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Axiomatizing Binding Bigraphs (revised)

Troels Christoffer Damgaard
Lars Birkedal



Abstract

We axiomatize the static congruence relation for binding bigraphs and prove that the generated theory is complete.
In doing so, we also define a normal form for binding bigraphs, and prove that it is unique up to certain isomorphisms.

Our work builds on Milner's axioms for pure bigraphs. We have extended the set of axioms with 5 new axioms
concerned with binding. Moreover, we have altered Milner’s axioms for ions, because ions in binding bigraphs have
names on both their inner and outer face. The remaining axioms from Milner’s axiomatization are transfered straight-

forwardly.



Preliminary Remarks

We assume familiarity with pure and binding bigraphs as described in [HM04] and with Milner’s axiomatization of
pure bigraphs [Mil04].

Acknowledgements We thank all members of the BPL group at the IT University of Copenhagen for enthusiastic
support during the work on this report.



Chapter 1

Introduction

We aim to extend the axiomatization of pure bigraphs given in [Mil04] to binding bigraphs as defined in [HMO04,
Chapter 11]. In other words we wish to specify a sufficient set of axiomatic equalities s.t. all valid equations between
between (binding) bigraph expressions are provable in the generated theory.

In Chapter 2 we define a set of elementary bigraphs, which — considered as expressions — will serve as the set of
expression constants. In choosing this set, we elect to simply extend the elementary forms for pure bigraphs with a
simple variant ofconcretion and to take a slightly more complex variant of finee discrete iorallowing multiple
local inner names to be bound to the same binding port. Furthermore, we extapdigraphs trivially, in order to
make them able to swap sites with local names. The set of expressions in the binding bigraph term language consist
of terms built by composition, identities, tensor product, ahdtraction from this set of constants.

We have adjusted the ion-construct because we wish to treat bound and global linkage in as much the same way,
as possible. In particular, the adjustment allows us to base our normal form on a variant of discreteness termed
name-discreteness. For a further discussion of the rationale behind our choices, see the definition of binding ion in
Section 2.5, and Section 3.1.

In Chapter 3 we formally define the term language and four particular forms of expressions, which jointly will
define four levels of a binding discrete normal form (BDNF) for binding bigraphs. Apart from the obvious result — that
we can produce a BDNF expression for any bigraph — we shall prove that at each level BDNF-expressions are unique
up to certain isomorphisms. This will be helpful in proving our axiomatic theory complete.

In Chapter 4 we address the main problem of specifying and proving a set of axioms complete for the binding bi-
graph term language. We follow the same approach as in [Mil04], and prove the theory complete for several subclasses
of bigraphs before we turn to full completeness.

In particular, we defindinearity — a simple restriction on the term language disallowing nonlinear substitutions —
and prove that it is a syntactic analogue of name-discreteness. Linearity is also useful in proving the theory complete
for ionfree expressions.

Finally, in Section 4.9, we prove full completeness as a corollary of linear completeness.

1.1 Notation and terminology

To ease the notational burden for the reader who has read some or both of [HMO04] or [Mil04], with a few exceptions,
we use the same notation for bigraphs and expressions.

A notable exception from this principle is that we use a slightly shortened form for the underlying set-theoretic
definition of bigraphs in that we inline the parent and link maps. Specifically, we define a bigrépter a signature
K) as

G = (V, E, ctrl, prnt, link) : <m,X,X) — <n,}7,Y>7



whereV andF are, as usual, finite sets of nodes and edgesiamnd V' — K is the control map mapping a control
to each nodeprnt is the parent map andlink is thelink map (see [HMO04] for the full definitions). The binding
interfaces are as usual [HM04, Chapter 11].

Further, we shall use either of the following notation for iterated tensor pro@ggn P, = ®i6n P=F®
P ®...®P,_1 (treatingn as an ordinal). The identity for tensorids; thus, an iterated tensor produg®...® P,_1
equalsid. in casen = 0. When writing expressions such as these, composition binds tighter than tensor product, and
abstractionY") P and) binds as far right as possible.

We shall need notation for ports on nodes with binding controls to precisely specify concrete link maps. For a

nodev with control K : b — f, we letpg, . .. P q denote thdreeports ofv, andpz’o), e ,p?b_l) denote thévinding
ports ofv.

Given a vector of disjoint name set5 we write {Y'} to denote the disjoint union of the sets in the vector, i.e.,
4 def .
Y} = Lﬂig\ﬂ Y[d].
Last, in the remainder of this paper bigraph (unqualified) means “binding bigraph”.

1.2 Variants of discreteness

We shall need to consider and distinguish several forntssafetenessvhich we define below.
Definition 1.2.1(Variants of discreteness)
e We say that a bigraph iscreteiff every free link is an outer name and has exactly one point.
e A bigraph isname-discretéf

— Every free link is an outer name and has exactly one point.
— Every bound link is either an edge, or (if it is an outer name) has exactly one point.

¢ A bigraph is inner-discrete iff every inner name has exactly one peer.
Note that name-discreteimplies discrete. Discreteness and name-discreteness share several nice properties.

Lemma 1.2.2. If A and B are discrete, theml @ B, (Y)A, and A o B are also discrete.
Same for name-discrete bigrapdsand B.

Proof. Follows easily from the definition of composition for link maps (see Definition 8.3 in [HMO04]). O



Chapter 2

Elementary bigraphs

In the following section we present the elementary forms we intend to use as a basis for a binding bigraph term
language.

In this paper we considabstractbigraphs; equivalence classesl@dn-supporiconcrete bigraphs ([HMO04]). In
other words, we axiomatize static equivalence of bigraphs up to renaming of nodes and edges, and disregarding idle
edges.

To define the elementary forms precisely, though, we give definitions in the fooonafetebigraphs. Further,
in proving properties of binding bigraphs, it shall be helpful sometimes to give names to vertices and edges. To be
precise, any concrete form we give, is actuallppresentativef an equivalence class of concrete bigraphs, which is
an abstract bigraph with idle edges discarded and node- and edge-identities forgotten.

2.1 Placings

We define three kinds gflacings corresponding closely to the placings defined for pure bigraphs in [Mil04]:

Definition 2.1.1(Placings) We define théarren root1, the merge bigraph, and thewap b|graphym (Ko, X0)

def

1< (0,0,0,0,0): (0,0),0) — (1,(0),0)
merge = (0,0,0,{0 — 0,1 0},0) : (2,(0,0),0) — (1,(0),0)
Vg (Goy = (0,0,0,prt, Idxgx, )
(mo +ma, Xo X1, {Xo} & {X1}) — (my + mo, X1 X0, {Xo} & {X1})

WherEprntz{OHmo,...,ml—1»—>m1+m0—1,m1|—>O,...,mo+m1—ln—>m0—1},and|fi|:mi.

We note thafl andmerge are defined exactly as for pure bigraphs, but the swap blgva,ph(X X has been
redefined and extended. Compared to the swap bigraph defined for pure bigraphs, Whenﬂrglmlggx , we have
to decide how (or whether) to take care of local names. Each site might have a number of Iocal»ﬂam[s; X))
simply lets the local names follow the site they stem from (in the only way allowed by the scope rule).

The swap bigraphs are used for generafipgnutationsa subclass of isomorphisms with which we can permute
the ordering of the components in a bigraph by composition.

More formally, with regard to Proposition 9.2b of [HMO04], we define:

Definition 2.1.2(Permutation) Given a permutatiom on numberg0, ..., m — 1}, abigraph permutationr is an iso

m=(0,0,0,7,1d v, x,) : (m, Xp,{Xp} & Xp) = (m,7(Xp),{Xp} & Xr)



which combines the permutationon the place graghwith an Id on the name@(}} W X, andw applied to the
locality-vectorX g. In particular note that this way of mapping the local names, is the only way to medspect the
scope rulg(see [HMO04, Chapter 11]).

In every composition where a permutation is used, the sets of local names that are moved around are given from
the context. When the name sets are known, permutations are fully specified by their underlying permutation map, so
in the following we overload the meaning of the symbeBndp, and let these symbols range both over the underlying
number permutations, and over bigraph permutations given by these number permutations.

Using placings we can express permutations in many ways. In particular, it can be shown that any permutation can
be expressed as the tensor product of a composition of swappings and a global identity on names.

To state the axioms succinctly in the following we extend the swappings to all interfaces:

Definition 2.1.3 (Extended swapping)

def i .
Vo,ln = 'Ymo’ml’(x"%’x'}?) ® IdX% ® IdX%?’

wherel; = (m;, Xi,, {X%,} W X1.).
Now we can state the proposition hinted at above.

Proposition 2.1.4(Any permutation is a product of swappingshny permutationr : <l7X}, {X};} W Xp) —
(I,7(Xp),{Xp} W Xr)can be expressed as a finite number of compositions of products of extended swaps:

T = KgO...0Kp—1 fOrsomep,

and, for alli € {0, ...,p — 1}, there existg, s.t.
Ri = ®7LZ’K7J )
Jj<k

where

0= (mi, 20 {ZIYwXp), Ki=(@lU} {U7}),

and - -
dYoml+nl=1, W{z}= YU} = (X5}

i<k j<k j<k
We definemerge, inductively as for pure bigraphs:
Definition 2.1.5. For allm > 0, let
merge, do 1,

£ .
merge,, .1 = mergeo (id; ® merge,,).

2.2 Linkings

For globallinkingswe transfer the constructs for pure bigraphs directly.

Definition 2.2.1(Linkings). We define thelosure/x of a namer, and thesubstitutiony/ X as follows

Jr E(0,{e}. 0.0, {z — e}): (0,0, {z}) — (0.0),0)
y/X Y 0,0,0,0,{xo — y, ..., xx — y}) : 0,0, X) — 0,0, {y})
whereX = {zq,...,z}.

1we simply let the permutation map, which consists of mappingsilike j, be theprnt component.



Note that a substitution need not be surjective (Xe= () is possible ); thus the dual of closure — name introduction
y : € — y —Is a substitution.
We define the following derived forms:

Definition 2.2.2 (Derived linkings)

e A wiring is a bigraph with zero width (and hence no local names) generated by composition and tefasor of

andy/X.
e ForX = {xq,...,z,—1} andk > 0 we define anultiple closure/ X as/zo ® ... ® /xp_1.
e Fory =yo,...,yx—1, k > 0, and disjoint sety, . . . , X;_; we define anultiple substition

o def
y/X = yo/X0® o ® yk;fl/kal.
¢ A renamingis a bijective (multiple) substitution, i.e., eadh above is of cardinality 1.

As in [Mil04] we let w range over wiringsg range over (multiple) substitutions andand 5 range over renam-
ings. Often we do not distinguish notationally between a hame and the singleton set containing the name. With this
conventiony/x is a renaming wheg = yo, . . ., yx—1 andz = x, ..., xx_1, for somek.

2.3 Concretions

We define asimple concretiomas a discrete prime which maps a &ebf local inner names severally to equally named
global names. In other words, it globalizes all its local inner names. Formally:

Definition 2.3.1. Given a set of nameX, asimple concretiotis

X7 (0,0,0,1do, Idx) : (1,(X), X) = (1, (0), X).
(Note that a special case of a simple concretiodjis="0".)
This bigraph is referred to as simple concretion, to signify thatoncretionsG : (1,( X WwY), X WY) —
(1,(Y), X wY) asitis defined in [HM04] ranges over a larger class of bigraphs, which globalazédssebf its local
inner names. As simple concretions are primes, general concretions can be generated by localizing a subset of the
names that the simple concretition globalizes by usinglastraction see Definition 2.4.2 in the following.

2.4 Abstractions

Abstraction is a construction defined for every prifaeFormally:
Definition 2.4.1. For every primeP = (V, E, ctrl, prnt, link) : (m, Z, {Z}) — (1,(YB),Y), let

(X)P = (V,E,ctrl, prat,link) : (m,Z,{Z}) — (1,(Yg & X),Y),
whereX C Y \ V3.

We say that X') P is anabstractionon P.

An abstraction binds a subsét of the global names aP in the resulting bigraph. (Note that the scope rule is
respected since the inner facefby definition is required to be local &is prime). This definition of abstraction is
exactly as in [HMO4]. Abstractions can be seen as the dual to concretions, and the axioms concerning abstraction and
concretion reflect this (see Table 4.1).

Using abstraction we can express concretions in the sense of [HM04]. As we will need them later, we introduce a
special notation to distinguish such concretions from the simple ones

Definition 2.4.2. We define a concretionY ™ : (1, (X W Y), X WY) — (1,(X),X & Y) in terms of a simple
concretion and abstraction as
Yy X ) rx ey



As a special case of concretions we get local identitiés;) = (X) "X, and with the help of linkings we get
local wirings— bigraphs that by composition can change the linkage of local names.

Definition 2.4.3(Local wiring). We define docal renaming(for vectors of nameg andZ, s.t. |j] = |Z|) by

@)/(@) < @D ((F/F@id) o "F).

We extend this notation to multiple substitutions, and define

@)/(X) < @)/ X @id) o T{X}7).

Itis worth pointing out, that just as plain substitutions can introduce idle global nameg (8)glocal substitutions
can introduce idle local names (e(@.)/(0)).

We extend the naming convention for global renamings and substitutions, aid9etndo'°¢ range over local
renamings and substitutions, respectively. Further, towards stating the axioms succinctly, we shallapgdgao
local substitutionr'°€ to a vector of namesets. Formally:

Definition 2.4.4 (Applying a local wiring) Let o!°¢ be the function underlying'°c. Wlog. assume that'°c =
(@)/(Z); thengloe = ..., 20 — u,,. .. s )7, Uiy e

Defines'°¢(X) to be the image'o(X).

We defineal"c()?) as the vector of namesets resulting from applyitff pointwise to each set i .

We can generate all isomorphisms in the precategory of binding bigraphs using permutations, renamings, and local
renamings (cf. [HMO4, Proposition 9.2b])

Proposition 2.4.5. Every binding bigraph isomorphism,: (m, Z,{Z} w U) — (m,X,{X} @ Y (of widthrmn)
can be expressed in the following form
t=(m@a)o (N ®...QVp_1Qidy)
where these requirements hold:
e m=|X| =12,
e a:U—-Y,
o Viem:y=(@)/(z) for X = ({d},... {zma}) andZ = ({5}, ..., {za1}):

2.5 Binding ion
We define a variant of ions for binding bigraphs.

Definition 2.5.1. For a non-atomic contrdk : b — f € K, leti/ be a sequence of distinct names, aha sequence
of sets of distinct names. L&f = {X} andY = {§}, s.t.|X| = band|Y| = f.
Thebinding ionK; ¢ : (1, (X), X) — (1, (0),Y) is a prime bigraph with a single node of contélwith free
ports linked severally to global outer namgsand each binding poite b linked to all local inner names iX;.
Formally, we define a concrete binding ion as:

Kz o ({v}.{eo,-. . ep—1},{v— K}, {0— v,v — 0}, link) :
(L (X), X) — (1,(0),Y),
where
P €
link = p;’ — Y
T e forallz € X;



This form of ion is a straightforward generalization of thee discrete ioras defined in [HMO4, Chapter 11];
indeed when every set i is a singleton, thed(; , is a free discrete ion. WheN = ({zo}, ..., {zs-1}), we
overload our notation and writk ;) to mean a free discrete ion.

Vice versa, using local wiring weould express a binding ion as a derived form:

But we shall not do so, as it will be helpful to take the slightly more complex binding ion as a constant, when stating
the axioms and proving completeness of the derived theory. From the definition it is immediate that both constructs are
discrete (and free), but we will exploit that binding ions are inoer-discrete(free discrete ions are inner-discrete).

For a further discussion of this topic, see Section 3.1.

Definition 2.5.2. For any name-discreteprim@ : I — (1,(X),X w Z) and ioan(X), we define dree discrete
moleculeas

def

M (Kjg) ®idz) o P T — (1,(0),Y w 2)

with Y = {¢}.

Note that even though we use the more general ion-construct in the definition above, our definition of free discrete
molecule is equal to the one given in [HMO04, Chapter 11], in the sense that it captures the same set of bigraphs.
SinceP is discrete and prime it is easily seen tiatis also discrete and prime. In fact,

Proposition 2.5.3. A free discrete moleculis a name-discrete, prime bigraph with a single outermost node.

This relies on the fact that both name-discreteness and discreteness is preserved under composition and tensor
(Lemma 1.2.2). Further, every free discrete bigraph is also name-discrete.
Vice versa,

Proposition 2.5.4. Any free discrete prime bigraph with a single outermost node is a free discrete molecule.

For nodes of atomic control, we adopt the discrete free atom of [HMO04]. We shall not concern ourselves particu-
larly with atoms, though, as they have no internal structure and no binding ports. As a consequence we can express
them ask ;) o 1.

2.6 Concluding remarks

Comparing the elementary forms above with the elementary forms for pure bigraphs given in [Mil04], we have intro-
duced two new formabstractionsandconcretionsand modified two constructswaps andionsto handle local inner
names.

For ease of reference, we have collected an overview of all eight elementary forms into Table 2.1.

In this table and in the following sections we allow ourselves to use more of the shorthands for interfaces introduced
in [HMOA4].



Placings

1 @ e—1 a barren root
merge : 2—1 map two sites to one root
IYmO,ml;(X‘O,X'l) : <m0+m1,X0X1,X0H'JX1> —
{mq + mo, )51)50, Xo W Xy) swapmg with m, places (with local names)
Linkings
Jx T x—e€ closure of single name
y/X 1 X—uy substitution foralk € X : z — y
Concretions
X7 0 (X)) (X) a (simple) concretion
Abstractions
(X)P : I—-{(XwY) 2) abstractiononaprim® : I — ((Y), Z)
(XWY C 2)
lons
Kyx) ({X}) = (Y) a binding ion

Table 2.1: Elementary forms

10



Chapter 3

A term language and a normal form

We define a term languagBexp, for binding bigraphs: terms are built by composition, tensor product, identities and
abstraction (on primes) from the constant forms specified in Table 2.1.

3.1 A note on discreteness

We intend to construct a normal form for bigraph expressions based on a variant of discreteness. To prove completeness
for an equational theory ové@Bexp, we shall formulate and prove syntactic analogues to the normal forms, we first
establish semantically below.

Moreover, it will be useful to formulate a simple inductive property on expressions that characterizes syntactic
discreteness. For binding bigraphs simple discreteness does not seem to lend itself directly to this purpose. By
composing with concretions and using abstractions, we can construct a nondiscrete bigraph from a discrete, and vice
versa.

Consider a discrete bigrapgh with width n. (&),_,,”X;")D is not discrete, ifD is not name-discrete. Given a
nondiscrete primé : I — ((X), X wY), (Y)P: I — (X WY) is discrete.

We conjecture that discreteness is not an inductive property for binding bigraphs. Hence, we turn to name-
discreteness.

Recall that a bigraph is name-discreteif every free link is an outer name and has exactly one point, every bound link
is either an edge, or (if it is an outer name) has exactly one point. This is a simple specialization of the discreteness
property.

We have defined name-discreteness, to impose nearly the same level of constraints on local linkage and global
linkage. As a consequence, it is easy to verify that both abstraction and composition with concretions preserves both
name-discreteness and non-name-discreteness.

name-discreteness still allows arbitrary wiringamfundedges, though. Exactly for that reason, we have chosen to
take the binding ion as a constant in our term language. Syntactically, this allows us to restrict the usage of substitutions
to define a simple inductive property that characterizes name-discreteness. We simply use the binding ion, and the fact
that it is not inner-discrete to add arbitrary bound linkage.

3.2 BDNF

We proceed by defining four forms of bigraphs that generate all bigraphs uniquely up to certain specified isomor-
phisms. Based on the considerations above, the normal form is based on name-discrete forms.

Proposition 3.2.1(Binding discrete normal form)

11



1. Any free discrete molecul® : I — (1, (0), {7} W Z) can be expressed as

M= (Kg()?) ® idz) oP

whereP : I — (1,(X), X W Z) is a name-discrete prime.
Any other such expression fof takes the form

Y

(KW,) ® idz) oP
where the following requirements hold:

There exists a local renaming®c : ({X'}) — ({X}) s.t.

e K - oalec =K, and

#(X) F(X1)
e P=(a®idy)oP.

2. Any name-discrete prime : I — (1, (Y),Y) may be expressed as
P =(Yp) ((mergenHc ® idy) o((p®id1) 0™ X" ® ... ® (-1 ®id1) 0" X, 1"OMy®...Q0 Mp_1)o0 7T)

where evenM; : J; — (1, (0), Y M) is a free discrete molecule, every; ™ is a simple concretion, and is a
permutation.

The renamingsy; have the interfaces X; — Y,©, wherel),., Y,C wlJYM =Y
Any other such expression féttakes the form

(Ys) ((merge,, ), @idy) o ((af ®id1) 0 "X @ ... @ (af,_; ®id1) o™X, TQMi®...@ My_,) o)

where the following requirements hold:

e There exist permutations p; (i € k), p/, s.t.
— (Oé6 X idl) o '_Xé_‘ = (Oép(()) X idl) o '—)(I,(())—l
= M = M@)o pi,
_ (id(X(’)) R...R® id(X{l,l) RpP®...® Pk:fl) on! = p/ oT.

e Furthermore, let denote the vector of inner widths of the product
(g @id1) 0™ X @ ... @ (-1 ®idy) 0 "X 17O My ®...0 My_1), let X' = (X4,..., X} ),
and letX = (Xo,..., X,_1).
Theny' is determined uniquely by, [, X,and X’ asp’ = Prxix as defined in Lemma 4.2.2.

3. Any name-discrete bigraph (of outer widthn) can be expressed as
D=(P®... Ph_1)om)®@a«

where eveny; is a name-discrete prime, is a renaming, andr is a permutation.
Any other such expression bftakes the form

(PF®...@P,_1)or) ®«

where there exists permutatiops (i € n), s.t. P/ = P,op;,and(pg ® ... ® pp—1) o’ = .

12



4. Any bigraphG : I — (n,Yp,{Y5} & Yr) can be expressed as

G- <®<y:>/<)@> ®w> oD

<n

—

whereD : I — (n, X, {X}wZ) is name-discrete, : Z — Y is awiring, and®,__,, (v;)/(X;) : (X) — (Yi)
is a local substitution of widtlh on the bound names @f.

Any other such expression Gftakes the form
(®urew) e
i<n

where there exists a renamings.t. ' = w o a, andn local renamingsaloc : (X’;) — (X)), st.
®icn (1)) (Xi) 0 iy 1% = Qi (1) /(X"3), aNA (), ai®° @ @) 0 D' = D.
Furthermore, for every class of expressions the given BDNF-expression is well defined and genmdydiegaphs

of the appropriate type.

In the following section we go into detail with a few of the parts of the proof of Proposition 3.2.1.

13



3.3 Proof of Proposition 3.2.1

There are three properties to prove for each part of the proposition.
only That the given BDNF-expression is well defined and genetbsbigraphs of the appropriate type.
all That the given BDNF-expression generaaéigraphs of the appropriate type.

uniquenessThat all BDNF-expressions generated by a form differ only by certain simple properties, i.e., that the given
BDNF-expression is unique up to certain isomorphims on subcomponents.

3.3.1 Proof of Proposition 3.2.1, case 1

For theall andonly part, we simply note that the definition of a free discrete molecule (see Definition 2.5.2) is exactly
the chosen BDNF expression for this form.
Now consider some other BDNF-expression fd¢r
(K

v (X")

® idZ/) OPI,

whereP’ has the outer facg {X'}), {X'} & Z).

By Proposition 2.5.3M must have a single outermost node with confkolWe concludek” = K.

Furthermore, we have to match the outer fates Z) of M. This requires us to hawg = 7andZ’ = Z. Also,
K’ = K implies| X’| = | X|, as in particular the binding arity is equal.

A simple analysis on the place graphs and linkage upon edgésasfd P’ allows us to establish a candidate
local renamingn!°¢ — using in particular that, a® and P’ are name-discrete the free ports and inner names stand
in one-one correspondence with their outer names; and that the two expressiaRsatiaP’ appear in denote the
same bigraphX/). We find thatVp = Vi, ctrlp = ctrip, prntp = prnt’s; and (considering linkageyp = E, and
also their link maps restricted to bound ports are equal. We deduce that there exists (global and local) renamings s.t.
P = (a!°° ® ) o P’ — exactly becaus® and P’ are name-discrete.

Now by equational reasoning:

M = (Kﬁ()g,)@@idz)oP’
= (Kg()g) ®idgz)o P

= (Kﬁ()?)@)idz)o(aloc‘@ﬂ)opl.
If the single root ofP’ is barren, then both renamings are trivially empty, anhe= X’ must be vectors of empty sets;
else,P’ is epi, and using distributivity of the tensor product, we see that

K0y @idz = Kyig) 0 (o' @ (idz 0 §)

From this, we immediately conclude that= id anng();/) =Kyx 0 a'°¢ and we are done.

3.3.2 Proof of Proposition 3.2.1, case 2

Recall that a name-discrete prime is a bigrdpthat satisfies the following conditions:
e P has outer width 1grime)
e P has onlylocal inner namesgrime)

e every link of P is either an outer name with exactly one point or a bound edgeé-discrete
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The prime conditions can be checked directly by looking at the interfRoaiust have the interfacén, Z, Zy —
(1,(U),UWY). Not so for the name-discreteness constraint, since this is a property of the link graph and the controls
of ports of vertices inP.

We first look at theonly part of the proof, and check each of the conditions above against the expression stated in
Proposition 3.2.1, case 2.

Outer width 1 Consider just the place graph generated by the given BDNF-expression. By definitiamgf, , ;. (see Defin-
ition 2.1.5) then + k roots of the molecules and concretions are merged into 1 single root by the composition
with the merge,, , ;. element. The identitidy- only works on the link graph, and the abstractiaf ) just works
as an identity on the place graph.

We conclude that any bigraph generated by the given BDNF-expression has a single root, i.e., an outer width of
1.

Local inner faceBy Definition 2.1.2, a permutation has a local outer face iff it has a local inner face. In this case the permutation
m is composed from the left with a product of molecules and concretions.

All free discrete molecules and concretions have local inner faces (by Proposition 2.5.3 and Definition 2.3.1),
and since a product of bigraphs with local inner faces is easily seen to also have a local inner face, we conclude
that, and hence als&, must have a local inner face.

Name-discreteEvery single component af is name-discrete, and since name-discreteness is preserved by composition and
tensor,P is also name-discrete.

For theall part, we are given an arbitrary name-discrete prime
G = (V, E, ctrl,prat, link) : (m, Z,{Z}) — (1,(Ug), U W Ug).

By decomposind~ into progressively smaller components, we show that it is possible to construct a BDNF for
any name-discrete prime.
First, we construct thizeediscreté prime Gf

Gt = (V, E, ctrl, prnt, link) : (m,Z, {Z}> —(1,(0),Up W UR).

By Definition 2.4.1, it is immediate that we can recre@térom Gf by an abstractioiUp), i.e., (Up)Gf = G.
The constituent parts of the 5-tuple@fandGf are equal since abstraction only works on the interfaces.

Deconstruction of Gf into free prime components

We now consideGf. As it is prime the place graph is a tree. The immediate children of the root are a number of
nodes and sites. In the following 1&t, denote the toplevel node:, = {v | v € V A prnt(v) = 0}, andT; the
top-level sitesT, = {i | i € m A prnt(i) = 0}.

G* is constructed to be free and discrete, so we know that there is no linkage between the components. In particular,
as there are no binders on the outer face, the scope rule ensures us that all links with binders are contained within the
top-level nodes.

We will deconstructGf into a number of free, prime and discrete bigraphs, each one of them containing one of the
toplevel components frof, W T,, together with all its internal structure. For ea¢li=™: will contain a toplevel node
v € T, and all its substructure, and for eaglt=: will contain a toplevel site € T5.

From these components we will construct a bigraph expressidagffanith the help of products, permutations and
merging.

The expression we construct will yield a bigraph that is equélftaip to reordering of the sites. We will comment
briefly on site (re)ordering first, and then turn to the actual construction.

1Recall that for bigraphs, name-discreteness and discreteness are equal properties.
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Handling ordering of sites Recall that in the produet 4 ® G of two bigraphsz 4 andG g we loose the original
ordering of the sites (see Definition 7.5 [HMO04]). So, to reconstruct a particular given site ordering, we have to
somehow recapture this structure; but it is easy, as we know we can produce any permutation of sites by composing
from the right with a permutation. We simply have to give the permutation map

To this end, and to specify into which components local names of sit6% should go, we will sometimes need
to talk about theoriginal site number of sites in the components we construct.

Formally, we define, for eachy € T, S; = {s | s € m A prnt*(s) = v; A k > 0}. We will usesS; together with
T, to specify which sites will go in eaci™: that we construct below.

When performing the deconstruction@f below, we can simply note the original site numbers of siteS;iand
the toplevel sites ifT,. (Recall, that we argivenG and have ourselves construci@é, so by simple inspection we
have this information available.)

For ease of notation, we will sometimes tréa&andS; as maps defined dff;| and|.S;| respectively. The intention
is (usingS; as an example) for a given number of a sité&fft: the map should return the number of the corresponding
site inG*.

With the help of these maps it is not too hard to construct

Construction of an expression for each toplevel component
Toplevel sites For each of the sites ifi, we constructG®: in the following way
Vi e |Ts| : G% = (0,0,0, Ido, link®) : (1, (X;), X;) — (1,(0), U,

where X; = Zp ;, i.e., the names local to the corresponding sitezfy andlink® is a bijection betweer;
andU*¢. We have also thaym‘ U® C Up W Up. By comparing with Definition 2.3.1 and 2.2.2, we see that
G = (a® ®idy) o " Zp, ;" — a simple concretion with its outer names (possibly) renamed.
Toplevel nodes For each of the toplevel nodesin 7', we aim to define a free discrete molecw®, i.e.,

Vie|T,| : G™ = (V™ E™ ctrl™: prot™ link™) : (m;, Z!,{Z'}) — (1, (0),U™)

For the place graph components, we restrict the place gra@f atcordingly:

m; = |Sz‘ ]
V™o = fy | veV Aprntt(v) =v; Ak >0},
ctri™ = ctrl | V™,
m, - m, prot(Si(z)) if x € my,
Ve e VFiwm, 1 prat™ (z) { prot(z) if z € Vi,

We construct the link graphs by restricting the domain of the link ma@fofo the inner names and ports inside
the free discrete molecule, and, for the edge set, by taking exactly those edgefftoat are in the codomain of the
new link map:

link™: = link | P™ & {Z'}
whereP™: = {p | pisaportorw € V™} ,
E™ = cod(link™)NE.

We have not yet specified how the inner and outer names of the molecules are constructed. This can be specified
with the help ofZ — the vector of local inner names 6f — by treatingS; as a map:

Z_;{ = (Zsl(o)) '-7Z‘Si(7ni71)) 1
andU™ = {u|u€UpWUpAlink™*(u) € (P™ wS;)}.

Each ofG™: is by construction free, prime and discrete and with a single outermost node. Thus by Proposition
2.5.4 we know that each of them is a free discrete molecule.
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A bigraph expression for Gf

By the arguments given in the previous section concerning the ordering of(#itese are able to construct an
appropriater, s.t.:

f_ 1 i i
G' = (mergewrk ® 'd{(fc}w{UTn}) o <® G% ® ®Gm ) om,
1EN i€k
wheren = |T|, k = |T,,|.
We have constructed the outer names of the concretions and the molecules exactly by distribution of the names in
U W Up, sowe havdUc} W {U™} = Up W Up. Collecting all the pieces, we arrive at

G = (Up) ((mergenJrk ® idupwuy ) © <® G ®Gm4> o w) ,

1€EN i€k

which is on the required form.

For uniguenesswe can perform an analysis similar in spirit to the one for free discrete molecules, proceeding in-
wards towards the composition of the product of molecules and concretions, and the permutation. We sketch the
arguments involved.

Y is restrained by the outer face Bfand hence cannot vary. Equally, we cannot change the number of top-level
sitesn or nodesk, and the identity ort” is also restricted by the outer face. The concretion/renaming-pairs are also
constrained with respect to names, asdfies are constrained on the outer face, and the names of the concretions are
constrained from the inner face.

What remains are two interdependent ordering issues for the molecules and concretion/renaming pairs (which
we shall just refer to as concretions below, for brevity). The proposition states essentially that there is a one-one
correspondence between the prime components of the two expressions (gpkersliy we can reorder the sites of
one component, by composing from the right with a permutagioio make them equal. Further, as the molecules
and concretions are merged into a single prime root, we need not have written them in the same order in the two
expressions. As the expressions denote the same bigraph, it is not surprising that up to reordering of sites and renaming
the underlying expressions must generate the same place- and link-structure. The crucial arguments, in proving the
stated restrictions on the ordering of molecules and concretions in the expressiBnsdides on a lemma stating that
a permutation can be 'pushed’ through any product of primes. We prove this algebraically in the following section
when developing the axiomatic theory for bigraph expressions (see Lemma 4.2.2).

3.3.3 Proof of Proposition 3.2.1, case 3

(Sketch As we have observed name-discreteness is preserved by tensor and composition, and since every component
of the expression in case 3 is name-discrete, the expressidhitalso name-discrete.

For theall part we are given an arbitrary name-discrete bigr&phBy a similar procedure as used for name-
discrete primes, itis quite easy to first split off a renaming, and then decorGfiosea number of name-discrete primes
(and an appropriately built permutation). Instead of partioning the structure for each toplevel node, we simply do this
for each root.

Foruniquenesthe proposition states essentially that®land P/ must be equal, but for the ordering of their sites.

That this is the case is quite easily seen, as the outer fabereétricts the ordering of the roots, and each prime must
have the same internal structure, for the two expressions to denote the same bigraph.
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3.3.4 Proof of Proposition 3.2.1, case 4
(Sketch For this case, there is nothing to check for tmdy part.

For theall part of the proof, it is straightforward to decompose any bigrépimto two bigraphs: One name-
discrete bigraph containing all the structure(gfexcept all points linked to names or free edges are now linked to
fresh outer names, and another bigraph mapping each corresponding fresh inner name to the original outer name or
edge inG. It is easily seen that the outer bigraph can be modelled as a product of a global wiring and a local wiring
with width that of G. Idle names are also introduced by these wirings.

Concerninguniguenessve can change the names with which to transfer linkage from the underlying name-

discrete bigraph to the global and local wiring expressions. This is essentially analogous to the transfer of linkage
from the underlying name-discrete prime of a molecule.
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Chapter 4

An axiomatic theory for the binding
bigraph term language

In the following sections we turn to the main question of stating and proving a set of equations, that will serve as the
basis for an axiomatization of (static) equality of bigraphs.

We have collected the axioms for the binding bigraph term langiB®Rgxpin Table 4.1. Note that, as tensor
product is defined only when name sets of the interfaces are disjoint, and as abstraction is defined only on prime
bigraphs with the abstracted names in the outer face, we only require the equations to hold when both sides are
defined.

Compared with the axioms stated by Milner for pure bigraphs [Mil04], we have added 5 axioms concerned with
binding; and as our ions have names on both faces, we have two axioms — handling inner and outer renaming. The
remaining axioms are as in [Mil04] (except for very minor adjustments in the case of swap bigraphs).

Assuming the strategy of [Mil04], we aim to prove completeness for increasingly larger collections of expressions.
To distinguish provable equality and equality of bigraphs we will bsel = B to denote syntactic equality, and
just A = B or (when disambiguation is needed) A = B to denote equality of bigraphs (semantic equality). In

equational proofs we shall typically qualify derivations by referring to an axiom, definition, lemma or proposition

above the equality sign, like this: AZBork AY2'B,

4.1 Commutativity of wiring

Lemma 4.1.1(Wiring commutes with all binding bigraph expressianspr all bigraph expressions: : Iy — I,
(wherely = (m, Z,{Z}wU) andl; = (n, X, {X}wY)), and for all wiringsw : (0, (), Yo) — (0,(), Y1) = Jo — J1

FGRw = w®G

Proof of Lemma 4.1.1We rewrite, working from left to right

C

=
Q

8

FGew = ynnovngo(GRw)
2 YJ.,I, © (W & G) © VIo,Jo
D2.1.3 . ;
= <fyn70’()?7()) ® Idy@yl) o (w ® G) o (7()7m7((),2”) b2y |dU&JYg>
cr . . . .
= (|d<”7()3"{)3})> ® Idy@yl) o(w®G@G)o (Id<7rz,(Z7{Z})> ® |dUL+JY0)
c1

= w®G
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Categorical axioms
(C1)
(C2)
(C3)
(C4)
(C5)
(C6)
(C7)
(C8)
(C9)

Global link axioms
(L1)
(L2)
(L3)
(L4)

Global place axioms
(P1)
(P2)
(P3)

Binding axioms
(B1)
(B2)
(B3)
(B4)
(B5)

lon axioms
(N1)
(N2)

Aoid =

Ao (Bo()

A® (B C)

id; ®idy

(A1 ® By) o (Ag @ Bo)
Ve

YJ,I°71,J

1,k © (A® B)

x/x

Jyoy/x

/yoy

z/(Y Wy)o (idy ®y/X)

merge o (1 ®idy)
merge o (merge & idy)
Merge ©71,1,(0,0)

0P

(Y)FY‘I

("X @idy)o (X)P
(Y)(P)®idx) oG
(XwWY)(P)

(i ) o Ky
Kyx) 0

s

=ido A

(AoB)oC

=ide® A

(A® B)® C

(A1 o Ao) ® (Bl o Bo)
idy

idrg.g

(B® A)ovm,s

id,
/x
ide
z/(Y W X)

id;
merge o (id; ® merge)
merge

P
id(y)
P

(Y)(P®@idx) o G)
(X)((Y)(P))

Ko@) %)

glotoe(X))

Table 4.1: Axioms for binding bigraphs

(A:H—I1,B:J—K)

(P:I—(1,(2),Z60XWY)

(as defined in Def. 2.4.4)



4.2 Pushing permutations through prime products

We will need a 'push-through’ lemma analogous to the one stated for pure bigraphs in [Mil04] that says that one can
push a permutation through any series of primes. As the proof for the corresponding lemma for pure bigraphs, it
relies essentially on iterating the main symmetry axiom (C9). The bookkeeping just gets a bit more messy when the
permutations also have associated vectors of local names.

First, we state without proof a standard result of symmetric monoidal categories.

Lemma 4.2.1(Permutation completenessJhe theory is complete for permutation expressions (those expressions
generated by the symmetries and place identities).

We can now state the lemma that we aim to prove:

Lemma 4.2.2(push-through lemma) Givenn primesp;

P, (mi, Xi, Xi) — (1,(YE), YR uYl),

¢ (0 YBY) = (n,r(YB),Y)

and
Y=Y, YB = (vE,... YR,
i<n
Yi=vPuwYF, Y=,
i<n

—

X = (Xo,. .., Xn_1)

There exists a permutatiaf) . ¢ which depends solely an m, andX, s.t.
Fro (PO X...Q0 Pn—l) = (Pﬂ'(O) ®...Q Pﬂ'(’n*l)) Ofm’)-(*.

Recall that by Proposition 2.1.4, we know thatcan be written as a sequence of compositions of products of
extended swappings (see 2.1.3) and a global identity on names. Hawimghis form allows us to prove the lemma
by straightforward induction.

Proof of Lemma 4.2.2By Proposition 2.1.4 we may assume wlog, that 7 = (kg o ... 0 Kp_1.
We prove the lemma by induction over

Case(Base) Trivially true.

Case(Induction step) Assume the lemma holds faf’ = (kg o ... 0 k,_1), i.e., we assume

F (Iﬁ:o 0...0 K/p—l) o (PO ®... ®Pn_1) = (Pﬂ—p(o) ®...0 Pﬂ—p(n_l)) Oﬁm,)?'

Consider a permutation® o ®j<k v1,,K,; composed with a product of primes:

(H()O...Olip_l)o ®"}/1J7Kj O(P0®...®Pn_1)
j<k
We start by using (C6) to partition and rearrange the product of primesjipsrts matching each corresponding
Vi K-
’ Let0 =bg < ... < b; < ... < bgy1 = nrange over the indices of the primes we partition at. We alsb; bt
dependent on the widths éf andK;, so that we can better illustrate the effect of swapping on the product of primes.
We start by rewriting the expression above using (C6)

F...%(Hoo...OHp_l)O® ’YIJ'.,KJ'O ® Pz® ® ]DZ

i<k bj§i<b]‘+1 bj+1§i<bj+2
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Now by k applications of (C9) we can exchange the prime products composed with each swap.

CZQ(ROO"'Oprl)C)@ ® P | ® ® P | ovmy,;

i<k bj+1<i<bjt2 bj<i<bjii

where H;, J; are the inner faces of each corresponding product of primes (as determined in the side condition for
(C9)).
Now we reverse the procedure and pick apart the product of primes and swappings again usihAgif@s) (

C;G(Kuoo...ol-@p_l)o ® ® Pl® ® P, o®fij7Jj

j<k \bj41<i<bjiz by <i<bji1 j<k

Now we are nearly done. Applying the induction hypothesis we get

QR @ Pew|® @ Puw|om,zo @,

J<k \bj+1<i<bjt2 bj<i<bjt1 Jj<k

which is on the required form.
Checking, we see that the pushed-through permutation depends onlyfbn= 7P o ®j<k v1,.K;, @and on the
inner faces of (widths and local names) of the prinfies
O

4.3 A merge construct for local bigraphs

Definition 4.3.1. We wish to extend the place merging constructiogrge to local interfaces. Letmerge x, x,) the
bindingmerge bigraph be defined as

def .
bmerge x, x,) = (XoW X1)((merge ® idxwx,) o ("Xo ' ®"X17))

We also define an inductive derived fotmerge, ¢

bmergey () e
bmerge, . 3 o bmerge x: x,, _,y° (bmerge, | ¢ ®idx,, )
where X = (Xo,...,Xm_27Xm_1)
X'/ = (X07 .. 7Xm,—2)
X=X
i<m
X'= 4 x
i<m—1

4.3.1 Foldoutlemma

Itis a good exercise to prove that we could just as well have detinedge, , ¢ usingmerge,,

Lemma 4.3.2(Foldout lemma fobmerge, . ¢).

F bmerge,, ¢ = (X)((merge,, ®idx) o ®FX[')

<m

whereX = {X} .
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Proof of Lemma 4.3.2By induction onm:

Case(Base) By (B1), (C3) and the definition afergeg
F (0)((mergey ®idp) oide = 1

Case(Induction step) Assume

- bmerge x: x,,_,)© (bmerge,, | ¢ ®idx,, ) = (X)((merge,, @idx)o ®FXZ-7)

<m

We need to show

= bmerge xiyx,,_, x,,) © (bmerge x: x, _y o (bmerge, | ¢ ®idx,, ,)) ®idx,,))

= (XWXy,)((merge,, 1 ®idxwx,,) © ® rX7)
i<m+1

We start by using the induction hypothesis (IH) and the definitidmafrge v x,, | x,.) = bmerge x x, ) (D4.3.1),
and proceed straightforwardly

(R = bmerge x x,,) © (X)((merge,, ® idx) o (QTX;7) @id(x,,))
<m
PR (X 0 X)) ((merge @ idxux,,) © (TXT @ X)) o ((X)((merge,, @ idx) o R)7Xi M) @ (X)X )
<m
B4,C6,C2 : ry : ry . r 1 r 1
= (X W X,,)(((merge ® idxwx,,) o ("X "o ((X)((merge,, ®idx) o ® XN X o (X)) X))
<m
B3

= (X W X)) ((merge ® idxwx,,) o ((merge,, ®idx) o (®7Xﬂ) ®"XnM)

<m
We have to use a few standard tricks on the latter part to collapsedhg’s and concretions. We insert and shift to
the right a convenient product of identities

CHOEELEE (X W X, (merge @ idxux,, ) © ((merge,, @ idx ®id ®idx,,) o Q) TX:7)

i<m+1

Next, we use the symmetries (C7,C8,C9) to exchadgeandid; 1. The last few steps follows from the pure place
axioms and the inductive definition eferge,, , ;

Lal.1 (X W X,,)((merge ® idxwx,,) o ((merge,, ®id; ® idx ®idx, )o ® X))
i<m+1
P2,06,C1 (X W X)) (((merge o (id; ® merge,,)) ® idxwx,,) © ® TX;7)
1<m+1
D2.1.5

2.1. (X W X,)((merge,, 1 ®idxuwx,,) © ® X7
i<m-+1

1Lemma 4.1.1 records the fact, that this procedure can, of course, always be done for pure link and place expressions.
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4.3.2 Binding merge and permutation

Composingbmerge x, x,) With an appropriate swap bigraph 1 (x, x,), should yield the dual binding merge, i.e.,
bmerge x, x,)-

Lemma 4.3.3.

[ bmerge(xl’XO) O V11,(Xo,X1) = bmerge(xo’xl)
(Recall thaty; 1, (x,,x,) : (2, (Xo, X1), Xo & X1) — (2, (X1, Xo), Xo & X1).)

Proof of Lemma 4.3.3Straightforward after an application of axiom (B4)

= bmerge x, x,) ©V1,1,(X0,X1)

D4.3.1,B4 .
= (Xo W X1)((merge @ idx,ux,) o ("X17®@"Xo™) 0y1,1,(x0,x1))
C . .
2 (Xow X1)((merge @ idxyux,) © (711,00 ® idxoex;) © (X0 @ 7X1 7))
C6,P3,C .
6,£3,C1 (Xo W X1)((merge @ idxwx,) o ("X @7X17))
D4.3.1

bmerge(xoyxl)

This result can be generalized to permutations and binding merge bigraphs of arbitrary width.

Lemma 4.3.4.
F bmergem,ﬂ()?) o = bmergemx

Proof of Lemma 4.3.4(Sketch
After an application of (B4) analogous to the proof for 4.3.3, the proof proceeds by straighforward use of the
definition of bmerge,, ¢, Lemma 4.3.2, and the push-through lemma (Lemma 4.2.2). O

4.3.3 Merging products of binding merge
We will also need to prove that merging a product of binding merges yields a binding merge.

Lemma 4.3.5.

F bmergek’)? ) ® bmergemi’);i = bmergemj
i<k

wherem = Y, _, m; andX = Xg... X3 1.

Proof of Lemma 4.3.5(Sketch
Use Lemma 4.3.2 to unfolttnerge, ¢, and transfer [Mil04, Lemma 5.1 (2)], which establishes the similar prop-

erty for simplemerge’s, for the global subexpressions.
O

4.4 Place,, expressions

We define the subclagdace , of bigraph expressions as all expressions in the term language, which are generated by
id’s, o, and® from bmerge, ¢ andy;, ;. ThusPlace , consists of all place bigraph expressions extended only with
identies on local names. (Recall that special caséswfge = ¢ instantiate to elementsandmerge.)

We aim to prove that the theory is complete Rlace , expressions.
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Note that, in a strict symmetric monoidal category the categorical axioms are known to be compledadop
of the symmetries;, ; — hence in particular the theory is complete for permutations.
We start by showing a normal form féMace , expressions.

Lemma 4.4.1(Normal form forPlace ,, expressions)For everyPlace , expressiort

FE = (bmerge, ¢ ©...® bmerge Jom

mp—1,Xk—1
for somek > 0 and permutation expressions.t. the composition is well defined.
Proof of Lemma 4.4.1By structural induction on expressions:

Case(Base) Immediate.
Case(Induction step)

Assume- E = <®Z<k bmergemi’)&) o mand- F = (®j<l bmergenhfj) on’.

The case forF ® F' is immediate by a single use of (C6). FBro F' we need to push the middle permutation
throughF' (Lemma 4.2.2), and use Lemma 4.3.5 to collapse the two products of binding merge’s:

L4.2.2 _ ’
FEoF MY (®bm) R tmerge, 5., | ° Fry o)
i<k g<l
L4.3.5 b _ ’
= ® mergem,i,)gi o\TzgoT
i<k

wherem{, = >_ andfori > 0, m, =>"

j<mo N (5) my_1<j<m; Nr(j)

As the expression is on the required form, we are done. O

Now we are ready to state completenessHiarcq ,, expressions.
Lemma 4.4.2(Completeness fdplace., expressions)If - £ = ), bmerge,, ¢ o mand
FF=Q; bmerge,, v on’and= E = F, then- E = F.

Proof of Lemma 4.4.2Using Proposition 3.2.1 — by F = F, we know that: = [, and for alli, thatm,; = n; , and
there exist); s.t.

bmergemi.)& = bmergean v, ©pi (4.1)
(po®...@p_1)om = = (4.2)
Eq. (4.2) is provable in our theory by completeness for permutation expressions.
Eqg. (4.1) is just an instance of Lemma 4.3.4, when we note that in particular it implies that the number of merged
sites, and the names local to each root must be equal. But the locality of these names (wrt. to the inner face) can be

permuted by;. |.e., we haven; = n; andY; = p;(X;) 2.
This implies that

[ A— ®bmergenjyj o(pp®...Q0p—1)om
j<l ‘
& ® bmergenj y,opj|om
i<l
= F

2More directly we infer thatX; = p/(Y;), and then thap} = p; (see Lemma 4.2.2).
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4.5 Linkg expressions

We consider next the collection of global link expressions, those bigraph expressions generated by closure and substi-
tution. We will refer to this collection of expressionslask . Note that we have transferred exactly the global link
constructs used in [Mil04].

As we also have the exact same axioms for global link expressions, it is easily seen that we can straightforwardly
adapt also the proof that the axiomatic theory (for the binding bigraph term language) is complete for global link
expressions.

Proposition 4.5.1(Link completeness) The theory is complete for link expressions.

4.6 A syntactic analogue of name-discreteness

We defindinearity for binding bigraph expressions:
Definition 4.6.1(Linearity). A binding bigraph expression is linear iff it contains only wiring of the fayyi:.

In other words, in linear expressions all substitutions are renamings — an inductive property with reBBestio
which we will utilize to full effect in the following sections. We shall see that any name-discrete bigraph has a linear
expression.

Having establish linearity, we can proceed along the same lines as set out in [Mil04] — using structural induction
as our main proof principle.

We start by establishing a few basic properties of linear expressions.

Lemma 4.6.2.If E is linear, then- E = E' ® «, for someE’ anda whereE’ is linear with local innerface.

Proof. (Omitted (Straightforward structural induction.)

O
Lemma 4.6.3.1f E : (m,U,{U}) — (n,Y,{Y}w V) is linear with local innerface, then
2o @) - (@) o ) o
<m <n
for somey, X;, and E’ with E’ linear with local innerface.
Proof. (Omitted (Structural induction using 4.6.2 in the case for composition.)
O

We shall use the following lemma to help show completeness for ionfree expression in the following section.
Importantly, it also constitutes a step towards a syntactic normal form for all expressiBB&xp, analogous to the
normal form we established in Proposition 3.2.1.

Proposition 4.6.4(Underlying linear expression)ror any expressiold; denoting a bigraph of outer width, there

—

exists a wiringv, a linear expressiot, and a local renaming), _,, (7:)/(X;), s.t.

FG = (®(?ji)/()?i) Quw)oE

<n
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Proof. (Sketch

By structural induction oiiz. The cases for elementary linear expressions are straightforward, as are the cases for
tensor product and composition with the help of the two previous lemmas.

We only consider the case for abstraction®@im more detail. It is only well defined for prim@, i.e.,m = 1:

Foe = O ((@/(X)ewoE)
B4,B5,D2.4.3 U w {7} <((y~/)z ®idy) o F{X}T) ® w) o E

CER222 Wiy (/X e/V @id)o ({X}2idp) 0w') o E,
where- w = @/V @ o', andU = {a}.

We use (B3) to introduce appropriate abstractions and concretions, m@¥& X}  id;) under the outermost
abstraction with the help of (B5), and use (C6) to rearrange:

PR o ) (/X @17 0 d) o (X} @idyp) o V) 0 (W oidn) o (V)F,

wherel is the domain of.’.
Applying (B3) again, now in reverse, and cleaning up the expressions, we reach an expression on the required
form:

L e (@K e/ oid) o (X} uvT) o) (VE,

4.7 lonfree expressions

With the help of the following lemmas, as a corollary of the established properties for linear expressions, we find that
the theory is complete for ionfree bigraph expressions.

Lemma 4.7.1.If E = E; o E is linear, ionfree, and with local inner and outer face, thBpand E5 are also linear
and ionfree with local inner and outer face.
Same forlF = E; ® Es.

Proof. (Sketch

Clearly, any subterm of a linear and ionfree term are also linear and ionfree. Further, in the dase for ® Fs,
by definition of the tensor produck, has local inner and outer face iff; and F; have.

Consider the case fdt = E; o E». Itis immediate thafz; must have local outer face, whilé, must have local
inner face. As their inner and outer face must match, we could assume that they shared a glohahesme

By linearity and ionfreeness d; and E5, we know that the global inner namewould need to be connected to a
(separate) local outer name Bf, hence violating the scope rule.

O

The next lemma states a normal form for linear, ionfree expressions with local inner- and outerface.

Lemma 4.7.2. If E is linear and ionfree of width with local inner and outer face, then E = (®,_,(7) /(%)) o
G¥, whereG? € Place.,,.

Proof. (Sketch

With the help of the previous lemma and completenes®facg ,-expressions, the proof is by structural induc-
tion.

We consider only the case for composition. It requires us to push a product of local substi@tiop&;) /(7).
through an expression of the forf®), _,, () /(Z;)) o G* from the right. This is tedious, but not hard.
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Consider the normal form fd?lace , expressions. We start by pushing local wiring through the permutation using
the push-through lemma (Lemma 4.2.2), then by (B3) dissolve each matching pair of abstraction and concretion, in
each pair of local wirindy!)/(z}) and binding merge.

We can also dissolve each abstraction ondhter faces of the binding merges with a matching concretion in
R, (W:)/(Z;). We are left with pushing a global substitution through a product of elementary merge’s and global
identitities. To establish the required form, we also need to compose the products of binding merge'’s, but by com-
pleteness oPlace ,, andLink ¢ (in particular, Lemma 4.3.5) this is all possible. O

Next, we turn to a normal form for linear, ionfree expressions. The following lemma is a specialization of
Lemma 4.6.2.

Lemma 4.7.3.1f E is linear and ionfree, then there exist concretiof$, anda s.t.- E = (Q),_,," X, % o E') ®a,
with E’ linear and ionfree and with local inner and outer face.

Proof. Structural induction. The cases for elements and tensor product are simple.

(Y)E = (Y)(("X? o E') ® ) is only defined wherE is prime, andy” C X. With applications of (B4) and
(B5), we can move the renaming out from under the abstraction, and combine the abs{iagtivith the abstraction
in”X 7%, Hence, we prove (Y)E = ("X ?¥Y o E') ® «, which is on the required form.

ConsiderE o F', and assume faE’, F”, linear, ionfree and with local inner and outer faces that we have

FE= <<®FXJZ"> o E’) ®a, and F F = ((@rww) o F’) ® B.
i<n i<m

We have- a = o ® Q,_, of, where the domain of" matches the outer names @fand the domains of
X af is ;. Yi — the global outer names of the concretions in the expressiafi.for

Rearranging, and introducing global identitids, corresponding to the outer facesddf, we have

FEoF = <®'—Xf'z" ®idyi> o (E/®®af> o ((@"Y[‘Ui) oF’) ® (a* o B3).

i<n <n <m

We shall need to split the expressiofisand F” into prime parts, and compose them to ggtrime expressions to
reach the required form. By Lemma 4.7.2 and completenesBlémg ,, expressions, we know we can rewrite the
expression above to get first

F... = <®(FX['Z'i ®idy;) o (E| ®a°i)> o ((@ryﬁfi) oF’> ® (aF o f3),

i<n <m

for prime expression®&’/. Next, rewriting the expression fdrf and composing, we get

T <®(FXFZ"®idn)°(E£®Oé°i)OFiI>®(ar°5)~

i<n

for suitableF}, s.t.k F = (®,_,,” Yi"V) o F/ = ®,_,, F}.

By repeated applications of (B5) and (B3), we arrive at

b, (BB (@(FXZ- WY, 7% o (Vi) (B} ® %) o F{)) ® (aF o §),

<n

which is on the required form. Checking, we see that each prime comp@éitE; ® a) o F!) has local innerface
asr has local innerface, and local outerfacefdshas local outer face, and the entire codomain%fis bound by the
abstraction. O
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Completeness of all ionfree expressions follows by the established properties for linear and linear-ionfree expres-
sions. We start by establishing a normal form, based on the previous lemmas.

Lemma 4.7.4(A normal form for ionfree expresssiondyor all ionfree epxression& of widthn

FG= w8 &® <®(K) ((w! & |d1) (@) I—XZ_‘I)> o GP.

i<n
whereG* € Place,.

Proof. By Proposition 4.6.4, Lemma 4.7.2, and Lemma 4.7.3, for any ionfree expressi@have

-G = (Q)@)/(Xi) ®w)o ((<®2X> o (X)(i:)/ (i) oGP>> @a) :

i<n i<n i<n

whereGY € Place ,,.
By completeness d?lacq , expressions, we can proveG? = Ricn GT for suitableGY . Rearranging with the
help of (C6), and using applications of (B5) and (B3) to remove matching concretion — abstraction pairs, we get

- PR e Q) (/K ©uf @id) o (@i @ idy) o ()0 GF)

<n

where- w = w" ® ), _,, wf.
By completeness dfink g expressions, we can compose and rearrange the global link expressions, to get

Fo= ") (({F) (W eid) o {a@} 0 GT)) .

i<n

As GF has local outer face, it does not need to be under the abstraction

BT (@({@-}) (wi*®idy)o r{ﬁ}f)> o G",

<n
and we have an expression on the required form. O

With the help of the lemmas above, we have established a normal form for ionfree expressions Pdaed gex-
pressions andlink ¢ expressions with necessary abstractions and concretions. Completeness for ionfree expressions
follows easily.

Corollary 4.7.5 (The theory is complete for ionfree expressions)

Proof. (Sketch
Given two ionfree expressions, which denote the same bigraph, we rewrite to the normal form, above. We get two
expressions with wirings anélace , expressions that are provable equal by completenekmbki; andPlace ,,.
Constrained by the local names of the inner- and outerfaces, and the inner face (red2lh¢hat expressions are
identities on the link graph), the abstractions and concretions in the middle term must also be equal. We are left with
two global wirings, which are also provable equal.
O
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4.8 Syntactic normal forms

We define four levels of a syntactic normal form, BDNF, on expressioB8exp. Each form corresponds to one of
the classes of expressions described in Proposition 3.2.1.

Definition 4.8.1.

MBDNF: M (Kg()g)@idz)op

PBDNF: P = (Y) ((mergen+k®idy) o ((®1<”((ai®id1)0'—Xﬁ)) ® Qe Ml) ow)
DBDNF: D := (Ph®...QP, 1)o7 Q@a«

BBDNF: B = (®,;.,(%)/(Xi)®w)oD

To formally prove the correspondence between BDNF and the bigraph classes in Proposition 3.2.1, we need a few
lemmas. We omit the proofs for the following lemmas, which go by mathematical induction on the number of ions. As
we have established completeness for ionfree expressions, we have the base case. The inductive steps are analogous
to the proofs for the similar lemmas for pure bigraphs [Mil04, Lemma 5.11].

Lemma 4.8.2(All BDNF forms are closed under composition with isofet B : I — J be aBBDNF. If c and//
are isos on/ andJ, then- /B, = B’ for someB’.
Same foDBDNF, PBDNF, MBDNF.

We also need that DBDNF expressions are closed under composition.

Lemma 4.8.3(DBDNF is closed under compositianffor all composable©BDNF's C, D, there exists @BDNF D’,
stEFDoC =D

Now we state formally, the proposition that establishes the correspondence between our semantic normal form,
and the syntactic normal form, above. Also, we formally state that linearity is, in fact, a syntactic correspondent of
name-discreteness (item 3 in the following proposition):

Proposition 4.8.4. Let E be a linear expression, an@ any expression.
1. If E denotes a discrete free molecule, theiw’ = M for someMBDNF.
2. If F denotes a name-discrete prime, theiy = P for somePBDNF P.
3. F E = D forsomeDBDNF D.
4. - G = B forsomeBBDNF B.

Proof. (Sketch By structural induction and inspection of the normal forms. We briefly sketch the proof below.
We start by proving the correspondence between linearity and name-discreteness (3). We look only at the cases
for abstraction and composition. The cases for elements and tensor product are straightforward.

Assume
FE = <<®Pi>07ﬁ>®a1,
<n

FEQ = <<®Ql> O’/TQ) ®C¥2,
<m

where each’; and(; are PBDNF's.
Abstraction(X) E; is only defined whem = 1, and then by (B5) and (B4), we can rewrite

F(X)(Prom®a)=(XWY)Pjor)® a,

wherel- (Y) P = P,. This expression is on the required form.

30



Turning to composition, by an application of (C6) and Lemma 4.2.2, we have:

FE;oE, = (@H)Oﬂ'l@alo(@Qi)Oﬂ'Q@aQ

i<n <m
D2i2'2 <®PZ> O7Tl®0é/1®0/110 <®Q1) 0Ty & (g
<n i<m
b1LOLO0 (((@ Pi) ® idy;) o (m ®idy;) o (®(id ®ay,)oQi)o 7T2> @ (af o az)
i<n <m
v (((@ R-) ® idylf> o <®(id @al ,)e Qmm) o7 0 m) @ (af 0 as)
i<n i<m

: <<<®PZ> ®a/1> ’ <® Qm(i)) °m OW?) ® (af o ag)

whereT, is m; pushed througi®, _,,, Qi, anda) = &Q);,, a1, = Q;.,, @1, Provable by completeness of link
expressions. By Lemma 4.8.3, this expression is provably equal to a DBDNF.

Consider (2); by (3) we know that £ = D, whereD is a DBDNF. But asD is prime, we have: = 1 and
a = ide, and as a permutation is an iso, by Lemma 4.8.2, we are done.

For case (1), we note that by (2) we have thak = P, a name-discrete prime. Knowing thBtdenotes a free
discrete molecule the expression collapses, i.e., we have-tiat= (()((merge; ® idy) o M o 7), whereM is a
MBDNF. By axioms for abstraction and ions; the definitionmeérge; and Lemma 4.8.2, we see thattl = M’, an
MBDNF.

Case 4 follows from (3) and Proposition 4.6.4. O

4.9 Completeness

Finally, we are able to state the formal completeness proposition, using our results for linear expressions to bridge the
gap to the full binding bigraph term language.

Not surprisingly, the proofs are similar to the ones for pure bigraph expressions [Mil04, Prop. 5.13 and Theorem
5.14], as we have laboured to establish properties, forms, and axioms that allow us similar manipulations.

Proposition 4.9.1(Linear completeness)f £ and E’ are linear expressions andl = E’, then+ E = E'.

Proof. (Sketch

As we have established correspondence between each level of BDNF form and each level of Proposition 3.2.1, we
proceed by case analysis on the form of bigraph B\éand hence’) denotes. A< is linear, it is either a molecule,
a name-discrete prime, or a name-discrete bigraph.

By induction onn — the number of ions iy andE’. We assume that the proposition holds for less théns.

Case(Free discrete molecule)f E andE’ with n ions denote a free, discrete molecule, then by Proposition 4.8.4(1),
and Proposition 3.2.1(1) we have MBDNFs, s.t.,

FE = (Kg(g)®idz)oP
FE = (Kﬂ()g,) ®idz)o P'.
By an application of axiom (N2), and a little rearranging (mainly by (C1), and (C6)) we see that

N2,C1,C6

- E (K ) ®@idz) o (X)/(X') ®@idz) o P,

and= ((X)/(X') ® idz) o P! = P. By the induction hypothesis the latter is provable, and we are done.
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Case(Name-discrete prime)E andE’ with n ions denote a name-discrete prime.
We have, by Proposition 4.8.4(2), and Proposition 3.2.1(2), provable PBDNFs:

FE = (Yg) | (merge,, , ®idy)o ®(aj ®id)) o "X, | ® ® M;|om
j<m i<k
FE = (Yp) (mergem+k, ® idy) ) ®(a; ®idy) o "X]’j ® ®Ml’ on |,

j<m <k

where renamings, concretions, molecules and permutations respect the conditions as specified in Proposition 3.2.1(2).
As each underlying molecule contains no more thdons, by the case for molecules, we have that eaglcorre-

sponds tal/; for somei andj, except for ordering of sites. With the help of Lemma 4.2.2, by the requirements upon

m, andz’, we are able to conclude that the two PBDNFs are equal, and hende fhat £’.

Case(Any name-discrete)Consider now the case wheFg E’ with n ions denote any name-discrete bigraph. Then
by Proposition 4.8.4(3), and Proposition 3.2.1(3) we have provable DBDNFs:

<®Pi07r> ®a

<m

<® P ow’) ®a,

i<m

FE

FE

where there exists permutatiops (i € n), st. P/ = P,op;, and(pg ® ... ® pp—1) o’ = « (and P;, P/ are
PBDNFs).

Both these requirements are provable (by Lemma 4.8.2 and completeness for permutation expressions, respec-
tively) so by a few simple applications of (C6) we see thdf = E’.

O
Theorem 4.9.2(Full completeness)For any expression& and &', if G = G', then- G = G'.

Proof. (Omitted (Follows straightforwardly from linear completeness. Proposition 4.8.4, case 4 and Proposition
3.2.1, case 4 yields a few equations which are provable by the earlier completeness results.) O
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