
aslan@cs.au.dk

Memory safety: attacks, defenses,
and principles

mailto:aslan@cs.au.dk

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Traditional definitions of Memory Safety

• Bad things, called memory access errors, must not occur
• buffer overflow
• null pointer dereference
• use after free
• use of uninitialized memory
• illegal free (of an already-freed pointer, or a non-malloced pointer)

• Not a very satisfying definition: Wikipedia article for memory safety lists many
other bad things that must not happen; such lists are non-exhaustive :(
• Ideally, ruling out above errors out should be a consequence of a good definition!

• Alas, we don’t really have one; alternative definitions typically have semantic shortcomings of various
flavors (ask me later in the course!). Hicks’s principle of no accesses to undefined memory is a good
approximation.

e.g., based on [SoK: Eternal War in Memory]

Memory Safety and Security
• Memory safety is paramount to security!

• Lack of memory safety exposes low-level interiors of crucial abstractions, which leads to
catastrophic attacks

• Memory safety by itself does not imply security!
• Plenty of opportunities for higher-level bugs

• For example, in Assignment #1, the backend is written in a memory-safe language (JavaScript)

• Today:
• Introduction to classical memory safety attacks

• Buffer overflows
• Return-oriented programming (ROP)

• Defenses
• Page table protection (W⊕X)
• Address-Space Layout Randomization (ASLR)
• Control-Flow Integrity (CFI)

Buffer overflows

Acknowledgments: Andrei Sabelfeld

stack pointer
frame pointer

Background: Virtual Address Space
0x000000

0xffffff

unused

TEXT segment

Heap

mapped to shared libs

DATA segment

mapped to shared libs

Stack

Physical memory pages

sp
fp

Vi
rt

ua
l a

dd
re

ss
 sp

ac
e

of
 a

 p
ro

ce
ss

highest memory address

lowest memory address

Stack grows from
higher addresses to
lower ones

/proc/[proc_id]/maps

$ pmap -X 2448
2448: ./a.out
 Address Perm Offset Device Inode Size Rss Pss Referenced Anonymous Swap Locked Mapping
 00400000 r-xp 00000000 fd:01 262808 4 4 4 4 0 0 0 a.out
 00600000 r--p 00000000 fd:01 262808 4 4 4 4 4 0 0 a.out
 00601000 rw-p 00001000 fd:01 262808 4 4 4 4 4 0 0 a.out
 00d32000 rw-p 00000000 00:00 0 132 4 4 4 4 0 0 [heap]
 7f5398b47000 r-xp 00000000 fd:01 393517 1792 248 20 248 0 0 0 libc-2.23.so
 7f5398d07000 ---p 001c0000 fd:01 393517 2048 0 0 0 0 0 0 libc-2.23.so
 7f5398f07000 r--p 001c0000 fd:01 393517 16 16 16 16 16 0 0 libc-2.23.so
 7f5398f0b000 rw-p 001c4000 fd:01 393517 8 8 8 8 8 0 0 libc-2.23.so
 7f5398f0d000 rw-p 00000000 00:00 0 16 8 8 8 8 0 0
 7f5398f11000 r-xp 00000000 fd:01 393333 152 128 10 128 0 0 0 ld-2.23.so
 7f5399128000 rw-p 00000000 00:00 0 12 12 12 12 12 0 0
 7f5399136000 r--p 00025000 fd:01 393333 4 4 4 4 4 0 0 ld-2.23.so
 7f5399137000 rw-p 00026000 fd:01 393333 4 4 4 4 4 0 0 ld-2.23.so
 7f5399138000 rw-p 00000000 00:00 0 4 4 4 4 4 0 0
 7ffc8725e000 rw-p 00000000 00:00 0 136 12 12 12 12 0 0 [stack]
 7ffc8735c000 r-xp 00000000 00:00 0 8 4 0 4 0 0 0 [vdso]
ffffffffff600000 r-xp 00000000 00:00 0 4 0 0 0 0 0 0 [vsyscall]
 ==== === === ========== ========= ==== ======
 4348 464 114 464 80 0 0 KB

unused

TEXT segment

Heap

mapped to shared libs

DATA segment

mapped to shared libs

Stack

Vi
rt

ua
l a

dd
re

ss
 sp

ac
e

of
 a

 p
ro

ce
ss

Stack

unused

TEXT segment

Heap

mapped to shared libs

DATA segment

mapped to shared libs

Stack

St
ac

k

lower memory addresses

higher memory addresses

Stack grows from
higher addresses to
lower ones

Call stack organization

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

argNarg1

Caller runs: push argN; … ;push arg1;
call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (locals)
// … body of the callee
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fp …

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

argNarg1

Caller runs: push argN; … ;push arg1;
call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (locals)
// … body of the callee
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fp …

Call stack organization

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

argNarg1

Caller runs: push argN; … ;push arg1;
call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (locals)
// … body of the callee
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fp …

Call stack organization

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

argNarg1

Caller runs: push argN; … ;push arg1;
call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (locals)
// … body of the callee
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fp …

Call stack organization

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

argNarg1

Caller runs: push argN; … ;push arg1;
call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (locals)
// … body of the callee
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fp …

Call stack organization

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

argNarg1

Caller runs: push argN; … ;push arg1;
call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (locals)
// … body of the callee
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fp …locals

Call stack organization

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fp

argNarg1

Caller runs: push argN; … ;push arg1;
call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (locals)
// … body of the callee
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fp …locals

sp

Call stack organization

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

argNarg1

Caller runs: push argN; … ;push arg1;
call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (locals)
// … body of the callee
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fp …locals

fpsp

Call stack organization

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

argNarg1

Caller runs: push argN; … ;push arg1;
call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (locals)
// … body of the callee
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fp …locals

fpsp

Call stack organization

Buffer overflows

• Classical attack vector

• Extremely prevalent up to mid-2000s

• variations of the attack still possible today

• Main cause: C and C++ do not perform array bound checks

• “Overflow” = writing past the end of an array/buffer

• Basic attack relies on accomplishing two tasks

• Hijack control (by overwriting RET address)

• Plant malicious code (payload)

Traditionally vulnerable C functions

•strcpy, strcat, sprintf, scanf, sscanf, gets

• No bounds checked

• Example: • Reads a buffer from stdin

• No checks for buffer sizes

• \n (new line) or ^D (EOF) terminate

the string

#include <stdio.h>

int main () {
 char buffer [512];
 gets(buffer);
 return 0;
}

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es

stack growth

fpsp

argNarg1retsaved_fp …buffernormal input

Traditionally vulnerable C functions

•strcpy, strcat, sprintf, scanf, sscanf, gets

• No bounds checked

• Example: • Reads a buffer from stdin

• No checks for buffer sizes

• \n (new line) or ^D (EOF) terminate

the string

#include <stdio.h>

int main () {
 char buffer [512];
 gets(buffer);
 return 0;
}

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es

stack growth

fpsp

argNarg1retsaved_fp …buffer attacker input

Shellcode

• Shellcode spawns a shell under the uid of the current process
• If uid is elevated to root, this gives rootshell

• Attacker goals
• Find how to embed the shellcode

• in the simplest case: the buffer itself
• Ensure that writing to the buffer overwrites the return address
• Ensure that return pointer points to the shellcode

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es

stack growth

fpsp

argNarg1retsaved_fp …buffer shell code

Stack smashing

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

Caller runs: call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (buffer)
gets(buffer)
sp := fp
fp := pop ()
ret // pops ret off the stack

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

Caller runs: call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (buffer)
gets(buffer)
sp := fp
fp := pop ()
ret // pops ret off the stack

ret

Stack smashing

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

sp

Caller runs: call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (buffer)
gets(buffer)
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fp

fp

Stack smashing

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

Caller runs: call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (buffer)
gets(buffer)
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fp

Stack smashing

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

Caller runs: call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (buffer)
gets(buffer)
sp := fp
fp := pop ()
ret // pops ret off the stack

retsaved_fpbuffer

Stack smashing

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

Caller runs: call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (buffer)
gets(buffer)
sp := fp
fp := pop ()
ret // pops ret off the stack

codeNOPs | shell

Stack smashing

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fpsp

Caller runs: call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (buffer)
gets(buffer)
sp := fp
fp := pop ()
ret // pops ret off the stack

saved_fpcodeNOPs | shell

Stack smashing

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fp sp

Caller runs: call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (buffer)
gets(buffer)
sp := fp
fp := pop ()
ret // pops ret off the stack

saved_fpcodeNOPs | shell

?

Stack smashing

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

fp sp

Caller runs: call F // push return_address; jmp F

Callee runs: push fp
fp := sp
sp := sp - sizeof (buffer)
gets(buffer)
sp := fp
fp := pop ()
ret // pops ret off the stack

saved_fpcodeNOPs | shell

?

execution continues form here

Stack smashing

NOP sled

hi
gh

 a
dd

re
ss

es

lo
w

 a
dd

re
ss

es
stack growth

sp

saved_fpNOP | NOP | … | NOP | <Shell code>

Adding NOP instructions in front of the shell
code makes it easier go guess the offset from the
return address into the start of the buffer.

Protection: coding practice

• Type-safe languages

• Type-safe systems languages: Rust

• If you have to use C/C++

• strcpy → strncpy

• safe libraries

• restrict the scope of elevated privileges

Protection: basic defenses

• Stack canaries
• writing a special value on the stack after RET address upon function entry, and checking it before returning

• effective when attacker is limited to linear sequential writes
• terminator canary (0x000aff0d) that is effective against strcpy/gets or randomized

- question: why?

• good performance

• ineffective against overwrites of RET address and do not protect indirect calls and jumps

• Shadow stacks

• save return address to separate shadow stack, and compare with it upon return
• idea: corrupting two return addresses is harder than one

• performance overhead: shadow stack itself may need to be protected:
• NEW: hardware support in the modern (circa 2021) processors from Intel and AMD

• issues with compatibility: extra complexity when unwinding stack in exception handling

• still only protects backward (RET) edges

Protection: other defenses

• System support
• Non-executable stack:

• So-called W⊕X memory protection:
- pages that can be written cannot be executed
- executable pages cannot be written to

• Rational: even if the stack is smashed, the memory page is marked as nonexecutable:

• Only partial defense:
• other attacks are possible: return-to-libc/ROP

• Address Space Layout Randomization

• Compiler level: Static Control-Flow Integrity

/proc/[proc_id]/maps

$ pmap -X 2448
2448: ./a.out
 Address Perm Offset Device Inode Size Rss Pss Referenced Anonymous Swap Locked Mapping
 00400000 r-xp 00000000 fd:01 262808 4 4 4 4 0 0 0 a.out
 00600000 r--p 00000000 fd:01 262808 4 4 4 4 4 0 0 a.out
 00601000 rw-p 00001000 fd:01 262808 4 4 4 4 4 0 0 a.out
 00d32000 rw-p 00000000 00:00 0 132 4 4 4 4 0 0 [heap]
 7f5398b47000 r-xp 00000000 fd:01 393517 1792 248 20 248 0 0 0 libc-2.23.so
 7f5398d07000 ---p 001c0000 fd:01 393517 2048 0 0 0 0 0 0 libc-2.23.so
 7f5398f07000 r--p 001c0000 fd:01 393517 16 16 16 16 16 0 0 libc-2.23.so
 7f5398f0b000 rw-p 001c4000 fd:01 393517 8 8 8 8 8 0 0 libc-2.23.so
 7f5398f0d000 rw-p 00000000 00:00 0 16 8 8 8 8 0 0
 7f5398f11000 r-xp 00000000 fd:01 393333 152 128 10 128 0 0 0 ld-2.23.so
 7f5399128000 rw-p 00000000 00:00 0 12 12 12 12 12 0 0
 7f5399136000 r--p 00025000 fd:01 393333 4 4 4 4 4 0 0 ld-2.23.so
 7f5399137000 rw-p 00026000 fd:01 393333 4 4 4 4 4 0 0 ld-2.23.so
 7f5399138000 rw-p 00000000 00:00 0 4 4 4 4 4 0 0
 7ffc8725e000 rw-p 00000000 00:00 0 136 12 12 12 12 0 0 [stack]
 7ffc8735c000 r-xp 00000000 00:00 0 8 4 0 4 0 0 0 [vdso]
ffffffffff600000 r-xp 00000000 00:00 0 4 0 0 0 0 0 0 [vsyscall]
 ==== === === ========== ========= ==== ======
 4348 464 114 464 80 0 0 KB

rw-p … [stack]

Return-to-libc attacks

• If the stack is non-executable, but we can still smash it, where else can we point the
return address to?

• Possibility: some existing function in libc (or other linked library) that is executable

• Lots of “useful” functionality

• The pages are marked as executable

• Example attack:

• smash the stack and point “RET” to a libc function that already does what we want

• “Chained return-to-libc” calls:

• calling multiple functions in succession

Return-Oriented Programming
Based on the article by

Ryan Roemer, Erik Buchanan, Hovan Shacham and Stefan Savage

Return-oriented programming

• Observation: attacker doesn’t really need a whole libc- function; only a sequence of
instructions followed by a return:

• Example: pop %edx; ret

• All we need is chain these sequences to get the desired behavior

• How to chain them?

• Use stack pointer as the “attack-level instruction pointer”

Ordinary and return-oriented programs

10 · Ryan Roemer et al.

Address Storage

Low Memory
%sp Top of the stack
%sp - %sp+31 Saved registers %l[0-7]
%sp+32 - %sp+63 Saved registers %i[0-7]
%sp+64 - %sp+67 Return struct for next call
%sp+68 - %sp+91 Outgoing arg. 1-5 space for caller
%sp+92 - up Outgoing arg. 6+ for caller (variable)
%sp+ Current local variables (variable)
%fp-

%fp Top of the frame (previous %sp)
%fp - %fp+31 Prev. saved registers %l[0-7]
%fp+32 - %fp+63 Prev. saved registers %i[0-7]
%fp+64 - %fp+67 Return struct for current call
%fp+68 - %fp+91 Incoming arg. 1-5 space for callee
%fp+92 - up Incoming arg. 6+ for callee (variable)
High Memory

Fig. 1. SPARC Stack Layout

insn insn insninsn insn

instruction

pointer

Fig. 2. Layout of an ordinary program

stack
pointer

C library
insns … ret

insns … ret

insns … ret

insns … ret

insns … ret

Fig. 3. Layout of a return-oriented program

shell. Other notable exploits include Ivaldi’s [Ivaldi 2007] collection of various SPARC
return-into-libc examples ranging from pure return-into-libc attacks to hybrid techniques
for injecting shell code into executable segments outside the stack.

4. RETURN-ORIENTED PROGRAMMING

4.1 Principles of Return-Oriented Programming

In this section, we lay out the principles of return-oriented programming, comparing it to
the traditional way in which computers are programmed for legitimate purposes. While
our examples draw on x86 assembly, the principles are widely applicable.

The principles we describe are the result of working out the implications of the fol-
lowing: How should programs be constructed if the stack pointer takes the place of the
instruction pointer?

4.1.1 Program Layout. An ordinary program is made up of a series of machine in-
structions laid out in the program’s text segment. Each instruction is a byte pattern that,
interpreted by the processor, induces some change in the program’s state. The instruction
pointer governs what instruction is to be fetched next; it is automatically advanced by the
ACM Journal Name, Vol. V, No. N, Month 20YY.

Layout of an ordinary program

10 · Ryan Roemer et al.

Address Storage

Low Memory
%sp Top of the stack
%sp - %sp+31 Saved registers %l[0-7]
%sp+32 - %sp+63 Saved registers %i[0-7]
%sp+64 - %sp+67 Return struct for next call
%sp+68 - %sp+91 Outgoing arg. 1-5 space for caller
%sp+92 - up Outgoing arg. 6+ for caller (variable)
%sp+ Current local variables (variable)
%fp-

%fp Top of the frame (previous %sp)
%fp - %fp+31 Prev. saved registers %l[0-7]
%fp+32 - %fp+63 Prev. saved registers %i[0-7]
%fp+64 - %fp+67 Return struct for current call
%fp+68 - %fp+91 Incoming arg. 1-5 space for callee
%fp+92 - up Incoming arg. 6+ for callee (variable)
High Memory

Fig. 1. SPARC Stack Layout

insn insn insninsn insn

instruction

pointer

Fig. 2. Layout of an ordinary program

stack
pointer

C library
insns … ret

insns … ret

insns … ret

insns … ret

insns … ret

Fig. 3. Layout of a return-oriented program

shell. Other notable exploits include Ivaldi’s [Ivaldi 2007] collection of various SPARC
return-into-libc examples ranging from pure return-into-libc attacks to hybrid techniques
for injecting shell code into executable segments outside the stack.

4. RETURN-ORIENTED PROGRAMMING

4.1 Principles of Return-Oriented Programming

In this section, we lay out the principles of return-oriented programming, comparing it to
the traditional way in which computers are programmed for legitimate purposes. While
our examples draw on x86 assembly, the principles are widely applicable.

The principles we describe are the result of working out the implications of the fol-
lowing: How should programs be constructed if the stack pointer takes the place of the
instruction pointer?

4.1.1 Program Layout. An ordinary program is made up of a series of machine in-
structions laid out in the program’s text segment. Each instruction is a byte pattern that,
interpreted by the processor, induces some change in the program’s state. The instruction
pointer governs what instruction is to be fetched next; it is automatically advanced by the
ACM Journal Name, Vol. V, No. N, Month 20YY.

Layout of a return-oriented
program

To kick-off an ROP program we start w/ a ret

Ordinary and return-oriented programs Return-Oriented Programming · 11

stack
pointer

C library
ret

nop

instruction
pointer

nop nop

Fig. 4. Ordinary and return-oriented nop sleds

C library

stack
pointer

0xdeadbeef

pop %ebx; ret

mov $0xdeadbeef, %eax
(bb ef be ad de)

instruction
pointer

Fig. 5. Ordinary and return-oriented immediates

processor after each instruction, so that instructions are interpreted in sequence, barring a
jump or other transfer of control flow. This situation is illustrated in Figure 2.

A return-oriented program is made up of a particular layout of the stack segment. Each
return-oriented instruction is a word on the stack pointing to an instruction sequence (in
the sense of ordinary programs above) somewhere in the exploited program’s memory.
(We can think of these pointers as being byte patterns in an idiosyncratic new instruction
set.) The stack pointer governs what return-oriented instruction sequence is to be fetched
next, in the following way. The execution of a ret instruction has two effects: first, the
word to which %esp points is read and used as the new value for %eip; second, %esp is
incremented by 4 bytes to point to the next word on the stack. If the instruction sequence
now being executed by the processor also ends in a ret, this process will be repeated, again
advancing %esp and inducing execution of another instruction sequence. This situation is
illustrated in Figure 3.

Whereas for ordinary programs the processor takes care of fetching the next instruction
and advancing the instruction pointer, in return-oriented programming it is the ret instruc-
tion at the end of each instruction sequence that induces fetch-and-decode in a return-
oriented program, like the carriage return key on a manual typewriter. (The processor still
takes care of advancing %eip within an instruction sequence, but this is now in effect an
implementation detail, the way a single x86 instruction might be implemented internally
by a series of smaller microinstructions.)

4.1.2 No-op Instructions. The simplest instruction is the no-op, which has no effect
except advancing the program counter. Instruction sets generally include such an instruc-
tion; on the x86, one can use nop. In return-oriented programming, a no-op is simply a
stack word containing the address of a ret instruction. These can be composed to form a
“nop sled,” as illustrated in Figure 4.

4.1.3 Encoding Immediate Constants. Instructions in ordinary programming can en-
code immediate constants. For example, the instruction mov 0xdeadbeef, %eax, which sets
%eax to the value deadbeef, is encoded as bb ef be ad de, where the last four bytes
are the little-endian representation of deadbeef. We can thus view the instruction stream
in an ordinary program as including both operations and certain immediate operands that
the instructions operate on. In return-oriented programming a similar effect is possible
when instruction sequences include a pop reg instruction. For example, a pop %ebx; ret
sequence will store the next word on the stack in %ebx and advance the stack pointer past
it. This is illustrated in Figure 5.

ACM Journal Name, Vol. V, No. N, Month 20YY.

NOP sleds

Return-Oriented Programming · 11

stack
pointer

C library
ret

nop

instruction
pointer

nop nop

Fig. 4. Ordinary and return-oriented nop sleds

C library

stack
pointer

0xdeadbeef

pop %ebx; ret

mov $0xdeadbeef, %eax
(bb ef be ad de)

instruction
pointer

Fig. 5. Ordinary and return-oriented immediates

processor after each instruction, so that instructions are interpreted in sequence, barring a
jump or other transfer of control flow. This situation is illustrated in Figure 2.

A return-oriented program is made up of a particular layout of the stack segment. Each
return-oriented instruction is a word on the stack pointing to an instruction sequence (in
the sense of ordinary programs above) somewhere in the exploited program’s memory.
(We can think of these pointers as being byte patterns in an idiosyncratic new instruction
set.) The stack pointer governs what return-oriented instruction sequence is to be fetched
next, in the following way. The execution of a ret instruction has two effects: first, the
word to which %esp points is read and used as the new value for %eip; second, %esp is
incremented by 4 bytes to point to the next word on the stack. If the instruction sequence
now being executed by the processor also ends in a ret, this process will be repeated, again
advancing %esp and inducing execution of another instruction sequence. This situation is
illustrated in Figure 3.

Whereas for ordinary programs the processor takes care of fetching the next instruction
and advancing the instruction pointer, in return-oriented programming it is the ret instruc-
tion at the end of each instruction sequence that induces fetch-and-decode in a return-
oriented program, like the carriage return key on a manual typewriter. (The processor still
takes care of advancing %eip within an instruction sequence, but this is now in effect an
implementation detail, the way a single x86 instruction might be implemented internally
by a series of smaller microinstructions.)

4.1.2 No-op Instructions. The simplest instruction is the no-op, which has no effect
except advancing the program counter. Instruction sets generally include such an instruc-
tion; on the x86, one can use nop. In return-oriented programming, a no-op is simply a
stack word containing the address of a ret instruction. These can be composed to form a
“nop sled,” as illustrated in Figure 4.

4.1.3 Encoding Immediate Constants. Instructions in ordinary programming can en-
code immediate constants. For example, the instruction mov 0xdeadbeef, %eax, which sets
%eax to the value deadbeef, is encoded as bb ef be ad de, where the last four bytes
are the little-endian representation of deadbeef. We can thus view the instruction stream
in an ordinary program as including both operations and certain immediate operands that
the instructions operate on. In return-oriented programming a similar effect is possible
when instruction sequences include a pop reg instruction. For example, a pop %ebx; ret
sequence will store the next word on the stack in %ebx and advance the stack pointer past
it. This is illustrated in Figure 5.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Immediates

To kick-off an ROP program we start w/ a ret

Q: what does this ROP program do?

pop %esp; ret

Hint: %esp is the stack pointer

Q: what does this ROP program do?
12 · Ryan Roemer et al.

stack

pointer

pop %esp; ret

jmp +4

instruction

pointer

Fig. 6. Ordinary and return-oriented direct jumps

pop %eax; ret

(word to

load)

mov (%eax), %ebx; ret

stack
pointer

Fig. 7. A memory-load gadget

4.1.4 Control Flow. In ordinary programs, many instructions can cause the processor
to transfer control elsewhere than the current instruction sequence. These transfers can be
unconditional or conditional, and they can be direct, jumping to a location determined by
an immediate constant, or indirect, jumping to a location named in a memory location or
register. Regardless of their type, they operate by changing the value of the instruction
pointer, %eip. In a return-oriented program, control-flow is instead effected by perturbing
the value of the stack pointer, %esp.

For unconditional, direct jumps, the instruction sequence “pop %esp; ret” will do, if it
can be found: this is a form of immediate-load, as in Section 4.1.3. An example is given in
Figure 6. Conditional and indirect jumps are more tricky, and implementing them is gener-
ally the most difficult part of instantiating a return-oriented programming environment on
a new platform. The problem is that while processors include many branch instructions,
these (not surprisingly) operate on the instruction pointer and are thus useless. For return-
oriented programming, we must synthesize test and branch primitives some other way.

4.1.5 Gadgets. The techniques described so far suffice for Turing-complete return-
oriented programming. Often, however, more than one instruction sequence will be needed
to encode a logical operation. For example, loading a value from memory may require first
reading its address into a register from an immediate, then reading the memory. It is helpful
to think of the arrangement on the stack that causes these two sequences to be executed as
a single load gadget; an example is given in Figure 7.

More generally, a gadget is an arrangement of words on the stack, including one or more
instruction sequence pointers and associated immediate values, that encodes a logical unit.
Gadgets act like a return-oriented instruction set, and are the natural target of a return-
oriented compiler’s assembler.

Correct execution of a gadget requires the following precondition: %esp points to the
first word in the gadget and the processor executes a ret instruction. Each gadget then is
constructed so that it satisfies the following postcondition: When the ret instruction in its
last instruction sequence is executed, %esp points to the next gadget to be executed. To-
gether, these conditions guarantee that the return-oriented program will execute correctly,
one gadget after another.

4.2 Return-Oriented Exploitation

A return-oriented program is one or more gadgets arranged so that, when executed, they ef-
fect the behavior the attacker intends. The payload containing these gadgets must be placed
in the memory of the program to be exploited, and the stack pointer must be redirected so
it points to the first gadget. The easiest way to accomplish these tasks is by means of a
ACM Journal Name, Vol. V, No. N, Month 20YY.

A: Direct jump

12 · Ryan Roemer et al.

stack

pointer

pop %esp; ret

jmp +4

instruction

pointer

Fig. 6. Ordinary and return-oriented direct jumps

pop %eax; ret

(word to

load)

mov (%eax), %ebx; ret

stack
pointer

Fig. 7. A memory-load gadget

4.1.4 Control Flow. In ordinary programs, many instructions can cause the processor
to transfer control elsewhere than the current instruction sequence. These transfers can be
unconditional or conditional, and they can be direct, jumping to a location determined by
an immediate constant, or indirect, jumping to a location named in a memory location or
register. Regardless of their type, they operate by changing the value of the instruction
pointer, %eip. In a return-oriented program, control-flow is instead effected by perturbing
the value of the stack pointer, %esp.

For unconditional, direct jumps, the instruction sequence “pop %esp; ret” will do, if it
can be found: this is a form of immediate-load, as in Section 4.1.3. An example is given in
Figure 6. Conditional and indirect jumps are more tricky, and implementing them is gener-
ally the most difficult part of instantiating a return-oriented programming environment on
a new platform. The problem is that while processors include many branch instructions,
these (not surprisingly) operate on the instruction pointer and are thus useless. For return-
oriented programming, we must synthesize test and branch primitives some other way.

4.1.5 Gadgets. The techniques described so far suffice for Turing-complete return-
oriented programming. Often, however, more than one instruction sequence will be needed
to encode a logical operation. For example, loading a value from memory may require first
reading its address into a register from an immediate, then reading the memory. It is helpful
to think of the arrangement on the stack that causes these two sequences to be executed as
a single load gadget; an example is given in Figure 7.

More generally, a gadget is an arrangement of words on the stack, including one or more
instruction sequence pointers and associated immediate values, that encodes a logical unit.
Gadgets act like a return-oriented instruction set, and are the natural target of a return-
oriented compiler’s assembler.

Correct execution of a gadget requires the following precondition: %esp points to the
first word in the gadget and the processor executes a ret instruction. Each gadget then is
constructed so that it satisfies the following postcondition: When the ret instruction in its
last instruction sequence is executed, %esp points to the next gadget to be executed. To-
gether, these conditions guarantee that the return-oriented program will execute correctly,
one gadget after another.

4.2 Return-Oriented Exploitation

A return-oriented program is one or more gadgets arranged so that, when executed, they ef-
fect the behavior the attacker intends. The payload containing these gadgets must be placed
in the memory of the program to be exploited, and the stack pointer must be redirected so
it points to the first gadget. The easiest way to accomplish these tasks is by means of a
ACM Journal Name, Vol. V, No. N, Month 20YY.

ordinary equivalent

Gadgets

An arrangement of values on the stack that causes several sequences to be executed 12 · Ryan Roemer et al.

stack

pointer

pop %esp; ret

jmp +4

instruction

pointer

Fig. 6. Ordinary and return-oriented direct jumps

pop %eax; ret

(word to

load)

mov (%eax), %ebx; ret

stack
pointer

Fig. 7. A memory-load gadget

4.1.4 Control Flow. In ordinary programs, many instructions can cause the processor
to transfer control elsewhere than the current instruction sequence. These transfers can be
unconditional or conditional, and they can be direct, jumping to a location determined by
an immediate constant, or indirect, jumping to a location named in a memory location or
register. Regardless of their type, they operate by changing the value of the instruction
pointer, %eip. In a return-oriented program, control-flow is instead effected by perturbing
the value of the stack pointer, %esp.

For unconditional, direct jumps, the instruction sequence “pop %esp; ret” will do, if it
can be found: this is a form of immediate-load, as in Section 4.1.3. An example is given in
Figure 6. Conditional and indirect jumps are more tricky, and implementing them is gener-
ally the most difficult part of instantiating a return-oriented programming environment on
a new platform. The problem is that while processors include many branch instructions,
these (not surprisingly) operate on the instruction pointer and are thus useless. For return-
oriented programming, we must synthesize test and branch primitives some other way.

4.1.5 Gadgets. The techniques described so far suffice for Turing-complete return-
oriented programming. Often, however, more than one instruction sequence will be needed
to encode a logical operation. For example, loading a value from memory may require first
reading its address into a register from an immediate, then reading the memory. It is helpful
to think of the arrangement on the stack that causes these two sequences to be executed as
a single load gadget; an example is given in Figure 7.

More generally, a gadget is an arrangement of words on the stack, including one or more
instruction sequence pointers and associated immediate values, that encodes a logical unit.
Gadgets act like a return-oriented instruction set, and are the natural target of a return-
oriented compiler’s assembler.

Correct execution of a gadget requires the following precondition: %esp points to the
first word in the gadget and the processor executes a ret instruction. Each gadget then is
constructed so that it satisfies the following postcondition: When the ret instruction in its
last instruction sequence is executed, %esp points to the next gadget to be executed. To-
gether, these conditions guarantee that the return-oriented program will execute correctly,
one gadget after another.

4.2 Return-Oriented Exploitation

A return-oriented program is one or more gadgets arranged so that, when executed, they ef-
fect the behavior the attacker intends. The payload containing these gadgets must be placed
in the memory of the program to be exploited, and the stack pointer must be redirected so
it points to the first gadget. The easiest way to accomplish these tasks is by means of a
ACM Journal Name, Vol. V, No. N, Month 20YY.

memory load gadget

Finding instruction sequences

• Intended instruction sequences – every sequence ending in a return

• Unintended instruction sequences
• x86 uses variable-length encoding of instructions

• Given a byte stream and a starting offset, the instruction at that offset can be disambiguously
decoded; but different offsets will give different decoding
- we can even start in the middle of an intended instruction

• What’s important is the c3 opcode (ret) and what’s before it in the byte stream
• Compare:

14 · Ryan Roemer et al.

f7 c7 07 00 00 00 test $0x00000007, %edi
0f 95 45 c3 setnzb -61(%ebp)

Starting one byte later, the attacker instead obtains

c7 07 00 00 00 0f movl $0x0f000000, (%edi)
95 xchg %ebp, %eax
45 inc %ebp
c3 ret

Because of the density of the x86 ISA, it is quite easy to find not just unintended instruc-
tions but entire unintended sequences of instructions. These sequences must end in a ret
instruction, represented by the byte c3.

We carry out our experiments on the GNU C Library distributed with Fedora Core Re-
lease 4: libc-2.3.5.so. Our testing environment was a Pentium 4 running Fedora Core
Release 4, with Linux kernel version 2.6.14 and GNU libc 2.3.5. The gadget catalog we give
in Section 5 uses only unintended sequences — those that begin in the middle of a “real”
instruction and end with a ret, but whose terminating ret may or may not be unintended.
This demonstrates the power of unintended instruction sequences. Also considering in-
tended instruction sequences as in Section 4.3.1 would only increase an attacker’s power.

Two observations guide us in the choice of a data structure in which to record our find-
ings. First, any suffix of an instruction sequence is also a useful instruction sequence. If,
for example, we discover the sequence “a; b; c; ret” in libc, then the sequence “b; c;
ret” must of course also exist. Second, it does not matter to us how often some sequence
occurs, only that it does.3 Based on these observations, we choose to record sequences in a
trie. At the root of the trie is a node representing the ret instruction; the “child-of” relation
in the trie means that the child instruction immediately precedes the parent instruction at
least once in libc. For example, if, in the trie, a node representing pop %eax is a child
of the root node (representing ret) we can deduce that we have discovered, somewhere in
libc, the sequence pop %eax; ret.

Our algorithm for populating the trie makes use of following fact: It is easier to scan
backwards from an already found sequence than to disassemble forwards from every pos-
sible location in the hope of finding a sequence of instructions ending in a ret. When scan-
ning backwards, the sequence-so-far forms the suffix for all the sequences we discover.
The sequences all start at instances of ret, which we can scan libc sequentially to find.

In looking backwards from some location, we must ask: Does the single byte imme-
diately preceding our sequence represent a valid one-byte instruction? Do the two bytes
immediately preceding our sequence represent a valid two-byte instruction? And so on,
up to the maximum length of a valid x86 instruction. Any such question answered “yes”
gives a new useful sequence of which our sequence-so-far is a suffix, and which we should
explore recursively by means of the same approach. Because of the density of the x86 ISA,
more than one of these questions can simultaneously have a “yes” answer.

We present our algorithm in pseudocode in Section A.1 in the Web-only appendix.

5. X86 GADGET CATALOG

In this section, we describe our catalog of gadgets on the x86 platform. All the instruction
sequences we use below were found by our algorithm when run on our test libc.

3From all the occurrences of a sequence, we might prefer to use one whose address does not include a NUL byte.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Ryan Roemer et al.

f7 c7 07 00 00 00 test $0x00000007, %edi
0f 95 45 c3 setnzb -61(%ebp)

Starting one byte later, the attacker instead obtains

c7 07 00 00 00 0f movl $0x0f000000, (%edi)
95 xchg %ebp, %eax
45 inc %ebp
c3 ret

Because of the density of the x86 ISA, it is quite easy to find not just unintended instruc-
tions but entire unintended sequences of instructions. These sequences must end in a ret
instruction, represented by the byte c3.

We carry out our experiments on the GNU C Library distributed with Fedora Core Re-
lease 4: libc-2.3.5.so. Our testing environment was a Pentium 4 running Fedora Core
Release 4, with Linux kernel version 2.6.14 and GNU libc 2.3.5. The gadget catalog we give
in Section 5 uses only unintended sequences — those that begin in the middle of a “real”
instruction and end with a ret, but whose terminating ret may or may not be unintended.
This demonstrates the power of unintended instruction sequences. Also considering in-
tended instruction sequences as in Section 4.3.1 would only increase an attacker’s power.

Two observations guide us in the choice of a data structure in which to record our find-
ings. First, any suffix of an instruction sequence is also a useful instruction sequence. If,
for example, we discover the sequence “a; b; c; ret” in libc, then the sequence “b; c;
ret” must of course also exist. Second, it does not matter to us how often some sequence
occurs, only that it does.3 Based on these observations, we choose to record sequences in a
trie. At the root of the trie is a node representing the ret instruction; the “child-of” relation
in the trie means that the child instruction immediately precedes the parent instruction at
least once in libc. For example, if, in the trie, a node representing pop %eax is a child
of the root node (representing ret) we can deduce that we have discovered, somewhere in
libc, the sequence pop %eax; ret.

Our algorithm for populating the trie makes use of following fact: It is easier to scan
backwards from an already found sequence than to disassemble forwards from every pos-
sible location in the hope of finding a sequence of instructions ending in a ret. When scan-
ning backwards, the sequence-so-far forms the suffix for all the sequences we discover.
The sequences all start at instances of ret, which we can scan libc sequentially to find.

In looking backwards from some location, we must ask: Does the single byte imme-
diately preceding our sequence represent a valid one-byte instruction? Do the two bytes
immediately preceding our sequence represent a valid two-byte instruction? And so on,
up to the maximum length of a valid x86 instruction. Any such question answered “yes”
gives a new useful sequence of which our sequence-so-far is a suffix, and which we should
explore recursively by means of the same approach. Because of the density of the x86 ISA,
more than one of these questions can simultaneously have a “yes” answer.

We present our algorithm in pseudocode in Section A.1 in the Web-only appendix.

5. X86 GADGET CATALOG

In this section, we describe our catalog of gadgets on the x86 platform. All the instruction
sequences we use below were found by our algorithm when run on our test libc.

3From all the occurrences of a sequence, we might prefer to use one whose address does not include a NUL byte.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Example gadget: Add
adds the word at %edx to %eax

this is a problem

– limits where ret jumps

– messes up the stack (cant’s
just use the sequence in loops)

The most convenient available sequence is addl (%edx), %eax; push %edi; ret

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

%ecx

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

%ecx %edx

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

%ecx %edx

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

%ecx %edx

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

%ecx %edx

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

%edi %edx%ecx

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

%ecx %edi %edx

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

%ecx %edi %edx

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

%ecx %edi %edx

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

%ecx %edi %edx

Example gadget: Add

%esp

pop %ecx
pop %edx

ret

addl (%edx), %eax
push %edi

ret

movl %ecx, (%edx)
ret

pop %edi
ret

pop %edx
ret

ret

arbitrary…

%ecx %edi %edx

Requirements on gadgets

• Conditions that guarantee correct execution of an ROP program

• Precondition:
• %esp points to the first word in the gadget and the processor executes a ret instruction

• Postcondition:
• When the ret instruction in the last instruction sequence of the gadget is executed, %esp points

to the next gadget to be executed

Building on top of this

• Other building blocks:
• More complicated gadgets for control flow
• Also: system calls, and “regular” function calls

• Example: shellcode gadget on the right

• Claim: the gadget collection is Turing-complete

• Exploit framework:
• a compiler from a high-level language to gadgets

20 · Ryan Roemer et al.

%esp

pop %eax

ret
(call index)

pop %esp

ret

lcall %gs:0x10(,0)

ret

Fig. 15. System call.

%esp

xor %eax, %eax

ret
pop %ecx

pop %edx

ret0x0b0b0b0b

+ 24

movl %eax, 24(%edx)

ret
add %ch, %al

ret
pop %ebx

ret

pop %ecx

pop %edx

ret

lcall %gs:0x10(,0)

ret

(word to zero)

/bin

/sh\0

Fig. 16. Shellcode.

are described in by Nergal [Nergal 2001]; the discussion of “frame faking” is of particular
interest. A special stack frame should be reserved for the called function, as discussed in
Section 6.6.

5.6 Shellcode

We now present a return-oriented shellcode. Our shellcode invokes the execve system call
to run a shell. This requires: (1) setting the system call index, in %eax, to 0xb; (2) setting
the path of the program to run, in %ebx, to the string “/bin/sh”; (3) setting the argument
vector argv, in %ecx, to an array of two pointers, the first of which points to the string
“/bin/sh” and the second of which is null; and (4) setting the environment vector envp,
in %edx, to an array of one pointer, which is null. The shellcode is in Figure 16.

We store “/bin/sh” in the top two words of the shellcode; we use the next two words
for the argv array, and reuse the higher of these also for the envp array. We can set up the
appropriate pointers as part of the shellcode itself, but to avoid NUL bytes we must zero
out the null-pointer word after the shellcode has been injected.

The rest of the shellcode behaves as follows: Word 1 (from the bottom) sets %eax to
zero. Words 2–4 load into %edx the address of the second word in argv (minus 24; see
Section 5.1.2) and, in preparation for setting the system call index, load into %ecx the all-
0b word. Word 5 sets the second word in argv to zero. Word 6 sets %eax to 0x0b by
modifying its least significant byte, %al. Words 7–8 point %ebx at the string “/bin/sh”.
Words 9–11 set %ecx to the address of the argv array and %edx to the address of the envp
array. Word 12 traps into the kernel.

Provided that the addresses of the libc instruction sequences pointed to and of the stack
addresses pointed to do not contain NUL bytes, this shellcode contains no NUL bytes ex-
cept for the terminator for the string “/bin/sh”. NUL bytes in the stack addresses can
be worked around by having the shellcode build these addresses at runtime by examining
%esp and operating on it; this would also allow the shellcode to be position-independent.
NUL bytes in libc addresses can be handled using well-known shellcoding techniques,
e.g., [Nergal 2001, Section 3.4].
ACM Journal Name, Vol. V, No. N, Month 20YY.

ROP: the takeaways

• Malicious computation ≠ Malicious code

• W⊕X memory protection by itself is insufficient

• Need something more principled

Address-Space Layout Randomization

• Idea: Randomize the layout of the address space

• The offsets will differ at each invocation

• Forces the attacker to brute-force through the offsets

• Limitation:

• On 32 bit machines there is not much entropy for this to be a realistic defense

• Forks preserve the layout

• Coarse-grained
• Difficult to randomize offsets within functions

Attack on a 32 bit ASLR

Vulnerable Web Server

stack

libc

randomized offset

usleep (…)

AttackerNetwork requests that brute
force through the offset space

Invalid offsets terminate connection immediately

Valid offset terminates connection after sleeping

The offset is preserved across forks

ASLR Conclusion

• Need 64 bit architectures to make randomization effective

• Need something more principled

Control Flow Integrity

Direct vs indirect control transfer
Direct Indirect
Direct jump – jumping to a statically determined constant.
Examples: if-then-else, loops, most local (w.r.t. a function
body) control flow

Jump to a dynamically computed target: Examples:
switch statement implemented via a dispatch table,
Procedure Linkage Tables (PLT), etc

Direct call – calling to a statically determined target, e.g.,
static function call

Indirect call – call to a computed, i.e., dynamically
determined target. Examples: function pointers in C,
various implementations of dynamic dispatch

Function return (OBS: regardless of the whether the call is
direct or indirect)

Complex control-flow due to exception handling (stack
unwinding)

Complex control-flow to support dynamic linking or
separate compilation

in OO-languages, dynamic dispatch is
the process of selecting which
implementation of a polymorphic
operation (method or function) to call at
run time.

Indirect jumps as the source of all troubles

• It is the indirect jumps that make it possible to hijack the program control flow

CFI: Control-Flow Integrity (2005)

• Observation: there is gap between a machine-level jump and the original source-level target

• An indirect jump at a machine level can land anywhere, including middle of an instruction
(on x86)

• Even the lowest of the systems programming languages rule out most of those targets

• Definitely NOT middle of an instruction

• Only a handful of possible targets: functions, switch statements, exception handlers

• This gap is the source of many problems: buffer overflows, ret-to-libc, ROP

• Goal of the CFI:

• make the gap smaller, by reducing the set of machine-level jump targets to the intended subset

CFI is a 2-phase process

• Phase 1: Analysis – identify possible targets for all indirect jumps

• This means we need to compute the Control-Flow Graph (CFG) of the program

• Recall: control flow graph of a program is a graph where nodes correspond to basic
blocks and edges correspond to jumps/branches.

• Different ways to compute CFG:
• Statically from the source of the program

• Statically from the binary of the program

• Dynamically, through profiling under “normal” input

CFG and its targets
A:4

1 void foo (i n t a) {
2 re turn ;
3 }
4 void b a r (i n t a) {
5 re turn ;
6 }
7 void baz (void) {
8 i n t a = i n p u t () ;
9 void (⇤ f p t r) (i n t) ;

10 i f (a) {
11 f p t r = foo ;
12 f p t r () ;
13 } e l s e {
14 f p t r = b a r ;
15 f p t r () ;
16 }
17 }

Fig. 1: Simplified example of over approximation in static analysis.

(3) presentation of both a qualitative and quantitative security metric and the evaluation of existing
CFI mechanisms along these metrics, and

(4) a detailed performance study of existing CFI mechanisms.

2. FOUNDATIONAL CONCEPTS

We first introduce CFI and discuss the two components of most CFI mechanisms: (i) the analysis

that defines the CFG (which inherently limits the precision that can be achieved) and (ii) the runtime
instrumentation that enforces the generated CFG. Secondly, we classify and systematize different
types of control-flow transfers and how they are used in programming languages. Finally, we briefly
discuss the CFG precision achievable with different types of static analysis. For those interested, a
more comprehensive overview of static analysis techniques is available in Appendix B.

2.1. Control-Flow Integrity

CFI is a policy that restricts the execution flow of a program at runtime to a predetermined CFG
by validating indirect control-flow transfers. On the machine level, indirect control-flow transfers
may target any executable address of mapped memory, but in the source language (C, C++, or
Objective-C) the targets are restricted to valid language constructs such as functions, methods and
switch statement cases. Since the aforementioned languages rely on manual memory management,
it is left to the programmer to ensure that non-control data accesses do not interfere with accesses
to control data such that programs execute legitimate control flows. Absent any security policy, an
attacker can therefore exploit memory corruption to redirect the control-flow to an arbitrary memory
location, which is called control-flow hijacking. CFI closes the gap between machine and source code
semantics by restricting the allowed control-flow transfers to a smaller set of target locations. This
smaller set is determined per indirect control-flow location. Note that languages providing complete
memory and type safety generally do not need to be protected by CFI. However, many of these
“safe” languages rely on virtual machines and libraries written in C or C++ that will benefit from CFI
protection.

Most CFI mechanisms determine the set of valid targets for each indirect control-flow transfer
by computing the CFG of the program. The security guarantees of a CFI mechanism depend
on the precision of the CFG it constructs. The CFG cannot be perfectly precise for non-trivial
programs. Because the CFG is statically determined, there is always some over-approximation

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

fptr is a function pointer

Indirect call

Another indirect call

Example C program with indirect calls and function pointers

Q: what are the possible targets of fptr()call

Dynamically, it is either foo or bar

CFG imprecisions
A:4

1 void foo (i n t a) {
2 re turn ;
3 }
4 void b a r (i n t a) {
5 re turn ;
6 }
7 void baz (void) {
8 i n t a = i n p u t () ;
9 void (⇤ f p t r) (i n t) ;

10 i f (a) {
11 f p t r = foo ;
12 f p t r () ;
13 } e l s e {
14 f p t r = b a r ;
15 f p t r () ;
16 }
17 }

Fig. 1: Simplified example of over approximation in static analysis.

(3) presentation of both a qualitative and quantitative security metric and the evaluation of existing
CFI mechanisms along these metrics, and

(4) a detailed performance study of existing CFI mechanisms.

2. FOUNDATIONAL CONCEPTS

We first introduce CFI and discuss the two components of most CFI mechanisms: (i) the analysis

that defines the CFG (which inherently limits the precision that can be achieved) and (ii) the runtime
instrumentation that enforces the generated CFG. Secondly, we classify and systematize different
types of control-flow transfers and how they are used in programming languages. Finally, we briefly
discuss the CFG precision achievable with different types of static analysis. For those interested, a
more comprehensive overview of static analysis techniques is available in Appendix B.

2.1. Control-Flow Integrity

CFI is a policy that restricts the execution flow of a program at runtime to a predetermined CFG
by validating indirect control-flow transfers. On the machine level, indirect control-flow transfers
may target any executable address of mapped memory, but in the source language (C, C++, or
Objective-C) the targets are restricted to valid language constructs such as functions, methods and
switch statement cases. Since the aforementioned languages rely on manual memory management,
it is left to the programmer to ensure that non-control data accesses do not interfere with accesses
to control data such that programs execute legitimate control flows. Absent any security policy, an
attacker can therefore exploit memory corruption to redirect the control-flow to an arbitrary memory
location, which is called control-flow hijacking. CFI closes the gap between machine and source code
semantics by restricting the allowed control-flow transfers to a smaller set of target locations. This
smaller set is determined per indirect control-flow location. Note that languages providing complete
memory and type safety generally do not need to be protected by CFI. However, many of these
“safe” languages rely on virtual machines and libraries written in C or C++ that will benefit from CFI
protection.

Most CFI mechanisms determine the set of valid targets for each indirect control-flow transfer
by computing the CFG of the program. The security guarantees of a CFI mechanism depend
on the precision of the CFG it constructs. The CFG cannot be perfectly precise for non-trivial
programs. Because the CFG is statically determined, there is always some over-approximation

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Example C program with indirect calls and function pointers

Q: what are the statically possible targets of fptr() call?

Depends on how sensitive our analysis is
For example, a simple analysis will mark both foo and bar as possible targets
for all indirect function calls of fptr()

Imprecise ≠ Useless. In this example, knowing that there are at
most 2 possible targets is much better than not knowing anything at
all (which would mean that the target of the fptr() call is
anywhere in address space!)

Static analyses get only better, but we know that even the best ones will have
imprecisions

CFI is a 2-stage process

• Phase 2: Enforcement – ensuring that all executed branches correspond to the
edges in CFG

• At least three ways to implement

• Static rewriting by the source-level compiler

• Static binary rewriting

• At runtime, through binary translation

CFI stages

Phase 1 (Analysis)Original program

Phase 2 (Enforcement) CFG

Final program (instrumented binary)

Attacker model

• The attacker knows the source/binary of the program, including the final
(instrumented) binary

• Important: no security through obscurity (cf. principles of secure design from [Seltzer &
Schroeder’75])

• W⊕X memory protection

• Attacker has write access to program memory, but cannot modify the program code

• A handful of tamper-resistant registers

• Possibility of creating bit patterns that do not appear anywhere in code memory
(i.e., do not conflict with opcodes)

Ordinary CALL

…
call DST
…

…
// body of foo
…

DST register: 0x12002020

source instruction destination instruction

0x12002020:

OBS: the call will succeed no matter where DST points to

Magic assembly

• Suppose we have three new assembly instructions
•label ID - has no effect

• call ID, DST – transfers control to address at register DST only if that code starts with
label ID

• ret ID – return to the call point only if that point starts with label ID

These instruction could be in principle added in hardware, but are practically implemented in software

CALL with CFI

…
call 12345678 DST
…

…
label 12345678
// body of foo
…

DST register: 0x12002020

source instruction destination instruction

0x12002020:

The idea of instrumentation: modify each source instruction and each possible destination instruction by adding IDs
that correspond to potential targets from CFG

The call succeeds because the labels match

CALL with CFI

…
call 12345678 DST
…

…
// no label here
// some other code
…

DST register: 0x12002028

source instruction
destination instruction

0x12002028:

A call to a destination where there is no label or the label is wrong will fail

Example: a C program and CFG
4:10 • M. Abadi et al.

Fig. 1. Example program fragment and an outline of its CFG and CFI instrumentation.

blocks for these four functions and all CFG edges between them. In the figure,
edges for direct calls are drawn as light, dotted arrows; edges from source in-
structions are drawn as solid arrows, and return edges as dashed arrows. In
this example, sort can return to two different places in sort2. Therefore, the
CFI instrumentation includes two IDs in the body of sort2, and an ID-check
when returning from sort, arbitrarily using 55 as the ID bit pattern. (Here, we
do not specify to which of the two callsites sort must return; Section 5 shows
how to guarantee that each return goes to the most recent callsite, by using a
protected shadow call stack.) Similarly, because sort can call either lt or gt,
both comparison functions start with the ID 17; and the call instruction, which
uses a function pointer in register R, performs an ID-check for 17. Finally, the
ID 23 identifies the block that follows the comparison callsite in sort, so both
comparison functions return with an ID-check for 23.

This example exposes patterns that are typical when CFI instrumentation
is applied to software compiled from higher-level programming languages. CFI
instrumentation does not affect direct function calls: only indirect calls require
an ID-check, and only functions called indirectly (such as virtual methods)
require the addition of an ID. Function returns account for many ID-checks,
and an ID must be inserted after each function callsite, whether that function
is called indirectly or not. The remaining computed control flow is typically a
result of switch statements and exceptions, and in both cases an ID is needed
at each possible destination and an ID-check at the point of dispatch.

3.2 CFI Instrumentation Code
Refining the basic scheme for CFI instrumentation, we should choose specific
machine-code sequences for ID-checks and IDs. The choice is far from trivial.
Those code sequences should use instructions of the architecture of interest,
and ideally they should be both correct and efficient.

Figures 2 and 3 show example x86 CFI instrumentation of ID-checks and
IDs, respectively. The figures give two alternative forms of ID-checks and IDs,
showing both their actual x86 opcode bytes and x86 assembly code equivalents.
The figures use the 32-bit hexadecimal value 12345678 as the ID. The source
(shown in Figure 2) is a computed jump instruction jmp ecx, whose destination

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

dotted arrows - direct calls

edges from source - straight arrows

dashed arrows - return edges

Control-Flow Integrity • 4:11

Fig. 2. Example CFI instrumentations of an x86 computed jump instruction.

Fig. 3. Example CFI instrumentations of a valid destination for an x86 computed jump.

(shown in Figure 3) may be a mov from the stack. Here, the destination is al-
ready in ecx, so the ID-checks do not have to move it to a register—although,
in general, ID-checks must do this in order to avoid a race condition (see Sec-
tion 4.1). The code sequences for ID-checks overwrite the x86 processor flags,
and in (b), a register is assumed available for use; Section 4 explains why this
behavior is reasonable.

In alternative (a), the ID is inserted as data before the destination mov in-
struction, and the ID-check modifies the computed destination using a lea in-
struction to skip over the four ID bytes. The ID-check directly compares the
original destination with the ID value. Thus, the ID bit pattern is embedded
within the ID-check cmp opcode bytes. As a result, in (a), an attacker that can
somehow affect the value of the ecx register might be able to cause a jump to
the jne instruction instead of the intended destination.

Alternative (b) avoids the subtlety of (a) by using ID−1 as the constant in the
ID-check and incrementing it to compute the ID at runtime. Also, alternative (b)

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

CFI software instrumentation – call site

Avoids the above problem with ecx
register being manipulated by the attacker

The ID bit pattern is embedded within the ID-check cmp opcode bytes. As a result, an attacker
that can somehow affect the value of the ecx register might be able to cause a jump to the jne
instruction instead of the intended destination.

Control-Flow Integrity • 4:11

Fig. 2. Example CFI instrumentations of an x86 computed jump instruction.

Fig. 3. Example CFI instrumentations of a valid destination for an x86 computed jump.

(shown in Figure 3) may be a mov from the stack. Here, the destination is al-
ready in ecx, so the ID-checks do not have to move it to a register—although,
in general, ID-checks must do this in order to avoid a race condition (see Sec-
tion 4.1). The code sequences for ID-checks overwrite the x86 processor flags,
and in (b), a register is assumed available for use; Section 4 explains why this
behavior is reasonable.

In alternative (a), the ID is inserted as data before the destination mov in-
struction, and the ID-check modifies the computed destination using a lea in-
struction to skip over the four ID bytes. The ID-check directly compares the
original destination with the ID value. Thus, the ID bit pattern is embedded
within the ID-check cmp opcode bytes. As a result, in (a), an attacker that can
somehow affect the value of the ecx register might be able to cause a jump to
the jne instruction instead of the intended destination.

Alternative (b) avoids the subtlety of (a) by using ID−1 as the constant in the
ID-check and incrementing it to compute the ID at runtime. Also, alternative (b)

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

CFI software instrumentation – callee site

Precision issue

• The more precise the CFG the better we are

• Precision could be added by code duplication

Overhead
Control-Flow Integrity • 4:17

Fig. 6. Execution overhead of inlined CFI enforcement on SPEC2000 benchmarks.

4.2 Measurements
We measured the overhead of our inlined CFI enforcement on some of the com-
mon SPEC computation benchmarks [Standard Performance Evaluation Cor-
poration 2000]. We performed all the experiments in this article on Windows
XP SP2 in “Safe Mode” (where most daemons and kernel modules are disabled).
Our hardware was a Pentium 4 x86 processor at 1.8GHz with 512MB of RAM.
The target programs were compiled with Microsoft Visual C++ 7.1 using full
optimizations. For SPEC, the inputs were the complete reference datasets and
the output was validated as the correct result. We report the average of three
runs; measurement variance was negligible, with standard deviation of less
than one percent.

The CFG construction and CFI instrumentation of each binary took about 10
seconds, with the size of the binary increasing by an average 8%. Figure 6 gives
the normalized overhead of CFI enforcement, shown as an increase in the run-
ning time of each CFI-instrumented benchmark relative to the running time of
the original benchmark binaries. On average, the benchmarks took 16% longer
to execute, with the measured overhead ranging from 0 to 45%. This overhead
results from a number of factors, including increased cache pressure; the over-
head is not simply correlated with the frequency of executed computed control-
flow transfers in these benchmarks (see Hennessy and Patterson [2006]).

As shown in Figure 6, our prototype inlined CFI enforcement hardly affects
the performance of some programs, but it can cause a substantial slowdown
of other programs. Overall, the measured performance overhead seems tol-
erable, even though we have not yet explored most of the optimizations pos-
sible in x86 CFI instrumentation. Because of CFI verification, such further
optimization should reduce overhead without making CFI enforcement less
trustworthy.

Moreover, the performance overhead of CFI enforcement is competitive
with—or even better than—the cost of most comparable techniques that aim
to mitigate security vulnerabilities (e.g., Cowan et al. [2003], Kiriansky et al.
[2002], and Ruwase and Lam [2004]). For instance, the overhead of Program
Shepherding is more than 100% for the benchmark program crafty on Win-
dows; the corresponding CFI enforcement overhead is 45%, and this is our
highest measured overhead. Similarly, the overhead of Program Shepherding
is more than 660% for gcc on Windows, and can be brought down to 35% only

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

Binary size increase: average 8% Runtime overhead: average 16%

2007

2013 Basic CFI: Average: 16; Max: 45

Seekers et al.

CFI w/ shadow stack : Average: 21; Max: 56

Security Experiments: GDI+JPEG flaw in Windows (2004)

4:18 • M. Abadi et al.

by exposing the security mechanism itself to attack; the corresponding CFI
enforcement overhead is under 10%.

Note that the SPEC benchmarks focus on CPU-intensive programs with in-
teger arithmetic. CFI will cause relatively less overhead for I/O-driven server
workloads. For example, one might expect to see an even smaller performance
impact on FTP than on SPEC (as in Xu et al. [2002]).

4.3 Security-Related Experiments
It is difficult to quantify the security benefits of any given mitigation technology:
the effects of unexploited vulnerabilities cannot be predicted, and real-world
attacks—which tend to depend on particular system details—can be thwarted,
without any security benefits, by trivial changes to those details.

Even so, in order to assess the effectiveness of CFI, we examined by hand
some well-known security exploits (such as those of the Blaster and Slammer
worms) as well as several recently reported vulnerabilities (such as the Win-
dows ASN.1 and GDI+ JPEG flaws). CFI would not have prevented Nimda and
some similar exploits that rely on the incorrect parsing of input strings, such
as URLs, to cause the improper launch of the cmd.exe shell or some other dan-
gerous executable (see also Chen et al. [2005]). On the other hand, CFI would
have prevented all the other exploits that we studied because, in one way or
another, they all endeavored to deviate from the expected control flow. Many ex-
ploits performed a “jump-to-libc” control transfer from a program point where
this jump was not expected. Often this invalid control transfer was attempted
through heap overflows or some form of pointer subterfuge (of the kind recently
described by Pincus and Baker [2004]).

Pointer subterfuge relies on modifications to data memory and can possibly
result in arbitrary further modifications to data memory. Hence, thwarting
pointer subterfuge calls for techniques that—like ours—afford protection even
when attackers are in full control of data memory.

As a concrete example, let us consider the published attack on the GDI+
JPEG flaw in Windows [Florio 2004]. This attack starts by causing a memory
corruption, overwriting a global variable that holds a C++ object pointer. When
this pointer is later used for calling a virtual destructor, the attacker has the
possibility of executing code of their choice. A CFI ID-check at this callsite can
prevent this exploit, for instance by restricting valid destinations to the C++
virtual destructor methods of the GDI+ library.

As another concrete example that illustrates the benefits of CFI, we discuss
the following C function, which is intended to return the median value of an
array of integers:
int median(int* data, int len, void* cmp)

{
// must have 0 < len <= MAX_LEN

int tmp[MAX_LEN];

memcpy(tmp, data, len*sizeof(int));

qsort(tmp, len, sizeof(int), cmp);

return tmp[len/2];

}

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

Control-Flow Integrity • 4:19

Fig. 7. Fragments of machine-code for the median example.

This code is vulnerable and can be exploited by an attacker that controls the in-
puts even on systems that use deployed mitigation techniques such as stack ca-
naries and support for nonexecutable data. Specifically, we have constructed ac-
tual exploits for this vulnerability that work even on Windows XP SP2 with x86
hardware NXD support and with the Windows analogue of StackGuard [Cowan
et al. 1998]. One exploit is based on a traditional stack-based buffer overflow;
others work via C++ vtables and the heap. CFI enforcement thwarts all these
exploits.

Figure 7 shows the original, vulnerable machine code relevant to the stack-
based exploit. This exploit is enabled when a buffer overflow overwrites the
comparison-function pointer cmp before it is passed to qsort. The exploit is
triggered when qsort tries to call the corrupted argument cmp, thereby trans-
ferring control to an instruction sequence found in the middle of an existing
function (labeled X in Figure 7). Executing this instruction sequence sets the
stack pointer esp to the address of data chosen by the attacker and uses that
data in a computed control-flow transfer (a return). The exploit subsequently
proceeds through the unwinding of the stack, which holds return addresses and
other data chosen by the attacker. As each stack frame is popped, the return
instruction transfers control to the start of a particular, existing library func-
tion. This sequence of library-code invocations creates a new, writable page of
executable memory, writes code of the attacker’s choice to that page, and trans-
fers control to that code. As a result, the attacker gains full control over the
system.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

Control-Flow Integrity • 4:19

Fig. 7. Fragments of machine-code for the median example.

This code is vulnerable and can be exploited by an attacker that controls the in-
puts even on systems that use deployed mitigation techniques such as stack ca-
naries and support for nonexecutable data. Specifically, we have constructed ac-
tual exploits for this vulnerability that work even on Windows XP SP2 with x86
hardware NXD support and with the Windows analogue of StackGuard [Cowan
et al. 1998]. One exploit is based on a traditional stack-based buffer overflow;
others work via C++ vtables and the heap. CFI enforcement thwarts all these
exploits.

Figure 7 shows the original, vulnerable machine code relevant to the stack-
based exploit. This exploit is enabled when a buffer overflow overwrites the
comparison-function pointer cmp before it is passed to qsort. The exploit is
triggered when qsort tries to call the corrupted argument cmp, thereby trans-
ferring control to an instruction sequence found in the middle of an existing
function (labeled X in Figure 7). Executing this instruction sequence sets the
stack pointer esp to the address of data chosen by the attacker and uses that
data in a computed control-flow transfer (a return). The exploit subsequently
proceeds through the unwinding of the stack, which holds return addresses and
other data chosen by the attacker. As each stack frame is popped, the return
instruction transfers control to the start of a particular, existing library func-
tion. This sequence of library-code invocations creates a new, writable page of
executable memory, writes code of the attacker’s choice to that page, and trans-
fers control to that code. As a result, the attacker gains full control over the
system.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

Example vulnerable code

Formal study
Control-Flow Integrity • 4:29

Fig. 12. Instructions.

Regnum = {0, 1, . . . , 31}
Regfile = Regnum → Word

State = Mem × Regfile × Word.

We often adopt the notations w and pc for elements of Word, and M , R, and
S for elements of Mem, Regfile, and State, respectively. When S is a state, we
may write S.M , S.R, and S.pc for the Mem component, the Regfile component,
and the pc in S, respectively.

We further distinguish between code memory (Mc) and data memory (Md),
so we split memories into two functions with disjoint domains, each of them con-
tiguous. We assume that a statically defined program that comprises n > 0 in-
structions always occupies memory locations 0 to n−1, with the first instruction
of the program located at address 0. When we split a memory M into Mc and Md ,
we write M = Mc|Md , provided Mc contains n > 0 instructions and the follow-
ing constraints hold: dom(Mc) = {0..(n−1)} and dom(Md) = dom(M)−dom(Mc)
and Mc(a) = M (a) for all a ∈ dom(Mc) and Md (a) = M (a) for all a ∈
dom(Md). We consider only states whose memory is partitioned in this way.
We write S.Mc to indicate the code memory of state S and S.Md for the data
memory.

Similarly, we split register files into distinguished and general registers.
When we split R into R0−2 and R3−31, we write R = R0−2|R3−31, provided the
following constraints hold: dom(R0−2) = {r0, r1, r2} and dom(R3−31) = {r3..r31},
and R0−2(r) = R(r) for all r ∈ dom(R0−2) and R3−31(r) = R(r) for all r ∈
dom(R3−31). We distinguish the registers r0, r1, and r2 because we assume that
they are used only in CFI enforcement code.

6.2.2 Instructions. Our language is that of Hamid et al. [2002] plus a label
instruction in which an immediate value can be embedded and which behaves
like a no-op. The set of instructions is given in Figure 12. In the figure, w is
a word and rs, rt , and rd are registers. Thus, instructions may contain words.
Like Hamid et al. [2002], we omit the routine details of instruction storage and
decoding. We assume a function Dc : Word → Instr that decodes words into
instructions.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

Control-Flow Integrity • 4:27

to words, R maps register numbers to words, and pc is a word. Essentially,
our language is a minor variant of that of Hamid et al. [2002]. We add only
an instruction in which an immediate value can be embedded as a label and
which behaves like a no-op. It is directly analogous to the label ID instruction
of Section 3.1.

We give a formal operational semantics for the instructions of our language.
For each of the instructions, the semantics says how the instruction affects
memory, the registers, and the program counter. For example, for the instruction
add rd , rs, rt , the semantics says:

If Mc(pc) contains the encoding of add rd , rs, rt and the current state
has code memory Mc, data memory Md , program counter value pc,
and register values R, and if pc + 1 is within the domain of Mc, then
in the next state the code memory and data memory are still Mc and
Md , respectively, pc is incremented, and R is updated so that it maps
rd to R(rs) + R(rt).

We consider SMAC with a variant of these semantics that includes fewer built-
in checks. In the example of the add rd , rs, rt instruction, the variant does not
include the precondition that pc+1 is within the domain of Mc. In other words,
the machine model allows the possibility that pc points outside code memory,
and the instrumentation aims to ensure that this possibility is harmless.

We depart significantly from the work of Hamid et al. [2002] and other previ-
ous work by including a representation of the attacker in our model. Despite its
simplicity, we regard this departure as one of our main formal contributions.
Since the attacker that we have in mind is quite powerful, one might imag-
ine that it could be difficult to capture all its capabilities. Fortunately, we can
adopt an economical representation of the attacker. This representation con-
sists in introducing one more rule into our operational semantics. The new rule
expresses attacker steps and says that the attacker may modify data memory
and most registers at any time. It excludes the small number of distinguished
registers on which the instrumentation relies; it also excludes code memory,
consistently with our assumption NWC.

As usual in programming language theory, the operational semantics de-
scribes state transitions by precise rules. For the instruction add rd , rs, rt , for
example, we have that

(Mc|Md , R, pc) →n (Mc|Md , R{rd "→ R(rs) + R(rt)}, pc + 1),

when Mc(pc) holds add rd , rs, rt and pc + 1 is in the domain of Mc. The relation
→n is a binary relation on states that expresses normal execution steps. For
the attacker, we have a rule that enables the following transitions, for all Mc,
Md , Md

′, R, and pc:

(Mc|Md , R, pc) →a (Mc|Md
′, R, pc).

The relation →a is a binary relation on states, and Md
′ is the arbitrary new

value of the data memory. We do not show the modifications to registers, for
simplicity—our actual rule is more general in this respect. The next-state re-
lation → is the union of →n and →a.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

example: normal step transition for add rd rs rt

attacker transition

Control-Flow Integrity • 4:27

to words, R maps register numbers to words, and pc is a word. Essentially,
our language is a minor variant of that of Hamid et al. [2002]. We add only
an instruction in which an immediate value can be embedded as a label and
which behaves like a no-op. It is directly analogous to the label ID instruction
of Section 3.1.

We give a formal operational semantics for the instructions of our language.
For each of the instructions, the semantics says how the instruction affects
memory, the registers, and the program counter. For example, for the instruction
add rd , rs, rt , the semantics says:

If Mc(pc) contains the encoding of add rd , rs, rt and the current state
has code memory Mc, data memory Md , program counter value pc,
and register values R, and if pc + 1 is within the domain of Mc, then
in the next state the code memory and data memory are still Mc and
Md , respectively, pc is incremented, and R is updated so that it maps
rd to R(rs) + R(rt).

We consider SMAC with a variant of these semantics that includes fewer built-
in checks. In the example of the add rd , rs, rt instruction, the variant does not
include the precondition that pc+1 is within the domain of Mc. In other words,
the machine model allows the possibility that pc points outside code memory,
and the instrumentation aims to ensure that this possibility is harmless.

We depart significantly from the work of Hamid et al. [2002] and other previ-
ous work by including a representation of the attacker in our model. Despite its
simplicity, we regard this departure as one of our main formal contributions.
Since the attacker that we have in mind is quite powerful, one might imag-
ine that it could be difficult to capture all its capabilities. Fortunately, we can
adopt an economical representation of the attacker. This representation con-
sists in introducing one more rule into our operational semantics. The new rule
expresses attacker steps and says that the attacker may modify data memory
and most registers at any time. It excludes the small number of distinguished
registers on which the instrumentation relies; it also excludes code memory,
consistently with our assumption NWC.

As usual in programming language theory, the operational semantics de-
scribes state transitions by precise rules. For the instruction add rd , rs, rt , for
example, we have that

(Mc|Md , R, pc) →n (Mc|Md , R{rd "→ R(rs) + R(rt)}, pc + 1),

when Mc(pc) holds add rd , rs, rt and pc + 1 is in the domain of Mc. The relation
→n is a binary relation on states that expresses normal execution steps. For
the attacker, we have a rule that enables the following transitions, for all Mc,
Md , Md

′, R, and pc:

(Mc|Md , R, pc) →a (Mc|Md
′, R, pc).

The relation →a is a binary relation on states, and Md
′ is the arbitrary new

value of the data memory. We do not show the modifications to registers, for
simplicity—our actual rule is more general in this respect. The next-state re-
lation → is the union of →n and →a.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

Control-Flow Integrity • 4:31

of general registers may be read from memory, but those of distinguished
registers are not. On the other hand, for simplicity, an attack step need not
be restricted to computable functions.

The relation →, defined in the following text, is the union of →n and →a. Thus,
this relation represents a computation step in general, either a normal state
transition or one caused by an attacker.

S →n S′

S → S′
S →a S′

S → S′

In security, it is important to identify and to support assumptions, as men-
tioned in Section 3.3. Our definitions embody several assumptions, which we
discuss next.

(1) The definition of →n implies NXD (i.e., that data cannot be executed as
code). Similarly, the definitions of →n and →a imply NWC (i.e., that code
memory cannot be modified at runtime). As indicated in Section 3.3, NXD
and NWC are often reasonable assumptions.

(2) The definition of →a allows for the possibility that the attacker is in control
of data memory. As indicated in the introduction, this aspect of the model
of the attacker is conservative but unfortunately close to reality.

(3) The definition of →a implies that the attacker cannot modify the distin-
guished registers r0, r1, and r2. Our proofs require only a weaker assump-
tion, namely that the attacker cannot modify r0, r1, and r2 during the exe-
cution of CFI enforcement code. Section 3.3 argues the practicality of such
assumptions on registers.

(4) The machine model and the definition of →n exclude the possibility that a
jump would land in the middle of an instruction. In practice, many archi-
tectures (RISC architectures, in particular) exclude this possibility, and our
x86 CFI implementation prevents it. For simplicity, we do not address this
feature in the formal analysis.

6.2.4 A More Permissive Semantics of Programs under Attack. Assump-
tions NXD and NWC do not hold in some settings, for example, on architectures
without memory-protection facilities. We should, therefore, consider an alter-
native to the program semantics of Section 6.2.3. For brevity, and since there
is no risk of ambiguity, we reuse the symbols →n, →a, and →.

The resulting relaxed definition of normal execution steps is shown in
Figure 15. These normal steps can arbitrarily violate NXD and NWC, possi-
bly under the indirect influence of an attacker. On the other hand, the rules
for attack steps and general steps remain those of Section 6.2.3. In particu-
lar, we still require that an attack step cannot directly alter code memory, the
distinguished registers, or the program counter. We believe that these restric-
tions often hold in practice. Moreover, they are necessary: Without them, an
attacker could trivially create new code (outside the original CFG) and trigger
its execution.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

S is a state – (M, R, pc)

Assumptions: the code is well-instrumented for CFI

• Direct jump targets

• all targets must be valid according to CFG

• IDs

• There must be an ID right after every entry point

• No IDs by accident

• ID checks

• There must be a validation check before every control transfer

• Each check must respect CFG

Example validation check

Control-Flow Integrity • 4:33

6.4 CFI Enforcement (without SMAC)
In this section, we present and analyze a basic technique for CFI enforcement
(without SMAC), using the semantics of Section 6.2.3.

6.4.1 CFI Enforcement by Instrumentation. For the sake of trustworthi-
ness, as suggested in Section 3.5, CFI enforcement should preferably depend
only on simple, final, static verification steps that check that instrumenta-
tion has produced an acceptable result. These steps, but not the machine-code
rewriting, will be part of the “trusted computing base.”

For the present purposes, the verification steps consist in ensuring that a
code memory Mc and a CFG G for Mc satisfy the following conditions.

(1) If n is the length of dom(Mc), then the instruction at n − 1 is illegal. (In
other words, the final instruction is illegal.)

(2) If w0 ∈ dom(Mc) is a destination, then the instruction at w0 is label w,
where w is w0’s ID. Conversely, if w0 ∈ dom(Mc) holds a label instruction,
then w0 is a destination. (In other words, label instructions can be used only
for inline tagging with IDs. This requirement applies to code memory, but
not to data memory. In fact, the attacker may, at any time, write label w
into any location in data memory.)

(3) If w0 ∈ dom(Mc) holds a jmp instruction, then this instruction is jmp r0 and
it is preceded by a specific sequence of instructions, as follows:

addi r0, rs, 0
ld r1, r0(0)
movi r2, IMM
bgt r1, r2, HALT
bgt r2, r1, HALT
jmp r0,

where rs is some register, HALT is the address of the illegal instruction
specified in Condition (1), and IMM is the word w, such that Dc (w) =
label dst(w0). This code compares the dynamic target of a jump, which is
initially in register rs, to the label instruction that is expected to be the
target statically. When the comparison succeeds, the jump proceeds. When
it fails, the program halts.

(4) If bgt rs, rt , w or jd w appear anywhere in Mc, then the target address w
does not hold a jmp instruction or the occurrences of the instructions

ld r1, r0(0)
movi r2, IMM
bgt r1, r2, HALT
bgt r2, r1, HALT,

that precede a jmp instruction according to Condition (3). The target ad-
dress may hold addi r0, rs, 0. (Note that (2) removes the possibility that a
jmp instruction can jump to another jmp instruction or to any of the pre-
ceding instructions considered here.)

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

Theorem

4:34 • M. Abadi et al.

We let the predicate I (Mc, G) mean that Mc and its CFG G satisfy the conjunc-
tion of the conditions described earlier.

6.4.2 A Theorem about CFI. With these definitions, and under the seman-
tics of Section 6.2.3, we can obtain formal results about our instrumentation
method.

Here, we give a simple but fundamental result that expresses integrity of
control flow. The following theorem states that every execution step of an in-
strumented program is either an attack step in which the program counter
does not change or a normal step to a state with a valid successor program
counter. Thus, despite attack steps, the program counter always follows the
CFG.

THEOREM 1. Let S0 be a state (Mc|Md , R, pc), such that pc = 0 and I (Mc, G),
where G is a CFG for Mc, and let S1, . . . , Sn be states, such that S0 → S1 →
· · · → Sn. Then, for all i ∈ 0..(n − 1), either Si →a Si+1 and Si+1.pc = Si.pc, or
Si+1.pc ∈ succ(S0.Mc, G, Si.pc).

The proof of this theorem, which we present in Appendix A.1 available in the
ACM Digital Library, consists in a fairly classical induction on executions, with
an invariant. In particular, the proof constrains the values of the distinguished
registers within the instrumentation sequences but puts no restrictions on the
use of these registers elsewhere in the program.

The basic technique for CFI enforcement described in this section depends
on NXD. More specifically, Theorem 1 depends on the formal version of NXD,
which says that during execution, the targets of code transfers are always in
the domain of code memory. Without this property, the theorem would fail, since
data memory may well contain label w instructions that look like the expected
destinations of jmp instructions.

6.5 CFI Enforcement with SMAC
CFI enforcement with SMAC eliminates the need for NXD and allows program
execution steps to modify code memory, with the semantics of Section 6.2.4.
While it may be viewed as a refinement of our basic technique (perhaps via a
simulation relation), in this section, we present it and study it on its own, as a
complete and separate mechanism.

6.5.1 CFI Enforcement by Instrumentation with SMAC. We assume that
the minimum and maximum addresses of code and data memory are known
at instrumentation time, and let min(M) and max(M), respectively, return the
minimum and maximum addresses in the domain of memory M .

The SMAC-based verification steps consist in ensuring that a code memory
Mc and a CFG G for Mc satisfy the following conditions.

ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 4, Pubication date: October 2009.

Idea behind formal proof: induction on executions with an invariant – constrain values of the
distinguished registers (0 - 2) within the instrumentation sequences

Code memory

Data memory

Registers

