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Abstract

The Michael-Scott queue (MS-queue) is a concurrent non-
blocking queue. In an earlier pen-and-paper proof it was
shown that a simplified variant of the MS-queue contextually
refines a coarse-grained queue. Here we use the Iris and
ReLoC logics to show, for the first time, that the original MS-
queue contextually refines a coarse-grained queue. We make
crucial use of the recently introduced prophecy variables
of Iris and ReLoC. Our proof uses a fairly simple invariant
that relies on encoding which nodes in the MS-queue can
reach other nodes. To further simplify the proof, we extend
separation logic with a generally applicable persistent points-
to predicate for representing immutable pointers. This relies
on a generalization of the well-known algebra of fractional
permissions into one of discardable fractional permissions.
We define the persistent points-to predicate entirely inside
the base logic of Iris (thus getting soundness łfor freež).
We use the same approach to prove refinement for a

variant of the MS-queue resembling the one used in the
java.util.concurrent library.

We have mechanized our proofs in Coq using the formal-
izations of ReLoC and Iris in Coq.
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logic; Concurrent algorithms.
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1 Introduction

The Michael-Scott queue (MS-queue) is a fast and practi-
cal fine-grained concurrent queue [14]. We prove that the
MS-queue is a contextual refinement of a coarse-grained con-
current queue. The coarse-grained queue, shown in Figure 1,
is implemented as a reference to a functional list and uses a
lock to sequentialize concurrent accesses to the queue. We
thus prove that in any program we may replace uses of the
coarse-grained, but obviously correct, concurrent queue with
the faster, but more intricate, MS-queue, without changing
the observable behaviour of the program. We recall that,
formally, an expression 𝑒 contextually refines another ex-
pression 𝑒 ′, denoted Δ; Γ ⊢ 𝑒 ≾ctx 𝑒

′ : 𝜏 , if for all contexts
𝐾 , of ground type, whenever 𝐾 [𝑒] terminates with a value
there exists an execution of 𝐾 [𝑒 ′] that terminates with the
same value. One should think of 𝑒 as the implementation

(in our case the MS-queue), 𝑒 ′ as the specification (in our
case the coarse-grained queue), and 𝐾 as a client of a queue
implementation.
Note that the contextual refinement implies that the in-

ternal states of the two queues are encapsulated and hidden
from clients who could otherwise tell the difference between
the two implementations. Contextual refinement is also re-
lated to linearizability, a popular correctness criterion con-
sidered for concurrent data structures. Linearizability has
mostly been considered for first-order programming lan-
guages (without higher-order functions and abstract types).
For a particular first-order language and under strong as-
sumptions, Filipovic et al. [7] showed that linearizability
and contextual refinement coincide. Recently, Murawski and
Tzevelekos [15] proposed a notion of linearizability for a pro-
gramming language with higher-order functions, and they
also proved that their notion of linearizability is sound, that
is, that it implies contextual refinement. To the best of our
knowledge, no sound notion of linearizability has been devel-
oped for the very rich programming language we consider
(with higher types, abstract types, general references, and
fork-based concurrency), so instead of using linearizability,
we follow the approach of Turon et. al., and show contextual
refinement directly [18].
Turon et. al. showed how the proof technique of logical

relations can be used to prove contextual refinement of fine-
grained concurrent data structures [18]. They also gave pen-
and-paper proofs of contextual refinement for a simplified
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dequeueCG lock list () ≜

sync (lock) {

match ! list with

nil⇒ none

𝑥 :: xs⇒ list← xs; some 𝑥 }

enqueueCG lock list 𝑥 ≜ sync (lock) { list← (! list ++ [𝑥]) }

queueCG ≜ Λ.

let lock = newlock ()

list = ref nil in

(𝜆_. dequeueCG lock list (), 𝜆𝑥 . enqueueCG lock list 𝑥)

Figure 1. The coarse-grained queue.

variant of the MS-queue. Here we present a mechanized
proof of contextual refinement for the original MS-queue.
This is more challenging, since proving refinement for it
requires, among other things, the use of prophecy variables.
The implementation of the MS-queue for which we prove
refinement is faithful to the original, in the sense that we do
not simplify or change it.
To carry out the proof we use ReLoC [8], a logic for rea-

soning about contextual refinement defined on top of Iris,
a state-of-the-art higher-order concurrent separation logic
framework [9]. Our mechanization uses the Coq implemen-
tations of ReLoC and Iris and the proof mode for Iris [11, 12].

A key insight in our proof is to use a notion of reachability
as a unifying concept that concisely captures both the roles
of the nodes in the MS-queue, the protocol for how the queue
may be modified, and the invariants that the queue maintain.
This is arguably simpler than the approach used in [18].

Like many data structures, the MS-queue contains loca-
tions that are never mutated after a certain point. To fur-
ther simplify our proof we thus extend separation logic, in
particular Iris, with better support for reasoning about loca-
tions that never change, by representing them as immutable

pointers in the logic. To explain what this means at a high
level, recall the points-to predicate ℓ ↩→ 𝑣 , which has been
present in separation logic since its inception for reasoning
about shared mutable state [16]. The points-to predicate de-
notes ownership over location ℓ and the knowledge that ℓ
points to the value 𝑣 . It has been generalized to the fractional
points-to predicate ℓ ↩→𝑞 𝑣 where one can own a fraction,
𝑞 ∈ (0, 1] ∩ Q, of a points-to predicate [2, 3]. Changing
a pointer is only possible when 𝑞 = 1, whereas reading a
location is possible with any fraction. This makes it possi-
ble to split access to a location and later reassemble it for
further mutation. One can existentially quantify over the frac-
tion (∃𝑞.ℓ ↩→𝑞 𝑣) which makes it impossible to reassemble
the entire fraction. This predicate, however, is only duplica-

ble whereas we seek a predicate that is persistentÐa strictly
stronger notion [1]. Hence neither of these existing points-to
predicates gives a satisfying way to reason about locations
that arrive at a final value, after which they never change. To

support reasoning about such locations, we generalize the
points-to predicate further and introduce a persistent points-
to predicate, ℓ ↩→2 𝑣 . In contrast to the beforementioned
points-to predicates, our new persistent points-to predicate
does not represent ownership over a resource; it only de-
notes the knowledge that ℓ always points to 𝑣 . Since this
predicate is persistent in the Iris-technical sense, it satisfies
additional properties in comparison to the standard (frac-
tional) points-to predicate and reasoning about immutable
locations therefore becomes simpler when this predicate is
used. We show that one can obtain a persistent points-to
predicate by generalizing the notion of fractional permis-
sions to one that allows discarding a fraction. One can then
discard a fraction of the fractional points-to predicate and
obtain a persistent points-to predicate; intuitively this makes
sense since changing a location requires the entire fraction
of the points-to predicate.
In summary, we make the following contributions:

• We show how the invariants maintained by the MS-
queue can be expressed in a simple and unifying way
by a notion of reachability.
• We show that a faithful implementation of the original
MS-queue contextually refines a coarse-grained queue.
• We extend separation logic (Iris and ReLoC in particu-
lar) with a persistent points-to predicate and demon-
strate how it simplifies reasoning about the MS-queue.
• We show how the persistent points-to predicate and
its associated proof rules can be defined and proven
entirely inside the Iris base logic.
• To define the persistent points-to predicate we con-
struct two novel resource algebras. The resource al-
gebra of discardable fractions, which generalizes the
well-known notion of fractions in separation logic, and
the authoritative resource algebra with projections.
• Based on our formal proof, we discover that the use
of consistent snapshots in the MS-queue is not neces-
sary for the correctness of the algorithm in a garbage
collected language.
• Finally, we use the same approach based on reacha-
bility to prove refinement for a variant of theMS-queue
resembling the one used in the java.util.concurrent
library.

All our results are formalized in Coq and we have extended
the Coq implementation of Iris and ReLoC to support the
persistent points-to predicate [20].

Outline. Weexplain the fine-grainedMS-queue algorithm
and its implementation in Section 2 and then proceed to
describe the structure of a refinement proof in ReLoC in
Section 3, where we also present the coarse-grained queue
that serves as a specification. The persistent points-to pred-
icate and its proof rules are introduced in Section 4. Here
we also further motivate why we seek a points-to predicate
that is persistent and not merely duplicable. In Section 5 we
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· · ·

ℓ→𝑠

𝑥1 𝑥𝑛ℓ𝑠

ℓ→𝑡

ℓ𝑠→ ℓ𝑛 ℓ𝑛→ ℓ𝑙 ℓ𝑙→− 𝑥𝑛-1ℓ𝑡 ℓ𝑡→ ℓnil

Figure 2. The MS-queue consists of a singly linked list. Here the tail pointer is lagging as it points to the second to last node.

detail the key ideas of the refinement proof and the invariant
used. In Section 6 we present the actual refinement proof. In
Section 7 we observe that the so-called consistent snapshots
used in the MS-queue can be omitted without compromising
the correctness of the algorithm, and in Section 8 we quickly
comment on how we have used the same proof technique
to prove refinement for a variant of the MS-queue. Finally,
in Section 9 we detail how the persistent points-to predicate
and its properties are actually defined and proved in the
Iris base logic, by introducing two novel resource algebras.
While we do recall the notion of a resource algebra, some
familiarity with the Iris notion of resource algebras is proba-
bly needed to understand the details of (only) this section.
We end by discussing related work in Section 10.

2 The MS-Queue

As depicted in Figure 2, the MS-queue consists of a singly
linked list that contains the values (𝑥1, . . . , 𝑥𝑛 in the figure)
in the queue. The first node (ℓ𝑠 ) is called the sentinel and its
content is not a value in the queue. The queue maintains
two pointers, the sentinel pointer (ℓ→𝑠 ), which points to the
sentinel, and the tail pointer (ℓ→𝑡 ), which points to the tail
(ℓ𝑡 ). The tail is either equal to the last node (ℓ𝑙 ) or the second
to last node. In the latter case, we say that the tail pointer is
lagging behind. Note that ℓ𝑡 = ℓ𝑙 when the tail pointer is not
lagging behind.

We adopt the following naming convention: If ℓ𝑛 is a loca-
tion representing a node, then a location pointing into that
node is denoted ℓ→𝑛 and the location pointing out from that
node to the next node is denoted ℓ𝑛→. If ℓ𝑛 is a node and ℓ𝑚
its successor, then the pointer between the nodes can be
denoted both ℓ𝑛→ or ℓ→𝑚 depending on the circumstances.

The implementation of the MS-queue is shown in Figure 7.
It is written in HeapLang, a language included in the mecha-
nization of Iris and which ReLoC extends with a type system
to facilitate refinement proofs. The syntax of the language is
presented in Figure 3, it is a 𝜆-calculus with impredicative
polymorphism, iso-recursive types, higher-order store, and
thread-based concurrency. The language and its type system
are standard; further details can be found in [8].
We have kept our implementation as faithful as possi-

ble to the original implementation. In order to emphasize
this, we have annotated the code with line numbers in di-
rect correspondence with the line numbers in Michael and

𝜏 ::= 𝛼 | 1 | bool | int | 𝜏 × 𝜏 | 𝜏 + 𝜏 | 𝜏 → 𝜏

| ∀𝛼.𝜏 | ∃𝛼.𝜏 | 𝜇𝛼.𝜏 | ref 𝜏

𝑣 ::= 𝑖 ∈ Z | ℓ ∈ 𝐿𝑜𝑐 | true | false | (𝑣, 𝑣) | inj1 𝑣 | inj2 𝑣

| rec 𝑓 (𝑥) = 𝑒 | Λ.𝑒 | pack 𝑣 | fold 𝑣

𝑒 ::= 𝑥 | 𝑣 | if 𝑒 then 𝑒 else 𝑒 | (𝑒, 𝑒) | 𝜋1 𝑒 | 𝜋2 𝑒 | inj1 𝑒 | inj2 𝑒

| match 𝑒 with inj1 𝑥 ⇒ 𝑒 | inj2 𝑥 ⇒ 𝑒 | 𝑒 𝑒 | 𝑒 ⟨⟩

| pack 𝑒 | unpack 𝑒 in 𝑥 .𝑒 | fold 𝑒 | unfold 𝑒

| ref (𝑒) | !𝑒 | 𝑒 ← 𝑒 | CAS(𝑒, 𝑒, 𝑒) | fork {𝑒} | . . .

Syntactic sugar

Option 𝜏 ≜ 1 + 𝜏 none ≜ inj1 1 some 𝑣 ≜ inj2 𝑣

𝜆𝑥 . 𝑒 ≜ rec _ 𝑥 = 𝑒 let 𝑥 = 𝑒1 in 𝑒2 ≜ (𝜆𝑥. 𝑒2) 𝑒2

Figure 3. Syntax of the types and terms of HeapLang.

Scott’s original code [14]. All differences are minor and stem
from inherent differences between HeapLang and the C-like
language used in the original.

Initialization. The queueMS function is the constructor
for the queue and the entry point to the implementation. It
uses a type abstraction, Λ, such that the queue is generic in
the type of elements that it stores. This lambda also serves
to ensure that the internal state of the queue is encapsulated
in a closure. The initialization allocates an initial node, a
sentinel pointer, and a tail pointer. The latter two points to
the initial node. A newly constructed queue is illustrated in
Figure 4.
A node is a pointer to either none or some of a pair of

a value and a pointer to the next node. The pointer serves
to make nodes comparable by pointer equality such that
pointers to nodes can be changed with CAS.

Since there is no value to put in the initial sentinel, which
queueMS must construct, none is used. All other nodes con-
tain an actual value 𝑣 and hence contains some 𝑣 . Thus we
often need to get the value of an Option which is known to
be a some. This is the purpose of the getValue function.

Dequeue. Dequeue reads the sentinel pointer and then
the pointer to the sentinel’s successor. If no successor exists
the queue is empty and none is returned. If a succeeding node
is found, dequeue attempts to change the sentinel pointer
to the succeeding node with CAS. If the CAS is successful,
the value in the new sentinel is returned. If the CAS is un-
successful the operation is restarted. Figure 5 shows how
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ℓ→𝑠

ℓ𝑠

ℓ→𝑡

ℓ𝑠→−

Figure 4. A newly constructed queue.

· · ·

ℓ→𝑠

𝑥𝑛ℓ𝑠

ℓ→𝑡

ℓ𝑠→ ℓ𝑛 ℓ𝑛→−

CAS

Figure 5. dequeue on the MS-queue.

· · ·

ℓ→𝑠

𝑥𝑛

ℓ→𝑡

ℓ𝑡 ℓ𝑡→

𝑥𝑛′ℓ𝑡 ′ ℓ𝑡 ′→

1. CAS

2. CAS

Figure 6. enqueue on the MS-queue.

successfully dequeuing an element from a non-empty queue
swings the sentinel pointer forward.
The implementation contains prophecy annotations on

line D4b and D5. These do not affect the execution of the
program and can be ignored for now.

Enqueue. Enqueue constructs a new node with the value
that is to be enqueued. It then reads the tail pointer and
obtains a node that may be the last. To determine if it is,
enqueue checks whether or not the node has a successor.
If a successor exists the tail pointer is lagging behind, and
enqueue attempts to move the tail pointer forward with
a CAS after which it restarts. If no successor exists then
the node is currently the last. By means of a CAS enqueue
then attempts to change the outgoing pointer of the node
such that it points to the new node. If the CAS is successful,
the tail pointer now lags behind, and enqueue attempts to
advance the tail pointer to the new node. If, on the other
hand, theCAS is unsuccessful, the operation restarts, and the
tail pointer is read anew. Figure 6 illustrates how a successful
enqueue inserts a new node and then swings the tail pointer
forward.

Highlights. We highlight a few aspects of the MS-queue
that are of particular interest in terms of the verification.
On D6 the sentinel and tail are compared to each other.

This is a rather indirect way of checking whether or not the

queue is empty. If they are equal the queue is either empty
or the tail pointer lags behind. Otherwise, the else branch
on line D13 assumes that the queue is guaranteed to be non-
empty. In our proof, we must formalize why this assumption
is correct.
On line D5, a so-called consistent snapshot is performed:

the value of toSent read on line D2 is compared to a newly
read value of toSent. This ensures that toSent has not changed
in the meantime and is intended to ensure that the values of
tail and next are consistent. Similarly, enqueue performs a
consistent snapshot on line E7.
Line D7 checks whether the next node is none or not.

If it is not, then the tail pointer is lagging behind because
an unfinished enqueue operation has not yet updated it.
Dequeue then attempts to update the tail pointer on D10.
Likewise, on E13 enqueue also detects a lagging tail and
attempts to update it. These are instances of helping, a pattern
where the execution of one operation helps another.

As we will see, a contextual refinement proof for a fine-
grained concurrent data-structure involves finding its lin-
earization points. It is fairly clear that enqueue’s linearization
point is the CAS on E9 and that dequeue has a lineariza-
tion point on line D13. What is less obvious is that when
dequeue finds the queue empty and returns none on D8, its
linearization point is at the load on D4c. However, line D4c
is only a linearization point if next points to none and if the
consistent snapshot on the next line succeeds. Because of
this, it was conjectured by Morten Krogh-Jespersen1 that
one would need some kind of prophecy variables to reason
about this; and indeed, in our proof, to know whether or
not the check on the next line succeeds we use the recently
introduced prophecy variables of Iris and ReLoC.

3 Structure of a Refinement Proof

In this section, we describe how to carry out a refinement
proof of a fine-grained concurrent data-structure such as the
MS-queue using ReLoC. We first consider the ingredients
that such a proof consists of.

Persistently modality. Iris has a persistently modality
2 and 2 𝑃 means that 𝑃 always holds. A proposition 𝑃 is per
definition persistent if 𝑃 ⊢ 2 𝑃 , i.e., if one from 𝑃 alone can
show that 𝑃 always holds. Therefore persistent propositions
represent knowledge. Propositions that are not persistent are
called ephemeralÐthey represent ownership over resources.
To show a goal of the form 2 𝑃 one can only use persistent
assumptions (persistent-2 in Figure 8). The intuition be-
ing that to show that something always holds one can only
depend on other facts that always hold.

Specification. In a proof of refinement, the specification
should be a simple implementation of the same interface that

1When he attempted to verify the MS-queue in 2014 using the iCap logic, a

precursor to Iris. Private communication.
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getValue 𝑥 ≜ match 𝑥 with none⇒ () () | some 𝑣 ⇒ 𝑣

1: queueMS ≜ Λ.

2: let node = ref (some(none, (ref (ref none))))

3: tail = ref node

4: sent = ref node

5: in (dequeueMS sent tail, enqueueMS tail)

D1: dequeueMS toSent toTail ≜ rec loop () =

D2: let sent = !toSent

D3: tail = !toTail

D4a: toNext = 𝜋2 (getValue !sent)

D4b: 𝑝 = NewProph

D4c: next = !toNext in

D5: if sent = Resolve(!toSent, 𝑝, ()) then

D6: if sent = tail then

D7: match !next with

D8: none⇒ none

D10: some _⇒ CAS toTail tail next; loop ()

D11: else

D13: if CAS toSent sent next

D14: then some (getValue(𝜋1 (getValue !next)))

D15: else loop ()

D16: else loop ()

enqueueMS toTail 𝑥 ≜

E1-E3: let node = ref (some (some 𝑥, ref (ref none))) in

E4: (rec loop() =

E5: let tail = !toTail

E6a: toNext = 𝜋2 (getValue !tail)

E6b: next = !toNext in

E7: if tail = !toTail then

E8: match !next with

E9: none⇒ if CAS toNext next node

E17: then CAS toTail tail node; ()

E11: else loop ()

E13: some _⇒ CAS toTail tail next; loop ()

E14: else loop ()) ()

Figure 7. Implementation of the MS-queue in HeapLang.

the implementation is intended to implement. As mentioned
in the Introduction, our specification is a coarse-grained con-
current queue, implemented using a pointer to a functional
list and where the operations are guarded by a lock, which
is included in ReLoC. The official definition of the coarse-
grained queue is given in Figure 9; the version shown in the
Introduction used a modicum of syntactic sugar.

Refinement judgment. To prove a contextual refinement
ReLoC offers a refinement judgment |= 𝑒1 ≾ 𝑒2 : 𝜏 which
denotes that 𝑒1 refines 𝑒2 at the type 𝜏 . The ReLoC soundness
theorem states that if such a judgment holds inside the logic,
then the corresponding contextual refinement holds in the
surrounding meta-logic. ReLoC provides high-level rules for
working with these refinement judgments that result in sim-
pler proofs than other approaches (e.g., directly using logical
relations). The structural rules apply when each side of the

refinement is of the same syntactic formÐit then suffices to
show refinement of the sub-expressions that constitute the
constructions. One such rule is rel-pair, which states that to
show that two pairs are related it suffices to show that they
are pair-wise related. Note that to show that two functions
are related, using rel-rec, one must do so persistently, that is,
without relying on any ephemeral resources. This is because
a context could call a function an arbitrary number of times,
and thus the functions must always be related at any point
in the future.

When the two sides of the refinement are not of the same
syntactic form, one must use symbolic execution rules to step
either side forward. Note that the i and s in the points-to
predicates denote if they are for the implementation or the
specification.

Invariants. As mentioned, to show that two functions
are related one can only use persistent propositions. Non-
persistent propositions can be made persistent by establish-
ing an invariant using the rule inv-alloc. The proposition

𝑃
𝜄
denotes knowledge of an invariant with the name 𝜄 and

is persistent even if 𝑃 is not. During a refinement proof, one
can open an invariant around a single atomic expression 𝑒 on
the left-hand side. The contents of the invariant can be used
to symbolically execute 𝑒 , but, afterward it is an obligation
to close the invariant by showing that it still holds. Crucially
this restriction does not apply to the right-hand side, here it
is allowed to take several steps of symbolic execution with
an invariant open. The way the above restrictions are en-
forced is rather technical, so we omit the details, but note
that the modality |⇛ is used to denote when invariants can
be opened.

Linearization points. During a refinement proof, one
must maintain a link between the state of the implementa-
tion and the specification such that upon termination one
can show that the two values are related. For a fine-grained
concurrent data-structure, such as the MS-queue, operations
łtake effectž at specific points, namely the linearization points.
At these points, the specification should be symbolically ex-
ecuted from start to end; this is possible even while an in-
variant is open per the above. To this end we use the rules
for the coarse-grained queue shown in Figure 10; these are
easy to prove using the lock specification that ReLoC in-
cludes, and our definition of the representation predicate ICG
for the coarse-grained queue, also shown in the figure. The
representation predicate states that the physical state of the
coarse-grained queue (the pointer to a list and the lock) cor-
responds to a logic-level sequence.

Prophecy variables. For the MS-queue in particular we
also need prophecy variables. These are a recent addition to
Iris and ReLoC [8, 10]. Recall how the load at D4c may be a
linearization point depending on the result of the load on the
next line, D5. Hence, when we symbolically execute the load
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2-sep-and
2(𝑃 ∧𝑄)

2(𝑃 ∗𝑄)

2-exists
∃𝑥 .2 𝑃

2∃𝑥 . 𝑃

persistent-2

𝑃 persistent 𝑃 ⊢ 𝑄

𝑃 ⊢ 2𝑄

inv-alloc
𝑃

|⇛E E 𝑃
𝜄

löb
𝑄 ∧ ⊲ 𝑃 ⊢ 𝑃

𝑄 ⊢ 𝑃

Structural rules
rel-return

J𝜏KΔ (𝑣1, 𝑣2)

Δ |= 𝑣1 ≾ 𝑣2 : 𝜏

rel-tlam
∀𝑅 : Val × Val→ Prop. 2

(
[𝛼 := 𝑅] ,Δ |= 𝑒1 ≾ 𝑒2 : 𝜏

)
Δ |= Λ.𝑒1 ≾ Λ.𝑒2 : ∀𝛼.𝜏

rel-pair
Δ |= 𝑒1 ≾ 𝑒2 : 𝜏 Δ |= 𝑒 ′

1
≾ 𝑒 ′

2
: 𝜎

Δ |= (𝑒1, 𝑒
′
1
) ≾ (𝑒2, 𝑒

′
2
) : 𝜏 × 𝜎

rel-rec
2

(
∀𝑣1, 𝑣2 . J𝜏KΔ (𝑣1, 𝑣2) −∗ Δ |= (rec 𝑓1 (𝑥1) = 𝑒1) 𝑣1 ≾ (rec 𝑓2 (𝑥2) = 𝑒2) 𝑣2 : 𝜎

)
Δ |= (rec 𝑓1 (𝑥1) = 𝑒1) ≾ (rec 𝑓2 (𝑥2) = 𝑒2) : 𝜏 → 𝜎

Symbolic execution rules

rel-pure-r

𝑒2
pure

⇝ 𝑒 ′
2

Δ |=E 𝑒1 ≾ 𝐾 [ 𝑒
′
2
] : 𝜏

Δ |=E 𝑒1 ≾ 𝐾 [ 𝑒2 ] : 𝜏

rel-load-r
ℓ ↩→s 𝑣 ℓ ↩→s 𝑣 −∗ Δ |=E 𝑒1 ≾ 𝐾 [ 𝑣 ] : 𝜏

Δ |=E 𝑒1 ≾ 𝐾 [ ! ℓ ] : 𝜏

rel-store-r
ℓ ↩→s − ℓ ↩→s 𝑣 −∗ Δ |=E 𝑒1 ≾ 𝐾 [ () ] : 𝜏

Δ |=E 𝑒1 ≾ 𝐾 [ ℓ ← 𝑣 ] : 𝜏

Rules for prophecy variables

rel-newproph-l
∀𝑣, 𝑝. Proph1 (𝑝, 𝑣) −∗ Δ |= 𝐾 [ 𝑝 ] ≾ 𝑒2 : 𝜏

Δ |= 𝐾 [ NewProph ] ≾ 𝑒2 : 𝜏

rel-resolveproph-l
Proph1 (𝑝, 𝑣) wp 𝑒 {𝑢. 𝑣 = (𝑢,𝑤) −∗ Δ |=E 𝐾 [ 𝑣 ] ≾ 𝑒2 : 𝜏}

Δ |= 𝐾 [ Resolve(𝑒, 𝑝,𝑤) ] ≾ 𝑒2 : 𝜏

Figure 8. Selected rules from ReLoC (some are simplified for the sake of presentation).

dequeue′CG list ≜

match ! list with

none⇒ none

some 𝑝 ⇒ list← (𝜋2 𝑝); some (𝜋1 𝑝)

dequeueCG lock list () ≜

acquire lock; let 𝑣 = dequeue′CG list in release lock; 𝑣

enqueue′CG ≜ rec loop 𝑥 list =

match list with

none⇒ some (𝑥, none)

some 𝑝 ⇒ some (𝜋1 𝑝, loop 𝑥 (𝜋2 𝑝))

enqueueCG lock list 𝑥 ≜

acquire lock; list← enqueue′CG 𝑥 ! list; release lock

queueCG ≜ Λ.

let lock = newlock ()

list = ref none in

(𝜆_. dequeueCG lock list (), 𝜆𝑥 . enqueueCG lock list 𝑥)

Figure 9. Implementation of the coarse-grained queue.

at D4c we need to know the result of a future expression.
This is what prophecy variables make possible. They rely on
code annotations, which do not affect the execution of the
program but aids in reasoning. A prophecy is created with
NewProph and per rel-newproph-l it results in a resource
Proph1 (𝑝, 𝑣) where 𝑝 is the name of the prophecy and 𝑣 is a
value. Intuitively, 𝑣 is equal to the value which the prophecy
is eventually resolved to. A prophecy is resolved with an
atomic prophecy resolution: Resolve(𝑒, 𝑝,𝑤). This expression
behaves computationally exactly as the atomic expression 𝑒 .
Its rule rel-resolveproph-l requires Proph1 (𝑝, 𝑣), and hence

ICG (ℓcg, lk , xs) ≜ ℓcg ↩→s isList(xs) ∗ isLocked(lk , False)

isList( []) ≜ none

isList(𝑥 :: xs) ≜ some (𝑥, isList(xs))

deqeueCG-nil-r

ICG (ℓcg, lk , []) ICG (ℓcg, lk , []) −∗ Δ |=E 𝑒1 ≾ 𝐾 [ none ] : 𝜏

Δ |=E 𝑒1 ≾ 𝐾 [ dequeueCG lk ℓcg () ] : 𝜏

deqeueCG-cons-r

ICG (ℓcg, lk , 𝑥 :: xs)

ICG (ℓcg, lk , xs) −∗ Δ |=E 𝑒1 ≾ 𝐾 [ some 𝑥 ] : 𝜏

Δ |=E 𝑒1 ≾ 𝐾 [ dequeueCG lk ℓcg () ] : 𝜏

enqeueCG-r

ICG (ℓcg, lk , xs) ICG (ℓcg, lk , xs ++ [𝑥]) −∗ Δ |=E 𝑒1 ≾ 𝐾 [ () ] : 𝜏

Δ |=E 𝑒1 ≾ 𝐾 [ enqueueCG lk ℓcg 𝑥 ] : 𝜏

Figure 10. Right-hand side relational specification for the
coarse-grained queue.

one can think of this resource as giving one the right to
resolve the prophecy. It then states that 𝑣 is equal to (𝑢,𝑤)
where 𝑢 is that value that 𝑒 evaluates to. In our case we
create a prophecy at D4b, hence at this point we get a value
𝑣 that can be thought of as the result of the future expression
!toSent.
Given these ingredients, the overall structure of a refine-

ment proof is: (a) Decide on a specification and prove rightś
hand side lemmas for each operation (Figure 10 in our case).
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Mapsto-intro-2

ℓ ↩→
𝑞
i
𝑣

|⇛ℓ ↩→2

i 𝑣

Mapsto-agree-2

ℓ ↩→2

i 𝑣 ℓ ↩→2

i 𝑣 ′

𝑣 = 𝑣 ′

persistent
ℓ ↩→2

i 𝑣

2 ℓ ↩→2

i 𝑣

Ht-load-2

{ℓ ↩→2

i 𝑢} !ℓ{𝑣 .𝑣 = 𝑢}

rel-load-r-2
ℓ ↩→□i 𝑣 Δ |= 𝐾 [ 𝑣 ] ≾ 𝑒2 : 𝜏

Δ |= 𝐾 [ ! ℓ ] ≾ 𝑒2 : 𝜏

rel-cas-l

|⇛⊤ E ∃𝑣 .

©«

(
𝑣 ≠ 𝑣1 −∗

(ℓ ↩→□i 𝑣 ∗ Δ |=E 𝐾 [ false ] ≾ 𝑒2 : 𝜏) ∨

∃𝑞. (ℓ ↩→
𝑞
i
𝑣 ∗

(ℓ ↩→
𝑞
i
𝑣 −∗ Δ |=E 𝐾 [ false ] ≾ 𝑒2 : 𝜏))

)
∧(

𝑣 = 𝑣1 −∗

(ℓ ↩→i 𝑣 ∗ (ℓ ↩→i 𝑣2 −∗ Δ |=E 𝐾 [ true ] ≾ 𝑒2 : 𝜏))
)

ª®®®®®®®¬
Δ |= 𝐾 [CAS(ℓ, 𝑣1, 𝑣2) ] ≾ 𝑒2 : 𝜏

Figure 11. Rules for the persistent points-to predicate.

(b) Define an invariant that relates the state of the speci-
fication to that of the implementation (Section 5) (c) Use
symbolic execution rules to step through the initialization
of each side. (d) Establish the invariant and use structural
rules to get the goals to show that each operation is related.
(e) Show that each operation is related by using the invariant;
at each linearization point apply the corresponding lemma
for the specification.

4 Persistent Points-To Predicate

Consider the depiction of the MS-queue in Figure 2 on page 3.
All the pointers, except ℓ→𝑠 , ℓ→𝑡 , and ℓ𝑙→, are never changed,
and, once ℓ𝑙→ is changed it is never changed again. As we
will see, expressing precisely which parts of the MS-queue
change, and which do not, is central to our approach. Since
data-structures with locations that are or become immutable
are common, it makes sense to develop a generally appli-
cable tool for reasoning about immutable pointers. To this
end, we introduce the persistent points-to predicate, denoted
ℓ ↩→□i 𝑣 as mentioned in the Introduction. In contrast to the
normal points-to predicate, which allows for mutation but
no sharing, the persistent points-to predicate allows for free
sharing but no mutation.

The reader may wonder whether there is an already exist-
ing alternative to a new persistent points-to predicate. Per-
haps ∃𝑞. ℓ ↩→

𝑞

i
𝑣? This predicate, however, is only duplicable

whereas we want a points-to predicate that is persistent. This
is because persistence is a strictly stronger notion and persis-
tent propositions enjoy additional properties. The persistent
modality commutes with all the logical connectives (e.g., 2-

exists) and under it conjunction and separating conjunction
coincides (2-sep-and). Hence persistent propositions form a
sublogic with non-substructural properties. This is not the
case for duplicable propositions: for instance, ℓ ↩→ 𝑣 is not

duplicable but ∃𝑞.ℓ ↩→𝑞 𝑣 is. Persistent propositions are uti-
lized to great effect in the Coq mechanization of Iris, see
[12].
Maybe one could remedy this issue by wrapping the ex-

istentially quantified fractional points-to predicate in an

invariant, that is, use ∃𝑞.ℓ ↩→𝑞 𝑣
𝜄
? This would result in

a persistent predicate, but, we want a persistent points-to
predicate that can be used as a normal points-to predicate,
including being put inside invariants, and with this defini-
tion, we would be led to nested invariants. And while Iris
does support nested invariants, reasoning about such would
involve the later modality and, as a result, it would make the
use of the persistent points-to predicates more restrictive.

Other approaches to modeling immutable locations exist,
e.g., one may use a combination of invariants and additional
ghost state, as done in [12], but this approach is more com-
plex and our points-to predicate would have simplified the
proofs in [12].
A selection of the rules for the persistent points-to pred-

icate is shown in Figure 11. Since the persistent points-to
predicate represents locations that never change, it is persis-
tent (persistent). Given any fraction of a normal points-to
predicate, one can obtain a persistent points-to predicate
(Mapsto-intro-2)Ðone can think of the fractional points-to
predicate as being discarded in exchange for a persistent
points-to predicate. The modality |⇛ is there because dis-
carding the fraction requires updating ghost state. Persistent
points-to predicates for the same location must point to the
same value (Mapsto-agree-2). Finally, the predicate can be
used for read-only operations, such as loading a pointer (Ht-
load-2).

In Section 9 we show how to define the persistent points-
to predicate and derive its rules entirely within the Iris base

logic. This automatically guarantees soundness of the rules.
We have additionally extended the Coq formalization of Iris
and ReLoC to support the persistent points-to predicate as
seamlessly as they support the normal points-to predicate.
Among other things, this means that the tactics in the proof
mode automatically use the persistent points-to predicate
when possible.

The last rule in Figure 11, rel-cas-l, is an improved version
of a corresponding rule in ReLoC [8]. It now allows using the
persistent points-to predicate to show that a failed CAS is
safe. This makes sense since it is sufficient to have read-only
access to a location as long as one is not actually successful
in mutating it. The other change to the rule is in the ordering
of connectives. This change is subtle but makes the rule more
complete. The original rule for CAS in ReLoC is structured
as

∃𝑣 . ℓ ↩→i 𝑣 ∗ ((𝑣 ≠ 𝑣1 −∗ . . . ) ∨ (𝑣 = 𝑣1 −∗ . . . ))

whereas our rule allows one to first offer a witness 𝑣 , then
assume either 𝑣 = 𝑣1 or 𝑣 ≠ 𝑣1, and then use this (in)equality
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abs-reach-alloc

ℓ𝑛 ; ℓ𝑛

∃𝛾𝑛 . 𝛾𝑛 Z⇒ ℓ𝑛 ∗ ℓ𝑛 d 𝛾𝑛

abs-reach-concr

ℓ𝑛 d 𝛾𝑚 𝛾𝑚 Z⇒ ℓ𝑚

ℓ𝑛 ; ℓ𝑚 ∗ 𝛾𝑚 Z⇒ ℓ𝑚

abs-reach-abs

ℓ𝑛 ; ℓ𝑚 𝛾𝑚 Z⇒ ℓ𝑚

|⇛ (ℓ𝑛 d 𝛾𝑚 ∗ 𝛾𝑚 Z⇒ ℓ𝑚)

abs-reach-advance

𝛾𝑚 Z⇒ ℓ𝑚 ℓ𝑚 ; ℓ𝑜

|⇛ (𝛾𝑚 Z⇒ ℓ𝑜 ∗ ℓ𝑜 d 𝛾𝑚)

Figure 12. Rules for abstract reachability.

to show the points-to predicate. This turns out to be essential
in the proof of refinement of enqueue.

5 Invariant for the Refinement Proof

We now present the invariant used in the refinement proof.

5.1 Reachability

A key insight of our approach is how the invariants that
the MS-queue maintains can be expressed in terms of which
nodes are reachable from other nodes. Reachability is ex-
pressed with an inductive predicate:

ℓ𝑛 ; ℓ𝑚 ≜ ∃ℓ𝑛→, 𝑣 . ℓ𝑛 ↩→□i some(𝑣, ℓ𝑛→) ∗

(ℓ𝑛 = ℓ𝑚 ∨ ∃ℓ𝑝 . ℓ𝑛→ ↩→□i ℓ𝑝 ∗ ℓ𝑝 ; ℓ𝑚)

It is persistent as the definition uses the persistent points-to
predicate to express that the sequence of nodes is immutable.
Reachability is a preorder on nodes in the sense that for

all ℓ𝑛 and ℓ𝑚 :

ℓ𝑛 ↩→□i some (𝑣, ℓ𝑛→) ∗−−∗ ℓ𝑛 ; ℓ𝑛 (reachable-reflexive)

ℓ𝑛 ; ℓ𝑚 −∗ ℓ𝑚 ; ℓ𝑜 −∗ ℓ𝑛 ; ℓ𝑜 (reachable-transitive)

Note, that ℓ𝑛 ; ℓ𝑛 is not trivial, it implies that ℓ𝑛 is actually
a node, in the sense that it points to some of a pair. More
generally, ℓ𝑛 ; ℓ𝑚 implies that both ℓ𝑛 and ℓ𝑚 are nodes.

5.2 Abstract Reachability

A crucial property of the MS-queue is that the sentinel and
tail pointers are only moved forward to succeeding nodes.
Additionally, the linked list is never mutated except when
new nodes are added at the very end. This implies that if a
node can reach the current sentinel, tail, or last node then it
can reach any future sentinel, tail, or last node.
To model this we use three ghost variables, 𝛾𝑠 , 𝛾𝑡 , and 𝛾𝑙 ,

as abstract nodes that give fixed names to the idea of the
łcurrentž sentinel, tail, and last node respectively. We then
introduce abstract reachability, ℓ𝑛 d 𝛾𝑚 , capturing that the
physical node ℓ𝑛 can reach the abstract node 𝛾𝑚 . To realize
this intention, our invariant will tie the three abstract nodes
to the locations that are currently the sentinel, tail, and last
nodes. This is done using a predicate 𝛾𝑛 Z⇒ ℓ𝑚 representing
that the abstract node 𝛾𝑛 is currently tied to the physical
node ℓ𝑚 .

These predicates satisfy the rules given in Figure 12. The
first two rules state that given 𝛾𝑚 Z⇒ ℓ𝑚 one can go from
ℓ𝑛 ; ℓ𝑚 to ℓ𝑛 d 𝛾𝑚 , and vice versa. The last rule makes it
possible to change which physical node an abstract node is
tied to as long as the new node is reachable from the current
node.
For the reader familiar with Iris resource algebras we re-

mark that the above can be realized using the resource alge-
bra Auth(P (Loc)) and the following definitions:

ℓ𝑛 d 𝛾𝑚 ≜ ◦ {ℓ𝑛}
𝛾𝑚

𝛾𝑛 Z⇒ ℓ𝑛 ≜ ∃𝑠 . • 𝑠
𝛾𝑛
∗∗
ℓ𝑚 ∈𝑠

ℓ𝑚 ; ℓ𝑛

Here P (𝐴) denotes the resource algebra of sets of 𝐴, with
union as the operation, and the core being the identity func-
tion.

5.3 The Invariant

The top-level invariant in Figure 13 is parameterized by a
value relation, 𝜏𝑖 , and the values that the implementation
and specification consist of. It states the existence of two
mathematical lists xsi and xss that, through IMS and ICG, are
related to the physical representation of each queue. The
big separating conjunction relates the lists pair-wise by 𝜏𝑖 .
This way of relating the implementation and specification is
arguably simpler than the approach used in [12, 18], which
would have intermingled the physical representations of the
two queues with the pair-wise relatedness of the elements
in the queues.
ICG is as previously seen and IMS states the existence of

ℓ𝑠 , ℓ𝑡 , and ℓ𝑙 and ties the abstract nodes to these. It contains
the points-to predicates for the three mutable locations in
the queue. It states that the sentinel can reach the abstract
tail: ℓ𝑠 d 𝛾𝑡 . This knowledge is key to proving the else

branch in dequeue starting on line D13, which we previously
discussed. In fact, the reason why the check on D6 ensures
that the queue is empty is exactly that the tail pointer can
not fall behind the sentinel pointer. Additionally, ℓ𝑡 d 𝛾𝑙
ensures that the tail can reach the abstract last node. Finally,
isQueueMS relates the linked list to the mathematical list xsi.
Note how the only non-persistent things in IMS are the

three points-to predicates and the resource tieing the abstract
nodes to the physical nodes. Clearly, these can not be persis-
tent. Hence, our invariant precisely captures and separates
the changing parts of the MS-queue from the unchanging
parts.

Before moving on to the refinement proof, we demonstrate
how the invariant and abstract reachability is used by prov-
ing a lemma which is to be used whenever the MS-queue
attempts to swing the tail pointer forward.

Lemma 5.1. Swing tail pointer forward.

𝐼 (. . . )
𝜄

ℓ𝑛 ; ℓ𝑚 ∀𝑣 . |= 𝐾 [ 𝑣 ] ≾ 𝑒 : 𝛼

|= 𝐾 [CAS ℓ→𝑡 ℓ𝑛 ℓ𝑚 ] ≾ 𝑒 : 𝛼
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Top-level invariant

𝐼 (𝜏𝑖 , ℓ→𝑠 , ℓ→𝑡 , ℓcg, lk ) ≜ ∃xs𝑖 , xs𝑠 . IMS (ℓ→𝑠 , ℓ→𝑡 , xs𝑖 ) ∗ ICG (ℓcg, lk , xs𝑠 ) ∗∗(𝑥𝑖 ,𝑥𝑠 ) ∈(xs𝑖 ,xs𝑠 ) 𝜏𝑖 (𝑥𝑖 , 𝑥𝑠 )
Invariant for the MS-queue

IMS (ℓ→𝑠 , ℓ→𝑡 , xs𝑖 ) ≜ ∃ℓ𝑠 , ℓ𝑠→, ℓ𝑡 , ℓ𝑡→, ℓ𝑙 , ℓ𝑙→ . ℓ→𝑠 ↩→i ℓ𝑠 ∗ ℓ→𝑡 ↩→i ℓ𝑡 ∗ isQueueMS (ℓ𝑙→, ℓ𝑠→, 𝑥𝑠𝑖 ) ∗

𝛾𝑠 Z⇒ ℓ𝑠 ∗ ℓ𝑠 ↩→
□
i some (−, ℓ𝑠→) ∗ ℓ𝑠 d 𝛾𝑡 ∗

𝛾𝑡 Z⇒ ℓ𝑡 ∗ ℓ𝑡 ↩→
□
i some (−, ℓ𝑡→) ∗ ℓ𝑡 d 𝛾𝑙 ∗

𝛾𝑙 Z⇒ ℓ𝑙 ∗ ℓ𝑙 ↩→
□
i some (−, ℓ𝑙→) ∗ ℓ𝑙→ ↩→i ℓ𝑛 ∗ ℓ𝑛 ↩→□i none

isQueueMS (ℓ𝑙→, ℓ→𝑛, []) ≜ ℓ𝑙→ = ℓ→𝑛

isQueueMS (ℓ𝑙→, ℓ→𝑛, 𝑥 :: xs) ≜ ∃ℓ𝑛, ℓ𝑛→ . ℓ→𝑛 ↩→□i ℓ𝑛 ∗ ℓ𝑛 ↩→□i some (some 𝑥, ℓ𝑛→) ∗ isQueueMS (ℓ𝑙→, ℓ𝑛→, xs)

Figure 13. The invariant and auxiliary definitions.

Proof. We apply rel-cas-l and open the invariant. Since the
invariant contains ℓ→𝑡 ↩→ ℓ𝑡 for some ℓ𝑡 we offer the witness
ℓ𝑡 . If the CAS fails we can simply close the invariant again.
If the CAS succeeds we know that ℓ𝑛 = ℓ𝑡 and we now get
ℓ→𝑡 ↩→ ℓ𝑚 . When we close the invariant we supply ℓ𝑚 as the
witness for ℓ𝑡 . To do that we have to show

𝛾𝑡 Z⇒ ℓ𝑚 ∗ ℓ𝑚 ↩→□i some (−, ℓ𝑚→) ∗ ℓ𝑚 d 𝛾𝑙

The middle conjunction follows from ℓ𝑛 ; ℓ𝑚 . We have
𝛾𝑡 Z⇒ ℓ𝑛 and ℓ𝑛 ; ℓ𝑚 which per the last rule in Figure 12
gets us the rest. □

6 Refinement Proof of the MS-Queue

We now prove that the MS-queue contextually refines the
coarse-grained queue:

|= queueMS ≾ queueCG : ∀𝛼.(1→ Option 𝛼) × (𝛼 → 1)

Since both queueMS and queueCG are type abstractions we
apply rel-tlam to show that in a context extended with 𝛼
interpreted using any value relation 𝑅. We symbolically exe-
cute the code on the left-hand side to the resources:

ℓ𝑛𝑖𝑙 ↩→i none ∗ ℓ𝑠→ ↩→i ℓ𝑛𝑖𝑙 ∗

ℓ𝑠 ↩→i some(none, ℓ𝑠→) ∗ ℓ→𝑠 ↩→i ℓ𝑠 ∗ ℓ→𝑡 ↩→i ℓ𝑠

From stepping through the right-hand side we get

ℓ𝑙𝑖𝑠𝑡 ↩→s none ∗ isLocked(lk , False).

Together with abs-reach-alloc this is enough to establish

the invariant. We thus now have 𝐼 (𝜏𝑖 , ℓ→𝑠 , ℓ→𝑡 , ℓcg, lk )
𝜄
in the

context.
Both sides step to a pair and we apply the structural rule

rel-pair. We are then required to show that the fine-grained
dequeue and enqueue are logical refinements of their coarse-
grained counterparts. We do this in the next two sections.

6.1 Dequeue

We are to show the logical refinement:

[𝛼 := 𝑅] |= dequeueMS ℓ→𝑠 ℓ→𝑡

≾ dequeueCG lk ℓCG : 1→ Option 𝛼.

Since both sides are functions we use rel-rec and have to
show that for any two values 𝑣1 and 𝑣2, where J1KΔ (𝑣1, 𝑣2),
it is the case that the left-hand side applied to 𝑣1 is related to
the right-hand side applied to 𝑣2. Since 𝑣1 and 𝑣2 are related
at the type 1 they must both be equal to the unit value ().
Hence we are to show

[𝛼 := 𝑅] |= dequeueMS ℓ→𝑠 ℓ→𝑡 ()

≾ dequeueCG lk ℓCG () : Option 𝛼.

As the left-hand side is a recursive function we apply the löb
rule. This gives us the induction hypothesis that the refine-
ment holds for any recursive calls. We then apply structural
rules to symbolically execute the left implementation until
we arrive at the first load:

sent = !ℓ→𝑠

The yellow background indicates the expression currently
being symbolically executed and which we open the invari-
ant around. We open the invariant and from the points-to
predicate for ℓ→𝑠 we know that the load steps to some ℓ𝑠 and
that we can assume the following persistent propositions for
some ℓ𝑠→ and 𝑣 :

ℓ𝑠 ↩→
□
i some (𝑣, ℓ𝑠→) ∗ ℓ𝑠 d 𝛾𝑠 ∗ ℓ𝑠 d 𝛾𝑡 ∗ ℓ𝑠 d 𝛾𝑙 (1)

On the next line, the tail is loaded.

tail = !ℓ→𝑡

By opening the invariant, we can conclude that the load
evaluates to some ℓ𝑡 . We know that ℓ𝑠 can reach the current
tail (ℓ𝑠 d 𝛾𝑡 in Eq. (1)) and that ℓ𝑡 is the current tail (𝛾𝑡 Z⇒ ℓ𝑡
from the invariant) hence per abs-reach-concr we get ℓ𝑠 ;
ℓ𝑡 .
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On the next line (D4a) ℓ𝑠 is read:

toNext = 𝜋2 (getValue !ℓ𝑠 )

We can evaluate this, without opening the invariant, using
the points-to predicate from Eq. (1). Thus, the load evaluates
to some (𝑣, ℓ𝑠→). With this information, we can symbolically
execute the getValue and the projection.
We then arrive at the creation of the prophecy variable

at line D4b. Using rel-newproph-l we get the prophecy as-
sertion Proph1 (𝑝, 𝑣). Since the prophecy variable is resolved
with !toSent on line D5, the value 𝑣 is, intuitively, equal to
the result of that load. Hence, whether or not 𝑣 is equal to ℓ𝑠 ,
determines the outcome of the check on line D5. If they are
equal, we will be able to show that the check succeeds, and
otherwise, the check will fail. We consider these two cases
separately. In the latter case, where 𝑣 ≠ ℓ𝑠 , dequeue restarts
and we only have to show that the execution up to the re-
cursive call on the last line is safe. This is straightforward so
we consider only the first case where 𝑣 = ℓ𝑠 .

We proceed to the next load:

next = !ℓ𝑠→

This load reads the pointer out of the sentinel. Intuitively, if
this leads to none then the queue must be empty and the
pointer read is the mutable pointer that enqueueMS may
modify. Hence, if this is the case, this is a linearization point
and we must then conclude that the queue is empty.
To do this, we open the invariant and introduce the ex-

istentially quantified locations with the names ℓ𝑠 , ℓ𝑡 and ℓ𝑙
as ℓ𝑠′, ℓ𝑡 ′ and ℓ𝑙 ′ respectively. Using ℓ𝑠 d 𝛾𝑠 from Eq. (1) and
abs-reach-concr we can determine that ℓ𝑠 can reach all these
nodes:

ℓ𝑠 ; ℓ𝑠′ ∗ ℓ𝑠 ; ℓ𝑡 ′ ∗ ℓ𝑠 ; ℓ𝑙 ′ (2)

Since ℓ𝑠 can reach ℓ𝑙 ′ they are either equal or ℓ𝑠 has a
successor node which can reach ℓ𝑙 ′ .

First case: We have ℓ𝑠 = ℓ𝑙 ′ . The sentinel read earlier is
equal to the current tail. Then all the nodes in Eq. (2) reach-
able from ℓ𝑠 are reachable from ℓ𝑙 ′ . But, ℓ𝑙 ′ has no successors
(ℓ𝑙 ′→ points to none) hence any node it can reach must be
itself:

ℓ𝑠 = ℓ𝑡 = ℓ𝑙 ′ = ℓ𝑠′ (3)

Per Mapsto-agree-2 this implies that ℓ𝑠→ = ℓ𝑙 ′→. We thus
find that the pointer being loaded is ℓ𝑙 ′→ and the points-to
predicates

ℓ𝑙 ′→ ↩→i ℓ𝑛𝑖𝑙 ∗ ℓ𝑛𝑖𝑙 ↩→
□
i none

are in the invariant. Hence the load results in ℓ𝑛𝑖𝑙 .
By combining the above with the following fact

isQueueMS (ℓ𝑠→, ℓ𝑠→, xs) −∗

ℓ𝑠→ ↩→i ℓ𝑛𝑖𝑙 −∗ ℓ𝑛𝑖𝑙 ↩→
□
i none −∗ xs = [] .

we conclude that xsi = [] and hence also (from the big sepa-
rating conjunction in 𝐼 ) that xss = []. Using xss = [] we can

now apply deqeueCG-nil-r. After this our goal is to show
the refinement:

[𝛼 := 𝑅] |= 𝐾 [ !ℓ𝑠→ ] ≾ none : Option 𝛼.

We must show that the left-hand side steps to none which
we can do as follows: On line D5 we know that the check
in the if-statement is true since we know that the prophecy
variable is resolved to ℓ𝑠 . Hence symbolic execution proceeds
to line D6 where ℓ𝑠 is compared to ℓ𝑡 . From Eq. (3) we know
that these are equal. On line D7 the location ℓ𝑛𝑖𝑙 is loaded; it
points-to none and thus the function returns none on line
D8.

Second case: There exists a node ℓ𝑛 for which we have

ℓ𝑠→ ↩→□i ℓ𝑛 ∗ ℓ𝑛 ↩→□i some (𝑣, ℓ𝑛→) ∗ ℓ𝑛 ; ℓ𝑙 ′ .

The load evaluates to ℓ𝑛 and we close the invariant.
On line D6 the location ℓ𝑠 is compared to ℓ𝑡 and we case

on whether or not these locations are equal:
Case ℓ𝑠 = ℓ𝑡 : The if-statement succeeds, we step to D7

which loads ℓ𝑛 and thus evaluates to a some. Therefore the
match takes the second branch to D10:

CAS ℓ→𝑡 ℓ𝑡 ℓ𝑛 ; loop ()

Here we apply Lemma 5.1, and for the last expression we
apply the induction hypothesis.
Case ℓ𝑠 ≠ ℓ𝑡 : We step to D13 where dequeue attempts to

swing the sentinel pointer forward:

if CAS ℓ→𝑠 ℓ𝑠 ℓ𝑛

We know that the CAS is safe since the invariant contains
the points-to predicate ℓ→𝑠 ↩→i ℓ𝑠′ for some ℓ𝑠′ .
If the CAS fails we have not changed anything and can

simply close the invariant, step to D15, and apply the induc-
tion hypothesis.

If the CAS succeeds then ℓ𝑠 = ℓ𝑠′ and this is a linearization
point. After the CAS we have ℓ→𝑠 ↩→i ℓ𝑛 . Since ℓ𝑠 is equal
to ℓ𝑠′ the pointer out of ℓ𝑠′ must be equal to ℓ𝑠→. As such we
have isQueueMS (ℓ𝑠→, ℓ𝑙→, xsi) from the invariant for some xsi.

If xsi was [] then ℓ𝑠 would be equal to the last node, which
points to none. But, this is in contradiction with the knowl-
edge that ℓ𝑠 is succeeded by ℓ𝑛 . Hence xsi cannot be []. Thus
there exists 𝑥𝑖 and xs

′
𝑖 such that xsi = 𝑥𝑖 :: xs

′
𝑖 ; and 𝑥𝑠 and xs

′
𝑠

such that xss = 𝑥𝑠 :: xs
′
𝑠 . For these:

𝜏𝑖 (𝑥𝑖 , 𝑥𝑠 ) ∗ ∗
(𝑥𝑖 ,𝑥𝑠 ) ∈(xs

′
𝑖
,xs′𝑠 )

𝜏𝑖 (𝑥𝑖 , 𝑥𝑠 )

Moreover, 𝑥𝑖 must be exactly the value in the node ℓ𝑛 (i.e.,
𝑣 = some 𝑥𝑖 ).

With the knowledge that the list is non-empty we can use
deqeueCG-cons-r after which we get ICG (ℓcg, lk , xs

′
i ) and

must show the refinement:

[𝛼 := 𝑅] |=E 𝐾 [ true ] ≾ some 𝑥𝑠 : 𝜏
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When we close the invariant we offer ℓ𝑛 as a witness for
the existentially quantified variable ℓ𝑠 . To do this we must
show 𝛾𝑠 Z⇒ ℓ𝑛 and ℓ𝑛 d 𝛾𝑡Ðthis is fairly easy.
After the CAS we arrive at D14. We know that the load

evaluates to some (some 𝑥𝑠 , ℓ𝑛→). Hence the entire expression
on line D14 steps to some 𝑥𝑠 and we are to show

[𝛼 := 𝑅] |=E some 𝑥𝑖 ≾ some 𝑥𝑠 : 𝜏

which we can do because we have 𝜏𝑖 (𝑥𝑖 , 𝑥𝑠 ).

6.2 Enqueue

To conclude the proof we show refinement of enqueue:

[𝛼 := 𝑅] |= enqueueMS ℓ→𝑡 ≾ enqueueCG lk ℓ𝑙𝑖𝑠𝑡 : 𝛼 → 1.

As both sides of the refinement are lambda-values we must
show that these are related when applied to any two values,
xi and xs, related by 𝜏𝑖 .
We first step over the construction of the new node on

line E1. This gives us the resources:

ℓ𝑛 ↩→i some (some xi, ℓ𝑛→) ∗ ℓ𝑛→ ↩→i ℓnil ∗ ℓ𝑛𝑖𝑙 ↩→i none

Line E4 is an application of a recursive function. We there-
fore apply the löb rule as we did in the proof of dequeue.

To step over the load of ℓ→𝑡 on line E5we open the invariant
which contains the points-to predicate ℓ→𝑡 ↩→i ℓ𝑡 for some ℓ𝑡 .
The load evaluates to ℓ𝑡 and when we close the invariant we
keep the following persistent knowledge:

ℓ𝑡 d 𝛾𝑙 ∗ ℓ𝑡 ↩→
□
i some (𝑣, ℓ𝑡→), (4)

for some 𝑣 and ℓ𝑡→. The persistent points-to predicate for ℓ𝑡
is used for the load on the next line, E6a. Since its contents
match the operations applied to it, we can symbolically exe-
cute the rest of the line, and toNext is assigned to the value
ℓ𝑡→.
The next line (E6b) loads ℓ𝑡→ and we open the invariant

again. The invariant contains 𝛾𝑙 Z⇒ ℓ𝑙 for some ℓ𝑙 . By using
abs-reach-concr we get ℓ𝑡 ; ℓ𝑙 . We case on whether or not
ℓ𝑡 is equal to ℓ𝑙 .

First case, ℓ𝑡 = ℓ𝑙 : . We rewrite with the equality in the
points-to predicate in Eq. (4) and get ℓ𝑙 ↩→

□
i some (𝑣, ℓ𝑡→,).

From the invariant we have ℓ𝑙 ↩→
□
i some (𝑣 ′, ℓ𝑙→) and thus,

by Mapsto-agree-2, we get ℓ𝑡→ = ℓ𝑙→. From the invariant we
further have

ℓ𝑙→ ↩→i ℓ𝑛𝑖𝑙 ∗ ℓ𝑛𝑖𝑙 ↩→
□
i none (5)

Hence we can conclude that the load evaluates to ℓ𝑛𝑖𝑙 . We
close the invariant.
Symbolic execution continues to line E7. On this line ℓ→𝑡

is loaded again. We have already seen how the invariant
ensures that such a load is safe. The newly read value is then
compared to the old value read at line E5. If these are not
equal symbolic execution proceeds to line E14 where we can
conclude the proof by applying the induction hypothesis.
If they are equal execution proceeds to line E8 where ℓ𝑛𝑖𝑙

is loaded. We use the points-to predicate from Eq. (5) and
conclude that the load evaluates to none.

Therefore thematch takes the first branch to the CAS on
line E9:

if CAS ℓ𝑡→ ℓ𝑛𝑖𝑙 ℓ𝑛

To show that the CAS is safe we must have a points-to
predicate for ℓ𝑡→. We can open the invariant and get a points-
to predicate ℓ𝑙 ′→ ↩→i ℓ𝑛𝑖𝑙 for some ℓ𝑙 ′→. Intuitively, if the CAS
succeeds it is because ℓ𝑡→ is still the last node in the linked
list and in that case ℓ𝑡→ is equal to ℓ𝑙 ′→.

This is where we apply our novel rel-cas-l, which is quite
subtle. This rule asks us to supply a witness which we must
later show that ℓ𝑡 points-to. To find such a witness observe
that ℓ𝑡 can reach ℓ𝑙 ′ . If they are equal then ℓ𝑡→ is equal to ℓ𝑙 ′→
and ℓ𝑡→ points to ℓ𝑛𝑖𝑙 . If they are not equal then ℓ𝑡→ must point
to some other node. In both cases ℓ𝑡→ points to something, but
in the first case the reasoning relies on the resource ℓ𝑙 ′→ ↩→i

ℓ𝑛𝑖𝑙 . Hence by giving up this resource we can conclude that
there exists some ℓ𝑚 such that

∃ℓ𝑚→ . ℓ𝑡→ ↩→□i ℓ𝑚 ∗ ℓ𝑚 ↩→□i some (−, ℓ𝑚→) ∗ ℓ𝑙→ ↩→i ℓ𝑛𝑖𝑙

∨ ℓ𝑡→ ↩→i ℓ𝑚 ∗ ℓ𝑡 = ℓ𝑙 ′ ∗ ℓ𝑚 = ℓ𝑛𝑖𝑙 .
(6)

We offer this ℓ𝑚 as a witness. We now have two cases corre-
sponding to whether the CAS fails or succeeds and to the
disjunction in rel-cas-l.

CAS succeeds. If theCAS succeeds then this is a lineariza-
tion point. We must show the full points-to predicate (not
just a persistent points-to) for ℓ𝑡→, but we only have the
full points-to predicate in one of the disjuncts in Eq. (6).
But, from the rule we can assume that ℓ𝑚 is equal to ℓ𝑛𝑖𝑙 ,
which points to none. This leads to a contradiction in the
first disjunct in Eq. (6) which states that ℓ𝑚 points to a some.
We can therefore assume the last disjunct. This does not
only give us the full points-to predicate we need, it also
tells us that ℓ𝑡 is equal to the current last node ℓ𝑙 ′ which
is important to ensure that our change affects the queue
correctly. Notice the subtlety involving equality, used to con-
clude that we had the full points-to predicate. Since we have
now changed ℓ𝑙 ′→ we can use isQueueMS (ℓ𝑙 ′→, ℓ𝑠→, xsi) to show
isQueueMS (ℓ𝑙 ′→, ℓ𝑠→, xsi++ [𝑥]). We have changed the last node
from ℓ𝑡 into ℓ𝑛 . So we need to change 𝛾𝑙 Z⇒ ℓ𝑡 into 𝛾𝑙 Z⇒ ℓ𝑛 .
Clearly ℓ𝑡 ; ℓ𝑛 , so we can use abs-reach-advance to achieve
this.
Since this is the linearization point we use enqeueCG-r

to step the specification forward. We then have everything
needed to close the invariant.
We continue to E17 where we apply Lemma 5.1 to show

that the attempt at advancing the tail pointer is safe. The
final expression is then () which matches the right-hand side
at this point.

CAS fails. In this casewe, can assume that ℓ𝑙 ′ ≠ ℓ𝑙 . Follow-
ing the rule rel-cas-l we have to provide either a persistent
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or fractional points-to predicate for ℓ𝑡→. And from Eq. (6) we
know that we have one of these. We therefore consider each
case in the disjunction and pick the corresponding case to
show. This shows that the CAS is safe, and since nothing
changed, it is trivial to close the invariant again. Execution
steps to E11 where we apply the induction hypothesis.

Second case, ℓ𝑡 ≠ ℓ𝑙 : . In this case, the tail pointer was
lagging behind when we read it and there exists a node ℓ𝑚
for which we have

ℓ𝑡→ ↩→□i ℓ𝑚 ∗ ℓ𝑚 ↩→□i some (𝑣 ′, ℓ𝑚→) ∗ ℓ𝑚 ; ℓ𝑙 .

Hence the load evaluates to ℓ𝑚 . We close the invariant.
Line E7 is handled as before. The load is safe, and if the two

locations are not equal we apply the induction hypothesis
at line E43. If the locations are equal we proceed to line E8
where ℓ𝑚 is loaded. Since ℓ𝑚 points to a some we step to
E13. At E13 we apply Lemma 5.1 and then the induction
hypothesis.

7 Consistent Snapshots Can Be Omitted

Recall the consistent snapshots in dequeue (line D5) and
enqueue (line E7). The consistent snapshots are meant to
solve the ABA problem by ensuring that the values read are
still up-to-date. However, with the insights gained from our
formal proof, it becomes evident that these snapshots are
actually not needed for correctness: from the way we have
constructed the invariant we do not need to use the informa-
tion gained from these checks. This is because the instance
of the ABA problem that the consistent snapshot solves does
in fact not occur in a garbage collected setting. And since the
semantics of the language of our implementation,HeapLang,
models a garbage collected language, we can formally prove
that the atomic snapshots are not needed.
In the Coq formalization of our proofs, we have shown

that the MS-queue without the consistent snapshots still
contextually refines the coarse-grained queue. We have also
shown that the coarse-grained queue refines the MS-queue
both with and without the consistent snapshots. This implies
that the coarse-grained queue is contextually equivalent to
both queues, and, per transitivity of contextual refinement,
that the MS-queue with consistent snapshots is contextually
equivalent to one without.

We speculate that omitting the consistent snapshots may
result in better performance as dequeue may still succeed
even if the consistent snapshot fails. Hence this can lead to
earlier success. As one can see in our Coq formalization, for
the refinement proof of the MS-queue without the consistent
snapshots it is not necessary to use prophecy variables in
the proof.

8 Lagging-Tail MS-Queue

Our Coq formalization also contains a HeapLang implemen-
tation and a refinement proof for what we name the lagging-
tail MS-queue. It resembles how the queue included in the
Java standard library works and is a slightly more realistic
version of the queue covered in [18]. This variant is quite
different from the original MS-queue in that it allows the
tail pointer to lag behind arbitrarily, a change affecting both
how dequeue and enqueue works: Dequeue can no longer
rely on the sentinel being able to reach the tail and enqueue
must read the tail pointer and, to account for the lagging tail,
then iterate through the linked list until it finds the last node.
While this is in many ways a simpler algorithm to prove
correct, we find it remarkable that our notion of reachability
also suffices to prove contextual refinement for this, very
different, variant with only a very small change to the invari-
ant. As the tail pointer may lag behind arbitrarily, it may, in
particular, be further behind than even the sentinel pointer.
Hence to prove contextual refinement for this variant we
can no longer include ℓ𝑠 d 𝛾𝑡 in the invariant. However, by
simply changing this part to ℓ𝑠 d 𝛾𝑙 , we can prove refine-
ment of the variant. No other changes are required to the
invariant!

9 Defining the Persistent Points-To
Predicate

This section describes how we implement the persistent
points-to predicate. In Iris, Hoare triples, the weakest pre-
condition, and the points-to predicate are not primitives in
the logic. Instead, they are defined inside the logic, using what
is called the Iris base logic. Hence we can implement the per-
sistent points-to predicate entirely inside Iris, by changing
the definitions that constitute the weakest precondition. An
advantage of this approach is that soundness of the rules
for the persistent points-to predicate follows directly from
soundness of the Iris base logic.
The biggest challenge in adding the persistent points-to

predicate is to ensure that it satisfies Mapsto-intro-2. The
existing points-to predicate is defined as ownership of some
ghost state. Hence to make this rule true we need to use
a resource algebra (RA) that supports a frame-preserving
update from the ghost state owned by the normal points-to
predicate to the ghost state owned by the persistent points-
to predicate. We solve this by introducing the discardable
fractions RA.

For space reasons, in the rest of this sectionwe assume that
the reader is familiar with ghost state and resource algebras
in Iris. For the details, we refer to [9].

Encoding of the heap. To extend Iris as described we
need to change two existing definitions: heapCtx and ↩→𝑞 .
The former is a predicate on heaps

heapCtx : (Loc
fin
−⇀ Val) → iProp.
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which is part of the state interpretation used in the definition
of the weakest precondition. For every step of execution,
starting in a heap 𝜎 and ending in heap 𝜎 ′, heapCtx(𝜎) holds
before and |⇛heapCtx(𝜎 ′) holds after the step.

In the current version of Iris, heapCtx is defined using the
RA

Auth(Loc
fin
−⇀ (Q01 × Ag(Val))), (7)

and the following definitions2:

heapCtx(𝜎) = •𝜎
𝛾heap

ℓ ↩→𝑞 𝑣 = ◦ [ℓ ← (𝑞, ag(𝑣))]
𝛾heap

We note that ℓ ↩→𝑞 𝑣 is not persistent since Q01 has no core.
Updates to the heap are possible since 1 ∈ Q01 is exclusive
(it has no frame).

Recall that we want Mapsto-intro-2 to hold without de-

pending on heapCtx. This is because heapCtx is internal to
the definition of weakest precondition and not exposed to
clients of it. We therefore need to use an RA that makes it
possible to make a frame-preserving update from the ghost
state owned by ↩→𝑞 to the ghost state owned by ↩→2. The
core should be undefined for the former while defined for the
latter. We define such an RA in the next section. But, even
with such an RA we have the problem that ↩→ denotes own-
ership of a fragment, and with the authoritative RA it is not
clear how to make a suitable frame-preserving update from a
fragment. We therefore also need to introduce a generalized
authoritative RA.

Discardable fractions RA. We introduce the RA of dis-
cardable fractions, which is a generalization of the normal
fractional RA. Whereas elements of the fractional RA denote
ownership over some strictly positive fraction, elements of
the discardable fractional RA can additionally denote knowl-
edge about a fraction having been discarded.
Let Q>0 denote the set of strictly positive rationals. The

carrier for the RA is:

DFrac ≜ own(𝑞) | disc(𝑝) | both(𝑞, 𝑝) 𝑞, 𝑝 ∈ Q>0

One should think of this as pairs where one, but not both, of
the valuesmight be absent. The element own(𝑞) is equivalent
to an element of the normal fractional RA and the element
disc(𝑝) denotes the knowledge that the fraction 𝑝 has been
discarded.
The valid elements are those where the sum of the two

numbers are less than or equal to 1:

V(own(𝑝)) ≜ 𝑝 ≤ 1 V(disc(𝑞)) ≜ 𝑞 ≤ 1

V(both(𝑞, 𝑝)) ≜ 𝑞 + 𝑝 ≤ 1

The operation adds together the owned fractions and takes
the maximum of the fractions known to be discarded. We do
not specify all cases in the operation, the remaining cases

2This is simplifiedÐbut covers what is relevant for our purpose.

are determined by the requirement that the operation is
commutative and associative.

disc(𝑝) · disc(𝑝 ′) ≜ disc(max(𝑝, 𝑝 ′))

own(𝑞) · own(𝑞′) ≜ own(𝑞 + 𝑞′)

own(𝑞) · disc(𝑝) ≜ both(𝑞, 𝑝)

The core of an element is the discarded part of the element
if any. This ensures that knowledge about discarded fractions
is persistent.

|disc(𝑝) | = disc(𝑝) |own(𝑞) | = ⊥ |both(𝑞, 𝑝) | = disc(𝑝)

We now have the following frame-preserving update.

Lemma 9.1. Discarding is possible: own(𝑞) ⇝ disc(𝑞).

Proof. Suppose own(𝑞) · both(𝑞′, 𝑝 ′) is valid. Then 𝑞 + 𝑞′ +
𝑝 ′ ≤ 1, which implies that 𝑞′ + max(𝑞 + 𝑝 ′) ≤ 1 showing
that disc(𝑞) · both(𝑞′, 𝑝 ′) is valid. The remaining cases are
similar. □

Heap RA. We would now like to replace the use of the
fractional RA in Eq. (7), the RA currently used for the heap,
with the discardable fractional RA. However, this alone is not
enough because, as mentioned, the authoritative RA does
make it possible to make the frame-preserving update from
a fragment that we need.
We therefore need a slightly generalized variant of the

authoritative RA that allows us to update the discardable
fraction in fragments. For RA’s 𝐴 and 𝐵 and a function 𝜋 :

𝐵 → 𝐴 we define

PAuth(𝐴, 𝐵, 𝜋) = Ex(𝐴)? × 𝐵

V((⊥, 𝑏)) = V(𝑏)

V((𝑎, 𝑏)) = V(𝑎) ∧ V(𝑏) ∧ 𝜋 (𝑏) ≼ 𝑎

(𝑎, 𝑏) · (𝑎′, 𝑏 ′) = (𝑎 · 𝑎′, 𝑏 · 𝑏 ′)

| (𝑎, 𝑏) | =

{
(⊥, |𝑏 |) if |𝑏 | ≠ ⊥

⊥ otherwise

The full and fragmental view is defined as usual.

•𝑎 ≜ (𝑎, 𝜀) ◦𝑏 ≜ (⊥, 𝑏)

For this construction to satisfy the laws of a RA 𝜋 must be
expansive with respect to the inclusion order.

The difference between this construction and the normal
authoritative RA is that the authoritative and fragmental
view can contain two different RA’s and that in the definition
of validity 𝜋 (𝑏), and not 𝑏 itself, should be included in 𝑎.

To model the heap we then instantiate the above construc-
tion by using

PAuth(Loc
fin
−⇀ Ag(Val), Loc

fin
−⇀ (DFrac × Ag(Val), 𝜋2).
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The definitions for the heap are then

heapCtx(𝜎) ≜ •𝜎
𝛾heap

ℓ ↩→𝑞 𝑣 ≜ ◦ [ℓ ← (own(𝑞), 𝑣))]
𝛾heap

ℓ ↩→2 𝑣 ≜ ∃𝑝. ◦ [ℓ ← (disc(𝑝), 𝑣)]
𝛾heap

This ensures that the fraction in the fragment is independent
of the full authoritative view and hence that it can be updated
without the full authoritative view.

Lemma 9.2. If 𝑞, 𝑞′ ∈ DFrac and 𝑞 ⇝ 𝑞′ then ◦ [𝑘 ←

(𝑞, 𝑣)] ⇝ ◦ [𝑘 ← (𝑞′, 𝑣)].

Finally, from Lemma 9.1 and Lemma 9.2 we have the frame-
preserving update

◦ [ℓ ← (own(𝑞), 𝑣))] ⇝ ◦ [ℓ ← (disc(𝑝), 𝑣)]

and can thus show Mapsto-intro-2.

10 Related Work

We now discuss related work that has not already been
treated in the paper. The only related work that directly
shows contextual refinement is the already mentioned pen-
and-paper proof by Turon et. al. However, they only consider
a simplification of the less challenging lagging-tail MS-queue.
Their approach relies on assigning to each node a state in
a state transition system. However, they have no notion of
reachability, which appears to be necessary for reasoning
about the original MS-queue. And since reachability is a rela-
tionship between two nodes and not a state of one particular
node, it is not clear how to extend their approach to the
MS-queue. Our approach on the other hand applies to both
the MS-queue and the lagging-tail MS-queue.
We now cover related work that shows linearizability of

the MS-queue. Doherty et al. proved that a slightly modified
MS-queue is linearizable by using a simulation proof for-
malized in the PVS proof system [5]. Their simulation proof
makes use of both a forward simulation and a backwards
simulation; this is comparable to our use of prophecy vari-
ables. They make several changes to the queue which they
argue improve performance. Their changes preserve the fu-
ture dependent linearization point, but they also remove the
check on line D6, which we found challenging in our proof.
Schellhorn et al. later showed that backwards simulation
suffices to show linearizeability of the MS-queue [17].

Vafeiadis proposed an automatic verification procedure for
proving linearizability for first-order programs [19]. His ap-
proach handles certain non-fixed linearization points, namely
those that are pure, meaning that the linearization points do
not change the state of the queue. The non-fixed linearization
point in dequeue in the MS-queue is pure, as dequeueing an
element from an empty queue does not change the state of
the queue. Vafeiadis’s approach depends on this to obtain a
verification procedure for proving linearizability which can
handle theMS-queue. His approach is also based on prophecy

variables. As mentioned in the Introduction, this notion of
linearizability does not imply contextual refinement for our
rich higher-order language. We further remark that ReLoC
also supports future dependent linearization points even
when these are not pure.

Liang and Feng propose a program logic to verify lineariz-
ability [13]. They use their approach to verify an impressive
number of concurrent data structures, with the MS-queue be-
ing one of them. To handle the non-fixed linearization points
they use speculation. This approach is related to prophecy
variables and does not rely on annotations in the imple-
mentation. The program logic and their verification of the
MS-queue are not mechanized.

There exists several other approaches to verifying lineariz-
ability which can handle non-fixed linearization points, and
which should therefore also be able to verify the MS-queue.
For these, we refer to the excellent survey [6].

Related to the persistent points-to predicate, Charguéraud
and Pottier showed how to extend separation logic with
a general read-only modality [4]. This modality makes it
possible to temporarily give read-only access to a points-to
predicate, without having to keep track of fractions as one
needs to do with the fractional points-to predicate. However,
even though they remark that it should be possible to con-
struct a predicate for immutable data, they explicitly do not
do that. Their approach is for temporarily making locations
read-only while ours is for permanently making locations
read-only.
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