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Capability machines are a special form of CPUs that offer fine-grained privilege separation using a form of
authority-carrying values known as capabilities. The CHERI capability machine offers local capabilities, which
could be used as a cheap but restricted form of capability revocation. Unfortunately, local capability revocation
is unrealistic in practice because large amounts of stack memory need to be cleared as a security precaution.

In this paper, we address this shortcoming by introducing uninitialized capabilities: a new form of capabilities
that represent read/write authority to a block of memory without exposing the memory’s initial contents. We
provide a mechanically verified program logic for reasoning about programs on a capability machine with the
new feature and we formalize and prove capability safety in the form of a universal contract for untrusted
code. We use uninitialized capabilities for making a previously-proposed secure calling convention efficient
and prove its security using the program logic. Finally, we report on a proof-of-concept implementation of
uninitialized capabilities on the CHERI capability machine.
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1 INTRODUCTION

Capability machines are a type of CPUs with support for fine-grained privilege separation, dating
back to the 1960s [Dennis and Van Horn 1966; Levy 1984; Watson et al. 2019]. In this paper, we
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will specifically focus on a recent family of capability machines called CHERI [Watson et al. 2019].
Capability machines provide native support for capabilities: values which represent a certain
authority to interact with memory, the operating system or other isolated components in the
system. Capabilities come in several forms. Memory capabilities represent the authority to access a
certain region of memory with a certain permission (e.g. RW or RX). On many capability machines,
including CHERI, memory capabilities are designed to directly replace pointers, thus adding native
bounds and permission checks with almost zero runtime overhead.

Additionally, capability machines usually offer a form of object capabilities [Miller 2006]: a form
of reified closures that represent the authority to invoke an isolated component without exposing
its internal state and its private capabilities. Invoking such an object capability passes control to
the other component and makes available its private capabilities and thus, its authority. As such,
they offer a cheap form of context switches. On CHERI, object capabilities take the form of pairs of
code and data capabilities, tied together by being sealed with a common seal [Watson et al. 2016,
2015]. Sealing is a primitive CHERI operation that renders capabilities opaque and unusable, except
that the pair can be invoked with a special instruction CCall.

Local capabilities are a new feature of CHERI [Watson et al. 2015]. Conceptually, they are intended
as a form of ephemeral capabilities that can be used directly but not stored for later use. More
technically, they are a form of capabilities that can be kept in registers but not stored in memory.
There is, however, an exception to the latter rule: local capabilities can be stored in memory through
memory capabilities with special “write-local” permission. This exception is specifically intended
for the stack capability, so that the stack can be used for spilling local capabilities from registers
and function arguments.

In principle, local capabilities make it possible to pass a capability to an untrusted component
temporarily, without allowing the component to store it for later use. In other words, if the
component is invoked again, the local capability is effectively revoked: the component cannot have
access to it anymore. As such, local capabilities can be seen as a restricted revocation primitive
with little performance overhead.

Unfortunately, this potential is not realized in practice. While CheriBSD (an adaptation of FreeBSD
which makes use of CHERI capabilities) does use local capabilities to represent stack pointers, they
work with private per-compartment stacks, and local capabilities are never passed to untrusted code
in other compartments [Watson et al. 2015]. Hence, the CheriBSD system does not actually rely on
local capabilities for enforcing security properties but only to mitigate the impact of potential bugs;
specifically, to prevent accidental leaks of stack pointers. The latest CHERI ISA reference document
mentions two additional dimensions of locality (kernel vs. user-space memory, garbage-collected vs
manually managed memory), but neither involves a form of revocation [Watson et al. 2019, §D.13].

The likely reason for this limited use of local capabilities as a revocation mechanism is that its
guarantees only hold under an important restriction. If we want to revoke a local capability before
a second invocation of untrusted adversarial code, we must make sure not to accidentally leak an
old copy of the capability. While local capability rules ensure that such old copies can never end
up in heap memory (because no write-local capabilities to heap memory exist), they may still be
present in any location where the adversary may have previously stored them: capability registers,
but also any region of memory which it had a write-local memory capability for. Practically, the
only way accidental leaking can be avoided is by clearing unused registers and sweeping over
this write-local memory to clear it entirely or at least erase local capabilities. For example, in a
secure calling convention built on local capabilities, Skorstengaard et al. [2018] have to clear the
entire unused part of the stack before any invocation of adversarial code. This requirement is very
costly in practice, and also hard to avoid, since the stack must be made write-local if we want to
allow invoked code to spill registers or store local capabilities away during sub-invocations. The
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performance impact might be mitigated with special hardware support [Joannou et al. 2017], but it
is unclear whether this is enough to make it realistic for practical use.

In this paper, we propose a way to redeem local capabilities as a restricted but efficient revocation
primitive using uninitialized capabilities. This is a new form of capabilities that represents read-write
access to a region of memory without access to its current contents. Regions of memory which the
adversary has previously had write-local access to, specifically the stack, can be made available to
the adversary through an uninitialized capability without the need to clear the memory beforehand.
Technically, an uninitialized capability’s range of authority is divided into two parts: the range
below the address currently pointed to, say [b, a), and the range above the current address, say [a, e).
The range below represents the initialized part of the capability, and the range above represents
its uninitialized part. The capability grants read-write access to [b, a), and write-only access to
[a, ). However, if the address a is written to, the boundary between the two parts is automatically
changed to include the now-overwritten memory location, i.e., a is automatically incremented
(pushing a value on the stack in the case of a stack capability). An uninitialized capability can be
restricted by lowering the current address and thus “uninitializing" a range of memory (popping
the stack), but its authority can only be increased by writing to it, thus overwriting its previous
content. Additionally, regular capabilities can be made uninitialized and an uninitialized capability
to [b, e) can be restricted to a regular read-write capability to its initialized part [b, a) which can be
passed to existing code.

Although uninitialized capabilities are more generally useful, this paper focuses on how they
redeem local capabilities as a revocation primitive. To this end, we formally establish the guarantees
provided by local and uninitialized capabilities with a capability safety result based on the one by
Skorstengaard et al. [2018]. Capability safety is expressed as a universal contract—or specification—
that holds for arbitrary assembly code. The universal contract is defined using a logical relation
which captures the authority represented by a capability, and guarantees that this authority is
respected and monotonically preserved by arbitrary assembly code. To simplify the definition of the
logical relation and avoid some tedious book-keeping related to step-indexing and shared logical
state, we make use of a program logic for our capability machine model which we define using
the Iris program logic framework [Jung et al. 2016, 2018, 2015; Krebbers et al. 2017a]. We have
mechanized all of the technical development using the Iris implementation in Coq [Krebbers et al.
2018, 2017b].

Our program logic and logical relation are the most important technical contributions of this work.
To allow reasoning about the pattern of local capability revocation, we use a novel combination
of Iris’ invariants and saved predicates with more traditional Kripke world-indexing. We use this
Kripke world-indexing with public/private transitions [Dreyer et al. 2010; Skorstengaard et al. 2018]
and a new idea of what we call frozen regions to support typical patterns of (temporary) local
capability revocation.

To demonstrate both how uninitialized capabilities redeem local capabilities as a revocation
primitive in practice and how our capability-safety result enables reasoning about programs using
these features, we study a modification of Skorstengaard et al. [2018]’s calling convention that
avoids the problematic clearing of large parts of the stack. The resulting calling convention is
another contribution in its own right. We demonstrate how our program logic can be used to prove
correctness of programs using the calling convention, specifically for the classic “awkward” example
which relies on well-bracketed control flow and stack frame encapsulation. The mechanization is
highly called for because of the low-level nature of capability machines, and the large amount of
bookkeeping that is necessary for reasoning about example programs (arithmetic manipulation of
addresses, restriction of all relevant capabilities, setup of activation records, etc.).
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Finally, more practically, we provide evidence that uninitialized capabilities can be realistically
added to the CHERI capability machine by implementing them in the CHERI-MIPS ISA and the
definition of its operational semantics in SAIL [Armstrong et al. 2019]. Additionally, we add support
for the new instructions to the Clang/LLVM assembler. The simulator that we thus obtain from
SAIL and the modified assembler have been used to experiment with the new calling convention in
manually modified assembly programs.

To summarize, our contributions are centered around the new uninitialized capabilities:

e We propose uninitialized capabilities: a new form of capabilities that represents read-write
access to memory without exposing the memory’s initial contents (Section 4).

e We explain how uninitialized capabilities redeem CHERI’s local capabilities as a restricted
but efficient revocation primitive (Section 4).

e We characterize the combined guarantees of the two features with a capability-safety result,
mechanized in Coq, as a universal contract that holds for arbitrary assembly programs. It
uses a logical relation and a novel combination of Iris features like guarded recursion and
shared invariants, with Kripke world-indexing and public/private transitions for reasoning
about local capability revocation (Sections 5 and 6).

e We define a modified version of the calling convention of Skorstengaard et al. [2018] which
removes its performance problems. We provide evidence that it enforces well-bracketed
control flow and local stack frame encapsulation by proving an implementation of the
awkward example correct (Section 6.8).

e We implement uninitialized capabilities in the SAIL semantics of CHERI-MIPS and the
Clang/LLVM assembler and use them to experiment with the modified calling convention
(Section 7).

Finally we add that, to the best of our knowledge, our Iris-Coq mechanization of capability
safety is the first mechanically verified account of key deep semantic properties (spanning several
components, including unknown adversarial code) that are enforceable using capabilities. The Iris-
Coq mechanization can be found at https://github.com/logsem/cerise-stack/releases/tag/POPL2021.

The idea and implementation of uninitialized capabilities has also been reported in the master
thesis of one of the authors [Huyghebaert 2020], overlapping partly with Sections 4 and 7.

2 A CAPABILITY MACHINE WITH LOCAL CAPABILITIES

This section defines the operational semantics of our capability machine. Our machine model is
defined along the same lines as the one from Skorstengaard et al. [2018], and hence transitively draws
from CHERI [Watson et al. 2015] and the M-Machine [Carter et al. 1994]. In Section 2.1 we describe
the operational semantics for a bare-bones capability machine (without local and uninitialized
capabilities) as a starting point. Then, we add support for local capabilities in Section 2.2. The
semantics for uninitialized capabilities will be treated later in Section 4, resulting in the full definition
of the capability machine semantics we assume in the rest of the paper.

Figures 1 to 4 summarize the operational behavior of our capability machine, and will be refer-
enced on multiple occasions. They are color-coded as follows: the bare-bones capability machine is
defined in black; additions related to local capabilities are typeset in red. Finally blue additions,
introduced on top of the red ones, account for uninitialized capabilities and will be discussed in
Section 4.

2.1 Bare-Bones Capability Machine

Figure 1 defines the syntax we use in our capability machine. The set of addresses Addr is finite,
to make our model more realistic, and described by the integer range [0, AddrMax]. The address
AddrMax is the top address and cannot be dereferenced.
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a € Addr 2 [0, AddrMax] reg € Reg £ RegName — Word
p € Perm 2= O|E|RO|RX | RW | RWX m € Mem £  Addr — Word
| RWL | RWLX | URW | URWL | URWX | URWLX ¢ € ExecConf % Regx Mem
g € Global = GLOBAL | LOCAL 6 € DoneState :=
¢ € Cap 2 {(p,g.b,e,a) | b,e,a € Addr} Standby | Halted | Failed
w € Word = Z+Cap p € ExecMode :=
r € RegName := pc|ro|ri|... SingleStep | Repeat p | Done §

p € Z+RegName

i == jmpr|jnzrr|moverp|loadrr|storerp|addrpp|subrpp|
ltrppllearp|restrictrp|subsegrpp|isptrrr|getprr|getlrr|
getbrr|geterr|getarr|fail | halt | loadUrr p|storelUr p p | promoteU r

Fig. 1. Machine words, machine state and instructions.

A memory word w € Word is either an (unbounded) integer or a capability c. Capabilities are
of the form (p, g, b, e, a) and allow exerting permissions p over the memory range [b, ), while
currently pointing to a. The permissions p and locality bit g appear in the permission and locality
lattices of Figure 2, which induce a bottom-to-top partial order < on permissions, localities and pairs
thereof. The locality bit g only plays a role in presence of local capabilities, and will be covered later
in Section 2.2. The permission lattice, on the other hand, contains six different types of permissions;
the null (o), read-only (ro), enter (E), read/write (RW), read/execute (rx) and read/write/execute
(Rwx) permissions. The sole non-standard permission, E, is inspired by the M-Machine [Carter
et al. 1994]. Enter capabilities represent opaque closures, or object capabilities, encapsulating code
and data, and hence cannot be read, written, executed or modified. They can only be jumped to,
thereby loading them into the pc register and changing their permission from E to rx, effectively
unsealing them. The operational semantics will further illustrate the use of enter capabilities.

The machine’s instructions i either operate RWLX
on register names r, or on sums p of registers /
and constants. We detail their semantics below. .

The state of the machine is modeled by the | - ~_
semantics as a configuration ¢, containing the 1 >\ > \
state of the registers ¢.reg and the memory p.m. ~ URWL RW URWX
A register file reg consists of a map from reg- oo b /

ister names r to words, while the memory m URW RO
o

/

|
|
I
RWL RWLX RWX GLOBAL
|
|

LOCAL
maps addresses to words. AN

Figure 3 defines the small-step operational
semantics for the capability machine. At each
step, the machine’s state is described by an exe-
cution mode p and a configuration ¢. The mode
1 models the machine’s instruction cycle, which loops infinitely (expressed by Repeat p) until it
reaches a successful done state Done Halted through REPEATHALT or a failed state Done Failed
through REPEATFAIL. The REPEATSINGLE rule allows for the execution of single instructions through
the EXECSINGLE rule. If the execution of the instruction is successful, i.e. execution in EXECSINGLE
does not fail or halt and results in a Done SingleStep state, then REPEATSTANDBY allows for another
iteration of the processor’s instruction cycle.

Fig. 2. Permission and locality hierarchy.
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REPEATSINGPE , REPEATSTANDBY
(SingleStep, ¢) — (Done 6, ¢) (Repeat (Done Standby), ¢)
(Repeat SingleStep, @) — (Repeat (Done §), ¢’) — (Repeat SingleStep, ¢)
RePEATHALT REPEATFAIL
(Repeat (Done Halted), ¢) (Repeat (Done Failed), ¢)
— (Done Halted, ¢) — (Done Failed, ¢)
EXECSINGLE

[decode(2)](p) if @.reg(pc) = (p,g.b,e,a) Ab<a<eA
(SingleStep, ¢) — p € {RX,RWX, RWLX} A p.mem(a) = z

(Done Failed, ¢) otherwise

Fig. 3. Operational semantics: reduction steps.

An execution step (EXECSINGLE) requires an executable and in-bounds capability in the pc register,
failing otherwise. It reads the word z at the memory address a, decodes it and executes the result on
the current state ¢, denoted [decode(z)](¢). Figure 4 defines the operational behavior [i] (¢) for a
number of representative instructions i. The notation € is overloaded to deconstruct sum types, e.g.
if p € Z + RegName, then the statement p € Z will automatically unwrap p if it is of the form inl _
and fail otherwise. Most instructions use the auxiliary function updPC to increment the pc register
after their proper operations. Because the address space is finite, pointer arithmetic such as e.g.
a + 1 can result in illegal addresses, and should hence be represented as an option type. To avoid
notational clutter, we assume this option type to be automatically unpacked through in the entire
figure, resulting in failure in case of a None result. If an instruction operates on a value p, it either
uses the constant value directly if p € Z, or it reads the value from the register if p € RegName. In
what follows, the contents of p will be used to signify the resulting value of either option.

We now describe the semantics of instructions, in particular those listed in Figure 4. The fail and
halt instructions terminate execution in the Failed and Halted state respectively. move r p copies
the contents of p into r. Memory is accessed using the load and store instructions: load ry r;
reads the value pointed by the capability in r, provided it has the permission r and points within
bounds, and store r p stores the contents of p through the capability in r provided it has the w
permission and points within bounds. The jmp instruction jumps to a capability, by writing it into
the pc register. In the case of an enter (E) capability, it unseals it into a Rx capability first, allowing
us to jump to opaque closures, as previously mentioned. Three instructions allow modifying
capabilities. restrict r p allows restricting the permission and locality of a capability, by decoding
the contents of p into a pair (p’, g’), and provided it is less permissive than the current permission-
locality-pair of r according to <, restricts r accordingly. subseg r p; p; takes a subsegment of a
capability range of authority. It uses the contents of p; and p, to restrict the range of authority of
the capability in r, in case r is not an enter capability. Note that the inequality 0 < z, < e suffices
to guarantee monotonicity of authority, since if z; < z;, then the capability provides no authority
over memory whatsoever. lea r p modifies the address of the capability in r, by adding to it the
integer offset in p. As expected, lea fails for enter capabilities. A number of instructions allow
inspecting capabilities. We show geta that retrieves the address field of a capability; getp, getl,
getb and gete work similarly for the other fields. Not shown in Figure 4 are jnz (conditional
jump), arithmetic instructions (add, sub, 1t) and isptr which checks whether a word is a capability.
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_ | (Done Standby, p[reg.pc — (p.g.be;a+1)]) if p.reg(pc) = (p. g, b, e, a)
updPC(p) = { (Done Failed, ¢) otherwise
_ P lfp ez
getWord(p, p) = { p.reg(p) if p € RegName
i [ (o) Conditions
fail (Done Failed, ¢)

¢[reg.pc — newPc])

halt (Done Halted, ¢)
move r p updPC(¢[reg.r — w]) w = getWord(g, p)
reg(ry) = (p, g, b, e,a) and w = g.mem(a
loadry r updPC(p[reg.r1 - wl) an %(SZ)a <((fa€1d pE ){Ro, RX, RVZ), RWX‘(R\z'I.. RWLX}
p.reg(r) = (p,g.b,e,a) and b < a < e and
storer p updPC(¢[mem.a — w]) | p € {rRW,RWX, RWL, RwLx} and w = getWord (¢, p) and
if w=(_rocaL,_,_,_), then p € {RWLX, RWL}
impr (Done Standby, if p.reg(r) = (E, g, b, e, a), then newPc = (RX, g, b, e, a)

otherwise newPc = ¢.reg(r)

restrictrp

updPC(¢[reg.r — w])

@.reg(r) = (p,g,b,e,a) and
(p’,g") = decodePermPair(getWord(¢, p)) and

(p'.9") < (p.g) and w = (p’.g’, b, e,a)

subseg r p1 p2

updPC(¢[reg.r — w])

@.reg(r) = (p,g,b,e,a) and for i € {1,2},
z; = getWord (g, p;) and z; € Z and
b<ziand0<z; <eandp # Eand w = (p, g, 21,22, a)

@.reg(r) = (p,g, b, e, a) and z = getWord (¢, p) and

lear p updPC(¢p[reg.r — w]) p#Eandw=(p,g b ea+z) andif p=v-, thenz < 0
getarir updPC(¢[reg.ry > al) preg(r)=(,_._,_.a)
p.reg(r2) = (p,g,b,e,a) and p = u- and
loadUr; rp p | updPC(¢|[reg.r; — wj) off = getWord(p, p) and b < a + off < a < e and

w = @.mem(a + off)

storeUr p1 p2

updPC(¢’
[mem.(a + off )~ w])

p.reg(r) = (p,g. b, e,a) and p = U- and

off = getWord(¢, p1) and w = getWord(¢, p2) and
ifw=(_,1ocaL, _,_,_) then p € {URWLX, URWL} and
b<a+off <a<eandif off # 0then ¢’ = ¢ else
¢’ = ¢lregor — (p,g,b,e,a+1)]

promoteU r

updPC(¢p[reg.r — w])

p.reg(r) = (p,g,b,e,a) and p = ur and
w = (7, ¢, b,min(a, e), a)

(Done Failed, ¢)

otherwise

Fig. 4. Operational semantics: instruction semantics.

Finally, if the capability checks for an instruction are not satisfied, the last row defines the resulting
state as (Done Failed, ¢).

2.2 Capability Machine with Local Capabilities

The red parts of Figures 1 to 4 add local capabilities to our bare-bones capability machine. The
locality hierarchy in Figure 2 receives a second element, LocAL. As evident from this hierarchy, the
restrict instruction allows deriving local capabilities from global ones, but not vice versa.

Local capabilities can only be stored to memory through capabilities with a write-local permission,
a stronger version of the w permission that we denote as wi. The permission hierarchy in Figure 2
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| Tstk | (RWL, LOCAL,?) | Ttk | (RWL, LOCAL,?) |

’ ’

e e

- b
Alice’s

a 42
stack frame { @

(a) The stack capability Alice starts out with. (b) The stack capability Alice hands to Bob.

Fig. 5. Register state for Scenario 2, involving a write-local stack capability.

contains the two new write-local permissions RWL and RWLX at the top. The permission RWLX is
a valid additional permission for the pc-register, as shown in Figure 3. The restrict instruction
follows the order < and allows deriving writable capabilities from write-local ones.

The semantics of locality comes into play when interacting with memory, i.e. in the load and
store instructions in Figure 4. Both load and store permit loading, respectively storing, using
the two new permissions. Additionally, store only permits storing local values if the capability’s
permission allows local writes.

3 REVOCATION USING LOCAL CAPABILITIES

We now discuss the use of local capabilities as a (flawed) revocation primitive. We use an incre-
mental example consisting of three scenarios which build towards the secure calling convention
of Skorstengaard et al. [2018]. It will become clear why local capability revocation and the calling
convention incur inherent performance issues because of stack clearing.

3.1 Using Local Capabilities for Revocation

Consider the following scenario, which we will refer to as Scenario 1: a client, Alice, wishes to
invoke an untrusted adversary, Bob, twice. Alice owns a capability, c, that she wishes to share with
Bob, through a register r, but only for the duration of the first call. During the second call to Bob,
he should not be able to access the capability any more. In other words, Alice wishes to revoke
capability ¢ before the second call. If ¢ is a GLOBAL capability, i.e. ¢ = (p, GLOBAL, b, ¢, a), Bob can
simply store c in any part of memory he has access to, during the first invocation, and retrieve
it during the second, thwarting Alice’s plans. This is where local capabilities come in. In case ¢
is local, i.e. ¢ = (p,LOCAL, b, e, a), and we disregard write-local permissions for the moment, Bob
cannot store the capability ¢ to memory for later use, and can therefore not recover ¢ during the
second invocation, provided Alice cleared it from the registers before the second call. In other
words, as soon as Bob returns to Alice, Bob’s access to c is effectively revoked.

3.2 Write-Local Memory and Stack Clearing

The situation changes when we consider the existence of write-local permissions in an extended
Scenario 2. Specifically, we extend Scenario 1 to handle the stack explicitly, through a local, write-
local stack capability cgy stored in a register we call ryy, as shown in Figure 5a. Concretely, csyc
carries RWLX permission. The cyy capability is write-local, to allow spilling of local arguments
and other capabilities onto the stack. It will become clear in Section 3.3 why cg needs an execute
permission. Finally, we cannot allow cgx to be GLOBAL, since Bob could then, during the first
invocation, store cgy to memory, write ¢ into cyy, and then, during the second invocation, read
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¢ again after retrieving cgy. Since GLOBAL, write-local capabilities clearly break any attempts at
building a sensible revocation schema using local capabilities, we forbid their existence.

Figure 5a shows the initial contents of 7y, when Alice starts executing. When Alice calls Bob,
she will restrict the stack capability and pass the unused part of the stack in ry, as shown in
Figure 5b. At the time of the first call, we set cgx = (RWLX, LOCAL, b, ¢’,b"). For simplicity, we
assume that cgy has the same value on the second call, i.e. client’s stack frame does not change size
in between calls. Notice that it is currently unclear how Alice obtains this cgy capability for the
second call, since cgy itself is local and hence not easily stored in between the first and second call
to Bob. We will clarify this point in Section 3.3. We also assume that cgy is initially zeroed out.

Alice still wants to prohibit Bob from accessing ¢ during the second call. But now, Bob does have
a way of storing local capability ¢ during the first invocation; he can store it anywhere in [b’, ¢”)
through the write-local capability cgy. Therefore, Alice has to make sure that the region [b’, e”)
does not contain any copies of ¢ before invoking Bob a second time. The solution is to clear [0, e)
before the second invocation, or more generally, clear all write-local memory that Bob had access to.
This means a potentially large runtime overhead, since the region [b’, ') may be quite large in
practice. Note that we assume (here and elsewhere in the paper) that the stack is the only memory
region that has write-local capabilities pointing into it; otherwise, Alice would have to find and
clear all other write-local regions that Bob might have had access to as well, to ensure that he did
not store the capability c there.

Additionally, Alice wants to enforce local state encapsulation, i.e. ensure that Bob cannot gain
access to her local stack frame, including e.g. the value 42 stored at address a4 in Figure 5b. This is
currently trivially enforced by not passing Bob a reference to the full stack capability.

3.3 A Secure Calling Convention using Local Capabilities

Having discussed the core performance issue in the calling convention of Skorstengaard et al. [2018],
namely the stack clearing caused by the use of local capabilities, we now extend our previous
scenario to their full secure calling convention. Concretely, we need to make two additions.

First, the astute reader may have noticed that our scenario from Section 3.2 does not actually
work. The problem is that after Bob returns, Alice has no capability to erase Bob’s part of the stack
[07,€’), or to access her old stack frame, since Alice’s stack capability was itself local, and could
only have been stored on the stack itself. We could require Bob to return his own stack capability,
but Alice would still have no way of accessing her own stack frame after the first call to Bob. To
remedy this, Skorstengaard et al. [2018] have Alice create a kind of return closure on the stack, and
pass a capability for invoking it to Bob as a return capability cy;. This capability is represented as
an enter capability and points to restoration instructions pushed onto Alice’s stack frame, along
with her stack pointer, before invoking Bob. When executed, these restoration instructions reinstate
Alice’s old stack pointer and then resume execution by loading a previously pushed value for the
pc register. The execution of these instructions on the stack is the reason we gave cgy execute
permission in Section 3.2. Since enter capabilities are opaque, Bob can only use ¢yt as a jumping
destination, and when he does, Alice’s old return pointer is restored. Bob cannot simply store the
capability cr; for later use, since cyet is itself local, as it was derived from the local capability cgy
using restrict.

Secondly, to ensure generality, we have to assume that Alice is called by a second untrusted party,
Charlie, rather than being allowed to initiate execution. In this Scenario 3, the stack capability
cstk in Figure 5a that was previously assumed to be initially zeroed, is now passed to Alice by
Charlie. Charlie has the option to protect his own stack frame by calling Alice in a fashion similar to
Figure 5b. Alice again wishes to revoke Bob’s access to ¢ and respects local state encapsulation. With
the introduction of a second adversary, Alice now also has the extra goal of enforcing well-bracketed
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control flow, i.e. ensure that Bob cannot bypass Alice and return to Charlie directly. To achieve all
three goals, Alice needs to make sure that cgy does not contain any capabilities that Bob should not
have access to when invoking him. Since Charlie has access to a larger stack capability than both
Alice and Bob, and could have stored his stack or return pointer high up in the stack, Alice now
has to additionally erase the entire memory region [b’, e’) even before the first call to Bob.

When Alice returns to Charlie, Skorstengaard et al. [2018] originally proposed to erase the entire
stack [b’, e’) again, but as they later point out, it suffices for Alice to clear her own stack frame
when returning to Charlie [Skorstengaard et al. 2019a]. This is because any stack capabilities that
Bob might want to smuggle to Charlie through the stack, ultimately originate from Charlie in the
first place, and are not of any added value to him. Sharing his return pointer with Charlie will do
Bob no good either, since it will jump to an address within Charlie’s own stack. The formalization
of this previously informal observation is one of the novelties in our logical relation in Section 6.

4 UNINITIALIZED CAPABILITIES

Now let us introduce uninitialized capabilities in Section 4.1 and see how they can be used to solve
the issue of stack clearing in Section 4.2.

4.1 Adding Uninitialized Capabilities to the Capability Machine

Uninitialized capabilities are a new form of capabilities that represent read write ability to a region
of memory without access to its current contents. More specifically, they are represented as new
permissions that are counterparts of the ones that have at least read write ability. The blue labels
in Figure 2 represent the additions to our permission lattice.

An uninitialized capability (ur, g, b, e, a) has permission 7 on the range [b, a) (the initialized
part) and write-only permission on the range [a, e) (the uninitialized part), assuming b < a < e for
simplicity. For instance, if 7 is RwX, then the capability can read, write, or execute anything in the
initialized part of the capability, but can only write to the uninitialized part!. The initialized part of
the capability can be extended by writing to the first uninitialized address, i.e. a.

Capabilities that have at least read-write permissions can be restricted to their uninitialized
counterparts. Uninitialized capabilities can be further restricted w.r.t. the initialized part, e.g., an
URWLX permission can be restricted to an URW permission. Since an uninitialized capability (uz,
g, b, e, a) represents authority 7 on the initialized part [b, a), we also allow converting it to a
regular capability (7, g, b, a, a) with authority 7 on the initialized range [b, a), using a new promote
instruction. We will make use of this instruction to construct return capabilities in Section 4.2.

We now discuss the changes to the operational semantics, indicated in blue in Figure 4. Instead
of modifying load and store to support uninitialized capabilities, we define two new instructions
loadU and storeU that can only be used with uninitialized capabilities. loadU r; r; p first checks
that r; contains a capability (uz, g, b, e, a), that b < a + off < a < e (where off is the contents of
p). If both checks succeed, the value at address a + off will be loaded into register r,. Similarly,
storeU r p; p; checks that r contains a capability (ur, g, b, e, a) and b < a + off < a < e (with off
the contents of p;). It will then store the value in p, into the address a + off. If off = 0, then the
capability in r is incremented.

From a hardware implementation perspective, the new loadU and storeU instructions do perform
more work than load and store. In particular, they additionally need to compute an addition
and an extra bound check. Nevertheless, we expect that this should not drastically change the
implementation complexity or the critical path for our new instructions. Woodruff et al. [2019] show

1Using an URWLX, URWX Or URX capability to execute is actually only possible after first initializing (a part of) it and
converting it to a regular capability using promote, as explained in the next paragraph.
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that bound checks can typically be made efficient by running them in parallel with memory accesses:
“any bounds check on the virtual address can be performed in parallel to [address] translation,
making memory access a particularly convenient time to perform a bounds check”. We believe the
same optimisation could be applied to an implementation of loadU and storeU.

Finally, one instruction must be slightly modified: we cannot allow lea to increase the current
address of an uninitialized capability, as this would increase its read authority. Therefore, when
using lea to change the address of a capability (ur, g, b, e, a) to a’, the machine checks that a’ < a.

4.2 A New Calling Convention

Description of the calling convention. With uninitialized capabilities, we can now revisit the
calling convention from Section 3.3 and use uninitialized capabilities to avoid the stack clearing
requirement and fix its performance issues. Instead of using a Rwix stack capability, we give it
permission URWLX. Let us consider again the example from Section 3.3, but let Alice pass the
capability cgy = (URWLX, LOCAL, b, e, b) to Bob. Bob now cannot use ¢y to read the contents of
[b, e) without overwriting it first, so stack clearing is no longer needed.

Alice still needs to provide an enter capability c, as a return pointer to Bob. However, Alice must
now first promote it back into a RwLx capability before she can use restrict cqy to create the
return capabilty. When Alice returns to Charlie, Charlie regains access to the entire stack, so Alice
still needs to clear her own stack frame. This clearing requirement is very reasonable compared to
the earlier case, as Alice only needs to clear the part of the stack she has actually used.

We recap the new calling convention formally:

At program start-up. A local URwLX capability stack pointer is in register ryy.

When called by an adversary. Check that the received stack pointer has permission URWLX.

Before calling an adversary. Push activation record to the stack and create a local e-capability to use
as return pointer. Subseg the stack capability to the unused part. Clear non-argument registers.

Before returning to an adversary. Clear non-return-value registers and the part of the stack we used.

While the changes may seem simple, there are some details to get right. Let’s revisit Scenario
3 from Section 3.3, assume Alice receives stack capability cgy; = (URWLX, LOCAL, by, e, by) from
Charlie and uses range [by, b,) to store data. She now calls Bob with cgy2 = (URWLX, LOCAL, by, e,
b,). Suppose that after this first call, Alice needs less stack space. She can instead provide cgy3 =
(URWLX, LOCAL, bs, e, b3) as stack capability to Bob with b; < b3 < b, for the second call. Alice does
not need to clear the range [bs, by) since Bob cannot possibly read it as it is uninitialized. However,
when returning to Charlie, Alice must be careful to clear everything she has ever written to, i.e. the
whole range [by, by) and not just [by, b3). This is because Alice cannot be sure that Bob overwrote
what is in [bs, b;) and she must ensure that any capabilities she may have inadvertently left there
are scrubbed before returning to Charlie.

Informal cost analysis. With these details in mind, let’s make sure that we can indeed witness a
gain in performance. At first glance, since the new calling convention still clears the local stack
frame upon return, it could appear as if the new calling convention only provides a minor constant
factor performance improvement. However, in the calling convention by Skorstengaard et al. [2018],
the full stack space (even parts that will never be used) is cleared twice for each call. In our new
proposed calling convention, each function only needs to clear its own stack frame once upon
return.

Let us consider two concrete scenarios. First, assume that we are making n secure calls in
sequence to untrusted components. Let us note m the size of the remaining unused stack space,
and c the size of the stack frame that we currently use.
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Skorstengaard et al.’s calling convention requires that we clear the whole unused stack space
before each call, and finally, clear it again along with our own stack frame before returning. The
cost of clearing is then:

nxm+m+c

In a typical scenario where c is small compared to m, the overall cost of clearing is quadratic: O (mn)
(m is typically comparable to the overall available stack space, which counts in megabytes). In the
improved calling convention, we only need to clear our stack frame before returning. We therefore
only need to pay the small price of clearing ¢ memory cells.
Now assume that we are making n nested secure calls, each call using a stack frame of size c.
Skorstengaard et al.’s calling convention now requires that we clear m before the first call and
m + ¢ when returning, (m — c) before the second call and m when returning, etc, i.e.:

2nm—n(n—1)c+c

Again, in a typical scenario where the portion of the stack actually used (nc) is small compared
to the available stack space m, the cost remains a quadratic O(mn). With our calling convention,
we only need to clear the individual stack frames, which amounts to an overall linear cost of nc.
(Notice how this does not depend on the size of the available stack space.)

In summary, it seems like uninitialized capabilities solve the stack clearing requirement and
associated performance issue of local capability revocation and the secure calling convention
of Skorstengaard et al. [2018, 2019a]. But security of the result relies on subtle arguments and
invariants. Fortunately, in the next section, we’ll see that we can build on Skorstengaard et al.’s
approach for reasoning about capability machines and the guarantees they provide and prove
security of local capability revocation and the updated calling convention.

5 PROGRAM LOGIC

In order to reason about the behavior of programs running on the capability machine, we build a
program logic on top of the machine operational semantics. The logic provides rules describing the
execution of single machine instructions, that can then be used to establish a specification for a
complete program running until the machine halts (or fails).

Specifications are written as separation logic triples, both in the case of manually written
specifications for concrete programs (such as the macros of Section 6.8), and in the case of the
“universal specification” that holds of arbitrary code by the Fundamental Theorem (see Section 6.7).
Figure 6 shows specifications for some single machine instructions as well as for a program
composed of several instructions (in this case, a simple macro). In a high level language, a separation
logic triple {P} e {Q} provides a precondition P and postcondition Q for the execution of the
expression e. However, in our setting, there is no direct equivalent of e since code executed by the
machine is laid out in memory as mere integers that are then decoded into instructions. Instead, we
use triples of the form {P} ;1 {Q}, where i denotes an execution mode as defined in Figure 1. Treating
execution modes as expressions in this way makes our assembly language fit well into the Iris
framework, which is more usually used with lambda calculi. A triple using the SingleStep execution
mode specifies the behavior of a single instruction (the one currently pointed to by the program
counter). A triple using the Repeat SingleStep execution mode specifies a complete execution,
starting from the instruction currently pointed to by the program counter, and continuing until the
machine halts or fails.

We use Iris’ standard definition of triples, which correspond to partial correctness: correctness
does not entail termination. Finally, note that machine failure (e.g. failure to pass a capability check)
is modeled explicitly. A failing program does not get stuck, instead, it reduces to a configuration
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Fig. 6. Separation Logic specifications for the machine instructions subseg and store and for the rclear
macro that sets a given list of registers to zero. Changes to the machine state are highlighted in red.

with the Done Failed execution mode. A postcondition binds the execution mode at the end of the
execution, allowing specifications to talk explicitly about failure or success.

As an additional subtlety, note that separation logic triples are not a primitive concept in Iris.
Instead, they are a defined as sugar on top of a weakest-precondition combinator

{Pyp{Q} = 0O(P — wp p{Q})

The triple {P} 1 {Q} specifies that owning the resource P is sufficient to run the machine with
mode p and eventually obtain the postcondition Q. Furthermore, this fact is required to hold not
only at the current point, but also to remain true indefinitely, using the Iris modality O [see, e.g.,
Birkedal and Bizjak 2017; Jung et al. 2018]. This “persistent” modality O expresses that the proof of
a triple may not rely on assumptions that hold now but may cease to hold in the future (“ephemeral
assertions”). Instead, it must only rely on assumptions that remain true at any point in the execution
of the system (“persistent assertions”), because we may want to invoke this specification at any
later point.

Access to registers and memory is described using two separate points-to assertions. The assertion
“r — w” asserts that register r currently contains the machine word w, and provides exclusive
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ownership over that register. The assertion “a +>, w” asserts that the memory location at address
a currently contains the machine word w and provides ownership over that location. Furthermore,
access to the location is restricted with permission p: for instance, if p is ro then it is not possible
to modify the value stored at that location. More generally, when accessing a memory location
with permission p using a capability with permission p’, the permission of the capability must be
included in the permission for the location, i.e. p’ < p.

The first two rules of Figure 6 show specifications for the subseg and store instructions. Their
respective preconditions describe the subset of the machine state accessed by the instruction, and
the postconditions describe the updated state after executing the instruction. For both specifications,
the postcondition asserts that the execution mode after executing the instruction is Done Standby,
meaning that the machine instruction always succeeds under the premises of the specification. The
first rule states that if the program counter contains a capability pointing to a memory location
ape, if that location contains an integer n which decodes into subseg r z; z, if the register r
contains a capability, and assuming that the program counter is valid (ValidPC(. ..)) and that z;
and z, are valid new bounds (ValidSubseg(. . .)), then the machine successively increments the
program counter and restricts the capability held in register r with new bounds z; and z,. Similarly,
the second rule states that successfully executing the store instruction reads a word from the src
register and writes it into the memory location pointed to by the capability in the dst register.

The specifications that appear in Figure 6 for subseg and store are in fact not the most general
specifications for these instructions. They assume that some side-conditions hold and establish
that the execution succeeds, making them useful for reasoning about the correctness of a concrete
program. However, there are many ways in which instructions can fail: because of capability checks,
but also, for example, because incrementing the program counter or performing address arithmetic
can fail since we have finite memory. Our program logic thus also provides rules (not reproduced
here) to reason about cases where executing an instruction fails. Furthermore, “most general”
specifications covering all cases are also provided, that are useful not only as a proxy for deriving
more specific rules, but also directly in the proof of the Fundamental Theorem (Theorem 6.1), for
characterizing the behavior of arbitrary instructions that might or might not fail.

Our machine code does not have primitive mechanisms for structured control flow. Similarly, our
program logic does not make assumptions about program control flow. Instead, programs composed
of several instructions are specified in continuation-passing style: one proves a specification for
a complete execution of the machine, starting at the beginning of the program, by assuming a
specification for the continuation of the program, which is reached either through sequential
instruction fetch, or through a jmp instruction.

The last rule of Figure 6 exemplifies such a specification for a program composed of several
instructions; the rclear macro. This macro clears a number of registers by setting their contents
to 0. It is parameterized by a list [ of register names and its code consists of a sequence of instruc-
tions move r 0 for each register name r in [. We state rclear’s specification as a triple using the
Repeat SingleStep execution mode, meaning that the specification covers a full execution of the
machine, and prove that starting before the execution of rclear, to reach any postcondition Q
(describing the state of the machine at the very end of the execution) it is enough to prove that
one can reach Q from the continuation, i.e. after rclear as been executed. In other words, the
postcondition of rclear is given as the precondition of its continuation.

Concretely, the specification of rclear assumes that the body of the macro (“rclear_instrs [”)
is laid out contiguously in memory range [ao, a,), while the program counter initially points to
aop. When the program counter eventually points to a,, the address immediately after the macro
instructions, then all the registers in [ have been cleared and now contain 0. Importantly, notice that
the specification for the continuation of rclear is given not as a separation logic triple, but directly
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in terms of the weakest-precondition combinator. Unlike triples, this specification is not required to
be persistent (note the absence of O). Indeed, it only makes sense to call to this specification once,
at the point of the execution where the continuation is reached (i.e. when pc reaches (p, g, b, e, ap,)).

6 LOGICAL RELATION MODEL

Now that we have this program logic, we can explain the most important contribution of this paper:
the formalization and proof of capability safety. This is the set of guarantees that the capability
machine provides for untrusted code and it includes both general capability safety guarantees and
guarantees that are specific to local and uninitialized capabilities.

While our program logic (Section 5) provides rules for concrete machine instructions which are
useful to verify known concrete code, capability safety provides a universal contract that holds for
unknown, arbitrary code. Thanks to the capability checks implemented by the capability machine,
an arbitrary piece of code cannot behave completely arbitrarily: it is limited by the set of capabilities
it has access to. Our logical relation model thus captures how we can reason about the interaction of
known and unknown code, and in particular which guarantees one exactly gets from the revocation
mechanism enabled by local and uninitialized capabilities.

For readability, we introduce the required machinery gradually, starting with a simple formulation
of capability safety without support for revocation (Section 6.1). Next, we provide some intuitions
on what needs to change for supporting revocation in Section 6.2. This motivates the need for a
form of Kripke worlds with public/private transitions, and standard and custom resources, which
we explain and apply in Sections 6.3 to 6.5. In Section 6.6, we provide more technical details on how
we combine Iris invariants and saved predicates with more traditional Kripke world-indexing. The
Fundamental Theorem, which establishes that our machine indeed satisfies the capability safety
formalized by the logical relation, is discussed in Section 6.7. Finally, we demonstrate reasoning
about examples with revocation, by outlining a proof of the classic awkward example in Section 6.8.

6.1 A Version of the LR without Kripke Worlds/Local Capabilities

Following Skorstengaard et al. [2018], we formulate the guarantees provided by the capability
machine as a logical relation, capturing an informal property known as capability safety [Miller
2006]. Intuitively, the idea is to define the authority represented by a capability. The guarantees
provided by the machine then amount to the fact that arbitrary code can never exceed the authority
of the capabilities it has access to, or create capabilities with larger authority.

To formalize these intuitions, we define a maximum bound on the authority of a capability using
a notion of safety with respect to a set of registered invariants. A capability will be considered safe
if it cannot be used in any way to break those invariants. This intuition is instantiated differently
for different types of capabilities. For example, memory capabilities are safe if they only grant
access to memory that is guaranteed to contain safe values by an invariant. Updating the memory
with safe values must not break registered invariants. If the capability is executable, jumping to it
with safe words in the registers must respect invariants and produce safe result values.

The reader may notice that this intuitive definition of safety is problematically circular. This is
commonly referred to as the world circularity problem [Ahmed 2004; Birkedal et al. 2011]. Skorsten-
gaard et al. [2018] resolve it for their model using step-indexed Kripke logical relations [Ahmed
2004; Birkedal et al. 2011]. We define our logical relations model in Iris so that we can use (1)
its built-in support for guarded recursion, which we can use to replace manual bookkeeping of
step-indexes, and invariants for reasoning about shared state, and (2) its implementation in Coq
and the associated interactive proof mode [Krebbers et al. 2017b].

Formally, we define in Figure 7 three mutually recursive logical relations. The value relation
vV : Word — iProp defines what it means for a word to be safe, the expression relation & :
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= Vreg’ R(reg) *pC— v * >l<(r,w)ereg,r:;&pc r—w —
wp Repeat SingleStep {v,v = Done Halted = Jreg’, K (rwerg T w}

R(reg) = *(r,w)ereg,r#pc(v(w)

V(z),V(o,-) =T
V(g b, e, a) 2 0> E(rx, b, e,a)
V(p,b,e a) = Kyelpe P <P A [Fw,a oy Wi V(w) |

Fig. 7. Safety without Revocation.

Word — iProp expresses what it means for a program counter to be safe to execute and the relation
R : (RegName — Word) — iProp expresses that a register file is safe if all register values are safe.

We define safety of words V as a guarded fixed point: each recursive occurrence of V is either
guarded by the so-called “later” modality > or appears inside an Iris invariant, indicated by the
boxed assertion, and thus Iris guarantees that V is well-defined. For space reasons, we will not
explain the later modality or Iris invariants technically; readers who are unfamiliar with them may
interpret »P to mean that P holds after one step of execution and think of an Iris invariant as a
property that remains valid at every step of execution.

We define the expression relation & as a program specification, expressed using the weakest-
precondition combinator. Conceptually, the body of & can be read as a Hoare-triple (see Section 5),
except that it is not required to be persistent. A word v is in the expression relation—i.e. it is safe to
execute—if one can run the machine with v in the pc register, and safe values in the other registers,
provided we temporarily give up ownership of the registers but we get it back afterwards. Note
that we do not specify what happens if the machine runs into an error, but only the case where the
machine halts gracefully. Now, since we are not requiring any interesting property to hold in the
postcondition, it might seem like the definition of & is trivial and always true! This is not the case,
however. For a weakest-precondition assertion to hold within Iris, one additionally needs to prove
that all Iris invariants are preserved at every step of the execution. This includes the Iris invariants
mentioned in the definition of V, as detailed next.

The value relation, V (w), defines what it means for a word to be safe. Intuitively, the definition
expresses that a word is safe when it cannot be used to violate invariants. There are two modes of
usage to consider: (1) read/write authority over an address, and (2) authority to jump to an enter
capability. A capability (p, b, e, a) with a permission p other than E or o grants read/write authority
over each address a within its range of authority. It is in the value relation, if for each a within
[b,e), there exists an Iris invariant (indicated by the boxed assertion) which owns the memory
location and guarantees that it will always contain a safe value. Note that the invariant is allowed
to hold a stronger permission p’ > p (so that we can easily downgrade capabilities’ permissions).

A capability with an enter () permission is a special case: it cannot be used directly to read values
from memory, so we do not require safety of the values it points to. Instead, its safety only requires
that the capability is safe to execute (by the expression relation) after changing its permission to
RX (as happens when invoking an enter capability). Since this capability may be jumped to at any
point of the execution, this fact needs to hold persistently, hence the “box” modality.

Interestingly, the safety of executable capabilities (Rx or Rwx) does not require any additional
conditions. As we will see in Section 6.7, this is because we are formalizing capability safety: a
property that holds for arbitrary code. As such, we could in principle allow the adversary to execute
any capability it has read access to and in fact, all executable permissions in the lattice of Figure 2
also have read permission. In fact, even if we give an adversary read but not execute permission
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| Ttk | (RWL, LOCAL, ¢) | | Ttk | (RWL, LOCAL, ¢) |

\

Temporary
Temporary

Frozen(42) |a42| 42

/
(a) The stack Alice receives from Charlie. (b) The stack Alice passes to Bob.

Fig. 8. A scenario where a stack capability is passed in a register ry between different parties.

over some memory, we already cannot prevent them from executing the instructions anyway: as
soon as they have writable and executable access to any block of memory [b, e) elsewhere, they
can simply copy the instructions into the range [b, e) and jump to them there.

6.2 Reasoning about Revocation

The logical relation from the previous section is relatively easy to understand, but only captures
a basic form of capability safety. In the following sections, we extend it to support local and
uninitialized capabilities as well as revocation.

To understand what needs to change, we first take another look at scenario 3 from Section 3.3,
using the illustrations in Figure 8. In this scenario, Alice receives a stack capability cgy from Charlie
in some register ryy, as shown in Figure 8a. Alice knows that Charlie only has access to safe capabil-
ities, so every address a in the range of sy must be owned by an invariant ‘ Iw,ap wr V(w) ‘

These invariants are depicted as Temporary in Figure 8, a term that we will explain in the next
sections. This invariant means that any component in the system is allowed to change the content
of the memory cell at a to any safe value w.

However, when Alice invokes Bob, the situation is different. Alice has now stored the value 42
in location a4, and expects Bob to not be able to change this value (see Figure 8b). To this end,
Alice uses local capabilities to revoke Bob’s read/write access to part of the stack and only allow
him to modify the other parts. In other words, the invariant ‘ Iw,ap w V(w) ‘ that used to
govern the memory location a4, should no longer be active. Instead, it should be replaced by a new
invariant expressing Alice’s intention: the memory location should now be frozen: it should not be
modifiable and only be allowed to contain 42, as shown in Figure 8b.

Replacing this old invariant with such a frozen invariant also means that capabilities that used to

be safe are not safe any more. Specifically, a read/write memory capability ¢ whose range includes
a (e.g. Charlie’s stack capability) will no longer be safe as the required invariant has been replaced.
This observation makes a lot of sense: in this scenario, such a capability is really not safe anymore
to pass to Bob, as he could use it to break the new frozen invariant.

In other words, reasoning about local capabilities and revocation requires two things that are
impossible in the logical relation from Section 6.1. First, general Iris invariants cannot be deactivated
(except temporarily during a single atomic step, but that’s not what we need). Once they are defined,
they remain active during the rest of the execution of the system. Second, the logical relation does
not allow a capability to be safe at one moment but become unsafe later (when certain invariants
have been revoked): the value relation is simply a predicate on words and if it is true, it remains
true forever.
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Moreover, we also need to ensure that an adversary does not deactivate an invariant, without
reinstating it when they return. In other words, we need a more refined model, where invariants
can be in different states and where safety can depend on these states. Moreover, we must be able
to track precisely how these states evolve (to ensure that invariants are properly reinstated when
necessary). This final point means that to define the refined model it is not enough simply to replace
the general Iris invariants with so-called cancellable invariants. Instead we will parameterize our
logical relation by an explicit notion of world, which will allow fine-grained control over invariant
states.

6.3 Kripke Worlds to Track the State of Invariants

We change the signature of the value relation as follows: the safety of a word can now depend on a
world representing the currently active invariants: V : WORLD — Word — iProp.

Some readers may notice that our value relation now has the same signature as a step-indexed
Kripke logical relation, but we hasten to point out that our worlds are much simpler than is typical
in such settings. In earlier work, e.g., [Ahmed et al. 2009; Dreyer et al. 2010; Skorstengaard et al. 2018,
2019b], worlds track both invariant states and associated predicates (which are also world-indexed)
on memory and are therefore recursively defined. Here instead, worlds track only the states of
invariants and in Section 6.6, we will discuss how the associated predicates on memory are tracked
using an Iris mechanism called saved predicates[Jung et al. 2016, 2018].

Before we move on to the definition of worlds, there is a final important observation to make in
the revocation scenario we discussed. As discussed, Alice revokes the old invariant for location
a4, before invoking Bob and as discussed, this will break the safety of some capabilities. However,
not all invariants can be revoked in this way and also, not all capabilities will be made unsafe by
revoking an invariant. To understand this, consider that it is easy to control the local capabilities
that an adversary has access to: they must reside in the registers or in memory that the adversary
receives write-local access to. However, the same is not true for global capabilities: the adversary
might have previously stored those in arbitrary memory and we have no way to revoke them. Since
we can’t revoke an adversary’s access to global capabilities, it should not be possible to revoke
invariants which their safety depends on. Conversely, global capabilities’ safety should be able to
survive the revocation of invariants like the one for ay,.

What this means is that we need to distinguish two kinds of invariants: (1) non-revocable ones,
which global capabilities’ safety may depend on, and (2) revocable ones, which global capabilities’
safety must not depend on. Revoking the latter may affect the safety of local capabilities but not
global capabilities. To formalize this, we follow previous work [Dreyer et al. 2010; Skorstengaard
et al. 2019a] and distinguish public and private world updates. The former are those which cannot
break safety of any capabilities (e.g. adding new invariants for previously unused memory) while
the latter are updates which may break safety of local capabilities but not global capabilities (e.g.
revoking invariants, adding new invariants for unused memory). If a world W’ can be reached from
W using public transitions alone, we call it a public future world (W’ 27“* W) and similarly for
private transitions and private future worlds (W’ 27" W).

Our worlds assign to memory locations a logical state belonging to a small protocol tailored to
talk about revocation. This “standard” protocol uses four possible states. A location can be either
in the Temporary, Frozen, Permanent or Revoked state: The first two are revocable (consequently,
global capabilities may not depend on them), the third is not (consequently, global capabilities can
depend on them).

e The Temporary state represents the invariant that a location may only contain safe words,
including local capabilities. This type of invariant is intended to cover memory locations in
the stack, which are allowed to contain local capabilities.
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e The Permanent state represents the invariant that a location contains safe words, but only
those whose safety will survive private updates, i.e., no local capabilities.

e The Revoked state corresponds to the result of revocation: a location that was previously
Temporary or Frozen but got revoked. This means we know nothing about the contents of
the memory at this location: conceptually, someone has taken control over the location, and
needs to do some work to reinstantiate the invariants and restore safety of capabilities for it.

o Finally, the Frozen state asserts that we know the exact (not-necessarily-safe) value stored at
the location, and it is not allowed to change. Frozen states are used for two purposes: (1) to
keep a local stack frame frozen during a call to an adversary and (2) to freeze the uninitialized
part of a capability. Indeed, locations in the uninitialized part of a U- capability will point
to the same word right until they are written to. Whenever an uninitialized capability is
purposely uninitialized (when passing it to an adversary), the Frozen state will allow us to
remember the old, now unsafe value it still contains. If the word is never overwritten, then
that knowledge can be used to reinstate the address to its previous Temporary state.

We call these states the standard states, StdStates.

Invariants represented by these standard states are collected in W, the first component of a
world W. It is a partial map from addresses to standard states: W**¢ : Addr — Ex(StdStates). Here
Ex refers to the Iris notion of an exclusive resource algebra—readers who are unfamiliar with Iris
can ignore it. This map only tracks the states of shared resources, i.e. those that safe capabilities can
range over. The shared resources are exactly those that are associated to the standard behaviour.
In Section 6.5, we will explain a second component of W, which collects other, custom invariants.
Such custom invariants are never directly addressable by safe capabilities, but they are necessary
for modeling advanced examples (closures with non-trivial local state), see, e.g., Section 6.8.

6.4 The Logical Relation with Support for Revocation

Let us now take a look at Figure 9 and see how the logical relation is updated to use these worlds.
The differences with the LR from Section 6.1 are highlighted in blue. Apart from the addition of
world parameters W, the changes are concentrated around the validity of a read-write capability.
Instead of requiring the presence of an Iris invariant, that condition now formalizes the intuitive
idea mentioned above: rel(a, p’, V) associates a memory invariant (namely V itself) to address a
using saved predicates, whereas S and S associate the address a to its state. More precisely, the
state relation S(W)(a, g, p) looks at the locality g and the permission p, and requires W to contain
the appropriate state in W%, The uninitialized state relation S*(W)(a, g, p, mid) does the same
but for U- permissions, for which the required state also depends on the boundary mid between
the initialized and uninitialized part (i.e. the current address a of the uninitialized capability). The
resource rel(a, p’, V) will be discussed later in Section 6.6.
We highlight what the states are for some interesting cases of safe capabilities:

e A capability with a RwLx permission (which must be itself local) is in V(W) if each address
within its range of authority is in a Temporary state of W** (so the address can be used to
store local capabilities).

o A capability in V(W) with a URWLX permission and LocaL locality, currently pointing to
the address mid, has all addresses a < mid in a Temporary state, whereas it has all addresses
a > mid either in a Temporary state or Frozen at some hidden word w.

¢ Global capabilities in V(W) have all addresses in their range of authority in a Permanent
state, regardless of their permission.

In addition, the value relation for enter capabilities now quantify over future worlds W’ 29 W.
For g local resp. global, this means that the execution of the capability must hold in arbitrary public
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0,0 = Done Halted — 3W’ reg’, W’ 2" W
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RW)(reg) | = F(ra)ereg/pe VW) (W)
VW) (2), V(W)(o,-) =T
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VW) (p,g.be a) 2 Kyeppe I p <p Arella’,p’,V)
S*(W)(a',g,p,a) ifp=u-
S(W)(a',g,p) otherwise

State relation

W+t (a) € {Temporary, Permanent} if —write-local(p) A g = LOCAL

S(W)(a,g,p) £ S W9 (g) = Temporary if write-local(p) A g = LocAL
W4 (gq) = Permanent if g = GLOBAL
S(W)(a,g,p) vV 3w, W(a) = Frozen{[a := w]|} ifa > mid
S*(W)(a,g,p,mid) = A g = LOCAL
S(W)(a,g,p) otherwise

Fig. 9. Safety with Revocation. Differences with Figure 7 are highlighted in blue.

ffffffff

Fig. 10. Standard State Transition System. Full lines indicate public transitions, dashed lines indicate private
transitions. Public transitions are also private.

resp. private future worlds. This quantification makes sure that global enter capabilities remain
safe when temporary invariants are revoked, and enforces that invariants are properly reinstated.

Finally, the new sharedResources and stsCollection assertions in the figure are used to ensure
that shared memory actually satisfies the memory invariants, which have registered using saved
predicates, during execution. This aspect of the LR is a bit technical and will be discussed further
in Section 6.6.

6.5 World Updates and Monotonicity

Now let us reconsider our worlds and future world relations in more detail. As already mentioned,
temporary invariants may be revoked to obtain a private future world and fresh invariants over
unused memory may be added to obtain a public future world. Actually, those are not the only
types of updates allowed; Figure 10 depicts the allowed transitions between standard states. Dashed
lines in the figure indicate private updates and full lines indicate public ones. One can observe that
making a frozen or revoked location temporary is a public update: indeed, doing so can never make
safe capabilities unsafe, only the reverse. In contrast, changing the state of a temporary location is
a private update, because it may break safety of capabilities depending on it.
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Fig. 11. Standard Resources.

We can now give the full definition of WORLD. In addition to the component W* which we
have already seen, it contains a second component W . This component contains custom state
transition systems, whose states can be associated with arbitrary Iris predicates. Such custom
invariants are often needed for examples that involve closures with some private state evolving
according to a certain ad hoc protocol, like in the example presented in Section 6.8. We remark
that the definition of the value relation does not depend on the custom states, but through its
quantification over future worlds, the value relation enforces that custom states evolve according
to their public and private future world relations.

W< refers to a map from region names rn € RNames to custom state transition systems with
private and public transitions, and their current state. A WORLD is simply a pair of W*¢ and W<,
and stsCollection(W) denotes the full ownership (aka the authoritative view) of W.

We can now also define the rules for public and future worlds, which we’ve already seen above.
We call W’ a public future world of W, W’ 27%¢ W, if each state in W' is either fresh, or publicly
reachable from its state in W. A state is publicly reachable by a sequence of public transitions.
Conversely, we call W’ a private future world of W, W’ 2P W, if each state in W is either fresh,
or privately reachable from its state in W. A state is privately reachable by a (possibly interwoven)
sequence of private and public transitions.

6.6 Linking Worlds to Memory

So far, we’ve defined worlds, explained how the logical relation depends on the invariants in a
world and how worlds are allowed to evolve over time. What is still missing in the story is mapping
invariants to requirements on memory contents and ensuring that those requirements are satisfied
at runtime. This part of the logical relation is a bit technical and makes use of Iris machinery like
stored predicates and certain resource algebras. You may wish to skip it on first reading.

First, in Figure 11, we define the resource interpretation of each standard state: standard shared
resource invariants. The role of each interpretation is to map an address to the requirement on the
location’s contents that the associated invariant in its current state represents.

A permanent resource invariant for some address a and permission p contains the ownership of
a points-to predicate for the address a. It states that some predicate ¢ holds at the current state of
a, say v, and some world W. Crucially, this ¢ holds invariantly, that is in any private future world
of W (when applied to that same v). On the other hand, local capabilities are allowed to depend
on revocable invariants, so a temporary invariant only requires ¢ to be monotone with regards to
public future worlds and is not required to be able to survive private world updates.

Finally, a frozen resource invariant Frozen m is parametrized by a memory segment: a partial map
m : Addr — Word from addresses to specific words. Note that these words do not need to satisfy
any invariant ¢ or be themselves safe in any way. The Frozen state imposes two requirements for
addresses a € dom(m): that they point to the associated word, i.e. they cannot change until the
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Fig. 12. Abstract Machine.

state changes from Frozen to Temporary, and that each address in the map m are also frozen to the
same map m (see below for more details on M*¢). This additional requirement ensures that if one
of the invariants for an address in dom(m) is revoked, all other ones must be revoked along and it
allows us to think of the addresses in m as being frozen as a block, rather than individually.

So, now we have defined maps that keep track of the standard state of shared resources, the
region state of custom resources, and their associated state transition systems. We have also defined
the meaning of temporary, permanent, and frozen resource invariants as requirements on memory.
What remains is to connect the two: mapping a given world to the requirement on memory that its
invariants represent. This connection is made using a few non-trivial pieces of Iris machinery that
we cannot explain in detail due to space constraints, so we restrict ourselves to a rough sketch of
what is going on.

Technically, this connection is made in the predicates rel(a, p, ¢), sharedResources(W) and
stsCollection(W) that appear in Figure 9. These three predicates are all defined as requirements on
what we can think of as an instrumented machine state. This instrumented machine state consists of
three parts, depicted in Figure 12. The most important part is M, which associates each address
a with a predicate ¢ and a permission p. To simplify the definition of M™®*?, we do not associate a
directly to ¢, but indirectly through an Iris saved predicate y, = ¢,, but this is a technical detail
that can be ignored. The permission represents the permission of the first allocated capability with
authority over g, in other words an upper bound on the permission of all capabilities that contain a
in their range of authority. The predicate ¢ : WORLD X Word — iProp represents the predicate
that is currently enforced on values stored in memory at address a. Without elaborating on its
definition, the predicate rel(a, p, V) that was used in Figure 9 requires that p and V are registered
in M™¢'P as the permission and predicate for address a.

Additionally, the instrumented machine state contains two other pieces of logical state M*?
and M, containing an authoritative copy of the current world W and its two parts W* and
W, Again we won’t provide full details about the definition, but the two remaining predicates
stsCollection(W) and sharedResources(W) from Figure 9 impose requirements on this authoritative
world. Essentially, stsCollection(W) requires that this authoritative copy of the world corresponds
exactly to W. Finally, sharedResources(W) makes the connection for every address a between three
things: the actual word w in the capability machine’s memory at a, the predicate ¢ registered for a
in M and the standard state S for a in M**?, It requires that ¢ satisfies the word w at the world
W, in the appropriate way as defined in Figure 11 for the state S.

6.7 Fundamental Theorem

With the definition of our logical relation in place, we can now state the fundamental theorem of
our logical relation (FTLR). In broad terms, the FTLR states that if a range [, ) is safe to read, then
it is safe to execute. The permission of the capability must itself be executable, and in particular if
the capability is RwLX, then its locality must be LocAL.
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THEOREM 6.1 (FTLR). Assume that p = RX, p = RWX or (p = RWLX A g = LOCAL). Assume also that
VW)(p,g,b, e, a). Then we have that E(W)(p, g, b, e, a).

PROOF SKETCH. We prove the FTLR by Lob induction, i.e. by assuming that the theorem holds
later (after one step), we prove that it holds now. In order to take a step in the program, we consider
the different possible instructions pointed to by the program counter. For each instruction, we look
at all the possible cases: for example we need to distinguish between moving a constant into a
register and moving from one register to another. If the instruction fails, we are done since we
know the postcondition of the expression relation holds for a failed configuration. If the instruction
succeeds, we prove safety of the resulting machine state and the updated program counter capability,
and apply the induction hypothesis. Each instruction has many cases, especially when one considers
all the possible ways an instruction can fail. To avoid a tedious blow-up of case distinctions, we
use a general form of the program logic rules that separate the (interesting) success case from
all the (uninteresting) possible failure cases. The store and load instructions also require us to
access the memory invariants of the source and destination addresses. This is done using the
sharedResources(W) predicate, knowing that each address is accessed using a safe capability, which
means we know its exact standard type in W. A particularly interesting case is that of the storeU
instruction: if we store to an uninitialized capability at offset 0, the current address of that capability
is increased by one. As a result, if we need to show that the resulting register state is safe, we will
need to show that this updated capability is safe. This means we might have to change the state
of that address from Frozen to Temporary. Since such a change is public, we can monotonically
update the sharedResources(W) predicate to sharedResources(W [a := Temporary]). O

We use the fundamental theorem whenever we want to reason about unknown adversary code.
For instance, if we go back to the third scenario, when Alice returns to Charlie, we can finish the
execution simply by knowing that the return capability is safe: if it was an enter capability, we
directly apply the execute condition, and if it was an executable capability, we know that its range
is safe to read, and thus by the fundamental theorem, safe to execute. Let us see in slightly more
detail what kind of properties we can prove about example programs.

6.8 A Concrete Scenario: The “Awkward Example”

We demonstrate the use of our logical relation model by verifying the correctness of a tricky
example program, in a scenario where known (verified) code calls to and is called by unknown
(possibly adversarial) code. The example is a low-level version of the “awkward example” [Dreyer
et al. 2010]:

letx=ref 0in Af. (x :=0; f(); x:=1; f(); assert(x = 1))

The correctness of this program—the assert never fails—relies on local state encapsulation (the
adversary cannot modify private location x) and well-bracketed control flow (the adversary must
return to where he was last invoked). Exploiting these properties when they are built into the
language is already quite challenging: Dreyer et al. deploy a step-indexed Kripke logical relation
with public and private transitions to achieve that task. In subsequent work, Skorstengaard et al.
[2018] verify (on paper) a low-level version of this example adapted to a capability machine with
local capabilities. In that setting, local state encapsulation and well-bracketed control flow are not
properties of the language (they do not make sense at the machine-code level), but are instead
consequences of the secure calling convention implemented in the example.

In this work, we adapt the machine-code example from Skorstengaard et al. [2018] to use our
improved calling convention with uninitialized capabilities, and prove the updated code correct
using Iris and our logical relation mechanized in Coq. Our code appears in Figure 13, with differences
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(continued from previous column) (continued from previous column)

gl: malloc ry 1 prepstack rgyy getb r1 ry

store rp @ store repny O add r, r; 10

move 3 pc scallU ry (L1 [70. Tadys Fenv]) subseg ry. ri 12

lea r3 offset store repy 1 mclear rye

crtcls [(x,r2)] 13 scallU rygy (L1, [ros Tenv]) rclear RegName\{pc,ro}

jmp ro load ny Tenv jmp ro
f1: reqglob ryy assert rgy 1

(continues in next column) (continues in next column)

Fig. 13. The awkward example using our new calling convention. It relies on local state encapsulation and
well-bracketedness as provided by scall. g1 is the entry-point of the program; when executed, it creates
a closure (as an E capability) whose body executes f1. offset is the offset to 1. Changes following our new
calling convention are highlighted in blue.

highlighted in blue. There are two main changes: first, secure function calls are made through a
new scallU macro that implements the stack discipline described in Section 4.2; second, we now
only clear our own stack frame before returning to the adversary instead of the whole stack (here,
this means clearing ten memory cells instead of possibly thousands or millions).

We carry out the proof in two main steps. In a first step (Lemma 6.2), we show that the program
entry-point g1 is safe according to the expression relation &.

LEMMA 6.2. For any world W, assuming that the memory has been properly initialized® in region
[Dawk, €awk) With the code of the program and a pointer to the malloc and assert subroutines, we
have:

E(W)(RX, GLOBAL, bawi, €awk> 1).

The bulk of the work consists in proving this lemma: the proof requires allocating a custom state
transition system for the encapsulated reference, stepping through the code of the program using
the program logic rules, and using the FTLR (Theorem 6.1) to reason about calls to unknown code
(made by scallU and the final jmp to an unknown return pointer).

In a second step (Theorem 6.3), we use the standard adequacy theorem of Iris, and derive a closed
statement for the correctness of our program against the operational semantics of the machine?.

THEOREM 6.3. (Correctness of the awkward example) Let reg € Reg, m € Mem and
Cawk = (RX, GLOBAL,...) Csr = (URWLX, LOCAL,...) Cady = (RWX, GLOBAL,...)
where the capabilities have an appropriate range of authority and pointer>. Furthermore, assume that:

e m has been initialized with the code of the program and subroutines (pointed to by c,yi), an
uninitialized stack (pointed to by csy ), and unknown adversarial code (pointed to by c,4v);
o reg(pc) = cawk, reg(Tstk) = Cstk, reg(ro) = cadgy and reg(r) € Z otherwise;
o flag denotes the memory address set to 1 by the assert subroutine in case of failure;
e m(flag) = 0.
If (Repeat SingleStep, (reg, m)) —* (p, (reg’, m’)) then m’(flag) = 0.

Theorem 6.3 states that, starting from a properly initialized machine state, the in-memory flag
set by the assert routine remains set to 0 at every step of the execution—meaning that the call to
assert never fails. Obtaining Theorem 6.3 from Lemma 6.2 is mostly mechanical: this highlights

2We have also instantiated Theorem 6.3 with a simple adversarial code that invokes the awkward example with f = (1(). ())
and additionally proved that, in that setting, the whole machine runs and gracefully halts.
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one of the benefits of using Iris, whose built-in soundness theorem can be leveraged to obtain a
program specification stated directly against the operational semantics of the machine.

7 IMPLEMENTATION

We have implemented uninitialized capabilities in the CHERI-MIPS ISA for the 256-bit capabil-
ity format (we believe that the implementation should be possible for other capability formats
as well?). In CHERI-MIPS the stack grows downwards (from higher memory adresses to lower
memory addresses) and the implementation of uninitialized capabilities is inverted to reflect the
stack growth. Concretely, uninitialized capabilities only allow reading from the range [a, e] and a
moves downwards on writes below the current a, just like the stack. Capabilities now have a bit
indicating if they are uninitialized or not. Some existing CHERI-MIPS instructions are modified
to take the uninitialized permission into account: the load instructions and those that modify a
capability’s cursor. For experimentation purposes, we have opted to add separate store instructions
for uninitialized capabilities, leaving the old store instructions intact. Additionally, we add an
instruction to make a regular capability uninitialized and a new variant of CSetBounds (the CHERI
version of subseg) that is needed for technical reasons.

These modifications result in a CHERI-MIPS simulator that supports uninitialized capabilities.
We have also added support for the new instructions to the Clang/LLVM assembler for CHERI-
MIPS?. This allows us to write assembly programs with the new instructions and run them on
the simulator. With the simulator and assembler in place, we were able to experiment with the
new calling convention by manually modifying assembly programs. The calling convention of
Section 4.2 is slightly modified for CHERI-MIPS because CHERI uses pairs of sealed capabilities (a
code capability and data capability) instead of enter capabilities. This means we do not need to
store return closures on the stack (like for StkTokens [Skorstengaard et al. 2019b]), but otherwise
makes little difference.

Although more investigation is needed, our results suggest that uninitialized capabilities and the
calling convention from Section 4.2 can be adapted and applied in a CHERI setting.

8 RELATED WORK

We already discussed some related work in the introduction, which we briefly recall now. We follow
an existing line of work on capability machines [Carter et al. 1994; Levy 1984; Watson et al. 2019,
2015], and in particular the CHERI family featuring local capabilities [Watson et al. 2019, 2015]
that provide a form of revocable capabilities. To our knowledge, uninitialized capabilities and the
idea of using them to reduce the cost of local capability revocation are both new.

Other forms of revocation have been proposed in capability machine contexts. A line of work of
the CHERI project (CHERI-JNI [Chisnall et al. 2017], CHERIvoke [Xia et al. 2019], Cornucopia [Fi-
lardo et al. 2020]) presents a general revocation mechanism for memory managed through a
dedicated memory allocator. In that setting, revocation happens by sweeping through the whole
memory and clearing obsolete (revoked) pointers. This GC-like approach to revocation is some-
what orthogonal to our stack-based revocation mechanism. The authors mostly focus on practical
feasibility, and do not formally state or prove the guarantees provided by their revocation procedure.

Linear capabilities [Watson et al. 2019] have also been proposed as a lightweight revocation
mechanism, both for implementing a secure calling convention [Skorstengaard et al. 2019b] pro-
viding similar guarantees as ours, and as a secure compilation target for separation logic verified

3 These assumptions are kept intentionally vague for brevity. Full statements can be found in the Coq formalization.
4 Available at https://zenodo.org/record/4067949.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 6. Publication date: January 2021.


https://zenodo.org/record/4067949

6:26 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, S. Huyghebaert, D. Devriese, and L. Birkedal

code [Van Strydonck et al. 2019]. However, there are concerns as to whether the atomic store-
and-clear operation required by linear capabilities can be realistically implemented in hardware
without an important performance penalty and whether they would be easy to support in existing
compilers [Skorstengaard 2019, §3.6.2]. We expect uninitialized capabilities to be a more benign
extension from a micro-architectural and compiler perspective.

Another category of related work is on formalizing capability safety, i.e. characterizing the
guarantees provided by a capability machine or language runtime. In the context of high-level
languages with object capabilities, Maffeis et al. [2010] define a syntactic notion of capability safety
based on reachability between objects. This kind of criterion is however of limited expressive power
as it is not directly defined with respect to the actual behaviour of objects. Drossopoulou et al.
[2020] formalize a form of capability safety in their Chainmail specification language. It can be
used to capture properties of object-oriented programs like “An account’s balance can be changed
only if a client has access to that particular account”.

More closely to our current work, Devriese et al. [2016] propose a more expressive, semantic
definition of capability-safety for object capabilities, based on a Kripke logical relation with public
and private transitions which is not unlike ours. Swasey et al. [2017] extend this line of work by
showing that a similar logical relation can be used to give compositional specifications for the
robustness of object capabilities patterns, and formalize their work in Coq using Iris.

Other related work has considered capability safety of (low-level) capability machines. Nienhuis
et al. [2020] build a formal model of the CHERI ISA, and formally verify a number of architectural
security properties using Isabelle/HOL. A key security property they prove is capability monotonic-
ity, meaning that the machine does not allow creating new capabilities out of thin air, and therefore,
that an unknown code component can only modify parts of memory it has access to through its
reachable capabilities. This is a somewhat syntactic property in nature, and it has an important
limitation: it only holds until the code jumps to an enter capability (or sealed capability in the case
of CHERI), which purposely gives access to new capabilities in a non-monotonic way. Therefore,
their security properties only hold within a single “component”. Our definition of capability safety,
although more involved, allows reasoning about a complete machine execution, with arbitrary calls
between different security domains and dynamic evolution of invariants and boundaries. Akram
El-Korashy [2016] has studied a formal model of the CHERI capability machine and proved some
properties of it. Their main capability safety property captures a whole-system form of capability
monotonicity that appears unsuitable for reasoning.

The work by Skorstengaard et al. [2018, 2019a] is probably the most closely related to our own.
As discussed before, they define capability safety for a capability machine with local capabilities as
a logical relation, and propose a secure calling convention based on local capabilities. Our contribu-
tions are the introduction of a more efficient calling convention using uninitialized capabilities and
a more expressive model (with the introduction of Frozen regions), as well as our formalization of
our work in Coq using Iris. In subsequent work, Skorstengaard et al. [2019b] verify a secure calling
convention based on linear capabilities. They phrase their result as a fully-abstract compilation
theorem, rather than by verifying challenging examples, as they did in their previous work, and as
we do here. This is an interesting perspective for future work: we believe that we could alternatively
prove a similar theorem to characterize the correctness of our secure calling convention.

There are a number of previous work on using logical relations with public/private transitions to
account for well-bracketed state changes [Devriese et al. 2016; Dreyer et al. 2010; Skorstengaard et al.
2018], as well as using Iris to mechanize logical relations using higher-level constructs [Giarrusso
et al. 2020; Timany and Birkedal 2019; Timany et al. 2017]. Our combination of the two is novel:
we use lightweight Kripke worlds and Iris saved predicates to allow for precisely tracking the
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relationship between intermediate logical states (which would be impossible using Iris invariants),
but we avoid solving recursive domain equations or working explicitly with step indices.

A final category of related work is on program logics for low-level code. Our program logic deals
with code stored in memory as data, uses continuations to specify sequences of instructions, in
combination with step-indexing to deal with unstructured control flow, and uses separation logic
to model the resources associated to registers and memory. These features can often be found in a
number of previous works [Cai et al. 2007; Chlipala 2011; Jensen et al. 2013; Myreen and Gordon
2007; Ni and Shao 2006]. The distinguishing feature of our program logic is that it is built on top of
an existing general purpose logic. Consequently, we can (and we do) exploit the powerful features
of Iris to reason about the low-level programs that we consider.

9 CONCLUSION

Local capabilities potentially provide an efficient but restricted revocation primitive in capability
machines, with many possible applications. We have demonstrated how uninitialized capabilities
can make them actually live up to this potential by solving an important performance problem.
Moreover, using our novel formalized model of capability safety, we have demonstrated that the
combination of local and uninitialized capabilities lends itself to machine-checked reasoning. In
particular, we have verified an implementation of a classical example from the literature, which
makes advanced use of local capability revocation through our modified calling convention. The
example is, by the way, longer than it looks (400 instructions after unfolding macros). This shows
the power of local capability revocation using uninitialized capabilities as well as the expressiveness
of our reasoning infrastructure. Finally, our initial results suggest that uninitialized capabilities
and our new calling convention can be practically applied in a more realistic setting like CHERI.
We believe these different results combined make a strong case for the addition of uninitialized
capabilities in CHERI and other capability machines.
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