XML Graphs in Program Analysis

Anders Mogller
Michael I. Schwartzbach

A4S AR

University of Aarhus

_

== SN P

Overview

= \What are XML graphs

= Applications:
o XACT
e Java Servlets and JSP
e XSugar

o XSLT

2/52

Four applications

= XACT - Java-based transformations of XML fragments
— static type-checking with XML Schema

= Java Servlets and JSP
— static validation of output

= XSugar - dual syntax for XML languages
— static checking of grammars vs. schemas

= XSLT

— static validation of stylesheets,
dead code detection

3/52

Main publications about
XML graphs and XSLT analysis

= Anders Mgller and Michael I. Schwartzbach,
XML Graphs in Program Analysis,
invited paper at PEPM'07

= Anders Mgller, Mads @sterby Olesen, and Michael
I. Schwartzbach, Static Validation of XSL
Transformations, to appear in TOPLAS 29(4)

4 /52

Representing XML abstractions

= \We need a versatile model of
sets of XML documents

= Requirements:
1. Capture all of XML, not an idealized subset

2. Represent sets of XML documents described by
common formalisms such as DTD and XML Schema

3. Allow static validation against schemas
4. Allow static navigation with XPath expressions

5. Provide finite-height lattice structures for
dataflow analysis and fixed-point iteration

6. Be fully implemented

5/52

From XML trees to XML graphs

= XML graphs generalize XML trees:

e Character data, attributes values, and element
names are described by regular string languages

e Not only sequence nodes for content, but also
choice and interleave nodes

e Loops are permitted
e Special gaps to model XML fragments

i F

-

. J

e An XML graph represents
a set of XML templates

— A pragmatic model fine-tuned through
6 years of program analysis development

6/52

Example of an XML graph

sequence

All ul lists
with zero or more 11 items
each containing a numeral

7152

X

Formal definition of XML graphs

= (N, R, contents, strings, gaps)

N contains nodes
(element, attribute, text, sequence, choice, interleave, gap)

R is a subset of root nodes

contents describe the edges
(depending on the node kind)

strings assigns sets of strings to certain nodes
(element/attribute names, character data, attribute values)

gaps describe information about gaps
(only used in some applications, in particular XACT)

8 /52

Unfolding semantics

anode/H:}f ¢b a\
XML content attributes
text

L(x) = {x

dneR:n=x;t; aj

9/52

Unfolding semantics

ne<Ng s €Estrings(n) contents(n) = x;t; a

[element]
n=-<sa>x</s>:.:e:

neNy sestringsin) contents(n) =x;t,a t#Q

[attribute]
H=¢€:&::5=""
ne Ny s & strings(n)
— [text]
n=s.s,Y
ne Ns contents(n) =my-- -y
m; = Xj., 1j, d aca) - La
[sequence]
N=>X| - Xpolfl-lp:.d
neNeUNg m € contents(n) m=x;t;d .
C G
2 [choice |

n=XxX.7r.,d
10/ 52

Lattice structure

= XML graphs are compatible if they differ only on
e roots
o strings
e choice-node edges, and
* gaps

(i.e. they agree on the nodes and the non-choice-node edges)

= Compatible XML graphs are ordered pointwise
— they form a lattice!

(finite-height if strings has finite co-domain)

= Non-compatible expansion is polyvariance

11 /52

Operations on XML graphs

XML documents are a special case

DTD, XML Schema, and RELAX NG can be
represented exactly

Closed under union and
least upper bound (on compatible graphs)

Closed under gap/template plugging
Validation relative to a given schema is possible
XPath location paths can be evaluated

12 /52

Relations to other formalisms

= Theoretically quite close to:
o RELAX NG
e regular tree grammars
e regular expression types (XDuce types)

= Pragmatic advantages:
e Lattice structure
e Includes text, attributes, and interleaving
e Some non-regular structures can be expressed
e Maintains template gap information

13 /52

Implementation

Open source Java library: dk.brics.schematools

Representation of XML graphs
Conversion from XML documents and templates

Conversion from schemas, including XML Schema,
to XML graphs and Restricted RELAX NG
(essentially single-type tree grammars)

Validation relative to XML Schema and
Restricted RELAX NG schemas

Evaluation of XPath location paths
Command-line interface, as supplement to the API

14/ 52

Overview

= What are XML graphs

= Applications:
o XACT
e Java Servilets and JSP
e XSugar

o XSLT

15/ 52

Typical approach

validation domain-specific

Wi
- TP

control flow =
XML graph

16/ 52

Overview of XSLT analysis

= Brief summary of XSLT (1.0)
= Stylesheet mining

= Type checking XSLT stylesheets
o simplification
e flow analysis
e XML graph construction and validation

17 /52

XSLT 1.0

= XSLT (XSL Transformations) is designed for
transformations for document-centric XML
languages

= A declarative domain-specific language
based on templates and pattern matching
using XPath

= An XSLT program consists of template rules,
each having a pattern and a template

Processing model

= A source XML tree is transformed by
processing its root node

= A single node is processed by

e finding the template rule with the best
matching pattern

e instantiating its template
e may create result fragments
e may select other nodes for processing

= A node list is processed by processing each node
and concatenating the results

19 /52

An example input XML document

<registrations xmlns="http://eventsRus.org/registrations/">
<name 1d="117">John Q. Public</name>
<group type="private" leader="214">

<affiliation>widget, Inc.</affiliation>
<name 1d="214">John Doe</name> l.John Q Public
<name 1:d="215">Jane Dow</nhame> Widget, Inc. ®
<name 1d="321">Jack Doe</name>
o John Doe Il
<name 1d="742">Joe Average</name> Jane Dow
</r <!ELEMENT registrations (name|grou 5 ack Doe
"~ <!ELEMENT name (#PCDATA)> - =
<!ATTLIST name i1d ID #REQUIRED> 3.Joe;Average

<!ELEMENT group (affiliation,name¥*)>

<!ATTLIST group type (private|government) #REQUIRED
leader IDREF #REQUIRED>

<IELEMENT affiliation (#PCDATA)>

An XSLT stylesheet (1/3)

<xsl:stylesheet version="1.0"
xmlns:xs1="http://www.w3.0rg/1999/XsL/Transform"
xmlns:reg="http://eventsRus.org/registrations/"
xmlns="http://www.w3.0rg/1999/xhtml">

<xsl:template match="reg:registrations">
<html>
<head><title>Registrations</title></head>
<body>
<xsl1:apply-templates/></o1>
</body>
</html>
</xsl:template>

<xsl:template match="*">
<xsl:value-of select="."/></11>

</xsl:template>

21 /52

An XSLT stylesheet (2/3)

<xsl:template match="reg:group">
<1i>
<table border="1">
<thead>
<tr>
<td>
<xsl:value-of select="reg:affiliation"/>
<xsl:1f test="@type='private'">®</xsl:if>
</td>
</tr>
</thead>
<xsl:apply-templates select="reg:name">
<xsl:with-param name="leader" select="@leader"/>
</xsl:apply-templates>
</table>
</11>
</xsl:template>

2252

An XSLT stylesheet (3/3)

<xsl:template match="reg:group/reg:name'>
<xsl:param name="1leader" select="-1"/>

<tr>
<td>
<xsl:value-of select="."/>
<xsl:if test="$leader=@id">!!!</xs1:1f>
</td>
</tr>

</xsl:template>

</xsl:stylesheet>

23 /52

Templates

Main template constructs:
= Jiteral result fragments
e character data, non-XSLT elements

recursive processing
« apply-templates, call-template, for-each,

copy, copy-of
computed resu/t%%s\
e element, attribute, value-of, .=
v, ——————— '« use XPath for
conditional processing

computing values

e 1f, choose «
variables anM

e« variable, param, with-param

24 | 52

The challenge

Given
e an XSLT stylesheet S, and

e two schemas, D;, and D,

assuming that X is valid relative to D, ?

is S applied to X always valid relative to D,,;

— undecidable, we aim for a
conservative approximation

25152

Overview of XSLT analysis

= Brief summary of XSLT (1.0)
= Stylesheet mining

= Type checking XSLT stylesheets
o simplification
e flow analysis
e XML graph construction and validation

26/ 52

Stylesheet mining

= XSLT is a big language...

= How are the many features of XSLT being used?
e typical stylesheet size?
o complexity of select expressions?
o complexity of match expressions?

= Obtained via Google:
499 stylesheets with a total of
186,726 lines of code

27/ 52

number of stylesheets

Stylesheet sizes

120 7

1001

[
o
S

[

20T

0_
100 200 300 400

500 600

I I LT II 1L~ 5
700 800 900 1K 2K 3K 4K 5K 6K 7K
lines of code

28 /52

Complexity of select expressions

Category Number Fraction
default 3,415 31.2%
a 3,335 30.4%
a/b/c 1,153 10.5%
* 740 6.8%
al|l b]| c 473 4.3%
text() 235 2.1%
al...] 223 2.0%
/a/b/c 110 1.0%
al...]/b[...]1/c[...] 82 0.7%
@a 68 0.6%
name(s) known 602 5.6%
nasty 175 1.6%
Total 10,768 100.0%

29 /52

Complexity of match expressions

Category Number Fraction
a 4,710 53.9%
absent 1,369 15.7%
a/b 523 6.0%
al@b="..."] 467 5.3%
a/b/c 423 4.8%
// 256 2.9%
5 217 2.5%
al| b | c 177 2.0%
al...] 225 2.6%
/A [een] 225 2.6%
../ 108 1.2%
nasty 97 1.1%
Total 8,739 100.0%

30/52

Overview of XSLT analysis

= Brief summary of XSLT (1.0)
= Stylesheet mining

= Type checking XSLT stylesheets
o simplification
e flow analysis
e XML graph construction and validation

31/52

The XSLT validation algorithm

Our strategy:
1. reduce S to core features of XSLT

2. analyze flow (using D;,)
- apply-templates — template ?

— possible context nodes when templates
are instantiated?

3. construct XML graph
4. validate XML graph relative to D,

32 /52

Semantics preserving simplifications

make defaults explicit (built-in template rules, default
select, default axes, coercions, ...)

insert imported/included stylesheets

convert literal elements and attributes to
element/attribute instructions

convert text to text instructions
expand variable uses (not parameters)
reduce 1f to choose

reduce for-each, call-template, and copy to
apply-templates instructions and new template rules

move nested templates (in when/otherwise) to new
template rules

33/52

Approximating simplifications

replace each number by a value-of with
xslv:unknownString()

replace each value-of expression by
xslv:unknownString(), except for
string(self::node()) and
string(attribute::a)

replace when conditions by xs1v:unknownBoolean()

replace name attributes in attribute and element
instructions by {xs1v:unknownString()},
except for constants and {name() }

34 /52

Reduced XSLT

The only features left:
= template rules with match, priority, mode, param
= apply-templates with select, mode, sort, with-param

= choose where each condition is xs1v:unknownBoolean()
and each branch template is an apply-templates

= copy-of with a parameter as argument

= attribute and element whose name is a constant,
{name ()} or {xs1v:unknownString()} and the contents
of attributeis a value-of

= value-of where the argument is xs1v:unknownString(),
string(self::node()) or string(attribute::a)

= top-level param declarations (no variables)

— and that’s all!

35/52

Overview of XSLT analysis

= Brief summary of XSLT (1.0)
= Stylesheet mining

= Type checking XSLT stylesheets
o simplification
e flow analysis
e XML graph construction and validation

36 /52

Flow analysis

Goals:

= Determine flow from apply-templates
nodes to template nodes

= Determine possible context nodes for
instantiated tempTate nodes

37 /52

Flow graphs

= Define

o> =EuU (4X E){root, pcaata, comment, pi}
(describes types of possible context nodes)

e A= apply-templates nodes for S
e /.= template nodes for S

= A flow graph is a pair G = (G, F) where

e C: J.— 2> describes the context sets
e F: A.X T,— (X — 2*) describes the edge flow

38 /52

A typical situation

t
<template match="match"> {o}

a [<app1 y-templates sel ect="selecta"/>J

</template>

®(o,select,,matchg,matchy)

t'
<template match="matchg">

</template>

39/52

Fixed point algorithm

Find smallest solution to these constraints:

= roote C(t)
if the match expression of ¢ matches the root

= ge ((t) = P(o,select,, match,, matchy) c F(a,t’)(o)

where ®(...) is an upper approximation of the
possible flow from ain ¢ to ¢ starting with o

= F(at)(o) c C(t)

40/ 52

How to compute ¢ ???

= match expressions are always downward

= According to our stylesheet mining, most
select expressions are also downward!

— and the rest can be approximated by
downward expressions

Define regular languages:
R(x) = strings over 2. corresponding to
downward XPath location path x

[1(D) = strings over 2 corresponding to
downwards paths allowed by schema D

41 /52

Computing ® with downward paths

A good version of @ is computed using
finite-state automata:

o' € ®(o, select,, match,, matchy)
iff
wo' € Z¥R(a) N X*R(matchy) n T1(D,,)

select, if select, starts with /

where o = match; / type(o) / select, otherwise

42 | 52

Example flow graph

1 {registrations}

1.2[}

AN

[registrations->group] [registrations->name]
> {name}

3 J {group}

3.4 [|

[group->name]

4 v

[root->registrations]

43/ 52

Overview of XSLT analysis

= Brief summary of XSLT (1.0)
= Stylesheet mining

= Type checking XSLT stylesheets
o simplification
e flow analysis
e XML graph construction and validation

XML graph fragments

= For each template e 7, and oe C(f) we
construct an XML graph fragment
describing the possible XML output

o the fragment has placeholders for occurrences
of apply-templates nodes

e the construction is performed recursively in the
template structure (lots of special cases)

45/ 52

A fragment example

<element name="out:body">
<attribute name="bgcolor">
<value-of select="xslv:unknownString("/>
</attribute>
<element name="out:hr"/>

<value-of select=""Hello!’"/>
</element> l

|
out:body

A 4

sequence
1 5 3

bgcolor out:hrl Hello!
v v

STRINGS | sequence|

46 / 52

Connecting fragments

= The fragments for templates are connected using
e the select attributes in apply-templates nodes
e the information in the flow graph
e the information in the input schema

= The challenge is to capture the content model of
the output language with sufficient precision

47 | 52

XML graph validation

= We now have an XML graph that conservatively
models the output language

= We must check that its language is accepted by

the output schema D, ,

= This can be done using
dk.brics.schematools

48 / 52

Validation errors

A typical error message:

**% yvalidation errao

49/ 52

Related work

= Audebaud & Rose 2000:
e typing rules
o tiny fragment of XSLT

= Tozawa 2001:

e inverse type inference (Milo, Suciu, Vianu)
e even smaller fragment, not implemented

= Dong & Bailey 2004:

e coarser (but cheaper) flow analysis
e used for debugging (not static validation)

50/ 52

Recent work

= Full XSLT 2.0 (and thus full XPath 2.0)
= Full XML Schema, not just DTD

= Much faster than our first implementation:

e weeds out potential flow edges
with Dong & Bailey’s technique

e avoids expensive automata computations
without loss of precision

= Online demo:
http://www.brics.dk/XSLV

51 /52

Conclusion

= XML graphs are useful for representing
sets of XML documents in program analysis

= Example application:
practical validity analyzer for XSLT

Methodology:
e mining to learn about XSLT in practice
e reduce to core features
e pragmatic, conservative approximation
o flow analysis (apply-templates — template)

e XML graphs for validation

52 /52

