
Axiomatizing Binding Bigraphs (revised)

Troels Christoffer Damgaard
Lars Birkedal

This work was funded in part by the Danish Research Agency (grant
no.: 2059-03-0031) and the IT University of Copenhagen (the LaCoMoCo
project).

IT University Technical Report Series TR-2005-71

ISSN 1600–6100 11 2005

Copyright c© 2005, Troels Christoffer Damgaard
Lars Birkedal

IT University of Copenhagen
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

ISSN 1600–6100

ISBN 87-7949-105-7

Copies may be obtained by contacting:

IT University of Copenhagen
Rued Langgaards Vej 7,
DK-2300 København S
Denmark

Telephone: +45 72 18 50 00
Telefax: +45 72 18 50 01
Web www.itu.dk

Axiomatizing Binding Bigraphs (revised)

Troels Christoffer Damgaard
Lars Birkedal

Abstract

We axiomatize the static congruence relation for binding bigraphs and prove that the generated theory is complete.
In doing so, we also define a normal form for binding bigraphs, and prove that it is unique up to certain isomorphisms.

Our work builds on Milner’s axioms for pure bigraphs. We have extended the set of axioms with 5 new axioms
concerned with binding. Moreover, we have altered Milner’s axioms for ions, because ions in binding bigraphs have
names on both their inner and outer face. The remaining axioms from Milner’s axiomatization are transfered straight-
forwardly.

Preliminary Remarks

We assume familiarity with pure and binding bigraphs as described in [HM04] and with Milner’s axiomatization of
pure bigraphs [Mil04].

Acknowledgements We thank all members of the BPL group at the IT University of Copenhagen for enthusiastic
support during the work on this report.

2

Chapter 1

Introduction

We aim to extend the axiomatization of pure bigraphs given in [Mil04] to binding bigraphs as defined in [HM04,
Chapter 11]. In other words we wish to specify a sufficient set of axiomatic equalities s.t. all valid equations between
between (binding) bigraph expressions are provable in the generated theory.

In Chapter 2 we define a set of elementary bigraphs, which – considered as expressions – will serve as the set of
expression constants. In choosing this set, we elect to simply extend the elementary forms for pure bigraphs with a
simple variant ofconcretion, and to take a slightly more complex variant of thefree discrete ionallowing multiple
local inner names to be bound to the same binding port. Furthermore, we extendswapbigraphs trivially, in order to
make them able to swap sites with local names. The set of expressions in the binding bigraph term language consist
of terms built by composition, identities, tensor product, andabstraction, from this set of constants.

We have adjusted the ion-construct because we wish to treat bound and global linkage in as much the same way,
as possible. In particular, the adjustment allows us to base our normal form on a variant of discreteness termed
name-discreteness. For a further discussion of the rationale behind our choices, see the definition of binding ion in
Section 2.5, and Section 3.1.

In Chapter 3 we formally define the term language and four particular forms of expressions, which jointly will
define four levels of a binding discrete normal form (BDNF) for binding bigraphs. Apart from the obvious result – that
we can produce a BDNF expression for any bigraph – we shall prove that at each level BDNF-expressions are unique
up to certain isomorphisms. This will be helpful in proving our axiomatic theory complete.

In Chapter 4 we address the main problem of specifying and proving a set of axioms complete for the binding bi-
graph term language. We follow the same approach as in [Mil04], and prove the theory complete for several subclasses
of bigraphs before we turn to full completeness.

In particular, we definelinearity – a simple restriction on the term language disallowing nonlinear substitutions –
and prove that it is a syntactic analogue of name-discreteness. Linearity is also useful in proving the theory complete
for ionfree expressions.

Finally, in Section 4.9, we prove full completeness as a corollary of linear completeness.

1.1 Notation and terminology

To ease the notational burden for the reader who has read some or both of [HM04] or [Mil04], with a few exceptions,
we use the same notation for bigraphs and expressions.

A notable exception from this principle is that we use a slightly shortened form for the underlying set-theoretic
definition of bigraphs in that we inline the parent and link maps. Specifically, we define a bigraphG (over a signature
K) as

G = (V,E, ctrl, prnt, link) : 〈m, ~X,X〉 → 〈n, ~Y , Y 〉,

3

whereV andE are, as usual, finite sets of nodes and edges andctrl : V → K is the control map mapping a control
to each node.prnt is theparent map, andlink is the link map (see [HM04] for the full definitions). The binding
interfaces are as usual [HM04, Chapter 11].

Further, we shall use either of the following notation for iterated tensor product:
⊗

i<n Pi =
⊗

i∈n Pi = P0 ⊗
P1⊗. . .⊗Pn−1 (treatingn as an ordinal). The identity for tensor isidε; thus, an iterated tensor productP0⊗. . .⊗Pn−1

equalsidε in casen = 0. When writing expressions such as these, composition binds tighter than tensor product, and
abstraction(Y)P and

⊗
binds as far right as possible.

We shall need notation for ports on nodes with binding controls to precisely specify concrete link maps. For a
nodev with controlK : b → f , we letpv

0, . . . , p
v
f−1 denote thefreeports ofv, andpv

(0), . . . , p
v
(b−1) denote thebinding

ports ofv.
Given a vector of disjoint name sets~Y , we write{~Y } to denote the disjoint union of the sets in the vector, i.e.,

{~Y } def=
⊎

i∈|~Y |
~Y [i].

Last, in the remainder of this paper bigraph (unqualified) means “binding bigraph”.

1.2 Variants of discreteness

We shall need to consider and distinguish several forms ofdiscreteness, which we define below.

Definition 1.2.1(Variants of discreteness).

• We say that a bigraph isdiscreteiff every free link is an outer name and has exactly one point.

• A bigraph isname-discreteiff

– Every free link is an outer name and has exactly one point.

– Every bound link is either an edge, or (if it is an outer name) has exactly one point.

• A bigraph is inner-discrete iff every inner name has exactly one peer.

Note that name-discreteimplies discrete. Discreteness and name-discreteness share several nice properties.

Lemma 1.2.2. If A andB are discrete, thenA⊗B, (Y)A, andA ◦B are also discrete.
Same for name-discrete bigraphsA andB.

Proof. Follows easily from the definition of composition for link maps (see Definition 8.3 in [HM04]).

4

Chapter 2

Elementary bigraphs

In the following section we present the elementary forms we intend to use as a basis for a binding bigraph term
language.

In this paper we considerabstractbigraphs; equivalence classes oflean-supportconcrete bigraphs ([HM04]). In
other words, we axiomatize static equivalence of bigraphs up to renaming of nodes and edges, and disregarding idle
edges.

To define the elementary forms precisely, though, we give definitions in the form ofconcretebigraphs. Further,
in proving properties of binding bigraphs, it shall be helpful sometimes to give names to vertices and edges. To be
precise, any concrete form we give, is actually arepresentativeof an equivalence class of concrete bigraphs, which is
an abstract bigraph with idle edges discarded and node- and edge-identities forgotten.

2.1 Placings

We define three kinds ofplacings, corresponding closely to the placings defined for pure bigraphs in [Mil04]:

Definition 2.1.1(Placings). We define thebarren root1, themerge bigraph, and theswap bigraphγm,n,(~X0, ~X1)

1 def= (∅, ∅, ∅, ∅, ∅) : 〈0, (), ∅〉 → 〈1, (∅), ∅〉

merge def= (∅, ∅, ∅, {0 7→ 0, 1 7→ 0}, ∅) : 〈2, (∅, ∅), ∅〉 → 〈1, (∅), ∅〉

γm0,m1,(~X0, ~X1)

def= (∅, ∅, ∅, prnt, IdX0]X1) :

〈m0 + m1, ~X0
~X1, { ~X0}] { ~X1}〉 → 〈m1 + m0, ~X1

~X0, { ~X0}] { ~X1}〉

whereprnt = {0 7→ m0, . . . ,m1 − 1 7→ m1 + m0 − 1,m1 7→ 0, . . . ,m0 + m1 − 1 7→ m0 − 1}, and| ~Xi| = mi.

We note that1 andmerge are defined exactly as for pure bigraphs, but the swap bigraphγm,n,(~X0, ~X1)
has been

redefined and extended. Compared to the swap bigraph defined for pure bigraphs, when definingγm,n,(~X0, ~X1)
, we have

to decide how (or whether) to take care of local names. Each site might have a number of local names.γm,n,(~X0, ~X1)
simply lets the local names follow the site they stem from (in the only way allowed by the scope rule).

The swap bigraphs are used for generatingpermutations, a subclass of isomorphisms with which we can permute
the ordering of the components in a bigraph by composition.

More formally, with regard to Proposition 9.2b of [HM04], we define:

Definition 2.1.2(Permutation). Given a permutationπ on numbers{0, . . . ,m−1}, abigraph permutationπ is an iso

π = (∅, ∅, ∅, π, Id{ ~XB}]XF
) : 〈m, ~XB , { ~XB}]XF 〉 → 〈m,π(~XB), { ~XB}]XF 〉

5

which combines the permutationπ on the place graph1, with anId on the names{ ~XB}] XF , andπ applied to the
locality-vector ~XB . In particular note that this way of mapping the local names, is the only way to makeπ respect the
scope rule(see [HM04, Chapter 11]).

In every composition where a permutation is used, the sets of local names that are moved around are given from
the context. When the name sets are known, permutations are fully specified by their underlying permutation map, so
in the following we overload the meaning of the symbolsπ andρ, and let these symbols range both over the underlying
number permutations, and over bigraph permutations given by these number permutations.

Using placings we can express permutations in many ways. In particular, it can be shown that any permutation can
be expressed as the tensor product of a composition of swappings and a global identity on names.

To state the axioms succinctly in the following we extend the swappings to all interfaces:

Definition 2.1.3(Extended swapping).

γI0,I1

def= γ
m0,m1,(~X0

B , ~X1
B)
⊗ idX0

F
⊗ idX1

F
,

whereIi = 〈mi, ~Xi
B , { ~Xi

B}]Xi
F 〉.

Now we can state the proposition hinted at above.

Proposition 2.1.4(Any permutation is a product of swappings). Any permutationπ : 〈l, ~XB , { ~XB}] XF 〉 →
〈l, π(~XB), { ~XB}] XF 〉 can be expressed as a finite number of compositions of products of extended swaps:

π = κ0 ◦ . . . ◦ κp−1 for somep,

and, for all i ∈ {0, . . . , p− 1}, there existsk, s.t.

κi =
⊗
j<k

γIj
i ,Kj

i
,

where
Ij
i = 〈mj

i ,
~
Zj

i , { ~
Zj

i }]XF 〉 , Kj
i = 〈nj

i ,
~
U j

i , { ~
U j

i }〉,
and ∑

j<k

mj
i + nj

i = l ,
⊎
j<k

{ ~
Zj

i } =
⊎
j<k

{ ~
U j

i } = { ~XB}.

We definemergei inductively as for pure bigraphs:

Definition 2.1.5. For allm ≥ 0, let

merge0
def= 1,

mergem+1
def= merge ◦ (id1 ⊗mergem).

2.2 Linkings

For globallinkingswe transfer the constructs for pure bigraphs directly.

Definition 2.2.1(Linkings). We define theclosure/x of a namex, and thesubstitutiony/X as follows

/x
def= (∅, {e}, ∅, ∅, {x 7→ e}) : 〈0, (), {x}〉 → 〈0, (), ∅〉

y/X
def= (∅, ∅, ∅, ∅, {x0 7→ y, . . . , xk 7→ y}) : 〈0, (), X〉 → 〈0, (), {y}〉

whereX = {x0, . . . , xk}.
1We simply let the permutation map, which consists of mappings likei 7→ j, be theprnt component.

6

Note that a substitution need not be surjective (i.e.,X = ∅ is possible); thus the dual of closure – name introduction
y : ε → y – is a substitution.

We define the following derived forms:

Definition 2.2.2(Derived linkings).

• A wiring is a bigraph with zero width (and hence no local names) generated by composition and tensor of/x
andy/X.

• ForX = {x0, . . . , xk−1} andk > 0 we define amultiple closure/X as/x0 ⊗ . . .⊗ /xk−1.

• For~y = y0, . . . , yk−1, k > 0, and disjoint setsX0, . . . , Xk−1 we define amultiple substition

~y/ ~X
def= y0/X0 ⊗ . . . ⊗ yk−1/Xk−1.

• A renamingis a bijective (multiple) substitution, i.e., eachXi above is of cardinality 1.

As in [Mil04] we let ω range over wirings,σ range over (multiple) substitutions andα andβ range over renam-
ings. Often we do not distinguish notationally between a name and the singleton set containing the name. With this
conventiony/x is a renaming when~y = y0, . . . , yk−1 and~x = x0, . . . , xk−1, for somek.

2.3 Concretions

We define asimple concretionas a discrete prime which maps a setX of local inner names severally to equally named
global names. In other words, it globalizes all its local inner names. Formally:

Definition 2.3.1. Given a set of namesX, asimple concretionis

pXq
def= (∅, ∅, ∅, Id0, IdX) : 〈1, (X), X〉 → 〈1, (∅), X〉.

(Note that a special case of a simple concretion isid1 = p∅q.)
This bigraph is referred to as asimpleconcretion, to signify thatconcretionsG : 〈1, (X] Y), X] Y 〉 →

〈1, (Y), X]Y 〉 as it is defined in [HM04] ranges over a larger class of bigraphs, which globalizes asubsetof its local
inner names. As simple concretions are primes, general concretions can be generated by localizing a subset of the
names that the simple concretition globalizes by using anabstraction, see Definition 2.4.2 in the following.

2.4 Abstractions

Abstraction is a construction defined for every primeP . Formally:

Definition 2.4.1. For every primeP = (V,E, ctrl, prnt, link) : 〈m, ~Z, {~Z}〉 → 〈1, (YB), Y 〉, let

(X)P def= (V,E, ctrl, prnt, link) : 〈m, ~Z, {~Z}〉 → 〈1, (YB]X), Y 〉,

whereX ⊆ Y \ YB .

We say that(X)P is anabstractiononP .
An abstraction binds a subsetX of the global names ofP in the resulting bigraph. (Note that the scope rule is

respected since the inner face ofP by definition is required to be local asP is prime). This definition of abstraction is
exactly as in [HM04]. Abstractions can be seen as the dual to concretions, and the axioms concerning abstraction and
concretion reflect this (see Table 4.1).

Using abstraction we can express concretions in the sense of [HM04]. As we will need them later, we introduce a
special notation to distinguish such concretions from the simple ones

Definition 2.4.2. We define a concretionpY qX : 〈1, (X] Y), X] Y 〉 → 〈1, (X), X] Y 〉 in terms of a simple
concretion and abstraction as

pY qX def= (X) pX] Y q.

7

As a special case of concretions we get local identities:id(X) = (X) pXq, and with the help of linkings we get
local wirings— bigraphs that by composition can change the linkage of local names.

Definition 2.4.3(Local wiring). We define alocal renaming(for vectors of names~y and~x, s.t. |~y| = |~x|) by

(~y)/(~x) def= (~y)((~y/~x⊗ id1) ◦ p~xq).

We extend this notation to multiple substitutions, and define

(~y)/(~X) def= (~y)((~y/ ~X ⊗ id1) ◦ p{ ~X}q).

It is worth pointing out, that just as plain substitutions can introduce idle global names (e.g.y/∅), local substitutions
can introduce idle local names (e.g.(y)/(∅)).

We extend the naming convention for global renamings and substitutions, and letαloc andσloc range over local
renamings and substitutions, respectively. Further, towards stating the axioms succinctly, we shall need toapply a
local substitutionσloc to a vector of namesets~X. Formally:

Definition 2.4.4 (Applying a local wiring). Let σloc
u be the function underlyingσloc. Wlog. assume thatσloc =

(~u)/(~Z); thenσloc
u = [. . . , Z0

i 7→ ui, . . . , Z|Zi| 7→ ui, . . .].
Defineσloc(X) to be the imageσloc

u (X).
We defineσloc(~X) as the vector of namesets resulting from applyingσloc pointwise to each set in~X.

We can generate all isomorphisms in the precategory of binding bigraphs using permutations, renamings, and local
renamings (cf. [HM04, Proposition 9.2b])

Proposition 2.4.5. Every binding bigraph isomorphism,ι : 〈m, ~Z, {~Z}] U〉 → 〈m, ~X, { ~X}] Y 〉 (of widthm)
can be expressed in the following form

ι = (π ⊗ α) ◦ (ν0 ⊗ . . .⊗ νm−1 ⊗ idU)

where these requirements hold:

• m = | ~X| = |~Z|,

• α : U → Y ,

• ∀i ∈ m : νi = (~xi)/(~zi) for ~X = ({ ~x0}, . . . , { ~xm−1}), and ~Z = ({~z0}, . . . , { ~zm−1}).

2.5 Binding ion

We define a variant of ions for binding bigraphs.

Definition 2.5.1. For a non-atomic controlK : b → f ∈ K, let ~y be a sequence of distinct names, and~X a sequence
of sets of distinct names. LetX = { ~X} andY = {~y}, s.t. | ~X| = b and|Y | = f .

Thebinding ionK~y(~X) : 〈1, (X), X〉 → 〈1, (∅), Y 〉 is a prime bigraph with a single node of controlK with free
ports linked severally to global outer names~y, and each binding porti ∈ b linked to all local inner names inXi.

Formally, we define a concrete binding ion as:

K~y(~X)

def= ({v}, {e0, . . . , eb−1}, {v 7→ K}, {0 7→ v, v 7→ 0}, link) :

〈1, (X), X〉 → 〈1, (∅), Y 〉,
where

link =


pv
(i) 7→ ei

pv
i 7→ yi

x 7→ ei for all x ∈ Xi

8

This form of ion is a straightforward generalization of thefree discrete ionas defined in [HM04, Chapter 11];
indeed when every set inX is a singleton, thenK~y(~X) is a free discrete ion. When~X = ({x0}, . . . , {xb−1}), we
overload our notation and writeK~y(~x) to mean a free discrete ion.

Vice versa, using local wiring wecouldexpress a binding ion as a derived form:

K~y(~X) = K~y(~z) ◦ (~z)/(~X).

But we shall not do so, as it will be helpful to take the slightly more complex binding ion as a constant, when stating
the axioms and proving completeness of the derived theory. From the definition it is immediate that both constructs are
discrete (and free), but we will exploit that binding ions are notinner-discrete(free discrete ions are inner-discrete).
For a further discussion of this topic, see Section 3.1.

Definition 2.5.2. For any name-discreteprimeP : I → 〈1, (X), X] Z〉 and ionK~y(~X), we define afree discrete
moleculeas

M
def= (K~y(~X) ⊗ idZ) ◦ P : I → 〈1, (∅), Y] Z〉

with Y = {~y}.

Note that even though we use the more general ion-construct in the definition above, our definition of free discrete
molecule is equal to the one given in [HM04, Chapter 11], in the sense that it captures the same set of bigraphs.

SinceP is discrete and prime it is easily seen thatM is also discrete and prime. In fact,

Proposition 2.5.3. A free discrete moleculeis a name-discrete, prime bigraph with a single outermost node.

This relies on the fact that both name-discreteness and discreteness is preserved under composition and tensor
(Lemma 1.2.2). Further, every free discrete bigraph is also name-discrete.

Vice versa,

Proposition 2.5.4. Any free discrete prime bigraph with a single outermost node is a free discrete molecule.

For nodes of atomic control, we adopt the discrete free atom of [HM04]. We shall not concern ourselves particu-
larly with atoms, though, as they have no internal structure and no binding ports. As a consequence we can express
them asK~y() ◦ 1.

2.6 Concluding remarks

Comparing the elementary forms above with the elementary forms for pure bigraphs given in [Mil04], we have intro-
duced two new formsabstractionsandconcretions, and modified two constructs,swap’s andionsto handle local inner
names.

For ease of reference, we have collected an overview of all eight elementary forms into Table 2.1.
In this table and in the following sections we allow ourselves to use more of the shorthands for interfaces introduced

in [HM04].

9

Placings
1 : ε → 1 a barren root

merge : 2 → 1 map two sites to one root
γm0,m1,(~X0, ~X1)

: 〈m0 + m1, ~X0
~X1, X0]X1〉 →

〈m1 + m0, ~X1
~X0, X0]X1〉 swapm0 with m1 places (with local names)

Linkings
/x : x → ε closure of single name

y/X : X → y substitution for allx ∈ X : x 7→ y

Concretions
pXq : (X) → 〈X〉 a (simple) concretion

Abstractions
(X)P : I → 〈(X] Y), Z〉 abstraction on a primeP : I → 〈(Y), Z〉

(X] Y ⊆ Z)

Ions
K~y(~X) : ({ ~X}) → 〈Y 〉 a binding ion

Table 2.1: Elementary forms

10

Chapter 3

A term language and a normal form

We define a term languageBBexp, for binding bigraphs: terms are built by composition, tensor product, identities and
abstraction (on primes) from the constant forms specified in Table 2.1.

3.1 A note on discreteness

We intend to construct a normal form for bigraph expressions based on a variant of discreteness. To prove completeness
for an equational theory overBBexp, we shall formulate and prove syntactic analogues to the normal forms, we first
establish semantically below.

Moreover, it will be useful to formulate a simple inductive property on expressions that characterizes syntactic
discreteness. For binding bigraphs simple discreteness does not seem to lend itself directly to this purpose. By
composing with concretions and using abstractions, we can construct a nondiscrete bigraph from a discrete, and vice
versa.

Consider a discrete bigraphD with width n. (
⊗

i<npXiq)D is not discrete, ifD is not name-discrete. Given a
nondiscrete primeP : I → 〈(X), X] Y 〉, (Y)P : I → (X] Y) is discrete.

We conjecture that discreteness is not an inductive property for binding bigraphs. Hence, we turn to name-
discreteness.

Recall that a bigraph is name-discreteif every free link is an outer name and has exactly one point, every bound link
is either an edge, or (if it is an outer name) has exactly one point. This is a simple specialization of the discreteness
property.

We have defined name-discreteness, to impose nearly the same level of constraints on local linkage and global
linkage. As a consequence, it is easy to verify that both abstraction and composition with concretions preserves both
name-discreteness and non-name-discreteness.

name-discreteness still allows arbitrary wiring ofboundedges, though. Exactly for that reason, we have chosen to
take the binding ion as a constant in our term language. Syntactically, this allows us to restrict the usage of substitutions
to define a simple inductive property that characterizes name-discreteness. We simply use the binding ion, and the fact
that it is not inner-discrete to add arbitrary bound linkage.

3.2 BDNF

We proceed by defining four forms of bigraphs that generate all bigraphs uniquely up to certain specified isomor-
phisms. Based on the considerations above, the normal form is based on name-discrete forms.

Proposition 3.2.1(Binding discrete normal form).

11

1. Any free discrete moleculeM : I → 〈1, (∅), {~y}] Z〉 can be expressed as

M =
(
K~y(~X) ⊗ idZ

)
◦ P

whereP : I → 〈1, (X), X] Z〉 is a name-discrete prime.

Any other such expression forM takes the form(
K~y(~X′) ⊗ idZ

)
◦ P ′

where the following requirements hold:
There exists a local renamingαloc : ({ ~X ′}) → ({ ~X}) s.t.

• K~y(~X) ◦ αloc = K~y(~X′), and

• P = (αloc ⊗ idZ) ◦ P ′.

2. Any name-discrete primeP : I → 〈1, (YB), Y 〉 may be expressed as

P = (YB)
((

mergen+k ⊗ idY

)
◦ ((α0 ⊗ id1) ◦ pX0q⊗ . . .⊗ (αn−1 ⊗ id1) ◦ pXn−1q⊗M0 ⊗ . . .⊗Mk−1) ◦ π

)
where everyMi : Ji → 〈1, (∅), Y M

i 〉 is a free discrete molecule, everypXiq is a simple concretion, andπ is a
permutation.

The renamingsαi have the interfaces :Xi → Y C
i , where

⊎
i∈n Y C

i]
⊎

Y M
i = Y

Any other such expression forP takes the form

(YB)
((

mergen+k ⊗ idY

)
◦
(
(α′

0 ⊗ id1) ◦ pX ′
0q⊗ . . .⊗ (α′

n−1 ⊗ id1) ◦ pX ′
n−1q⊗M ′

0 ⊗ . . .⊗M ′
k−1

)
◦ π′

)
where the following requirements hold:

• There exist permutationsρ, ρi (i ∈ k), ρ′, s.t.

– (α′
0 ⊗ id1) ◦ pX ′

0q = (αρ(0) ⊗ id1) ◦ pXρ(0)q

– M ′
i = Mρ(i) ◦ ρi,

– (id(X′
0)
⊗ . . .⊗ id(X′

n−1)
⊗ ρ0 ⊗ . . .⊗ ρk−1) ◦ π′ = ρ′ ◦ π.

• Furthermore, let~l denote the vector of inner widths of the product
((α0 ⊗ id1) ◦ pX0q⊗ . . .⊗ (αn−1 ⊗ id1) ◦ pXn−1q⊗M0 ⊗ . . .⊗Mk−1), let ~X ′ = (X ′

0, . . . , X
′
k−1),

and let ~X = (X0, . . . , Xn−1).

Thenρ′ is determined uniquely byρ,~l, ~X, and ~X ′ asρ′ = ρ~l, ~X′ ~X as defined in Lemma 4.2.2.

3. Any name-discrete bigraphD (of outer widthn) can be expressed as

D = ((P0 ⊗ . . .⊗ Pn−1) ◦ π)⊗ α

where everyPi is a name-discrete prime,α is a renaming, andπ is a permutation.

Any other such expression ofD takes the form((
P ′

0 ⊗ . . .⊗ P ′
n−1

)
◦ π′

)
⊗ α

where there exists permutationsρi, (i ∈ n), s.t.P ′
i = Pi ◦ ρi, and(ρ0 ⊗ . . .⊗ ρn−1) ◦ π′ = π.

12

4. Any bigraphG : I → 〈n, ~YB , { ~YB}] YF 〉 can be expressed as

G =

(⊗
i<n

(~yi)/(~Xi)⊗ ω

)
◦D

whereD : I → 〈n, ~X, { ~X}]Z〉 is name-discrete,ω : Z → YF is a wiring, and
⊗

i<n(~yi)/(~Xi) : (~X) → (~YB)
is a local substitution of widthn on the bound names ofD.

Any other such expression ofG takes the form(⊗
i<n

(~yi)/(~X ′
i)⊗ ω′

)
◦D′

where there exists a renamingα s.t. ω′ = ω ◦ α, and n local renamingsαloc
i : (~X ′

i) → (~Xi), s.t.⊗
i<n(~yi)/(~Xi) ◦

⊗
i<n αloc

i =
⊗

i<n(~yi)/(~X ′
i), and

(⊗
i<n αloc

i ⊗ α
)
◦D′ = D.

Furthermore, for every class of expressions the given BDNF-expression is well defined and generatesonly bigraphs
of the appropriate type.

In the following section we go into detail with a few of the parts of the proof of Proposition 3.2.1.

13

3.3 Proof of Proposition 3.2.1

There are three properties to prove for each part of the proposition.

only That the given BDNF-expression is well defined and generatesonlybigraphs of the appropriate type.

all That the given BDNF-expression generatesall bigraphs of the appropriate type.

uniquenessThat all BDNF-expressions generated by a form differ only by certain simple properties, i.e., that the given
BDNF-expression is unique up to certain isomorphims on subcomponents.

3.3.1 Proof of Proposition 3.2.1, case 1

For theall andonlypart, we simply note that the definition of a free discrete molecule (see Definition 2.5.2) is exactly
the chosen BDNF expression for this form.

Now consider some other BDNF-expression forM :

(K ′
~y′(~X′)

⊗ idZ′) ◦ P ′,

whereP ′ has the outer face〈({ ~X ′}), { ~X ′}] Z〉.
By Proposition 2.5.3,M must have a single outermost node with controlK. We concludeK ′ = K.
Furthermore, we have to match the outer face〈Y] Z〉 of M . This requires us to have~y′ = ~y andZ ′ = Z. Also,

K ′ = K implies| ~X ′| = | ~X|, as in particular the binding arity is equal.
A simple analysis on the place graphs and linkage upon edges ofP andP ′ allows us to establish a candidate

local renamingαloc — using in particular that, asP andP ′ are name-discrete the free ports and inner names stand
in one-one correspondence with their outer names; and that the two expressions thatP andP ′ appear in denote the
same bigraph (M). We find thatVP = V ′

P , ctrlP = ctrl′P , prntP = prnt′P ; and (considering linkage)EP = E′
P and

also their link maps restricted to bound ports are equal. We deduce that there exists (global and local) renamings s.t.
P = (αloc ⊗ β) ◦ P ′ — exactly becauseP andP ′ are name-discrete.

Now by equational reasoning:

M = (K~y(~X′) ⊗ idZ) ◦ P ′

= (K~y(~X) ⊗ idZ) ◦ P

= (K~y(~X) ⊗ idZ) ◦ (αloc ⊗ β) ◦ P ′.

If the single root ofP ′ is barren, then both renamings are trivially empty, and~X = ~X ′ must be vectors of empty sets;
else,P ′ is epi, and using distributivity of the tensor product, we see that

K~y(~X′) ⊗ idZ = K~y(~X) ◦ (αloc ⊗ (idZ ◦ β)

From this, we immediately conclude thatβ = idZ andK~y(~X′) = K~y(~X) ◦ αloc and we are done.

3.3.2 Proof of Proposition 3.2.1, case 2

Recall that a name-discrete prime is a bigraphP that satisfies the following conditions:

• P has outer width 1 (prime)

• P has onlylocal inner names (prime)

• every link ofP is either an outer name with exactly one point or a bound edge (name-discrete).

14

The prime conditions can be checked directly by looking at the interface;P must have the interface〈m, ~Z, Z〉 →
〈1, (U), U]Y 〉. Not so for the name-discreteness constraint, since this is a property of the link graph and the controls
of ports of vertices inP .

We first look at theonly part of the proof, and check each of the conditions above against the expression stated in
Proposition 3.2.1, case 2.

Outer width 1 Consider just the place graph generated by the given BDNF-expression. By definition ofmergen+k (see Defin-
ition 2.1.5) then + k roots of the molecules and concretions are merged into 1 single root by the composition
with themergen+k element. The identityidY only works on the link graph, and the abstraction(YB) just works
as an identity on the place graph.

We conclude that any bigraph generated by the given BDNF-expression has a single root, i.e., an outer width of
1.

Local inner faceBy Definition 2.1.2, a permutation has a local outer face iff it has a local inner face. In this case the permutation
π is composed from the left with a product of molecules and concretions.

All free discrete molecules and concretions have local inner faces (by Proposition 2.5.3 and Definition 2.3.1),
and since a product of bigraphs with local inner faces is easily seen to also have a local inner face, we conclude
thatπ, and hence alsoP , must have a local inner face.

Name-discreteEvery single component ofP is name-discrete, and since name-discreteness is preserved by composition and
tensor,P is also name-discrete.

For theall part, we are given an arbitrary name-discrete prime

G = (V,E, ctrl, prnt, link) : 〈m, ~Z, {~Z}〉 → 〈1, (UB), UB] UF 〉.

By decomposingG into progressively smaller components, we show that it is possible to construct a BDNF for
any name-discrete prime.

First, we construct thefreediscrete1 primeGf

Gf = (V,E, ctrl, prnt, link) : 〈m, ~Z, {~Z}〉 → 〈1, (∅), UB] UF 〉.

By Definition 2.4.1, it is immediate that we can recreateG from Gf by an abstraction(UB), i.e., (UB)Gf = G.
The constituent parts of the 5-tuple ofG andGf are equal since abstraction only works on the interfaces.

Deconstruction ofGf into free prime components

We now considerGf . As it is prime the place graph is a tree. The immediate children of the root are a number of
nodes and sites. In the following letTv denote the toplevel nodes:Tv = {v | v ∈ V ∧ prnt(v) = 0}, andTs the
top-level sites:Ts = {i | i ∈ m ∧ prnt(i) = 0}.

Gf is constructed to be free and discrete, so we know that there is no linkage between the components. In particular,
as there are no binders on the outer face, the scope rule ensures us that all links with binders are contained within the
top-level nodes.

We will deconstructGf into a number of free, prime and discrete bigraphs, each one of them containing one of the
toplevel components fromTs] Tv together with all its internal structure. For eachi, Gmi will contain a toplevel node
v ∈ Tv and all its substructure, and for eachi, Gci will contain a toplevel sites ∈ Ts.

From these components we will construct a bigraph expression forGf with the help of products, permutations and
merging.

The expression we construct will yield a bigraph that is equal toGf up to reordering of the sites. We will comment
briefly on site (re)ordering first, and then turn to the actual construction.

1Recall that for bigraphs, name-discreteness and discreteness are equal properties.

15

Handling ordering of sites Recall that in the productGA ⊗GB of two bigraphsGA andGB we loose the original
ordering of the sites (see Definition 7.5 [HM04]). So, to reconstruct a particular given site ordering, we have to
somehow recapture this structure; but it is easy, as we know we can produce any permutation of sites by composing
from the right with a permutationπ. We simply have to give the permutation mapπ.

To this end, and to specify into which components local names of sites inGf should go, we will sometimes need
to talk about theoriginal site number of sites in the components we construct.

Formally, we define, for eachvi ∈ Tv, Si = {s | s ∈ m ∧ prntk(s) = vi ∧ k > 0}. We will useSi together with
Tv to specify which sites will go in eachGmi that we construct below.

When performing the deconstruction ofGf below, we can simply note the original site numbers of sites inSi and
the toplevel sites inTs. (Recall, that we aregivenG and have ourselves constructedGf , so by simple inspection we
have this information available.)

For ease of notation, we will sometimes treatTs andSi as maps defined on|Ts| and|Si| respectively. The intention
is (usingSi as an example) for a given number of a site inGmi the map should return the number of the corresponding
site inGf .

With the help of these maps it is not too hard to constructπ.

Construction of an expression for each toplevel component

Toplevel sites For each of the sites inTs we constructGci in the following way

∀i ∈ |Ts| : Gci = (∅, ∅, ∅, Id0, linkci) : 〈1, (Xi), Xi〉 → 〈1, (∅), Uci〉,

whereXi = ZTs(i), i.e., the names local to the corresponding site inGf , and linkci is a bijection betweenXi

andUci . We have also that
⊎

i∈|Ts| U
ci ⊆ UB] UF . By comparing with Definition 2.3.1 and 2.2.2, we see that

Gci = (αci ⊗ id1) ◦ pZTs(i)q – a simple concretion with its outer names (possibly) renamed.

Toplevel nodes For each of the toplevel nodesvi in Tv we aim to define a free discrete moleculeGmi , i.e.,

∀i ∈ |Tv| : Gmi = (V mi , Emi , ctrlmi , prntmi , linkmi) : 〈mi, ~Z ′
i, { ~Z ′

i}〉 → 〈1, (∅), Umi〉

For the place graph components, we restrict the place graph ofGf accordingly:

mi = |Si| ,

V mi = {v | v ∈ V ∧ prntk(v) = vi ∧ k ≥ 0} ,

ctrlmi = ctrl ↓ V mi ,

∀x ∈ V mi]mi : prntmi(x) =
{

prnt(Si(x)) if x ∈ mi,
prnt(x) if x ∈ V mi .

We construct the link graphs by restricting the domain of the link map ofGf to the inner names and ports inside
the free discrete molecule, and, for the edge set, by taking exactly those edges fromGf that are in the codomain of the
new link map:

linkmi = link ↓ Pmi] { ~Z ′
i}

wherePmi = {p | p is a port onv ∈ V mi} ,

Emi = cod(linkmi) ∩ E.

We have not yet specified how the inner and outer names of the molecules are constructed. This can be specified
with the help of~Z – the vector of local inner names ofGf – by treatingSi as a map:

~Z ′
i = (~ZSi(0), . . . ,

~ZSi(mi−1)) ,

andUmi = {u | u ∈ UB] UF ∧ link−1(u) ∈ (Pmi] Si)}.

Each ofGmi is by construction free, prime and discrete and with a single outermost node. Thus by Proposition
2.5.4 we know that each of them is a free discrete molecule.

16

A bigraph expression forGf

By the arguments given in the previous section concerning the ordering of sitesGf , we are able to construct an
appropriateπ, s.t.:

Gf =
(
mergen+k ⊗ id{ ~Uc}]{ ~Um}

)
◦

(⊗
i∈n

Gci ⊗
⊗
i∈k

Gmi

)
◦ π,

wheren = |Ts|, k = |Tv|.
We have constructed the outer names of the concretions and the molecules exactly by distribution of the names in

UB] UF , so we have{ ~Uc}] { ~Um} = UB] UF . Collecting all the pieces, we arrive at

G = (UB)

((
mergen+k ⊗ idUB]UF

)
◦

(⊗
i∈n

Gci ⊗
⊗
i∈k

Gmi

)
◦ π

)
,

which is on the required form.

For uniqueness, we can perform an analysis similar in spirit to the one for free discrete molecules, proceeding in-
wards towards the composition of the product of molecules and concretions, and the permutation. We sketch the
arguments involved.

YB is restrained by the outer face ofP and hence cannot vary. Equally, we cannot change the number of top-level
sitesn or nodesk, and the identity onY is also restricted by the outer face. The concretion/renaming-pairs are also
constrained with respect to names, as theαci ’s are constrained on the outer face, and the names of the concretions are
constrained from the inner face.

What remains are two interdependent ordering issues for the molecules and concretion/renaming pairs (which
we shall just refer to as concretions below, for brevity). The proposition states essentially that there is a one-one
correspondence between the prime components of the two expressions (given byρ), s.t., we can reorder the sites of
one component, by composing from the right with a permutationρi, to make them equal. Further, as the molecules
and concretions are merged into a single prime root, we need not have written them in the same order in the two
expressions. As the expressions denote the same bigraph, it is not surprising that up to reordering of sites and renaming
the underlying expressions must generate the same place- and link-structure. The crucial arguments, in proving the
stated restrictions on the ordering of molecules and concretions in the expressions forP , relies on a lemma stating that
a permutation can be ’pushed’ through any product of primes. We prove this algebraically in the following section
when developing the axiomatic theory for bigraph expressions (see Lemma 4.2.2).

3.3.3 Proof of Proposition 3.2.1, case 3

(Sketch) As we have observed name-discreteness is preserved by tensor and composition, and since every component
of the expression in case 3 is name-discrete, the expression forD is also name-discrete.

For theall part we are given an arbitrary name-discrete bigraphG. By a similar procedure as used for name-
discrete primes, it is quite easy to first split off a renaming, and then decomposeG into a number of name-discrete primes
(and an appropriately built permutation). Instead of partioning the structure for each toplevel node, we simply do this
for each root.

Foruniquenessthe proposition states essentially that allPi andP ′
i must be equal, but for the ordering of their sites.

That this is the case is quite easily seen, as the outer face ofD restricts the ordering of the roots, and each prime must
have the same internal structure, for the two expressions to denote the same bigraph.

17

3.3.4 Proof of Proposition 3.2.1, case 4

(Sketch) For this case, there is nothing to check for theonlypart.

For theall part of the proof, it is straightforward to decompose any bigraphG into two bigraphs: One name-
discrete bigraph containing all the structure ofG, except all points linked to names or free edges are now linked to
fresh outer names, and another bigraph mapping each corresponding fresh inner name to the original outer name or
edge inG. It is easily seen that the outer bigraph can be modelled as a product of a global wiring and a local wiring
with width that ofG. Idle names are also introduced by these wirings.

Concerninguniquenesswe can change the names with which to transfer linkage from the underlying name-
discrete bigraph to the global and local wiring expressions. This is essentially analogous to the transfer of linkage
from the underlying name-discrete prime of a molecule.

18

Chapter 4

An axiomatic theory for the binding
bigraph term language

In the following sections we turn to the main question of stating and proving a set of equations, that will serve as the
basis for an axiomatization of (static) equality of bigraphs.

We have collected the axioms for the binding bigraph term languageBBexpin Table 4.1. Note that, as tensor
product is defined only when name sets of the interfaces are disjoint, and as abstraction is defined only on prime
bigraphs with the abstracted names in the outer face, we only require the equations to hold when both sides are
defined.

Compared with the axioms stated by Milner for pure bigraphs [Mil04], we have added 5 axioms concerned with
binding; and as our ions have names on both faces, we have two axioms – handling inner and outer renaming. The
remaining axioms are as in [Mil04] (except for very minor adjustments in the case of swap bigraphs).

Assuming the strategy of [Mil04], we aim to prove completeness for increasingly larger collections of expressions.
To distinguish provable equality and equality of bigraphs we will use` A = B to denote syntactic equality, and
just A = B or (when disambiguation is needed)|= A = B to denote equality of bigraphs (semantic equality). In
equational proofs we shall typically qualify derivations by referring to an axiom, definition, lemma or proposition

above the equality sign, like this:̀ A
C3=B or ` A

L4.1.1= B.

4.1 Commutativity of wiring

Lemma 4.1.1(Wiring commutes with all binding bigraph expressions). For all bigraph expressionsG : I0 → I1

(whereI0 = 〈m, ~Z, {~Z}]U〉 andI1 = 〈n, ~X, { ~X}]Y 〉), and for all wiringsω : 〈0, (), Y0〉 → 〈0, (), Y1〉 = J0 → J1

` G⊗ ω = ω ⊗G

Proof of Lemma 4.1.1.We rewrite, working from left to right

` G⊗ ω
C1,C8

= γJ1,I1 ◦ γI1,J1 ◦ (G⊗ ω)
C9= γJ1,I1 ◦ (ω ⊗G) ◦ γI0,J0

D2.1.3=
(
γn,0,(~X,()) ⊗ idY]Y1

)
◦ (ω ⊗G) ◦

(
γ0,m,((), ~Z) ⊗ idU]Y0

)
C7=

(
id〈n,(~X,{ ~X})〉 ⊗ idY]Y1

)
◦ (ω ⊗G) ◦

(
id〈m,(~Z,{~Z})〉 ⊗ idU]Y0

)
C1= ω ⊗G

19

Categorical axioms
(C1) A ◦ id = A = id ◦A
(C2) A ◦ (B ◦ C) = (A ◦B) ◦ C
(C3) A⊗ idε = A = idε ⊗A
(C4) A⊗ (B ⊗ C) = (A⊗B)⊗ C
(C5) idI ⊗ idJ = idI⊗J

(C6) (A1 ⊗B1) ◦ (A0 ⊗B0) = (A1 ◦A0)⊗ (B1 ◦B0)
(C7) γI,ε = idI

(C8) γJ,I ◦ γI,J = idI⊗J

(C9) γI,K ◦ (A⊗B) = (B ⊗A) ◦ γH,J (A : H → I,B : J → K)

Global link axioms
(L1) x/x = idx

(L2) /y ◦ y/x = /x
(L3) /y ◦ y = idε

(L4) z/(Y] y) ◦ (idY ⊗ y/X) = z/(Y]X)

Global place axioms
(P1) merge ◦ (1⊗ id1) = id1

(P2) merge ◦ (merge ⊗ id1) = merge ◦ (id1 ⊗merge)
(P3) merge ◦ γ1,1,(∅,∅) = merge

Binding axioms
(B1) (∅)P = P
(B2) (Y)pY q = id(Y)

(B3) (pXqZ ⊗ idY) ◦ (X)P = P (P : I → 〈1, (Z), Z]X] Y 〉
(B4) ((Y)(P)⊗ idX) ◦G = (Y)((P ⊗ idX) ◦G)
(B5) (X] Y)(P) = (X)((Y)(P))

Ion axioms
(N1) (id1 ⊗ α) ◦K~y(~X) = Kα(~y)(~X)

(N2) K~y(~X) ◦ σloc = K~y(σloc(~X)) (as defined in Def. 2.4.4)

Table 4.1: Axioms for binding bigraphs

20

4.2 Pushing permutations through prime products

We will need a ’push-through’ lemma analogous to the one stated for pure bigraphs in [Mil04] that says that one can
push a permutation through any series of primes. As the proof for the corresponding lemma for pure bigraphs, it
relies essentially on iterating the main symmetry axiom (C9). The bookkeeping just gets a bit more messy when the
permutations also have associated vectors of local names.

First, we state without proof a standard result of symmetric monoidal categories.

Lemma 4.2.1(Permutation completeness). The theory is complete for permutation expressions (those expressions
generated by the symmetries and place identities).

We can now state the lemma that we aim to prove:

Lemma 4.2.2(push-through lemma). Givenn primesPi

Pi : 〈mi, ~Xi, Xi〉 → 〈1, (Y B
i), Y B

i] Y F
i 〉,

π : 〈n, ~Y B, Y 〉 → 〈n, π(~Y B), Y 〉

and

Y F =
⊎
i<n

Y F
i , ~Y B = (Y B

0 , . . . , Y B
n−1),

Yi = Y B
i] Y F

i , Y =
⊎
i<n

Yi,

~X = (X0, . . . , Xn−1).

There exists a permutationπm, ~X which depends solely onπ, m, and ~X, s.t.

` π ◦ (P0 ⊗ . . .⊗ Pn−1) = (Pπ(0) ⊗ . . .⊗ Pπ(n−1)) ◦ πm, ~X .

Recall that by Proposition 2.1.4, we know thatπ can be written as a sequence of compositions of products of
extended swappings (see 2.1.3) and a global identity on names. Havingπ on this form allows us to prove the lemma
by straightforward induction.

Proof of Lemma 4.2.2.By Proposition 2.1.4 we may assume wlog, thatπ = πp = (κ0 ◦ . . . ◦ κp−1.
We prove the lemma by induction overp.

Case(Base). Trivially true.

Case(Induction step). Assume the lemma holds forπp = (κ0 ◦ . . . ◦ κp−1), i.e., we assume

` (κ0 ◦ . . . ◦ κp−1) ◦ (P0 ⊗ . . .⊗ Pn−1) = (Pπp(0) ⊗ . . .⊗ Pπp(n−1)) ◦ πp
m, ~X .

Consider a permutationπp ◦
⊗

j<k γIj ,Kj
composed with a product of primes:

(κ0 ◦ . . . ◦ κp−1) ◦

⊗
j<k

γIj ,Kj

 ◦ (P0 ⊗ . . .⊗ Pn−1)

We start by using (C6) to partition and rearrange the product of primes intoj parts matching each corresponding
γIj ,Kj

.
Let 0 = b0 < . . . < bj < . . . < bk+1 = n range over the indices of the primes we partition at. We also letbj be

dependent on the widths ofIj andKj , so that we can better illustrate the effect of swapping on the product of primes.
We start by rewriting the expression above using (C6)

` . . .
C6=(κ0 ◦ . . . ◦ κp−1) ◦

⊗
j<k

γIj ,Kj
◦

 ⊗
bj≤i<bj+1

Pi ⊗
⊗

bj+1≤i<bj+2

Pi

 .

21

Now byk applications of (C9) we can exchange the prime products composed with each swap.

C9=(κ0 ◦ . . . ◦ κp−1) ◦
⊗
j<k

 ⊗
bj+1≤i<bj+2

Pi

⊗
⊗

bj≤i<bj+1

Pi

 ◦ γHj ,Jj

whereHj , Jj are the inner faces of each corresponding product of primes (as determined in the side condition for
(C9)).

Now we reverse the procedure and pick apart the product of primes and swappings again using (C6) (k times).

C6=(κ0 ◦ . . . ◦ κp−1) ◦

⊗
j<k

 ⊗
bj+1≤i<bj+2

Pi

⊗
⊗

bj≤i<bj+1

Pi

 ◦
⊗
j<k

γHj ,Jj

Now we are nearly done. Applying the induction hypothesis we get

IH=

⊗
j<k

 ⊗
bj+1≤i<bj+2

Pπp(i)

⊗
⊗

bj≤i<bj+1

Pπp(i)

 ◦ πp
m, ~X ◦

⊗
j<k

γHj ,Jj

which is on the required form.
Checking, we see that the pushed-through permutation depends only onπp+1 = πp ◦

⊗
j<k γIj ,Kj

, and on the
inner faces of (widths and local names) of the primesPi.

4.3 A merge construct for local bigraphs

Definition 4.3.1. We wish to extend the place merging constructionmerge to local interfaces. Letbmerge(X0,X1) the
bindingmerge bigraph be defined as

bmerge(X0,X1)
def= (X0]X1)((merge ⊗ idX0]X1) ◦ (pX0q⊗ pX1q))

We also define an inductive derived formbmergem, ~X

bmerge0,()
def= 1

bmergem, ~X

def= bmerge(X′,Xm−1) ◦ (bmergem−1, ~X′ ⊗ idXm−1)

where ~X = (X0, . . . , Xm−2, Xm−1)
~X ′ = (X0, . . . , Xm−2)

X =
⊎

i<m

Xi

X ′ =
⊎

i<m−1

Xi

4.3.1 Foldout lemma

It is a good exercise to prove that we could just as well have definedbmergem, ~X usingmergem

Lemma 4.3.2(Foldout lemma forbmergem, ~X).

` bmergem, ~X = (X)((mergem ⊗ idX) ◦
⊗
i<m

pXiq)

whereX = { ~X} .

22

Proof of Lemma 4.3.2.By induction onm:

Case(Base). By (B1), (C3) and the definition ofmerge0

` (∅)((merge0 ⊗ id∅) ◦ idε = 1

Case(Induction step). Assume

` bmerge(X′,Xm−1) ◦ (bmergem−1, ~X′ ⊗ id(Xm−1)) = (X)((mergem ⊗ idX) ◦
⊗
i<m

pXiq)

We need to show

` bmerge(X′]Xm−1,Xm) ◦ (bmerge(X′,Xm−1) ◦ (bmergem−1, ~X′ ⊗ idXm−1))⊗ id(Xm))

= (X]Xm)((mergem+1 ⊗ idX]Xm
) ◦

⊗
i<m+1

pXiq)

We start by using the induction hypothesis (IH) and the definition ofbmerge(X′]Xm−1,Xm) = bmerge(X,Xm) (D4.3.1),
and proceed straightforwardly

` . . .
IH= bmerge(X,Xm) ◦ ((X)((mergem ⊗ idX) ◦

⊗
i<m

pXiq)⊗ id(Xm))

D4.3.1,B2
= (X]Xm)(((merge ⊗ idX]Xm

) ◦ (pXq⊗ pXmq)) ◦ ((X)((mergem ⊗ idX) ◦
⊗
i<m

pXiq)⊗ (Xm)pXmq)

B4,C6,C2
= (X]Xm)(((merge ⊗ idX]Xm

) ◦ (pXq ◦ ((X)((mergem ⊗ idX) ◦
⊗
i<m

pXiq)⊗ pXmq ◦ (Xm)pXmq)))

B3= (X]Xm)((merge ⊗ idX]Xm
) ◦ ((mergem ⊗ idX) ◦ (

⊗
i<m

pXiq)⊗ pXmq))

We have to use a few standard tricks on the latter part to collapse themerge ’s and concretions. We insert and shift to
the right a convenient product of identities

C1,C6,C4,C2
= (X]Xm)((merge ⊗ idX]Xm

) ◦ ((mergem ⊗ idX ⊗ id1 ⊗ idXm
) ◦

⊗
i<m+1

pXiq))

Next, we use the symmetries (C7,C8,C9) to exchangeidX andid1
1. The last few steps follows from the pure place

axioms and the inductive definition ofmergem+1

L4.1.1= (X]Xm)((merge ⊗ idX]Xm) ◦ ((mergem ⊗ id1 ⊗ idX ⊗ idXm) ◦
⊗

i<m+1

pXiq))

P2,C6,C1
= (X]Xm)(((merge ◦ (id1 ⊗mergem))⊗ idX]Xm) ◦

⊗
i<m+1

pXiq)

D2.1.5= (X]Xm)((mergem+1 ⊗ idX]Xm
) ◦

⊗
i<m+1

pXiq)

1Lemma 4.1.1 records the fact, that this procedure can, of course, always be done for pure link and place expressions.

23

4.3.2 Binding merge and permutation

Composingbmerge(X0,X1) with an appropriate swap bigraphγ1,1,(X0,X1), should yield the dual binding merge, i.e.,
bmerge(X1,X0).

Lemma 4.3.3.

` bmerge(X1,X0) ◦ γ1,1,(X0,X1) = bmerge(X0,X1)

(Recall thatγ1,1,(X0,X1) : 〈2, (X0, X1), X0]X1〉 → 〈2, (X1, X0), X0]X1〉.)

Proof of Lemma 4.3.3.Straightforward after an application of axiom (B4)

` bmerge(X1,X0) ◦ γ1,1,(X0,X1)

D4.3.1,B4
= (X0]X1)((merge ⊗ idX0]X1) ◦ (pX1q⊗ pX0q) ◦ γ1,1,(X0,X1))
C9= (X0]X1)((merge ⊗ idX0]X1) ◦ (γ1,1,(∅,∅) ⊗ idX0]X1) ◦ (pX0q⊗ pX1q))

C6,P3,C1
= (X0]X1)((merge ⊗ idX0]X1) ◦ (pX0q⊗ pX1q))

D4.3.1= bmerge(X0,X1)

This result can be generalized to permutations and binding merge bigraphs of arbitrary width.

Lemma 4.3.4.

` bmergem,π(~X) ◦ π = bmergem, ~X

Proof of Lemma 4.3.4.(Sketch)
After an application of (B4) analogous to the proof for 4.3.3, the proof proceeds by straighforward use of the

definition ofbmergem, ~X , Lemma 4.3.2, and the push-through lemma (Lemma 4.2.2).

4.3.3 Merging products of binding merge

We will also need to prove that merging a product of binding merges yields a binding merge.

Lemma 4.3.5.

` bmergek, ~X ◦
⊗
i<k

bmergemi, ~Xi
= bmergem, ~X

wherem =
∑

i<k mi and ~X = ~X0 . . . ~Xk−1.

Proof of Lemma 4.3.5.(Sketch)
Use Lemma 4.3.2 to unfoldbmergek, ~X , and transfer [Mil04, Lemma 5.1 (2)], which establishes the similar prop-

erty for simplemerge ’s, for the global subexpressions.

4.4 PlaceL id
expressions

We define the subclassPlaceL id
of bigraph expressions as all expressions in the term language, which are generated by

id’s, ◦, and⊗ from bmergem, ~X andγI,J . ThusPlaceL id
consists of all place bigraph expressions extended only with

identies on local names. (Recall that special cases ofbmergem, ~X instantiate to elements1 andmerge.)
We aim to prove that the theory is complete forPlaceL id

expressions.

24

Note that, in a strict symmetric monoidal category the categorical axioms are known to be complete for◦ and⊗
of the symmetriesγI,J — hence in particular the theory is complete for permutations.

We start by showing a normal form forPlaceL id
expressions.

Lemma 4.4.1(Normal form forPlaceL id
expressions). For everyPlaceL id

expressionE

` E = (bmergem0, ~X0
⊗ . . .⊗ bmergemk−1, ~Xk−1

) ◦ π

for somek ≥ 0 and permutation expressionπ s.t. the composition is well defined.

Proof of Lemma 4.4.1.By structural induction on expressions:

Case(Base). Immediate.

Case(Induction step).

Assumè E =
(⊗

i<k bmergemi, ~Xi

)
◦ π and` F =

(⊗
j<l bmergenj , ~Yj

)
◦ π′.

The case forE ⊗ F is immediate by a single use of (C6). ForE ◦ F we need to push the middle permutation
throughF (Lemma 4.2.2), and use Lemma 4.3.5 to collapse the two products of binding merge’s:

` E ◦ F
L4.2.2=

(⊗
i<k

bmergemi, ~Xi

)
◦

⊗
j<l

bmergenπ(j),~Yπ(j)

 ◦ (π~n,~Y ◦ π′)

L4.3.5=

(⊗
i<k

bmergem′
i,

~Xi

)
◦
(
π~n,~Y ◦ π′

)
wherem′

0 =
∑

j<m0
nπ(j), and fori > 0, m′

i =
∑

mi−1≤j<mi
nπ(j).

As the expression is on the required form, we are done.

Now we are ready to state completeness forPlaceL id
expressions.

Lemma 4.4.2(Completeness forPlaceL id
expressions). If ` E =

⊗
i<k bmergemi, ~Xi

◦ π and
` F =

⊗
j<l bmergenj , ~Yj

◦ π′ and|= E = F , then` E = F .

Proof of Lemma 4.4.2.Using Proposition 3.2.1 – by|= E = F , we know thatk = l, and for alli, thatmi = ni , and
there existsρi s.t.

bmergemi, ~Xi
= bmergeni, ~Yi

◦ ρi (4.1)

(ρ0 ⊗ . . .⊗ ρl−1) ◦ π = π′ (4.2)

Eq. (4.2) is provable in our theory by completeness for permutation expressions.

Eq. (4.1) is just an instance of Lemma 4.3.4, when we note that in particular it implies that the number of merged
sites, and the names local to each root must be equal. But the locality of these names (wrt. to the inner face) can be
permuted byρi. I.e., we havemi = ni andYi = ρi(Xi) 2.

This implies that

` F =

⊗
j<l

bmergenj , ~Yj

 ◦ (ρ0 ⊗ . . .⊗ ρl−1) ◦ π

C6=

⊗
j<l

bmergenj , ~Yj
◦ ρj

 ◦ π

= E
2More directly we infer thatXi = ρ′

i(Yi), and then thatρ′
i = ρi (see Lemma 4.2.2).

25

4.5 LinkG expressions

We consider next the collection of global link expressions, those bigraph expressions generated by closure and substi-
tution. We will refer to this collection of expressions asLink G. Note that we have transferred exactly the global link
constructs used in [Mil04].

As we also have the exact same axioms for global link expressions, it is easily seen that we can straightforwardly
adapt also the proof that the axiomatic theory (for the binding bigraph term language) is complete for global link
expressions.

Proposition 4.5.1(Link completeness). The theory is complete for link expressions.

4.6 A syntactic analogue of name-discreteness

We definelinearity for binding bigraph expressions:

Definition 4.6.1(Linearity). A binding bigraph expression is linear iff it contains only wiring of the formy/x.

In other words, in linear expressions all substitutions are renamings – an inductive property with respect toBBexp,
which we will utilize to full effect in the following sections. We shall see that any name-discrete bigraph has a linear
expression.

Having establish linearity, we can proceed along the same lines as set out in [Mil04] – using structural induction
as our main proof principle.

We start by establishing a few basic properties of linear expressions.

Lemma 4.6.2. If E is linear, theǹ E = E′ ⊗ α, for someE′ andα whereE′ is linear with local innerface.

Proof. (Omitted) (Straightforward structural induction.)

Lemma 4.6.3. If E : 〈m, ~U, {~U}〉 → 〈n, ~Y , {~Y }] V 〉 is linear with local innerface, then

` E ◦
⊗
i<m

(~ui)/(~Zi) =

((⊗
i<n

(~yi)/(~Xi)

)
⊗ idV

)
◦ E′,

for some~y, ~Xi, andE′ with E′ linear with local innerface.

Proof. (Omitted) (Structural induction using 4.6.2 in the case for composition.)

We shall use the following lemma to help show completeness for ionfree expression in the following section.
Importantly, it also constitutes a step towards a syntactic normal form for all expressions inBBexp, analogous to the
normal form we established in Proposition 3.2.1.

Proposition 4.6.4(Underlying linear expression). For any expressionG denoting a bigraph of outer widthn, there
exists a wiringω, a linear expressionE, and a local renaming

⊗
i<n(~yi)/(~Xi), s.t.

` G = (
⊗
i<n

(~yi)/(~Xi)⊗ ω) ◦ E

26

Proof. (Sketch)
By structural induction onG. The cases for elementary linear expressions are straightforward, as are the cases for

tensor product and composition with the help of the two previous lemmas.
We only consider the case for abstraction onG in more detail. It is only well defined for primeG, i.e.,m = 1:

` (U)G = (U)
(
((~y)/(~X)⊗ ω) ◦ E

)
B4,B5,D2.4.3

= (U] {~y})
(
((~y/ ~X ⊗ id1) ◦ p{ ~X}q)⊗ ω

)
◦ E

C6,C1,D2.2.2
= (U] {~y})

(
((~y/ ~X ⊗ ~u/~V ⊗ id1) ◦ (p{ ~X}q⊗ id{~V }))⊗ ω′

)
◦ E,

where` ω = ~u/~V ⊗ ω′, andU = {~u}.
We use (B3) to introduce appropriate abstractions and concretions, move it(pV q{ ~X} ⊗ idI) under the outermost

abstraction with the help of (B5), and use (C6) to rearrange:

B3,B5,C6
= (U] {~y})

((
(~y/ ~X ⊗ ~u/~V ⊗ id1) ◦ (p{ ~X}q⊗ id{~V }) ◦ pV q{

~X}
)
⊗ (ω′ ◦ idI)

)
◦ (V)E,

whereI is the domain ofω′.
Applying (B3) again, now in reverse, and cleaning up the expressions, we reach an expression on the required

form:

B3,C1,C6
= (U] {~y})

((
(~y/ ~X ⊗ ~u/~V ⊗ id1) ◦ p{ ~X}] V q

)
⊗ ω′

)
◦ (V)E,

4.7 Ionfree expressions

With the help of the following lemmas, as a corollary of the established properties for linear expressions, we find that
the theory is complete for ionfree bigraph expressions.

Lemma 4.7.1. If E = E1 ◦ E2 is linear, ionfree, and with local inner and outer face, thenE1 andE2 are also linear
and ionfree with local inner and outer face.

Same forE = E1 ⊗ E2.

Proof. (Sketch)
Clearly, any subterm of a linear and ionfree term are also linear and ionfree. Further, in the case forE = E1⊗E2,

by definition of the tensor product,E has local inner and outer face iffE1 andE2 have.
Consider the case forE = E1 ◦ E2. It is immediate thatE1 must have local outer face, whileE2 must have local

inner face. As their inner and outer face must match, we could assume that they shared a global namex here.
By linearity and ionfreeness ofE1 andE2, we know that the global inner namex would need to be connected to a

(separate) local outer name ofE1, hence violating the scope rule.

The next lemma states a normal form for linear, ionfree expressions with local inner- and outerface.

Lemma 4.7.2. If E is linear and ionfree of widthn with local inner and outer face, theǹE =
(⊗

i<n(~yi)/(~xi)
)
◦

GP , whereGP ∈ PlaceL id
.

Proof. (Sketch)
With the help of the previous lemma and completeness forPlaceL id

-expressions, the proof is by structural induc-
tion.

We consider only the case for composition. It requires us to push a product of local substitutions
⊗

i<n(~y′i)/(~x′i),
through an expression of the form

(⊗
i<n(~yi)/(~xi)

)
◦GP from the right. This is tedious, but not hard.

27

Consider the normal form forPlaceL id
expressions. We start by pushing local wiring through the permutation using

the push-through lemma (Lemma 4.2.2), then by (B3) dissolve each matching pair of abstraction and concretion, in
each pair of local wiring(y′i)/(x′i) and binding merge.

We can also dissolve each abstraction on theouter faces of the binding merges with a matching concretion in⊗
i<n(~yi)/(~xi). We are left with pushing a global substitution through a product of elementary merge’s and global

identitities. To establish the required form, we also need to compose the products of binding merge’s, but by com-
pleteness ofPlaceL id

andLink G (in particular, Lemma 4.3.5) this is all possible.

Next, we turn to a normal form for linear, ionfree expressions. The following lemma is a specialization of
Lemma 4.6.2.

Lemma 4.7.3. If E is linear and ionfree, then there exist concretions,E′, andα s.t.` E = (
⊗

i<npXiqZi ◦E′)⊗α,
with E′ linear and ionfree and with local inner and outer face.

Proof. Structural induction. The cases for elements and tensor product are simple.

(Y)E = (Y)((pXqZ ◦ E′) ⊗ α) is only defined whenE is prime, andY ⊆ X. With applications of (B4) and
(B5), we can move the renaming out from under the abstraction, and combine the abstraction(Y) with the abstraction
in pXqZ . Hence, we provè (Y)E = (pXqZ]Y ◦ E′)⊗ α, which is on the required form.

ConsiderE ◦ F , and assume forE′, F ′, linear, ionfree and with local inner and outer faces that we have

` E =

((⊗
i<n

pXiq
Zi

)
◦ E′

)
⊗ α, and ` F =

((⊗
i<m

pYiq
Ui

)
◦ F ′

)
⊗ β.

We have` α = αr ⊗
⊗

i<n αc
i , where the domain ofαr matches the outer names ofβ and the domains of⊗

i<n αc
i is

⊎
i<m Yi – the global outer names of the concretions in the expression forF .

Rearranging, and introducing global identitiesidYi
corresponding to the outer faces ofαc

i , we have

` E ◦ F =

(⊗
i<n

pXiq
Zi ⊗ idYi

)
◦

(
E′ ⊗

⊗
i<n

αc
i

)
◦

((⊗
i<m

pYiq
Ui

)
◦ F ′

)
⊗ (αr ◦ β).

We shall need to split the expressionsE′ andF ′ into prime parts, and compose them to getn prime expressions to
reach the required form. By Lemma 4.7.2 and completeness forPlaceL id

expressions, we know we can rewrite the
expression above to get first

` . . . =

(⊗
i<n

(pXiq
Zi ⊗ idYi) ◦ (E′

i ⊗ αci)

)
◦

((⊗
i<m

pYiq
Ui

)
◦ F ′

)
⊗ (αr ◦ β),

for prime expressionsE′
i. Next, rewriting the expression forF and composing, we get

` . . . =

(⊗
i<n

(pXiq
Zi ⊗ idYi) ◦ (E′

i ⊗ αci) ◦ F ′
i

)
⊗ (αr ◦ β).

for suitableF ′
i , s.t.` F =

(⊗
i<mpYiqUi

)
◦ F ′ =

⊗
i<n F ′

i .
By repeated applications of (B5) and (B3), we arrive at

` . . .
(B3,B5)

=

(⊗
i<n

(pXi] Yiq
Zi) ◦ (Yi) ((E′

i ⊗ αci) ◦ F ′
i)

)
⊗ (αr ◦ β),

which is on the required form. Checking, we see that each prime component(Yi) ((E′
i ⊗ αci) ◦ F ′

i) has local innerface
asF has local innerface, and local outerface asE′ has local outer face, and the entire codomain ofαci is bound by the
abstraction.

28

Completeness of all ionfree expressions follows by the established properties for linear and linear-ionfree expres-
sions. We start by establishing a normal form, based on the previous lemmas.

Lemma 4.7.4(A normal form for ionfree expresssions). For all ionfree epxressionsG of widthn

` G = ωg ⊗

(⊗
i<n

(Yi)
(
(ωl

i ⊗ id1) ◦ pXiq
))

◦GP .

whereGP ∈ PlaceL id
.

Proof. By Proposition 4.6.4, Lemma 4.7.2, and Lemma 4.7.3, for any ionfree expressionG we have

` G = (
⊗
i<n

(~yi)/(~Xi)⊗ ω) ◦

(((⊗
i<n

pZiq
Xi

)
◦ (
⊗
i<n

(~ui)/(~u′i) ◦GP)

)
⊗ α

)
,

whereGP ∈ PlaceL id
.

By completeness ofPlaceL id
expressions, we can provèGP =

⊗
i<n GP

i for suitableGP
i . Rearranging with the

help of (C6), and using applications of (B5) and (B3) to remove matching concretion – abstraction pairs, we get

` . . .
B5,B3,C6

= ω′r ⊗
⊗
i<n

({~yi})
(
(~yi/ ~Xi ⊗ ωc

i ⊗ id1) ◦ (~u′i/~ui ⊗ id1) ◦ p{~u}iq ◦GP
i

)
,

where` ω = ωr ⊗
⊗

i<n ωc
i .

By completeness ofLink G expressions, we can compose and rearrange the global link expressions, to get

` . . . = ω′r ⊗
⊗
i<n

(
({~yi})

(
(ω′c

i ⊗ id1) ◦ p{~u}iq ◦GP
i

))
.

As GP has local outer face, it does not need to be under the abstraction

` . . .
B4= ω′r ⊗

(⊗
i<n

({~yi}) ((ω′c
i ⊗ id1) ◦ p{~u}iq)

)
◦GP ,

and we have an expression on the required form.

With the help of the lemmas above, we have established a normal form for ionfree expressions based onPlaceL id
ex-

pressions andLink G expressions with necessary abstractions and concretions. Completeness for ionfree expressions
follows easily.

Corollary 4.7.5 (The theory is complete for ionfree expressions).

Proof. (Sketch)
Given two ionfree expressions, which denote the same bigraph, we rewrite to the normal form, above. We get two

expressions with wirings andPlaceL id
expressions that are provable equal by completeness ofLink G andPlaceL id

.
Constrained by the local names of the inner- and outerfaces, and the inner face (recall thatPlaceL id

expressions are
identities on the link graph), the abstractions and concretions in the middle term must also be equal. We are left with
two global wirings, which are also provable equal.

29

4.8 Syntactic normal forms

We define four levels of a syntactic normal form, BDNF, on expressions inBBexp. Each form corresponds to one of
the classes of expressions described in Proposition 3.2.1.

Definition 4.8.1.

MBDNF: M ::= (K~y(~X) ⊗ idZ) ◦ P

PBDNF: P ::= (Y)
((

mergen+k ⊗ idY

)
◦
((⊗

i<n((αi ⊗ id1) ◦ pXiq)
)
⊗
⊗

i<k Mi

)
◦ π
)

DBDNF: D ::= ((P0 ⊗ . . .⊗ Pn−1) ◦ π)⊗ α

BBDNF: B ::= (
⊗

i<n(~yi)/(~Xi)⊗ ω) ◦D

To formally prove the correspondence between BDNF and the bigraph classes in Proposition 3.2.1, we need a few
lemmas. We omit the proofs for the following lemmas, which go by mathematical induction on the number of ions. As
we have established completeness for ionfree expressions, we have the base case. The inductive steps are analogous
to the proofs for the similar lemmas for pure bigraphs [Mil04, Lemma 5.11].

Lemma 4.8.2(All BDNF forms are closed under composition with isos). Let B : I → J be aBBDNF. If ι and ι′

are isos onI andJ , then` ι′Bι = B′ for someB′.
Same forDBDNF, PBDNF, MBDNF.

We also need that DBDNF expressions are closed under composition.

Lemma 4.8.3(DBDNF is closed under composition). For all composableDBDNF’s C,D, there exists aDBDNF D′,
s.t.` D ◦ C = D′.

Now we state formally, the proposition that establishes the correspondence between our semantic normal form,
and the syntactic normal form, above. Also, we formally state that linearity is, in fact, a syntactic correspondent of
name-discreteness (item 3 in the following proposition):

Proposition 4.8.4. LetE be a linear expression, andG any expression.

1. If E denotes a discrete free molecule, then` E = M for someMBDNF.

2. If E denotes a name-discrete prime, then` E = P for somePBDNFP .

3. ` E = D for someDBDNF D.

4. ` G = B for someBBDNF B.

Proof. (Sketch) By structural induction and inspection of the normal forms. We briefly sketch the proof below.
We start by proving the correspondence between linearity and name-discreteness (3). We look only at the cases

for abstraction and composition. The cases for elements and tensor product are straightforward.
Assume

` E1 =

((⊗
i<n

Pi

)
◦ π1

)
⊗ α1,

` E2 =

((⊗
i<m

Qi

)
◦ π2

)
⊗ α2,

where eachPi andQi are PBDNF’s.
Abstraction(X)E1 is only defined whenn = 1, and then by (B5) and (B4), we can rewrite

` (X)(P0 ◦ π ⊗ α) = ((X] Y)P ′
0 ◦ π)⊗ α,

where` (Y)P ′
0 = P0. This expression is on the required form.

30

Turning to composition, by an application of (C6) and Lemma 4.2.2, we have:

` E1 ◦ E2 =

(⊗
i<n

Pi

)
◦ π1 ⊗ α1 ◦

(⊗
i<m

Qi

)
◦ π2 ⊗ α2

D2.2.2=

(⊗
i<n

Pi

)
◦ π1 ⊗ α′

1 ⊗ α′′
1 ◦

(⊗
i<m

Qi

)
◦ π2 ⊗ α2

L4.1.1,C1,C6
=

(((⊗
i<n

Pi

)
⊗ idY ′

1

)
◦ (π1 ⊗ idY ′

1
) ◦ (

⊗
i<m

(id⊗ α′
1i

) ◦Qi) ◦ π2

)
⊗ (α′′

1 ◦ α2)

L4.2.2=

(((⊗
i<n

Pi

)
⊗ idY ′

1

)
◦

(⊗
i<m

(id⊗ α′
1π1(i)

) ◦Qπ1(i)

)
◦ π1 ◦ π2

)
⊗ (α′′

1 ◦ α2)

C6=

(((⊗
i<n

Pi

)
⊗ α′

1

)
◦

(⊗
i<m

Qπ1(i)

)
◦ π1 ◦ π2

)
⊗ (α′′

1 ◦ α2)

whereπ1 is π1 pushed through
⊗

i<m Qi, andα′
1 =

⊗
i<m α′

1i
=
⊗

i<m α′
1π1(i)

provable by completeness of link
expressions. By Lemma 4.8.3, this expression is provably equal to a DBDNF.

Consider (2); by (3) we know that̀ E = D, whereD is a DBDNF. But asD is prime, we haven = 1 and
α = idε, and as a permutation is an iso, by Lemma 4.8.2, we are done.

For case (1), we note that by (2) we have that` E = P , a name-discrete prime. Knowing thatP denotes a free
discrete molecule the expression collapses, i.e., we have that` E = (∅)((merge1 ⊗ idY) ◦ M ◦ π), whereM is a
MBDNF. By axioms for abstraction and ions; the definition ofmerge; and Lemma 4.8.2, we see that` E = M ′, an
MBDNF.

Case 4 follows from (3) and Proposition 4.6.4.

4.9 Completeness

Finally, we are able to state the formal completeness proposition, using our results for linear expressions to bridge the
gap to the full binding bigraph term language.

Not surprisingly, the proofs are similar to the ones for pure bigraph expressions [Mil04, Prop. 5.13 and Theorem
5.14], as we have laboured to establish properties, forms, and axioms that allow us similar manipulations.

Proposition 4.9.1(Linear completeness). If E andE′ are linear expressions andE = E′, then` E = E′.

Proof. (Sketch)
As we have established correspondence between each level of BDNF form and each level of Proposition 3.2.1, we

proceed by case analysis on the form of bigraph thatE (and henceE′) denotes. AsE is linear, it is either a molecule,
a name-discrete prime, or a name-discrete bigraph.

By induction onn – the number of ions inE andE′. We assume that the proposition holds for less thann ions.

Case(Free discrete molecule). If E andE′ with n ions denote a free, discrete molecule, then by Proposition 4.8.4(1),
and Proposition 3.2.1(1) we have MBDNFs, s.t.,

` E = (K~y(~X) ⊗ idZ) ◦ P

` E′ = (K~y(~X′) ⊗ idZ) ◦ P ′.

By an application of axiom (N2), and a little rearranging (mainly by (C1), and (C6)) we see that

` E′ N2,C1,C6
= (K~y(~X) ⊗ idZ) ◦ ((X)/(X ′)⊗ idZ) ◦ P ′,

and|= ((X)/(X ′)⊗ idZ) ◦ P ′ = P . By the induction hypothesis the latter is provable, and we are done.

31

Case(Name-discrete prime). E andE′ with n ions denote a name-discrete prime.
We have, by Proposition 4.8.4(2), and Proposition 3.2.1(2), provable PBDNFs:

` E = (YB)

(mergem+k ⊗ idY

)
◦

⊗
j<m

(αj ⊗ id1) ◦ pXjq

⊗
⊗
i<k

Mi

 ◦ π


` E′ = (YB)

(mergem+k ⊗ idY

)
◦

⊗
j<m

(α′
j ⊗ id1) ◦ pX ′

jq

⊗
⊗
i<k

M ′
i

 ◦ π′

 ,

where renamings, concretions, molecules and permutations respect the conditions as specified in Proposition 3.2.1(2).
As each underlying molecule contains no more thann ions, by the case for molecules, we have that eachMi corre-
sponds toM ′

j for somei andj, except for ordering of sites. With the help of Lemma 4.2.2, by the requirements upon
π, andπ′, we are able to conclude that the two PBDNFs are equal, and hence that` E = E′.

Case(Any name-discrete). Consider now the case whereE, E′ with n ions denote any name-discrete bigraph. Then
by Proposition 4.8.4(3), and Proposition 3.2.1(3) we have provable DBDNFs:

` E =

(⊗
i<m

Pi ◦ π

)
⊗ α

` E′ =

(⊗
i<m

P ′
i ◦ π′

)
⊗ α,

where there exists permutationsρi, (i ∈ n), s.t. P ′
i = Pi ◦ ρi, and(ρ0 ⊗ . . . ⊗ ρn−1) ◦ π′ = π (andPi, P ′

i are
PBDNFs).

Both these requirements are provable (by Lemma 4.8.2 and completeness for permutation expressions, respec-
tively) so by a few simple applications of (C6) we see that` E = E′.

Theorem 4.9.2(Full completeness). For any expressionsG andG′, if G = G′, then` G = G′.

Proof. (Omitted) (Follows straightforwardly from linear completeness. Proposition 4.8.4, case 4 and Proposition
3.2.1, case 4 yields a few equations which are provable by the earlier completeness results.)

32

Bibliography

[HM04] Ole Høgh Jensen and Robin Milner. Bigraphs and mobile processes (revised). Technical Report 580, Uni-
versity of Cambridge, February 2004.

[Mil04] Robin Milner. Axioms for bigraphical structure. Technical Report 581, University of Cambridge, February
2004.

33

