
aslan@cs.au.dk

Capabilities: principles and
object capabilities

acknowledgements: Lau Skorstengaard

888 888888b. 888 .d8888b. d8b 888 .d8888b. .d8888b. .d8888b. .d8888b.
888 888 "88b 888 d88P Y88b Y8P 888 d88P Y88b d88P Y88b d88P Y88b d88P Y88b
888 888 .88P 888 Y88b. 888 888 888 888 888 .d88P
888 8888b. 88888b. .d88b. 888 888 8888b. .d88b. .d88b. 8888888K. 8888b. .d8888b .d88b. .d88888 "Y888b. .d88b. .d8888b 888 888 888d888 888 888888 888 888 .d88P 888 888 .d88P 8888"
888 "88b 888 "88b d88P"88b 888 888 "88b d88P"88b d8P Y8b 888 "Y88b "88b 88K d8P Y8b d88" 888 "Y88b. d8P Y8b d88P" 888 888 888P" 888 888 888 888 .od888P" 888 888 .od888P" "Y8b.
888 .d888888 888 888 888 888 888 888 .d888888 888 888 88888888 888888 888 888 .d888888 "Y8888b. 88888888 888 888 "888 88888888 888 888 888 888 888 888 888 888 d88P" 888 888 d88P" 888 888
888 888 888 888 888 Y88b 888 Y88b 888 888 888 Y88b 888 Y8b. 888 d88P 888 888 X88 Y8b. Y88b 888 Y88b d88P Y8b. Y88b. Y88b 888 888 888 Y88b. Y88b 888 888" Y88b d88P 888" Y88b d88P
88888888 "Y888888 888 888 "Y88888 "Y88888 "Y888888 "Y88888 "Y8888 8888888P" "Y888888 88888P' "Y8888 "Y88888 "Y8888P" "Y8888 "Y8888P "Y88888 888 888 "Y888 "Y88888 888888888 "Y8888P" 888888888 "Y8888P"
 888 888 888
 Y8b d88P Y8b d88P Y8b d88P
 "Y88P" "Y88P" "Y88P"

mailto:aslan@cs.au.dk

Administrativia

• We split capabilities over two classes

• Today: capability principles and object capabilities

• Next week: guest lecture by Aina on capability machines

Secure design principles [Saltzer & Schroeder’ 1975]

Economy of mechanism simple design makes it feasible to evaluate all possible paths

Fail-safe defaults conservative defaults make security errors observable

Complete mediation
check every access to every object; skeptically examine performance gains that sacrifice
security

Open design decouple protection by keys from design; it is not realistic to maintain secrecy for the
design of a system that is widely used

Separation of privilege if feasible, avoid single point of compromise

Least privilege limit the damage from error (cf. “need-to-know”)

Least common mechanism every shared mechanism presents a new path to leak information

Psychological acceptability design for human use

Every program and every user of the system should
operate using the least set of privileges necessary to

complete the job

Access control

• A mechanism for enforcing confidentiality and integrity

• Predefined security-sensitive operations

• e.g., Read/Write/Execute

• Reference monitor (e.g., OS) consulted whenever predefined operations are invoked

• Access control policy specifies which operations a principal (subject) can do on an
object

a form of authorization

cf. F.B.Schneider’s draft textbook on cybersecurity

Confused deputy

• Compiler installed in directory /SYSX/

• It has a flag for outputting debug information into a user-specified file

• Compiler also writes usage statistics info into /SYSX/STAT
• The compiler therefore has write permission to /SYSX (the home license)

• There is also a billing file /SYSX/BILL

• Integrity attack

• User learns about the name of /SYSX/BILL and supplies it as the name of debugging info
• The attack works because compiler can write to /SYSX

[Hardy, 1988]

Who is to blame in this example?

• The compiler should have scanned the specified output destination to make sure that
the debug information was not written to a different directory?

• No, it is useful to allow the user to write the debug info in a different directory.

• The compiler should have checked the the directory was not SYSX.

• Again no, the SYSX folder may not have been invented when the compiler was written, and a
user may have a legitimate reason to use SYSX.

• The compiler should have checked that the specified file for output was not SYSX/BILL!

• No, that may not be the only sensitive file in SYSX, and it is not the compiler’s job to enforce
access control.

Hardy, 1988

“The fundamental problem is that the compiler runs with
authority stemming from two sources (that’s why the
compiler is a confused deputy)”

the user the home
license

Permission and Authority

• Permissions specify direct access rights

• Authority is the ability to cause effects

• Directly by permission, or

• Indirectly by permitted interactions with other programs

• In confused deputy, the user has authority to write to SYSX/BILL despite having no
permission

• Gap between permissions and authority ⟹ leakage of access rights

• Can we make it so that “reasoning about permissions” ~ “reasoning about authority”?

[Miller, 2006]

Capability model

• Traditional access control policies separate designation (knowing a name) from
permission
• (a user may have no permission to SYSX/BILL but they know the file name)

• Main idea in capability model:
• Combine designation and access right into a capability
• Possession of a capability grants the access

• It is therefore crucial that capabilities are unforgeable
- Prevents creating authority out of thin air

• Capabilities may be shared between components
- They can also be attenuated to comply with the principle of least privilege

• Simplifies reasoning about authority
• No capabilities means no access

[Dennis and van Horn, 1965]

Capability is an unforgeable token of authority

The confused deputy example and capabilities

• In a capability system

• Compiler would have capability for the file containing statistics

• User supplies capability instead of location

• Confused despite problem is no problem with capabilities :-)

Capabilities in operating systems

• KeyKOS [1992], EROS [1999], Coyotos [2004], PSOS[2003]
• Pure-capability systems that use both OS capability and hardware capabilities

• seL4[2009]
• Based on L4 microkernel
• Formally verified in Isabelle
• Uses capabilities as access control mechanisms
• Does not rely on special hardware

• CheriBSD [2014]
• Adoption of FreeBSD to run on CHERI architecture
• Uses CHERI’s capability-based memory protection

Object Capabilities

Object-capability model

• In object-oriented model, there is no need to describe access control as a separate
concern

• All we need is abstraction and modularity (that are highly emphasized already)

• Compare:

• Principle of information hiding:
• abstractions should hand out information only on a need to know basis

• Principle of least privilege
• authority should be handed out only on a need to know basis

• Access abstractions through encapsulation

based on [Miller, 2006]

Object-capability model
• Object model (recall from prior courses)

• No distinction between subjects and objects – “everything is an object”
• Objects consist of code and state

• State is a mutable collection of references objects
• Objects behave according to their code
• Interaction between objects by sending messages over references

• Object-capability model
• No distinction between subjects and objects – “everything is an object”
• Objects consist of code and state

• State is a mutable collection of references objects
• Objects behave according to their code
• Interaction between objects only by sending messages over references

• Reference graph == access graph

Terminology

Instance or data

Combination of data and code
- Behavior of instance described by code

Access to an object indivisible combining
- designation of object

- access permission

- means of access

Reference to non-data

Object
Instance

Reference

Capability

Object-capability model: graph dynamics

• Initial conditions

• An initial access graph dictates the initial references in the system.

• Parenthood

• At the moment of object creation, the creator holds the sole reference for the newly created object.

• Endowment

• At object creation, the creator may make some of their references available

• Introduction

• References can be sent in messages.
• This is the only way to obtain existing references

References can only be obtained according to the following rules

Connectivity by

Object orientation and object capabilities

• Not every language with objects follows the object-capability model

• Languages that do not follow object capability model

• C++
• possible to forge references by casting integers to pointers

• C# and Java
• public interface is circumvented when instance variables are assigned indirectly

• What does it take to make Java satisfy object-capability model?

Differences between Joe-E and Java

• Part of reflection API disabled
• Reflection API can circumvent private access modifiers

• Prohibit overwriting finalize ()

• Limit global scope
• Java programs have ambient authority over outside world
• In Joe-E

• No ambient authority
• Dependency injection required

• Tamed Java library
• Library contains constructors, methods, and fields that grants arbitrary authority.
• Remove these from library or make safe versions when possible

• getParentFile()
• File (File dir, String child) - File (null, path)

Joe-E programs are Java programs with added restrictions

Differences between Joe-E and Java

• Only allow static final Immutable field
• Immutable

• Joe-E tagging interface
• Deeply immutable

• Static fields not associated with object – ambiently available

• All exceptions must be Immutable
• Means for transferring control and references unexpectedly
• Immutable exceptions cannot transfer capabilities

• Prevent catching Errors
• Prevent finally keyword – can be used to catch Errors
• finally for Exceptions can be encoded with try and catch

Further restrictions

Revoking and limiting authority

• In Joe-E and other object capability languages:

• Capabilities cannot be restricted
• Solved by facet patterns

• Defines additional interface for manipulating state

• Capabilities are irrevocable
• Solved by: Revocable capability patterns

• e.g., Java decorator pattern

Facet pattern in Joe-E
Restricting authority

Caretaker pattern in E
revocation with capabilities

Membrane pattern in E
Revocation with capabilities

Object-capability languages

• E, Joe-E

• Google Caja

• Capability safe subset of JavaScript

• SafeEcmaScript
• https://github.com/tc39/proposal-ses

• Shill

• Capability-based shell scripting language

• Midori

Summary

• Capability concept

• Motivation: example of confused deputy

• Capabilities
• unforgeable token of authority

• combine designation and access

• Object Capability Model

• Principle of encapsulation coincide with least privilege

• Capability safety requires restrictions on many language features

• Patterns for programming with capabilities

