
Iris-MSWasm: Elucidating and Mechanising the Security
Invariants of Memory-Safe WebAssembly
MAXIME LEGOUPIL, Aarhus University, Denmark

JUNE ROUSSEAU, Aarhus University, Denmark

AÏNA LINN GEORGES,MPI-SWS, Germany

JEAN PICHON-PHARABOD, Aarhus University, Denmark

LARS BIRKEDAL, Aarhus University, Denmark

WebAssembly offers coarse-grained encapsulation guarantees via its module system, but does not support

fine-grained sharing of its linear memory. MSWasm is a recent proposal which extends WebAssembly with

fine-grained memory sharing via handles, a type of capability that guarantees spatial and temporal safety, and

thus enables an expressive yet safe style of programming with flexible sharing. In this paper, we formally

validate the pen-and-paper design of MSWasm. To do so, we first define MSWasmCert, a mechanisation of

MSWasm that makes it a fully-defined, conservative extension of WebAssembly 1.0, including the module

system. We then develop Iris-MSWasm, a foundational reasoning framework for MSWasm composed of a

separation logic to reason about known code, and a logical relation to reason about unknown, potentially

adversarial code. Iris-MSWasm thereby makes explicit a key aspect of the implicit universal contract of

MSWasm: robust capability safety. We apply Iris-MSWasm to reason about key use cases of handles, in which

the effect of calling an unknown function is bounded by robust capability safety. Iris-MSWasm thus works

as a framework to prove complex security properties of MSWasm programs, and provides a foundation to

evaluate the language-level guarantees of MSWasm.

CCS Concepts: • Security and privacy → Logic and verification; • Theory of computation → Logic
and verification; Higher order logic; Programming logic; Separation logic; Formalisms.

Additional Key Words and Phrases: WebAssembly, Wasm, MSWasm, Capabilities, Memory Safety, Encapsula-

tion, Logical Relation

ACM Reference Format:
Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal. 2024. Iris-

MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly. Proc. ACM
Program. Lang. 8, OOPSLA2, Article 282 (October 2024), 29 pages. https://doi.org/10.1145/3689722

1 Introduction
WebAssembly (abbreviated Wasm) is the current industry standard to run applications efficiently in

the browser [Haas et al. 2017], and is increasingly adopted in cloud computing (for example, Fastly’s

Compute@Edge [Fastly documentation 2022; Hickey 2020] and Fermyon’s Spin [Butcher 2022]), in

part thanks to its well-defined semantics and the high-performance implementations it enables. To

rise up to the stringent security requirements of the web, Wasm promises not only sandboxing, but

also several language-level security guarantees, including control flow integrity and coarse-grained

Authors’ Contact Information: Maxime Legoupil, Aarhus University, Aarhus, Denmark, maxime@cs.au.dk; June Rousseau,

Aarhus University, Aarhus, Denmark, june.rousseau@cs.au.dk; Aïna Linn Georges, MPI-SWS, Saarbrücken, Germany,

algeorges@mpi-sws.org; Jean Pichon-Pharabod, Aarhus University, Aarhus, Denmark, jean.pichon@cs.au.dk; Lars Birkedal,

Aarhus University, Aarhus, Denmark, birkedal@cs.au.dk.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART282

https://doi.org/10.1145/3689722

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0005-4093-2755
HTTPS://ORCID.ORG/0009-0003-6778-6597
HTTPS://ORCID.ORG/0000-0002-5951-4642
HTTPS://ORCID.ORG/0000-0002-4442-6543
HTTPS://ORCID.ORG/0000-0003-1320-0098
https://doi.org/10.1145/3689722
https://orcid.org/0009-0005-4093-2755
https://orcid.org/0009-0003-6778-6597
https://orcid.org/0000-0002-5951-4642
https://orcid.org/0000-0002-4442-6543
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.1145/3689722
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

282:2 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

memory safety at the level of its units of code distribution, modules. Each module can define a

linear memory (or several, in Wasm 2.0), which is private by default, but which the module can

explicitly export. In that case, any other module can import it, and thereby access it unrestrictedly.

This unusually strong encapsulation guarantee that a non-exported memory cannot be affected by

other modules [Rao et al. 2023] makes edge computing practical and lightweight [Clark 2019]: one

can safely compose a module with untrusted, potentially adversarial library modules to perform

tasks (image compression, etc.) on separate memories. However, sharing is an all-or-nothing affair:

a linear memory is either completely private, or all of it is shared with every module. As pointed

out by Lehmann et al. [2020], this means that many of the classical attacks against memory unsafe

languages, targeting a finer granularity, also work against programs that are not specifically written

to take advantage of module isolation of WebAssembly.

Thus, to take advantage of the memory isolation guarantees of Wasm, programs require either

invasive changes to fit WebAssembly’s module system even though programs are typically not

written directly in WebAssembly, or rely on extensive copying (which is the approach taken by the

Component Model [The Bytecode Alliance 2023a,b]).

To address this lack of flexibility, Disselkoen et al. [2019] and Michael et al. [2023] propose

Memory-Safe WebAssembly (abbreviated MSWasm), a conservative extension of WebAssembly

with amechanism for fine-grainedmemory sharing in the form of capabilities [Dennis and VanHorn

1966; Wilkes and Needham 1979], which it calls handles, and which embody authority over ranges of

a new kind of memory: segment memory. This design is inspired by the capability-enhanced CHERI

hardware architecture [Woodruff et al. 2014], which has been shown to be targetable from C with

lightweight code changes by relying on reasonable patches to production compilers [Memarian et al.

2016; Zaliva et al. 2024]. The expectation is that MSWasm programs respect much finer memory

safety invariants than plain Wasm. However, as illustrated during the development of the CHERI

capability hardware architecture, these security invariants are very brittle: a mistake in a single

detail can invalidate all encapsulation guarantees [Bauereiss et al. 2022; Nienhuis et al. 2020], and

prose specifications backed by mere testing do not provide the required level of assurance.

Contributions. In this paper, we complete the pen-and-paper definition of MSWasm to be a conser-

vative extension of WebAssembly 1.0, and mechanise it in the Coq proof assistant as MSWasmCert,

building on WasmCert [Watt et al. 2021]. On top of this precise language definition, we develop

Iris-MSWasm, a program logic that extends Iris-Wasm [Rao et al. 2023] with capability reasoning.

Using the assertion language of Iris-MSWasm, we formulate an unstated yet key part of the universal
contract [Van Strydonck et al. 2019] of MSWasm: that all instructions respect robust capability
safety. Robust capability safety, as demonstrated for object capabilities [Devriese et al. 2016; Swasey

et al. 2017] and capability hardware architectures [Georges 2023; Georges et al. 2021a, 2022a, 2021b,

2022b; Skorstengaard 2019; Skorstengaard et al. 2018, 2019a,b], makes it tractable to reason about

the combination of known code with unknown, potentially adversarial code. As such, it refines the

originalmemory safety guarantee of MSWasm, which does not directly lend itself to prove integrity

properties of local state.

With our definition in hand, we identify cases where the original prose description is imprecise,

as well as a handful of minor typos. We then show that MSWasm satisfies robust capability safety,

and illustrate it on key representative examples capturing fine-grained memory invariants, thereby

validating the design of MSWasm to the level of rigour that it deserves. To our knowledge, this

is the first proof of robust capability safety for an industrial language, and for a language of this

size. Moreover, because our formulation of robust capability safety captures the behaviour of an

arbitrary MSWasm module given the exports that the module has access to, we expect that it can be

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:3

used to reason about the combination of WebAssembly code compiled from a higher-level language

with unknown code compiled to MSWasm.

In showing robust capability safety for a complete definition of MSWasm, we make the case that,

in addition to the extensional behaviour of a formally defined operational semantics, industrial-scale
language definitions can and therefore should come with a formally stated universal contract backed
by a machine-checked proof.

In summary, our contributions are:

• MSWasmCert, a mechanised language definition of MSWasm.

• Iris-MSWasm, a mechanised program logic covering all the language constructs of MSWasm,

and with a complete proof of soundness.

• A mechanised statement and proof of robust capability safety using a logical relation.

All the technical results have been proved in the Coq proof assistant, and our Coq development is

available online (see Data Availability Statement).

Outline. In the rest of this section, we present capabilities/handles, illustrate their use on a

running example (§1.1), and describe the attacker model that we consider (§1.2). We then present

our precise semantics of MSWasm (§2), focusing on the differences to plain WebAssembly, and

highlight how we complete the original prose semantics. We then describe our program logic

and its assertion language (§3), which we then use for the main contribution of this paper: the

definition and proof of robust capability safety of MSWasm (§4). We illustrate this property on a

larger example (§5), and we finish with a discussion (§6).

1.1 Introduction to MSWasm via a Running Example
We illustrate MSWasm on the classic capability ‘buffer’ example [Woodruff et al. 2023], adapted to

our setting. We give the code (using the formal syntax we present later in Figure 2) and depict it

visually in Figure 1, and describe it informally below.

0 [i32.const 8;
}

Allocate a handle

with room for two i32s1 segalloc;
2 local.set $h; Call it $h
3 local.get $h; }

Store private value 42

at ℎ[0..3]4 i32.const 42;

5 i32.segstore;
6 local.get $h;

Create a sub-handle for

the rest of the buffer, ℎ[4..]
7 i32.const 4;

8 i32.const 4;

9 slice;
10 local.set $hpub; Call it $hpub
11 local.get $hpub; }

Call adversary function $adv
with argument $hpub12 call $adv;

13 local.get $h; }
Read from $h

14 i32.segload]

segment memory

42

?

original

handle

$h

handle

given to

adversary

$hpub

Fig. 1. The buffer example

The known code starts (lines 0–2) by allocating a handle that has authority over a ‘buffer’: a part

of segment memory. It stores (3–5) a private value, 42, in the first four bytes. The intent is to call

an untrusted function, $adv, with access to the rest of the buffer, but not to the private value. To do

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:4 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

so safely, the known code slices (6–9) the handle to get a sub-handle that has authority only over

the rest of the buffer. The known code then calls $adv, sharing only the sub-handle by passing it as

an argument (11–12), and finally reads back the private value (13–14).

MSWasm guarantees that the handle $h has not been freed and the private value is unchanged

after the call to $adv returns. In general, MSWasm guarantees fine-grained memory safety: unless

explicitly given access to a handle with authority over a part of segment memory, a module cannot

read or write to that part of segment memory.

In the rest of the paper, we show how to prove that this program’s return value is either the trap
failure value (in case the allocation or adversary call traps), or 42. We use a program logic to reason

about the known code, and a logical relation to reason about the unknown code.

In §5, we also illustrate this approach on a stack module that showcases MSWasm and demon-

strates that our approach scales to complex invariants about practical data structures.

1.2 Attacker Model and TCB
Wasmmodules are linked together via instantiation. Instantiation does not take place within aWasm

program, but in a host — in the browser, this is typically JavaScript code. Instantiation enforces that

all the modules are well-typed and have consistent exports and imports. The attacker model that

we consider is one where one or more ‘friendly’ modules with known code are instantiated with

one or more unknown, potentially adversarial Wasm modules. We assume that the host does not

affect memories, locals, control flow, etc.; in our formalisation, we do this by restricting the host

language. This attacker model fits the context of cloud computing (microservices, edge computing,

etc.), where one client’s module should be isolated from the third-party libraries it imports.

Our results concern the language specification, not a particular implementation in term of a

Wasm runtime, which we still have to trust. We prove integrity, but not confidentiality — this

could be tackled using a binary logical relation expanding our unary logical relation [Georges

2023, §4.5], but it is outside of our scope to define an operational semantics that faithfully captures

confidentiality in the setting of WebAssembly. We also have to trust the host language to match the

assumptions stated above. On the mechanisation side, we have to trust the soundness of the ‘kernel’

proof checker of the Coq proof assistant. Crucially, we do not need to trust the Iris separation logic

framework, nor the separation logic rules we define, as they are linked to the operational semantics

of MSWasm by our adequacy theorem (§3.4).

2 The MSWasmCert Semantics
Michael et al. [2023] present MSWasm as an extension of WebAssembly. While their pen-and-paper

specification of MSWasm builds on a mostly faithful representation of WebAssembly, it remains an

idealised version of the language. This results in a language specification that does not exactly line

up with the official language specification ofWebAssembly. Meanwhile, unlike most other industrial

languages, one of the advantages of WebAssembly is that it has a detailed and comprehensive

semantics [Haas et al. 2017], with a well-defined standard [Rossberg 2019]. One of our goals is

thus to formalise the MSWasm proposal as an extension of the official and complete WebAssembly

semantics. This is achieved by building our formalisation on top of the WasmCert mechanisation,

which covers the full language as per the 1.0 specification.

2.1 Plain Wasm Semantics
In this section, we briefly recall WebAssembly, highlighting the features omitted by Michael et al.

[2023]; a reader familiar with the language can safely skip to §2.2. Figure 2 shows the syntax of

WebAssembly, with the additions brought by MSWasm highlighted in magenta.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:5

(numeric type) nt ::= i32 | i64 | f32 | f64
(value type) 𝑡 ::= nt | handle

(value) v ::= nt .const 𝑐 | handle.const ℎ
(byte tag) tag ::= Numeric | Handle

(in the original presentation, these are called ⃝ and □)

(function type) ft ::= ts → ts
(immediate)

𝑖,min,max, addr, off , id ::= N
(tagged byte) tbyte ::= byte × tag

(handles) ℎ ::= {base : addr, offset : off , bound : off , valid : bool, id : id }
(basic instructions) 𝑏 ::= nt .const 𝑐 | 𝑡 .add | other stackops | local.{get/set} 𝑖 | global.{get/set} 𝑖 |

𝑡 .load (tp_sx)? a o | 𝑡 .store tp? a o | memory.size | memory.grow |
block ft bs | loop ft bs | if ft bs bs | br 𝑖 | br_if 𝑖 | br_table is | call 𝑖 |
call_indirect 𝑖 | return | t .segload | t .segstore | segalloc | segfree |
handle.add | slice

(the flags of the load and store instructions represent a packed type, an alignment value and an offset.

The new segload and segstore instructions do not have similar flags)

(administrative instructions) 𝑒 ::= b | handle.const ℎ | trap | invoke 𝑖 | label𝑖 {es} es end |
local𝑖 {𝐹 } es end | call_host tf hidx vs

(functions) func ::= func i ts bs
(memories) mem ::= mem min max

(elem segments) elem ::= elem i bs off is

(tables) tab ::= tab min max
(globals) glob ::= glob mutable t b init

(data segments) data ::= data i bs off bytes

(import descriptions) importdesc ::= funci 𝑖 | tabi min max | memi min max | globi mutable? 𝑡
(imports) import ::= import string string importdesc

(export descriptions) exportdesc ::= funce 𝑖 | tabe 𝑖 | meme 𝑖 | globe i
(exports) export ::= export string exportdesc

(start) start ::= Some 𝑖 | None
(function instances) finst ::= {(inst; ts); es }NativeCltf | {hidx}HostCltf

(table instances) tinst ::= {elem : is, max : max? }
(memory instance) minst ::= {data : bytes, max : max? }

(global instance) ginst ::= {mut : mutable?, value : v }
(segment instance) sinst ::=

{
segdata : tbytes, max : max?

}
(allocator instance) ainst ::= id → (addr × off)?

(store) 𝑆 ::=

{
funcs : finsts, globs : ginsts, mems : minsts, tabs : tinsts,
seg : sinst, allocator : ainst

}
(frame) 𝐹 ::= {locs : vs, inst : inst }

(module instance) 𝑖𝑛𝑠𝑡 ::= {types : fts, funcs : is, globs : is, mems : is, tabs : is }

(modules) m ::=

types : fts, funcs : funcs, globs : globs, mems : mems, tabs : tabs,
data : datas, elem : elems, imports : imports, exports : exports,
start : start

Fig. 2. WebAssembly Abstract Syntax in black, with the MSWasm additions in magenta

A Stack Language. WebAssembly code is given as a list of instructions, and its operational

semantics works as a stack machine that reduces the head instruction. For example, the operational

semantics rule for addition is defined as

(𝑆, 𝐹, [i32.const 𝑐1; i32.const 𝑐2; i32.add]) ↩→ (𝑆, 𝐹, [i32.const (𝑐1 + 𝑐2)])

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:6 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

(we explain 𝑆 and 𝐹 below). In order to apply this rule in the context of a larger program,

WebAssembly provides structural rules that allow to reduce under a context. For example, if

(𝑆, 𝐹, es) ↩→ (𝑆 ′, 𝐹 ′, es′), then (𝑆, 𝐹, vs ++ es ++ es2) ↩→ (𝑆 ′, 𝐹 ′, vs ++ es′ ++ es2), where we write vs
for a list of values, and es for a list of expressions.

The Store and the Frame. WebAssembly operates over a store and a frame. The store 𝑆 is a record

that bookkeeps all globally available functions, memories, global variables, etc. The frame 𝐹 contains

the current function’s local variables, as well as its instance. The instance symbolises the function’s

environment, describing which parts of the global store the function has access to. It is defined as a

record which contains indices that refer to objects in the store. This means that functions access

the store via a level of indirection through the frame.

The key role of the instance in the frame is visible for example in the global.get instruction:

𝐹 .inst.globs[𝑖] = 𝑘 𝑆.globs[𝑘] .value = v

(𝑆, 𝐹, [global.get 𝑖]) ↩→ (𝑆, 𝐹, [v])
All WebAssembly variables, as well as functions and all other objects are referred to with indices

instead of names. For local variables, this index refers to the place in the list of local variables

present in 𝐹 .locs. However, for all other objects, because they may outlive the current function

(and even the current module if they are exported), the value is kept in the store together with that

of objects defined in other modules. The index into the store has to be looked up in the instance,

𝐹 .inst. In the case of a global variable shown above, the instance’s globs field is a list of indices into
the store, the 𝑖−th of which corresponds to the location in the store of this module’s 𝑖−th global

variable. It is then from that location that we fetch the value of the variable from the store.

This indirection into the store via the frame is the crux of the coarse-grained encapsulation

guarantees of WebAssembly. As we discuss in §2.2, handles achieve encapsulation very differently:

they access the store directly, but are guarded by dynamic checks. The original presentation of

MSWasm omits the instance from their description of the frame, and thus only accounts for handles.

Meanwhile, our mechanisation captures both the coarse-grained encapsulation guarantees of

WebAssembly, and the new fine-grained dynamic guarantees of handles.

Modules and Host Language. Frames and instances are constructed at runtime. Statically, Web-

Assembly code is shipped in modules, each module defining functions, a linear memory, global

variables, etc. A module can import any of those objects, either from another WebAssembly module

that explicitly exported it, or from the host language that runs the WebAssembly modules.

Static modules are turned into dynamic module instances via instantiation, in which the module’s

code is typechecked, its imports are satisfied, and its exports are prepared for subsequent imports.

This process is not part ofWebAssembly itself, and henceWebAssembly code always runs embedded

in a host language, typically Javascript, that performs module instantiation and can also perform

an array of other interactions with WebAssembly code, such as calling WebAssembly functions,

accessing or modifying WebAssembly state, etc. The host language can also provide functions

or other objects that WebAssembly modules can import. As with frame instances, the original

MSWasm presentation omits any description of modules and module instantiation.

Linear Memory. One of the objects that a module can encapsulate is the linear memory. In
WebAssembly, the linear memory of a module (which Michael et al. [2023] call heap memory)
is a growable array of bytes. Linear memory is accessed via load and store instructions, which
take an i32 argument from the stack and treat it as an address. These instructions take a type

as an immediate argument to know how many bytes to access and which encoding/decoding to

use. WebAssembly defines two functions, serialise and deserialise, to encode and decode all four

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:7

numerical types. The load and store instructions can also take additional information (such as an

offset) as immediate arguments to allow for simple pointer arithmetic. We show here a simple use

of the load instruction, where the only immediate argument is the type to read:

𝐹 .inst.mems[0] = k 𝑆.mems[k] [𝑐..𝑐 + sizeof (𝑡)] = bs deserialise(𝑡, bs) = 𝑐′

(𝑆, 𝐹, [i32.const 𝑐; 𝑡 .load]) ↩→ (𝑆, 𝐹, [𝑡 .const 𝑐′])

Just like for the global variables, the index in the store of the current module’s linear memory is

looked up in the instance 𝐹 .inst.1

Typing. WebAssembly 1.0 defines a simple type system with only four types: i32, i64, f32 and f64
(as we will see in §2.2, MSWasm introduces a new handle type). Instructions have type t1s → t2s,
where t1s is the types of the values expected on the stack by the instruction, and t2s is the types
of the values that will be pushed on the stack. For example, 𝑡 .add has type [𝑡, 𝑡] → [𝑡] and 𝑡 .load
has type [i32] → [𝑡], since addresses into memory are simple i32 integers in WebAssembly. The

WebAssembly type system guarantees that well-typed programs satisfy progress and preservation.

2.2 Segment Memory
In this section, we describe how MSWasm extends WebAssembly with a new kind of memory,

segment memory, that is accessed not via i32 integers interpreted as addresses, but via handles.
More precisely, we present MSWasmCert — our formalisation of MSWasm in Coq — which adapts

the prose description of MSWasm to a mechanisation of the full official 1.0 specification, and fixes

some minor mistakes and limitations of the original prose definition.

Handles. MSWasm introduces new runtime values, handles, and a corresponding type, handle,
which is distinct from the numeric types of WebAssembly. A handle is a form of fat pointer,

represented as a record with the following fields : a base, an offset, a bound, a valid bit, and an

id. The handle points to the bytes beginning at address (base + offset), its bounds of authority is

described by the interval [base..base + bound), and its id is used to identify a handle based on its

original allocation. Handles are unforgeable, and can only either be derived from other handles,

or created when a segment is allocated by the segalloc instruction. In particular, this means that

handle.const ℎ cannot occur in the source program, it only appears at runtime. In MSWasmCert,

we enforce this syntactically: as shown in Figure 2, handle constants are not basic instructions, i.e.
instructions available to the programmer, but rather administrative instructions, i.e. instructions
that only appear at runtime.

Dynamic Checks. A handle does not invariantly require its address base + offset to be within

its bounds of authority [base..base + bound), thus allowing for common code patterns where a

forbidden pointer might be created but never used (e.g. right before the end of a loop). Instead,

instructions that seek to access the segment memory trigger dynamic checks, which guarantee that

the accessed addresses are within the bounds of authority of the handle, that the validity bit is

true, and that the handle’s id is still live in the allocator (see below). If the conditions are met, the

segload and segstore instructions are permitted to read and write from the segment memory. If the
conditions are not met, the instructions reduce to trap. Just like the load and store instructions in
linear memory, the segload and segstore instructions take a value type as an immediate argument

to know how many bytes to read in the segment memory, and how to interpret these bytes.

1
In WebAssembly 1.0, modules have at most one memory so the list 𝐹 .inst.mems is of length at most one, hence the index

at which we inspect it is always 0.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:8 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

Storing Handles in Memory. One subtlety arises from reading handles. If no precautions are taken,

a user could write a series of integer values into memory and then read them using handle.segload,
effectively forging a handle. To prevent this, the bytes in segment memory are tagged as either

Handle or Numeric. When reading a handle, if any of the involved bytes is tagged as Numeric, the
read yields a handle with the validity bit set to false. MSWasm also mandates that reading and

writing handles can only be done at addresses that are aligned with the length of a handle. This

prevents forging a handle, which could otherwise be done by writing two handles consecutively in

segment memory and reading from a tagged but unaligned address midway through the first. Since

the bytes in linear memory are untagged, reading handles from it would be unsafe as this may

forge a handle. Hence using the load instuction to read a handle from linear memory automatically

traps. If handles must be stored and loaded, this can be done safely in segment memory by using

the segstore and segload instructions.

In MSWasmCert, we abstract over what mechanism is used to serialise a handle into a byte repre-

sentation, and simply assumewe are provided two functions serialise_handle and deserialise_handle.

Operations on Handles. Two new instructions allow for manipulating handles: handle.add adds

to the offset of a handle, changing its address, while slice restricts its bounds of authority. Neither
operation increases the authority of a handle, and thus both are safe. In both cases, the id stays the

same, thus uniquely identifying the handle across changes: all handles that share the same id are all

derived from one original handle. Accordingly, freeing one handle (see below) will simultaneously

free all handles with the same id.

Modules. The original pen-and-paper description of MSWasm [Michael et al. 2023] implicitly

assumes that all programs run in the same module, and thus altogether omits any mention of

WebAssembly modules (although their implementation reuses rWasm’s support for modules). In

MSWasmCert, we formally account for the full module system of WebAssembly. To do this, we need

to decide how the coarse-grained encapsulation properties of the WebAssembly module system

ought to interact with the fine-grained encapsulation properties of MSWasm handles. Rather than

operating over several coarsely encapsulated segment memories, we choose to limit the store to

a single segment memory shared between all modules. This simplifies the design, and makes it

seamless to share a handle from one module to another.
2
This also underlines that the encapsulation

properties no longer stem from WebAssembly’s module system, but from the handles themselves

providing fine-grained memory safety.

Allocator. Handles can be dynamically allocated and freed.While a handle grants spacial authority

over the fragment of segment memory described in its metadata, the handle itself does not express

whether that region is still temporally valid, or has already been freed. Instead, MSWasm keeps

track of live handles using an allocator. Michael et al. [2023] state that the allocator should have an

‘allocation’ and a ‘free’ function, and describe some of their expected properties. InMSWasmCert, we

define the allocator as a map from handle ids to either None, meaning a handle that has been freed,

or Some pair of integers representing the handle’s original base address and bound. Allocating

a handle is modelled by extending the map, and freeing a handle is modelled by updating its

mapping toNone. The programmer can perform these operations by using the segalloc and segfree
instructions. Allocation is non-deterministic: the handle returned by the segalloc instruction could

point to any non-live part of segment memory. We impose several (slightly different from Michael

et al. [2023]) conditions on the handle to be freed: its base and bound fields must be the original

address and bound the handle got allocated as (i.e. the handle cannot have been sliced), its offset

must be zero, and its validity bit must be true.
2
Related questions arise in the context of capability machines featuring virtual memory [Watson et al. 2023, §3.11.3].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:9

aligned(𝑎, 𝑏) ≜ 𝑎 modulo 𝑏 = 0

compatible(addr, off , ainst) ≜ ∀id addr ′ off ′. ainst (id) = Some(addr′, off ′) =⇒
(addr + off ≤ addr′ ∨ addr ≥ addr′ + off ′)

. .

addr ≤ length(sinst .segdata) ainst (id) = None compatible(addr, off , ainst)
sinst′ = {segdata = sinst .segdata[addr ..addr + off := 0], max = sinst .max}

ainst′ = ainst [id ↦→ Some(addr, off)]

⟨sinst, ainst⟩
salloc(addr,off ,id)
↩−−−−−−−−−−−−−→ ⟨sinst′, ainst′⟩

We do not require that addr + off ≤ length(sinst .segdata), so in cases like

addr = length(sinst .segdata), we are actually growing the segment memory by appending zeros at

the end.

ainst (id) = Some(addr, bound) ainst′ = ainst [id ↦→ None]

⟨sinst, ainst⟩
sfree(addr,bound,id)
↩−−−−−−−−−−−−−−→ ⟨sinst, ainst′⟩

Fig. 3. Helper functions and helper rules for the allocator

Operational Semantics. The operational semantics rules for MSWasmCert are presented in Fig-

ure 4. These rules are almost identical to those of Michael et al. [2023], with the changes brought

by MSWasmCert highlighted in indigo. We describe these changes below. For brevity, we do not

include failure rules, which dictate that segload, segstore, segfree, handle.add and slice all re-

duce to the failure value trap if the premises to apply the successful rule are not met. We also

provide in Figure 3 our own definitions for the ⟨sinst, ainst⟩
salloc(addr,off ,id)
↩−−−−−−−−−−−−−→ ⟨sinst′, ainst′⟩ and

⟨sinst, ainst⟩
sfree(addr,bound,id)
↩−−−−−−−−−−−−−−→ ⟨sinst′, ainst′⟩ predicates used in the allocation and freeing rules.

The changes in the reduction rules from MSWasm to MSWasmCert are:

• MSWasmCert introduces a second operational semantics rule for segalloc, allowing the

allocation to non-deterministically fail, to account for realistic machine behaviour.

• MSWasmCert adds an extra check on the handle.add operation to ensure that the new offset
is non-negative. This is a design choice that allows us to use unsigned integers to represent

offsets, and means that the check for non-negativity of offset in the rules for segload and

segstore are now vacuous in MSWasmCert and can be removed.

• MSWasmCert enforces that freeing a handle must be done with the original handle, not a

sliced version of it (the prose definition mandated that the base address must be the original

address, but did not enforce that the bound must be the original bound). This is a design

choice that we have found convenient when defining our program logic, and it allows for a

programmer to easily create a non-freeable handle.

• MSWasmCert fixes two minor typos from the original work [Michael et al. 2023]: the higher

bound check in the segload and segstore rules should be a ≤ instead of a < (otherwise, when

allocating 𝑛 spaces of memory, one cannot read a value that has size 𝑛), and the bound check

for the second component of slice should be stricter since the bound is an offset from the

base rather than an address: changing the base always needs to be compensated by lowering

the bound.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:10 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

𝑡 ≠ handle 0 ≤ ℎ.offset ℎ.offset + sizeof (𝑡) ≤ℎ.bound ℎ.valid = true
isSome(𝑆.allocator(ℎ.id)) addr = ℎ.base + ℎ.offset

𝑆.seg[addr ..addr + sizeof (𝑡)] = tbs deserialise(𝑡, untag(tbs)) = c

(𝑆, 𝐹, [handle.const ℎ; t .segload]) ↩→ (𝑆, 𝐹, [𝑡 .const 𝑐])

𝑡 = handle 0 ≤ ℎ.offset ℎ.offset + sizeof (𝑡) ≤ℎ.bound ℎ.valid = true
isSome(𝑆.allocator(ℎ.id)) addr = ℎ.base + ℎ.offset

𝑆.seg[addr ..addr + sizeof (𝑡)] = tbs deserialise(𝑡, untag(tbs)) = h′

aligned(addr, handle_size) 𝑏 = allHandle(tags(tbs)) ℎ𝑓 = updateValid(ℎ′, 𝑏 ∧ ℎ′ .valid)
(𝑆, 𝐹, [handle.const ℎ; t .segload]) ↩→ (𝑆, 𝐹, [𝑡 .const ℎ𝑓])

𝑡 ≠ handle 0 ≤ ℎ.offset ℎ.offset + sizeof (𝑡) ≤ℎ.bound ℎ.valid = true
isSome(𝑆.allocator(ℎ.id)) addr = ℎ.base + ℎ.offset serialise(𝑡, c) = bs

seg′ = 𝑆.seg[addr ..addr + sizeof (𝑡) := addTag(bs,Numeric)] 𝑆 ′ = {𝑆 with seg = sinst′}
(𝑆, 𝐹, [handle.const ℎ; t .const 𝑐; t .segstore]) ↩→ (𝑆 ′, 𝐹 , [])

𝑡 = handle 0 ≤ ℎ.offset ℎ.offset + sizeof (𝑡) ≤ℎ.bound ℎ.valid = true
isSome(𝑆.allocator(ℎ.id)) addr = ℎ.base + ℎ.offset serialise(𝑡, ℎ′) = bs

seg′ = 𝑆.seg[addr ..addr + sizeof (𝑡) := addTag(bs,Handle)] 𝑆 ′ = {𝑆 with seg = sinst′}
aligned(addr, handle_size)

(𝑆, 𝐹, [handle.const ℎ; handle.const ℎ′; t .segstore]) ↩→ (𝑆 ′, 𝐹 , [])

⟨𝑆.seg, 𝑆 .allocator⟩
salloc(addr,off ,id)
↩−−−−−−−−−−−−−→ ⟨sinst′, ainst′⟩

𝑆 ′ = {𝑆 with seg = sinst′, allocator = ainst′}
ℎ = {base = addr, offset = 0, bound = off , valid = true, id = id}

(𝑆, 𝐹, [i32.const 𝑐; segalloc]) ↩→ (𝑆 ′, 𝐹 , [handle.const ℎ])

ℎ = {base = 0, offset = 0, bound = 0, valid = false, id = 0}
(𝑆, 𝐹, [i32.const 𝑐; segalloc]) ↩→ (𝑆, 𝐹, [handle.const ℎ])

⟨𝑆.seg, 𝑆 .allocator⟩
sfree(ℎ.base,ℎ.bound,ℎ.id)
↩−−−−−−−−−−−−−−−−−−−→ ⟨sinst′, ainst′⟩

𝑆 ′ = {𝑆 with seg = sinst′, allocator = ainst′} ℎ.offset = 0 ℎ.valid = true

(𝑆, 𝐹, [handle.const ℎ; segfree]) ↩→ (𝑆 ′, 𝐹 , [])

ℎ.offset + 𝑐 ≥ 0 ℎ′ = updateOffset(ℎ,ℎ.offset + 𝑐)
(𝑆, 𝐹, [i32.const 𝑐; handle.const ℎ; handle.add]) ↩→ (𝑆, 𝐹, [handle.const ℎ′])

0 ≤ 𝑐1 < ℎ.bound 𝑐1 ≤ 𝑐2
ℎ′ = {base = ℎ.base + 𝑐1, offset = ℎ.offset, bound = ℎ.bound − 𝑐2, valid = ℎ.valid, id = ℎ.id}

(𝑆, 𝐹, [handle.const ℎ; i32.const 𝑐1; i32.const 𝑐2; slice]) ↩→ (𝑆, 𝐹, [handle.const ℎ′])

Fig. 4. Operational semantics for the new instructions in MSWasm, phrased in the syntax of MSWasmCert.
The non-cosmetic changes brought by MSWasmCert to MSWasm are highlighted in indigo. Clauses made
redundant by our mechanisation are crossed out.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:11

Buffer Example. Let us come back to the buffer example from §1.1. We assume function $adv has
type [handle] → [], but nothing more: it could be imported from another module and we might

not know or trust its code. Since we do not share $h with this function, we expect the return value

of this program to be 42. In the next section, we present a program logic that lets us prove this.

3 Program Logic
In order to reason about programs written in MSWasm, we define a program logic, Iris-MSWasm.

Our program logic allows us to specify and verify known programs, and lays the foundations for

defining the logical relation in §4, which allows to reason about interactions with unknown code.

Iris-MSWasm builds on top of Iris-Wasm [Rao et al. 2023], a program logic for WebAssembly,

and on the Cerise family [Georges 2023; Georges et al. 2021a, 2022a, 2021b, 2022b; Skorstengaard

2019; Skorstengaard et al. 2018, 2019a,b] of program logics for an idealised capability machine

inspired by CHERI. Iris-Wasm captures the coarse-grained encapsulation guarantees of plain

WebAssembly, so building on it helps to highlight the differences to the fine-grained encapsulation

guarantees we focus on. Building on top of Iris-Wasm also means that we inherit many properties

like higher-orderness and the ability to reason about reentrant host calls. While mostly orthogonal

to fine-grained memory safety, they can be desirable in many cases.

In this section, we recall Iris-Wasm, and then explain how we adapted it to MSWasm.

3.1 Iris-Wasm
Iris-Wasm [Rao et al. 2023] is a program logic for WebAssembly, defined in the Iris logical frame-

work [Jung et al. 2018]. Instantiated with a language’s operational semantics, Iris provides a program

logic that allows to prove properties of programs, phrased in a higher-order separation logic. Atop

the structural rules from Iris, we can derive instruction-specific proof rules for each instruction of

the language. We can then use them to reason about WebAssembly code in a syntax-directed way.

Logical Values. We define logical values, noted 𝑤 , to describe expressions that cannot reduce.

These can be of several kinds. Immediate values immV vs represent a list of WebAssembly values.

The trap value trapV represents a program that has safely halted execution. Iris-Wasm also defines

other kinds of logical values because of WebAssembly’s expressive control flow mechanisms. The

original Iris-Wasm paper describes the treatment of these other logical values, which is unchanged

in Iris-MSWasm.

Specifications. We phrase our proof rules and specifications using either Hoare triples or weakest
precondition statements. The Hoare triple {𝑃 } es {𝑤,Φ(𝑤)} means that “if the precondition 𝑃 holds,

the expression es executes safely while maintaining all invariants, and if it terminates on a logical

value 𝑤 , the predicate Φ holds of that value 𝑤”. A weakest precondition wp es {𝑤,Φ(𝑤)} is a

separation logic proposition that means “we hold precisely the resources necessary to run es safely
and without breaking invariants, and if that run terminates on a logical value𝑤 , the predicate Φ
holds of that value𝑤”.

Resources. The Iris-Wasm program logic defines resources that describe ownership of the frame

or ownership of fragments of the store; and weakest precondition rules corresponding to each

instruction of WebAssembly, dictating what resources are needed to run each instruction. For

example, the proof rule for 𝑡 .load is given by (the coloured boxed are used to contrast with our

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:12 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

𝑖
wm↦−−−−→addr b Ownership of a byte in linear memory

𝑖
wms↦−−−−→addr bv Ownership of a list of bytes in linear memory

ws↦−−−→addr tb Ownership of a tagged byte in segment memory

wss↦−−−−→addr tbs Ownership of a list of tagged bytes in segment memory

id allocated−−−−−−−−→𝑞 (addr, bound)? (Fractional) ownership of a handle id in the allocator

𝑖
wg↦−−−→ {mutability; v} Ownership of a global variable

Fr

↩−−→ 𝐹 Ownership of the WebAssembly frame

Fig. 5. Points-to assertions corresponding to various components of the state

wp_segload rule we introduce in §3.2):

wp_load

𝐹 .inst.mems[0] = n ∗ n wms↦−−−−→i bs ∗ deserialise(𝑡, bs) = v ∗ ⊲Φ(immV [v]) ∗ Fr

↩−−→ 𝐹

wp [i32.const 𝑖; t .load]
{
𝑤, Φ(𝑤) ∗ Fr

↩−−→ 𝐹 ∗ n wms↦−−−−→i bs
}

Taking Φ(𝑤) ≜ 𝑤 = immV [v], this means that if we own the frame resource
Fr

↩−−→ 𝐹 and the linear

memory resource
3 𝑛

wms↦−−−−→i bs, the load instruction executes safely. The 𝑛 on the left-hand-side of

the linear memory resource corresponds to the index of this module’s memory in the store, looked

up in the frame. If the instruction returns (which it does in this case), the return value is v, and
we are handed back the frame resource

Fr

↩−−→ 𝐹 and the memory resources 𝑛
wms↦−−−−→i bs. Figure 5

displays some of the resources of the Iris-Wasm program logic, with the new resources introduced

by Iris-MSWasm highlighted in magenta.

In addition to reasoning about individual WebAssembly modules, Iris-Wasm also introduces

a simple host language together with a program logic for it, making it possible to reason about

multiple WebAssembly modules being sequentially instantiated by the host environment. The most

important piece of this host language program logic is the instantiation lemma, that roughly states

that if a module typechecks and we own resources corresponding all its imports, the module can

be instantiated and we get resources corresponding to all objects (e.g. function closures, linear

memories, global variables, etc.) created by the module.

Finally, Iris-Wasm is accompanied by a logical relation that allows to reason about unknown

code. We describe our extension of this logical relation in detail in §4.

3.2 Iris-MSWasm
Our program logic, Iris-MSWasm, is defined by adapting Iris-Wasm to the features introduced

by MSWasm. This entailed defining the logical ghost state for allocators and segment memories,

defining new resources, and proving proof rules for all new instructions.

This constituted a non-trivial programming effort, as many of the new features behave very

differently from the existing ones that have been implemented in Iris-Wasm. For example, in plain

WebAssembly, all components of the store, including linear memories, grow monotonically during

execution, so a simple heap can be used to represent them. But the segment memory can have

parts of it freed, so a ghost map had to be used instead of a heap. Additionally, converting a linear

memory to an index-map is as simple as mapping all indices from 0 to the size of the memory to

3
We use superscripts on the arrows (e.g. wms for the linear memory resource) to differentiate the various resources present

in the program logic. Some resources like the frame resource additionally use a different arrow shape.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:13

their corresponding byte. For the segment memory, only live addresses should point to a value,

increasing the complexity of the definitions.

To accommodate for the new type of memory, we introduce new points-to resources, as described

in Figure 5. The segment memory resource
ws↦−−−→addr tb represents ownership of a single tagged byte

in segment memory. Allocator resources id allocated−−−−−−−−→𝑞
None or id allocated−−−−−−−−→𝑞

Some(addr, bound)
represent fractional ownership of a handle id in the allocator. 𝑞 is rational in (0, 1]. The case

where 𝑞 = 1 represents full ownership and allows to access or modify the value on the right-

hand-side of the arrow; in that case we may omit writing the fraction. If 𝑞 < 1, the resource is

only partially owned: the right-hand-side value can be accessed, but not modified. Since freeing a

handle corresponds to updating its value in the allocator from Some (base, bound) to None, freeing
requires full ownership, and we can use partial resources to symbolise handles that are unfreeable

because they have been sliced. We also define a syntactic sugar for ownership of a list of tagged

bytes tbs in segment memory:
wss↦−−−−→addr tbs. Contrary to the resources for linear memory, there is

no store index on the left-hand side of the arrow in the segment memory resources. This reflects

the fact that all modules share one common segment memory.

Using theses new resources, we define and prove new weakest-precondition rules for all of

MSWasm’s new instructions. We present these new rules in Figures 6 and 7. These rules mirror the

operational semantics introduced in §2.2. For example, the rule for 𝑡 .segload is:

wp_segload

𝑡 ≠ handle ∗ wss↦−−−−→addr tbs ∗ ℎ.id allocated−−−−−−−−→ Some(𝑥) ∗ ℎ.offset + sizeof (𝑡) ≤ ℎ.bound ∗
addr = ℎ.base + ℎ.offset ∗ ℎ.valid = true ∗

deserialise(𝑡, untag(tbs)) = v ∗ ⊲Φ(immV [v]) ∗ Fr

↩−−→ 𝐹

wp [handle.const ℎ; t .segload]
{
𝑤, Φ(𝑤) ∗ Fr

↩−−→ 𝐹 ∗ wss↦−−−−→addr tbs ∗ h.id allocated−−−−−−−−→Some (x)
}

This rule is quite close to the wp_load rule from §3.1. The differences are (1) the segment rule does

dynamic checks to ensure the read is admissible, (2) the memory resource is a linear memory

resource in the wp_load rule but a segment memory resource in the wp_segload rule (which

also means that the premise looking up an index in the frame instance 𝐹 .inst is unnecessary in

the segment rule), and (3) the allocator resource is additionally present in the segment rule.

The premise 𝑡 ≠ handle in wp_segload is required, because in the case of reading a handle from
memory, additional checks are necessary and hence requires a separate wp_segload_handle rule,

as displayed in Figure 6. A similar 𝑡 ≠ handle premise has to be added to wp_load in Iris-MSWasm,

since reading a handle from linear memory is not allowed in the MSWasm semantics. This is the

only modification necessary to a rule from Iris-Wasm when defining Iris-MSWasm.

3.3 Specifying the Known Parts of the Buffer Example
Let us come back to the buffer example from §1.1, whose code is in Figure 1. In this section, we

show how to reason about the known parts of its code, and we defer the discussion about the

adversary call to §4.3. This explanation is quite technical, because we detail the entire proof. Its

mechanisation can be found in our Coq development in file buffer_code.v.
Our goal will be to prove that

{ Fr

↩−−→ 𝐹 } buffer_example {𝑤, (∃𝐹 ′ . Fr

↩−−→ 𝐹 ′) ∗ (𝑤 = trapV ∨𝑤 = immV [i32.const 42])}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:14 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

wp_segload

𝑡 ≠ handle ∗ wss↦−−−−→addr tbs ∗ ℎ.id allocated−−−−−−−−→𝑞
Some(𝑥) ∗ ℎ.offset + sizeof (𝑡) ≤ ℎ.bound ∗

addr = ℎ.base + ℎ.offset ∗ ℎ.valid = true ∗ deserialise(𝑡, untag(tbs)) = v ∗
⊲Φ(immV [v]) ∗ Fr

↩−−→ 𝐹

wp [handle.const ℎ; t .segload]
{
𝑤,Φ(𝑤) ∗ wss↦−−−−→addr tbs ∗ ℎ.id allocated−−−−−−−−→𝑞

Some(𝑥) ∗ Fr

↩−−→ 𝐹

}
wp_segload_handle

𝑡 = handle ∗ wss↦−−−−→addr tbs ∗ ℎ.id allocated−−−−−−−−→𝑞
Some(𝑥) ∗ ℎ.offset + sizeof (𝑡) ≤ ℎ.bound ∗

aligned(addr, handle_size) ∗ 𝑏 = allHandle(tags(tbs)) ∗ ℎ𝑓 = updateValid(ℎ′, 𝑏 ∧ ℎ′ .valid) ∗
addr = ℎ.base + ℎ.offset ∗ ℎ.valid = true ∗ deserialise(𝑡, untag(tbs)) = h′ ∗

⊲Φ(immV [hf]) ∗ Fr

↩−−→ 𝐹

wp [handle.const ℎ; t .segload]
{
𝑤,Φ(𝑤) ∗ wss↦−−−−→addr tbs ∗ ℎ.id allocated−−−−−−−−→𝑞

Some(𝑥) ∗ Fr

↩−−→ 𝐹

}
wp_segload_failure1(

ℎ.offset + sizeof (𝑡) > ℎ.bound ∨ ℎ.valid = false ∨

(𝑡 = handle ∧ ¬aligned(ℎ.base + ℎ.offset, handle_size))
)
∗ ⊲Φ(trapV) ∗ Fr

↩−−→ 𝐹

wp [handle.const ℎ; t .segload]
{
𝑤,Φ(𝑤) ∗ Fr

↩−−→ 𝐹

}
wp_segload_failure2

ℎ.id allocated−−−−−−−−→𝑞
None ∗ ⊲Φ(trapV) ∗ Fr

↩−−→ 𝐹

wp [handle.const ℎ; t .segload]
{
𝑤,Φ(𝑤) ∗ ℎ.id allocated−−−−−−−−→ None ∗ Fr

↩−−→ 𝐹

}
(We omit the similar failure rules for segstore, segfree, handle.add and slice; these rules are

shown in our supplementary material)

Fig. 6. Iris-MSWasm rules for the segload instruction

where 𝐹 is a frame where two local variables $h and $hpub are declared, both of type handle, and
the instance contains a function $adv of type [handle] → []. Our desired post-condition allows

the program to trap: this could correspond either to the allocation failing, or to the function call

failing. Crucially, trapping is safe, as it ensures that no memory violation has occurred.

Since we focus here on reasoning about known code, we assume until the end of this section

that we know a specification for function $adv, say:

∀ℎ, 𝑞. { wss↦−−−−→ℎ.base − ∗
ℎ.id allocated−−−−−−−−→𝑞

Some− } [handle.const ℎ; call $adv] {𝑤,

𝑤 = trapV ∨©«
𝑤 = immV [] ∗
∃tbs′ . wss↦−−−−→ℎ.basetbs′ ∗
∃opt . ℎ.id allocated−−−−−−−−→𝑞

opt

ª®¬ }
In other words, the function can be called on any handle input, as long as the caller has ownership

of the segment memory region pointed by that handle. The function may trap, but if it does not, it

yields back ownership of the same segment memory region upon return; the tagged bytes might

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:15

wp_segstore

𝑡 ≠ handle ∗ wss↦−−−−→addr tbs ∗ ℎ.id allocated−−−−−−−−→𝑞
Some(𝑥) ∗ ℎ.offset + sizeof (𝑡) ≤ ℎ.bound ∗

addr = ℎ.base + offset ∗ ℎ.valid = true ∗ typeof (v) = t ∗ |bs | = sizeof (t) ∗
serialise(𝑡, v) = bs ∗ addTag(bs,Numeric) = tbs′ ∗ ⊲Φ(immV []) ∗ Fr

↩−−→ 𝐹

wp [handle.const h; v; t .segstore]
{
𝑤, Φ(𝑤) ∗ wss↦−−−−→addr tbs′∗

ℎ.id allocated−−−−−−−−→𝑞
Some(𝑥) ∗ Fr

↩−−→ 𝐹

}
wp_segstore_handle

𝑡 = handle ∗ wss↦−−−−→addr tbs ∗ ℎ.id allocated−−−−−−−−→𝑞
Some(𝑥) ∗ ℎ.offset + sizeof (𝑡) ≤ ℎ.bound ∗

addr = ℎ.base + offset ∗ ℎ.valid = true ∗ aligned(addr, handle_size) ∗ |bs | = sizeof (t) ∗
serialise(𝑡, ℎ′) = bs ∗ addTag(bs,Handle) = tbs′ ∗ ⊲Φ(immV []) ∗ Fr

↩−−→ 𝐹

wp [handle.const h; handle.const h′; t .segstore]
{
𝑤, Φ(𝑤) ∗ wss↦−−−−→addr tbs′ ∗

ℎ.id allocated−−−−−−−−→𝑞
Some(𝑥) ∗ Fr

↩−−→ 𝐹

}
wp_segfree

ℎ.valid = true ∗ ℎ.offset = 0 ∗ |tbs = 𝑏 | ∗ wss↦−−−−→ℎ.basetbs ∗ ℎ.id allocated−−−−−−−−→ Some(ℎ.base, 𝑏) ∗
⊲Φ(immV []) ∗ Fr

↩−−→ 𝐹

wp [handle.const ℎ; segfree]
{
𝑤,Φ(𝑤) ∗ Fr

↩−−→ 𝐹

}
wp_segalloc

⊲

(
∀𝑤.

(
∃ℎ.𝑤 = immV [handle.const ℎ] ∗ (ℎ.valid = false ∨

(id allocated−−−−−−−−→ Some(ℎ.base, 𝑛) ∗ ℎ.bound = 𝑛 ∗ ℎ.offset = 0 ∗
ℎ.valid = true ∗ wss↦−−−−→ℎ.baserepeat(𝑛, 0)))

)
−−∗ Φ(𝑤)

)
∗ Fr

↩−−→ 𝐹

wp [i32.const 𝑛; segalloc]
{
𝑤,Φ(𝑤) ∗ Fr

↩−−→ 𝐹

}
wp_handleadd

ℎ′ = {base = ℎ.base, offset = ℎ.offset + 𝑐, bound = ℎ.bound, valid = ℎ.valid, id = ℎ.id} ∗
ℎ.offset + 𝑐 ≥ 0 ∗ ⊲Φ(immV [handle.const ℎ′]) ∗ Fr

↩−−→ 𝐹

wp [i32.const 𝑐; handle.const ℎ; handle.add]
{
𝑤,Φ(𝑤) ∗ Fr

↩−−→ 𝐹

}
wp_slice

ℎ′ = {base = ℎ.base + 𝑐1, offset = ℎ.offset, bound = ℎ.bound − 𝑐2, valid = ℎ.valid, id = ℎ.id}
∗0 ≤ 𝑐1 < ℎ.bound ∗ 𝑐1 ≤ 𝑐2 ∗ ⊲Φ(immV [handle.const ℎ′]) ∗ Fr

↩−−→ 𝐹

wp [handle.const ℎ; i32.const 𝑐1; i32.const 𝑐2; slice]
{
𝑤,Φ(𝑤) ∗ Fr

↩−−→ 𝐹

}
Fig. 7. Other Iris-MSWasm specific rules

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:16 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

have changed. We will return in §4.3 to the more general case where the function is completely

untrusted and we are not given a specification for it.

Let us proceed instruction by instruction, recalling the resources we own at each point of the

program. The resources displayed in gold are the ones necessary to fulfil premises of the next rule

to be applied; the ones in black are unused and simply carried forward.

{ Fr

↩−−→ 𝐹 }

Lines 0–1. At the start, we only own the frame resource
Fr

↩−−→ 𝐹 . We can apply
4
rule wp_segalloc

from Figure 7 with

Φ(𝑤) ≜
(
∃ℎ.𝑤 = immV [handle.const ℎ] ∗ (ℎ.valid = false ∨ (id allocated−−−−−−−−→ Some(ℎ.base, 𝑛)∗
ℎ.bound = 𝑛 ∗ ℎ.offset = 0 ∗ ℎ.valid = true ∗ wss↦−−−−→ℎ.baserepeat(𝑛, 0)))

)
(hence the wand implication in the first premise is a trivial 𝑃 −−∗ 𝑃). To satisfy the second premise,

we yield the resource
Fr

↩−−→ 𝐹 . The post-condition gives us back the resource
Fr

↩−−→ 𝐹 , and tells us

that a value handle.const ℎ has now been placed on the stack, and that either ℎ.valid = false
(representing a failed allocation), or we own the segment and allocator resources. If we define

𝑥 ≜ (ℎ.base, ℎ.bound), we have:{
Fr

↩−−→ 𝐹 ∗
(
ℎ.valid = false ∨ wss↦−−−−→ℎ.baserepeat(8, 0) ∗ ℎ.id allocated−−−−−−−−→ Some 𝑥

)}
Lines 2–3. The next two instructions are local.set and local.get. Both instructions have corre-

sponding proof rules in Iris-Wasm, which we apply sequentially. In both cases, the Iris-Wasm proof

rule consumes the frame resource
Fr

↩−−→ 𝐹 as a premise, and gives it back in the post-condition.

local.set changes the frame to new one, 𝐹 ′, where the value of local variable $h is now ℎ:{
Fr

↩−−→ 𝐹 ′ ∗
(
ℎ.valid = false ∨ wss↦−−−−→ℎ.baserepeat(4 + 4, 0) ∗ ℎ.id allocated−−−−−−−−→ Some 𝑥

)}
Lines 4–5. The next instruction is segstore. At this stage, we perform a case disjunction: if

ℎ.valid = false (i.e. the allocation has failed), then the failure rule wp_segstore_failure1 (the

segstore equivalent of rule wp_segload_failure1 from Figure 6) applies since one of the dynamic

checks fails. Hence we trap safely, and in this case we can conclude the whole proof here, as we

have filled the first disjunct of the post-condition.

Let us now consider the second case: we own
wss↦−−−−→ℎ.baserepeat(8, 0). We can apply rule

wp_segstore from Figure 7 with Φ(𝑤) ≜ 𝑤 = immV []. To fulfil the segment resource premise of

the rule, we must yield the first half of the resource we hold. Thus we separate
wss↦−−−−→ℎ.baserepeat(8, 0)

into two resources
wss↦−−−−→ℎ.baserepeat(4, 0) and wss↦−−−−→ℎ.base+4repeat(4, 0). We yield the first of these

(as well as the frame resource
Fr

↩−−→ 𝐹 ′ and our allocator resource) to satisfy the premises of

wp_segstore, and the latter is unused for this rule. The other premises are all the necessary

dynamic checks, which are satisfied here, and the rules give us our resources back, having updated

the tagged bytes in segment memory to now store our private value 42.{
Fr

↩−−→ 𝐹 ′ ∗ wss↦−−−−→ℎ.baseserialise(i32, 42) ∗ wss↦−−−−→ℎ.base+4repeat(4, 0) ∗ ℎ.id allocated−−−−−−−−→ Some 𝑥
}

Lines 6–11. The next instructions are local.get, slice, local.set and local.get again. All of these
instructions have associated proof rules: wp_slice from Figure 7 for slice, and rules from Iris-Wasm

for the local variables. The rule for local.set has changed the frame again to update the value of

variable $hpub to ℎ′, the “second half” of ℎ that we obtained via slicing; we call 𝐹 ′′ this new frame.{
Fr

↩−−→ 𝐹 ′′ ∗ wss↦−−−−→ℎ.baseserialise(i32, 42) ∗ wss↦−−−−→ℎ.base+4repeat(4, 0) ∗ ℎ.id allocated−−−−−−−−→1/2+1/2
Some 𝑥

}
4
We omit the structural rules that allow to bind the first instruction in order to apply the proof rule.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:17

Line 12. Now, we come to the call to function $adv. In our simplified setting, we have a specifica-

tion, which we wish to apply. Since by definition ℎ′ .base = ℎ.base + 4 and ℎ′ .id = ℎ.id, we have
all the resources needed to fill the precondition. If we apply the specification with 𝑞 = 1, we must

lose the entire allocator resource to fulfil the precondition of the specification, and we would only

get back that there exists opt such that ℎ.id allocated−−−−−−−−→ opt. This would not allow us to later execute

the segload instruction. Instead, we can separate our allocator resource into two partial resources

ℎ.id allocated−−−−−−−−→1/2
Some 𝑥 . Now we can apply the specification with 𝑞 = 1

2
yielding only one of our

partial resources, and keeping the second.

The postcondition tells us that either the call has trapped (in which case we can terminate the

proof like before), or there exists some tagged bytes tbs′ and an option opt such that we now

own
wss↦−−−−→ℎ′ .basetbs′ and ℎ.id allocated−−−−−−−−→1/2

opt. Combined with the partial resource we kept, we

know that opt = Some 𝑥 , and we can combine our two fragments to get a full allocator resource.

Informally, that means that the handle is still allocated.

Importantly, the other handle is not required by the specification, and hence the segment resource

wss↦−−−−→ℎ.baseserialise(i32, 42) is framed away.{
Fr

↩−−→ 𝐹 ′′ ∗ wss↦−−−−→ℎ.baseserialise(i32, 42) ∗ wss↦−−−−→ℎ.base+4tbs′ ∗ ℎ.id allocated−−−−−−−−→ Some 𝑥
}

Lines 13–14. Lastly, we use the Iris-Wasm rule for local.get to get the value of variable $h, and
rule wp_segload from Figure 6 allows us to conclude that the return value is indeed 42 as expected.

In the next section, we show how we can achieve the same result when the function $adv is not
specified.

3.4 Adequacy
The Iris logical framework provides an adequacy theorem [Jung et al. 2018, §6.4] that relates the

weakest precondition statement to the operational semantics. This means that Iris is not in our

Trusted Computing Base, as holding a weakest precondition now implies a statement phrased

entirely in terms of the operational semantics of MSWasmCert.

Theorem 3.1 (Adeqacy). If wp es {𝑤,Φ(𝑤)} and (𝑆, 𝐹, es) ↩→∗ (𝑆 ′, 𝐹 ′, vs) for some values vs,
then Φ(vs) holds.

Using the adequacy theorem, we can prove the following result for the buffer example from §1.1:

Theorem 3.2 (Buffer Example). If the code in Figure 1 terminates, it terminates on either the trap
value trapV, or on value 42

Proof sketch. We begin by proving

{ Fr

↩−−→ 𝐹 } buffer_example {𝑤, (∃𝐹 ′ . Fr

↩−−→ 𝐹 ′) ∗ (𝑤 = trapV ∨𝑤 = immV [i32.const 42])}
We have shown in §3.3 how to reason about the known parts of the code, and we will show in §4.3

how to reason about the unknown code; hence we have the wanted Hoare triple. This proof can

also be seen in our Coq development in file buffer_code.v.
Then, we use the program logic for our host language to reason about the instantiation on the

adversary module and the buffer module. The instantiation lemma provides the frame resource

Fr

↩−−→ 𝐹 from the precondition of the Hoare triple. This yields the weakest precondition state-

ment wp buffer_instantiation {𝑤,𝑤 = trapV ∨𝑤 = immV [i32.const 42]}. A proof of this can

be seen in our Coq development in file buffer_instantiation.
Finally, we apply the adequacy theorem which yields the desired result. This entails carefully

providing all of the resource algebras necessary to implement the logical state of Iris and use all

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:18 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

the ghost resources that Iris-MSWasm leverages. A mechanised proof can be seen in our Coq

development in file buffer_adequacy.v. □

4 Robust Capability Safety
We have described how to use Iris-MSWasm to reason about known code. What remains to verify

a complete example is to explain how to reason about unknown, potentially adversarial code. More

precisely, when proving the weakest precondition for the buffer example, we eventually reach

the call to the unknown imported function. At that point, one of our proof obligation is to show

the weakest precondition for the body of that function. Since the function is arbitrary, we cannot

step through its instructions. And since the function is untrusted, we cannot simply assume that

we are given a weakest precondition for it. Instead, we want to define a universal specification
for unknown code, which gives an over-approximation of its behaviour in the form of a weakest

precondition.

To that end, we define a logical relation for the MSWasm type system, and prove that it satisfies

the fundamental theorem of logical relations. In essence, the logical relation defines what it means

for a value to be safe to share, and an expression to be safe to execute. Our logical relation builds

on the logical relation defined in Iris-Wasm [Rao et al. 2023], and follows the typical design of

step-indexed logical relations [Ahmed 2004] in Iris [Krebbers et al. 2017; Timany et al. 2022], and

applies the techniques used in the Cerise line of work [Georges et al. 2021a, 2022a,b]. We present

the intuition behind our logical relation in §4.1, and then define it and show that it is sound in §4.2,

and showcase how it gives us robust safety on our buffer example in §4.3.

4.1 Informal Intuition
The high-level idea behind our logical relation is to define what it means for a value to be safe to
share, and an expression to be safe to execute. What this means depends on the type of the value

or expression: for example, a handle is safe to share if it grants memory access to its range of

authority (i.e. grants access to the relevant points-to predicates), and if that memory recursively

contains values that are safe to share. Meanwhile, an expression es is safe to execute when there is

a weakest precondition for it wp es {𝑤,𝑤 is safe to share}. In this simplified definition, es either
loops, or reduces to a value that is safe to share. The formal definition has to account for programs

that reduce to trapV, as well as programs that either return or break to the surrounding context.

Crucially, as described earlier, a program that reduces to trapV (say, because it failed a dynamic

check) is safe to execute.
5

The definitions of safe to share and safe to execute can be viewed as a universal contract, in the

sense that it holds for all well-typed MSWasm programs. A key theorem is to prove that this is

the case. We call this result the fundamental theorem of the logical relation: if a program es is a
well-typed MSWasm program, then it is safe to execute. We state this theorem formally in §4.2.

By applying the fundamental theorem, since module instantiation guarantees that its functions

are well typed, we can derive weakest precondition specifications for imported functions, even

when they are unknown. The caveat is that in order to get this specification, any shared handle

must also satisfy the universal contract, i.e. satisfy the value interpretation for handles. Thus, a key

feature of the logical relation is to capture the fine-grained encapsulation properties of handles, so

as not to impose invariants over segment regions that are not shared.

5
As mentionned in §1.2, we only consider integrity properties. If we were to consider confidentiality properties, we would

need to consider potential interoperability with IO

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:19

VJtsK : LogVal → iProp

ValidHandleAddr(addr, base′, bound′) ≜ aligned(base′ + addr, handle_size) ∧
0 ≤ addr ∧ addr + handle_size ≤ bound′

V0JhandleK(v) ≜ ∃ℎ. v = handle.const ℎ ∗©«

ℎ.valid = false ∨
∃𝛾, base′, bound′, base′′, bound′′, 𝑞.
[ℎ.base..ℎ.base + ℎ.bound) ⊆ [base′ ..base′ + bound′) ∗ (1)
[base′ ..base′ + bound′) ⊆ [base′′ ..base′′ + bound′′) ∗ (2)
𝑞 ∈

{
1

2
, 1

}
∗

(
(ℎ.base = base′′ ∗ ℎ.bound = bound′′) =⇒ 𝑞 = 1

)
∗ (3)

◦ (ℎ.id ↩→ (𝛾, base′′, bound′′, 𝑞)) 𝛾
toks ∗ (4)

∃tbs.|tbs | = bound′ ∗ wss↦−−−−→base′ tbs ∗
∀addr .ValidHandleAddr(addr, base′, bound′) −−∗©«

(
∃off . 0 ≤ off < handle_size ∧

tbs[addr + off] = (−,Numeric)

)
∨

V0JhandleK(handle.const
deserialise_handle(

untag(tbs[addr ..addr + handle_size])))

ª®®®®®¬

𝛾

CInv

(5)

ª®®®®®®®®®®®®®®®®®®®®®®¬
V0J𝑡K(v) ≜ ∃c. v = 𝑡 .const c (for 𝑡 ≠ handle)

VJ[𝑡1, · · · , 𝑡𝑛]K(w) ≜ w = trapV ∨
∃v1, · · · , v𝑛 .w = immV [v1, · · · , v𝑛] ∧ V0J𝑡1K(v1) ∧ · · · ∧ V0J𝑡𝑛K(v𝑛)

Fig. 8. Our logical relation for values

4.2 Logical Relation
More formally, we define, for each type 𝑡 , a predicate VJ𝑡K describing values that are safe to share,

called the value interpretation of type 𝑡 , and a predicate EJ𝑡K of expressions that are safe to execute,

called the expression interpretation of type 𝑡 .

The difficulty when defining a logical relation for a full industrial language is that one must

define a logical interpretation for all objects of the language: not only values and expressions, but

also frames, function closures, linear memories, instances, contexts, etc. Iris-Wasm defines a relation

for each WebAssembly object. In this work, we extend it to interpret the new types introduced by

MSWasm. In particular, we define new interpretations for handle values and allocators. To keep the

explanations simple, we will primarily focus on these new logical relations, and refer to the Coq

mechanisation for the full definition. That being said, the explanations are somewhat technical,

and will assume some familiarity with various Iris concepts.

Value Interpretation. The value interpretation is shown in Figure 8. It states that a logical value is

safe for types ts if it either is the trap value trapV (recall that we consider expressions that trap to

be safe), or if it is a list of WebAssembly values which satisfy V0 for each value type in ts.
V0 defines the interpretation of value types, namely numerical types and handles. For numerical

types, Iris-Wasm simply asserts that the numerical value has the appropriate format (32 bit integer

for i32, etc.). It is interesting to note, that although i32s are used to access linear memory, V0 does

not model this usage. Indeed, this is by design: although i32s are used as pointers, it is the instance

within the frame that provides the authority to access linear memory. As such, it is the interpretation

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:20 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

A : Allocator → iProp

cinvOpt(base, bound, 𝑦) ≜

{
base = b′ ∗ bound = e′ ∗ [CInv : 𝛾] if 𝑦 = Some(b′, e′)
⊤ otherwise

A(allctr) ≜ ∃𝑓 . • 𝑓 𝛾
tok ∗ ∗(id ↦→(𝛾,base,bound,𝑞)) ∈ 𝑓 ∃𝑦. allctr (id) = 𝑦 ∗

id allocated−−−−−−−−→𝑞
𝑦 ∗

cinvOpt(base, bound, 𝑦)

Fig. 9. Our logical relation for the allocator

of linear memory that determines which points-to predicates can be used by a function. In short,

the interpretation of linear memory imposes an invariant over the entirety of a module’s linear

memory, thus expressing how a module may forge pointers to access any byte within it.

Meanwhile, handles specifically do not grant authority over the entire segment memory. Instead,

our goal is to model the exact authority granted by a handle: namely the authority to access the

locations within its bounds of authority, and the authority to free a handle if its bounds match the

original bounds of that handle as represented in the allocator.

Let us take a more detailed look at our definition for the value interpretation for handles in

Figure 8. It states that a value is in the interpretation for handles if it is a handle ℎ, and either this

handle is invalid, or we own (1) a range [base′ ..base′ + bound′), representing the bounds of the

handle when it was originally shared6, (2) a range [base′′ ..base′′+bound′′), representing the bounds
of the handle when it was originally allocated (we want to remember so we can determine whether

the handle grants the authority to be freed
7
) (3) a fraction 𝑞 that can be

1

2
or 1, and has to be 1 if

ℎ.base = base′′ and ℎ.bound = bound′′ (this fraction will be used to model the authority to free a

handle) , (4) a ghost resource bindingℎ.id to an invariant name𝛾 , the range [base′′ ..base′′+bound′′)
and the fraction 𝑞 (this resource will be used to remember the original state of a handle, at its

allocation), and (5) an invariant that contains the segment memory locations associated to the

range [base′ ..base′ + bound′), such that all locations in memory that might store a handle (i.e. are

in bounds and are aligned that are aligned with the handle size) either have at least one byte tagged

as Numeric, or hold a value that satisfies the value interpretation for handles.

The ghost resource (4) is a fragment view of a map whose authoritative view is in the interpreta-

tion for the allocator. In other words, this ghost resource serves to share information about handle

ids between the value interpretation and the allocator interpretation, as we will detail later. The

ghost name 𝛾toks is a global value that is also used by the interpretation for the allocator.

Since handles can be freed, we use Iris’ cancellable invariants [Jung et al. 2018, §7.1.3]. A can-

cellable invariant uses a token [CInv : 𝛾] to track whether an invariant is still live. This token is

required to open the invariant, and can be consumed to cancel the invariant when the handle is be-

ing freed, after which the segment memory resources become unavailable. Previous mechanisations

of robust capability safety [Georges et al. 2022a; Swasey et al. 2017] do not consider temporal safety

properties of heap memory. Most existing mechanisations also make the simplifying assumption

that memory locations hold full objects rather than individual bytes like in MSWasm. Alignment

concerns are responsible for part of the complexity of our definition.

6
This bound may be greater than the current bounds — recall that handle slicing makes it safe to share any of its sub-bounds.

7
The handle that was originally allocated might have strictly larger bounds than the handle that was originally shared, as is

the case in the running buffer example.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:21

Allocator Intepretation. Let us discuss the interpretation for the allocator, shown in Figure 9. It

asserts that there exists a mapping 𝑓 from handle ids to invariant names, such that this mapping

agrees with the fragments from the handle value interpretation, and for every binding in this map,

there is a corresponding binding in the allocator and a corresponding partial allocator resource. If
that binding is to a live handle, then we additionally require that we hold the token that will allow

us to open the cancellable invariant from the handle value interpretation.

In other words, the handle value interpretation holds the spatial resources inside a cancellable

invariant, and the allocator resource holds the token that allows to open said invariant as long as

the handle is live, thereby maintaining the temporal authority. The former expresses persistent

knowledge over segment memory, while the latter expresses non-duplicable knowledge of the

allocator.

The allocator resource is partial with degree 𝑞, meaning it can only be modified if 𝑞 = 1, else it

can only be inspected but not updated. This means that code looking to free a handle (i.e. update

the resource from Some(base, bound) to None) must own 𝑞 = 1.

Allocator and Handle Interpretation Together. Let us assume we own the interpretation for a

handle value ℎ together with the interpretation for an allocator, and see how we can reason about

running segload, segstore or segfree on ℎ.
First, we proceed by cases on ℎ.valid: if it is false, then all three instructions trap safely. Else, we

now hold two ghost resources: one from the value interpretation of the handle, and one from the

interpretation for the allocator. Combining them yields a binding ℎ.id ↦→ 𝛾, base′′, bound′′, 𝑞 for

which the allocator interpretation gives us a corresponding binding in the allocator, as well as an

allocator resource ℎ.id allocated−−−−−−−−→𝑞
𝑦. We can then perform a case distinction on 𝑦: if it is None then

the handle has been freed and all three instructions will safely trap; else, the allocator interpretation

gives a token that can be used to open the invariant in the value interpretation for the handle.

Once the invariant is open, we hold both the segment resources for the area of memory pointed

by ℎ, and an allocator resource for ℎ.id. This is enough to perform a read or a write on ℎ. In that

case, 𝑦 has remained unchanged, so the invariant can be trivially closed again, giving back the

token for the interpretation for the allocator.

In the last case, if the instruction is a segfree, we must proceed by case on whether ℎ.base
and ℎ.bound are equal to the values present in the allocator (which the cinvOpt in the allocator

interpretation tells us are equal to base′′ and bound′′). If they aren’t, the freeing operation safely

traps. If they are, we can cancel the invariant instead of closing it. The value interpretation mandates

that 𝑞 = 1 and hence we can update the allocator resource to ℎ.id allocated−−−−−−−−→ None, which we can

use to restore the interpretation for the allocator without needing the cancellable invariant token.

As illustrated above, all the necessary resources are obtainable when holding the allocator

interpretation and the value interpretation for handles. Hence we do not need an interpretation for

the full segment memory, unlike for linear memory. This reflects the fine-grained reasoning that

segment memory allows: memory is never considered in its entirety, but only handle by handle.

Expression Interpretation. Figure 10 shows excerpts from the definition of the Iris-Wasm logical

relation, with the few modifications brought by Iris-MSWasm in magenta. These modifications

are the addition of the allocator and corresponding allocator interpretation. We use a weakest

precondition to define that an expression is safe to run. During the execution of a WebAssembly

expression, the expression might not terminate on a WebAssembly value, but rather on a br or
return instruction, or on a host call; hence the four-way disjunction in the postcondition. We give

definitions for H , B𝑟 , and Ret in our supplementary material. The post-condition also yields back

frame and allocator resources. This expression interpretation is most interesting when considered

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:22 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

FrameJtsKinst : Frame → iProp

FrameJ𝑡𝑠Kinst (𝐹) ≜ [NaInv : ⊤] ∗ Fr

↩−−→ 𝐹 ∗ ∃vs. 𝐹 = {inst; vs} ∗ VJ𝑡𝑠K(immV vs)

EJtsK∗∗ : Expr → iProp

EJtsK𝜏lbs,𝜏ret(𝜏𝑙,inst,hfs) (lh, es) ≜ wp es

w,
(
VJtsK(w) ∨ HJtsK𝜏lbs,𝜏ret(𝜏𝑙,inst,hfs) (w) ∨
B𝑟J𝜏lbsK𝜏ret(𝜏𝑙,inst,hfs) (w, lh) ∨ RetJ𝜏retK(𝜏𝑙,inst) (w)

)
∗

∃𝐹, allctr . FrameJ𝜏𝑙Kinst (𝐹) ∗ A(allctr)

𝐶 ⊨ es : ts1 → ts2

𝐶 ⊨ es : ts1 → ts2 ≜ ∀inst, lh, hfs. (IJ𝐶K(inst) ∗ CtxJ𝐶K(inst,hfs) (lh)) −−∗
∀𝐹, allctr, vs. (VJts1K(vs) ∗ Fr

↩−−→ 𝐹 ∗ FrameJ𝜏𝑙Kinst (𝐹) ∗ A(allctr)) −−∗
EJts2K𝜏lbs,𝜏ret(𝜏𝑙,inst,hfs) (lh, vs ++ es)

where 𝜏𝑙 = 𝐶.locals, 𝜏lbs = 𝐶.labels, and 𝜏ret = 𝐶.return.

Fig. 10. Excerpts from the definition of our logical relation

together with the definition of semantic typing, also given in Figure 10. An expression is semantically

well typed (written with a double turnstile ⊨ instead of the simple turnstile ⊢ used for syntactic

typing) when, given a context and instance that are safe to use (see our supplementary material for

definitions of Iand Ctx), as well as arguments that are safe to share, a frame, and an allocator, the

resulting expression is in the expression interpretation.

We can now state the fundamental theorem of the logical relation:

Theorem 4.1 (Fundamental theorem of the logical relation). If a program bs (a list of
basic instructions, i.e. only using instructions available to the programmer) typechecks syntactically,
then it typechecks semantically:

∀bs,𝐶, ts1, ts2.𝐶 ⊢ bs : ts1 → ts2 =⇒ 𝐶 ⊨ bs : ts1 → ts2

Proof sketch. The proof proceeds by induction on the syntactic typing judgement. The added

challenge with respect to its prior version is to prove the cases for the new segment instructions,

each of which depend on the new value relation for handles, and the interpretation of the allocator.

A full proof can be found in the Coq development. □

4.3 Robust Safety
Buffer Example. Let us come back to our buffer example from Figure 1 and show how we can

reason about the call to the unknown, untrusted function $adv. All we assume is that this function

is well typed in MSWasm’s typing system, with type [handle] → [].
Jumping back into the proof detailed in §3.3, right before the call, we own the following resources:{

Fr

↩−−→ 𝐹 ′′ ∗ wss↦−−−−→ℎ.baseserialise(i32, 42) ∗ wss↦−−−−→ℎ.base+4repeat(4, 0) ∗ ℎ.id allocated−−−−−−−−→ Some 𝑥
}

Using the second segment memory resource, we can instantiate an invariant and allocate a ghost

resource, giving us ℎ′ ∈ VJ[handle]K. To get A({ℎ.id ↦→ Some(ℎ.base, ℎ.bound)}), we need to

also give an allocator resource. Just like in §3.3, we can separate our allocator resource into two

fragment resources ℎ.id allocated−−−−−−−−→1/2
Some 𝑥 , and only give one of these to get the A statement;

this allows us to keep partial ownership which lets us know that the handle cannot have been freed.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:23

Hence we can apply the fundamental theorem, and know that our call executes safely, and ter-

minates on a value that is safe to share for type [], i.e. the trap value or the unit value. We

also get that there exists a new allocator allctr′ such that A(allctr′). The segment resource

wss↦−−−−→ℎ.baseserialise(i32, 42) was unused and hence the caller has held on to them, and we can

use these to complete the proof of the specification.

Robust Safety. This approach, where we leverage the fundamental theorem of the logical relation

to prove specifications in the presence of unknown code, allows us to call library functions from

untrusted libraries safely, establishing invariants of the form “No matter what untrusted module

calls the functions I export, my internal state will satisfy this invariant”. This showcases the strength

of MSWasm and the fine-grained safety properties it brings to WebAssembly.

5 Stack Example
In this section, we illustrate how our program logic and logical relation scale to a bigger example: a

library implementing stacks of i32 integers. This library builds on a case study from Iris-Wasm [Rao

et al. 2023], but uses handles to enforce stronger guarantees. Since plain WebAssembly does not

have handles, the stack library of Rao et al. [2023] uses i32 integers to represent stacks. These

values are forgeable, hence the stack library must be encapsulated from untrusted code to prevent

the corruption of allocated stacks — technically, by instantiating the adversary without access to

the functions of the stack library. In MSWasm, we use handles instead of i32 integers to represent

stacks. With handles, the adversary cannot corrupt the stacks even when it has access to the stack

library — technically, when it is instantiated after the stack library, with access to its functions —

and we prove this using our logical relation.

Our stack module defines a function $new_stack which uses the segalloc instruction to allocate

one page (64KiB) of segment memory. Handles to this stack point to the start of this page, and

range over all of it. In the first four bytes of the allocated region, we store the stack pointer as an
offset to the top of the stack, initially the i32 integer 0. When accessing a stack, we get the offset by

loading from the handle, and then combine the handle with the offset by handle.add to address the

top of the stack.

From here, it is straightforward to define the usual stack operations like $push, $pop,
$stack_length, $is_full, and $is_empty. In addition, we define $stack_map, which takes as ar-

guments a stack and a function (more precisely, an index in a table of functions) that it maps on all

the elements of the stack. This map function is interesting, because when the function it maps is

an adversary function, the execution context has authority over the stack.

In our Coq development, we verify the stack module, and exercise it on key scenarios using

different client modules. Here, we focus on a specific client module, $RobustModule in Figure 11,

to showcase robust capability safety. This module creates a stack, pushes two values onto it, maps

an adversary function (imported from an untrusted adversary module) onto the stack, and then

asks for the stack’s length. We wish to prove that mapping the adversary function does not affect

the stack’s length. Figure 11 shows the sequence of instantiations performed by the host code.

This example is interesting because both the adversary module and $RobustModule have access
to the stack functions and can thus interact with the stack module’s memory. Importantly, the

adversary function will only be given values fetched from the stack module’s memory by the

$stack_map function, and not handles. If it had access to a handle, the adversary might be able

to, say, pop elements from $RobustModule’s stack, and then the final length of the stack would

change. This form of attack is made impossible by the fact that the handles that represent stacks

are unforgeable. Because $RobustModule never shares its handle with the adversary module, the

adversary module cannot push, pop, or perform any operations on that stack; it may only use

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:24 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

the stack module to create its own stacks and perform operations on those. This showcases the

strength MSWasm adds to plain WebAssembly.

We prove the following theorem:

Theorem 5.1 (Robust stack example). If the host code ℎcode from Figure 11 terminates, it termi-
nates on either the trap value trapV, or on the i32 value 2.

In particular, this means the adversary cannot push or pop on the client module’s stack. A full

proof can be found in our Coq development, and we give a succinct overview here.

Proof sketch. In essence, the proof is similar to the one for the buffer example from §3.4.

However, since there are multiple modules involved and since some resources must be placed in

invariants to apply the fundamental theorem of the logical relation, the order in which the steps on

the proof is carried out is crucial.

We begin by proving specifications for all the functions of the stack module. Since this is known

code, the proofs are similar to that of §3.3.

We then apply the instantiation lemma three times in a row. First we instantiate the stack module,

which does not make any imports, and hence we do not need any resources; the lemma gives us

resources corresponding to each individual function closure. Then we instantiate the adversary

module. The instantiation lemma requires function closure resources for the stack functions, which

we have, and gives these resources back as well as an extra function closure resource corresponding

to the adversary function $advf. Finally, we instantiate $RobustModule. Again, the instantiation
lemma requires function closure resources for the stack functions as well as the $advf function,
and gives these resources back together with an extra function closure resource corresponding to

the main function of $RobustModule.
All that remains to do is run the code of $RobustModule. Like in the buffer example, we need

to apply the fundamental theorem in order to reason about the unknown function $advf. One
additional subtlety we face here is that because the adversary module imports the stack functions,

we must first show that these functions are safe to share. These functions are defined in the stack

module, hence we must prove all components of that module to be safe. This actually includes the

adversary function $advf itself, since that function was placed in the stack module’s function table

when instantiating $RobustModule. Since these functions can call each other, there is a circularity,

which we address (as is standard) by Löb induction. To do this, we need to allocate invariants

corresponding to all objects that will need to be proved safe to share. The induction then gives us

that the adversary function $advf is safe to share, and in particular we have a weakest precondition

that we can use to reason about calls to it.

Using this, we can specify the code of $RobustModule like we did for the buffer example in §3.4

and obtain a weakest precondition. Finally, we apply the adequacy theorem from §3.4 to get the

desired result.

□

6 Discussion and Related Works
We discuss prior work that we build on (§6.1), and then return to the question of sharing state (§6.2)

6.1 Prior Work
Iris-Wasm. MSWasmCert is a conservative extension of WasmCert, and Iris-MSWasm is accord-

ingly an extension of Iris-Wasm. In particular, we inherit all the separation logic proof rules for

the constructs of WebAssembly, and add new proof rules for the new constructs of MSWasm. Our

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:25

$RobustModule:

Create a stack 𝑠

Push 42 and 10 onto 𝑠

Map $advf onto 𝑠

Set 𝑥 := length(𝑠)
Return 𝑥

Host code ℎcode:

Instantiate $stackmodule
No imports

Export stack functions
Instantiate $advmodule

Import stack functions
Export $advf

Instantiate $RobustModule
Import stack functions
Import $advf
No exports

Fig. 11. Pseudo-code for the robust stack client, and host code for the instantiation sequence

logical relation is correspondingly an extension of the logical relation of Iris-Wasm: in the absence

of handles and segment memory, it collapses to the logical relation of Iris-Wasm.

Cerise. Iris-Wasm uses the same ideas as Cerise, but in the setting of WebAssembly rather than

that of capability machines. The main differences are that: the MSWasm allocator enforces temporal

safety; MSWasm only feature a single type of permission, which corresponds to an ‘RW’ write-

and-read permission (considering other types of permissions would be interesting); and MSWasm

functions and their local arguments are handled by the language, not implemented using capabilities,

so MSWasm does not feature function-flavoured capabilities (executable permission, stack-local

capabilities, etc.). However, the most significant difference is not one of feature, but of scale: as

illustrated in §4.2, our logical relation needs to cover all the language constructs of MSWasm,

including frames, the module system, etc., and these pose a significant challenge.

MSWasm’s Memory Safety. When introducing MSWasm, Michael et al. [2023] propose a new

formal, colour-based definition of memory safety, that captures spatial and temporal memory

safety, and pointer integrity. Their definition hinges on a monitor that inspects the execution trace

of the program, and checks that the memory accesses agree with the colouring. Concretely, the

monitor maintains a shadow memory that associates every address with its allocation state (either

Allocated or Free), its colour (an arbitrary identifier), and its shade (for intra-object safety). Using

the shadow memory as reference, the monitor then checks every event in the trace, making sure

that (1) any read and write events are performed on allocated addresses, using the right colour and

shade, (2) allocation events only allocate free addresses, and (3) freeing events only free allocated

addresses, for which a corresponding allocation event exists in the trace, and no free event since.

A trace is said to be memory safe if the monitor does not get stuck. While this approach allows

them to capture a notion of memory safety, it does not directly make it possible to reason about

the combination of known and unknown, potentially adversarial code. First, the monitor does not

distinguish events emitted by trusted modules, and events emitted by untrusted ones. In other

words, the monitor does not have any notion of private and public state. In the example of §1.1, the

monitor does not know whether the read(ℎ) event comes from the known code, or if it comes from

the adversary: the monitor accepts the trace in both cases, as the event is legal according to the

shadow memory. Second, the monitor definition does not keep track of the values read and written

by the memory events. This is especially limiting for reasoning about functional properties, and for

keeping track of how values are preserved throughout adversary calls. In the example of §1.1, the

colour-based monitor does not check whether the value stored and read by the handle ℎ is 42.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

282:26 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

In this paper, we are interested in fine-grained interactions between trusted, known code and

untrusted, unknown, arbitrary code. Those properties usually require keeping track of the values

preserved throughout adversary calls, by carefully over-approximating the behaviour of the adver-

sary. Adapting the monitor-based definition to tractably bound the set of traces that the adversary

can generate would require addressing the frame problem [McCarthy and Hayes 1981].

Our notion of capability safety is built on top of a separation logic, and takes account of ownership
of resources. It offers an explicit distinction between private and public state: values shared with

unknown code need to be owned by the logical relation. As explained in section §4.2, the logical

relation recursively computes the addresses reachable from a given value. Giving ownership of

an address over to the logical relation gives away knowledge of its contents, as its value is now

existentially quantified. Crucially, the frame rule of separation logic keeps track of the private state

during an adversary call: the private value are simply framed away.

Michael et al. [2023] use their monitor-based definition of memory safety in the context of secure

compilation, which we do not explore in this paper.

6.2 Sharing State in WebAssembly
The rigid nature of WebAssembly 1.0 means that C cannot be compiled in the ‘naive’ way to

WebAssembly. For example, C local variables are too expressive to be compiled to WebAssembly

locals, and therefore most production C-to-WebAssembly compilers compile the C stack to a data

structure in linear memory. Lehmann et al. [2020] illustrate how this and other limitations mean

that many isolation mechanisms provided by usual OS infrastructure for process hardening are not

available when compiling to WebAssembly.

As described in the introduction, capabilities are one approach to address this. However, they

raise some challenges: common compiler optimisations violate capability safety [Zaliva et al.

2024], and so writing optimising capability-safety-preserving compilers is an open problem; and

capability compression on hardware causes a mismatch between source and target languages. This

is particularly problematic for MSWasm, as it is meant as an intermediate language, both compiled

to, and compiled from. Nonetheless, by making MSWasm precise and proving that it satisfies robust

capability safety, we ensure that projects exploring its use as an intermediate language can rely on

its design being validated, and can know exactly what MSWasm guarantees.

RichWasm [Paraskevopoulou et al. 2024] extends WebAssembly with a static notion of capability,

at the type level instead of at runtime, and use them to statically enforce safe fine-grained sharing.

As a closely related approach, WebAssembly is being enriched with aggregate types [Rossberg

2024] that WebAssembly 2.0 references can point to. WebAssembly references are opaque and

unforgeable, and as such act as a simple form of capabilities. Developing a logical relation that

captures both handles and references would make it possible to make a more formal comparison.

A very different approach, taken by the WebAssembly Component Model [The Bytecode Alliance

2023a,b] and adopted by several vendors of WebAssembly for cloud computing is to eschew sharing

in favour of copying. One of the aims of the WebAssembly Component Model is to allow language

interoperability, which typically requires marshalling, and so already incurs the cost of copying.

Our work lays the foundation to evaluate the language-level guarantees of these different

approaches, and we hope that it informs future developments and deployments.

6.3 Semantic Language Integrity
Maintaining datatype and notation consistency in a large language specification is challenging,

especially if one wants to be able to automatically extract human-readable rules, an interpreter for

testing, and theorem prover definitions [Mulligan et al. 2014; Owens et al. 2011; Sewell et al. 2007].

WebAssembly is now getting a DSL [Breitner et al. 2023] for that specific purpose.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:27

However, maintaining the semantic integrity of the language is as important as maintaining its

syntactic integrity. The key properties that form the universal contract of the language make it

possible for specifiers, implementers, and users to work together instead of against each other. In

this paper, we demonstrated how to capture key aspect of such a universal contract for as complex

an extension of WebAssembly as MSWasm.

Acknowledgments
This work was supported in part by a Villum Investigator grant (no. 25804), Center for Basic

Research in Program Verification (CPV), from the VILLUM Foundation, for Birkedal, and by an

AUFF Starter Grant for Pichon-Pharabod. This work was co-funded by the European Union (ERC,

CHORDS, 101096090). Views and opinions expressed are however those of the author(s) only and

do not necessarily reflect those of the European Union or the European Research Council. Neither

the European Union nor the granting authority can be held responsible for them.

Data Availability Statement
The artifact [Legoupil et al. 2024] of this paper, containing the full Coq development, is available on

Zenodo. Detailed instructions of usage are provided within the artifact itself. The appendix, which

contains the full version of figures that had to be shortened in the paper, can be found together

with the artifact.

The code is also available on github at https://github.com/logsem/MSWasm.

References
Amal Jamil Ahmed. 2004. Semantics of types for mutable state. Ph. D. Dissertation. Princeton University.

Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong, Lawrence Esswood, Ian Stark, Graeme Barnes,

Robert N. M. Watson, and Peter Sewell. 2022. Verified Security for the Morello Capability-enhanced Prototype Arm

Architecture. In Programming Languages and Systems - 31st European Symposium on Programming, ESOP 2022, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings (Lecture Notes in Computer Science, Vol. 13240), Ilya Sergey (Ed.). Springer, 174–203. https://doi.org/10.1007/978-
3-030-99336-8_7

Joachim Breitner, Philippa Gardner, Jaehyun Lee, Sam Lindley, Matija Pretnar, Xiaojia Rao, Andreas Rossberg, Sukyoung

Ryu, Wonho Shin, Conrad Watt, and Dongjun Youn. 2023. Wasm SpecTec: Engineering a Formal Language Standard.

CoRR abs/2311.07223 (2023). https://doi.org/10.48550/ARXIV.2311.07223 arXiv:2311.07223

Matt Butcher. 2022. How to Think About WebAssembly (Amid the Hype). https://www.fermyon.com/blog/how-to-think-

about-wasm

Lin Clark. 2019. Announcing the Bytecode Alliance: Building a secure by default, composable future for WebAssembly.

https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/

Jack B. Dennis and Earl C. Van Horn. 1966. Programming semantics for multiprogrammed computations. Commun. ACM 9,

3 (mar 1966), 143–155. https://doi.org/10.1145/365230.365252

Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Reasoning about Object Capabilities with Logical Relations

and Effect Parametricity. In IEEE European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016. IEEE, 147–162. https://doi.org/10.1109/EUROSP.2016.22

Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel, Amit Levy, and Deian Stefan. 2019. Position Paper: Progressive

Memory Safety for WebAssembly. In Proceedings of the 8th International Workshop on Hardware and Architectural Support
for Security and Privacy, HASP@ISCA 2019, June 23, 2019. ACM, 4:1–4:8. https://doi.org/10.1145/3337167.3337171

Fastly documentation. 2022. Compute@Edge. https://docs.fastly.com/products/compute-at-edge

Aïna Linn Georges. 2023. Designing and Proving Robust Safety of Efficient Capability Machine Programs. Ph. D. Dissertation.
Aarhus University.

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert, Dominique

Devriese, and Lars Birkedal. 2021a. Efficient and provable local capability revocation using uninitialized capabilities.

Proc. ACM Program. Lang. 5, POPL (2021), 1–30. https://doi.org/10.1145/3434287

Aïna Linn Georges, Armaël Guéneau, Thomas van Strydonck, Amin Timany, Alix Trieu, Dominique Devriese, and Lars

Birkedal. 2022a. Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code. Technical Report.
Aarhus University. https://cs.au.dk/~birke/papers/cerise.pdf

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

https://github.com/logsem/MSWasm
https://doi.org/10.1007/978-3-030-99336-8_7
https://doi.org/10.1007/978-3-030-99336-8_7
https://doi.org/10.48550/ARXIV.2311.07223
https://arxiv.org/abs/2311.07223
https://www.fermyon.com/blog/how-to-think-about-wasm
https://www.fermyon.com/blog/how-to-think-about-wasm
https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/
https://doi.org/10.1145/365230.365252
https://doi.org/10.1109/EUROSP.2016.22
https://doi.org/10.1145/3337167.3337171
https://docs.fastly.com/products/compute-at-edge
https://doi.org/10.1145/3434287
https://cs.au.dk/~birke/papers/cerise.pdf

282:28 Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal

Aïna Linn Georges, Armaël Guéneau, Thomas Van-Strydonck, Amin Timany, Dominique Trieu, Alix Devriese, and Lars

Birkedal. 2021b. Cap’ ou pas cap’ ?: Preuve de programmes pour une machine à capacités en présence de code inconnu.

In Journées Francophones des Langages Applicatifs 2021. https://cris.vub.be/ws/portalfiles/portal/55081793/paper.pdf

Aïna Linn Georges, Alix Trieu, and Lars Birkedal. 2022b. Le Temps des Cerises: Efficient Temporal Stack Safety on Capability
Machines using Directed Capabilities. Technical Report. Aarhus University. https://cs.au.dk/~ageorges/publications_

pdfs/monotone-technical.pdf

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai,

and J. F. Bastien. 2017. Bringing the web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert
Cohen and Martin T. Vechev (Eds.). ACM, 185–200. https://doi.org/10.1145/3062341.3062363

Pat Hickey. 2020. How Fastly and the developer community are investing in the WebAssembly ecosystem. https:

//www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation logic.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 205–217. https://doi.org/10.1145/3009837.

3009855

Maxime Legoupil, June Rousseau, Aïna Linn Georges, Jean Pichon-Pharabod, and Lars Birkedal. 2024. Artifact and
Appendix of ’Iris-MSWasm: elucidating and mechanising the security invariants of Memory- Safe WebAssembly’. https:

//doi.org/10.5281/zenodo.13383121

Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything Old is New Again: Binary Security of WebAssembly.

In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner

(Eds.). USENIX Association, 217–234. https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann

J. McCarthy and P.J. Hayes. 1981. Some Philosophical Problems from the Standpoint of Artificial Intelligence. In Readings in
Artificial Intelligence, Bonnie Lynn Webber and Nils J. Nilsson (Eds.). Morgan Kaufmann, 431–450. https://doi.org/10.

1016/B978-0-934613-03-3.50033-7

Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert N. M. Watson, and Peter

Sewell. 2016. Into the depths of C: elaborating the de facto standards. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, Chandra
Krintz and Emery D. Berger (Eds.). ACM, 1–15. https://doi.org/10.1145/2908080.2908081

Alexandra E. Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson, Aidan Denlinger, Craig Disselkoen, Conrad Watt,

Bryan Parno, Marco Patrignani, Marco Vassena, and Deian Stefan. 2023. MSWasm: Soundly Enforcing Memory-Safe

Execution of Unsafe Code. Proc. ACM Program. Lang. 7, POPL (2023), 425–454. https://doi.org/10.1145/3571208

Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and Peter Sewell. 2014. Lem: reusable engineering of

real-world semantics. In Proceedings of the 19th ACM SIGPLAN international conference on Functional programming,
Gothenburg, Sweden, September 1-3, 2014, Johan Jeuring and Manuel M. T. Chakravarty (Eds.). ACM, 175–188. https:

//doi.org/10.1145/2628136.2628143

Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony C. J. Fox, Michael Roe, Brian Campbell, Matthew

Naylor, Robert M. Norton, Simon W. Moore, Peter G. Neumann, Ian Stark, Robert N. M. Watson, and Peter Sewell. 2020.

Rigorous engineering for hardware security: Formal modelling and proof in the CHERI design and implementation

process. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 1003–1020.
https://doi.org/10.1109/SP40000.2020.00055

Scott Owens, Peter Böhm, Francesco Zappa Nardelli, and Peter Sewell. 2011. Lem: A Lightweight Tool for Heavyweight

Semantics. In Interactive Theorem Proving - Second International Conference, ITP 2011, Berg en Dal, The Netherlands, August
22-25, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6898), Marko C. J. D. van Eekelen, Herman Geuvers,

Julien Schmaltz, and Freek Wiedijk (Eds.). Springer, 363–369. https://doi.org/10.1007/978-3-642-22863-6_27

Zoe Paraskevopoulou, Michael Fitzgibbons, Noble Mushtak, Michelle Thalakottur, Jose Sulaiman Manzur, and Amal Ahmed.

2024. RichWasm: Bringing Safe, Fine-Grained, Shared-Memory Interoperability Down to WebAssembly. Technical Report.
arXiv:2401.08287 https://arxiv.org/pdf/2401.08287.pdf

Xiaojia Rao, Aïna Linn Georges, Maxime Legoupil, Conrad Watt, Jean Pichon-Pharabod, Philippa Gardner, and Lars Birkedal.

2023. Iris-Wasm: Robust and Modular Verification of WebAssembly Programs. Proc. ACM Program. Lang. 7, PLDI (2023),
1096–1120. https://doi.org/10.1145/3591265

Andreas Rossberg. 2019. WebAssembly Core Specification W3C Recommendation. Technical Report. W3C. https://www.w3.

org/TR/wasm-core-1/

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

https://cris.vub.be/ws/portalfiles/portal/55081793/paper.pdf
https://cs.au.dk/~ageorges/publications_pdfs/monotone-technical.pdf
https://cs.au.dk/~ageorges/publications_pdfs/monotone-technical.pdf
https://doi.org/10.1145/3062341.3062363
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.5281/zenodo.13383121
https://doi.org/10.5281/zenodo.13383121
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://doi.org/10.1016/B978-0-934613-03-3.50033-7
https://doi.org/10.1016/B978-0-934613-03-3.50033-7
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/3571208
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1007/978-3-642-22863-6_27
https://arxiv.org/abs/2401.08287
https://arxiv.org/pdf/2401.08287.pdf
https://doi.org/10.1145/3591265
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/

Iris-MSWasm: Elucidating and Mechanising the Security Invariants of Memory-Safe WebAssembly 282:29

Andreas Rossberg. 2024. WebAssembly Specification Release 2.0 + tail calls + function references + gc (Draft 2024-03-19).
Technical Report. https://webassembly.github.io/gc/core/syntax/types.html

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Tom Ridge, Susmit Sarkar, and Rok Strnisa. 2007. Ott:

effective tool support for the working semanticist. In Proceedings of the 12th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007, Ralf Hinze and Norman Ramsey (Eds.). ACM,

1–12. https://doi.org/10.1145/1291151.1291155

Lau Skorstengaard. 2019. Formal Reasoning about Capability Machines. Ph. D. Dissertation. Aarhus University.
Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2018. Reasoning About a Machine with Local Capabilities -

Provably Safe Stack and Return Pointer Management. In Programming Languages and Systems - 27th European Symposium
on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. 475–501. https://doi.org/10.1007/978-3-319-89884-1_17

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019a. Reasoning about a Machine with Local Capabilities:

Provably Safe Stack and Return Pointer Management. ACM Transactions on Programming Languages and Systems 42, 1
(Dec. 2019), 5:1–5:53. https://doi.org/10.1145/3363519

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019b. StkTokens: Enforcing Well-Bracketed Control Flow

and Stack Encapsulation Using Linear Capabilities. Proc. ACM Program. Lang. 3, POPL, Article 19 (Jan. 2019), 28 pages.
https://doi.org/10.1145/3290332

David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and compositional verification of object capability patterns.

Proc. ACM Program. Lang. 1, OOPSLA (2017), 89:1–89:26. https://doi.org/10.1145/3133913

The Bytecode Alliance. 2023a. Component Model design and specification (GitHub repository). https://github.com/

WebAssembly/component-model

The Bytecode Alliance. 2023b. The WebAssembly Component Model. https://component-model.bytecodealliance.org/

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2022. A Logical Approach to Type Soundness. (2022).

https://cs.au.dk/~timany/publications/files/2022-submitted-logical-type-soundness.pdf

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. 2019. Linear capabilities for fully abstract compilation of

separation-logic-verified code. Proc. ACM Program. Lang. 3, ICFP, Article 84 (jul 2019), 29 pages. https://doi.org/10.1145/

3341688

Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary, Jonathan Anderson, John

Baldwin, Graeme Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen, Nathaniel Wesley Filardo, Franz A.

Fuchs, Richard Grisenthwaite, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J.

Murdoch, Kyndylan Nienhuis, Robert Norton, Alexander Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan

Xia. 2023. Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 9). Technical
Report UCAM-CL-TR-987. University of Cambridge, Computer Laboratory. https://doi.org/10.48456/tr-987

Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and Philippa Gardner. 2021. Two Mechanisations of

WebAssembly 1.0. In Formal Methods - 24th International Symposium, FM 2021, Virtual Event, November 20-26, 2021,
Proceedings (Lecture Notes in Computer Science, Vol. 13047), Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan

(Eds.). Springer, 61–79. https://doi.org/10.1007/978-3-030-90870-6_4

M. V. Wilkes and R. M. Needham. 1979. The Cambridge CAP Computer and Its Operating System. Elsevier. https:

//www.microsoft.com/en-us/research/publication/the-cambridge-cap-computer-and-its-operating-system/

Jonathan Woodruff, Paul Metzger, Robert N. M. Watson, Brooks Davis, Wes Filardo, Jessica Clarke, and John Baldwin. 2023.

SOSP 2023 CHERI Exercises. https://www.cl.cam.ac.uk/~pffm2/sosp2023_cheri_tutorial/cover/README.html

Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore, Jonathan Anderson, Brooks Davis, Ben Laurie,

Peter G. Neumann, Robert M. Norton, and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age of

risk. In ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18,
2014. IEEE Computer Society, 457–468. https://doi.org/10.1109/ISCA.2014.6853201

Vadim Zaliva, Kayvan Memarian, Ricardo Almeida, Jessica Clarke, Brooks Davis, Alex Richardson, David Chisnall, Brian

Campbell, Ian Stark, Robert N. M. Watson, and Peter Sewell. 2024. Formal Mechanised Semantics of CHERI C: Capabilities,

Provenance, and Undefined Behaviour. http://www.cl.cam.ac.uk/users/pes20/asplos24spring-paper110.pdf

Received 2024-04-05; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 282. Publication date: October 2024.

https://webassembly.github.io/gc/core/syntax/types.html
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1007/978-3-319-89884-1_17
https://doi.org/10.1145/3363519
https://doi.org/10.1145/3290332
https://doi.org/10.1145/3133913
https://github.com/WebAssembly/component-model
https://github.com/WebAssembly/component-model
https://component-model.bytecodealliance.org/
https://cs.au.dk/~timany/publications/files/2022-submitted-logical-type-soundness.pdf
https://doi.org/10.1145/3341688
https://doi.org/10.1145/3341688
https://doi.org/10.48456/tr-987
https://doi.org/10.1007/978-3-030-90870-6_4
https://www.microsoft.com/en-us/research/publication/the-cambridge-cap-computer-and-its-operating-system/
https://www.microsoft.com/en-us/research/publication/the-cambridge-cap-computer-and-its-operating-system/
https://www.cl.cam.ac.uk/~pffm2/sosp2023_cheri_tutorial/cover/README.html
https://doi.org/10.1109/ISCA.2014.6853201
http://www.cl.cam.ac.uk/users/pes20/asplos24spring-paper110.pdf

	Abstract
	1 Introduction
	1.1 Introduction to MSWasm via a Running Example
	1.2 Attacker Model and TCB

	2 The MSWasmCert Semantics
	2.1 Plain Wasm Semantics
	2.2 Segment Memory

	3 Program Logic
	3.1 Iris-Wasm
	3.2 Iris-MSWasm
	3.3 Specifying the Known Parts of the Buffer Example
	3.4 Adequacy

	4 Robust Capability Safety
	4.1 Informal Intuition
	4.2 Logical Relation
	4.3 Robust Safety

	5 Stack Example
	6 Discussion and Related Works
	6.1 Prior Work
	6.2 Sharing State in WebAssembly
	6.3 Semantic Language Integrity

	Acknowledgments
	References

