Memory safety: attacks, defenses,

and principles

mailto:aslan@cs.au.dk

http:/www.pl-enthusiast.net/2014/07/21/memory-safety/

BY MICHAEL HICKS | JULY 21, 2014 - 7:09 AM | Jump to Comments

What is memory safety?

I am in the process of putting together a MOOC on software security, which goes

live in October. At the moment I'm finishing up material on buffer overflows,

format string attacks, and other sorts of vulnerabilities in C. After presenting this

material, I plan to step back and say, “What do these errors have in common?
They are violations of memory safety.” Then I'll state the definition of memory
safety, say why these vulnerabilities are violations of memory safety, and
conversely say why memory safety, e.g., as ensured by languages like Java,

prevents them.

No problem, right? Memory safety is a common technical term, so I expected its

definition would be easy to find (or derive) it’s much trickier than I

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Traditional definitions of Memory Safety

e.g., based on [SoK: Eternal War in Memory]

e Bad things, called memory access errors, must not occur
* buffer overflow — (PALT 0F ToDavk
* null pointer dereference
* use after free
e use of uninitialized memory
e illegal free (of an already-freed pointer, or a non-malloced pointer)

e Not a very satisfying definition: Wikipedia article for memory safety lists many

other bad things that must not happen; such lists are non-exhaustive :(

e [deally, ruling out above errors out should be a consequence of a good definition!

Alas, we don’t really have one; alternative definitions typically have semantic shortcomings of various
flavors (ask me later in the course!). Hicks’s principle of no accesses to undefined memory is a good
approximation.

Memory Safety and Security

e Memory safety is paramount to security!

* Lack of memory safety exposes low-level interiors of crucial abstractions, which leads to
catastrophic attacks

e Memory safety by itself does not imply security!

* Plenty of opportunities for higher-level bugs
* For example, in Assignment #1, the backend is written in a memory-safe language (JavaScript)

e Today:

* Introduction to classical memory safety attacks
* Buffer overflows
* Return-oriented programming (ROP)

e Defenses
° Page table protection (W®X)
* Address-Space Layout Randomization (ASLR)
* Control-Flow Integrity (CFI)

Buffer overflows

Acknowledgments: Andrei Sabelfeld

Background: Virtual Address Space

lowest memory address

0x000000
unused

TEXT segment

Physical memory pages
DATA segment

Heap

mapped to shared libs

Stack grows from

higher addresses to mapped to shared libs

lower ones

Virtual address space of a process

stack pointer SPp —

frame pointer Tp—

Oxffffff
highest memory address

/proc/[proc id]/maps

unused $ pmap -X 2448

2448 ./a.out
Address

00400000
00600000
00601000
00d32000
7£5398b47000
7£5398d07000
7£5398£07000
7£5398£0b000
7£5398£0d000
7£5398£11000
7£5399128000
7£f5399136000
7£5399137000
7£5399138000
7f£fc8725e000
7f£f£c8735c000
ffff£f£££££600000

TEXT segment

DATA segment

mapped to shared libs

mapped to shared libs

/p)
wn
Q
Q
o
o
Q.
(]
(-
o
Q
Q
(g}
Q.
/s
wn
0p)
Q
A
©
)
(]
"
-
)
=
=

Perm

Offset Device

00000000
00000000
00001000
00000000
00000000
001c0000
001c0000
001c4000
00000000
00000000
00000000
00025000
00026000
00000000
00000000
00000000
00000000

fd:
fd:
fd:
00:
:01
fd:
fd:
fd:
00:
fd:
00:
fd:
fd:
00:
00:
00:
00:

fd

01
01
01
00

01
01
01
00
01
00
01
01
00
00
00
00

Inode Size Rss Pss Referenced Anonymous Swap Locked

262808
262808
262808

0
393517
393517
393517
393517

0
393333

0
393333
393333

0

0
0
0

4 4 4
4 4 4
4 4 4
4 4

20

0

16

8

8

10

4

()
=
O & N & & & N0 00 00 OO 00 & b

=

=
=N

0

=

O O N & & B N O 00 ONO O

0

O O O O O O O O OO OO oo o o

O O O O O O O O OO OO OO o o o

Mapping
a.out
a.out
a.out
[heap]
libc-2.23.
libc-2.23.
libc-2.23.
libc-2.23.

1d-2.23.so0

1ld-2.23.s0
1ld-2.23.s0

[stack]
[vdso]
[vsyscall]

KB

unused

TEXT segment

DATA segment

Heap

mapped to shared libs

mapped to shared libs

lower memory addresses

higher memory addresses

Stack grows from
higher addresses to
lower ones

Stack

low addresses

Call stack organization

SP

Hh
O

<

saved_fp | ret argi

argN

Caller runs:

Callee runs:

push argN; .. ;push argl;

call F // push return address;

sp := sp - sizeof (locals)

// .. body of the callee

ret // pops ret off the stack

stack growth

jmp F

high addresses

low addresses

Call stack organization

SP

Hh
O

<

saved_fp | ret argi

argN

Caller runs:

Callee runs:

push argN; .. ;push argl;

stack growth

call F // push return address; jmp F

sp := sp - sizeof (locals)

// .. body of the callee

ret // pops ret off the stack

high addresses

low addresses

Call stack organization

SP

Hh
O

<

saved_fp | ret argi

argN

Caller runs:

Callee runs:

push argN; .. ;push argl;

stack growth

call F // push return address; jmp F

sp := sp - sizeof (locals)

// .. body of the callee

ret // pops ret off the stack

high addresses

low addresses

Call stack organization

SP

\

Hh
O

<

saved_fp | ret argi

argN

Caller runs:

Callee runs:

push argN; .. ;push argl;

stack growth

call F // push return address; jmp F

sp := sp - sizeof (locals)

// .. body of the callee

ret // pops ret off the stack

high addresses

low addresses

Call stack organization

sp fp

N4

saved_fp | ret argi

argN

Caller runs:

Callee runs:

push argN; .. ;push argl;

stack growth

call F // push return address; jmp F

sp := sp - sizeof (locals)

// .. body of the callee

ret // pops ret off the stack

high addresses

low addresses

Call stack organization

locals saved_fp | ret argl |...| argN

high addresses

stack growth

Caller runs; Ppush argN; .. ;push argl;
call F // push return address; jmp F

Callee runs: push fp

sp := sp - sizeof (locals)
// .. body of the callee

ret // pops ret off the stack

low addresses

Call stack organization

sp fp

N4

leeals saved_fp | ret argi

argN

Caller runs:

Callee runs:

push argN; .. ;push argl;

stack growth

call F // push return address; jmp F

sp := sp - sizeof (locals)

// .. body of the callee

ret // pops ret off the stack

high addresses

low addresses

Call stack organization

SP

Hh
O

<

leeals saved—fp | ret argi

argN

Caller runs:

Callee runs:

push argN; .. ;push argl;

stack growth

call F // push return address; jmp F

sp := sp - sizeof (locals)

// .. body of the callee
:= fp
fp := pop ()

ret // pops ret off the stack

high addresses

low addresses

Call stack organization

SP

Hh
O

<

saved_fp | ret arg

argN

Caller runs:

Callee runs:

push argN; ..

;push argl;

stack growth

call F // push return address; jmp F

push fp

fp := sp

sp := sp - sizeof (locals)

// .. body of the callee

sp := fp

fp := pop ()

ret // pops ret off the stack

high addresses

Buffer overflows

e Classical attack vector

e Extremely prevalent up to mid-2000s
 variations of the attack still possible today
e Main cause: C and C++ do not perform array bound checks
e “Overflow” = writing past the end of an array/buffer
e Basic attack relies on accomplishing two tasks

* Hijack control (by overwriting RET address)

e Plant malicious code (payload)

Traditionally vulnerable C functions

@ strcpy, strcat, sprintf, scanf, sscanf, gets

* No bounds checked #include <stdio.h>
4
. _ int main
® Example- * Reads a buffer from stdin Char(}?)uéfer [5127;
®* No checks for buffer sizes gets (buffer);
* \n (new line) or AD (EOF) terminate return 0;
the string }
-
sSp fp
” O
2 3
) S
- 2
- _ (g}
S normal input saved_fp ret arg o
o0

stack growth

Traditionally vulnerable C functions

@ strcpy, strcat, sprintf, scanf, sscanf, gets

* No bounds checked #include <stdio.h>
4
. _ int main () {
¢ Example- * Reads a buffer from stdin char buffer [512];
* No checks for buffer sizes gets (buffer);
* \n (new line) or AD (EOF) terminate return 0;
the string }
_
sp fp

attacker input

low addresses
high addresses

stack growth

Shellcode

e Shellcode spawns a shell under the uid of the current process
e If uidis elevated to root, this gives rootshell

e Attacker goals

* Find how to embed the shellcode
in the simplest case: the buffer itself

e Ensure that writing to the buffer overwrites the return address
e Ensure that return pointer points to the shellcode

sSp fp

x

low addresses

stack growth

high addresses

low addresses

Stack smashing

Hh
O

high addresses

SP

<
<

Caller runs:

Callee runs:

stack growth

call F // push return address; jmp F

push fp

fp := sp

sp := sp - sizeof (buffer)
gets (buffer)

sp := fp

fp := pop ()
ret // pops ret off the stack

low addresses

Stack smashing

SP

Hh
O

<

ret

Caller runs:

Callee runs:

stack growth

call F // push return address; jmp F

push fp

fp := sp

sp := sp - sizeof (buffer)
gets (buffer)

sp := fp

fp := pop ()
ret // pops ret off the stack

high addresses

low addresses

Stack smashing

SP

N\

Hh
O

<

saved_fp | ret

Caller runs:

Callee runs:

stack growth

call F // push return address; jmp F

push fp

fp := sp

sp := sp - sizeof (buffer)
gets (buffer)

sp := fp

fp := pop ()
ret // pops ret off the stack

high addresses

low addresses

Stack smashing

sp fp

N\

\4

saved_fp | ret

Caller runs:

Callee runs:

stack growth

call F // push return address; jmp F

push fp

fp := sp

sp := sp - sizeof (buffer)
gets (buffer)

sp := fp

fp := pop ()
ret // pops ret off the stack

high addresses

low addresses

Stack smashing

SP

fp

\4

buffer

saved_fp | ret

Caller runs:

Callee runs:

stack growth

call F // push return address; jmp F

push fp

fp := sp

sp := sp - sizeof (buffer)
gets (buffer)

sp := fp

fp := pop ()

ret // pops ret off the stack

high addresses

low addresses

Stack smashing

NOPs | shell code

A 4 P

Caller runs:

Callee runs:

_/ stack growth

call F // push return address; jmp F

push fp

fp := sp

sp := sp - sizeof (buffer)
gets (buffer)

sp := fp

fp := pop ()
ret // pops ret off the stack

high addresses

low addresses

Stack smashing

sp fp

N\

NOPs | shell code

A 4 P

Caller runs:

Callee runs:

_/ stack growth

call F // push return address; jmp F

push fp

fp := sp

sp := sp - sizeof (buffer)
gets (buffer)

sp := fp

fp := pop ()
ret // pops ret off the stack

high addresses

low addresses

Stack smashing

?
fp” sp

l

NOPs | shell code

A 4 P

Caller runs:

Callee runs:

_/ stack growth

call F // push return address; jmp F

push fp

fp := sp

sp := sp - sizeof (buffer)
gets (buffer)

sp := fp

fp := pop ()
ret // pops ret off the stack

high addresses

low addresses

Stack smashing

?
fp 2 Sp 0
execution continues form here l ?
()]
V S
®
NOPs | shell code |k P
< X P g

\/ stack growth

Callerruns: <call F // push return address; jmp F

Callee runs: push fp

fp := sp

sp := sp - sizeof (buffer)
gets (buffer)

sp := fp

fp := pop ()
ret // pops ret off the stack

low addresses

NOPsled

NOP | NOP | ... | NOP | <Shell code> *

stack growth

S~

Adding NOP instructions in front of the shell
code makes it easier go guess the offset from the
return address into the start of the buffer.

high addresses

Protection: coding practice

e Type-safe languages

e Type-safe systems languages: Rust
e If you have to use C/C++

* strcpy — strncpy

e safe libraries

e restrict the scope of elevated privileges

Protection: basic defenses

e Stack canaries
* writing a special value on the stack after RET address upon function entry, and checking it before returning
* effective when attacker is limited to linear sequential writes

terminator canary (0x000aff0d) thatis effective against strcpy/gets or randomized

question: why?
* good performance

* ineffective against overwrites of RET address and do not protect indirect calls and jumps
e Shadow stacks
* save return address to separate shadow stack, and compare with it upon return
* idea: corrupting two return addresses is harder than one
* performance overhead: shadow stack itself may need to be protected:
* NEW: hardware support in the modern (circa 2021) processors from Intel and AMD
* jssues with compatibility: extra complexity when unwinding stack in exception handling

* still only protects backward (RET) edges

Protection: other defenses

e System support

* Non-executable stack:
* So-called W&X memory protection:
- pages that can be written cannot be executed

- executable pages cannot be written to

* Rational: even if the stack is smashed, the memory page is marked as nonexecutable:

e Only partial defense:

* other attacks are possible: return-to-libc/ROP
e Address Space Layout Randomization

e Compiler level: Static Control-Flow Integrity

S pmap -X 2448
2448:

./a.out
Address
00400000
00600000
00601000
00d32000
7£5398b47000
7£5398d07000
7£5398£07000
7£5398£0b000
7£5398£0d000
7£5398£11000
7£5399128000
7£5399136000
7£5399137000
7£5399138000
7££c8725e000
7ftfcd8735c000

fEfffffff£600000

Offset Device

00000000
00000000
00001000
00000000
00000000
001c0000
001c0000
001c4000
00000000
00000000
00000000
00025000
00026000
00000000
00000000
00000000
00000000

fd:01
fd:01
fd:01
00:00
fd:01
fd:01
fd:01
fd:01
00:00
fd:01
00:00
fd:01
fd:01
00:00
00:00
00:00
00:00

Inode
262808
262808
262808

0
393517
393517
393517
393517

0
393333

0
393333
393333

Size Rss
4 4

4 4

4 4

4

464

Pss Referenced Anonymous Swap Locked Mapping

4
4
4
4
20
0
16
8
8
10
12
4
4

114

rw-p

4

DS

N
NS

[

=
=N

4
4
8
0
6
8
8
8
2
4
4
4

0 0 a.out
a.out
a.out
[heap]
libc-2.23.
libc-2.23.
libc-2.23.

libc-2.23.

=

1d-2.23.s0

=
= & B D O 00 00 O ©O O b b b

1d-2.23.s0
1d-2.23.s0

[stack]
[vdsO]
[vsyscall]

O O O O O O O O O O O O o O o o
O O O O O O O O O O O O O O o O o

KB

[stack]

Return-to-libc attacks

e If the stack is non-executable, but we can still smash it, where else can we point the
return address to?

e Possibility: some existing function in libc (or other linked library) that is executable
e Lots of “useful” functionality

 The pages are marked as executable

e Example attack:

e smash the stack and point “RET” to a libc function that already does what we want

e “Chained return-to-libc” calls:

e calling multiple functions in succession

Return-Oriented Programming

Based on the article by
Ryan Roemer, Erik Buchanan, Hovan Shacham and Stefan Savage

Return-oriented programming

e Observation: attacker doesn’t really need a whole libc- function; only a sequence of
instructions followed by a return:

e Example: pop %edx; ret
e All we need is chain these sequences to get the desired behavior

e How to chain them?

e Use stack pointer as the “attack-level instruction pointer”

Ordinary and return-oriented programs

Layout of an ordinary program | insn insn insn insn insn

instruction
pointer
— R
insns ... ret Insns ... ret
: C library
LayOUt of a return-oriented insns ... ret Insns ... ret Insns ... ret
program a

stack
To kick-off an ROP program we start w/ a ret pointer

Ordinary and return-oriented programs

NOP sleds nop nop nop
A A
Instruction stack
pointer pointer

C library
pop %ebx; ret

mov $0xdeadbeef, %eax / |
Immediates (bb ef be ad de) | Oxdeadbeef \
A A

instruction stack
pointer pointer

To kick-off an ROP program we start w/ a ret

: what does this ROP program do?

pop Yesp; ret

Hint: %esp is the stack pointer

: what does this ROP program do?

pop %esp; ret

/
T i

stack
pointer
A: Direct jump
ordinary equivalent jmp +4

Gadgets

An arrangement of values on the stack that causes several sequences to be executed

mov (%eax), %ebx; ret

pop %eax; ret

/ / (word to
load)
A— A'—'
stack
pointer

memory load gadget

Finding instruction sequences

e Intended instruction sequences — every sequence ending in a return

e Unintended instruction sequences

e x86 uses variable-length encoding of instructions
Given a byte stream and a starting offset, the instruction at that offset can be disambiguously
decoded; but different offsets will give different decoding
- we can even start in the middle of an intended instruction

 What's important is the c3 opcode (ret) and what’s before it in the byte stream
e Compare:

f7 c7 07 00 00 00 test $0x00000007, %edi
0f 95 45 c3 setnzb -61(%ebp)

c7 07 00 00 00 Of movl $0x0f000000, (%edi)
95 xchg %ebp, %eax

45 inc %ebp

c3 ret

Example gadget: Add

adds the word at %edx to Y%eax

‘ /"

The most convenient available sequence is addl (%edx), %$eax; push %$edi; ret

addl (%edx), %eax

pop %ecx
pop %edx
ret

push %edi

ret
A

4)
this is a problem
— limits where ret jumps

pop %edi — messes up the stack (cant’s
ret just use the sequence in loops)
\- /
movl %ecx, (%edx) pop %edx
ret ret
ret
' ¢ / / / % arbitrary

%esp

Example gadget: Add

addl (%edx), %eax

pop %ecx push %edi pop %edi
pop %edx ret ret
ret t
movl %ecx, (%edx) pop %edx
ret ret
ret
N !) ! / / / \ .. | arbitrary

%esp

Example gadget: Add

%ecx

\4

addl (%edx), %eax

pop %ecx push %edi pop %edi
pop %edx ret ret
ret t
movl %ecx, (%edx) pop %edx
ret ret
ret
N !) ! / / / \ .. | arbitrary

Y%esp

Example gadget: Add

%ecxX %edx

\4

addl (%edx), %eax

pop %ecx push %edi pop %edi
pop %edx ret ret
ret t
movl %ecx, (%edx) pop %edx
ret ret
ret
\ ! . ! / / / \ arbitrary

%esp

Example gadget: Add

%ecxX %edx

\4

addl (%edx), %eax

push %edi pop %edi
ret ret
A
movl %ecx, (%edx) pop %edx
ret ret
ret
! . ! / / / \ .. | arbitrary

%esp

Example gadget: Add

Yecx
2!
addl (%edx), %eax
push %edi pop %edi
ret ret
A
movl %ecx, (%edx) pop %edx
ret ret
ret
l . l /
A

%edx

arbitrary

%esp

Example gadget: Add

%ecx %edx
vy
addl (%edx), %eax
push %edi pop %edi
ret ret
pop %edx
ret
ret
’ - / { / \ S I arbitrary

%esp

Example gadget: Add

%ecx %edi
vy
addl (%edx), %eax
push %edi pop %edi
ret ret
pop %edx
ret
ret
¢ . / / /
)\

%edx

A

arbitrary

%esp

Example gadget: Add

%ecx %edi %edx

|

vy
addl (%edx), %eax
push %edi
ret
op %edx

ret

ret /
{ / % R arbitrary

t\

%esp

Example gadget: Add

%ecx %edi %edx

|

vy
addl (%edx), %eax
push %edi
ret
pop %edx

ret

ret /
{ / % R arbitrary

%esp

Example gadget: Add

%edi

%ecx

|

2!
addl (%edx), %eax

push %edi

ret
A

ret

%esp

%edx

v

arbitrary

Example gadget: Add

%edi

%ecx

|

2!
addl (%edx), %eax

push %edi
ret

ret

%edx

arbitrary

%ecx

Example gadget: Add

%edi %edx

|

ret

/

/

\ arbitrary

\

\ R
%esp

Requirements on gadgets

e Conditions that guarantee correct execution of an ROP program

e Precondition:

%esp points to the first word in the gadget and the processor executes a ret instruction

e Postcondition:

* When the ret instruction in the last instruction sequence of the gadget is executed, %esp points
to the next gadget to be executed

Building on top of this

e Other building blocks:
 More complicated gadgets for control flow
e Also: system calls, and “regular” function calls

e Example: shellcode gadget on the right
e Claim: the gadget collection is Turing-complete
e Exploit framework:

e a compiler from a high-level language to gadgets

%esp —»

0x0bObObODb

+24

» movl %eax, 24(%edx)
ret
» add %ch, %al

» pop %ebx

ret

» pop Yecx
pop Y%edx

ret

» |call %gs:0x10(,0)

ret

(word to zero

)

/bin

/sh\0

ROP: the takeaways

e Malicious computation # Malicious code

e W®X memory protection by itself is insufficient

* Need something more principled

Address-Space Layout Randomization

e Idea: Randomize the layout of the address space
* The offsets will differ at each invocation

e Forces the attacker to brute-force through the offsets

e Limitation:
* On 32 bit machines there is not much entropy for this to be a realistic defense
* Forks preserve the layout

e Coarse-grained

* Difficult to randomize offsets within functions

Attackon a 32 bit ASLR

usleep (...)

4)

randomized offset

Vulnerable Web Server

o

/

_

Network requests that brute

force through the offset space

\

J

Invalid offsets terminate connection immediately

Valid offset terminates connection after sleeping

The offset is preserved across forks

Attacker

ASLR Conclusion

e Need 64 bit architectures to make randomization effective

e Need something more principled

Control Flow Integrity

Direct vs indirect control transfer

Direct

Indirect

Direct jJump - jumping to a statically determined constant.
Examples: if-then-else, loops, most local (w.r.t. a function
body) control flow

Direct call — calling to a statically determined target, e.g.,
static function call

-
in OO-languages, dynamic dispatch is

the process of selecting which
implementation of a polymorphic
operation (method or function) to call at
run time.

\>various implementations of dynamic dispatch

Jump to a dynamically computed target: Examples:
switch statement implemented via a dispatch table,
Procedure Linkage Tables (PLT), etc

Indirect call — call to a computed, i.e., dynamically
determined target. Examples: function pointers in C,

Function return (OBS: regardless of the whether the call is
direct or indirect)

Complex control-flow due to exception handling (stack
unwinding)

Complex control-flow to support dynamic linking or
separate compilation

Indirect jumps as the source of all troubles

e It is the indirect jumps that make it possible to hijack the program control flow

CFI: Control-Flow Integrity (2005)

e Observation: there is gap between a machine-level jump and the original source-level target

e An indirect jump at a machine level can land anywhere, including middle of an instruction
(on x36)

e Even the lowest of the systems programming languages rule out most of those targets
e Definitely NOT middle of an instruction

* Only a handful of possible targets: functions, switch statements, exception handlers
e This gap is the source of many problems: buffer overflows, ret-to-libc, ROP

e Goal of the CFI:

* make the gap smaller, by reducing the set of machine-level jump targets to the intended subset

CFlis a 2-phase process

e Phase 1: Analysis — identify possible targets for all indirect jumps
* This means we need to compute the Control-Flow Graph (CFG) of the program

e Recall: control flow graph of a program is a graph where nodes correspond to basic
blocks and edges correspond to jumps/branches.

e Different ways to compute CFG:
* Statically from the source of the program
* Statically from the binary of the program

* Dynamically, through profiling under “normal” input

CFG and its targets

Example C program with indirect calls and function pointers

1 void foo(int a){
2 return ;
3 }
4 void "bar(int a){
5 return ;
6 }
7 void baz(void)|{
3 int a = input ();
void (>|< fptr)(in);<Efptr is a function pointer
10 if (a){
11 fptr = foo; (
12 fptI’ () | —r Indirect call
13 } else \
- [pLr = byt ,; ther indirect call
15 fptr (); nother indirect ca
16] LN
17 |

Q: what are the possible targets of fptr ()call

Dynamically, it is either foo or bar

CFG imprecisions

Example C program with indirect calls and function pointers

1 void foo(int g){
return;
}

void bar (4
return ;

t a)i

}
void baz(void)|{

int a = input ();
void (xfptr)(int);

10 if (a){

11 fp tr = foo ; Imprecise # Useless. In this example, knowing that there are at

12 f ptr (); most 2 possible targets is much better than not knowing anything at
13 } else { all (which would mean that the target of the fptr () call is

) anywhere in address space!)

14 fptr = b

16

17

Q: what are the statically possible targets of fptr () call?

Depends on how sensitive our analysis is

For example, a simple analysis will mark both foo and bar as p05“sible targets
for all indirect function calls of fptr ()

Static analyses get only better, but we know that even the best ones will have
Imprecisions

CFlis a 2-stage process

e Phase 2: Enforcement - ensuring that all executed branches correspond to the
edges in CFG

e At least three ways to implement
e Static rewriting by the source-level compiler
e Static binary rewriting

e At runtime, through binary translation

CFl1stages

Original program

-
Phase 1 (Analysis)

-

Phase 2 (Enforcement)

-

N\

v

Final program (instrumented binary)

CFG

Attacker model

e The attacker knows the source/binary of the program, including the final
(instrumented) binary

e Important: no security through obscurity (cf. principles of secure design from [Seltzer &
Schroeder’75])

e WaeX memory protection
e Attacker has write access to program memory, but cannot modify the program code
e A handful of tamper-resistant registers

e Possibility of creating bit patterns that do not appear anywhere in code memory
(i.e., do not conflict with opcodes)

Ordinary CALL

DST register: 0x12002020

call DST 0x12002020: // body of foo

source instruction destination instruction

OBS: the call will succeed no matter where DST points to

Magic assembly

e Suppose we have three new assembly instructions
® 1abel ID - has no effect

® call 1D, DST - transfers control to address at register DST only if that code starts with
label ID

® ret ID - return to the call point only if that point starts with 1abel ID

These instruction could be in principle added in hardware, but are practically implemented in software

CALL with CFI

DST register: 0x12002020

call 12345678 DST v
0x12002020: 13bel 12345678

// body of foo

source instruction .. :
destination instruction

The call succeeds because the labels match

The idea of instrumentation: modify each source instruction and each possible destination instruction by adding IDs
that correspond to potential targets from CFG

CALL with CFI

DST register: 0x12002028

\4

call 12345678 DST 0x12002028: // no label here
" // some other code

source instruction
destination instruction

A call to a destination where there is no label or the label is wrong will fail

Example: a C program and CFG

bool 1t(int x, int y) {
return x < y;

}
bool gt(int x, int y) {
return x > y;

}

sort2(int al[], int b[], int len)

{
sort(a, len, 1t);
sort(b, len, gt);

sort2 () :

2

call sort™

1t () s

» label 17

§

label 55 W

§

- ret 23

gt():

call sort’

label 55 %

§

ret ..

e label 17

§

\ret 23

dotted arrows - direct calls
edges from source - straight arrows
dashed arrows - return edges

The ID bit pattern is embedded within the ID-check cmp opcode bytes. As a result, an attacker

o
that can somehow affect the value of the ecx register might be able to cause a jump to the jne |\ a ll Slte
instruction instead of the intended destination. r

CFKI soft

Bytes (opcodes)

FF E1 jmp ecx ; a computed jump instruction
, * can be 1nstri mented as (a):
Avoids the above problem with ecx b [ecx], 12345678h ; compare data at destination

register being manipulated by the attacker

\V

1if not ID value, then fail
skip ID data at destination

error_label

9 o

ecx, [ecx+4]

=74

W e

L\

ecx jump to destination code

,
A
¥

\

CFI software instrumentation — callee site

Bytes (opcodes) x86 assembly code Comment

8B 44 24 04 mov eax, [esp+4] ; first instruction
; of destination code

can be instrumented as (a):

78 56 34 12 DD 12345678h ; label ID, as data
8B 44 24 04 mov eax, [esp+4] ; destination instruction

Precision issue

e The more precise the CFG the better we are

e Precision could be added by code duplication

2007

2013

Seekers et al.

CFIl enforcement overhead

50% 1

40% -

30% -

20% -

10% A

0%

Overhead

Binary size increase: average 8%

bzip2 crafty eon

gap

gcc

Runtime overhead: average 16%

N\

gzip mcf parser twolf vortex vpr AVG

Fig. 6. Execution overhead of inlined CFI enforcement on SPEC2000 benchmarks.

Basic CFI: Average: 16; Max: 45

CFI w/ shadow stack : Average: 21; Max: 56

Example vulnerable code

int median(int* data, int len, void* cmp)

// must have 0 < len <= MAX_LEN

int tmp[MAX_LEN];

memcpy(tmp, data, len*sizeof(int));

gsort(tmp, len, sizeof(int), ecmp);

return tmp[len/2];

qsort_with_cfi:

push ebx

mov eax, esil

call shortsort
prefetchnta [AABBCCDDh]
add esp, OCh

push edi

push ebx

mov eax, [esptcomp_£fp]
cmp [eax+4], 12345678h
jne error label

call eax

prefetchnta [AABBCCDDh]
add esp, 8

test eax, eax

jle label_lessthan

; CFI check
; prevents
; going to X

regular_qgsort:

push ebx

mov eax, esi
call shortsort
add esp, OCh

push edi

push ebx

call [esp+comp_£fpl
add esp, 8

test eax, eax
jle label_lessthan

regular_library_function:

mov edi,edi
push ebx
mov ebx,esp

push ecx

pop ebp

X: mov esp,ebx
pop ebx
ret

Security Experiments: GDI+HJPEG flaw in Windows (2004)

; an attack 1is
; possible by
; going to X

Formal study

Instr ::= Instructions

label w

add rg, rs, T
addr rg, s, W
movt g, W
bgt rs, T¢, W
9d w

Jmp s

ld rq, rs(w)
st rqg(w), ry
illegal

Fig. 12.

label (with embedded constant) Sis astate — (M, R, pc)

add registers

add register and word

move word into register

branch-greater-than

jump S >, 8 S >, 8
computed jump q 5 g S 5 g
load

store

illegal

Instructions.

(M, My, R,pc) -, M. My, R{ry — R(ry) + R(r;)}, pc + 1),

example: normal step transition for add rq rs rt

(MC‘Mda R,pC) —a (MC‘Md/a R,pC).

attacker transition

Assumptions: the code is well-instrumented for CFI

e Direct jump targets
 all targets must be valid according to CFG

o [Ds
* There must be an ID right after every entry point
* No IDs by accident

e ID checks

* There must be a validation check before every control transfer

e Each check must respect CFG

Example validation check

If wy € dom(AM.) holds a jmp instruction, then this instruction is jmp r¢ and
it is preceded by a specific sequence of instructions, as follows:

addi ro, s, 0

ld ri, 1”0(0)

movi ro, IMM
bgt ri, ro, HALT
bgt ro,r1, HALT
Jmp ro,

where rg is some register, HALT is the address of the illegal instruction
specified in Condition (1), and IMM is the word w, such that Dc(w) =
label dst(wq). This code compares the dynamic target of a jump, which 1is
initially in register ry, to the label instruction that is expected to be the
target statically. When the comparison succeeds, the jump proceeds. When
it fails, the program halts.

Theorem

Data memory

Registers

V1Y
THEOREM 1. Let Sybeastate(M.|My, R, pc), such that pc =0and I(M., G),
where G i1s a CFG for M., and let S+, ..., S, be states, such that So — S1 —
. — S,. Then, for alli1 € 0..(n — 1), either S; —, S;+1 and S;11.pc = S;.pc, or

S;.1.pc € succ(Sy.M,., G, S;.pc).

Code memory

Idea behind formal proof: induction on executions with an invariant — constrain values of the
distinguished registers (o - 2) within the instrumentation sequences

