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Abstract
The Michael-Scott queue (MS-queue) is a concurrent non-

blocking queue. In an earlier pen-and-paper proof it was

shown that a simplified variant of the MS-queue contextually

refines a coarse-grained queue. Here we use the Iris and

ReLoC logics to show, for the first time, that the original MS-

queue contextually refines a coarse-grained queue. We make

crucial use of the recently introduced prophecy variables

of Iris and ReLoC. Our proof uses a fairly simple invariant

that relies on encoding which nodes in the MS-queue can

reach other nodes. To further simplify the proof, we extend

separation logic with a generally applicable persistent points-

to predicate for representing immutable pointers. This relies

on a generalization of the well-known algebra of fractional

permissions into one of discardable fractional permissions.

We define the persistent points-to predicate entirely inside

the base logic of Iris (thus getting soundness “for free”).

We use the same approach to prove refinement for a

variant of the MS-queue resembling the one used in the

java.util.concurrent library.

We have mechanized our proofs in Coq using the formal-

izations of ReLoC and Iris in Coq.

CCS Concepts: • Theory of computation→ Separation
logic; Concurrent algorithms.
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1 Introduction
The Michael-Scott queue (MS-queue) is a fast and practi-

cal fine-grained concurrent queue [14]. We prove that the

MS-queue is a contextual refinement of a coarse-grained con-

current queue. The coarse-grained queue, shown in Figure 1,

is implemented as a reference to a functional list and uses a

lock to sequentialize concurrent accesses to the queue. We

thus prove that in any program we may replace uses of the

coarse-grained, but obviously correct, concurrent queue with

the faster, but more intricate, MS-queue, without changing

the observable behaviour of the program. We recall that,

formally, an expression 𝑒 contextually refines another ex-

pression 𝑒 ′, denoted Δ; Γ ⊢ 𝑒 ≾ctx 𝑒 ′ : 𝜏 , if for all contexts
𝐾 , of ground type, whenever 𝐾 [𝑒] terminates with a value

there exists an execution of 𝐾 [𝑒 ′] that terminates with the

same value. One should think of 𝑒 as the implementation

(in our case the MS-queue), 𝑒 ′ as the specification (in our

case the coarse-grained queue), and 𝐾 as a client of a queue

implementation.

Note that the contextual refinement implies that the in-

ternal states of the two queues are encapsulated and hidden

from clients who could otherwise tell the difference between

the two implementations. Contextual refinement is also re-

lated to linearizability, a popular correctness criterion con-

sidered for concurrent data structures. Linearizability has

mostly been considered for first-order programming lan-

guages (without higher-order functions and abstract types).

For a particular first-order language and under strong as-

sumptions, Filipovic et al. [7] showed that linearizability

and contextual refinement coincide. Recently, Murawski and

Tzevelekos [15] proposed a notion of linearizability for a pro-

gramming language with higher-order functions, and they

also proved that their notion of linearizability is sound, that

is, that it implies contextual refinement. To the best of our

knowledge, no sound notion of linearizability has been devel-

oped for the very rich programming language we consider

(with higher types, abstract types, general references, and

fork-based concurrency), so instead of using linearizability,

we follow the approach of Turon et. al., and show contextual

refinement directly [18].

Turon et. al. showed how the proof technique of logical

relations can be used to prove contextual refinement of fine-

grained concurrent data structures [18]. They also gave pen-

and-paper proofs of contextual refinement for a simplified

https://doi.org/10.1145/3437992.3439930
https://doi.org/10.1145/3437992.3439930
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dequeue
CG

lock list () ≜
sync (lock) {

match ! list with
nil⇒ none
𝑥 :: xs⇒ list← xs; some 𝑥 }

enqueue
CG

lock list 𝑥 ≜ sync (lock) { list← (! list ++ [𝑥]) }
queue

CG
≜ Λ.

let lock = newlock ()
list = ref nil in

(𝜆_. dequeue
CG

lock list (), 𝜆𝑥 . enqueue
CG

lock list 𝑥)

Figure 1. The coarse-grained queue.

variant of the MS-queue. Here we present a mechanized

proof of contextual refinement for the original MS-queue.

This is more challenging, since proving refinement for it

requires, among other things, the use of prophecy variables.

The implementation of the MS-queue for which we prove

refinement is faithful to the original, in the sense that we do

not simplify or change it.

To carry out the proof we use ReLoC [8], a logic for rea-

soning about contextual refinement defined on top of Iris,

a state-of-the-art higher-order concurrent separation logic

framework [9]. Our mechanization uses the Coq implemen-

tations of ReLoC and Iris and the proof mode for Iris [11, 12].

A key insight in our proof is to use a notion of reachability

as a unifying concept that concisely captures both the roles

of the nodes in the MS-queue, the protocol for how the queue

may be modified, and the invariants that the queue maintain.

This is arguably simpler than the approach used in [18].

Like many data structures, the MS-queue contains loca-

tions that are never mutated after a certain point. To fur-

ther simplify our proof we thus extend separation logic, in

particular Iris, with better support for reasoning about loca-

tions that never change, by representing them as immutable

pointers in the logic. To explain what this means at a high

level, recall the points-to predicate ℓ ↩→ 𝑣 , which has been

present in separation logic since its inception for reasoning

about shared mutable state [16]. The points-to predicate de-

notes ownership over location ℓ and the knowledge that ℓ

points to the value 𝑣 . It has been generalized to the fractional

points-to predicate ℓ ↩→𝑞 𝑣 where one can own a fraction,

𝑞 ∈ (0, 1] ∩ Q, of a points-to predicate [2, 3]. Changing a

pointer is only possible when 𝑞 = 1, whereas reading a loca-

tion is possible with any fraction. This makes it possible to

split access to a location and later reassemble it for further

mutation. One can existentially quantify over the fraction

(∃𝑞.ℓ ↩→𝑞 𝑣) which makes it impossible to reassemble the

entire fraction. This predicate, however, is only duplicable

whereas we seek a predicate that is persistent—a strictly

stronger notion [1]. Hence neither of these existing points-

to predicates gives a satisfying way to reason about locations

that arrive at a final value, after which they never change. To

support reasoning about such locations, we generalize the

points-to predicate further and introduce a persistent points-

to predicate, ℓ ↩→2 𝑣 . In contrast to the beforementioned

points-to predicates, our new persistent points-to predicate

does not represent ownership over a resource; it only de-

notes the knowledge that ℓ always points to 𝑣 . Since this

predicate is persistent in the Iris-technical sense, it satisfies

additional properties in comparison to the standard (frac-

tional) points-to predicate and reasoning about immutable

locations therefore becomes simpler when this predicate is

used. We show that one can obtain a persistent points-to

predicate by generalizing the notion of fractional permis-

sions to one that allows discarding a fraction. One can then

discard a fraction of the fractional points-to predicate and

obtain a persistent points-to predicate; intuitively this makes

sense since changing a location requires the entire fraction

of the points-to predicate.

In summary, we make the following contributions:

• We show how the invariants maintained by the MS-

queue can be expressed in a simple and unifying way

by a notion of reachability.

• We show that a faithful implementation of the original

MS-queue contextually refines a coarse-grained queue.

• We extend separation logic (Iris and ReLoC in particu-

lar) with a persistent points-to predicate and demon-

strate how it simplifies reasoning about the MS-queue.

• We show how the persistent points-to predicate and

its associated proof rules can be defined and proven

entirely inside the Iris base logic.

• To define the persistent points-to predicate we con-

struct two novel resource algebras. The resource al-

gebra of discardable fractions, which generalizes the

well-known notion of fractions in separation logic, and

the authoritative resource algebra with projections.

• Based on our formal proof, we discover that the use

of consistent snapshots in the MS-queue is not neces-

sary for the correctness of the algorithm in a garbage

collected language.

• Finally, we use the same approach based on reacha-

bility to prove refinement for a variant of theMS-queue

resembling the one used in the java.util.concurrent
library.

All our results are formalized in Coq and we have extended

the Coq implementation of Iris and ReLoC to support the

persistent points-to predicate [20].

Outline. Weexplain the fine-grainedMS-queue algorithm

and its implementation in Section 2 and then proceed to

describe the structure of a refinement proof in ReLoC in

Section 3, where we also present the coarse-grained queue

that serves as a specification. The persistent points-to pred-

icate and its proof rules are introduced in Section 4. Here

we also further motivate why we seek a points-to predicate

that is persistent and not merely duplicable. In Section 5 we
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· · ·

ℓ→𝑠

𝑥1 𝑥𝑛ℓ𝑠

ℓ→𝑡

ℓ𝑠→ ℓ𝑛 ℓ𝑛→ ℓ𝑙 ℓ𝑙→− 𝑥𝑛-1ℓ𝑡 ℓ𝑡→ ℓnil

Figure 2. The MS-queue consists of a singly linked list. Here the tail pointer is lagging as it points to the second to last node.

detail the key ideas of the refinement proof and the invariant

used. In Section 6 we present the actual refinement proof. In

Section 7 we observe that the so-called consistent snapshots

used in the MS-queue can be omitted without compromising

the correctness of the algorithm, and in Section 8 we quickly

comment on how we have used the same proof technique

to prove refinement for a variant of the MS-queue. Finally,

in Section 9 we detail how the persistent points-to predicate

and its properties are actually defined and proved in the

Iris base logic, by introducing two novel resource algebras.

While we do recall the notion of a resource algebra, some

familiarity with the Iris notion of resource algebras is proba-

bly needed to understand the details of (only) this section.

We end by discussing related work in Section 10.

2 The MS-Queue
As depicted in Figure 2, the MS-queue consists of a singly

linked list that contains the values (𝑥1, . . . , 𝑥𝑛 in the figure)

in the queue. The first node (ℓ𝑠 ) is called the sentinel and its

content is not a value in the queue. The queue maintains

two pointers, the sentinel pointer (ℓ→𝑠 ), which points to the

sentinel, and the tail pointer (ℓ→𝑡 ), which points to the tail

(ℓ𝑡 ). The tail is either equal to the last node (ℓ𝑙 ) or the second

to last node. In the latter case, we say that the tail pointer is

lagging behind. Note that ℓ𝑡 = ℓ𝑙 when the tail pointer is not

lagging behind.

We adopt the following naming convention: If ℓ𝑛 is a loca-

tion representing a node, then a location pointing into that

node is denoted ℓ→𝑛 and the location pointing out from that

node to the next node is denoted ℓ𝑛→. If ℓ𝑛 is a node and ℓ𝑚
its successor, then the pointer between the nodes can be

denoted both ℓ𝑛→ or ℓ→𝑚 depending on the circumstances.

The implementation of the MS-queue is shown in Figure 7.

It is written in HeapLang, a language included in the mecha-

nization of Iris and which ReLoC extends with a type system

to facilitate refinement proofs. The syntax of the language is

presented in Figure 3, it is a 𝜆-calculus with impredicative

polymorphism, iso-recursive types, higher-order store, and

thread-based concurrency. The language and its type system

are standard; further details can be found in [8].

We have kept our implementation as faithful as possi-

ble to the original implementation. In order to emphasize

this, we have annotated the code with line numbers in di-

rect correspondence with the line numbers in Michael and

𝜏 ::= 𝛼 | 1 | bool | int | 𝜏 × 𝜏 | 𝜏 + 𝜏 | 𝜏 → 𝜏

| ∀𝛼.𝜏 | ∃𝛼.𝜏 | 𝜇𝛼.𝜏 | ref 𝜏
𝑣 ::= 𝑖 ∈ Z | ℓ ∈ 𝐿𝑜𝑐 | true | false | (𝑣, 𝑣) | inj

1
𝑣 | inj

2
𝑣

| rec 𝑓 (𝑥) = 𝑒 | Λ.𝑒 | pack 𝑣 | fold 𝑣
𝑒 ::= 𝑥 | 𝑣 | if 𝑒 then 𝑒 else 𝑒 | (𝑒, 𝑒) | 𝜋1 𝑒 | 𝜋2 𝑒 | inj1 𝑒 | inj2 𝑒
| match 𝑒 with inj

1
𝑥 ⇒ 𝑒 | inj

2
𝑥 ⇒ 𝑒 | 𝑒 𝑒 | 𝑒 ⟨⟩

| pack 𝑒 | unpack 𝑒 in 𝑥 .𝑒 | fold 𝑒 | unfold 𝑒
| ref (𝑒) | !𝑒 | 𝑒 ← 𝑒 | CAS(𝑒, 𝑒, 𝑒) | fork {𝑒} | . . .

Syntactic sugar
Option 𝜏 ≜ 1 + 𝜏 none ≜ inj

1
1 some 𝑣 ≜ inj

2
𝑣

𝜆𝑥 . 𝑒 ≜ rec _ 𝑥 = 𝑒 let 𝑥 = 𝑒1 in 𝑒2 ≜ (𝜆𝑥. 𝑒2) 𝑒2

Figure 3. Syntax of the types and terms of HeapLang.

Scott’s original code [14]. All differences are minor and stem

from inherent differences between HeapLang and the C-like

language used in the original.

Initialization. The queue
MS

function is the constructor

for the queue and the entry point to the implementation. It

uses a type abstraction, Λ, such that the queue is generic in

the type of elements that it stores. This lambda also serves

to ensure that the internal state of the queue is encapsulated

in a closure. The initialization allocates an initial node, a

sentinel pointer, and a tail pointer. The latter two points to

the initial node. A newly constructed queue is illustrated in

Figure 4.

A node is a pointer to either none or some of a pair of

a value and a pointer to the next node. The pointer serves

to make nodes comparable by pointer equality such that

pointers to nodes can be changed with CAS.
Since there is no value to put in the initial sentinel, which

queue
MS

must construct, none is used. All other nodes con-
tain an actual value 𝑣 and hence contains some 𝑣 . Thus we
often need to get the value of an Option which is known to

be a some. This is the purpose of the getValue function.

Dequeue. Dequeue reads the sentinel pointer and then

the pointer to the sentinel’s successor. If no successor exists

the queue is empty and none is returned. If a succeeding node
is found, dequeue attempts to change the sentinel pointer

to the succeeding node with CAS. If the CAS is successful,

the value in the new sentinel is returned. If the CAS is un-

successful the operation is restarted. Figure 5 shows how
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ℓ→𝑠

ℓ𝑠

ℓ→𝑡

ℓ𝑠→−

Figure 4. A newly constructed queue.

· · ·

ℓ→𝑠

𝑥𝑛ℓ𝑠

ℓ→𝑡

ℓ𝑠→ ℓ𝑛 ℓ𝑛→−

CAS

Figure 5. dequeue on the MS-queue.

· · ·

ℓ→𝑠

𝑥𝑛

ℓ→𝑡

ℓ𝑡 ℓ𝑡→

𝑥𝑛′ℓ𝑡 ′ ℓ𝑡 ′→

1. CAS

2. CAS

Figure 6. enqueue on the MS-queue.

successfully dequeuing an element from a non-empty queue

swings the sentinel pointer forward.

The implementation contains prophecy annotations on

line D4b and D5. These do not affect the execution of the

program and can be ignored for now.

Enqueue. Enqueue constructs a new node with the value

that is to be enqueued. It then reads the tail pointer and

obtains a node that may be the last. To determine if it is,

enqueue checks whether or not the node has a successor.

If a successor exists the tail pointer is lagging behind, and

enqueue attempts to move the tail pointer forward with

a CAS after which it restarts. If no successor exists then

the node is currently the last. By means of a CAS enqueue

then attempts to change the outgoing pointer of the node

such that it points to the new node. If the CAS is successful,

the tail pointer now lags behind, and enqueue attempts to

advance the tail pointer to the new node. If, on the other

hand, theCAS is unsuccessful, the operation restarts, and the
tail pointer is read anew. Figure 6 illustrates how a successful

enqueue inserts a new node and then swings the tail pointer

forward.

Highlights. We highlight a few aspects of the MS-queue

that are of particular interest in terms of the verification.

On D6 the sentinel and tail are compared to each other.

This is a rather indirect way of checking whether or not the

queue is empty. If they are equal the queue is either empty

or the tail pointer lags behind. Otherwise, the else branch
on line D13 assumes that the queue is guaranteed to be non-

empty. In our proof, we must formalize why this assumption

is correct.

On line D5, a so-called consistent snapshot is performed:

the value of toSent read on line D2 is compared to a newly

read value of toSent. This ensures that toSent has not changed
in the meantime and is intended to ensure that the values of

tail and next are consistent. Similarly, enqueue performs a

consistent snapshot on line E7.

Line D7 checks whether the next node is none or not. If it
is not, then the tail pointer is lagging behind because an un-

finished enqueue operation has not yet updated it. Dequeue

then attempts to update the tail pointer on D10. Likewise,

on E13 enqueue also detects a lagging tail and attempts to

update it. These are instances of helping, a pattern where the

execution of one operation helps another.

As we will see, a contextual refinement proof for a fine-

grained concurrent data-structure involves finding its lin-

earization points. It is fairly clear that enqueue’s linearization

point is the CAS on E9 and that dequeue has a lineariza-

tion point on line D13. What is less obvious is that when

dequeue finds the queue empty and returns none on D8, its

linearization point is at the load on D4c. However, line D4c

is only a linearization point if next points to none and if the

consistent snapshot on the next line succeeds. Because of

this, it was conjectured by Morten Krogh-Jespersen
1
that

one would need some kind of prophecy variables to reason

about this; and indeed, in our proof, to know whether or

not the check on the next line succeeds we use the recently

introduced prophecy variables of Iris and ReLoC.

3 Structure of a Refinement Proof
In this section, we describe how to carry out a refinement

proof of a fine-grained concurrent data-structure such as the

MS-queue using ReLoC. We first consider the ingredients

that such a proof consists of.

Persistently modality. Iris has a persistently modality

2 and 2 𝑃 means that 𝑃 always holds. A proposition 𝑃 is per

definition persistent if 𝑃 ⊢ 2 𝑃 , i.e., if one from 𝑃 alone can

show that 𝑃 always holds. Therefore persistent propositions

represent knowledge. Propositions that are not persistent are

called ephemeral—they represent ownership over resources.

To show a goal of the form 2 𝑃 one can only use persistent

assumptions (persistent-2 in Figure 8). The intuition be-

ing that to show that something always holds one can only

depend on other facts that always hold.

Specification. In a proof of refinement, the specification

should be a simple implementation of the same interface that

1
When he attempted to verify the MS-queue in 2014 using the iCap logic, a

precursor to Iris. Private communication.
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getValue 𝑥 ≜ match 𝑥 with none⇒ () () | some 𝑣 ⇒ 𝑣

1: queue
MS
≜ Λ.

2: let node = ref (some(none, (ref (ref none))))
3: tail = ref node
4: sent = ref node
5: in (dequeue

MS
sent tail, enqueue

MS
tail)

D1: dequeue
MS

toSent toTail ≜ rec loop () =
D2: let sent = !toSent
D3: tail = !toTail
D4a: toNext = 𝜋2 (getValue !sent)
D4b: 𝑝 = NewProph
D4c: next = !toNext in
D5: if sent = Resolve(!toSent, 𝑝, ()) then
D6: if sent = tail then
D7: match !next with
D8: none⇒ none
D10: some _⇒ CAS toTail tail next; loop ()
D11: else
D13: if CAS toSent sent next
D14: then some (getValue(𝜋1 (getValue !next)))
D15: else loop ()
D16: else loop ()

enqueue
MS

toTail 𝑥 ≜
E1-E3: let node = ref (some (some 𝑥, ref (ref none))) in
E4: (rec loop() =
E5: let tail = !toTail
E6a: toNext = 𝜋2 (getValue !tail)
E6b: next = !toNext in
E7: if tail = !toTail then
E8: match !next with
E9: none⇒ if CAS toNext next node
E17: then CAS toTail tail node; ()
E11: else loop ()
E13: some _⇒ CAS toTail tail next; loop ()
E14: else loop ()) ()

Figure 7. Implementation of the MS-queue in HeapLang.

the implementation is intended to implement. As mentioned

in the Introduction, our specification is a coarse-grained con-

current queue, implemented using a pointer to a functional

list and where the operations are guarded by a lock, which

is included in ReLoC. The official definition of the coarse-

grained queue is given in Figure 9; the version shown in the

Introduction used a modicum of syntactic sugar.

Refinement judgment. To prove a contextual refinement

ReLoC offers a refinement judgment |= 𝑒1 ≾ 𝑒2 : 𝜏 which

denotes that 𝑒1 refines 𝑒2 at the type 𝜏 . The ReLoC soundness

theorem states that if such a judgment holds inside the logic,

then the corresponding contextual refinement holds in the

surrounding meta-logic. ReLoC provides high-level rules for

working with these refinement judgments that result in sim-

pler proofs than other approaches (e.g., directly using logical

relations). The structural rules apply when each side of the

refinement is of the same syntactic form—it then suffices to

show refinement of the sub-expressions that constitute the

constructions. One such rule is rel-pair, which states that to

show that two pairs are related it suffices to show that they

are pair-wise related. Note that to show that two functions

are related, using rel-rec, one must do so persistently, that is,

without relying on any ephemeral resources. This is because

a context could call a function an arbitrary number of times,

and thus the functions must always be related at any point

in the future.

When the two sides of the refinement are not of the same

syntactic form, one must use symbolic execution rules to step

either side forward. Note that the i and s in the points-to

predicates denote if they are for the implementation or the

specification.

Invariants. As mentioned, to show that two functions

are related one can only use persistent propositions. Non-

persistent propositions can be made persistent by establish-

ing an invariant using the rule inv-alloc. The proposition

𝑃
𝜄
denotes knowledge of an invariant with the name 𝜄 and

is persistent even if 𝑃 is not. During a refinement proof, one

can open an invariant around a single atomic expression 𝑒 on

the left-hand side. The contents of the invariant can be used

to symbolically execute 𝑒 , but, afterward it is an obligation

to close the invariant by showing that it still holds. Crucially

this restriction does not apply to the right-hand side, here it

is allowed to take several steps of symbolic execution with

an invariant open. The way the above restrictions are en-

forced is rather technical, so we omit the details, but note

that the modality |⇛ is used to denote when invariants can

be opened.

Linearization points. During a refinement proof, one

must maintain a link between the state of the implementa-

tion and the specification such that upon termination one

can show that the two values are related. For a fine-grained

concurrent data-structure, such as the MS-queue, operations

“take effect” at specific points, namely the linearization points.

At these points, the specification should be symbolically ex-

ecuted from start to end; this is possible even while an in-

variant is open per the above. To this end we use the rules

for the coarse-grained queue shown in Figure 10; these are

easy to prove using the lock specification that ReLoC in-

cludes, and our definition of the representation predicate ICG

for the coarse-grained queue, also shown in the figure. The

representation predicate states that the physical state of the

coarse-grained queue (the pointer to a list and the lock) cor-

responds to a logic-level sequence.

Prophecy variables. For the MS-queue in particular we

also need prophecy variables. These are a recent addition to

Iris and ReLoC [8, 10]. Recall how the load at D4c may be a

linearization point depending on the result of the load on the

next line, D5. Hence, when we symbolically execute the load
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2-sep-and

2(𝑃 ∧𝑄)
2(𝑃 ∗𝑄)

2-exists

∃𝑥 .2 𝑃
2∃𝑥 . 𝑃

persistent-2
𝑃 persistent 𝑃 ⊢ 𝑄

𝑃 ⊢ 2𝑄

inv-alloc

𝑃

|⇛E E 𝑃
𝜄

löb

𝑄 ∧ ⊲ 𝑃 ⊢ 𝑃
𝑄 ⊢ 𝑃

Structural rules
rel-return

J𝜏KΔ (𝑣1, 𝑣2)
Δ |= 𝑣1 ≾ 𝑣2 : 𝜏

rel-tlam

∀𝑅 : Val × Val→ Prop. 2
(
[𝛼 := 𝑅] ,Δ |= 𝑒1 ≾ 𝑒2 : 𝜏

)
Δ |= Λ.𝑒1 ≾ Λ.𝑒2 : ∀𝛼.𝜏

rel-pair

Δ |= 𝑒1 ≾ 𝑒2 : 𝜏 Δ |= 𝑒 ′
1
≾ 𝑒 ′

2
: 𝜎

Δ |= (𝑒1, 𝑒 ′1) ≾ (𝑒2, 𝑒
′
2
) : 𝜏 × 𝜎

rel-rec

2
(
∀𝑣1, 𝑣2 . J𝜏KΔ (𝑣1, 𝑣2) −∗ Δ |= (rec 𝑓1 (𝑥1) = 𝑒1) 𝑣1 ≾ (rec 𝑓2 (𝑥2) = 𝑒2) 𝑣2 : 𝜎

)
Δ |= (rec 𝑓1 (𝑥1) = 𝑒1) ≾ (rec 𝑓2 (𝑥2) = 𝑒2) : 𝜏 → 𝜎

Symbolic execution rules
rel-pure-r

𝑒2
pure
⇝ 𝑒 ′

2
Δ |=E 𝑒1 ≾ 𝐾 [ 𝑒 ′2 ] : 𝜏

Δ |=E 𝑒1 ≾ 𝐾 [ 𝑒2 ] : 𝜏

rel-load-r

ℓ ↩→s 𝑣 ℓ ↩→s 𝑣 −∗ Δ |=E 𝑒1 ≾ 𝐾 [ 𝑣 ] : 𝜏
Δ |=E 𝑒1 ≾ 𝐾 [ ! ℓ ] : 𝜏

rel-store-r

ℓ ↩→s − ℓ ↩→s 𝑣 −∗ Δ |=E 𝑒1 ≾ 𝐾 [ () ] : 𝜏
Δ |=E 𝑒1 ≾ 𝐾 [ ℓ ← 𝑣 ] : 𝜏

Rules for prophecy variables
rel-newproph-l

∀𝑣, 𝑝. Proph1 (𝑝, 𝑣) −∗ Δ |= 𝐾 [ 𝑝 ] ≾ 𝑒2 : 𝜏
Δ |= 𝐾 [ NewProph ] ≾ 𝑒2 : 𝜏

rel-resolveproph-l

Proph1 (𝑝, 𝑣) wp 𝑒 {𝑢. 𝑣 = (𝑢,𝑤) −∗ Δ |=E 𝐾 [ 𝑣 ] ≾ 𝑒2 : 𝜏}
Δ |= 𝐾 [ Resolve(𝑒, 𝑝,𝑤) ] ≾ 𝑒2 : 𝜏

Figure 8. Selected rules from ReLoC (some are simplified for the sake of presentation).

dequeue′
CG

list ≜
match ! list with

none⇒ none
some 𝑝 ⇒ list← (𝜋2 𝑝); some (𝜋1 𝑝)

dequeue
CG

lock list () ≜
acquire lock; let 𝑣 = dequeue′

CG
list in release lock; 𝑣

enqueue′
CG
≜ rec loop 𝑥 list =

match list with
none⇒ some (𝑥, none)
some 𝑝 ⇒ some (𝜋1 𝑝, loop 𝑥 (𝜋2 𝑝))

enqueue
CG

lock list 𝑥 ≜
acquire lock; list← enqueue′

CG
𝑥 ! list; release lock

queue
CG
≜ Λ.

let lock = newlock ()
list = ref none in

(𝜆_. dequeue
CG

lock list (), 𝜆𝑥 . enqueue
CG

lock list 𝑥)

Figure 9. Implementation of the coarse-grained queue.

at D4c we need to know the result of a future expression.

This is what prophecy variables make possible. They rely on

code annotations, which do not affect the execution of the

program but aids in reasoning. A prophecy is created with

NewProph and per rel-newproph-l it results in a resource

Proph1 (𝑝, 𝑣) where 𝑝 is the name of the prophecy and 𝑣 is a

value. Intuitively, 𝑣 is equal to the value which the prophecy

is eventually resolved to. A prophecy is resolved with an

atomic prophecy resolution: Resolve(𝑒, 𝑝,𝑤). This expression
behaves computationally exactly as the atomic expression 𝑒 .

Its rule rel-resolveproph-l requires Proph1 (𝑝, 𝑣), and hence

ICG (ℓcg, lk, xs) ≜ ℓcg ↩→s isList(xs) ∗ isLocked(lk, False)
isList( []) ≜ none

isList(𝑥 :: xs) ≜ some (𝑥, isList(xs))

deqeueCG-nil-r

ICG (ℓcg, lk, []) ICG (ℓcg, lk, []) −∗ Δ |=E 𝑒1 ≾ 𝐾 [ none ] : 𝜏
Δ |=E 𝑒1 ≾ 𝐾 [ dequeueCG lk ℓcg () ] : 𝜏

deqeueCG-cons-r

ICG (ℓcg, lk, 𝑥 :: xs)
ICG (ℓcg, lk, xs) −∗ Δ |=E 𝑒1 ≾ 𝐾 [ some 𝑥 ] : 𝜏
Δ |=E 𝑒1 ≾ 𝐾 [ dequeueCG lk ℓcg () ] : 𝜏

enqeueCG-r

ICG (ℓcg, lk, xs) ICG (ℓcg, lk, xs ++ [𝑥]) −∗ Δ |=E 𝑒1 ≾ 𝐾 [ () ] : 𝜏
Δ |=E 𝑒1 ≾ 𝐾 [ enqueueCG lk ℓcg 𝑥 ] : 𝜏

Figure 10. Right-hand side relational specification for the

coarse-grained queue.

one can think of this resource as giving one the right to

resolve the prophecy. It then states that 𝑣 is equal to (𝑢,𝑤)
where 𝑢 is that value that 𝑒 evaluates to. In our case we

create a prophecy at D4b, hence at this point we get a value

𝑣 that can be thought of as the result of the future expression

!toSent.
Given these ingredients, the overall structure of a refine-

ment proof is: (a) Decide on a specification and prove right–

hand side lemmas for each operation (Figure 10 in our case).
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Mapsto-intro-2
ℓ ↩→𝑞

i 𝑣

|⇛ℓ ↩→2
i 𝑣

Mapsto-agree-2
ℓ ↩→2

i 𝑣 ℓ ↩→2
i 𝑣 ′

𝑣 = 𝑣 ′

persistent

ℓ ↩→2
i 𝑣

2 ℓ ↩→2
i 𝑣

Ht-load-2

{ℓ ↩→2
i 𝑢} !ℓ{𝑣 .𝑣 = 𝑢}

rel-load-r-2
ℓ ↩→□i 𝑣 Δ |= 𝐾 [ 𝑣 ] ≾ 𝑒2 : 𝜏

Δ |= 𝐾 [ ! ℓ ] ≾ 𝑒2 : 𝜏

rel-cas-l

|⇛⊤ E ∃𝑣 .

©­­­­­­­«

(
𝑣 ≠ 𝑣1 −∗
(ℓ ↩→□i 𝑣 ∗ Δ |=E 𝐾 [ false ] ≾ 𝑒2 : 𝜏) ∨
∃𝑞. (ℓ ↩→𝑞

i 𝑣 ∗
(ℓ ↩→𝑞

i 𝑣 −∗ Δ |=E 𝐾 [ false ] ≾ 𝑒2 : 𝜏))
)
∧(

𝑣 = 𝑣1 −∗
(ℓ ↩→i 𝑣 ∗ (ℓ ↩→i 𝑣2 −∗ Δ |=E 𝐾 [ true ] ≾ 𝑒2 : 𝜏))

)
ª®®®®®®®¬

Δ |= 𝐾 [CAS(ℓ, 𝑣1, 𝑣2) ] ≾ 𝑒2 : 𝜏

Figure 11. Rules for the persistent points-to predicate.

(b) Define an invariant that relates the state of the speci-

fication to that of the implementation (Section 5) (c) Use

symbolic execution rules to step through the initialization

of each side. (d) Establish the invariant and use structural

rules to get the goals to show that each operation is related.

(e) Show that each operation is related by using the invariant;

at each linearization point apply the corresponding lemma

for the specification.

4 Persistent Points-to Predicate
Consider the depiction of the MS-queue in Figure 2 on page 3.

All the pointers, except ℓ→𝑠 , ℓ→𝑡 , and ℓ𝑙→, are never changed,
and, once ℓ𝑙→ is changed it is never changed again. As we

will see, expressing precisely which parts of the MS-queue

change, and which do not, is central to our approach. Since

data-structures with locations that are or become immutable

are common, it makes sense to develop a generally appli-

cable tool for reasoning about immutable pointers. To this

end, we introduce the persistent points-to predicate, denoted

ℓ ↩→□i 𝑣 as mentioned in the Introduction. In contrast to the

normal points-to predicate, which allows for mutation but

no sharing, the persistent points-to predicate allows for free

sharing but no mutation.

The reader may wonder whether there is an already exist-

ing alternative to a new persistent points-to predicate. Per-

haps ∃𝑞. ℓ ↩→𝑞

i 𝑣? This predicate, however, is only duplicable

whereas we want a points-to predicate that is persistent. This

is because persistence is a strictly stronger notion and persis-

tent propositions enjoy additional properties. The persistent

modality commutes with all the logical connectives (e.g., 2-

exists) and under it conjunction and separating conjunction

coincides (2-sep-and). Hence persistent propositions form a

sublogic with non-substructural properties. This is not the

case for duplicable propositions: for instance, ℓ ↩→ 𝑣 is not

duplicable but ∃𝑞.ℓ ↩→𝑞 𝑣 is. Persistent propositions are uti-

lized to great effect in the Coq mechanization of Iris, see

[12].

Maybe one could remedy this issue by wrapping the ex-

istentially quantified fractional points-to predicate in an

invariant, that is, use ∃𝑞.ℓ ↩→𝑞 𝑣
𝜄
? This would result in

a persistent predicate, but, we want a persistent points-to

predicate that can be used as a normal points-to predicate,

including being put inside invariants, and with this defini-

tion, we would be led to nested invariants. And while Iris

does support nested invariants, reasoning about such would

involve the later modality and, as a result, it would make the

use of the persistent points-to predicates more restrictive.

Other approaches to modeling immutable locations exist,

e.g., one may use a combination of invariants and additional

ghost state, as done in [12], but this approach is more com-

plex and our points-to predicate would have simplified the

proofs in [12].

A selection of the rules for the persistent points-to pred-

icate is shown in Figure 11. Since the persistent points-to

predicate represents locations that never change, it is persis-

tent (persistent). Given any fraction of a normal points-to

predicate, one can obtain a persistent points-to predicate

(Mapsto-intro-2)—one can think of the fractional points-to

predicate as being discarded in exchange for a persistent

points-to predicate. The modality |⇛ is there because dis-

carding the fraction requires updating ghost state. Persistent

points-to predicates for the same location must point to the

same value (Mapsto-agree-2). Finally, the predicate can be

used for read-only operations, such as loading a pointer (Ht-

load-2).
In Section 9 we show how to define the persistent points-

to predicate and derive its rules entirely within the Iris base

logic. This automatically guarantees soundness of the rules.

We have additionally extended the Coq formalization of Iris

and ReLoC to support the persistent points-to predicate as

seamlessly as they support the normal points-to predicate.

Among other things, this means that the tactics in the proof

mode automatically use the persistent points-to predicate

when possible.

The last rule in Figure 11, rel-cas-l, is an improved version

of a corresponding rule in ReLoC [8]. It now allows using the

persistent points-to predicate to show that a failed CAS is

safe. This makes sense since it is sufficient to have read-only

access to a location as long as one is not actually successful

in mutating it. The other change to the rule is in the ordering

of connectives. This change is subtle but makes the rule more

complete. The original rule for CAS in ReLoC is structured

as

∃𝑣 . ℓ ↩→i 𝑣 ∗ ((𝑣 ≠ 𝑣1 −∗ . . . ) ∨ (𝑣 = 𝑣1 −∗ . . . ))

whereas our rule allows one to first offer a witness 𝑣 , then

assume either 𝑣 = 𝑣1 or 𝑣 ≠ 𝑣1, and then use this (in)equality
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abs-reach-alloc

ℓ𝑛 ; ℓ𝑛

∃𝛾𝑛 . 𝛾𝑛 Z⇒ ℓ𝑛 ∗ ℓ𝑛 d 𝛾𝑛

abs-reach-concr

ℓ𝑛 d 𝛾𝑚 𝛾𝑚 Z⇒ ℓ𝑚

ℓ𝑛 ; ℓ𝑚 ∗ 𝛾𝑚 Z⇒ ℓ𝑚

abs-reach-abs

ℓ𝑛 ; ℓ𝑚 𝛾𝑚 Z⇒ ℓ𝑚

|⇛ (ℓ𝑛 d 𝛾𝑚 ∗ 𝛾𝑚 Z⇒ ℓ𝑚)

abs-reach-advance

𝛾𝑚 Z⇒ ℓ𝑚 ℓ𝑚 ; ℓ𝑜

|⇛ (𝛾𝑚 Z⇒ ℓ𝑜 ∗ ℓ𝑜 d 𝛾𝑚)

Figure 12. Rules for abstract reachability.

to show the points-to predicate. This turns out to be essential

in the proof of refinement of enqueue.

5 Invariant for the Refinement Proof
We now present the invariant used in the refinement proof.

5.1 Reachability
A key insight of our approach is how the invariants that

the MS-queue maintains can be expressed in terms of which

nodes are reachable from other nodes. Reachability is ex-

pressed with an inductive predicate:

ℓ𝑛 ; ℓ𝑚 ≜ ∃ℓ𝑛→, 𝑣 . ℓ𝑛 ↩→□i some(𝑣, ℓ𝑛→) ∗
(ℓ𝑛 = ℓ𝑚 ∨ ∃ℓ𝑝 . ℓ𝑛→ ↩→□i ℓ𝑝 ∗ ℓ𝑝 ; ℓ𝑚)

It is persistent as the definition uses the persistent points-to

predicate to express that the sequence of nodes is immutable.

Reachability is a preorder on nodes in the sense that for

all ℓ𝑛 and ℓ𝑚 :

ℓ𝑛 ↩→□i some (𝑣, ℓ𝑛→) ∗−−∗ ℓ𝑛 ; ℓ𝑛 (reachable-reflexive)

ℓ𝑛 ; ℓ𝑚 −∗ ℓ𝑚 ; ℓ𝑜 −∗ ℓ𝑛 ; ℓ𝑜 (reachable-transitive)

Note, that ℓ𝑛 ; ℓ𝑛 is not trivial, it implies that ℓ𝑛 is actually

a node, in the sense that it points to some of a pair. More

generally, ℓ𝑛 ; ℓ𝑚 implies that both ℓ𝑛 and ℓ𝑚 are nodes.

5.2 Abstract Reachability
A crucial property of the MS-queue is that the sentinel and

tail pointers are only moved forward to succeeding nodes.

Additionally, the linked list is never mutated except when

new nodes are added at the very end. This implies that if a

node can reach the current sentinel, tail, or last node then it

can reach any future sentinel, tail, or last node.

To model this we use three ghost variables, 𝛾𝑠 , 𝛾𝑡 , and 𝛾𝑙 ,

as abstract nodes that give fixed names to the idea of the

“current” sentinel, tail, and last node respectively. We then

introduce abstract reachability, ℓ𝑛 d 𝛾𝑚 , capturing that the

physical node ℓ𝑛 can reach the abstract node 𝛾𝑚 . To realize

this intention, our invariant will tie the three abstract nodes

to the locations that are currently the sentinel, tail, and last

nodes. This is done using a predicate 𝛾𝑛 Z⇒ ℓ𝑚 representing

that the abstract node 𝛾𝑛 is currently tied to the physical

node ℓ𝑚 .

These predicates satisfy the rules given in Figure 12. The

first two rules state that given 𝛾𝑚 Z⇒ ℓ𝑚 one can go from

ℓ𝑛 ; ℓ𝑚 to ℓ𝑛 d 𝛾𝑚 , and vice versa. The last rule makes it

possible to change which physical node an abstract node is

tied to as long as the new node is reachable from the current

node.

For the reader familiar with Iris resource algebras we re-

mark that the above can be realized using the resource alge-

bra Auth(P (Loc)) and the following definitions:

ℓ𝑛 d 𝛾𝑚 ≜ ◦ {ℓ𝑛}
𝛾𝑚

𝛾𝑛 Z⇒ ℓ𝑛 ≜ ∃𝑠 . • 𝑠
𝛾𝑛 ∗∗

ℓ𝑚 ∈𝑠
ℓ𝑚 ; ℓ𝑛

Here P (𝐴) denotes the resource algebra of sets of 𝐴, with
union as the operation, and the core being the identity func-

tion.

5.3 The Invariant
The top-level invariant in Figure 13 is parameterized by a

value relation, 𝜏𝑖 , and the values that the implementation

and specification consist of. It states the existence of two

mathematical lists xsi and xss that, through IMS and ICG, are

related to the physical representation of each queue. The

big separating conjunction relates the lists pair-wise by 𝜏𝑖 .

This way of relating the implementation and specification is

arguably simpler than the approach used in [12, 18], which

would have intermingled the physical representations of the

two queues with the pair-wise relatedness of the elements

in the queues.

ICG is as previously seen and IMS states the existence of

ℓ𝑠 , ℓ𝑡 , and ℓ𝑙 and ties the abstract nodes to these. It contains

the points-to predicates for the three mutable locations in

the queue. It states that the sentinel can reach the abstract

tail: ℓ𝑠 d 𝛾𝑡 . This knowledge is key to proving the else
branch in dequeue starting on line D13, which we previously

discussed. In fact, the reason why the check on D6 ensures

that the queue is empty is exactly that the tail pointer can

not fall behind the sentinel pointer. Additionally, ℓ𝑡 d 𝛾𝑙
ensures that the tail can reach the abstract last node. Finally,

isQueue
MS

relates the linked list to the mathematical list xsi.

Note how the only non-persistent things in IMS are the

three points-to predicates and the resource tieing the abstract

nodes to the physical nodes. Clearly, these can not be persis-

tent. Hence, our invariant precisely captures and separates

the changing parts of the MS-queue from the unchanging

parts.

Before moving on to the refinement proof, we demonstrate

how the invariant and abstract reachability is used by prov-

ing a lemma which is to be used whenever the MS-queue

attempts to swing the tail pointer forward.

Lemma 5.1. Swing tail pointer forward.

𝐼 (. . . ) 𝜄 ℓ𝑛 ; ℓ𝑚 ∀𝑣 . |= 𝐾 [ 𝑣 ] ≾ 𝑒 : 𝛼
|= 𝐾 [CAS ℓ→𝑡 ℓ𝑛 ℓ𝑚 ] ≾ 𝑒 : 𝛼
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Top-level invariant
𝐼 (𝜏𝑖 , ℓ→𝑠 , ℓ→𝑡 , ℓcg, lk) ≜ ∃xs𝑖 , xs𝑠 . IMS (ℓ→𝑠 , ℓ→𝑡 , xs𝑖 ) ∗ ICG (ℓcg, lk, xs𝑠 ) ∗ ∗(𝑥𝑖 ,𝑥𝑠 ) ∈(xs𝑖 ,xs𝑠 ) 𝜏𝑖 (𝑥𝑖 , 𝑥𝑠 )

Invariant for the MS-queue
IMS (ℓ→𝑠 , ℓ→𝑡 , xs𝑖 ) ≜ ∃ℓ𝑠 , ℓ𝑠→, ℓ𝑡 , ℓ𝑡→, ℓ𝑙 , ℓ𝑙→ . ℓ→𝑠 ↩→i ℓ𝑠 ∗ ℓ→𝑡 ↩→i ℓ𝑡 ∗ isQueueMS

(ℓ𝑙→, ℓ𝑠→, 𝑥𝑠𝑖 ) ∗
𝛾𝑠 Z⇒ ℓ𝑠 ∗ ℓ𝑠 ↩→□i some (−, ℓ𝑠→) ∗ ℓ𝑠 d 𝛾𝑡 ∗
𝛾𝑡 Z⇒ ℓ𝑡 ∗ ℓ𝑡 ↩→□i some (−, ℓ𝑡→) ∗ ℓ𝑡 d 𝛾𝑙 ∗
𝛾𝑙 Z⇒ ℓ𝑙 ∗ ℓ𝑙 ↩→□i some (−, ℓ𝑙→) ∗ ℓ𝑙→ ↩→i ℓ𝑛 ∗ ℓ𝑛 ↩→□i none

isQueue
MS
(ℓ𝑙→, ℓ→𝑛, []) ≜ ℓ𝑙→ = ℓ→𝑛

isQueue
MS
(ℓ𝑙→, ℓ→𝑛, 𝑥 :: xs) ≜ ∃ℓ𝑛, ℓ𝑛→ . ℓ→𝑛 ↩→□i ℓ𝑛 ∗ ℓ𝑛 ↩→□i some (some 𝑥, ℓ𝑛→) ∗ isQueueMS

(ℓ𝑙→, ℓ𝑛→, xs)

Figure 13. The invariant and auxiliary definitions.

Proof. We apply rel-cas-l and open the invariant. Since the

invariant contains ℓ→𝑡 ↩→ ℓ𝑡 for some ℓ𝑡 we offer the witness

ℓ𝑡 . If the CAS fails we can simply close the invariant again.

If the CAS succeeds we know that ℓ𝑛 = ℓ𝑡 and we now get

ℓ→𝑡 ↩→ ℓ𝑚 . When we close the invariant we supply ℓ𝑚 as the

witness for ℓ𝑡 . To do that we have to show

𝛾𝑡 Z⇒ ℓ𝑚 ∗ ℓ𝑚 ↩→□i some (−, ℓ𝑚→) ∗ ℓ𝑚 d 𝛾𝑙

The middle conjunction follows from ℓ𝑛 ; ℓ𝑚 . We have

𝛾𝑡 Z⇒ ℓ𝑛 and ℓ𝑛 ; ℓ𝑚 which per the last rule in Figure 12

gets us the rest. □

6 Refinement Proof of the MS-queue
We now prove that the MS-queue contextually refines the

coarse-grained queue:

|= queue
MS
≾ queue

CG
: ∀𝛼.(1→ Option 𝛼) × (𝛼 → 1)

Since both queue
MS

and queue
CG

are type abstractions we

apply rel-tlam to show that in a context extended with 𝛼

interpreted using any value relation 𝑅. We symbolically exe-

cute the code on the left-hand side to the resources:

ℓ𝑛𝑖𝑙 ↩→i none ∗ ℓ𝑠→ ↩→i ℓ𝑛𝑖𝑙 ∗
ℓ𝑠 ↩→i some(none, ℓ𝑠→) ∗ ℓ→𝑠 ↩→i ℓ𝑠 ∗ ℓ→𝑡 ↩→i ℓ𝑠

From stepping through the right-hand side we get

ℓ𝑙𝑖𝑠𝑡 ↩→s none ∗ isLocked(lk, False).

Together with abs-reach-alloc this is enough to establish

the invariant. We thus now have 𝐼 (𝜏𝑖 , ℓ→𝑠 , ℓ→𝑡 , ℓcg, lk)
𝜄
in the

context.

Both sides step to a pair and we apply the structural rule

rel-pair. We are then required to show that the fine-grained

dequeue and enqueue are logical refinements of their coarse-

grained counterparts. We do this in the next two sections.

6.1 Dequeue
We are to show the logical refinement:

[𝛼 := 𝑅] |= dequeue
MS
ℓ→𝑠 ℓ→𝑡

≾ dequeue
CG

lk ℓCG : 1→ Option 𝛼.

Since both sides are functions we use rel-rec and have to

show that for any two values 𝑣1 and 𝑣2, where J1KΔ (𝑣1, 𝑣2),
it is the case that the left-hand side applied to 𝑣1 is related to

the right-hand side applied to 𝑣2. Since 𝑣1 and 𝑣2 are related

at the type 1 they must both be equal to the unit value ().
Hence we are to show

[𝛼 := 𝑅] |= dequeue
MS
ℓ→𝑠 ℓ→𝑡 ()

≾ dequeue
CG

lk ℓCG () : Option 𝛼.

As the left-hand side is a recursive function we apply the löb

rule. This gives us the induction hypothesis that the refine-

ment holds for any recursive calls. We then apply structural

rules to symbolically execute the left implementation until

we arrive at the first load:

sent = !ℓ→𝑠

The yellow background indicates the expression currently

being symbolically executed and which we open the invari-

ant around. We open the invariant and from the points-to

predicate for ℓ→𝑠 we know that the load steps to some ℓ𝑠 and

that we can assume the following persistent propositions for

some ℓ𝑠→ and 𝑣 :

ℓ𝑠 ↩→□i some (𝑣, ℓ𝑠→) ∗ ℓ𝑠 d 𝛾𝑠 ∗ ℓ𝑠 d 𝛾𝑡 ∗ ℓ𝑠 d 𝛾𝑙 (1)

On the next line, the tail is loaded.

tail = !ℓ→𝑡

By opening the invariant, we can conclude that the load

evaluates to some ℓ𝑡 . We know that ℓ𝑠 can reach the current

tail (ℓ𝑠 d 𝛾𝑡 in Eq. (1)) and that ℓ𝑡 is the current tail (𝛾𝑡 Z⇒ ℓ𝑡
from the invariant) hence per abs-reach-concr we get ℓ𝑠 ;
ℓ𝑡 .
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On the next line (D4a) ℓ𝑠 is read:

toNext = 𝜋2 (getValue !ℓ𝑠 )
We can evaluate this, without opening the invariant, using

the points-to predicate from Eq. (1). Thus, the load evaluates

to some (𝑣, ℓ𝑠→). With this information, we can symbolically

execute the getValue and the projection.

We then arrive at the creation of the prophecy variable

at line D4b. Using rel-newproph-l we get the prophecy as-

sertion Proph1 (𝑝, 𝑣). Since the prophecy variable is resolved

with !toSent on line D5, the value 𝑣 is, intuitively, equal to

the result of that load. Hence, whether or not 𝑣 is equal to ℓ𝑠 ,

determines the outcome of the check on line D5. If they are

equal, we will be able to show that the check succeeds, and

otherwise, the check will fail. We consider these two cases

separately. In the latter case, where 𝑣 ≠ ℓ𝑠 , dequeue restarts

and we only have to show that the execution up to the re-

cursive call on the last line is safe. This is straightforward so

we consider only the first case where 𝑣 = ℓ𝑠 .

We proceed to the next load:

next = !ℓ𝑠→

This load reads the pointer out of the sentinel. Intuitively, if

this leads to none then the queue must be empty and the

pointer read is the mutable pointer that enqueue
MS

may

modify. Hence, if this is the case, this is a linearization point

and we must then conclude that the queue is empty.

To do this, we open the invariant and introduce the ex-

istentially quantified locations with the names ℓ𝑠 , ℓ𝑡 and ℓ𝑙
as ℓ𝑠′, ℓ𝑡 ′ and ℓ𝑙 ′ respectively. Using ℓ𝑠 d 𝛾𝑠 from Eq. (1) and

abs-reach-concr we can determine that ℓ𝑠 can reach all these

nodes:

ℓ𝑠 ; ℓ𝑠′ ∗ ℓ𝑠 ; ℓ𝑡 ′ ∗ ℓ𝑠 ; ℓ𝑙 ′ (2)

Since ℓ𝑠 can reach ℓ𝑙 ′ they are either equal or ℓ𝑠 has a

successor node which can reach ℓ𝑙 ′ .

First case: We have ℓ𝑠 = ℓ𝑙 ′ . The sentinel read earlier is

equal to the current tail. Then all the nodes in Eq. (2) reach-

able from ℓ𝑠 are reachable from ℓ𝑙 ′ . But, ℓ𝑙 ′ has no successors

(ℓ𝑙 ′→ points to none) hence any node it can reach must be

itself:

ℓ𝑠 = ℓ𝑡 = ℓ𝑙 ′ = ℓ𝑠′ (3)

Per Mapsto-agree-2 this implies that ℓ𝑠→ = ℓ𝑙 ′→. We thus

find that the pointer being loaded is ℓ𝑙 ′→ and the points-to

predicates

ℓ𝑙 ′→ ↩→i ℓ𝑛𝑖𝑙 ∗ ℓ𝑛𝑖𝑙 ↩→□i none
are in the invariant. Hence the load results in ℓ𝑛𝑖𝑙 .

By combining the above with the following fact

isQueue
MS
(ℓ𝑠→, ℓ𝑠→, xs) −∗

ℓ𝑠→ ↩→i ℓ𝑛𝑖𝑙 −∗ ℓ𝑛𝑖𝑙 ↩→□i none −∗ xs = [] .
we conclude that xsi = [] and hence also (from the big sepa-

rating conjunction in 𝐼 ) that xss = []. Using xss = [] we can

now apply deqeue
CG

-nil-r. After this our goal is to show

the refinement:

[𝛼 := 𝑅] |= 𝐾 [ !ℓ𝑠→ ] ≾ none : Option 𝛼.

We must show that the left-hand side steps to none which
we can do as follows: On line D5 we know that the check

in the if-statement is true since we know that the prophecy

variable is resolved to ℓ𝑠 . Hence symbolic execution proceeds

to line D6 where ℓ𝑠 is compared to ℓ𝑡 . From Eq. (3) we know

that these are equal. On line D7 the location ℓ𝑛𝑖𝑙 is loaded; it

points-to none and thus the function returns none on line

D8.

Second case: There exists a node ℓ𝑛 for which we have

ℓ𝑠→ ↩→□i ℓ𝑛 ∗ ℓ𝑛 ↩→□i some (𝑣, ℓ𝑛→) ∗ ℓ𝑛 ; ℓ𝑙 ′ .

The load evaluates to ℓ𝑛 and we close the invariant.

On line D6 the location ℓ𝑠 is compared to ℓ𝑡 and we case

on whether or not these locations are equal:

Case ℓ𝑠 = ℓ𝑡 : The if-statement succeeds, we step to D7

which loads ℓ𝑛 and thus evaluates to a some. Therefore the
match takes the second branch to D10:

CAS ℓ→𝑡 ℓ𝑡 ℓ𝑛 ; loop ()

Here we apply Lemma 5.1, and for the last expression we

apply the induction hypothesis.

Case ℓ𝑠 ≠ ℓ𝑡 : We step to D13 where dequeue attempts to

swing the sentinel pointer forward:

if CAS ℓ→𝑠 ℓ𝑠 ℓ𝑛

We know that the CAS is safe since the invariant contains

the points-to predicate ℓ→𝑠 ↩→i ℓ𝑠′ for some ℓ𝑠′ .

If the CAS fails we have not changed anything and can

simply close the invariant, step to D15, and apply the induc-

tion hypothesis.

If the CAS succeeds then ℓ𝑠 = ℓ𝑠′ and this is a linearization

point. After the CAS we have ℓ→𝑠 ↩→i ℓ𝑛 . Since ℓ𝑠 is equal

to ℓ𝑠′ the pointer out of ℓ𝑠′ must be equal to ℓ𝑠→. As such we

have isQueue
MS
(ℓ𝑠→, ℓ𝑙→, xsi) from the invariant for some xsi.

If xsi was [] then ℓ𝑠 would be equal to the last node, which
points to none. But, this is in contradiction with the knowl-

edge that ℓ𝑠 is succeeded by ℓ𝑛 . Hence xsi cannot be []. Thus
there exists 𝑥𝑖 and xs

′
𝑖 such that xsi = 𝑥𝑖 :: xs

′
𝑖 ; and 𝑥𝑠 and xs

′
𝑠

such that xss = 𝑥𝑠 :: xs
′
𝑠 . For these:

𝜏𝑖 (𝑥𝑖 , 𝑥𝑠 ) ∗ ∗
(𝑥𝑖 ,𝑥𝑠 ) ∈(xs′𝑖 ,xs′𝑠 )

𝜏𝑖 (𝑥𝑖 , 𝑥𝑠 )

Moreover, 𝑥𝑖 must be exactly the value in the node ℓ𝑛 (i.e.,

𝑣 = some 𝑥𝑖 ).
With the knowledge that the list is non-empty we can use

deqeue
CG

-cons-r after which we get ICG (ℓcg, lk, xs′i ) and
must show the refinement:

[𝛼 := 𝑅] |=E 𝐾 [ true ] ≾ some 𝑥𝑠 : 𝜏
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When we close the invariant we offer ℓ𝑛 as a witness for

the existentially quantified variable ℓ𝑠 . To do this we must

show 𝛾𝑠 Z⇒ ℓ𝑛 and ℓ𝑛 d 𝛾𝑡—this is fairly easy.

After the CAS we arrive at D14. We know that the load

evaluates to some (some 𝑥𝑠 , ℓ𝑛→). Hence the entire expression
on line D14 steps to some 𝑥𝑠 and we are to show

[𝛼 := 𝑅] |=E some 𝑥𝑖 ≾ some 𝑥𝑠 : 𝜏

which we can do because we have 𝜏𝑖 (𝑥𝑖 , 𝑥𝑠 ).

6.2 Enqueue
To conclude the proof we show refinement of enqueue:

[𝛼 := 𝑅] |= enqueue
MS
ℓ→𝑡 ≾ enqueue

CG
lk ℓ𝑙𝑖𝑠𝑡 : 𝛼 → 1.

As both sides of the refinement are lambda-values we must

show that these are related when applied to any two values,

xi and xs, related by 𝜏𝑖 .

We first step over the construction of the new node on

line E1. This gives us the resources:

ℓ𝑛 ↩→i some (some xi, ℓ𝑛→) ∗ ℓ𝑛→ ↩→i ℓnil ∗ ℓ𝑛𝑖𝑙 ↩→i none

Line E4 is an application of a recursive function. We there-

fore apply the löb rule as we did in the proof of dequeue.

To step over the load of ℓ→𝑡 on line E5we open the invariant

which contains the points-to predicate ℓ→𝑡 ↩→i ℓ𝑡 for some ℓ𝑡 .

The load evaluates to ℓ𝑡 and when we close the invariant we

keep the following persistent knowledge:

ℓ𝑡 d 𝛾𝑙 ∗ ℓ𝑡 ↩→□i some (𝑣, ℓ𝑡→), (4)

for some 𝑣 and ℓ𝑡→. The persistent points-to predicate for ℓ𝑡
is used for the load on the next line, E6a. Since its contents

match the operations applied to it, we can symbolically exe-

cute the rest of the line, and toNext is assigned to the value

ℓ𝑡→.
The next line (E6b) loads ℓ𝑡→ and we open the invariant

again. The invariant contains 𝛾𝑙 Z⇒ ℓ𝑙 for some ℓ𝑙 . By using

abs-reach-concr we get ℓ𝑡 ; ℓ𝑙 . We case on whether or not

ℓ𝑡 is equal to ℓ𝑙 .

First case, ℓ𝑡 = ℓ𝑙 : . We rewrite with the equality in the

points-to predicate in Eq. (4) and get ℓ𝑙 ↩→□i some (𝑣, ℓ𝑡→,).
From the invariant we have ℓ𝑙 ↩→□i some (𝑣 ′, ℓ𝑙→) and thus,

by Mapsto-agree-2, we get ℓ𝑡→ = ℓ𝑙→. From the invariant we

further have

ℓ𝑙→ ↩→i ℓ𝑛𝑖𝑙 ∗ ℓ𝑛𝑖𝑙 ↩→□i none (5)

Hence we can conclude that the load evaluates to ℓ𝑛𝑖𝑙 . We

close the invariant.

Symbolic execution continues to line E7. On this line ℓ→𝑡

is loaded again. We have already seen how the invariant

ensures that such a load is safe. The newly read value is then

compared to the old value read at line E5. If these are not

equal symbolic execution proceeds to line E14 where we can

conclude the proof by applying the induction hypothesis.

If they are equal execution proceeds to line E8 where ℓ𝑛𝑖𝑙

is loaded. We use the points-to predicate from Eq. (5) and

conclude that the load evaluates to none.
Therefore thematch takes the first branch to the CAS on

line E9:

if CAS ℓ𝑡→ ℓ𝑛𝑖𝑙 ℓ𝑛

To show that the CAS is safe we must have a points-to

predicate for ℓ𝑡→. We can open the invariant and get a points-

to predicate ℓ𝑙 ′→ ↩→i ℓ𝑛𝑖𝑙 for some ℓ𝑙 ′→. Intuitively, if the CAS
succeeds it is because ℓ𝑡→ is still the last node in the linked

list and in that case ℓ𝑡→ is equal to ℓ𝑙 ′→.
This is where we apply our novel rel-cas-l, which is quite

subtle. This rule asks us to supply a witness which we must

later show that ℓ𝑡 points-to. To find such a witness observe

that ℓ𝑡 can reach ℓ𝑙 ′ . If they are equal then ℓ𝑡→ is equal to ℓ𝑙 ′→
and ℓ𝑡→ points to ℓ𝑛𝑖𝑙 . If they are not equal then ℓ𝑡→ must point

to some other node. In both cases ℓ𝑡→ points to something, but

in the first case the reasoning relies on the resource ℓ𝑙 ′→ ↩→i
ℓ𝑛𝑖𝑙 . Hence by giving up this resource we can conclude that

there exists some ℓ𝑚 such that

∃ℓ𝑚→ . ℓ𝑡→ ↩→□i ℓ𝑚 ∗ ℓ𝑚 ↩→□i some (−, ℓ𝑚→) ∗ ℓ𝑙→ ↩→i ℓ𝑛𝑖𝑙

∨ ℓ𝑡→ ↩→i ℓ𝑚 ∗ ℓ𝑡 = ℓ𝑙 ′ ∗ ℓ𝑚 = ℓ𝑛𝑖𝑙 .
(6)

We offer this ℓ𝑚 as a witness. We now have two cases corre-

sponding to whether the CAS fails or succeeds and to the

disjunction in rel-cas-l.

CAS succeeds. If theCAS succeeds then this is a lineariza-
tion point. We must show the full points-to predicate (not

just a persistent points-to) for ℓ𝑡→, but we only have the

full points-to predicate in one of the disjuncts in Eq. (6).

But, from the rule we can assume that ℓ𝑚 is equal to ℓ𝑛𝑖𝑙 ,

which points to none. This leads to a contradiction in the

first disjunct in Eq. (6) which states that ℓ𝑚 points to a some.
We can therefore assume the last disjunct. This does not

only give us the full points-to predicate we need, it also

tells us that ℓ𝑡 is equal to the current last node ℓ𝑙 ′ which

is important to ensure that our change affects the queue

correctly. Notice the subtlety involving equality, used to con-

clude that we had the full points-to predicate. Since we have

now changed ℓ𝑙 ′→ we can use isQueue
MS
(ℓ𝑙 ′→, ℓ𝑠→, xsi) to show

isQueue
MS
(ℓ𝑙 ′→, ℓ𝑠→, xsi++ [𝑥]). We have changed the last node

from ℓ𝑡 into ℓ𝑛 . So we need to change 𝛾𝑙 Z⇒ ℓ𝑡 into 𝛾𝑙 Z⇒ ℓ𝑛 .

Clearly ℓ𝑡 ; ℓ𝑛 , so we can use abs-reach-advance to achieve

this.

Since this is the linearization point we use enqeue
CG

-r

to step the specification forward. We then have everything

needed to close the invariant.

We continue to E17 where we apply Lemma 5.1 to show

that the attempt at advancing the tail pointer is safe. The

final expression is then () which matches the right-hand side

at this point.

CAS fails. In this casewe, can assume that ℓ𝑙 ′ ≠ ℓ𝑙 . Follow-

ing the rule rel-cas-l we have to provide either a persistent
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or fractional points-to predicate for ℓ𝑡→. And from Eq. (6) we

know that we have one of these. We therefore consider each

case in the disjunction and pick the corresponding case to

show. This shows that the CAS is safe, and since nothing

changed, it is trivial to close the invariant again. Execution

steps to E11 where we apply the induction hypothesis.

Second case, ℓ𝑡 ≠ ℓ𝑙 : . In this case, the tail pointer was

lagging behind when we read it and there exists a node ℓ𝑚
for which we have

ℓ𝑡→ ↩→□i ℓ𝑚 ∗ ℓ𝑚 ↩→□i some (𝑣 ′, ℓ𝑚→) ∗ ℓ𝑚 ; ℓ𝑙 .

Hence the load evaluates to ℓ𝑚 . We close the invariant.

Line E7 is handled as before. The load is safe, and if the two

locations are not equal we apply the induction hypothesis

at line E43. If the locations are equal we proceed to line E8

where ℓ𝑚 is loaded. Since ℓ𝑚 points to a some we step to

E13. At E13 we apply Lemma 5.1 and then the induction

hypothesis.

7 Consistent Snapshots Can Be Omitted
Recall the consistent snapshots in dequeue (line D5) and

enqueue (line E7). The consistent snapshots are meant to

solve the ABA problem by ensuring that the values read are

still up-to-date. However, with the insights gained from our

formal proof, it becomes evident that these snapshots are

actually not needed for correctness: from the way we have

constructed the invariant we do not need to use the informa-

tion gained from these checks. This is because the instance

of the ABA problem that the consistent snapshot solves does

in fact not occur in a garbage collected setting. And since the

semantics of the language of our implementation,HeapLang,
models a garbage collected language, we can formally prove

that the atomic snapshots are not needed.

In the Coq formalization of our proofs, we have shown

that the MS-queue without the consistent snapshots still

contextually refines the coarse-grained queue. We have also

shown that the coarse-grained queue refines the MS-queue

both with and without the consistent snapshots. This implies

that the coarse-grained queue is contextually equivalent to

both queues, and, per transitivity of contextual refinement,

that the MS-queue with consistent snapshots is contextually

equivalent to one without.

We speculate that omitting the consistent snapshots may

result in better performance as dequeue may still succeed

even if the consistent snapshot fails. Hence this can lead to

earlier success. As one can see in our Coq formalization, for

the refinement proof of the MS-queue without the consistent

snapshots it is not necessary to use prophecy variables in

the proof.

8 Lagging-Tail MS-queue
Our Coq formalization also contains a HeapLang implemen-

tation and a refinement proof for what we name the lagging-

tail MS-queue. It resembles how the queue included in the

Java standard library works and is a slightly more realistic

version of the queue covered in [18]. This variant is quite

different from the original MS-queue in that it allows the

tail pointer to lag behind arbitrarily, a change affecting both

how dequeue and enqueue works: Dequeue can no longer

rely on the sentinel being able to reach the tail and enqueue

must read the tail pointer and, to account for the lagging tail,

then iterate through the linked list until it finds the last node.

While this is in many ways a simpler algorithm to prove

correct, we find it remarkable that our notion of reachability

also suffices to prove contextual refinement for this, very

different, variant with only a very small change to the invari-

ant. As the tail pointer may lag behind arbitrarily, it may, in

particular, be further behind than even the sentinel pointer.

Hence to prove contextual refinement for this variant we

can no longer include ℓ𝑠 d 𝛾𝑡 in the invariant. However, by

simply changing this part to ℓ𝑠 d 𝛾𝑙 , we can prove refine-

ment of the variant. No other changes are required to the

invariant!

9 Defining the Persistent Points-To
Predicate

This section describes how we implement the persistent

points-to predicate. In Iris, Hoare triples, the weakest pre-

condition, and the points-to predicate are not primitives in

the logic. Instead, they are defined inside the logic, using what

is called the Iris base logic. Hence we can implement the per-

sistent points-to predicate entirely inside Iris, by changing

the definitions that constitute the weakest precondition. An

advantage of this approach is that soundness of the rules

for the persistent points-to predicate follows directly from

soundness of the Iris base logic.

The biggest challenge in adding the persistent points-to

predicate is to ensure that it satisfies Mapsto-intro-2. The
existing points-to predicate is defined as ownership of some

ghost state. Hence to make this rule true we need to use

a resource algebra (RA) that supports a frame-preserving

update from the ghost state owned by the normal points-to

predicate to the ghost state owned by the persistent points-

to predicate. We solve this by introducing the discardable

fractions RA.

For space reasons, in the rest of this sectionwe assume that

the reader is familiar with ghost state and resource algebras

in Iris. For the details, we refer to [9].

Encoding of the heap. To extend Iris as described we

need to change two existing definitions: heapCtx and ↩→𝑞 .

The former is a predicate on heaps

heapCtx : (Loc fin−⇀ Val) → iProp.
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which is part of the state interpretation used in the definition

of the weakest precondition. For every step of execution,

starting in a heap 𝜎 and ending in heap 𝜎 ′, heapCtx(𝜎) holds
before and |⇛heapCtx(𝜎 ′) holds after the step.

In the current version of Iris, heapCtx is defined using the

RA

Auth(Loc fin−⇀ (Q01 × Ag(Val))), (7)

and the following definitions
2
:

heapCtx(𝜎) = •𝜎 𝛾heap
ℓ ↩→𝑞 𝑣 = ◦ [ℓ ← (𝑞, ag(𝑣))]

𝛾heap

We note that ℓ ↩→𝑞 𝑣 is not persistent since Q01 has no core.

Updates to the heap are possible since 1 ∈ Q01 is exclusive

(it has no frame).

Recall that we want Mapsto-intro-2 to hold without de-

pending on heapCtx. This is because heapCtx is internal to

the definition of weakest precondition and not exposed to

clients of it. We therefore need to use an RA that makes it

possible to make a frame-preserving update from the ghost

state owned by ↩→𝑞 to the ghost state owned by ↩→2. The

core should be undefined for the former while defined for the

latter. We define such an RA in the next section. But, even

with such an RA we have the problem that ↩→ denotes own-

ership of a fragment, and with the authoritative RA it is not

clear how to make a suitable frame-preserving update from a

fragment. We therefore also need to introduce a generalized

authoritative RA.

Discardable fractions RA. We introduce the RA of dis-

cardable fractions, which is a generalization of the normal

fractional RA. Whereas elements of the fractional RA denote

ownership over some strictly positive fraction, elements of

the discardable fractional RA can additionally denote knowl-

edge about a fraction having been discarded.

Let Q>0 denote the set of strictly positive rationals. The

carrier for the RA is:

DFrac ≜ own(𝑞) | disc(𝑝) | both(𝑞, 𝑝) 𝑞, 𝑝 ∈ Q>0

One should think of this as pairs where one, but not both, of

the valuesmight be absent. The element own(𝑞) is equivalent
to an element of the normal fractional RA and the element

disc(𝑝) denotes the knowledge that the fraction 𝑝 has been

discarded.

The valid elements are those where the sum of the two

numbers are less than or equal to 1:

V(own(𝑝)) ≜ 𝑝 ≤ 1 V(disc(𝑞)) ≜ 𝑞 ≤ 1

V(both(𝑞, 𝑝)) ≜ 𝑞 + 𝑝 ≤ 1

The operation adds together the owned fractions and takes

the maximum of the fractions known to be discarded. We do

not specify all cases in the operation, the remaining cases

2
This is simplified—but covers what is relevant for our purpose.

are determined by the requirement that the operation is

commutative and associative.

disc(𝑝) · disc(𝑝 ′) ≜ disc(max(𝑝, 𝑝 ′))
own(𝑞) · own(𝑞′) ≜ own(𝑞 + 𝑞′)
own(𝑞) · disc(𝑝) ≜ both(𝑞, 𝑝)

The core of an element is the discarded part of the element

if any. This ensures that knowledge about discarded fractions

is persistent.

|disc(𝑝) | = disc(𝑝) |own(𝑞) | = ⊥ |both(𝑞, 𝑝) | = disc(𝑝)

We now have the following frame-preserving update.

Lemma 9.1. Discarding is possible: own(𝑞) ⇝ disc(𝑞).

Proof. Suppose own(𝑞) · both(𝑞′, 𝑝 ′) is valid. Then 𝑞 + 𝑞′ +
𝑝 ′ ≤ 1, which implies that 𝑞′ + max(𝑞 + 𝑝 ′) ≤ 1 showing

that disc(𝑞) · both(𝑞′, 𝑝 ′) is valid. The remaining cases are

similar. □

Heap RA. We would now like to replace the use of the

fractional RA in Eq. (7), the RA currently used for the heap,

with the discardable fractional RA. However, this alone is not

enough because, as mentioned, the authoritative RA does

make it possible to make the frame-preserving update from

a fragment that we need.

We therefore need a slightly generalized variant of the

authoritative RA that allows us to update the discardable

fraction in fragments. For RA’s 𝐴 and 𝐵 and a function 𝜋 :

𝐵 → 𝐴 we define

PAuth(𝐴, 𝐵, 𝜋) = Ex(𝐴)? × 𝐵
V((⊥, 𝑏)) = V(𝑏)
V((𝑎, 𝑏)) = V(𝑎) ∧ V(𝑏) ∧ 𝜋 (𝑏) ≼ 𝑎

(𝑎, 𝑏) · (𝑎′, 𝑏 ′) = (𝑎 · 𝑎′, 𝑏 · 𝑏 ′)

| (𝑎, 𝑏) | =
{
(⊥, |𝑏 |) if |𝑏 | ≠ ⊥
⊥ otherwise

The full and fragmental view is defined as usual.

•𝑎 ≜ (𝑎, 𝜀) ◦𝑏 ≜ (⊥, 𝑏)

For this construction to satisfy the laws of a RA 𝜋 must be

expansive with respect to the inclusion order.

The difference between this construction and the normal

authoritative RA is that the authoritative and fragmental

view can contain two different RA’s and that in the definition

of validity 𝜋 (𝑏), and not 𝑏 itself, should be included in 𝑎.

To model the heap we then instantiate the above construc-

tion by using

PAuth(Loc fin−⇀ Ag(Val), Loc fin−⇀ (DFrac × Ag(Val), 𝜋2).
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The definitions for the heap are then

heapCtx(𝜎) ≜ •𝜎 𝛾heap

ℓ ↩→𝑞 𝑣 ≜ ◦ [ℓ ← (own(𝑞), 𝑣))]
𝛾heap

ℓ ↩→2 𝑣 ≜ ∃𝑝. ◦ [ℓ ← (disc(𝑝), 𝑣)]
𝛾heap

This ensures that the fraction in the fragment is independent

of the full authoritative view and hence that it can be updated

without the full authoritative view.

Lemma 9.2. If 𝑞, 𝑞′ ∈ DFrac and 𝑞 ⇝ 𝑞′ then ◦ [𝑘 ←
(𝑞, 𝑣)] ⇝ ◦ [𝑘 ← (𝑞′, 𝑣)].

Finally, from Lemma 9.1 and Lemma 9.2 we have the frame-

preserving update

◦ [ℓ ← (own(𝑞), 𝑣))] ⇝ ◦ [ℓ ← (disc(𝑝), 𝑣)]
and can thus show Mapsto-intro-2.

10 Related Work
We now discuss related work that has not already been

treated in the paper. The only related work that directly

shows contextual refinement is the already mentioned pen-

and-paper proof by Turon et. al. However, they only consider

a simplification of the less challenging lagging-tail MS-queue.

Their approach relies on assigning to each node a state in

a state transition system. However, they have no notion of

reachability, which appears to be necessary for reasoning

about the original MS-queue. And since reachability is a rela-

tionship between two nodes and not a state of one particular

node, it is not clear how to extend their approach to the

MS-queue. Our approach on the other hand applies to both

the MS-queue and the lagging-tail MS-queue.

We now cover related work that shows linearizability of

the MS-queue. Doherty et al. proved that a slightly modified

MS-queue is linearizable by using a simulation proof for-

malized in the PVS proof system [5]. Their simulation proof

makes use of both a forward simulation and a backwards

simulation; this is comparable to our use of prophecy vari-

ables. They make several changes to the queue which they

argue improve performance. Their changes preserve the fu-

ture dependent linearization point, but they also remove the

check on line D6, which we found challenging in our proof.

Schellhorn et al. later showed that backwards simulation

suffices to show linearizeability of the MS-queue [17].

Vafeiadis proposed an automatic verification procedure for

proving linearizability for first-order programs [19]. His ap-

proach handles certain non-fixed linearization points, namely

those that are pure, meaning that the linearization points do

not change the state of the queue. The non-fixed linearization

point in dequeue in the MS-queue is pure, as dequeueing an

element from an empty queue does not change the state of

the queue. Vafeiadis’s approach depends on this to obtain a

verification procedure for proving linearizability which can

handle theMS-queue. His approach is also based on prophecy

variables. As mentioned in the Introduction, this notion of

linearizability does not imply contextual refinement for our

rich higher-order language. We further remark that ReLoC

also supports future dependent linearization points even

when these are not pure.

Liang and Feng propose a program logic to verify lineariz-

ability [13]. They use their approach to verify an impressive

number of concurrent data structures, with the MS-queue be-

ing one of them. To handle the non-fixed linearization points

they use speculation. This approach is related to prophecy

variables and does not rely on annotations in the imple-

mentation. The program logic and their verification of the

MS-queue are not mechanized.

There exists several other approaches to verifying lineariz-

ability which can handle non-fixed linearization points, and

which should therefore also be able to verify the MS-queue.

For these, we refer to the excellent survey [6].

Related to the persistent points-to predicate, Charguéraud

and Pottier showed how to extend separation logic with

a general read-only modality [4]. This modality makes it

possible to temporarily give read-only access to a points-to

predicate, without having to keep track of fractions as one

needs to do with the fractional points-to predicate. However,

even though they remark that it should be possible to con-

struct a predicate for immutable data, they explicitly do not

do that. Their approach is for temporarily making locations

read-only while ours is for permanently making locations

read-only.
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