
Axiomatixing Binding Bigraphs

Troels Christoffer Damgaard
Lars Birkedal

This work was funded in part by the Danish Research Agency (grant
no.: 2059-03-0031) and the IT University of Copenhagen (the LaCoMoCo
project).

IT University Technical Report Series TR-2005-63

ISSN 1600–6100 3 2005

Copyright c© 2005, Troels Christoffer Damgaard
Lars Birkedal

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-092-1

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7,
DK-2300 København S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Axiomatixing Binding Bigraphs

Troels Christoffer Damgaard
Lars Birkedal

Abstract

Extending the result for pure bigraphs given in [Mil04], we axiomatize static congruence for binding bigraphs
as described in [HM04, Chapter 11], and prove that the theory generated is complete. In doing so, we also define a
normal form for binding bigraphs, and prove that the four forms are unique up to certain isomorphisms.

Compared with the axioms stated by Milner for pure bigraphs, we have extended the set with 5 axioms concerned
with binding; and as our ions have names on both faces, we have two axioms – handling inner and outer renaming.
The remaining axioms are transfered straightforwardly.

Preliminary Remarks

We assume familiarity with pure and binding bigraphs as described in [HM04]. Furthermore, this work is a direct
extension of the work presented in [Mil04]. As a consequence, we expect that having read these papers will ease the
reading of the present paper considerably.

2

Chapter 1

Introduction

We aim to extend the axiomatization of pure bigraphs given in [Mil04] to binding bigraphs as described in [HM04,
Chapter 11]. In other words we wish to specify a sufficient set of axiomatic equalities s.t. all valid equations between
between (binding) bigraph expressions are provable in the generated theory.

In Chapter 2 we define a set of (classes of) elementary bigraphs, which – considered as expressions – will serve as
the set of expression constants. In choosing this set, we elect to simply extend the elementary forms for pure bigraphs
with a simple variant of concretion, and to take a slightly more complex variant of the free discrete ion allowing
multiple local inner names to be bound to the same binding port. Furthermore, we extend swap bigraphs trivially, in
order to make them able to swap sites with local names. The set of expressions in the binding bigraph term language
will be the ones built by composition, identities, tensor product, and abstraction, from this set of constants.

The choice to adjust the ion-construct is motivated by the wish to treat bound and global linkage as equal, as
possible. Further, as we intend to base our normal form on a variant of discreteness, we would like to formulate a
(simple) syntactic property on expressions that characterizes discreteness.

To achieve this, in particular, we shall use that we can add arbitrary bound edge linkage with our ion-construct.
Further, we base our normal form for binding bigraphs on a variant of discreteness, name-discreteness, which impose
the same level of constraint on linkage upon local and global names. For a further discussion of the rationale behind
these choices, see the definition of binding ion in Section 2.5, and Sections 3.1 and 3.2.

In Chapter 3 we formally define the term language and four particular forms of expressions, which when taken
together will define four levels of a discrete normal form (BDNF) for binding bigraphs. Apart from the obvious result
– that we can produce a BDNF expression for any bigraph – we shall prove that at each level BDNF-expressions are
unique up to certain isomorphisms. This will be helpful in proving our axiomatic theory complete, as we will define
and prove syntactic normal forms as straight correspondents of each form, above.

In Chapter 4 we address the main problem of specifying and proving a set of axioms complete for the binding
bigraph term language. We assume the same approach as Milner in [Mil04], and prove the theory complete for several
subclasses of bigraphs before we turn to full completeness.

In particular, we define linearity – a simple restriction on the term language disallowing nonlinear substitutions
– and prove that it is a syntactic correspondent of name-discreteness. Linearity is also useful in proving the theory
complete for ionfree expressions, which is used as an inductional basis in proofs by mathematical induction on the
number of ions in the expression.

Finally, in Section 4.9, we prove full completeness as a corollary of linear completeness.

1.1 Notation and terminology

To ease the notational burden for the reader who has read some or both of [HM04] or [Mil04], with a few exceptions,
we use the same notation for bigraphs and expressions.

3

A notable exception from this principle is that we use a slightly shortened form for the underlying set-definition of
bigraphs. Specifically, we define a bigraph G (defined over a signature K) as

G = (V, E, ctrl, prnt, link) : 〈m, ~X, X〉 → 〈n, ~Y , Y 〉.

V and E are as usual finite sets of nodes and edges and ctrl : V → K is the control map mapping a control to each
node. But as opposed to [HM04], we inline the components unique to the place graph and link graph components. So
here prnt is the parent map and link is the link map (see [HM04] for the full definitions). The binding interfaces are
defined as usual. See [HM04, Chapter 11] for details.

We shall need notation for ports on nodes with binding controls to precisely specify concrete link maps. For node
v with control K : b → f , we let pv

0, . . . , p
v
f−1 range over the free ports of v, and pv

(0), . . . , p
v
(b−1) ranges over the

binding ports of v.
We also define a precise notation for the underlying set of vectors of names. Given a vector of disjoint name sets

~Y , {~Y } denotes the disjoint union of the sets in the vector, i.e. {~Y }
def
=
⊎

i∈|~Y |
~Y [i]).

1.2 Variants of discreteness

We shall need to consider and distinguish several forms of discreteness, which we define below.

Definition 1.2.1 (Variants of discreteness).

• We say that a bigraph is discrete iff every free link is an outer name and has exactly one point.

• A bigraph is name-discrete iff

– Every free link is an outer name and has exactly one point.

– Every bound link is either an edge, or (if it is an outer name) has exactly one point.

• A bigraph is inner-discrete iff every inner name has exactly one peer.

Discreteness and name-discreteness share several nice properties.

Lemma 1.2.2. If A and B are discrete, then A ⊗ B, (Y)A, and A ◦ B are also discrete.
Same for name-discrete bigraphs A and B.

Proof. (Omitted) (Follows easily from the definition of composition for link maps (see Definition 8.3 in [HM04]).)

4

Chapter 2

Elementary bigraphs

In the following section we present the elementary bigraph forms, we intend to use a basis for a binding bigraph term
language.

In this note we consider abstract bigraphs; equivalence classes of lean-support concrete bigraphs. Specifically, we
are interested in axiomatizing static equivalence of bigraphs up to renaming of nodes and edges (and disregarding idle
edges).

To be able to define the elementary forms precisely, though, we give definitions in the form of concrete bigraphs.
Further, in proving properties of bindind bigraphs, it shall be helpful to sometimes give names to vertices and edges.

To be precise any concrete form, we give, is actually a representative of an equivalence class of concrete bigraphs,
which is an abstract bigraph with any idle edges discarded and node- and edge-identities forgotten.

2.1 Placings

We define three kinds of placings, corresponding closely to the placings defined for pure bigraphs in [Mil04]:

Definition 2.1.1 (Placings). We define the barren root 1, the merge bigraph, and the swap bigraph γ
m,n,(~X0, ~X1)

1
def
= (∅, ∅, ∅, ∅, ∅) : 〈0, (), ∅〉 → 〈1, (∅), ∅〉

merge
def
= (∅, ∅, ∅, {0 7→ 0, 1 7→ 0}, ∅) : 〈2, (∅, ∅), ∅〉 → 〈1, (∅), ∅〉

γ
m0,m1,(~X0, ~X1)

def
= (∅, ∅, ∅, prnt, IdX0]X1) :

〈m0 + m1, ~X0
~X1, { ~X0}] { ~X1}〉 → 〈m1 + m0, ~X1

~X0, { ~X0}] { ~X1}〉

where prnt = {0 7→ m0, . . . , m1 − 1 7→ m1 + m0 − 1, m1 7→ 0, . . . , m0 + m1 − 1 7→ m0 − 1}, and | ~Xi| = mi.

We note that 1 and merge are defined exactly as for pure bigraphs, but the swap bigraph γ
m,n,(~X0, ~X1) has been

redefined and extended slightly.
As compared to the swap bigraph defined for pure bigraphs, when defining γ

m,n,(~X0, ~X1)
, we have to decide how

(or whether) to take care of local names. Each site might have a number of local names. γ
m,n,(~X0, ~X1)

simply lets the
local names follow the site they stem from, in the only way allowed by the scope rule.

The swap bigraphs are used for generating permutations, a subclass of isomorphisms with which we can permute
the numbering of the components in any bigraph by composition.

More formally, with regard to Proposition 9.2b of [HM04], we define:

Definition 2.1.2 (Permutation). Given a permutation map π on numbers {0, . . . , m − 1}, a bigraph permutation π is
an iso

π = (∅, ∅, ∅, π, Id{ ~XB}]XF
) : 〈m, ~XB , { ~XB}] XF 〉 → 〈m, π(~XB), { ~XB}] XF 〉

5

which combines the permutation π on the placegraph1, with an Id on the names { ~XB}] XF , and π applied to the
locality-vector ~XB . In particular note that this way of mapping the local names, is the only way to make π respect the
scope rule (see [HM04, Chapter 11]).

In every composition where a permutation is used, the sets of local names that are moved around are given from
the context. When the namesets are known, permutations are fully given by their underlying permutation map, so in
the following we overload the meaning of the symbols π and ρ, and let these symbols range both over the underlying
number permutations, and over arbitrary permutations (bigraphs) given by these number permutations, as defined in
Definition 2.1.2.

Using placings we can express permutations in many ways. In particular, it can be shown that any permutation can
be expressed as the product of a composition of swappings and a global identity on names.

As we will need an extended form of swappings later, to state the axioms succinctly, we start by extending swap-
bigraphs to all interfaces with a derived form.

Definition 2.1.3 (Extended swapping).

γI0,I1
def
= γ

m0,m1,(~X0
B

, ~X1
B

)
⊗ idX0

F
] idX1

F

where Ii = 〈mi, ~X i
B , { ~X i

B}] X i
F 〉.

Now we can state the proposition hinted at above.

Proposition 2.1.4 (Any permutation is a product of swappings). Any permutation π : 〈l, ~XB , { ~XB}] XF 〉 →

〈l, π(~XB), { ~XB}] XF 〉 can be expressed as finite number of compositions of products of extended swaps:

π = κ0 ◦ . . . ◦ κp−1 for some p

where for all i, there exists k s.t.
κi =

⊗

j<k

γI
j

i
,K

j

i
,

where
Ij
i = 〈mj

i ,
~
Zj

i , {
~
Zj

i }〉 , Kj
i = 〈nj

i ,
~
U j

i , {
~
U j

i }] XF 〉,

and
∑

j<k

mj
i + nj

i = l ,
⊎

j<k

Zj
i] U j

i = XB

We define mergei inductively as for pure bigraphs:

Definition 2.1.5. For all m ≥ 0, let

merge0
def
= 1

mergem+1
def
= merge ◦ (id1 ⊗ mergem)

2.2 Linkings

For global linkings we transfer the constructs for pure bigraphs directly.

Definition 2.2.1 (Linkings). We define the closure /x of a name x, and the substitution y/X as follows

/x
def
= (∅, {e}, ∅, ∅, {x 7→ e}) : 〈0, (), {x}〉 → 〈0, (), ∅〉

y/X
def
= (∅, ∅, ∅, ∅, {x0 7→ y, . . . , xk 7→ y}) : 〈0, (), X〉 → 〈0, (), {y}〉

where X = {x0, . . . , xk}.

1We simply let the permutation map, which consists of mappings like i 7→ j, be the prnt component.

6

In particular note that a substitution need not be surjective (i.e. X = ∅), thus the dual of closure – name introduction
y : ε → y – is a substitution.

We define the following derived forms:

Definition 2.2.2 (Derived linkings).

• A wiring is a bigraph with zero width (and hence no local names) generated by composition and tensor of /x
and y/X .

• For X = {x0, . . . , xk−1} and k > 0 we define a multiple closure /X as /x0 ⊗ . . . ⊗ /xk−1.

• For Y = {y0, . . . , yk−1}, k > 0, and disjoint sets X0, . . . , Xk we define a multiple substition

~y/ ~X
def
= y0/X0 ⊗ . . . ⊗ yk−1/Xk−1.

• A renaming is a bijective (multiple) substitution, i.e. each Xi above is of cardinality 1.

As in [Mil04] we let ω range over wirings, σ range over (multiple) substitutions and α and β range over renamings.

2.3 Concretions

We define a simple concretion as a discrete prime which maps a set X of local inner names severally to equally named
global names. In other words it globalizes all its local inner names. Formally:

Definition 2.3.1. Given a set of names X , a simple concretion is

pXq
def
= (∅, ∅, ∅, Id0, IdX) : 〈1, (X), X〉 → 〈1, (∅), X〉.

(Note that a special case of a simple concretion is id1 = p∅q.)
This bigraph is referred to a as a simple concretion, serving to signify that the term concretion G : 〈1, (X]Y), X]

Y 〉 → 〈1, (Y), X] Y 〉 as it is defined in [HM04] ranges over a larger class of bigraphs, which globalizes a subset of
its local inner names. As simple concretions are primes, general concretions can be generated by localizing a subset
of the names that the simple concretition globalizes by using an abstraction. We expand upon this in the following
section.

2.4 Abstractions

Abstraction is a construction defined for every prime P . Formally:

Definition 2.4.1. For every prime P = (V, E, ctrl, prnt, link) : 〈m, ~Z, {~Z}〉 → 〈1, (YB), Y 〉, let

(X)P
def
= (V, E, ctrl, prnt, link) : 〈m, ~Z, {~Z}〉 → 〈1, (YB] X), Y 〉,

where X ⊆ Y \ YB .

We say that (X)P is an abstraction on P .
An abstraction binds a subset X of the global names of P in the resulting bigraph. (Note that the scope rule is

respected since the inner face of P is required to be local as P is prime). As opposed to concretions, abstractions
are defined exactly as in [HM04]. Abstractions can be seen as the dual to concretions, and the axioms concerning
abstraction and concretion reflect this (see Table 4.1).

Using abstraction we can express concretions in the sense of [HM04]. As we will need them later, we introduce a
special notation to distinguish such concretions from the simple ones

Definition 2.4.2. We define a concretion pY q
X : 〈1, (X] Y), X] Y 〉 → 〈1, (X), X] Y 〉 in terms of a simple

concretion and abstraction as
pY q

X def
= (X) pX] Y q.

7

As a special case of concretions we get local identities: id(X) = (X) pXq, and with the help of linkings we get
local wirings – bigraphs that by composition can change the linkage of local names.

Definition 2.4.3 (Local wiring). We define a local renaming (for vectors of names ~y and ~x s.t. |~y| = |~x|) as

(~y)/(~x)
def
= (~y)(~y/~x ⊗ id1 ◦ p~xq)

We extend this notation to multiple substitutions, and define

(~y)/(~X)
def
= (~y)(~y/ ~X ⊗ id1 ◦ p{ ~X}q)

We can generate all isomorphisms in the precategory of binding bigraphs using permutations, renamings, and local
renamings (viz. [HM04, Proposition 9.2b])

Proposition 2.4.4. Every binding bigraph isomorphism, ι : 〈m, ~Z, {~Z}] U〉 → 〈m, ~X, { ~X}] Y 〉 (of width m)
can be expressed uniquely in the following form

ι = (π ⊗ α) ◦ (ν0 ⊗ . . . ⊗ νm−1 ⊗ idU)

where these requirements hold:

• m = | ~X | = |~Z|,

• α : U → Y ,

• ∀i ∈ m : νi = (~xi)/(~zi) for ~X = ({ ~x0}, . . . , { ~xm−1}), and ~Z = ({~z0}, . . . , { ~zm−1}).

2.5 Binding ion

Last, to allow for nodes with both free and binding ports, we define a variant of ions for binding bigraphs.

Definition 2.5.1. For a non-atomic control K : b → f ∈ K, let ~y be a sequence of distinct names, and ~X a sequence
of sets of distinct names. Let X = { ~X} and Y = {~y}, s.t. | ~X | = b and |Y | = f .

The binding ion K~y(~X) : 〈1, (X), X〉 → 〈1, (∅), Y 〉 is a prime bigraph with a single node of control K with free
ports linked severally to global outer names ~y, and each binding port i ∈ b linked to all local inner names in Xi.

Formally, we define a concrete binding ion as:

K
~y(~X)

def
= ({v}, {e0, . . . , eb−1}, {v 7→ K}, {0 7→ v, v 7→ 0}, link) :

〈1, (X), X〉 → 〈1, (∅), Y 〉,

where

link =

pv
(i) 7→ ei

pv
i 7→ yi

x 7→ ei for all x ∈ Xi

This form is a straightforward generalization of the free discrete ion as defined in [HM04, Chapter 11]. We can
recapture these by requiring every set in X to be a singleton. When ~X = ({x0}, . . . , {xb−1}), we overload our
notation and write K~y(~x) to mean a free discrete ion.

Vice versa, using local wiring we could express a binding ion as a derived form, in the following way:

K~y(~z) ◦ (~z)/(~X).

But we shall not do so, as it will be helpful to take the slightly more complex binding ion as a constant, when stating
the axioms and proving completeness of the derived theory. From the definition it is immediate that both constructs are

8

discrete (and free), but we will use that are K
~y(~X)’s are not inner-discrete, which K~y(~x)’s are. (For a further discussion

on this topic, see section 3.1.)
As a derived form we define the natural extension of ions – molecules.

Definition 2.5.2. For any discrete prime P : I → 〈1, (X), X] Z〉 and ion K~(~), we define a free discrete molecule as

(K
~y(~X) ⊗ idZ) ◦ P : I → 〈1, (∅), Y] Z〉

Note that even though we use the more general ion-construct in the definition above, our definition of free discrete
molecules are equal to the one given in [HM04, Chapter 11], in the sense that it covers the same set of bigraphs.

As P is discrete and prime it is easily seen that M is also discrete and prime. In fact,

Proposition 2.5.3. A free discrete molecule is a name-discrete, prime bigraph with a single outermost node.

This relies on the fact that both name-discreteness and discreteness is preserved under composition and tensor
(Lemma 1.2.2). Further, every free discrete bigraph is also name-discrete.

Vice versa,

Proposition 2.5.4. Any free discrete prime bigraph with a single outermost node is a free discrete molecule.

For nodes of atomic control, we adopt the discrete free atom of [HM04]. We shall not concern ourselves with
particularly with atoms, though, as they have no internal structure, and hence have no (useful) binding ports. As a
consequence we can express them as K~y() ◦ 1.

2.6 Concluding remarks

Comparing the elementary forms above with the elementary forms for pure bigraphs given in [Mil04], we have intro-
duced two new forms abstractions and concretions, and modified two constructs, swap’s and ions to handle local inner
names.

For easy reference, we have collected an overview of all the eight elementary forms into a small table (See Table
2.1).

In this table and in the following sections we shall allow ourselves a more extensive use of the shorthands for
interfaces introduced in [HM04].

9

Placings
1 : ε → 1 a barren root

merge : 2 → 1 map two sites to one root
γ

m0,m1,(~X0, ~X1)
: 〈m0 + m1, ~X0

~X1, X0] X1〉 →

〈m1 + m0, ~X1
~X0, X0] X1〉 swap m0 with m1 places (with local names)

Linkings
/x : x → ε closure of single name

y/X : X → y substitution for all x ∈ X : x 7→ y

Concretions
pXq : (X) → 〈X〉 a (simple) concretion

Abstractions
(X)P : I → 〈(X] Y), Z〉 abstraction on a prime P : I → 〈(Y), Z〉

(X] Y ⊆ Z)

Ions
K

~y(~X) : ({ ~X}) → 〈Y 〉 a binding ion

Table 2.1: Elementary forms

10

Chapter 3

A term language and a normal form

We define a term language for binding bigraph built by composition, tensor product, identities and abstraction (on
primes) from the constant forms specified in Table 2.1.

Naming the term language BBexp we consider, we see that it is defined inductively from 6 expression constants:

1, merge , γ
m0,m1,(~X0, ~X1), /x, y/X, pXq, K

~y(~X)

and 3 formation rules – one for each of composition, tensor product, and abstraction (with the obvious interface
requirements).

3.1 A note on discreteness

We intend to base the normal form we define below on discreteness. In moving towards proving completeness for
a term language for binding bigraphs, we shall formulate and prove syntactic analogues to the normal forms, we
establish semantically below.

Towards establishing those proofs, we would like to be able to formulate a simple inductive property on expressions
that characterizes discreteness (exactly like the linearity property defined in [Mil04].)

In conjunction with the term language we consider, the property discrete, does not immediately seem to lend itself
directly towards this purpose. The trouble is that we wish to use the same elementary construction, y/X , to construct
arbitrary nondiscrete global wiring and local wiring.

By composing with concretions and using abstraction, we can construct a nondiscrete bigraph from a discrete
bigraph, and vice versa. Given D, a discrete bigraph of width n

(
⊗

i<n

pXiq) ◦ D

is not necessarily discrete.
And given a nondiscrete prime P : I → 〈(X), X] Y 〉

(Y)P : I → (X] Y)

is discrete.
I.e. we conjecture that, when we wish to treat bound and free linkage uniformly, discreteness is not inductive by

nature.

3.2 A name-discrete bigraph

We have defined name-discreteness as a step towards an inductive property that will help us formulate a syntactic
analogue to some sort of discreteness. Recall that a bigraph is name-discrete iff every free link is an outer name and

11

has exactly one point, and every bound link is either an edge, or (if it is an outer name) has exactly one point. This is
a simple specialization of the discrete property.

With the current purpose in mind it has the added feature, that it imposes nearly the same level of constraints on
bound linkage and global linkage. As a consequence, both abstraction and composition with concretions preserves
both name-discreteness and non-name-discreteness.

Name-discrete bigraphs still allow arbitrary wiring of bound edges, though. Exactly for that reason, we have
chosen to take the binding ion K

~y(~X) as a constant in our term language.
Having the binding ion, in our term language we can restrict the usage of y/X , to get a simple inductive property

that characterizes name-discreteness. We simply use the binding ion, and the fact that it is not inner-discrete, to add
arbitrary bound edge-linkage.

3.3 BDNF

We proceed by defining four forms of bigraphs that generate all bigraphs uniquely up to certain specified isomorphims.
Based on the considerations above, we define a normal form, which is based on name-discrete forms.

Proposition 3.3.1 (Binding discrete normal form).

1. Any free discrete molecule M : I → 〈1, (∅), Y] Z〉 can be expressed as

M =
(

K
~y(~X) ⊗ idZ

)

◦ P

where P : I → 〈1, (X), X] Z〉 is a name-discrete prime.

Any other such expression for M takes the form
(

K
~y(~X′) ⊗ idZ

)

◦ P ′

where the following requirements hold:

• there exists a local renaming αloc : ({ ~X ′}) → ({ ~X}) s.t. K
~y(~X) ◦ αloc = K

~y(~X′), and

• P = (αloc ⊗ idZ) ◦ P ′.

2. Any name-discrete prime P : 〈n + k, ~Z, {~Z}〉 → 〈1, (YB), { ~YB}] YF 〉 may be expressed as

P = (YB)
((

mergen+k ⊗ α
)

◦ (M0 ⊗ . . . ⊗ Mk−1 ⊗ pX0q ⊗ . . . ⊗ pXn−1q) ◦ π
)

where every Mi : Ji → 〈1, (X ′
i), X

′
i〉 is a free discrete molecule, every pXiq is a simple concretion, and π is a

permutation. The renaming α have the interface α : I → YB] YF , where I is the union of all outer names of
the concretions pXiq and molecules Mi, i.e. I =

⊎

0≤i<n Xi]
⊎

0≤j<k X ′
j .

Any other such expression for P takes the form

(YB)
((

mergen+k ⊗ α′
)

◦
(

M ′
0 ⊗ . . . ⊗ M ′

k−1 ⊗ pX ′
0q ⊗ . . . ⊗ pX ′

n−1q
)

◦ π′
)

where the following requirements hold:

• There exist a renaming β : I → J s.t. α′ = α ◦ β.

• There exist permutations ρ, ρi (i ∈ k), ρ′, renamings αc
i (i ∈ n), and αm

i (i ∈ k) s.t.

–
⊗

i∈n αc
i ⊗

⊗

i∈k αm
i = β,

– αm
i ◦ M ′

i = Mρ(i) ◦ ρi,

– αc
i ◦ pX ′

iq = pXρ(i)q, and

– (ρ0 ⊗ . . . ⊗ ρk−1 ⊗ id(X′

0)
⊗ . . . ⊗ id(X′

n−1)
) ◦ π′ = ρ′ ◦ π.

12

• Furthermore, let ~l denote the vector of inner widths of the product
(M0⊗ . . .⊗Mk−1⊗ pX0q ⊗ . . . ⊗ pXn−1q), let ~X ′ = (X ′

0, . . . , X
′
k−1), and let ~X = (X0, . . . , Xn−1).

Then ρ′ is determined uniquely by ρ, ~l, ~X, and ~X ′ as ρ′ = ρ~l, ~X′ ~X
as defined in Lemma 4.2.1.

3. Any name-discrete bigraph D (of outer width n) can be expressed as

D = ((P0 ⊗ . . . ⊗ Pn−1) ◦ π) ⊗ α

where every Pi is a name-discrete prime, α is a renaming, and π is a permutation.

Any other such expression of D takes the form

((

P ′
0 ⊗ . . . ⊗ P ′

n−1

)

◦ π′
)

⊗ α

where there exists permutations ρi, (i ∈ n), s.t. P ′
i = Pi ◦ ρi, and (ρ0 ⊗ . . . ⊗ ρn−1) ◦ π′ = π.

4. Any bigraph G : I → 〈n, ~YB , YB] YF 〉 can be expressed as

G =

(

⊗

i<n

(~yi)/(~Xi) ⊗ ω

)

◦ D

where D : I → 〈n, ~X, X] Z〉 is name-discrete, ω : Z → YF is a wiring, and (~yi)/(~Xi) : (~X) → (~YB) is a
local substitution of width n on the bound names of D.

Any other such expression of G takes the form
(

⊗

i<n

(~yi)/(~X ′
i) ⊗ ω′

)

◦ D′

where there exists a renaming α s.t. ω′ = ω ◦ α, and n local renamings αloc
i : (~X ′

i) → (~Xi), s.t.
(~yi)/(~Xi) ◦

⊗

i<n αloc
i = (~yi)/(~X ′

i), and
(
⊗

i<n αloc
i ⊗ α

)

◦D′ = D.

Furthermore, for every class of expressions the given BDNF-expression is welldefined and generates only bigraphs of
the appropriate type.

In the following section we go into detail with a few of the parts of the proof of Proposition 3.3.1.

13

3.4 Proof of Proposition 3.3.1

There are three properties to prove for each part of the proposition.

only That the given BDNF-expression is welldefined and generates only bigraphs of the appropriate type.

all That the given BDNF-expression generates all bigraphs of the appropriate type.

uniqueness That all BDNF-expressions generated by a form differ only by certain simple properties, i.e. that the given
BDNF-expression is unique up to certain isomorphims on subcomponents.

Proof of Proposition 3.3.1, case 1. For the all and only part, we simply note that the definition of a free discrete
molecule (see Definition 2.5.2) is exactly the chosen BDNF expression for this form.

Now consider some other BDNF-expression for M :

(K ′
~y′(~X′)

⊗ idZ′) ◦ P ′

By Proposition 2.5.3, M must have a single outermost node of control K. We conclude K ′ = K.
Furthermore, we have to match the outerface 〈Y] Z〉 of M . This requires us to have ~y′ = ~y and Z ′ = Z.
This leaves the possibility of using another vector of namesets ~X ′. For the composition to be defined we must have

a set of local names { ~X ′} on the outer face of P ′. I.e., we conclude that P ′ must have outer face 〈({ ~X ′}), { ~X ′}]Z〉.
K ′ = K implies | ~X ′| = | ~X|, as in particular the binding arity is equal. Further, for each i ∈ | ~X ′| we have

| ~X ′
i| = | ~Xi|, as the number of peers of the ith binding port on the outermost node must be equal. (As P and P ′ are

name-discrete the ith binding port will get exactly | ~Xi| peers.)
Hence, as we are able to establish a bijective correspondence between ~X and ~X ′, it is possible to construct the

local renaming αloc = (~X)/(~X ′) : ({ ~X ′}) → ({ ~X}).
Checking the conditions for the renaming, we first see that it is immediate (by a welldefined composition and the

definition of ions (Definition 2.5.1)) that K
~y(~X) ◦ αloc = K

~y(~X′).

Having established this, we check the second requirement upon αloc

M = (K~y(~X) ⊗ idZ) ◦ P (3.1)

= (K
~y(~X′) ⊗ idZ) ◦ P ′ (3.2)

= ((K
~y(~X) ◦ αloc) ⊗ idZ) ◦ P ′ (3.3)

= ((K
~y(~X) ⊗ idZ) ◦ (αloc ⊗ idZ)) ◦ P ′ (3.4)

Proceeding from top to bottom (3.2) simply restates the fact that the two BDNF expressions denote the same
bigraph. In (3.3) we use the equality stated in the paragraph above, and in (3.4) we use distributivity of the tensor
product.

(K
~y(~X) ⊗ idZ) is a monomorphism, as it only has one site, and no two inner names are peers (see [HM04, Prop.

7.6, 8.7, and 9.5b]). Therefore, from (3.1) and (3.4) we conclude that

P = (αloc ⊗ idZ) ◦ P ′

We see that as αloc ⊗ idZ is an isomorphism (viz. Proposition 2.4.4), P and P ′ are equal up to isomorphism. This
reflects the fact that they differ only on the naming of the local names of their outer faces.

Proof of Proposition 3.3.1, case 2. Recall that a name-discrete prime is a bigraph P that satisfies the following condi-
tions:

• P has outer width 1 (prime)

• P has only local inner names (prime)

• every link of P is either a separate outer name or a bound edge (name-discrete).

14

The prime conditions can be checked directly by looking at the interface; P must have the interface 〈m, ~Z, Z〉 →
〈1, (U), U]Y 〉. Not so for the name-discreteness constraint, since this is a property of the link graph and the controls
of ports of vertices in P .

We first look on the only part of the proof, and check each of the conditions above against the expression stated in
Proposition 3.3.1, case 2.

Outer width 1 Consider just the placegraph generated by the given BDNF-expression. By definition of mergen+k (see Defin-
ition 2.1.5) the n + k roots of the molecules and concretions are merged into 1 single root by the composition
with the mergen+k element. The renaming α only work on the link graph, and the abstraction (YB) just works
as an identity on the place graph.

We conclude that any bigraph generated by the given BDNF-expression has a single root, i.e. an outer width of
1.

Local innerface By Definition 2.1.2, a permutation has a local outer face iff it has a local inner face. In this case the permutation
π is composed from the left with a product of molecules and concretions.

All free discrete molecules and concretions have local inner faces (by Proposition 2.5.3 and Definition 2.3.1),
and since a product of bigraphs with local inner faces is easily seen to also have a local inner face, we conclude
that π, and hence also P , must have a local inner face.

Name-discrete Every single component of P is name-discrete, and since name-discreteness is preserved by composition and
tensor, P is also name-discrete.

For the all part, we are given an arbitrary name-discrete prime

G = (V, E, ctrl, prnt, link) : 〈m, ~Z, {~Z}〉 → 〈1, (UB), UB] UF 〉.

By decomposing G into progressively smaller components, we show that it is possible to construct a BDNF for
any name-discrete prime.

First, we construct the free discrete1 prime Gf

Gf = (V, E, ctrl, prnt, link) : 〈m, ~Z, {~Z}〉 → 〈1, (∅), UB] UF 〉.

By Definition 2.4.1, it is immediate that we can recreate G from Gf by an abstraction (UB), i.e. (UB)Gf = G.
The constituent parts of the 5-tuple of G and Gf are equal since abstraction only works on the interfaces.

We decompose Gf into another free discrete prime Gfd, and a wiring we call Gl:

Gfd = (V, E, ctrl, prnt, link′) : 〈m, ~Z, {~Z}〉 → 〈1, (∅), {~Z}] U ′〉.

Gl = (∅, ∅, ∅, Id0, link′′) : 〈1, (∅), {~Z}] U ′〉 → 〈1, (∅), UB] UF 〉,

where link′, link′′ and U ′ is constructed from link as follows:
We shall need to construct a number of new names – at most as many as the number of free ports on the nodes in

Gf . We use the notation p′ = ν(p) to signify that p′ is a new name corresponding to the port p. Let U ′ denote the set
of these new names.

Furthermore, let P be the set of all ports of nodes in V .

1Recall that when concerned with free bigraphs, name-discreteness and discreteness are equal properties.

15

Consider every point p ∈ P] Z :

case link(p) ∈ UB] UF ∧ p ∈ Z

link′(p) = p, link′′(p) = link(p) (3.5)

case link(p) ∈ UB] UF ∧ p 6∈ Z

let p′ = ν(p) ∈ U ′

in link′(p) = p′, link′′(p′) = link(p) (3.6)

case link(p) ∈ E

link′(p) = link(p). (3.7)

Since Gf is discrete, every link that is an edge must have a binder on it. By the construction above we contain all
edges and binders in Gfd. Gfd is discrete since all links to an outer name is explicitly made discrete, by either making
it an identity-link (for every inner name – in (3.5)), or creating a new name for it (for every port – in (3.6)).

It is easily seen that the constructed bigraphs are actually a faithful decomposition of Gf , i.e. Gl ◦ Gfd = Gf .
Let us consider first Gl. Recalling the definition of substitutions (Definition 2.2.1), it is easy to see that

Gl = id1 ⊗ α , for some α : {~Z}] U ′ → UF ⊗ UB.

We infer that α is in fact a renaming, i.e. elements of { ~Z}] U ′ and UB] UF are in 1 − 1 correspondence, as a
direct consequence of the assumption that G is name-discrete, and the construction of link ′′.

Briefly, the name-discreteness of G tells us, that the points linked to names in G lie in 1 − 1 correspondence with
UB] UF . The construction ensures us that Gl is just as name-discrete as G, in the sense that (3.5) and (3.6) creates
a separate inner name in Glfor each point linked to a name in G. Since link′′ mimics link on all these points, Gl is
name-discrete iff G is.

3.4.1 Deconstruction of Gfd into free prime components

We now consider Gfd. As it is prime the place graph is a tree. The immediate children of the root are a number of
nodes and sites. In the following let Tv denote the toplevel nodes: Tv = {v|v ∈ V ∧ prnt(v) = 0}, and Ts the
top-level sites: Ts = {i|i ∈ m ∧ prnt(i) = 0}.

Gfd is constructed to be free and discrete, so we know that there is no linkage between the components. In
particular, as there are no binders on the outer face, the scope rule ensures us that all links with binders are contained
within the top-level nodes.

We will deconstruct Gfd into a number of free, prime and discrete bigraphs, each one of them containing one of
the toplevel components from Ts] Tv together with all its internal structure. For each i Gmi will contain a toplevel
node v ∈ Tv and all its substructure, and for each i Gci will contain a toplevel site s ∈ Ts.

From these components we will construct a bigraph expression for Gfd with the help of products, permutation and
merging.

The expression we construct, will yield a bigraph that is equal to Gfd up to reordering of the sites. We will
comment briefly on site (re)ordering first, and then turn to the actual construction.

Handling ordering of sites Recall that in the product of two bigraphs GA and GB , GA ⊗GB, we loose the original
ordering of the sites (see Definition 7.5 [HM04]). So, to reconstruct a particular given site ordering, we have to
somehow recapture this structure; but this is simple, as we know we can produce any permutation of the ordering of
sites by composing from the right with a permutation π. We simply have to give the permutation map π.

To this end, and for specifiying into which components local names of the sites in Gfd should go, we will sometimes
need to talk about the original site-number of sites in the components we construct.

Formally, we define Si = {s|s ∈ m ∧ prntk(s) = vi ∧ k > 0}. We will use Si together with Tv to specify which
sites will go in each Gmi that we construct below.

16

When performing the deconstruction of Gfd we give below, we can simply note the original sitenumbers of sites
in Si and the toplevel sites in Ts. (Recall, that we are given G and have ourselves constructed Gfd, so by simple
inspection we have this information available.)

For ease of notation, we will sometimes treat Ts and Si as maps defined on |Ts| and |Si| respectively. The intention
is (using Si as an example) that the map should, when given the number of a site in Gmi return the number of the
corresponding site in Gfd.

Returning to the construction of an appropriate permutation; we have contained the information we need to con-
struct π in the Ts’s and the Si’s considered as maps. We will not go into full detail here (it is not hard, but quite
tedious), suffice to say that given these maps, the names local to each site, and the ordering of the sites in the bigraph
expression we construct below, π can be constructed.

3.4.2 Construction of an expression for each toplevel component

Toplevel sites For each of the sites in Ts we construct Gci in the following way

∀i ∈ |Ts| : Gci = (∅, ∅, ∅, Id0, IdXi
) : 〈1, (Xi), { ~Xi}〉 → 〈1, (∅), { ~Xi}〉,

where Xi = ZTs(i), i.e. the names local to a corresponding site in Gfd. By comparing with Definition 2.3.1, we see
that Gci = pZTs(i)q – a concretion.

Toplevel nodes For each of the toplevel nodes vi in Tv we aim to define a free discrete molecule Gmi , i.e.

∀i ∈ |Tv| : Gmi = (V mi , Emi , ctrlmi , prntmi , linkmi) : 〈mi, ~Z ′
i, {

~Z ′
i}〉 → 〈1, (∅), Z ′′

i 〉

For the components concerning only the place graph, we restrict the place graph of Gfd accordingly:

mi = |Si| ,

V mi = {v|v ∈ V ∧ prntk(v) = vi ∧ k ≥ 0} ,

ctrlmi = ctrl ↓ V mi ,

∀x ∈ V mi] mi : prntmi(x) =

{

prnt(Si(x)) if x ∈ mi,
prnt(x) if x ∈ V mi .

We construct the link graphs by restricting the domain of the link map of Gfd to the inner names and ports inside
the free discrete molecule, and, for the edgeset, by taking exactly those edges from Gfd that are in the codomain of
the new link map:

linkmi = link′ ↓ Pmi] Z ′
i

where Pmi = {p | p is a port on v ∈ V mi} ,

Emi = cod(linkmi) ∩ E

We have not yet specified how the inner and outer names of the molecules are constructed. This can be specified
with the help of ~Z – the vector of local inner names of Gfd – by treating Si as a map:

~Z ′
i = (~ZSi(0), . . . ,

~ZSi(mi)) ,

and Z ′′
i = Z ′

i] {u|u ∈ U ′ ∧ link−1(u) ∈ V mi}

Each of Gmi is by construction free, prime and discrete and with a single outermost node. Thus by Proposition
2.5.4 we know that each of them is a free discrete molecule.

17

3.4.3 A bigraph expression for Gfd

By the arguments given in the previous section concerning the ordering of sites Gfd, we are able to construct an
appropriate π, s.t.:

Gfd =
(

mergen+k ⊗ id{ ~X}]{ ~Z′′}

)

◦

(

⊗

i∈k

Gmi ⊗
⊗

i∈n

Gci

)

◦ π

where n = |Ts|, k = |Tv|.
We have constructed the outer names of the concretions and the molecules only by distribution of the names in ~Z,

so we have { ~X}] { ~Z ′′} = {~Z}. Collecting all the pieces, we arrive at

G = (UB)

(

(id1 ⊗ α) ◦
(

mergen+k ⊗ idZ+U ′

)

◦

(

⊗

i∈k

Gmi ⊗
⊗

i∈n

Gci

)

◦ π

)

= (UB)

(

(

mergen+k ⊗ α
)

◦

(

⊗

i∈k

Gmi ⊗
⊗

i∈n

Gci

)

◦ π

)

which is on the required form.

Briefly considering uniqueness of this form, we can perform an analysis similar in spirit to the one for free dis-
crete molecules above, proceeding inwards towards the composition of the product of molecules and concretions, and
the permutation. We sketch the arguments involved below.

YB is restrained by the outer face of P and hence cannot vary. Equally, we cannot change the number of top-
level sites n or nodes k. As the renaming α is partially dependent on the names in the concretions, which we i)
specify explicitly, and ii) are able to vary, the inner face of the renaming can change accordingly – as specified in the
requirements upon α′.

There are two interdependent ordering issues to consider for the molecules, concretetions and permutation.
The proposition states essentially that there is a one-one correspondence between the prime components of the

two expressions (given by ρ), s.t. we can reorder the sites of one component, by composing from the right with a
permutation ρi, to make them equal.

Further, as the molecules and concretions are merged into a single prime root, we need not have written them in
the same order in the two expressions.

As the expressions denote the same bigraph, it is not surprising, that up to reordering of sites and renaming the
underlying expressions must generate the same place- and link-structure.

The crucial arguments, in proving the stated restrictions on the ordering of molecules and concretions in the
expressions for P , relies on a lemma stating that a permutation can be ’pushed’ through any product of primes. We
prove this algebraically in the following section when developing the axiomatic theory for bigraph expression (see
Lemma 4.2.1).

We refer the reader to this section, and turn briefly to look at the normal forms for name-discretes and general
bigraphs, before turning to the development of the axiomatic theory.

Proof of Proposition 3.3.1, case 3. (Sketch) As we have observed name-discreteness is preserved by tensor and com-
position, and since every component of the expression in case 3 is name-discrete, the expression for D is also name-
discrete.

For the all part we are given an arbitrary name-discrete bigraph G. By a similar procedure as used for name-
discrete primes, it is quite easy to first split of a renaming, and then decompose G into a number of name-discrete primes
(and an appropriately built permutation). Instead of partioning the structure for each toplevel node, we simply do this
for each root.

18

For uniqueness the proposition states essentially that all Pi and P ′
i must be equal, but for the ordering of their sites.

That this is the case is quite easily seen, as the outer face of D restricts the ordering of the roots, and each prime must
have the same internal structure, for the two expressions to denote the same bigraph.

Proof of Proposition 3.3.1, case 4. (Sketch) For this case, there is nothing to check for the only part.

For the all part of the proof, it is straightforward to decompose any bigraph G into two bigraphs: One name-
discretebigraph containing all the structure of G, except all points linked to names or free edges are now linked to
fresh outer names, and another bigraph mapping each corresponding fresh inner name to the original outer name or
edge in G. It is easily seen that the outer bigraph can be modelled as a product of a global wiring and a local wiring
with width of G.

Concerning uniqueness we can change the names, with which to transfer linkage from the underlying name-
discrete bigraph to the global and local wiring expressions. This is essentially analogous to the transfer of linkage
from the underlying name-discrete prime of a molecule.

19

Chapter 4

An axiomatic theory for the binding
bigraph term language

In the following sections we turn to the main question of stating and proving a set of equations, that will serve as the
basis for an axiomatization of (static) equality of bigraphs.

We have collected the axioms in Table 4.1 for the binding bigraph term language BBexp, we consider (see Chap-
ter 3). Note that, as tensor product is defined only when name sets of the interfaces are disjoint, and as abstraction
is defined only on prime bigraphs with the abstracted names in the outer face, we only require the equations to hold
when both sides are defined.

Compared with the axioms stated by Milner for pure bigraphs [Mil04], we have extended the set with 5 axioms
concerned with binding; and as our ions have names on both faces, we have two axioms – handling inner and outer
renaming. The remaining axioms are straight transfers (or very minor adjustments in the case of swap bigraphs).

Assuming the strategy of [Mil04], we aim to prove completeness for increasingly larger categories of expressions.
To distinguish provable equality and equality of bigraphs we will use ` A = B, to denote syntactic equality, and
just A = B or (when disambiguation is needed) |= A = B to denote equality of bigraphs (semantic equality). In
equational proofs we shall typically qualify derivations by referring to an axiom, definition, lemma or proposition

above the equality sign, like this: ` A
C3
=B or ` A

L4.1.1
= B.

We shall start by defining a few derived bigraph constructs and proving some useful facts.

4.1 Commutativity of wiring

To start off, we prove a few useful properties of increasing complexity based on the symmetric properties recorded in
axioms (C6) through (C8).

We record a simple, but important, fact about global wiring – namely that they commute for tensor product with
all bigraph expressions.

Lemma 4.1.1 (Wiring commutes with all binding bigraphs expressions). For all bigraph expressions G : I0 → I1

(where I0 = 〈m, ~Z, {~Z}] U〉 and I1 = n, ~X, { ~X}] Y), and for all wirings ω : 〈0, (), Y0〉 → 〈0, (), Y1〉 = J0 → J1

` G ⊗ ω = ω ⊗ G

20

Categorical axioms
(C1) A ◦ id = A = id ◦ A
(C2) A ◦ (B ◦ C) = (A ◦ B) ◦ C
(C3) A ⊗ idε = A = idε ⊗ A
(C4) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C
(C5) (A1 ⊗ B1) ◦ (A0 ⊗ B0) = (A1 ◦ A0) ⊗ (B1 ◦ B0)
(C6) γI,ε = idI

(C7) γJ,I ◦ γI,J = idI⊗J

(C8) γI,K ◦ (A ⊗ B) = (B ⊗ A) ◦ γH,J (A : H → I, B : J → K)

Global link axioms
(L1) /y ◦ y/x = /x
(L2) /y ◦ y = idε

(L3) z/(Y] y) ◦ (idY ⊗ y/X) = z/(Y] X)

Global place axioms
(P1) merge ◦ (1 ⊗ id1) = id1

(P2) merge ◦ (merge ⊗ id1) = merge ◦ (id1 ⊗ merge)
(P3) merge ◦ γ1,1,(∅,∅) = merge

Binding axioms
(B1) (∅)P = P
(B2) (Y)pY q = id(Y)

(B3) (pXq
Z ⊗ idY) ◦ (X)P = P (P : I → 〈1, (Z), Z] X] Y 〉

(B4) ((Y)(P) ⊗ idX) ◦ G = (Y)((P ⊗ idX) ◦ G)
(B5) (X] Y)(P) = (X)((Y)(P))

Ion axioms
(N1) (id1 ⊗ α) ◦ K

~y(~X) = K ~α(y)(~X)

(N2) K
~y(~X) ◦ (~x)/(~Z) = K

~y(~Z) (where {~x} = { ~X})

Table 4.1: Axioms for binding bigraphs

21

Proof of Lemma 4.1.1. We rewrite, working from left to right

` G ⊗ ω
C1,C7

= γJ1,I1 ◦ γI1,J1 ◦ (G ⊗ ω)

C8
= γJ1,I1 ◦ (ω ⊗ G) ◦ γI0,J0

D2.1.3
=

(

γ
n,0,(~X,()) ⊗ idY]Y1

)

◦ (ω ⊗ G) ◦
(

γ0,m,((), ~Z) ⊗ idU]Y0

)

C6
=

(

id〈n,(~X,{ ~X})〉 ⊗ idY]Y1

)

◦ (ω ⊗ G) ◦
(

id〈m,(~Z,{~Z})〉 ⊗ idU]Y0

)

C1
= ω ⊗ G

4.2 Pushing permutations through prime products

We will need a ’push-through’ lemma analogous to the one stated for pure bigraphs in [Mil04], that says that one
can push a permutation through any series of primes. As the proof for the corresponding lemma for pure bigraphs, it
relies essentially on iterating the main symmetry axiom (C8). The bookkeeping just gets a bit more messy when the
permutations also have associated vectors of local names.

Lemma 4.2.1 (The push-through lemma). Let

Pi : 〈mi, ~Xi, Xi〉 → 〈1, (Y B
i), Y B

i] Y F
i 〉,

π : 〈n, ~Y B, Y 〉 → 〈n, π(~Y B), Y 〉

and

Y F =
⊎

i<n

Y F
i , ~Y B = (Y B

0 , . . . , Y B
n−1),

Yi = Y B
i] Y F

i , Y =
⊎

i<n

Yi,

Xi =
⊎

j<mi

(~Xi)j , ~X = (X0, . . . , Xn−1).

There exists a permutation πm, ~X which depends solely on π, m, and ~X, s.t.

` π ◦ (P0 ⊗ . . . ⊗ Pn−1) = (Pπ(0) ⊗ . . . ⊗ Pπ(n−1)) ◦ πm, ~X

Recall that by Proposition 2.1.4, we know that π can be written as a sequence of compositions of products of
extended swappings (see 2.1.3) and a global identity on names. Having π on this form 1 allows us to prove the lemma
by straightforward induction.

Proof of Lemma 4.2.1. In the following proof, let πp denote a permutation π that can be expressed can be expressed
using p products of swappings (πp = (κ0 ◦ . . . ◦ κp−1)).

We prove the lemma by induction over p – the number of products of swappings – or the number of κ’s in
π = (κ0 ◦ . . . ◦ κp−1).

Case (Base). Trivially true.

Case (Induction step). Assume the lemma holds for πp = (κ0 ◦ . . . ◦ κp−1). I.e., we assume

` (κ0 ◦ . . . ◦ κp−1) ◦ (P0 ⊗ . . . ⊗ Pn−1) = (Pπp(0) ⊗ . . . ⊗ Pπp(n−1)) ◦ πp
m, ~X

1As the theory is complete for permutations we can express π any way, we like.

22

Consider a permutation πp ◦
⊗

j<k γIj ,Kj
composed with a product of primes:

(κ0 ◦ . . . ◦ κp−1) ◦
⊗

j<k

γIj ,Kj
◦ (P0 ⊗ . . . ⊗ Pn−1)

We start by using (C5) to partition and rearrange the product of primes into j parts matching each corresponding
γIj ,Kj

.
Let (b0, . . . , bj , . . . , bk+1) range over the indices we partition at. We also let bj be dependent on the widths of Ij

and Kj , so that we can better illustrate the effect of swapping on the product of primes. (Of course, formally we must
assume that the bj’s is a valid partioning. I.e. that it is an increasing vector of indices in [0; n] and that b0 = 0, and
bk+1 = n.)

` . . .
C5
=(κ0 ◦ . . . ◦ κp−1) ◦

⊗

j<k

(γIj ,Kj
◦ (

⊗

bj≤i<bj+1

Pi ⊗
⊗

bj+1≤i<bj+2

Pi))

And now by k applications of (C8) we can exchange the prime products composed with each swap.

C8
=(κ0 ◦ . . . ◦ κp−1) ◦

⊗

j<k

((
⊗

bj+1≤i<bj+2

Pi ⊗
⊗

bj≤i<bj+1

Pi) ◦ γHj ,Jj
)

where Hj , Jj are the inner faces of each corresponding product of primes (as determined in the side condition for
(C8)).

Now we reverse the procedure and pick apart the product of primes and swappings again using (C5) (k times).

C5
=(κ0 ◦ . . . ◦ κp−1) ◦

⊗

j<k

((
⊗

bj+1≤i<bj+2

Pi ⊗
⊗

bj≤i<bj+1

Pi)) ◦
⊗

j<k

γHj ,Jj

Now we are nearly done. Applying the induction hypothesis we get

IH
=
⊗

j<k

((
⊗

bj+1≤i<bj+2

Pπp(i) ⊗
⊗

bj≤i<bj+1

Pπp(i))) ◦ πp
m, ~X

◦
⊗

j<k

γHj ,Jj

which is on the required form.
Checking, we see that the pushed-through permutation depends only on πp+1 = πp ◦

⊗

j<k γIj ,Kj
, and on the

inner faces of (widths and local names) of the primes Pi.

4.3 A merge construct for local bigraphs

Definition 4.3.1. We wish to extend the place merging construction merge to local interfaces. Let bmerge (X0,X1) the
binding merge bigraph be defined as

bmerge(X0,X1)
def
= (X0] X1)((merge ⊗ idX0]X1) ◦ (pX0q ⊗ pX1q))

We also define an inductive derived form bmerge
m, ~X

bmerge0,()
def
= 1

bmerge
m, ~X

def
= bmerge(X′,Xm−1) ◦ (bmerge

m−1, ~X′
⊗ idXm−1)

where ~X = (X0, . . . , Xm−2, Xm−1)

~X ′ = (X0, . . . , Xm−2)

X =
⊎

i<m

Xi

X ′ =
⊎

i<m−1

Xi

23

We proceed by showing that we can prove a few useful lemmas about bmerge (X0,X1).

4.3.1 Foldout lemma

It is a good exercise to prove, that we could have just as well have defined bmerge
m, ~X

using mergem the induc-
tive version of the merge . In other words, we wish to prove the intuitive fact that the inductive definition above of
bmerge

m, ~X
is equal to its unfolding.

Lemma 4.3.2 (Foldout lemma for bmerge
m, ~X

).

` bmerge
m, ~X

= (X)((mergem ⊗ idX) ◦ Cm)

where

C0
def
= idε,

Cm
def
=

⊗

i<m

pXiq

Proof of Lemma 4.3.2. By induction on m:

Case (Base). By (B1), (C3) and the definition of merge0

` (∅)((merge0 ⊗ id∅) ◦ idε = 1

Case (Induction step). Assume

` bmerge(X′,Xm−1) ◦ (bmerge
m−1, ~X′ ⊗ id(Xm−1)) = (X)((mergem ⊗ idX) ◦

⊗

i<m

pXiq)

We need to show

` bmerge(X′]Xm−1,Xm) ◦ (bmerge(X′,Xm−1) ◦ (bmerge
m−1, ~X′ ⊗ idXm−1)) ⊗ id(Xm))

= (X] Xm)((mergem+1 ⊗ idX]Xm
) ◦

⊗

i<m+1

pXiq)

We start by using the induction hypothesis (IH) and the definition of bmerge (X′]Xm−1,Xm) = bmerge(X,Xm) (D4.3.1),
and proceed straightforwardly

` . . .
IH
= bmerge(X,Xm) ◦ ((X)((mergem ⊗ idX) ◦

⊗

i<m

pXiq) ⊗ id(Xm))

D4.3.1,B2
= (X] Xm)((merge ⊗ idX]Xm

◦ (pXq⊗ pXmq)) ◦ ((X)((mergem ⊗ idX) ◦
⊗

i<m

pXiq) ⊗ (Xm)pXmq)

B4,C5,C2
= (X] Xm)((merge ⊗ idX]Xm

◦ (pXq ◦ ((X)((mergem ⊗ idX) ◦
⊗

i<m

pXiq) ⊗ pXmq ◦ (Xm)pXmq)))

B3
= (X] Xm)((merge ⊗ idX]Xm

) ◦ ((mergem ⊗ idX) ◦
⊗

i<m

pXiq ⊗ pXmq))

We have to use a few standard tricks on the latter part to collapse the merge’s and concretions. We insert and shift to
the right a convenient product of identities

C1,C5,C4,C2
= (X] Xm)((merge ⊗ idX]Xm

) ◦ ((mergem ⊗ idX ⊗ id1 ⊗ idX) ◦
⊗

i<m+1

pXiq))

24

Next, we use the symmetries (C6,C7,C8) to exchange idX and id1
2. The last few steps follows from the pure place

axioms and the inductive definition of mergem+1

L4.1.1
= (X] Xm)((merge ⊗ idX]Xm

) ◦ ((mergem ⊗ id1 ⊗ idX ⊗ idX) ◦
⊗

i<m+1

pXiq))

P2,C5,C1
= (X] Xm)(((merge ◦ (id1 ⊗ mergem)) ⊗ idX]Xm

) ◦
⊗

i<m+1

pXiq)

D2.1.5
= (X] Xm)((mergem+1 ⊗ idX]Xm

) ◦
⊗

i<m+1

pXiq)

4.3.2 Binding merge and permutation

Composing bmerge(X0,X1) with an appropriate swap bigraph γ1,1,(X0,X1), should yield the dual binding merge, i.e.
bmerge(X1,X0).

Lemma 4.3.3.

` bmerge(X1,X0) ◦ γ1,1,(X0,X1) = bmerge(X0,X1)

(Recall that γ1,1,(X0,X1) : 〈2, (X0, X1), X0] X1〉 → 〈2, (X1, X0), X0] X1〉.)

Proof of Lemma 4.3.3. Straightforward after an application of axiom (B4)

` bmerge(X1,X0) ◦ γ1,1,(X0,X1)

D4.3.1,B4
= (X0] X1)((merge ⊗ idX0]X1) ◦ (pX1q ⊗ pX0q) ◦ γ1,1,(X0,X1))

C8
= (X0] X1)((merge ⊗ idX0]X1) ◦ (γ1,1,(∅,∅) ⊗ idX0]X1) ◦ (pX0q ⊗ pX1q))

C5,P3,C1
= (X0] X1)((merge ⊗ idX0]X1) ◦ (pX0q ⊗ pX1q))

D4.3.1
= bmerge(X0,X1)

This result can be generalized to permutations and binding merge bigraphs of arbitrary width.

Lemma 4.3.4.

` bmerge
m,π(~X) ◦ π = bmerge

m, ~X

Proof of Lemma 4.3.4. (Sketch)
After an application of (B4) analogous to the proof for 4.3.3, the proof proceeds by straighforward use of the

definition of bmerge
m, ~X

, Lemma 4.3.2, and the push-through lemma (Lemma 4.2.1).

4.3.3 Merging products of binding merge

We will also need to prove that a merging a product of binding merges yields a binding merge.

Lemma 4.3.5.

` bmerge
k, ~X

◦ (
⊗

i<k

bmerge
mi, ~Xi

) = bmerge
m, ~X

where m =
∑

i<k mi and ~X = ~X0 . . . ~Xk−1.

2Lemma 4.1.1 records the fact, that this procedure can, of course, always be done for pure link and place expressions.

25

Proof of Lemma 4.3.5. (Sketch)
Use Lemma 4.3.2 to fold out bmerge

k, ~X
, and a straight transfer of [Mil04, Lemma 5.1 (2)] (which establishes the

similar property for simple merge’s) for the global subexpressions.

4.4 PlaceLid
expressions

We define the subclass PlaceLid
of bigraph expressions as all expressions in the term language, which are generated by

id’s, ◦, and ⊗ from bmerge
m, ~X

and γI,J . I.e. PlaceLid
holds all place bigraph expressions extended only with identies

on local names. (Recall that special cases of bmerge
m, ~X

instantiate to elements 1 and merge.)
We aim to prove that the theory is complete for PlaceLid

expressions.
Note that, in a strict symmetric monoidal category the categorical axioms are known to be complete for ◦ and ⊗

of the symmetries γI,J - hence in particular the theory is complete for permutations.
We start by showing a normal form for PlaceLid

expressions.

Lemma 4.4.1 (Normal form for PlaceLid
expressions). For every PlaceLid

expression E

` E = (bmerge
m0, ~X0

⊗ . . . ⊗ bmerge
mk−1, ~Xk−1

) ◦ π

for some k ≥ 0 and permutation expression π s.t. the composition is welldefined.

Proof of Lemma 4.4.1. By structural induction on expressions:

Case (Base). Immediate.

Case (Induction step).
Assume ` E =

⊗

i<k bmerge
mi, ~Xi

◦ π and ` F =
⊗

j<l bmerge
nj , ~Yj

◦ π′.
The case for E ⊗ F is immediate by a single use of (C5). For E ◦ F we need to push the middle permutation

through F (Lemma 4.2.1), and use Lemma 4.3.5 to collapse the two products of binding merge’s:

` E ◦ F
L4.2.1

=
⊗

i<k

bmerge
mi, ~Xi

◦ (
⊗

j<l

bmerge
nπ(j) ,~Yπ(j)

) ◦ (π
~n,~Y

◦ π′)

L4.3.5
=

⊗

i<k

bmerge
m′

i
, ~Xi

◦ (π
~n,~Y

◦ π′)

where m′
0 =

∑

j<m0
nπ(j), and for i > 0, m′

i =
∑

mi−1≤j<mi
nπ(j).

As the expression is on the required form, we are done.

Now we are ready to state completeness for PlaceLid
expressions.

Lemma 4.4.2 (Completeness for PlaceLid
expressions). If ` E =

⊗

i<k bmerge
mi, ~Xi

◦ π and
` F =

⊗

j<l bmerge
nj , ~Yj

◦ π′ and |= E = F , then ` E = F .

Proof of Lemma 4.4.2. Using Proposition 3.3.1 – by |= E = F , we know that k = l, and (for all i) that mi = ni , and
there exists ρi s.t.

bmerge
mi, ~Xi

= bmerge
ni, ~Yi

◦ ρi (4.1)

(ρ0 ⊗ . . . ⊗ ρl−1) ◦ π = π′ (4.2)

Eq. (4.2) is provable in our theory by completeness for permutation expressions.

26

Eq. (4.1) is just an instance of Lemma 4.3.4, when we note that in particular it implies that the number of merged
sites, and the names local to each root must be equal. But the locality of these names (wrt. to the inner face) can be
permuted by ρi. I.e. we have mi = ni and Yi = ρi(Xi)

3.
This implies that

` F =
⊗

j<l

bmerge
nj , ~Yj

◦ (ρ0 ⊗ . . . ⊗ ρl−1) ◦ π

C5
=

⊗

j<l

(bmerge
nj , ~Yj

◦ ρj) ◦ π

= E

4.5 LinkG expressions

We consider next the class of global link expressions, those bigraph expressions generated by closure and substitution.
We simply note, that we have transfered exactly the global link constructs used in [Mil04].

As we also have the exact same axioms for global link expressions, it is easily seen that we can straightforwardly
adapt also the proof that the axiomatic theory (for the binding bigraph term language) is complete for global link
expressions. We will refer to this class of expressions as LinkG.

4.6 A syntactic analogue of name-discreteness

We define linearity for binding bigraph expressions:

Definition 4.6.1 (Linearity). A binding bigraph expression is linear iff it contains only wiring of the format y/x.

In other words, in linear expressions all substitutions are renamings – an inductive property with respect to BBexp,
which we will utilize to full effect in the following sections. We shall see that any name-discrete bigraph has a linear
expression.

Having establish linearity, we can proceed along the same lines as set out in [Mil04] – using structural induction
as our main proof principle.

We start by establishing a few basic properties of linear expressions.

Lemma 4.6.2. If E is linear, then ` E = E ′ ⊗ α, where E is linear with local innerface.

Proof. (Omitted) (Straightforward structural induction.)

Lemma 4.6.3. If E is linear with local innerface, then

` E ◦
⊗

i<m

(~ui)/(~Zi) = (
⊗

i<n

(~yi)/(~Xi) ⊗ idV) ◦ E′,

where E′ is linear with local innerface.

Proof. (Omitted) (Structural induction.)

3More directly we infer that Xi = ρ′
i
(Yi), and then that ρ′

i
= ρi (see Lemma 4.2.1).

27

We shall use the following lemma to help show completeness for ionfree expression in the following section.
Importantly, it also constitutes a step toward a syntactic normal form for all expressions in BBexp, analogous to the
normal form we established in Proposition 3.3.1.

Proposition 4.6.4 (Underlying linear expression). For any expression G denoting a bigraph of outer width n, there
exists a wiring ω, a linear expression E, and a local renaming

⊗

i<n(~yi)/(~Xi), s.t.

` G = (
⊗

i<n

(~yi)/(~Xi) ⊗ ω) ◦ E

Proof. (Sketch)
By structural induction. The cases for elementary linear expressions are straightforward. As are the cases for

tensor product and composition with the help of the two previous lemmas.
We only consider the case for abstraction on G in more detail. It is only welldefined for prime G, i.e. m = 1:

` (Y)E = (U)
(

((~y)/(~X) ⊗ ω) ◦ E
)

B4,B5,D2.4.3
= (U] {~y})

(

((~y/ ~X ⊗ id1) ◦ p{ ~X}q) ⊗ ω
)

◦ E

C5,C1,D2.2.2
= (U] {~y})

(

((~y/ ~X ⊗ ~u/~V ⊗ id1) ◦ (p{ ~X}q ⊗ id{~V })) ⊗ ω′
)

◦ E,

where ` ω = ~u/~V ⊗ ω′, and U = {~u}.
We use (B3) to introduce appropriate abstractions and concretions, move it (pV q

{ ~X} ⊗ idI) under the outermost
abstraction with the help of (B5), and use (C5) to rearrange:

B3,B5,C5
= (U] {~y})

((

(~y/ ~X ⊗ ~u/~V ⊗ id1) ◦ (p{ ~X}q ⊗ id{~V }) ◦ pV q
{ ~X}
)

⊗ (ω′ ◦ idI)
)

◦ (V)E,

where I is the domain of ω′.
Applying (B3) again, now in reverse, and cleaning up the expressions, we reach an expression on the required

form:

B3,C1,C5
= (U] {~y})

((

(~y/ ~X ⊗ ~u/~V ⊗ id1) ◦ p{ ~X}] V q

)

⊗ ω′
)

◦ (V)E,

4.7 Ionfree expressions

With the help of the following lemmas, as a corollary of the established properties for linear expressions, we find that
the theory is complete for ionfree bigraphs expressions.

Lemma 4.7.1. If E = E1 ◦E2 is linear, ionfree, and with local inner- and outerface, then E1 and E2 are also linear,
ionfree with local inner and outer face.

Same for E = E1 ⊗ E2.

Proof. (Sketch)
Clearly, any subterm of a linear and ionfree term are also linear and ionfree. Further, in the case for E = E1 ⊗E2,

by definition of the tensor product, E has local inner- and outerface iff E1 and E2 have.
Consider the case for E = E1 ◦ E2. It is immediate that E1 must have local outer face, while E2 must have local

inner face. As their inner and outer face must match, we could assume that they shared a global name x here.
By linearity and ionfreeness of E1 and E2, we know that the global inner name x would need to be connected to a

(separate) local outer name of E1, hence violating the scope rule.

28

The next lemma states a normal form for linear, ionfree expressions with local inner- and outerface.

Lemma 4.7.2. If E is linear and ionfree of width n with local inner and outer face, then ` E =
⊗

i<n(~yi)/(~xi)◦GP ,
where GP ∈ PlaceLid

.

Proof. (Sketch)
With the help of the previous lemma and completeness for PlaceLid

-expressions, the proof is by structural induc-
tion.

We consider only the case for composition. It requires us to push a product of local substitutions
⊗

i<n(~y′
i)/(~x′

i),
through an expression of the form

⊗

i<n(~yi)/(~xi) ◦ GP from the right. This is tedious, but not hard.
Consider the normal form for PlaceLid

expressions. We start by pushing local wiring through the permutation using
the push-through lemma (Lemma 4.2.1), then by (B3) dissolve each matching pair of abstraction and concretion, in
each pair of local wiring (y′

i)/(x′
i) and binding merge.

We can also dissolve each abstraction on the outer faces of the binding merges with a matching concretion in
⊗

i<n(~yi)/(~xi). We are left with pushing a global substitution through a product of elementary merge’s and global
identitities. To establish the required form, we also need to compose the products of binding merge’s, but by com-
pleteness of PlaceLid

and LinkG (in particular, Lemma 4.3.5) this is all possible.

Next, we turn to a normal form for linear, ionfree expressions. The following lemma is a specialization of
Lemma 4.6.2.

Lemma 4.7.3. If E is linear and ionfree, then for suitable concretions
` E = (

⊗

i<npXiq
Zi ◦ E′) ⊗ α, where E′ is linear and ionfree and has local inner and outer face.

Proof. Structural induction. The cases for elements and tensor product are simple.

(Y)E = (Y)((pXq
Z ◦ E′) ⊗ α) is only defined when E is prime, and Y ⊆ X . With applications of (B4) and

(B5), we can move the renaming out from under the abstraction, and combine the abstraction (Y) with the abstraction
in pXq

Z . Hence, we prove ` (Y)E = (pXq
Z]Y ◦ E′) ⊗ α, which is on the required form.

Consider E ◦ F , and assume that we have for linear, ionfree and with local inner- and outerfaces E, F

` E = (
⊗

i<n

pXiq
Zi ◦ E′) ⊗ α, and ` F = (

⊗

i<m

pYiq
Ui ◦ F ′) ⊗ β.

We have ` α = αr ⊗
⊗

i<n αc
i , where the domain of αr matches the outer names of β and the domains of

⊗

i<n αc
i is

⊎

i<m Yi – the global outer names of the concretions in the expression for F .
Rearranging, and introducing global identities idYi

corresponding to the outer faces of αc
i , we have

` E ◦ F = (
⊗

i<n

pXiq
Zi ⊗ idYi

) ◦ (E′ ⊗
⊗

i<n

αc
i) ◦ (

⊗

i<m

pYiq
Ui ◦ F ′) ⊗ (αr ◦ β).

We shall need to split the expression E ′ and F into prime parts, and compose them to get n prime expressions to
reach the required form. By Lemma 4.7.2 and completeness for PlaceLid

expressions, we have, that we can rewrite the
expression above to get first

` . . . =
⊗

i<n

(

(pXiq
Zi ⊗ idYi

) ◦ (E′
i ⊗ αci)

)

◦ (
⊗

i<m

pYiq
Ui ◦ F ′) ⊗ (αr ◦ β),

for prime expressions E ′
i. Next, rewriting the expression for F and composing, we get

` . . . =
⊗

i<n

(

(pXiq
Zi ⊗ idYi

) ◦ (E′
i ⊗ αci) ◦ F ′

i

)

⊗ (αr ◦ β).

for suitable Fi, s.t. ` F =
⊗

i<mpYiq
Ui ◦ F ′ =

⊗

i<n Fi.

29

By repeated applications of (B5) and (B3), we arrive at

` . . .
(B3,B5)

=
⊗

i<n

(

(pXi] Yiq
Zi) ◦ (Yi) ((E′

i ⊗ αci) ◦ F ′
i)
)

⊗ (αr ◦ β),

Which is on the required form. Checking, we see that each prime component (Yi) ((E′
i ⊗ αci) ◦ F ′

i) has local inner-
face as F has local innerface, and local outerface as E ′ has local outer face, and the entire codomain of αci is bound
by the abstraction.

Completeness of all ionfree expressions follows by the established properties for linear and linear-ionfree expres-
sions. We start by establishing a normal form, based on the previous lemmas.

Lemma 4.7.4 (A normal form for ionfree expresssions). For all ionfree epxressions G of width n

` G = ωg ⊗

(

⊗

i<n

(Yi)
(

(ωl
i ⊗ id1) ◦ pXiq

)

)

◦ GP .

where GP ∈ PlaceLid
.

Proof. By Proposition 4.6.4, Lemma 4.7.2, and Lemma 4.7.3, for any ionfree expression G we have

` G = (
⊗

i<n

(~yi)/(~Xi) ⊗ ω) ◦

((

⊗

i<n

pZiq
Xi ◦ (

⊗

i<n

(~ui)/(~u′
i) ◦ GP)

)

⊗ α

)

,

where GP ∈ PlaceLid
.

By completeness of PlaceLid
expressions, we can prove ` GP =

⊗

i<n GP
i for suitable GP

i . Rearranging with the
help of (C5), and using applications of (B5) and (B3) to remove matching concretion – abstraction pairs, we get

` . . .
B5,B3,C5

= ω′r ⊗
⊗

i<n

({~yi})
(

(~yi/ ~Xi ⊗ ωc
i ⊗ id1) ◦ (~u′

i/~ui ⊗ id1) ◦ p{~u}iq ◦ GP
i

)

,

where ` ω = ωr ⊗
⊗

i<n ωc
i .

By completeness of LinkG expressions, we can compose and rearrange the global link expressions, to get

` . . . = ω′r ⊗
⊗

i<n

(

({~yi})
(

(ω′c
i ⊗ id1) ◦ p{~u}iq ◦ GP

i

))

.

As GP has local outer face, it does not need to be under the abstraction

` . . .
B4
= ω′r ⊗

(

⊗

i<n

({~yi}) ((ω′c
i ⊗ id1) ◦ p{~u}iq)

)

◦ GP ,

and we have an expression on the required form.

With the help of the lemmas above, we have established a normal form for ionfree expressions based on PlaceLid
ex-

pressions and LinkG expressions with necessary abstractions and concretions. Completeness for ionfree expressions
follows easily.

Corollary 4.7.5 (The theory is complete for ionfree expressions).

Proof. (Sketch)
Given two ionfree expressions, which denote the same bigraph, we rewrite to the normal form, above. We get two

expressions with wirings and PlaceLid
expressions that are provable equal by completeness of LinkG and PlaceLid

.
Constrained by the local names of the inner- and outerfaces, and the inner face (recall that PlaceLid

expressions are
identities on the link graph), the abstractions and concretions in the middle term must also be equal. We are left with
two global wirings, which are also provable equal.

30

4.8 Syntactic normal forms

We define four levels of a syntactic normal form, BDNF, on expressions in BBexp. We define each form correspond-
ing exactly to the four classes of expressions described in Proposition 3.3.1.

Definition 4.8.1.

MBDNF: M ::= (K
~y(~X) ⊗ idZ) ◦ P

PBDNF: P ::= (Y)((mergen+k ⊗ α) ◦ (M0 ⊗ . . . ⊗ Mk−1 ⊗ pX0q ⊗ . . . ⊗ pXn−1q) ◦ π)
DBDNF: D ::= ((P0 ⊗ . . . ⊗ Pn−1) ◦ π) ⊗ α

BBDNF: B ::= (
⊗

i<n(~yi)/(~Xi) ⊗ ω) ◦ D

To formally prove the correspondence between BDNF and the bigraph classes in Proposition 3.3.1, we need a few
lemmas. We omit the proofs for the following lemmas, which go by mathematical induction on the number of ions. As
we have established completeness for ionfree expressions, we have the base case. The inductive steps are analogous
to the proofs for the similar lemmas for pure bigraphs [Mil04, Lemma 5.11].

Lemma 4.8.2 (All BDNF forms are closed under composition with isos).

We also need that DBDNF expressions are closed under composition.

Lemma 4.8.3 (DBDNF is closed under composition). For all composable DBDNF’s C, D, there exists a DBDNF D ′,
s.t. ` D ◦ C = D′.

Now we state formally, the proposition that formally establishes the correspondence between our semantic normal
form, and the syntactic normal form, above. Also, we formally state that linearity is, in fact, a syntactic correspondent
of name-discreteness (item 3 in the following proposition):

Proposition 4.8.4. Let E be a linear expression, and G any expression.

1. If E denotes a discrete free molecule, then ` E = M for some MBDNF.

2. If E denotes a name-discrete prime, then ` E = P for some PBDNF P .

3. ` E = D for some DBDNF D.

4. ` G = B for some DBDNF B.

Proof. (Sketch) By structural induction and inspection of the normal forms. We briefly sketch the proof below.
We start by proving the correspondence between linearity and name-discreteness (3). We look only at the cases

for abstraction and composition. The cases for elements and tensor product are straightforward.
Assume

` E1 = (
⊗

i<n

Pi ◦ π1) ⊗ α1,

` E2 = (
⊗

i<m

Qi ◦ π2) ⊗ α2,

where each Pi and Qi are PBDNF’s.
Abstraction (X)E1 is only defined when n = 1, and then by (B5) and (B4), we can rewrite

` (X)(P0 ◦ π ⊗ α) = ((X] Y)P ′
0 ◦ π) ⊗ α,

where ` (Y)P ′
0 = P0. This expression is on the required form.

31

Turning to composition, by an application of (C5) and Lemma 4.2.1, we have:

` E1 ◦ E2 = (
⊗

i<n

Pi ◦ π1) ⊗ α1 ◦ (
⊗

i<m

Qi ◦ π2) ⊗ α2

C5,L4.2.1
= ((

⊗

i<n

Pi ◦
⊗

i<m

Qπ1(i)) ◦ (π1 ◦ π2)) ⊗ (α1 ◦ α2),

where π1 is π1 pushed through
⊗

i<m Qi. By Lemma 4.8.3, this expression is provably equal to a DBDNF.
Consider (2); by (3) we know that ` E = D, where D is a DBDNF. But as D is prime, we have n = 1 and

α = idε, and as a permutation is an iso, by Lemma 4.8.2, we are done.
For case (1), we note that by (2) we have that ` E = P , a name-discrete prime. Knowing that P denotes a free

discrete molecule, we get that the expression collapses, i.e. we have that ` E = (∅)((merge 1 ⊗α)◦M ◦π), where M
is a MBDNF. By axioms for abstraction and ions; the definition of merge ; and Lemma 4.8.2, we see that ` E = M ′,
an MBDNF.

Case 4 follows from (3) and Proposition 4.6.4.

4.9 Completeness

And finally we are able to state the formal completeness proposition, using our results for linear expressions to bridge
the gap to the full binding bigraph term language.

Not surprisingly, the proofs are similar to the ones for pure bigraph expressions [Mil04, Prop. 5.13 and Theorem
5.14], as we have laboured to establish properties, forms, and axioms that allow us similar manipulations.

Proposition 4.9.1 (Linear completeness). If E and E ′ are linear expressions and E = E ′, then ` E = E′.

Proof. (Sketch)
As we have established correspondence between each level of BDNFform and each level of Proposition 3.3.1, we

proceed by case analysis on the form of bigraph that E (and hence E ′) denotes. As E is linear, it is either a molecule,
a name-discrete prime, or a name-discrete bigraph.

By induction on n – the number of ions in E and E ′. We assume that the proposition holds for < n ions.

Case (Free discrete molecule). If E and E ′ with n ions denote a free, discrete molecule, then by Proposition 4.8.4(1),
and Proposition 3.3.1(1) we have MBDNFs, s.t.

` E = (K
~y(~X) ⊗ idZ) ◦ P

` E′ = (K
~y(~X′) ⊗ idZ) ◦ P ′.

By an application of axiom (N2), and a little rearranging (mainly by (C1), and (C5)) we see that

` E′ N2,C1,C5
= (K

~y(~X) ⊗ idZ) ◦ ((X)/(X ′)idz) ◦ P ′,

where |= ((X)/(X ′)idz) ◦ P ′ = P . By the induction hypothesis this is provable, and we are done.

Case (Name-discrete prime). E and E ′ with n ions denote a name-discrete prime.
We have, by Proposition 4.8.4(2), and Proposition 3.3.1(2), provable PBDNFs:

` E = (YB)

(

mergem+k ⊗ α
)

◦

⊗

i<k

Mi ⊗
⊗

j<m

pXjq

 ◦ π

` E′ = (YB)

(

mergem+k ⊗ α
)

◦

⊗

i<k

αm
i ◦ M ′

i ⊗
⊗

j<m

αc
j ◦ pX ′

jq

 ◦ π′

 ,

32

where renamings, concretions, molecules and permutations respect the conditions as specified in Proposition 3.3.1(2).
As each underlying molecule contain no more than n ions, by the case for molecules, we have that each Mi corresponds
to αm

j ◦M ′
j for some i and j, except for ordering of sites. With the help of Lemma 4.2.1, by the requirements upon π,

and π′, we are able to conclude that the two PBDNFs are equal, and hence that ` E = E ′.

Case (Any name-discrete). Consider now the case where E, E ′ with n ions denote any name-discrete bigraph. Then
by Proposition 4.8.4(3), and Proposition 3.3.1(3) we have provable DBDNFs:

` E =

(

⊗

i<m

Pi ◦ π

)

⊗ α

` E′ =

(

⊗

i<m

P ′
i ◦ π′

)

⊗ α,

where there exists permutations ρi, (i ∈ n), s.t. P ′
i = Pi ◦ ρi, and (ρ0 ⊗ . . . ⊗ ρn−1) ◦ π′ = π (and Pi, P ′

i are
PBDNFs).

Both these requirements are provable (by Lemma 4.8.2 and completeness for permutation expressions, respec-
tively) so by a few simple applications of (C5) we see that ` E = E ′.

Theorem 4.9.2 (Full completeness). For any expressions G and G′, if G = G′, then ` G = G′.

Proof. (Omitted) (Follows straightforwardly from linear completeness. Proposition 4.8.4, case 4 and Proposition
3.3.1, case 4 yields a few equations which are provable by the earlier completeness results.)

Acknowledgements We would like to thank all participants of the BPL group at the IT University of Copenhagen
for enthusiastic support and sparring during the work on this report.

33

Bibliography

[HM04] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Technical Report 580, Uni-
versity of Cambridge, February 2004.

[Mil04] Robin Milner. Axioms for bigraphical structure. Technical Report 581, University of Cambridge, February
2004.

34

