.

Definition 5 (Sorted Plato-graphical model). Let M = C ∪ P ∪ A be a
Plato-graphical model with C = (KC,RC), P = (KP,RP) and A = (KA,RA).
Define a sorting discipline on M by taking sorts Θ = {KC,KP,KA} and, for
primes, sorting condition Φ(f : Si≤n → S) = ctrl(f) ⊆ S ∧ ∀i ≤ n. Si = S,
lifting to an arbitrary bigraph f ′ by decomposing f into primes f ′ = f0 . . . fn−1

and declaring f ′ well-sorted iff all the fi are. Let φ be an assignment of Θ-sorts
to the rules of RC, RP, and RA, such that every rule is well-sorted under Φ.
Define M′ to be M sorted by (Θ, Φ) (using φ to lift the reaction rules). In this
case, we call M′ a sorted Plato-graphical model, and define the states of M′ to
be the well-sorted bigraphs with outer face KC,KP,KA.

The condition Φ essentially requires that (1) the controls of a prime (bigraph) are
elements of the sort of its outer face, and (2) the sort of the outer face is exactly
the sort of each of the sites. Under this sorting discipline and new definition of
state, if G is assigned a sort such that it is a state, then F cannot be assigned a
sort that makes it composible with G.

Is the bisimilarity in the sorted system M′ a congruence? The sorting dis-
cipline of M′ is in general not homomorphic in the sense of Milner [21, Def-
inition 10.4]: we cannot give a sort to controls in KC ∩ KP. (If C, P and A
are pairwise independent, the sorting is homomorphic; however, such a model
is pathologic.) Neither is the sorting safe in the sense of Jensen [13, Definition
4.30]; condition (4) cannot be met. Counterexample: Suppose f : KC → KC is
well-sorted; take g = f ⊗ 1 : KC → KC,KA (recall that 1 : ǫ → 〈1, ∅〉 denotes
the barren root). Clearly, U(f) = (−0 | −1) ◦ U(f ⊗ 1). However, if KC 6= KA

then (−0 | −1) : KC,KA → KC is not well-sorted.
Nevertheless, the sorting of Definition 5 does give rise to a bisimilarity that

is a congruence; we prove so in Appendix C in [3].

5 Examples

5.1 A Simple Context-aware Printing System

We model the simple context-aware printing system of [4]. An office-building con-
tains both modern PCL-5e compatible printers and old-fashioned raw-printers.
Occasionally, the IT-staff at the building removes or replaces either type of
printers. Each printer can process only one job; queueing is done by a central
print server. The print server dispatches jobs to raw-printers only if it knows
no PCL-printers; if there are PCL-printers, but they are all busy, the job will
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simply have to wait. This system is context-aware: The type and number of
printers physically available determine the meaning of the action “to print”. We
give a model B of this system in Figure 1. Looking at the controls of B, it is
straightforward to verify that B is Plato-graphical.

Proposition 2. The model B of Figure 1 is Plato-graphical.

We take a detailed look at the model. A state of the context C consists of
nested physical locations loc, within which printers prt are placed. We distinguish
between PCL- and raw-printers by putting a token pcl and raw within them,
respectively. Each printer has a single port, intended to link the printer to the
proxy. Here is a state of the context with a PCL-printer and a raw-printer at
adjacent locations; the PCL-printer is idle whereas the raw-printer is busy.

C = loc(loc(prtx(raw | datz)) | loc(/y.prty(pcl)))

Setting C in parallel with some proxy P will allow P access to the raw printer
through the shared link x, but not to the PCL-printer, because it is in a closed
link. The dynamics of C allow printers to appear (1, 2), disappear (3), and finish
printing (4).

A state of the proxy P consists of a pool of pending jobs jobs and two tables
of printers prts; one contains a token raw, the other a token pcl, indicating what
type of printer the table lists. The prts is a table in the sense that its only port
is linked to all the printers in the context that the table knows about. Here is an
example state of the proxy which knows one raw-printer, knows no PCL-printers
and has two pending jobs.

P = prtsx(raw) | /y.prtsy(pcl) | jobs(/z.docz | /z′.docz′)

Setting C and P above in parallel by ‖, and closing the link x, we get a sys-
tem /x.C ‖ P , where the table prtsx(raw) and the physical printer prtx(raw | dat)
are linked. The dynamics of P state that if there is a job and a known, idle PCL-
printer, the proxy may activate this printer (5); that if there is a job, no known
PCL-printer, and an idle raw-printer, the context may activate that printer (6);
and finally, that the proxy may discover a previously unknown printer (7, 8).

The dynamics of A allow the agents to spontaneously spool documents (9).
Notice how the two printing rules (5) and (6) do not observe the context

directly. Instead, the proxy observes the context (rules (7) and (8)) and records
its observations in the tables prtsx(raw) and prtsy(pcl); the printing rules (5)
and (6) then consults the tables. It is straightforward to determine whether
there are no known PCL-printers: simply check if the table of PCL-printers has
the form /y.prtsy(pcl).

As observed in Section 3 and [4], it is generally very difficult, if not impossi-
ble, to observe the absence of something in the context directly. An interesting
but rather natural consequence of the indirect observation is that it becomes
asynchronous, i.e., it is possible that a PCL-printer exists but has not yet been
observed.
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Context C.

Control Activity Arity Comment

loc active 0 Nested location
prt passive 1 Physical printer
pcl atomic 0 Printer-type token
raw atomic 0 Printer-type token
dat atomic 1 Binary data for printer

loc(−0) −→ loc(−0 | /x.prtx(raw)) (1)

loc(−0) −→ loc(−0 | /x.prtx(pcl)) (2)

loc(−0 | prtx(−1)) −→ loc(−0) | x/ (3)

prtx(datz | −0) −→ prtx(−0) | z/ (4)

Proxy P.

Control Activity Arity Comment

prt passive 1 Physical printer
pcl atomic 0 Printer-type token
raw atomic 0 Printer-type token
dat atomic 1 Binary data for printer
prts passive 1 Known devices
jobs passive 0 Pending documents
doc atomic 1 Document

jobs(docz | −0) ‖ prtsy(pcl) ‖ prty(pcl) −→

jobs(−0) ‖ prtsy(pcl) ‖ prty(pcl | datz)
(5)

jobs(docz | −0) ‖ /x.prtsx(pcl) | prtsy(raw) ‖ prty(raw) −→

jobs(−0) ‖ /x.prtsx(pcl) | prtsy(raw) ‖ prty(raw | datz)
(6)

/x.prtx(pcl) ‖ prtsy(pcl) −→ prty(pcl) ‖ prtsy(pcl) (7)

/x.prtx(raw) ‖ prtsy(raw) −→ prty(raw) ‖ prtsy(raw) (8)

Agents A.

Control Activity Arity Comment

jobs passive 0 Pending documents
doc atomic 1 Document

jobs(−0) −→ jobs(−0 | /z.docz) (9)

Fig. 1. Example Plato-graphical model B.

Context C Proxy P Agent A

(1) : KC (5) : KA,KP,KC (9) : KA

(2) : KC (6) : KA,KP,KC

(3) : KC (7) : KP,KC

(4) : KC (8) : KP,KC

Fig. 2. Sorts for the rules of C, P, and A.
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This model B can be lifted to a sorted one by adding the sorts given in
Figure 2; the figure assigns sorts to the outer face of both the redexes and
reactums of the indicated rules. It is straightforward to verify that all of the
rules are well-sorted.

Proposition 3. The model B with the sorting assignment of Figure 2 is a sorted

Plato-graphical model.

5.2 A Location-aware Printing System

Suppose we extend the printing system with location-awareness, by stipulating
that a print job is not printed until the printer and the device submitting the
job are co-located. To model this extended system, we introduce a new control
dev for devices (PCs or PDAs) with one port and change doc to include an extra
port so we can link submitted jobs to the devices submitting them. The linking
is reflected in the following modified rule (9) for spooling print jobs:

loc(devx | −0) ‖ jobs(−1) −→ loc(devx | −0) ‖ jobs(−1 | /z.docz,x) (9′)

We must also modify rules (5) and (6) to insist that the device and printer are
co-located. Rule (5) becomes

jobs(docz,x | −0) ‖ prtsy(pcl) ‖ loc(devx | prty(pcl)) −→

jobs(−0) ‖ prtsy(pcl) ‖ loc(devx | prty(pcl | datz)).
(5′)

(We suppress the new Rule (6’).)
Modifying the system once again, instead of insisting that device and printer

have to be actually co-located, we just require the print job to end at a printer
close to the device. The print server will need to query the proxy for the printer
nearest a given device. We saw in Section 3 that implementing such queries is
awkward, so we will need to use the proxy. In the preceding Section, we did so
directly in bigraphs; this time around, we transfer the expressive convenience of a
general-purpose programming language to bigraphs for ease of implementation.
We use bigraphs directly for modeling the actual context C, whereas we will
exploit bigraphs as a meta-calculus for modeling the proxy P.

In detail, the whole model is B = C ∪ P ∪ A, with P = S ∪ L. Here C is
intended to be a bigraphical model of the “real world”, the proxy P is comprised
of a location sensor S and a location model L and A is the location-based
application (the “computational agent”).

A state C of C could look like this:

C = loc(loc(loc(loc(devw) | loc(devx | devy))) | loc | loc(devz))

Changes in the real world are modeled by reaction rules that reconfigure such
states. If we want to model, say, that a devices may move from one location to
another, we include the reaction rule

loc(devx | −0) ‖ loc(−1) −→ loc(−0) ‖ loc(devx | −1). (10)
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To implement the proxy, encode as a BRS a programming language L with
data structures, communication primitives, and concurrency, e.g., Pict [22] or
CML [24]. (We return to this assumption below.) That is, define a translation
from terms of L to bigraphs, and add reaction rules encoding the operational
semantics of L. Then implement the location model, the sensor, and the agents

in L and use the encoding to transfer that model to bigraphs. In particular, a
state of the location model L will have a data structure representing the current
state of C. If L is an even half-way decent programming language, it should be
straightforward to implement queries such as one of Section 3 or the “find closest
printer” we need above.

The sensor informs the location model about changes in C. We extend the
above rule (10) moving a device to

(loc(devx | −0) ‖ loc(−1)) | S | L −→ (loc(−0) ‖ loc(devx | −1)) | S′ | L, (10′)

where S′ is an L-encoding of “send a notification to L that device x has moved”.
Upon receiving the notification, L updates its representation of the world. Agents
of A can in turn query L when they need location information.

6 Discussion

We consider the following questions.

1. What languages L can we encode?
2. How close are Plato-graphical models to real systems?
3. What challenges have we found for bigraphical models?
4. What uses do we envision for Plato-graphical models?
5. How do we reason about Plato-graphical models?

Ad. 1. As mentioned, there exist bigraphical encodings of various π-calculi [13,
15, 14] and of the λ-calculus [19, 20]. Using ideas of the latter encodings, we have
encoded Mini-ML (call-by-value λ-calculus with pairs and lists) in local bigraphs
[19]. Based on our experiences with this encoding, we find it palatable to encode
CML or Pict1.

Ad. 2. The model closely reflects how some actual location-aware systems
work, for instance the one running at the ITU. Here, a sensor system (made by
Ekahau) computes every two seconds the physical location of every device on the
WLAN. The sensor system informs a location model about updates to locations;
location-aware services then interact with the location model. In our sketched
Plato-graphical model, the location model L may lag behind the actual C, if L’s
representation of C does not reflect some recent reconfiguration of C. But that
also happens in the real system at the ITU – when a location-aware service asks
the location model for the whereabouts of a device, it obtains not the position

1 We are presently working on implementing an interpreter for bigraphical reactive
systems; such an interpreter will make it easier to experiment with these and other
encodings.
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of the device, but the position of the device the last time the sensor checked. In
the mean time, the device may have moved.

Ad. 3. When modeling the physical world, we have made use of both the place
and link graphs, the place graph modeling the location hierarchy of a building.
As argued in [2], DAGs or graphs are more natural models of location. Thus,
systems such as the ones we have considered here suggest generalizing the place
graphs part of bigraphs, or consider ways to encode DAGs or general graphs
naturally as place graphs.

Ad. 4. Given an implementation of bigraphical reactive systems, one could
simulate the behaviour of a location-aware system, and thus allow for experi-
mentation with different designs of location-aware and context-aware systems.
Likewise, one could experiment with different choices for the L language of Sec-
tion 5.2. Such simulation suggests further extensions of the bigraphical model: In
actual context-aware systems, one is generally interested in timing aspects (e.g.,
the sensor samples only every two seconds), continuous space (e.g., the sensor
really produces continuous data), and probabilistic models (e.g., to accurately
simulate sensors and sensor failure).

Ad. 5. What about using Plato-graphical models for formal reasoning about
context-aware systems? One use of formal models is to prove an abstract speci-
fication model equivalent to a concrete implementation model. In π-calculus, we
come with π-terms i, s, one for the implementation and one for the specifica-
tion. The terms i and s are themselves the models; we take (π-) bisimilarity as
equivalence, so to prove i and s equivalent, we merely prove them bisimilar. We
can play the same game within any BRS: Simply come up with a bigraph I (the
implementation model) and a bigraph S (the specification model), and prove
them bisimilar within the labelled transition system of the BRS. Because that
bisimulation is a congruence, such reasoning should be tractable, e.g. with the
bisimulation in Definition 4.

Unfortunately, bisimulation within a single BRS is not always enough wrt.
Plato-graphical models. Suppose we want a specification model M with an ab-
stract view of the context, and an implementation model M′ with a detailed
view of the context. We express this by having M and M′ differ only in their
context sub-BRSs, that is,

M = C ∪P ∪ A M′ = C′ ∪P ∪ A.

The trouble is that because C and C′ may have different controls and reaction
rules, bisimulation between their respective labelled transition systems is mean-
ingless! What we need is a notion of equivalence of BRSs, not just equivalence
of bigraphs of a single BRS. At the time of writing, we know of no such equiva-
lence2. Thus, our investigation of bigraphical models for context-aware systems

2 The reader may suggest that we just define a common language for modeling both the
abstract and detailed view, and define a translation from this language into a single
BRS. However, in this case we are no longer modeling a ubiquitous system directly
in bigraphs (aim 1 of the Introduction), but using bigraphs as a meta-calculus (aim 2
of the Introduction).
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suggests that equivalence of BRSs is a key notion currently missing. One pos-
sible direction would be to try recover from the notion of WRS-functor [16] —
functors that preserve reaction rules — a notion of a BRS implementing another
BRS.

7 Conclusion & Future Work

We have initiated an evaluation of the use of bigraphical reactive systems for
models of context-aware computing in ubiquitous systems. We found that BRSs,
in their current form, are not suitable for directly modeling context queries, but
on the other hand suitable for modeling reconfigurations of the actual context.

In response, we proposed Plato-graphical models, where both state and dy-
namics are logically divided in three parts: the actual context, the observed
context (or proxy), and the computational agents, respectively. The computa-
tional agents and the actual context are separated, and interact only through the
proxy. This separation into different BRSs makes it possible to encode different
parts of the system using domain-specific languages. Moreover, we have shown
how the context-aware printing system of [4] can be modeled straightforwardly
in the Plato-graphical model.

Further, we have argued that Plato-graphical models are useful for simulating
context-aware systems, and we are currently working on an implementation of
BRSs at ITU to allow such experimentation. Only through such experimentation
will it be clear how useful Plato-graphical models really are. For simulation
purposes it will be important to extend bigraphs with timing aspects, continuous
space, and probabilities.

Finally, we have pointed out that establishing a notion of equivalence between
BRSs, as opposed to bisimilarity within a BRS, is important future work.
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