
Nordic Journal of Computing

Axiomatizing Binding Bigraphs

T.C. Damgaard
IT University of Copenhagen

Denmark
tcd@itu.dk

L. Birkedal
IT University of Copenhagen

Denmark
birkedal@itu.dk

Abstract. We axiomatize the congruence relation for binding bigraphs and prove
that the generated theory is complete. In doing so, we define a normal form for
binding bigraphs, and prove that it is unique up to certain isomorphisms.

Our work builds on Milner’s axioms for pure bigraphs. We have extended the
set of axioms with five new axioms concerned with binding, and we have altered
some of Milner’s axioms for ions, because ions in binding bigraphs have names on
both their inner and outer faces. The resulting theory is a conservative extension
of Milner’s for pure bigraphs.

ACM CCS Categories and Subject Descriptors: D.3.1. Formal Definitions
and Theory, F.3.2. Process Models.

Key words: graphical models of computation, bigraphs, axioms for static congru-
ence.

1. Introduction

Over the last decade, Robin Milner and co-workers have developed a theory
of bigraphical reactive systems, see [9, 12, 13]. Bigraphical reactive systems
(BRSs) provide a graphical model of computation in which both locality and
connectivity are prominent. In essence, a bigraph consists of a place graph, a
forest, whose nodes represent a variety of computational objects; and a link
graph, which is a hyper graph connecting ports of the nodes. Bigraphs can be
reconfigured by means of reaction rules. A bigraphical reactive system con-
sists of set of bigraphs and a set of reaction rules.BRSs have been developed
with two principal aims: (1) to model ubiquitous systems by focusing on
mobile connectivity (the link graph) and mobile locality (the place graph),
and (2) to provide a unification of existing theories by developing a general
theory, in which many existing calculi for concurrency and mobility may
be represented, with a uniform behavioural theory. The latter is achieved
by representing the dynamics of bigraphs by reaction rules from which a
labelled transition system may be derived in such a way that the associated
bisimulation relation is a congruence. The unification has recovered existing
behavioural theories for the π-calculus [9], the ambient calculus [10], and has
contributed to that for Petri nets [11]. Thus the evaluation of the second
aim has so far been encouraging. In [3] Birkedal et al. initiate an evaluation

May 18, 2006

2 T.C. DAMGAARD, L. BIRKEDAL

of the first aim, in particular it is shown how to give bigraphical models of
context-aware systems.

As suggested and argued in [9, 2, 1, 3] it would be very useful to have an
implementation of the dynamics of bigraphical reactive systems to allow ex-
perimentation and simulation. In the Bigraphical Programming Languages
research project at the IT University, we are working towards such an im-
plementation.

An implementation of bigraphical reactive systems must, of course, work
on some data structure representing bigraphs. An obvious possibility is to
represent bigraphs by bigraphical expressions that denote bigraphs. This
is particularly feasible if (1) the bigraphical expressions are defined induc-
tively (by a grammar, say), such that algorithms may operate inductively
on the representation; and (2) there are normal forms for bigraphical ex-
pressions and axioms for determining whether two bigraphical expressions
denote the same bigraph, such that algorithms may operate on normal form
representations, and may be founded on principles of equational reasoning.
There is such an axiomatization of the so-called pure bigraphs with these
properties [12]. In the present paper we extend the axiomatization for pure
bigraphs to binding bigraphs, a wider class of bigraphs better suited for the
representation of calculi and systems involving binding, e.g., the π-calculus,
and prove that our axiomatization has the above mentioned desired prop-
erties. In particular, we prove the axiomatization complete and prove that
our notion of normal form is unique up to certain specified isomorphisms.
Our axiomatization is a conservative extension of Milner’s.

For reasons of brevity, we refer the reader to the papers cited above for
more background information and motivation than can be included here. In
particular, we shall need to assume some familiarity with pure and binding
bigraphs as described in [9] and with the axiomatization of pure bigraphs
[12] — we do, however, include an informal description of bigraphs in the
following section and we have included the formal definition of binding bi-
graphs in Appendix A.

The remainder of the paper is organized as follows. In the following sec-
tion we introduce bigraphs by example. In Section 3 we define elementary
forms of bigraphs and arrive at a semantic normal form theorem, which
expresses how every bigraph may be decomposed into a composite of el-
ementary forms. In Section 4 we present our term language for binding
bigraphs and the accompanying equational theory. We arrive at a theo-
rem which states soundness and compleness of the equational theory. We
present some examples of bigraphs and their corresponding normal forms in
Section 5 — we recommend that the reader refers to these examples from
time to time when reading the earlier more technical sections. We com-
ment on some related and further work in Section 6. Finally, Appendix A
contains a summary of the definitions of binding bigraphs. We have omit-
ted detailed proofs from this paper, they can be found in the companion
technical report [5].

AXIOMATIZING BINDING BIGRAPHS 3

server

secret

office

pc pda pda

Figure 2.1: A – a bigraph model of an office in a building

server

0
x

z

office

pc pda

1

x

secret

z

pda

Figure 2.2: B and C – bigraphs that compose to form A

2. Bigraphs by Example

We introduce the most basic terminology and properties for bigraphs, by
giving a small example of a bigraph. We refer the reader to Appendix A
for all formal definitions.

The bigraph A is bigraph model of an office containing a pc and two pdas.
The pc is linked (supposedly by some kind of network connection) to server
containing a secret located somewhere else. We say that A consists of roots

(dashed boxes), nodes (solid boxes), and links (lines). Each node has a
control written beside it. The control indicates the number and type of
ports for linkage on the node. Ports can be either free or binding — the
latter indicated by circular attachments.

Bigraphs can contain sites (sometimes called holes), and/or inner or outer
names. The bigraph B has two sites, numbered 0 and 1, and two inner
names, x located at site 0 and z global (i.e., not located). C has two outer
names, x located at its first root, and x global.

We can compose B and C by plugging the sites of B with the roots of C.
The bigraphs B and C compose to form A. We write A = B ◦C. Bigraph
A is said to be ground as it has no holes or inner names.

Binding bigraphs enforce a scope discipline on linkage connected to a
binding port: All peers (names or ports) linked to a binding port or located
outer name, must be nested within the node or root (see Definition 13).

Not all bigraphs are composable. B and C composes exactly, because C
has a root, outer name (local and global), for each corresponding site and
inner name (local and global) of B. The interfaces of a bigraph registers
this, and hence determines which bigraphs can be composed. We write B :
〈2, ({x}, ∅), {x, z}〉 → 〈2, (∅, ∅), ∅〉 and C : 〈0, (∅), ∅〉 → 〈2, ({x}, ∅), {x, z}〉.

4 T.C. DAMGAARD, L. BIRKEDAL

0 1

0. . .

Xn

n

Xn

. . .

m − 1. . .

Xp

p

Xp

m. . .

X0

0

X0

. . .

p. . .

Xn−1

n − 1

Xn−1

Figure 3.3: 1, join, and γm,n,(~X,~Z) (using the abbreviation p = m + n − 1)

We can also combine bigraphs by an associative tensor product (denoted
by ⊗), which works simply by juxtaposition of roots. For tensor product we
require only that both inner and outer names be disjoint.

Finally, in the following we will be particularly concerned with three classes
of bigraphs — prime bigraphs are those with only a single root, and only
local inner names. For discrete bigraphs all linkage upon global names is
one-one while name-discrete bigraphs, are those where all linkage upon all
names is one-one (refer to Definition 14 for the full definition of discreteness).

For more involved examples of bigraphical models including dynamics, we
refer the reader to the tech report [6].

3. Elementary Bigraphs and Normal Form

We start by defining placings corresponding closely to the placings defined
for pure bigraphs in [12]. We shall use placings to define the class of terms
for bigraphs that denote place graphs paired with identities on local names.

1 : ǫ → 1 a barren root,
join : 2 → 1 join two sites,

γ
m,n,(~X,~Z) : 〈m + n, ~X ~Z, { ~X} ⊎ {~Z}〉 → 〈m + n, ~Z ~X, { ~X} ⊎ {~Z}〉

transpose m with n places preserving names.

Note that 1 and join are defined exactly as for pure bigraphs, while γ
m,n,(~X,~Z)

lets a set of local inner names be linked to corresponding outer names, in
the only way allowed by the scope rule (see Definition 13).

We use π and ρ to range over permutations, placings generated by com-
position and tensor product from γ

m,n,(~X,~Z).

AXIOMATIZING BINDING BIGRAPHS 5

For Ii = 〈mi, ~Xi
B , { ~Xi

B} ⊎ Xi
F 〉 (i ∈ {0, 1}) we define

γI0,I1
def
= γ

m0,m1,(~X0
B

, ~X1
B

)
⊗ idX0

F
⊗ idX1

F
.

Using join we define the bigraph mergem that joins m sites:

Definition 1 (merge). For all m ≥ 0 we define mergem : m → 1 recursively,
by

merge0
def
= 1

mergem+1
def
= join(id1 ⊗ mergem).

Note that merge1 = id1 and thus merge2 = join.
A linking is a (pure) link graph X → Y that has no nodes. All linkings

can be expressed in terms of the following two kinds:

/x : x → ǫ closure,
y/X : X → y substitution x 7→ y, for all x ∈ X.

A closure closes a single link. For X = {x0, . . . , xk−1} and k > 0 we define
a multiple closure /X

def
= /x0 ⊗ · · · ⊗ /xk−1. For Y = {y0, . . . , yk−1}, k > 0,

and disjoint sets X0, . . . ,Xk−1 we define a multiple substition

~y/ ~X
def
= y0/X0 ⊗ · · · ⊗ yk−1/Xk−1.

Note that a substitution need not be surjective (i.e., we allow X = ∅),
thus the dual of closure – name introduction y : ǫ → y – is a substitution.
A renaming is a bijective (multiple) substitution, i.e., each Xi above is
a singleton. A wiring is a bigraph with zero width (and hence no local
names) generated by composition and tensor of /x and y/X.

We let ω range over wirings, σ range over (multiple) substitutions and
α and β range over renamings. Often we do not distinguish notationally
between a name and the singleton set containing the name. With this con-
vention ~y/~x is a renaming when ~y = y0, . . . , yk−1 and ~x = x0, . . . , xk−1, for
some k.

A simple concretion is a discrete prime which maps a set X of local
inner names severally to equally named global outer names.

pXq : (X) → 〈X〉 concretion.

Note that a special case of a simple concretion is id1 = p∅q.
An abstraction (X)− is a construction, defined on every prime P that

localizes a subset of the global names of P . For every prime
P : I → 〈(YB), Y 〉, let

(X)P : I → 〈(YB ⊎ X), Y 〉 abstraction on P ,

where X ⊆ Y \ YB .

6 T.C. DAMGAARD, L. BIRKEDAL

0

. . .

X

0

X

Figure 3.4: pXq

Note that the scope rule is necessarily respected since the inner face of P
is required to be local as P is prime. Abstractions are in some sense dual to
concretions, and the axioms concerning abstraction and concretion reflect
this (see axioms (B2) and (B3) in Table I)

Using abstraction we can express concretions in the sense of [9]: We define
a general concretion pY q

X : 〈1, (X⊎Y),X⊎Y 〉 → 〈1, (X),X ⊎Y 〉 in terms
of a simple concretion and abstraction as pY q

X def
= (X) pX⊎Y q. Towards

succinct statement of the normal form, we define pαq
def
= (α⊗id1)pXq (where

α : X →).
With the help of linkings we get local wirings — bigraphs that by

composition can change the linkage of local names. We define a local

renaming (for vectors of names ~y and ~x, s.t. |~y| = |~x|) by (~y)/(~x)
def
=

(~y)((~y/~x ⊗ id1)p{~x}q). We extend this notation to multiple substitutions

and define (~y)/(~X)
def
= (~y)((~y/ ~X ⊗ id1)pXq) (for X = { ~X}).

Just as plain substitutions can introduce idle global names, local substi-
tutions can introduce idle local names when their underlying global substi-
tution is not surjective (e.g., (y)/(∅)).

We let αloc and σloc range over local renamings and substitutions, respec-
tively. We shall need to take the preimage of a local substitution σloc of a
vector of namesets ~X . Formally:

Definition 2 (Preimage of a local wiring). Let σloc
u be the link map (which

is a function) of σloc. For a set of names X, define (σloc)−1(X) to be the

preimage (σloc
u)−1(X) and define (σloc)−1(~X) to be the vector of namesets

resulting from taking the preimage of σloc pointwise for each set in ~X.

We can generate all isomorphisms in the category of binding bigraphs using
permutations π, renamings α, and local renamings αloc(see [9, Proposition
9.2b] for the definition of isomorphism in the category of binding bigraphs):

Proposition 1. Every binding bigraph isomorphism, ι : 〈m, ~Z, {~Z} ⊎U〉 →

〈m, ~X, { ~X} ⊎ Y 〉 (of width m) may be expressed in the following form

ι = (π ⊗ α)(ν0 ⊗ · · · ⊗ νm−1 ⊗ idU)

where these requirements hold:

◦ m = | ~X | = |~Z|,

AXIOMATIZING BINDING BIGRAPHS 7

◦ α : U → Y ,

◦ ∀i ∈ m : νi = (~xi)/(~zi) for ~X = ({~x0}, . . . , {~xm−1}),

and ~Z = ({~z0}, . . . , {~zm−1}).

For a control K : b → f ∈ K, let ~y be a sequence of distinct names, and
~X a sequence of sets of distinct names, s.t. | ~X | = b and |~y| = f .
A binding ion K

~y(~X) : 〈1, (X),X〉 → 〈1, (∅), Y 〉 is a prime bigraph with

a single node of control K with free ports linked severally to global outer
names ~y, and each binding port i ∈ b linked to all local inner names in Xi.
Figure 3.5 shows a binding ion.

K
~y(~X) : (X) → 〈Y 〉 a binding ion

0

y0 . . . yf−1

K

0

X0. . .Xb−1

Figure 3.5: A binding ion

This definition of binding ion is a straightforward generalization of the
free discrete ion defined in [9, Chapter 11]. We can recapture the latter

by requiring every set in X to be a singleton. When ~X = ({x0}, . . . , {xb−1}),
we overload our notation and write K~y(~x) to mean a free discrete ion.

Definition 3. For any name-discrete prime P : I → 〈1, (X),X ⊎ Z〉 and
ion K

~y(~X), we define a free discrete molecule as

(K
~y(~X) ⊗ idZ)P : I → 〈1, (∅), {~y} ⊎ Z〉

Note that even though we use the more general binding ion in the definition
above, our definition of free discrete molecule is equal to the one given in [9,
Chapter 11], in the sense that it covers the same set of bigraphs.

As P in the above definition is discrete and prime it is easily seen that M
is also discrete and prime. In fact:

Proposition 2. A free discrete molecule is a name-discrete prime bigraph
with a single outermost node.

8 T.C. DAMGAARD, L. BIRKEDAL

This proposition relies on both name-discreteness and discreteness being
preserved by composition and tensor (Lemma 13). Vice versa, we have:

Proposition 3. Any free discrete prime bigraph with a single outermost
node is a free discrete molecule.

3.1 A Normal Form for Binding Bigraphs

In the following section we present our binding discrete normal form theo-
rem for graphs. This semantic theorem states that every binding bigraph
can be decomposed in certain ways. We shall use it as the basis for the
establishment of a corresponding syntactic definition of normal form for our
term language for binding bigraphs, which we introduce in Section 4.

We aim to base our normal form on a variant of discreteness, as in [12],
simply as this allows a clean separation between the constituent components
of a bigraph. Our main aim is to prove completeness for an equational
theory over a term language for binding bigraphs. To that end it will be
central to formulate an inductive property of expressions that characterizes
our chosen variant of discreteness syntactically. Alas, discreteness is not
preserved under composition with abstractions and concretions. Indeed,
consider a discrete bigraph D with width n. (

⊗

i<npXiq)D is not discrete,
if D is not name-discrete. Conversely, given a nondiscrete prime P : I →
〈(X),X ⊎ Y 〉, (Y)P : I → (X ⊎ Y) is discrete. Hence, we turn to name-
discreteness.

Recall that a bigraph is name-discrete (Definition 14) if every free link is
an outer name and has exactly one point, and every bound link is either
an edge, or (if it is an outer name) has exactly one point. This is a simple
specialization of the discreteness property. As a consequence, it is easy
to verify that both abstraction and composition with concretions preserve
both name-discreteness and non-name-discreteness. Name-discreteness still
allows arbitrary linking upon bound edges, and exactly for that reason, we
have chosen to take the binding ion (as defined above) as a constant in
our term language. Syntactically, this allows us to restrict the usage of
substitutions to define a simple inductive property that characterizes name-
discreteness.

Theorem 1 (Semantic binding discrete normal form).

(1) Any free discrete molecule M : I → 〈1, {~y} ⊎ Z〉 can be expressed as
(

K
~y(~X) ⊗ idZ

)

P

where P : I → 〈1, ({ ~X}), { ~X} ⊎ Z〉 is a name-discrete prime.

This expression is unique up to renaming of the local names on the
innerface of the ion, and (correspondingly) on the outer face of prime
P . Hence, any other such expression for M takes the form

(

K
~y(~X′)

⊗ idZ

)

P ′

AXIOMATIZING BINDING BIGRAPHS 9

where the following requirements hold:

◦ there exists a local renaming αloc : ({ ~X ′}) → ({ ~X}) s.t.
K

~y(~X)α
loc = K

~y(~X′)
, and

◦ P = (αloc ⊗ idZ)P ′.

(2) Any name-discrete prime P : I → 〈1, (YB), Y 〉 may be expressed as

(YB)
(

mergen+k ⊗idY

)

(pα0q ⊗ · · · ⊗ pαn−1q ⊗ M0 ⊗ · · · ⊗ Mk−1) π

where every Mi : Ji → 〈Y M
i 〉 is a free discrete molecule, and for re-

namings αi : Xi → Y C
i , we have Y = (

⊎

i∈n Y C
i) ⊎

⊎

Y M
i .

The expression for P is unique up to reordering of the concretions
and molecules, and the ordering of the sites inside the molecules; the
permutation changes accordingly to preserve the innerface. Formally,
any other such expression for P takes the form

(YB)
(

mergen+k ⊗idY

) (

pα′
0q ⊗ · · · ⊗ pα′

n−1q ⊗ M ′
0 ⊗ · · · ⊗ M ′

k−1

)

π′

where the following requirements hold:

◦ There exist permutations ρ, ρi (i ∈ k), ρ′, s.t.

– pα′
iq = pαρ(i)q

– M ′
i = Mρ(i)ρi,

– (id(X′

0) ⊗ · · · ⊗ id(X′

n−1) ⊗ ρ0 ⊗ · · · ⊗ ρk−1)π
′ = ρ′π.

◦ Furthermore, let ~l denote the vector of inner widths of the product
((α0 ⊗ id1)pX0q ⊗ . . . ⊗ (αn−1 ⊗ id1)pXn−1q ⊗ M0 ⊗ · · · ⊗ Mk−1),

let ~X ′ = (X ′
0, . . . ,X

′
k−1), and let ~X = (X0, . . . ,Xn−1).

Then ρ′ is determined uniquely by ρ, ~l, ~X, and ~X ′ as ρ′ = ρ~l, ~X′ ~X

as defined in Lemma 2.

(3) Any name-discrete bigraph D (of outer width n) can be expressed as

(P0 ⊗ · · · ⊗ Pn−1)π ⊗ α

where every Pi is a name-discrete prime, α is a renaming, and π is a
permutation.

This expression is unique up to reordering of the sites in the primes;
the permutation changes accordingly to preserve the innerface. Hence,
any other such expression of D takes the form

(

P ′
0 ⊗ · · · ⊗ P ′

n−1

)

π′ ⊗ α

where there exists permutations ρi, (i ∈ n), s.t. P ′
i = Piρi,

and (ρ0 ⊗ · · · ⊗ ρn−1)π
′ = π.

10 T.C. DAMGAARD, L. BIRKEDAL

(4) Any bigraph G : I → 〈n, ~YB , { ~YB} ⊎ YF 〉 can be expressed as

(

⊗

i<n

(~yi)/(~Xi) ⊗ ω

)

D

where D : I → 〈n, ~X,X ⊎Z〉 is name-discrete, ω : Z → YF is a wiring,

and
⊗

i<n(~yi)/(~Xi) : (~X) → (~YB) is a local substitution of width n on
the bound names of D.

The expression is unique up to (local and global) renamings on the
innerface of the wiring and (correspondingly) on the outerface of D.
Hence, any other such expression of G takes the form

(

⊗

i<n

(~yi)/(~X ′
i) ⊗ ω′

)

D′

where there exists a renaming α s.t. ω′ = ωα, and n local renam-
ings αloc

i : (~X ′
i) → (~Xi), s.t. (

⊗

i<n(~yi)/(~Xi))
⊗

i<n αloc
i =

(
⊗

i<n(~yi)/(~X ′
i)), and

(
⊗

i<n αloc
i ⊗ α

)

D′ = D.

Furthermore, for every class of expressions the expression given is well de-
fined and generates only bigraphs of the appropriate type.

See [5] for a proof of the theorem. The proof is simply a detailed analysis
of the structure of possible decompositions of binding bigraphs.

4. Binding Bigraph Expressions and Axioms

The set of binding bigraph expressions is defined as the smallest set
of expressions built by composition, tensor product, and abstraction (on
primes) from identities and the constants we have just introduced:

1 join γ
m0,m1,(~X0, ~X1)

/x y/X pXq K
~y(~X)

Each expression (implicitly) has two interfaces of the form 〈m, ~X, Y 〉 which
determine when tensor product, composition, and abstraction are well de-
fined (according to the requirements stated formally in Appendix A). The
interface and the bigraph an expression denotes can be determined by in-
duction. As usual, we write � E = F to mean that the expression E = F is
valid; and ⊢ E = F if the equation is provable.

In [12] Milner stated and proved a set of axioms complete for pure bigraph
expressions. We extend that result and prove the set of axioms in Table I
complete for binding bigraph expressions. Every pure bigraph expression as
defined by Milner [12] trivially corresponds to a binding bigraph expression
as defined above. Our axiomatic theory is a conservative extension of Mil-
ner’s in the sense that any two pure bigraph expressions are provably equal

AXIOMATIZING BINDING BIGRAPHS 11

in Milner’s theory iff the corresponding expressions are provably equal in our
theory. (Formally, this is easy to prove using soundness and completeness
of the two theories and the fact that the embeddings of pure bigraphs into
binding bigraphs and pure bigraph expressions into binding bigraph expres-
sions are both full and faithful). We proceed by defining and proving the
theory complete for increasingly larger classes of expressions.

Note that as tensor product is defined only when name sets of the interfaces
are disjoint, and as abstraction is defined only on prime bigraphs with the
abstracted names in the outer face, we only require the equations to hold
when both sides are defined.

4.1 Preliminaries

Lemma 1 (Wiring commutes with all binding bigraph expressions). For all
bigraph expressions G and for all wirings ω ⊢ G ⊗ ω = ω ⊗ G.

By essentially iterating axiom C9, we can push a permutation “through” a
product of primes, permuting the order in which they appear in the product,
and producing a permutation that reorders the sites in the primes to preserve
the inner face.

Lemma 2 (Push-through lemma). For n primes Pi

Pi : 〈mi, ~Xi, { ~Xi}〉 → 〈1, (Y B
i), Yi〉,

and permutation π, there exists a permutation π
~m, ~X

, which depends solely

on π, ~m, and ~X = (~X0, . . . , ~Xn−1), s.t.,

⊢ π ◦ (P0 ⊗ · · · ⊗ Pn−1) = (Pπ(0) ⊗ · · · ⊗ Pπ(n−1)) ◦ π
~m, ~X

.

4.2 PlaceL expressions

Let PlaceL expressions be all expressions in the term language generated by
◦, and ⊗ from bmerge

m, ~X
(defined below) and γI,J . Thus, PlaceL consists

of all expressions denoting place graphs paired with identities on local names.
We shall start by proving that the theory is complete for PlaceL expressions.

To that end, we extend the place merging expression join to local inter-
faces.

Definition 4 (binding join). For sets of names X and Y let bjoin(X,Y), the
binding join bigraph, be defined as

bjoin(X,Y)
def
= (X ⊎ Y)((join ⊗idX⊎Y) ◦ (pXq ⊗ pY q)).

We also define an iterated version

12 T.C. DAMGAARD, L. BIRKEDAL

Categorical axioms

(C1) A idI = A = idJ A (A : I → J)
(C2) A(BC) = (AB)C
(C3) A ⊗ idǫ = A = idǫ ⊗ A
(C4) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C
(C5) idI ⊗ idJ = idI⊗J

(C6) (A1 ⊗ B1)(A0 ⊗ B0) = (A1 ◦ A0) ⊗ (B1 ◦ B0)
(C7) γI,ǫ = idI

(C8) γJ,I γI,J = idI⊗J

(C9) γI,K(A ⊗ B) = (B ⊗ A)γH,J (A : H → I,B : J → K)

Link axioms

(L1) x/x = idx

(L2) /y ◦ y/x = /x
(L3) /y ◦ y = idǫ

(L4) z/(Y ⊎ y)(idY ⊗ y/X) = z/(Y ⊎ X)

Place axioms

(P1) join(1 ⊗ id1) = id1

(P2) join(join ⊗ id1) = join(id1 ⊗ join)
(P3) join γ1,1,(∅,∅) = join

Binding axioms

(B1) (∅)P = P
(B2) (Y)pY q = id(Y)

(B3) (pXq
Z ⊗ idY)(X)P = P (P : I → 〈1, (Z), Z ⊎ X ⊎ Y 〉

(B4) (((Y)(P)) ⊗ idX)G = (Y)(P ⊗ idX)G
(B5) (X ⊎ Y)P = (X)((Y)P)

Ion axioms

(N1) (id1 ⊗ α)K
~y(~X) = K

α(~y)(~X)

(N2) K
~y(~X)σ

loc = K
~y((σloc)−1(~X))

Table I: Axioms for binding bigraphs

AXIOMATIZING BINDING BIGRAPHS 13

Definition 5 (binding merge). For all m ≥ 0 we define bmerge
m, ~X

recur-

sively, by

bmerge0,()
def
= 1

bmerge
m+1, ~XY

def
= bjoin({ ~X},Y) ◦ (bmerge

m, ~X
⊗ idY)

Binding join and merge behave similarly as their underlying place expres-
sions when composed with permutations or themselves (refer the place graph
axioms of Table I), though, as they have (local) names on their faces their
interplay with names is not as simple. The lemma below reflects this, and
also states that merging a product of binding merges yields a binding merge.

Lemma 3.

⊢ bjoin(X1,X0) ◦ γ1,1,(X0,X1) = bjoin(X0,X1),

⊢ bmerge
m,π(~X) ◦ π = bmerge

m, ~X
,

⊢ bmerge
k, ~X

◦ (
⊗

i<k bmerge
mi, ~Xi

) = bmerge
m, ~X

,

where in the last equation m =
∑

i<k mi and
~X = ~X0 . . . ~Xk−1.

Using binding merge, we define and prove sufficient a normal form for
PlaceL expressions.

Lemma 4 (Normal form for PlaceL expressions). For every
PlaceL expression E

⊢ E = (bmerge
m0, ~X0

⊗ · · · ⊗ bmerge
mk−1, ~Xk−1

) ◦ π

for some k ≥ 0 and permutation expression π s.t. the composition is well
defined.

With the help of Lemma 3 the proof is simple by induction on the structure
of expressions.

Note that in a strict symmetric monoidal category the categorical axioms
are known to be complete for ◦ and ⊗ of the symmetries γI,J — hence the
theory is complete for permutations.

Full completeness for PlaceL expressions follows with the help of the
uniqueness properties stated in Theorem 1. These yield a number of equa-
tions which are provable within the theory.

Proposition 4 (Completeness for PlaceL expressions). If
⊢ E =

⊗

i<k bmerge
mi, ~Xi

◦ π and ⊢ F =
⊗

j<l bmerge
nj , ~Yj

◦π′ and |= E = F ,

then ⊢ E = F .

14 T.C. DAMGAARD, L. BIRKEDAL

4.3 LinkG expressions

We now consider the class of global link expressions, those bigraph expres-
sions generated by composition and tensor of closure and substitution. We
will refer to this collection of expressions as LinkG. Our term language for
binding bigraphs has the same constructs for linking as the language used
by Milner for pure bigraphs [12]. Since we also have the exact same axioms
for global link expressions, it is easily seen that the proof that the axiomatic
theory for the binding bigraph term language is complete for global link
expressions is entirely the same.

Proposition 5 (Link completeness). The theory is complete for link expres-
sions.

4.4 Linear bigraph expressions

We now define an important kind bigraph expressions – linear expressions,
which we shall prove to be a syntactic analogue to name-discrete bigraphs,
in the sense that any name-discrete bigraph has a linear expression.

Definition 6 (Linearity). A binding bigraph expression is linear iff it con-
tains only linkings of the form y/x.

In other words, in linear expressions all substitutions are renamings, and
there are no closures. This is an inductive property with respect to the term
language, which we will utilize to full effect in the following sections.

We start by establishing some basic properties of linear expressions. The
proofs of the following lemmas are all by induction on the structure of ex-
pressions.

Lemma 5. If E is linear expression, then ⊢ E = E′ ⊗α, where E′ is linear
and has local innerface.

Lemma 6. If E : 〈m, ~U, {~U}〉 → 〈n, ~Y , {~Y }⊎V 〉 is a linear expression with
local innerface, then

⊢ E ◦
⊗

i<m

(~ui)/(~Zi) =

((

⊗

i<n

(~yi)/(~Xi)

)

⊗ idV

)

◦ E′,

for some ~y, ~X, and E′ where E′ is linear with local innerface.

We shall use the following proposition to show completeness for ion-free
expressions in the following section. Importantly, it also constitutes a step
towards a syntactic normal form for bigraph expressions, analogous to the
semantic normal form we established in Theorem 1, item 4.

Proposition 6 (Underlying linear expression). For any expression G de-
noting a bigraph of outer width n, there exists a wiring ω, a linear expression
E, and a local renaming

⊗

i<n(~yi)/(~Xi), s.t.,

⊢ G = (
⊗

i<n

(~yi)/(~Xi) ⊗ ω) ◦ E.

AXIOMATIZING BINDING BIGRAPHS 15

The proof is by structural induction on G, using the lemmas above [5].

4.5 Ion-free expressions

Let us now consider ion-free expressions – all expressions in our term lan-
guage, that does not contain ions (K

~y(~X)). We proceed as above, by showing

that ion-free expressions can be decomposed into simpler expressions.

Lemma 7. If E = E1 ◦ E2 or E = E1 ⊗ E2 is linear, ion-free, and with
local inner and outer face, then E1 and E2 are also linear and ion-free with
local inner and outer face.

Lemma 8. If E is linear and ion-free of width n with local inner and outer
face, then ⊢ E =

⊗

i<n(~yi)/(~xi) ◦ GP , where GP ∈ PlaceL.

Lemma 9. If E is linear and ion-free, then there exists concretions, E′,
and a renaming α s.t. ⊢ E = (

⊗

i<npXiq
Zi ◦ E′) ⊗ α, with E′ linear and

ion-free and local inner and outer face.

With the help of the above lemmas we can now establish a normal form
for ion-free expressions.

Lemma 10 (A normal form for ion-free expresssions). For all ion-free ex-
pressions G of width n

⊢ G = ω ⊗

(

⊗

i<n

(Yi) ((ρ ⊗ id1) ◦ pXiq)

)

◦ GP .

where GP ∈ PlaceL.

Completeness for ion-free expressions follows easily.

Corollary 1 (The theory is complete for ion-free expressions).

4.6 Syntactic Normal Form

Corresponding to the four classes of normal forms in Theorem 1 we define
four classes of syntactic normal forms for binding bigraph expressions:

Definition 7 (Syntactic binding discrete normal form (bdnf)).

mdnf M ::= (K
~y(~X) ⊗ idZ)P

pdnf P ::= (X)
(

mergen+k ⊗idY

)

(pα0q ⊗ · · · ⊗ pαn−1q ⊗ M0 ⊗ · · · ⊗ Mk−1) π
ddnf D ::= (P0 ⊗ · · · ⊗ Pn−1)π ⊗ α

bdnf B ::= (
⊗

i<n(~yi)/(~Xi) ⊗ ω)D.

The proofs of the following lemmas go by induction on the number of ions.
As we have established completeness for ion-free expressions, we have the
base case.

16 T.C. DAMGAARD, L. BIRKEDAL

Lemma 11 (All bdnf forms are closed under composition with isos).

We also need that ddnf expressions are closed under composition.

Lemma 12 (ddnf is closed under composition). For all composable ddnfs
C,D, there exists a ddnf D′, s.t. ⊢ D ◦ C = D′.

We now state the correspondence between our semantic normal form (The-
orem 1) and the syntactic normal form above. Moreover, we state that
linearity is, in fact, a syntactic correspondent to name-discreteness (item 3
in the following proposition):

Proposition 7 (provable normal forms). Let E be a linear expression, and
G any expression.

(1) If E denotes a free discrete molecule, then ⊢ E = M for some mdnf.

(2) If E denotes a name-discrete prime, then ⊢ E = P for some pdnf P .

(3) ⊢ E = D for some ddnf D.

(4) ⊢ G = B for some bdnf B.

We are now able to state the formal completeness proposition, using our
results for linear expressions to bridge the gap to the full binding bigraph
term language.

As we have laboured to establish a correspondence between each level of
bdnf form and each level of the semantic normal form, in the proofs we are
able to proceed by case analysis on the form of the bigraph the expression
denotes, and then apply the uniqueness properties spelled out in Theorem 1
to yield a number of equations that are provable within our theory. We refer
to the companion technical report [5] for more details on the proofs.

Proposition 8 (Linear completeness). If E and E′ are linear expressions
and E = E′, then ⊢ E = E′.

Theorem 2 (Soundness and Completeness). For all binding bigraph expres-
sions E and F , � E = F iff ⊢ E = F .

5. Term Language and Normal Forms – by Example

We shall use our examples from Section 2 to give a few examples of the term
language and the syntactic binding discrete normal form.

Using a modicum amount of shorthand, an expression for C is
((x)(secretx ◦ 1)) ⊗ pdaz ◦ 1, while B can be expressed for example as

(id2 ⊗ /{e0, e1}) ◦ ((servere0({x})) ⊗

(id〈1,e1〉 ⊗ /{f0, f1})(office ◦ 1 ⊗ id{e1,f0,f1})

(merge3 ⊗id{e1,f0,f1})(pce1 ◦ 1 ⊗ pdaf0 ◦ 1 ⊗ pdaf1 ◦ 1))).

Hence, A can be expressed, simply by putting a ◦ between the two expres-
sions for B and C.

AXIOMATIZING BINDING BIGRAPHS 17

On the other hand, giving an expression on bdnf for either bigraph, re-
quires us to break it down into molecules, prime parts and not use non-linear
linkage except at the topmost level. As an example, we give an expression
on normal form for B:

(id2 ⊗ /{e0, e1} ⊗ /{f0, f1}) ◦

((∅)(merge1 ⊗ide0)(servere0({x}) ◦ (x)(merge1 ⊗idx)(pxq)) ⊗

(∅)(merge1 ⊗id{e1,f0,f1})(office ◦

(∅)(merge3 ⊗id{e1,f0,f1})(pce1 ◦ 1 ⊗ pdaf0 ◦ 1 ⊗ pdaf1 ◦ 1))

⊗ idǫ).

Here we do not show identity permutations, and we write 1 instead of
pdnf for 1 (which is (∅)(merge0 ⊗ idǫ)).

6. Related and further work

Bigraphical reactive systems are related to graph transformation systems
using the double pushout construction [7] and, recently, it has also been
investigated how to derive bisimulation congruences in the double pushout
approach to graph rewriting [8].

Recent work on spatial logics [4] for pure bigraphs utilizes the axiomati-
zation of pure bigraphs by Milner [12]. An obvious line of further work is
to utilize the algebraic theory presented here for binding bigraphs to extend
the spatial logics to binding.

As mentioned in the introduction, jointly with the other members of our
Bigraphical Programming Languages group, we are are currently working
on an implementation of bigraphical reactive systems.

Further work is needed to relate tools based on graph rewriting to our
work on Bigraphical Programming Languages.

Currently our experimental implementation of bigraphical reactive sys-
tems represents bigraphs internally by normal form bigraphical expressions
that denote bigraphs. We have also developed a proposal for a surface
language which users can use to define bigraphical reactive systems — ex-
pressions of the surface language denote binding bigraphs and can thus be
transformed to binding discrete normal forms: the proofs of the normal form
theorems of this paper are constructive in nature and thus define algorithms
than can be used to transform arbitrary bigraph expressions into normal
form.

The core problem of implementing the dynamics of bigraphical reactive
systems is the matching problem, that is, to determine for a given bigraph
and reaction rule whether and how the reaction rule can be applied to rewrite
the bigraph.

The abstract semantic definition of matching, as defined in the theory of
bigraphs [9], is roughly as follows (omitting many details): Given a reaction
rule with redex R and reactum R′ (with R and R′ both bigraphs), and a

18 T.C. DAMGAARD, L. BIRKEDAL

bigraph A (the agent to be rewritten), if A = C ◦ R ◦ d, then it can be
rewritten to C ◦ R′ ◦ d. Here ◦ denotes composition of bigraphs. In other
words, if the reaction rule matches A, in the sense that A can be decomposed
into a context C, redex R and a parameter d, then A can be rewritten.

Phrased in terms of binding bigraph expressions, the decision problem for
matching is then roughly the following. Given binding bigraph expressions
R, A, C, and d, determine whether � A = C ◦R ◦ d holds. We have worked
out an inductive characterization of when � A = C◦R◦d holds, by induction
on the normal forms for A and R (the input to a matching algorithm). It is
a precise characterization in the sense that it is both sound and complete.
This provides a detailed analysis of the matching problem, and paves the
way for developing and proving correct an actual matching algorithm (which,
given A and R, must find a C and d such that � A = C ◦ R ◦ d holds). We
will report on our work on the inductive characterization and on an actual
matching algorithm in a subsequent paper.

We intend to use the implementation of bigraphical reactive systems to
evaluate also in practice how well bigraphical models of ubiquitous sys-
tems [3] work.

Acknowledgements

We are grateful for useful discussions of this work with all members of the
BPL group at the IT University of Copenhagen, in particular Arne Glenstrup
and Søren Debois; and with Robin Milner.

Appendix A. Definition of Binding Bigraphs

We recall the definition of binding bigraphs [9].

Definition 8 (binding signature). A binding signature K is a set of con-
trols. For each K ∈ K it provides a pair of finite ordinals: the binding
arity arb(K) = h and the free arity arf (K) = k. We write ar(K) =
arb(K) + arf (K).

Definition 9 (binding interface). A binding interface I = 〈m, loc,X〉,
consists of a width m, a finite set of names X, and a locality map loc :
X → m ⊎ ⊥, which associates some of the names in X with a location in
m; if loc(x) = i ∈ m, we say x is located at i or local to i. When
loc(x) = ⊥ we say x is global.

For an interface I = 〈m, loc,X〉 we shall typically represent the locality

map by a vector of disjoint subsets ~X = (X0, . . . ,Xm−1), where Xi is the
set of names local to i ∈ m. If I is global, meaning that all names in I are
global, then we may write I simply as 〈m,X〉; just m, if X = ∅; or just X,
if m = 0.

We call I prime if m = 1. In that case, we shall sometimes write I as
〈(X), Y 〉; just (X), if it is local; or just 〈Y 〉, if it is global.

AXIOMATIZING BINDING BIGRAPHS 19

We use ǫ to denote the interface 〈0, (), ∅〉.
A binding bigraph will have two binding interfaces and will be a pairing of

a place graph, and a link graph following a structural requirement, the
scope rule (see Definition 13).

We start by calling to mind the definitions of place graphs and link graphs.

Definition 10 (place graph). A (concrete) place graph over signature K
G = (V, ctrl , prnt) : m → n has an inner width m and an outer width n,
both finite ordinals; a finite set V of nodes with a control map ctrl : V → K;
and a parent map prnt : m⊎ V → V ⊎n. The parent map is acyclic, i.e.,
prntk(v) 6= v, for all k > 0 and v ∈ V .

The parent map prnt represents a forest of n unordered trees. The widths
m and n of G : m → n index G’s sites 0, . . . ,m − 1 and roots 0, . . . , n − 1,
respectively. We use ǫ to denote the width 0. A place graph with inner
width 0 is called an agent.

Place graphs are composed as follows. Let Gi = (Vi, ctrl i, prnt i) : mi →
mi+1 (i ∈ {0, 1}) be place graphs with V0 ∩ V1 = ∅; then G1 ◦ G0

def
=

(V, ctrl , prnt), where V = V0 ⊎ V1, ctrl = ctrl0 ⊎ ctrl1, and prnt = (idV0 ⊎
prnt1) ◦ (prnt0 ⊎idV1).

The identity place graph at m is idm
def
= (∅, ∅, idm) : m → m.

The tensor product I ⊗ J of two interfaces I = m and J = n is simply
m+n, and the tensor product of two place graphs F : k → l and G : m → n
with disjoint node sets is F ⊗ G : k + m → l + n. It consists of placing the
two forests side-by-side (see [9, Definition 7.5] for a formal definition). Note
that idǫ = id0 is the unit for ⊗, in the sense that F ⊗ idǫ = idǫ ⊗ F = F , for
all place graphs F . Thus, an iterated tensor product F0 ⊗ · · · ⊗Fk−1 equals
idǫ in case k = 0.

Two concrete place graphs G0 and G1 are said to be support equiva-

lent, G0 ≏ G1, if they differ only by a bijection between their node sets. An
abstract place graph is an ≏-equivalence class of concrete place graphs.
Composition and identity of abstract place graphs is given by composition
and identity of concrete place graphs, and this provides a well-defined cate-

gory of place graphs with interfaces as objects and abstract place graphs
as morphisms. The induced tensor product on abstract place graphs, de-
fined by [F]≏⊗ [G]≏

def
= [F ⊗G]≏, makes it into a strict symmetric monoidal

category.

Definition 11 (link graph). A (concrete) link graph G over a signature
K, is a tuple (V,E, ctrl , link) : X → Y with finite sets of nodes V , edges E,
inner names X, and outer names Y . As place graphs it has a control
map ctrl : V → K. The function link : X ⊎ P → E ⊎ Y maps points, i.e.,
inner names X and ports P =

∑

v∈V ar(ctrl V) of G to links, i.e., outer
names Y and edges E.

We call a link idle if it has no preimage under link . An outer name is an
open link, and an edge is a closed link. A point is called open if its link

20 T.C. DAMGAARD, L. BIRKEDAL

is open, otherwise closed. Further, we call two distinct points on the same
link peers.

The composition of two link graphs Gi = (Vi, Ei, ctrl i, link i) : Xi → Xi+1

(i ∈ {0, 1}) is defined when V0 ∩ V1 = ∅ and E0 ∩ E1 = ∅; and is then
G1 ◦ G0

def
= (V,E, ctrl , link) : X0 → X2; where V = V0 ⊎ V1, E = E0 ⊎ E1,

ctrl = ctrl0 ⊎ ctrl1, and link = (idE0 ⊎ link1) ◦ (link0 ⊎ idP1).
The identity link graph at X is idX

def
= (∅, ∅, ∅, idX) : X → X.

The tensor product of two link graph interfaces X and Y is the disjoint
union, X⊎Y , and is defined only when X and Y are disjoint. Tensor product
of link graphs Gi = (Vi, Ei, ctrl i, link i) : Xi → Yi is the disjoint union of the
underlying constituents G0 ⊗ G1

def
= (V0 ⊎ V1, E0 ⊎ E1, ctrl 0 ⊎ ctrl1,

link0 ⊎ link1) : X0 ⊗ X1 → Y0 ⊗ Y1, and is defined only when the interfaces
are defined.

Definition 12 (binding bigraph). A (concrete) binding bigraph G =
(V,E, ctrl , GP, GL) : I → J over a signature K has an inner interface
(or inner face) I = 〈m, locI ,X〉 and an outer interface (or outer face)
J = 〈n, locJ , Y 〉. Here V , E and ctrl are finite sets of nodes, edges, and a
control map ctrl : V → K, exactly as for link graphs.

The fourth component GP = (V, ctrl , prnt) : m → n is a place graph, while
the fifth GL = (V,E, ctrl , link) : X → Y is a link graph.

We require that G adheres to the scope rule below.

Definition 13 (scope rule). Let the binders of G be the binding ports of
nodes in V and the local names of its outer face J .

If p is a binder located at a node or root w, then for all peers p′ of p,
loc(p′) = w′ must imply w′ = prntk

GP(w), for some k > 0.

We say that a link is bound if it contains a binder, otherwise free. As
usual, we extend this terminology to the points in the link. A binding
bigraph G : I → J is said to be free if its outer face J is global, i.e., the
image of locJ is ⊥.

A binding bigraph G is given by its underlying place GP and link graph
GL and its binding interfaces I and J . We write G = 〈GP, GL〉 : I → J .
We shall sometimes use a variant of the 5-tuple notation where we inline
the components unique to the place graph and link graph components, i.e.,
G = (V,E, ctrl , prnt , link) : I → J .

We define a notation for the underlying set of vectors of names: Given a
vector of disjoint name sets ~Y , {~Y } denotes the disjoint union of the sets in
the vector. Composition and tensor product of concrete binding bigraphs
Gi = 〈GP

i , GL
i 〉 : Ii → Ji are given by composition and tensor product of

their underlying place and link graphs, and by the tensor product of binding
interfaces. We have only to explain the latter: Tensor product of binding
interfaces Ii = 〈mi, ~Xi,Xi〉 is I0 ⊗ I1

def
= 〈m0 + m1, ~X0

~X1, { ~X0} ⊎ { ~X1}〉
(letting juxtaposition denote vector concatenation), and is defined when the
name sets are disjoint. Hence, if the bigraphs above have disjoint node and
edge sets, G1 ◦G0

def
= 〈GP

1 ◦GP
0 , GL

1 ◦ GL
0 〉 : I0 → J1 is defined if I1 = J0;

AXIOMATIZING BINDING BIGRAPHS 21

and G1 ⊗ G0
def
= 〈GP

1 ⊗ GP
0 , GL

1 ⊗ GL
0 〉 : I0 ⊗ I1 → J0 ⊗ J1 if the tensor

products of the interfaces are defined. (See [9, Chapter 11] for more details.)
The identity for composition is given by a pairing of the identities for

composition for place graphs and link graphs. If I = 〈m, loc,X〉 then
idI

def
= 〈idm, idX〉 : I → I.

We shall use the following notation for iterated tensor product:
⊗

i<n Pi = P0 ⊗ P1 ⊗ · · · ⊗ Pn−1. The identity for tensor is idǫ; thus, an
iterated tensor product P0⊗. . .⊗Pn−1 equals idǫ in case n = 0. Composition
binds tighter than tensor product, and abstraction (Y)P and

⊗

binds as
far right as possible.

We say that two concrete binding bigraphs G0 and G1 are lean-support

equivalent, denoted G0 ≎ G1 iff they differ only by a bijection between
their nodes and their non-idle edges; idle edges are disregarded entirely.

Abstract binding bigraphs are ≎-equivalence classes of concrete bind-
ing bigraphs. Composition, tensor and identity of abstract binding bigraphs
are given by composition, tensor and identity of the underlying concrete
bigraphs. Taking interfaces as objects and abstract binding bigraphs as
morphisms we have a category of binding bigraphs. Finally, a ground

bigraph is a bigraph with inner face ǫ. We shall also refer to such a bigraph
as an agent. A bigraph G : I → J is called prime, if I is local and J is
prime.

We shall need to consider and distinguish several forms of discreteness,
which we define below.

Definition 14 (Variants of discreteness).

◦ We say that a bigraph is discrete iff every free link is an outer name
and has exactly one point.

◦ A bigraph is name discrete iff it is discrete and every bound link is
either an edge, or (if it is an outer name) has exactly one point.

Note that name-discrete implies discrete. Name-discreteness is defined
to impose exactly the same level of constraints on local and global linkage
upon names. We utilize this in the normal form we define. Discreteness and
name-discreteness share several nice properties.

Lemma 13. If A and B are discrete, then A ⊗ B, (Y)A, and AB are also
discrete. The same holds for name-discrete bigraphs A and B.

References

[1] Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., and Niss, H. 2006.
Bigraphical Models of Context-aware Systems. In In Proceedings of FOSSACS
2006.

[2] Birkedal, Lars. 2004. Bigraphical Programming Languages—A LaCoMoCo
Research Project. In Second UK UbiNet Workshop, Cambridge.

[3] Birkedal, Lars, Debois, Søren, Elsborg, Ebbe, Hildebrandt, Thomas,

and Niss, Henning. 2005. Bigraphical Models of Context-aware Systems.
Tech. Report TR–2005–74, IT University of Copenhagen, Rued Langgards Vej 7,
DK-2300 Copenhagen V.

22 T.C. DAMGAARD, L. BIRKEDAL

[4] Conforti, G., Macedonio, D., and Sassone, V. 2005. Spatial Logics for
Bigraphs. In Proc. of International Colloquium on Automata, Languages and
Programming.

[5] Damgaard, T.C. and Birkedal, L. 2005. Axiomatization of Binding Bigraphs
(Revised). Tech. Report TR–2005–71, IT University of Copenhagen.

[6] Debois, S. and Damgaard, T. C. 2005. Bigraphs by Example. Tech. Report
TR–2005–61, The IT University of Copenhagen.

[7] Ehrig, H. 1979. Introduction to the theory of graph grammars. In Graph
Grammars and their application to Computer Science and Biology , Number 73
in Lecture Notes in Computer Science. Springer-Verlag, 1–69.

[8] Ehrig, H. and König, B. 2004. Deriving Bisimulation congruences in the DPO
approach to graph rewriting. In Foundations of Software Science and Computa-
tion Structures, Volume 2987 of Lecture Notes in Computer Science. Springer-
Verlag.

[9] Høgh Jensen, Ole and Milner, Robin. 2004. Bigraphs and mobile processes
(revised). Tech. Report 580, University of Cambridge.

[10] Jensen, O.H. 2006. Mobile Processes in Bigraphs (Forthcoming). PhD thesis,
Univ. of Aalborg.

[11] Leifer, James J. and Milner, Robin. 2004. Transition systems, link graphs
and Petri nets. Tech. Report 598, University of Cambridge.

[12] Milner, Robin. 2005. Axioms for bigraphical structure. Mathematical Struc-
tures in Computer Science 15, 06 (December), 1005–1032.

[13] Milner, Robin. 2005. Pure bigraphs. Tech. Report 614, University of Cam-
bridge.

