
Execution Monitoring

Language-Based Security 2023
aslan@cs.au.dk

mailto:aslan@cs.au.dk

Monitoring for Security

• Monitoring for security is a very intuitive mechanism

• Ubiquitous in applications; often to enforce a form of access control

• Easy to deploy without deep understanding

• Today’s focus

• What can we actually enforce with monitoring?

Monitoring

TargetMonitor

I’m about to
perform action X

OK!

performs XUpdates monitor state

Monitoring

TargetMonitor

I’m about to
perform action X

NOPE

Stuck

Definition of Security Policy: A security policy is specified by giving a
predicate on sets of executions. A target S satisfies security policy ! if
and only if !!"S# equals true.

These definitions are broad4 (giving at least as much power for defining
computations that are disallowed by security policies as for specifying the
computations that are possible by targets) and correspond to the intuition
that security policies rule out target executions that are deemed unaccept-
able.

Given a security policy ! and sets " and $ of executions, note we do not
require that if " satisfies ! and $!" holds, then $ satisfies !. Imposing
such a requirement on security policies disqualifies interesting candidates.
For instance, the requirement precludes information flow (as defined
informally in Section 1) from being considered a security policy—universe
% of all finite and infinite state sequences satisfies information flow
(because, for this set of sequences, the value of no state component is
correlated with others), but a subset $ containing only those executions in
which the value of a variable x in each execution is correlated with the
value of y (say) might violate an information flow policy.

Safety Properties and EM Enforceability

By definition, enforcement mechanisms in EM work by monitoring execu-
tion of the target. Thus, any security policy ! that can be enforced using a
mechanism from EM must be specified by a predicate of the form

!!$#: !@! " $: !̂!!## (1)

where !̂ is a predicate on (individual) executions. !̂ formalizes the criteria
used by the enforcement mechanism for deciding whether or not to termi-
nate an execution that would otherwise violate the policy being enforced. In
Alpern and Schneider [1985] and the literature on linear-time concurrent
program verification, a set of executions is called a property if set member-
ship is determined by each element alone and not by other members of the
set. Using that terminology, we conclude from (1) that a security policy
must be a property in order for that policy to have an enforcement
mechanism in EM.

Not every security policy is a property. Some security policies cannot be
defined using the criteria that individual executions must each satisfy in
isolation. For example, the information flow policy discussed above charac-
terizes sets that are not properties (as proved in McLean [1994]5). Whether
information flows from variable x to y in a given execution depends, in

4The definitions clearly subsume the noninterference-based definition of security policy in
Goguen and Meseguer [1982].
5McLean acknowledged James Gray III as pointing out this limitation for dealing with
security in frameworks based on our property abstraction.

Enforceable Security Policies • 33

ACM Transactions on Information and System Security, Vol. 3, No. 1, February 2000.

Example setting: simple imperative language with I/O e ::= n | x | e1 op e2  

c ::= skip
 | x := e
 | c1; c2
 | if e then c1 else c2
 | while e do c
 | input (channel)
 | out (channel)

channel ::= secret | public

- Execution: sequence of I/O events
- Standard semantics, recording I/O events

Example policies:

- No public output after secret input
- Output to public channel must be copied to secret channel
- Public output does not depend on secret input

Exercise: specify the policy predicate for the above examples

Input(Secret, 42); Output (Public, 0); …

What can we enforce with Execution Monitoring?
1/3

Definition of Security Policy: A security policy is specified by giving a
predicate on sets of executions. A target S satisfies security policy ! if
and only if !!"S# equals true.

These definitions are broad4 (giving at least as much power for defining
computations that are disallowed by security policies as for specifying the
computations that are possible by targets) and correspond to the intuition
that security policies rule out target executions that are deemed unaccept-
able.

Given a security policy ! and sets " and $ of executions, note we do not
require that if " satisfies ! and $!" holds, then $ satisfies !. Imposing
such a requirement on security policies disqualifies interesting candidates.
For instance, the requirement precludes information flow (as defined
informally in Section 1) from being considered a security policy—universe
% of all finite and infinite state sequences satisfies information flow
(because, for this set of sequences, the value of no state component is
correlated with others), but a subset $ containing only those executions in
which the value of a variable x in each execution is correlated with the
value of y (say) might violate an information flow policy.

Safety Properties and EM Enforceability

By definition, enforcement mechanisms in EM work by monitoring execu-
tion of the target. Thus, any security policy ! that can be enforced using a
mechanism from EM must be specified by a predicate of the form

!!$#: !@! " $: !̂!!## (1)

where !̂ is a predicate on (individual) executions. !̂ formalizes the criteria
used by the enforcement mechanism for deciding whether or not to termi-
nate an execution that would otherwise violate the policy being enforced. In
Alpern and Schneider [1985] and the literature on linear-time concurrent
program verification, a set of executions is called a property if set member-
ship is determined by each element alone and not by other members of the
set. Using that terminology, we conclude from (1) that a security policy
must be a property in order for that policy to have an enforcement
mechanism in EM.

Not every security policy is a property. Some security policies cannot be
defined using the criteria that individual executions must each satisfy in
isolation. For example, the information flow policy discussed above charac-
terizes sets that are not properties (as proved in McLean [1994]5). Whether
information flows from variable x to y in a given execution depends, in

4The definitions clearly subsume the noninterference-based definition of security policy in
Goguen and Meseguer [1982].
5McLean acknowledged James Gray III as pointing out this limitation for dealing with
security in frameworks based on our property abstraction.

Enforceable Security Policies • 33

ACM Transactions on Information and System Security, Vol. 3, No. 1, February 2000.

Note: this eliminates some of the example policies we discussed; which ones?

What can we enforce with Execution Monitoring?
2/3

Monitor cannot foresee the future – places additional constraint on the policies

part, on what values y takes in other possible executions (and whether
those values are correlated with the value of x). A predicate to specify such
sets of executions cannot be constructed using only predicates defined on
single executions in isolation.

Not every property is EM enforceable. Enforcement mechanisms in EM
cannot base decisions on possible future execution, since that information
is, by definition, not available to such a mechanism, and this further
restricts what security policies can be enforced by EM mechanisms. Con-
sider security policy ! of (1), and suppose !! is the prefix of some finite or
infinite execution ! where !̂"!# $ true and !̂"!!# $ false hold. Because
execution of a target might terminate before !! is extended into !, an
enforcement mechanism for ! must prohibit !! (even though superse-
quence ! satisfies !̂).

We can formalize this requirement as follows. For ! a finite or infinite
execution having i or more steps, and "! a finite execution, let

!%..i& denote the prefix of ! involving its first i steps

"!! denote execution "! followed by execution !

and define '(to be the set of all finite prefixes of elements in set ' of
finite and/or infinite sequences. Then, the above requirement for !—that !
is prefix closed—is:

"@"! !)(: ¬!̂""!# f "@! !): ¬!̂""!!### (2)

Finally, note that any execution rejected by an enforcement mechanism
must be rejected after a finite period. This is formalized by:

"@! !): ¬!̂"!# f "?i: ¬!̂"!%..i&### (3)

Security policies satisfying (1), (2), and (3) are safety properties [Lamport
1977], properties stipulating that no “bad thing” happens during any
execution. Formally, a property * is defined in Lamport [1985] to be a
safety property if and only if, for any finite or infinite execution !,

! !! * f "?i: "@" !): !%..i&" !! *## (4)

holds. This means that * is a safety property if and only if * can be
characterized using a set of finite executions that are prefixes of all
executions excluded from *. Clearly, a security policy ! satisfying (1), (2),
and (3) has such a set of finite prefixes—the set of prefixes "! !)(such
that ¬!̂""!# holds—so ! is satisfied by sets that are safety properties
according to (4).

The above analysis of enforcement mechanisms in EM has established:

34 • F. B. Schneider

ACM Transactions on Information and System Security, Vol. 3, No. 1, February 2000.

finite prefixes

If security policy considers prefix as insecure, then must deem all extensions of also
insecure

�̂� τ �̂� τ

Note: this eliminates some other example policies we discussed; which ones?

What can we enforce with Execution Monitoring?
3/3

Execution rejected by an enforcement mechanism must be rejected after a finite period

part, on what values y takes in other possible executions (and whether
those values are correlated with the value of x). A predicate to specify such
sets of executions cannot be constructed using only predicates defined on
single executions in isolation.

Not every property is EM enforceable. Enforcement mechanisms in EM
cannot base decisions on possible future execution, since that information
is, by definition, not available to such a mechanism, and this further
restricts what security policies can be enforced by EM mechanisms. Con-
sider security policy ! of (1), and suppose !! is the prefix of some finite or
infinite execution ! where !̂"!# $ true and !̂"!!# $ false hold. Because
execution of a target might terminate before !! is extended into !, an
enforcement mechanism for ! must prohibit !! (even though superse-
quence ! satisfies !̂).

We can formalize this requirement as follows. For ! a finite or infinite
execution having i or more steps, and "! a finite execution, let

!%..i& denote the prefix of ! involving its first i steps

"!! denote execution "! followed by execution !

and define '(to be the set of all finite prefixes of elements in set ' of
finite and/or infinite sequences. Then, the above requirement for !—that !
is prefix closed—is:

"@"! !)(: ¬!̂""!# f "@! !): ¬!̂""!!### (2)

Finally, note that any execution rejected by an enforcement mechanism
must be rejected after a finite period. This is formalized by:

"@! !): ¬!̂"!# f "?i: ¬!̂"!%..i&### (3)

Security policies satisfying (1), (2), and (3) are safety properties [Lamport
1977], properties stipulating that no “bad thing” happens during any
execution. Formally, a property * is defined in Lamport [1985] to be a
safety property if and only if, for any finite or infinite execution !,

! !! * f "?i: "@" !): !%..i&" !! *## (4)

holds. This means that * is a safety property if and only if * can be
characterized using a set of finite executions that are prefixes of all
executions excluded from *. Clearly, a security policy ! satisfying (1), (2),
and (3) has such a set of finite prefixes—the set of prefixes "! !)(such
that ¬!̂""!# holds—so ! is satisfied by sets that are safety properties
according to (4).

The above analysis of enforcement mechanisms in EM has established:

34 • F. B. Schneider

ACM Transactions on Information and System Security, Vol. 3, No. 1, February 2000.

prefix of involving stepsσ i

Properties satisfying (1), (2), and (3) are safety properties
What does that mean?

Safety property ~ no “bad things” happen during any execution [Lamport 1977]
If security policy is not a safety policy, it is not enforceable by an execution monitor𝒫
Contra-positive:

Execution monitors enforce security policies that are safety properties

But not all safety properties are monitorable (limited monitor memory)

1) We can enforce by enforcing a stronger policy such that 𝒫 𝒫′ 𝒫′ ⟹ 𝒫

2) Monitors are composable

Consequences:

Security Automata

predicates, which are Boolean-valued effectively computable total functions
with domain I. Let pij denote the predicate that labels the edge from node
qi to node qj. Then, the security automaton, upon reading an input symbol
s, changes Q! to

"qjqi ! Q! ∧ pij#s$%

where pij#s$ is true if and only if input symbol s satisfies predicate pij.
In Figure 1, transition predicate not FileRead is assumed to be satisfied

by input symbols (system execution steps) that are not file read operations,
and transition predicate not Send is assumed to be satisfied by input
symbols that are not message-send operations. Since no transition is
defined from qfr for input symbols corresponding to message-send execution
steps, the security automaton in Figure 1 rejects inputs in which a Send
follows a FileRead.

Diagrams like Figure 1 are impractical to draw and hard to understand if
set Q of automaton states is large or transition function ! is complex. We
can avoid these difficulties by encoding current state Q! for an automaton
in multiple variables and by using guarded commands [Dijkstra 1975] to
describe the transition function for the security automaton. Guarded com-
mand

B 3 S (5)

specifies that the state transition defined by program fragment S occurs
whenever predicate B is satisfied by the current input symbol and the
current state of the automaton. In (5), B is called the guard, and it is a
predicate that can refer only to the current input symbol and to the
variables encoding the current state of the automaton; S is called the
command, and it is a computation that updates (only) the variables
encoding the current state of the automaton.

To illustrate this alternative notation for security automata, Figure 2
gives a specification for the same security policy as given in Figure 1. The
state vars section of this specification introduces the variables that encode
the current state of the security automaton. The transitions section gives
a list of guarded commands that define the transition function. In Figure 2,

qnfr qfr
FileRead

not FileRead not Send

Fig. 1. No Send after FileRead.

Enforceable Security Policies • 37

ACM Transactions on Information and System Security, Vol. 3, No. 1, February 2000.

No Send after FileRead

Monitoring can be implemented as a
security automata ~ an NFA-like automata

Expressive enough for many access control policies

Implementing monitoring?

1) Monitor as part of the runtime

2) Inlining monitoring

 - Rewriting code to encode the state of the monitor

What can monitors do?

• Schneider’s definition: only fail-stop monitoring

• Extensions

• Edit automata [Ligatti, 2005]: suppress/insert additional actions

• [Basin et al, 2013] Distinction between observable and controllable events

• These decisions are relevant when sandboxing

Summary

• Security policies as predicates on sets of executions (very
general definition)

• Monitoring can only enforce safety properties

