Execution Monitoring

Language-Based Security 2023 aslan@cs.au.dk

Monitoring for Security

- Monitoring for security is a very intuitive mechanism
 - Ubiquitous in applications; often to enforce a form of access control
 - Easy to deploy without deep understanding
- Today's focus
 - What can we actually enforce with monitoring?

Stuck

and only if $\mathcal{P}(\Sigma_S)$ equals *true*.

Example setting: simple imperative language with I/C

- Standard semantics, recording I/O events

- Execution: sequence of I/O events

Input(Secret, 42); Output (Public

Example policies:

- No public output after secret input
- Output to public channel must be copied to secret channel
- Public output does not depend on secret input

Exercise: specify the policy predicate for the above examples

Definition of Security Policy: A security policy is specified by giving a predicate on sets of executions. A target S satisfies security policy \mathcal{P} if

e ::= n | x |
$$e_1$$
 op e_2
c ::= skip
x := e
C_1; C_2
if e then c_1 else c_2
while e do c
input (channel)
out (channel)
channel ::= secret | public

What can we enforce with Execution Monitoring? 1/3

By definition, enforcement mechanisms in EM work by monitoring execution of the target. Thus, any security policy \mathcal{P} that can be enforced using a mechanism from EM must be specified by a predicate of the form

where $\hat{\mathcal{P}}$ is a predicate on (individual) executions.

Note: this eliminates some of the example policies we discussed; which ones?

 $\mathcal{P}(\Pi): (\forall \sigma \in \Pi: \hat{\mathcal{P}}(\sigma))$ (1)

What can we enforce with Execution Monitoring? 2/3

finite prefixes $(\forall \tau' \in \Psi^{-}: \neg \hat{\mathscr{P}}(\tau') \Rightarrow$

If security policy $\hat{\mathscr{P}}$ considers prefix τ as insecure, then $\hat{\mathscr{P}}$ must deem all extensions of τ also insecure

Note: this eliminates some other example policies we discussed; which ones?

Monitor cannot foresee the future – places additional constraint on the policies

$$(\forall \sigma \in \Psi: \neg \hat{\mathscr{P}}(\tau' \sigma))) \tag{2}$$

What can we enforce with Execution Monitoring? 3/3

Execution rejected by an enforcement mechanism must be rejected after a finite period

prefix of σ involving *i* steps

 $(\forall \sigma \in \Psi: \neg \hat{\mathcal{P}}(\sigma) \Rightarrow (\exists i: \neg \hat{\mathcal{P}}(\sigma[...i])))$

(3)

Properties satisfying (1), (2), and (3) are <u>safety properties</u> What does that mean?

Safety property ~ no "bad things" happen during any execution [Lamport 1977] If security policy \mathcal{P} is not a safety policy, it is *not* enforceable by an execution monitor Contra-positive:

Execution monitors enforce security policies that are safety properties

But not all safety properties are monitorable (limited monitor memory)

Consequences:

1) We can enforce \mathscr{P} by enforcing a stronger policy \mathscr{P}' such that $\mathscr{P}' \Longrightarrow \mathscr{P}$

2) Monitors are composable

Security Automata

Monitoring can be implemented as a security automata ~ an NFA-like automata

Expressive enough for many access control policies

No Send after FileRead

Implementing monitoring?

Monitor as part of the runtime Inlining monitoring Rewriting code to encode the state of the monitor

What can monitors do?

- Schneider's definition: only fail-stop monitoring
- Extensions
 - Edit automata [Ligatti, 2005]: suppress/insert additional actions
 - [Basin et al, 2013] Distinction between observable and controllable events

• These decisions are relevant when *sandboxing*

- general definition)
- Monitoring can only enforce safety properties

Summary

• Security policies as predicates on sets of executions (very