• Introduction to pointer analysis
• Andersen’s analysis
• Steensgaard’s analysis
• Interprocedural pointer analysis
• Records and objects
• Null pointer analysis
• Flow-sensitive pointer analysis
Analyzing programs with pointers

How do we perform e.g. constant propagation analysis when the programming language has pointers? (or object references?)

...
x = 42;
y = -87;
z = *x*;
// is z 42 or -87?

Exp → ...
| alloc E
| &Id
| *Exp
| null

Stm → ...
| *Id = Exp;
Heap pointers

• For simplicity, we ignore records
 – \texttt{alloc} then only allocates a single cell
 – only linear structures can be built in the heap

• Let’s at first also ignore functions as values
• We still have many interesting analysis challenges...
Pointer targets

• The fundamental question about pointers: *What cells can they point to?*

• We need a suitable abstraction

• The set of (abstract) cells, *Cells*, contains
 – al l oc- *i* for each allocation site with index *i*
 – *X* for each program variable named *X*

• This is called *allocation site abstraction*

• Each abstract cell may correspond to many concrete memory cells at runtime
Points-to analysis

• Determine for each pointer variable X the set $pt(X)$ of the cells X may point to

• A conservative (“may points-to”) analysis:
 – the set may be too large
 – can show absence of aliasing: $pt(X) \cap pt(Y) = \emptyset$

• We’ll focus on flow-insensitive analyses:
 – take place on the AST
 – before or together with the control-flow analysis

\[
\ldots
*x = 42; \\
*y = -87; \\
z = *x; \\
// \text{ is } z \text{ 42 or -87?}
\]
Obtaining points-to information

• An almost-trivial analysis (called *address-taken*):
 – include all *alloca* cells
 – include the X cell if the expression &X occurs in the program

• Improvement for a typed language:
 – eliminate those cells whose types do not match

• This is sometimes good enough
 – and clearly very fast to compute
Pointer normalization

• Assume that all pointer usage is normalized:
 • $X = \text{alloc } P$ where P is null or an integer constant
 • $X = \& Y$
 • $X = Y$
 • $X = * Y$
 • $*X = Y$
 • $X = \text{nul } l$

• Simply introduce lots of temporary variables...

• All sub-expressions are now named

• We choose to ignore the fact that the cells created at variable declarations are uninitialized (otherwise it is impossible to get useful results from a flow-insensitive analysis)
Agenda

- Introduction to pointer analysis
- Andersen’s analysis
- Steensgaard’s analysis
- Interprocedural pointer analysis
- Records and objects
- Null pointer analysis
- Flow-sensitive pointer analysis
Andersen’s analysis (1/2)

- For every cell c, introduce a constraint variable $⟦c⟧$ ranging over sets of cells, i.e. $⟦·⟧: Cells \rightarrow \mathcal{P}(Cells)$

- Generate constraints:
 - $X = \text{alloc } P$: $\text{alloc- } i \in ⟦X⟧$
 - $X = \& Y$: $Y \in ⟦X⟧$
 - $X = Y$: $⟦Y⟧ \subseteq ⟦X⟧$
 - $X = \ast Y$: $c \in ⟦Y⟧ \Rightarrow ⟦c⟧ \subseteq ⟦X⟧$ for each $c \in Cells$
 - $\ast X = Y$: $c \in ⟦X⟧ \Rightarrow ⟦Y⟧ \subseteq ⟦c⟧$ for each $c \in Cells$
 - $X = \text{nul l }$: (no constraints)

(For the conditional constraints, there’s no need to add a constraint for the cell x if $\& x$ does not occur in the program)
Andersen’s analysis (2/2)

• The points-to map is defined as:
 \[pt(X) = \llbracket X \rrbracket \]

• The constraints fit into the cubic framework 😊
• Unique minimal solution in time \(O(n^3) \)
• In practice, for Java: \(O(n^2) \)

• The analysis is flow-insensitive but \textit{directional}
 – models the direction of the flow of values in assignments
Example program

```
var p, q, x, y, z;
p = alloc null;
x = y;
x = z;
*p = z;
p = q;
q = &y;
x = *p;
p = &z;
```

Cells = \{p, q, x, y, z, alloc-1\}
Applying Andersen

- Generated constraints:

\[
\begin{align*}
al & \mid oc \rightarrow 1 \in [p] \\
y & \subseteq [x] \\
z & \subseteq [x] \\
c & \in [p] \Rightarrow [z] \subseteq [\alpha] \quad \text{for each } c \in Cells \\
[q] & \subseteq [p] \\
y & \in [q] \\
c & \in [p] \Rightarrow [\alpha] \subseteq [x] \quad \text{for each } c \in Cells \\
z & \in [p]
\end{align*}
\]

- Smallest solution:

\[
\begin{align*}
pt(p) &= \{ al \mid oc \rightarrow 1, y, z \} \\
pt(q) &= \{ y \} \\
pt(x) &= pt(y) = pt(z) = \emptyset
\end{align*}
\]
A specialized cubic solver

• At each load/store instruction, instead of generating a conditional constraint for each cell, generate a single universally quantified constraint:

 - $t \in [x]$
 - $[x] \subseteq [y]$
 - $\forall t \in [x]: [t] \subseteq [y]$
 - $\forall t \in [x]: [y] \subseteq [t]$

• Whenever a token is added to a set, lazily add new edges according to the universally quantified constraints

• Note that every token is also a constraint variable here

• Still cubic complexity, but faster in practice
A specialized cubic solver

• $x.\text{sol} \subseteq T$: the set of tokens for x (the bitvectors)
• $x.\text{succ} \subseteq V$: the successors of x (the edges)
• $x.\text{from} \subseteq V$: the first kind of quantified constraints for x
• $x.\text{to} \subseteq V$: the second kind of quantified constraints for x
• $W \subseteq T \times V$: a worklist (initially empty)

Implementation: SpecialCubicSolver
A specialized cubic solver

- $t \in \llbracket x \rrbracket$
 - addToken(t, x)
 - propagate()

- $\llbracket x \rrbracket \subseteq \llbracket y \rrbracket$
 - addEdge(x, y)
 - propagate()

- $\forall t \in \llbracket x \rrbracket: \llbracket t \rrbracket \subseteq \llbracket y \rrbracket$
 - add y to x.from
 - for each t in x.sol
 - addEdge(t, y)
 - propagate()

- $\forall t \in \llbracket x \rrbracket: \llbracket y \rrbracket \subseteq \llbracket t \rrbracket$
 - add y to x.to
 - for each t in x.sol
 - addEdge(y, t)
 - propagate()
Agenda

- Introduction to pointer analysis
- Andersen’s analysis
- Steensgaard’s analysis
- Interprocedural pointer analysis
- Records and objects
- Null pointer analysis
- Flow-sensitive pointer analysis
Steensgaard’s analysis

• View assignments as being bidirectional

• Generate constraints:
 • $X = \text{alloc} P$:\hspace{1cm} $\text{alloc} - i \in \llbracket X \rrbracket$
 • $X = \& Y$:\hspace{1cm} $Y \in \llbracket X \rrbracket$
 • $X = Y$:\hspace{1cm} $\llbracket X \rrbracket = \llbracket Y \rrbracket$
 • $X =^* Y$:\hspace{1cm} $c \in \llbracket Y \rrbracket \Rightarrow \llbracket c \rrbracket = \llbracket X \rrbracket$ for each $c \in \text{Cells}$
 • $^* X = Y$:\hspace{1cm} $c \in \llbracket X \rrbracket \Rightarrow \llbracket Y \rrbracket = \llbracket c \rrbracket$ for each $c \in \text{Cells}$

• Extra constraints:

\[
c_1, c_2 \in \llbracket c \rrbracket \Rightarrow \llbracket c_1 \rrbracket = \llbracket c_2 \rrbracket \quad \text{and} \quad \llbracket c_1 \rrbracket \cap \llbracket c_2 \rrbracket \neq \emptyset \Rightarrow \llbracket c_1 \rrbracket = \llbracket c_2 \rrbracket
\]

(whenever a cell may point to two cells, they are essentially merged into one)

• Steensgaard’s original formulation uses conditional unification for $X = Y$:
 \[
c \in \llbracket Y \rrbracket \Rightarrow \llbracket X \rrbracket = \llbracket Y \rrbracket \text{ for each } c \in \text{Cells} \quad \text{(avoids unifying if } Y \text{ is never a pointer)}
\]
Steensgaard’s analysis

• Reformulate as term unification

• Generate constraints:

 • \(X = \text{ alloc } P: \) \(\llbracket X \rrbracket = \uparrow \llbracket \text{ alloc } \mid \text{ occ } - \, i \rrbracket \)

 • \(X = \& Y: \) \(\llbracket X \rrbracket = \uparrow \llbracket Y \rrbracket \)

 • \(X = Y: \) \(\llbracket X \rrbracket = \llbracket Y \rrbracket \)

 • \(X = \ast Y: \) \(\llbracket Y \rrbracket = \uparrow \alpha \land \llbracket X \rrbracket = \alpha \) where \(\alpha \) is fresh

 • \(\ast X = Y: \) \(\llbracket X \rrbracket = \uparrow \alpha \land \llbracket Y \rrbracket = \alpha \) where \(\alpha \) is fresh

• Terms:

 – term variables, e.g. \(\llbracket X \rrbracket, \llbracket \text{ alloc } \mid \text{ occ } - \, i \rrbracket, \alpha \) (each representing the possible values of a cell)

 – each a single (unary) term constructor \(\uparrow t \) (representing pointers)

 – each \(\llbracket c \rrbracket \) is now a term variable, not a constraint variable holding a set of cells

• Fits with our unification solver! (union-find...)

• The points-to map is defined as \(\text{ pt}(X) = \{ c \in \text{Cells} \mid \llbracket X \rrbracket = \uparrow \llbracket c \rrbracket \} \)

• Note that there is only one kind of term constructor, so unification never fails
Applying Steensgaard

- Generated constraints (as sets or terms, respectively):

 \[
 \begin{align*}
 &\text{al }\perp\text{ oc} - 1 \in [p] \\
 &[y] = [x] \\
 &[z] = [x] \\
 &c \in [p] \Rightarrow [z] = [c] \quad \text{for each } c \in \text{Cells} \\
 &[q] = [p] \\
 &y \in [q] \\
 &c \in [p] \Rightarrow [c] = [x] \quad \text{for each } c \in \text{Cells} \\
 &z \in [p] \\
 &\text{+ the extra constraints}
 \end{align*}
 \]

- Smallest solution:

 \[
 \begin{align*}
 &\text{pt}(p) = \{ \text{al }\perp\text{ oc} - 1, y, z \} \\
 &\text{pt}(q) = \{ \text{al }\perp\text{ oc} - 1, y, z \} \\
 \end{align*}
 \]

 ...
Another example

Andersen:

```
a1 = &b1;
b1 = &c1;
c1 = &d1;
a2 = &b2;
b2 = &c2;
c2 = &d2;
b1 = &c2;
```

Steensgaard:

```
a1 = &b1;
b1 = &c1;
c1 = &d1;
a2 = &b2;
b2 = &c2;
c2 = &d2;
b1 = &c2;
```
Recall our type analysis...

- Focusing on pointers...
- Constraints:
 - \(X = \text{alloc } P \): \([X] = \uparrow [P] \)
 - \(X = \& Y \): \([X] = \uparrow [Y] \)
 - \(X = Y \): \([X] = [Y] \)
 - \(X = * Y \): \(\uparrow [X] = [Y] \)
 - \(* X = Y \): \([X] = \uparrow [Y] \)
- Implicit extra constraint for term equality:
 \[\uparrow t_1 = \uparrow t_2 \Rightarrow t_1 = t_2 \]

- Assuming the program type checks, is the solution for pointers the same as for Steensgaard’s analysis?
Agenda

• Introduction to pointer analysis
• Andersen’s analysis
• Steensgaard’s analysis
• Interprocedural pointer analysis
• Records and objects
• Null pointer analysis
• Flow-sensitive pointer analysis
Interprocedural pointer analysis

• In TIP, function values and pointers may be mixed together:
 \((**x)(1, 2, 3)\)

• In this case the CFA and the points-to analysis must happen *simultaneously*!

• The idea: Treat function values as a kind of pointers
Function call normalization

• Assume that all function calls are of the form

\[X = X_0(X_1, \ldots, X_n) \]

• Assume that all return statements are of the form

\[\text{return } X' ; \]

• As usual, simply introduce lots of temporary variables...

• Include all function names in \emph{Cells}
CFA with Andersen

• For the function call
 \[X = X_0(X_1, \ldots, X_n) \]
 and every occurrence of
 \[f(X'_1, \ldots, X'_n) \{ \ldots \text{return } X'; \} \]
 add these constraints:

 \[
 f \in \llbracket f \rrbracket \\
 f \in \llbracket X_0 \rrbracket \implies \left(\llbracket X_i \rrbracket \subseteq \llbracket X'_i \rrbracket \text{ for } i = 1, \ldots, n \land \llbracket X' \rrbracket \subseteq \llbracket X \rrbracket \right)
 \]

• (Similarly for simple function calls)
• Fits directly into the cubic framework!
CFA with Steensgaard

• For the function call
 \[X = X_0(X_1, ..., X_n) \]
 and every occurrence of
 \[f(X'_1, ..., X'_n) \{ ... \text{ return } X'; \} \]
 add these constraints:

 \[
 f \in \llbracket f \rrbracket \\
 f \in \llbracket X_0 \rrbracket \Rightarrow (\llbracket X_i \rrbracket = \llbracket X'_i \rrbracket \text{ for } i=1,...,n \land \llbracket X' \rrbracket = \llbracket X \rrbracket)
 \]

• (Similarly for simple function calls)
• Fits into the unification framework, but requires a generalization of the ordinary union-find solver
Context-sensitive pointer analysis

```c
foo(a) {
    return *a;
}

bar() {
    ...
    x = alloc null; // alloc-1
    y = alloc null; // alloc-2
    *x = alloc null; // alloc-3
    *y = alloc null; // alloc-4
    ...
    q = foo(x);
    w = foo(y);
    ...
}
```

Are q and w aliases?
Context-sensitive pointer analysis

• Generalize the abstract domain $Cells \rightarrow \mathcal{P}(Cells)$ to $Contexts \rightarrow Cells \rightarrow \mathcal{P}(Cells)$ (or equivalently: $Cells \times Contexts \rightarrow \mathcal{P}(Cells)$)

where $Contexts$ is a (finite) set of call contexts

• As usual, many possible choices of $Contexts$
 – recall the call string approach and the functional approach

• We can also track the set of reachable contexts
 (like the use of lifted lattices earlier):

 $Contexts \rightarrow \text{lift}(Cells \rightarrow \mathcal{P}(Cells))$

• Does this still fit into the cubic solver?
Context-sensitive pointer analysis

```
mk() {
    return alloc null; // alloc-1
}

baz() {
    var x, y;
    x = mk();
    y = mk();
    ...
}
```

Are x and y aliases?

$\llbracket x \rrbracket = \{\text{alloc-1}\}$

$\llbracket y \rrbracket = \{\text{alloc-1}\}$
Context-sensitive pointer analysis

• We can go one step further and introduce context-sensitive heap (a.k.a. heap cloning)

• Let each abstract cell be a pair of
 – \text{al l oc- } i \text{ (the al l oc with index } i \text{) or } X \text{ (a program variable)}
 – a heap context from a (finite) set \text{HeapContexts}

• This allows abstract cells to be named by the source code allocation site \text{and (information from) the current context}

• One choice:
 – set \text{HeapContexts} = \text{Contexts}
 – at al l oc, use the entire current call context as heap context
Context-sensitive pointer analysis with heap cloning

Assuming we use the call string approach with k=1, so Contexts = \{\varepsilon, c1, c2\}, and HeapContexts = Contexts

```plaintext
mk() {
    return alloc null; // alloc-1
}

baz() {
    var x, y;
    x = mk(); // c1
    y = mk(); // c2
    ...
}
```

Are x and y aliases?

\[[x]\] = \{(alloc-1, c1)\}
\[[y]\] = \{(alloc-1, c2)\}
• Introduction to pointer analysis
• Andersen’s analysis
• Steensgaard’s analysis
• Interprocedural pointer analysis
• Records and objects
• Null pointer analysis
• Flow-sensitive pointer analysis
Records in TIP

- Field write operations: see SPA...
- Values of record fields cannot themselves be records
- After normalization:
 - $X = \{ F_1 : X_1, ..., F_k : X_k \}$
 - $X = \text{alloc} \{ F_1 : X_1, ..., F_k : X_k \}$
 - $X = Y.F$

Let us extend Andersen’s analysis accordingly...
Constraint variables for record fields

• \([\cdot] : (Cells \cup (Cells \times Fields)) \rightarrow \mathcal{P}(Cells)\)
 where \(Fields\) is the set of field names in the program

• Notation: \([c. \ f] \) means \([(c, f)]\)
Analysis constraints

• $X = \{ F_1 : X_1, \ldots, F_k : X_k \}$: $[[X_1]] \subseteq [[X.F_1]] \land \ldots \land [[X_k]] \subseteq [[X.F_k]]$

• $X = \text{alloc} \{ F_1 : X_1, \ldots, F_k : X_k \}$: $\text{alloc} - i \in [[X]] \land [[X_1]] \subseteq [[\text{alloc} - i.F_1]] \land \ldots \land [[X_k]] \subseteq [[\text{alloc} - i.F_k]]$

• $X = Y.F$: $[[Y.F]] \subseteq [[X]]$

• $X = Y$: $[[Y]] \subseteq [[X]] \land [[Y.F]] \subseteq [[X.F]]$ for each $F \in \text{Fields}$

• $X =* Y$: $c \in [[Y]] \Rightarrow ([[c]] \subseteq [[X]] \land [[c.F]] \subseteq [[X.F]])$
 for each $c \in \text{Cells}$ and $F \in \text{Fields}$

• $*X = Y$: $c \in [[X]] \Rightarrow ([[Y]] \subseteq [[c]] \land [[Y.F]] \subseteq [[c.F]])$
 for each $c \in \text{Cells}$ and $F \in \text{Fields}$

See example in SPA
Objects as mutable heap records

Exp → ...

| Id
| alloc { Id: Exp, ..., Id: Exp }
| (*Exp) . Id
| null

Stm → ...

| Id = Exp;
| (*Exp) . Id = Exp;

- E. X in Java corresponds to (*E) . X in TIP (or C)
- Can only create pointers to heap-allocated records (=objects), not to variables or to cells containing non-record values
Agenda

• Introduction to pointer analysis
• Andersen’s analysis
• Steensgaard’s analysis
• Interprocedural pointer analysis
• Records and objects
• Null pointer analysis
• Flow-sensitive pointer analysis
Null pointer analysis

• Decide for every dereference \(*p\), is \(p\) different from \texttt{null}\?

• (Why not just treat \texttt{null} as a special cell in an Andersen or Steensgaard-style analysis?)

• Use the monotone framework
 – assuming that a points-to map \(pt\) has been computed

• Let us consider an intraprocedural analysis
 (i.e. we ignore function calls)
A lattice for null analysis

• Define the simple lattice $Null$:

\[
\begin{array}{c}
? \\
\downarrow \\
NN
\end{array}
\]

where NN represents “definitely not null” and $?$ represents “maybe null”

• Use for every program point the map lattice:

$Cells \rightarrow Null$

(here for TIP without records)
• For every CFG node, v, we have a variable $⟦v⟧$:
 – a map giving abstract values for all cells at the program point after v

• Auxiliary definition:

 $$JOIN(v) = \bigcup_{w \in pred(v)} ⟦w⟧$$

 (i.e. we make a forward analysis)
Null analysis constraints

• For operations involving pointers:
 • \(X = \text{alloc} \ P : \) \([v] = ???\)
 • \(X = \& Y : \) \([v] = ???\)
 • \(X = Y : \) \([v] = ???\)
 • \(X = \ast Y : \) \([v] = ???\)
 • \(\ast X = Y : \) \([v] = ???\)
 • \(X = \text{nul l} : \) \([v] = ???\)

• For all other CFG nodes:
 • \([v] = JOIN(v)\)

where \(P \) is null or an integer constant.
Null analysis constraints

• For a heap store operation \(*X = Y\) we need to model the change of whatever \(X\) points to
• That may be *multiple* abstract cells (i.e. the cells \(pt(X)\))
• With the present abstraction, each abstract heap cell \(l oc-i\) may describe *multiple* concrete cells
• So we settle for **weak** update:

\[
*X = Y: \quad [v] = store(JOIN(v), X, Y)
\]

where \(store(\sigma, X, Y) = \sigma[\alpha \mapsto \sigma(\alpha) \cup \sigma(Y)]_{\alpha \in pt(X)}\)
Null analysis constraints

- For a heap load operation $X = \ast Y$ we need to model the change of the program variable X
- Our abstraction has a single abstract cell for X
- That abstract cell represents a single concrete cell
- So we can use strong update:

 $X = \ast Y: \quad \llbracket v \rrbracket = \text{load}(\text{JOIN}(v), X, Y)$

 where

 $\text{load}(\sigma, X, Y) = \sigma[X \mapsto \bigcup_{\alpha \in \text{pt}(Y)} \sigma(\alpha)]$
Strong and weak updates

concrete execution:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>nul</td>
<td>l</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>nul</td>
<td>l</td>
</tr>
<tr>
<td>d</td>
<td>nul</td>
<td>l</td>
<td></td>
</tr>
</tbody>
</table>

abstract execution:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>nul</td>
<td>l</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>nul</td>
<td>l</td>
</tr>
<tr>
<td>d</td>
<td>nul</td>
<td>l</td>
<td></td>
</tr>
</tbody>
</table>

is d null here?

The abstract cell alloc-1 corresponds to multiple concrete cells

mk() {
 return alloc null; // alloc-1
}

...

a = mk();
b = mk();
c = alloc null; // alloc-2
*b = c; // strong update here would be unsound!
d = *a;
Strong and weak updates

```c
a = alloc null; // alloc-1
b = alloc null; // alloc-2
*a = alloc null; // alloc-3
*b = alloc null; // alloc-4
if (...) {
    x = a;
} else {
    x = b;
}
n = null;
*x = n; // strong update here would be unsound!
c = *x;
```

The points-to set for `x` contains multiple abstract cells

is C null here?
Null analysis constraints

- $X = \text{alloc } P$: $\llbracket v \rrbracket = JOIN(v)[X \mapsto \text{NN, alloc } i \mapsto ?]$
- $X = \& Y$: $\llbracket v \rrbracket = JOIN(v)[X \mapsto \text{NN}]$
- $X = Y$: $\llbracket v \rrbracket = JOIN(v)[X \mapsto JOIN(v)(Y)]$
- $X = \text{null } l$: $\llbracket v \rrbracket = JOIN(v)[X \mapsto ?]$

- In each case, the assignment modifies a program variable
- So we can use strong updates, as for heap load operations
Strong and weak updates, revisited

• **Strong update:** \(\sigma[c \mapsto \text{new-value}] \)
 – possible if \(c \) is known to refer to a single concrete cell
 – works for assignments to local variables
 (as long as TIP doesn’t have e.g. nested functions)

• **Weak update:** \(\sigma[c \mapsto \sigma(c) \sqcup \text{new-value}] \)
 – necessary if \(c \) may refer to multiple concrete cells
 – bad for precision, we lose some of the power of flow-sensitivity
 – required for assignments to heap cells
 (unless we extend the analysis abstraction!)
Interprocedural null analysis

• Context insensitive or context sensitive, as usual…
 – at the after-call node, use the heap from the callee

• But be careful!

 Pointers to local variables may escape to the callee
 – the abstract state at the after-call node cannot simply copy
 the abstract values for local variables from the abstract state
 at the call node
Using the null analysis

• The pointer dereference $*p$ is “safe” at entry of v if $\text{JOIN}(v)(p) = \text{NN}$

• The quality of the null analysis depends on the quality of the underlying points-to analysis
Example program

Andersen generates:

\begin{verbatim}
p = alloc null;
q = &p;
n = null;
*q = n;
*p = n;
\end{verbatim}

Andersen generates:

\[
\begin{align*}
pt(p) &= \{\text{alloc } 1\} \\
pt(q) &= \{p\} \\
pt(n) &= \emptyset
\end{align*}
\]
Generated constraints

\[
\begin{align*}
&[[p=\text{alloc null}]] = \perp[p \mapsto \text{NN}, \text{alloc-1} \mapsto ?] \\
&[[q=\&p]] = [[p=\text{alloc null}]][q \mapsto \text{NN}] \\
&[[n=\text{null}]] = [[q=\&p]][n \mapsto ?] \\
&[[*q=n]] = [[n=\text{null}]][p \mapsto [[n=\text{null}]](p) \cup [[n=\text{null}]](n)] \\
&[[*p=n]] = [[*q=n]][\text{alloc-1} \mapsto [[*q=n]](\text{alloc-1}) \cup [[*q=n]](n)]
\end{align*}
\]
Solution

\[
\begin{align*}
[p = \text{alloc } \text{null}] &= [p \mapsto \text{NN}, q \mapsto \text{NN}, n \mapsto \text{NN}, \text{alloc-1} \mapsto ?] \\
[q = &\& p] &= [p \mapsto \text{NN}, q \mapsto \text{NN}, n \mapsto \text{NN}, \text{alloc-1} \mapsto ?] \\
[n = \text{null}] &= [p \mapsto \text{NN}, q \mapsto \text{NN}, n \mapsto ?, \text{alloc-1} \mapsto ?] \\
[* q = n] &= [p \mapsto ?, q \mapsto \text{NN}, n \mapsto ?, \text{alloc-1} \mapsto ?] \\
[* p = n] &= [p \mapsto ?, q \mapsto \text{NN}, n \mapsto ?, \text{alloc-1} \mapsto ?]
\end{align*}
\]

- At the program point before the statement \(* q = n\) the analysis now knows that \(q\) is definitely non-null
- ... and before \(* p = n\), the pointer \(p\) is maybe null
- Due to the weak updates for all heap store operations, precision is bad for \text{alloc-1} \(\text{cells}\)
Agenda

• Introduction to pointer analysis
• Andersen’s analysis
• Steensgaard’s analysis
• Interprocedural pointer analysis
• Records and objects
• Null pointer analysis
• Flow-sensitive pointer analysis
Points-to graphs

• Graphs that describe possible heaps:
 – nodes are abstract cells
 – edges are possible pointers between the cells

• The lattice of points-to graphs is $\mathcal{P}(\text{Cells} \times \text{Cells})$ ordered under subset inclusion
 (or alternatively, $\text{Cells} \rightarrow \mathcal{P}(\text{Cells})$)

• For every CFG node, v, we introduce a constraint variable $[v]$ describing the state after v

• Intraprocedural analysis (i.e. ignore function calls)
Constraints

• For pointer operations:
 • $X = \text{alloc} \ P$: $⟦v⟧ = \text{JOIN}(v) \downarrow X \cup \{ (X, \text{alloc-}i) \}$
 • $X = \& Y$: $⟦v⟧ = \text{JOIN}(v) \downarrow X \cup \{ (X, Y) \}$
 • $X = Y$: $⟦v⟧ = \text{JOIN}(v) \downarrow X \cup \{ (X, t) \mid (Y, t) \in \text{JOIN}(v) \}$
 • $X = * Y$: $⟦v⟧ = \text{JOIN}(v) \downarrow X \cup \{ (X, t) \mid (Y, s) \in \sigma, (s, t) \in \text{JOIN}(v) \}$
 • $* X = Y$: $⟦v⟧ = \text{JOIN}(v) \cup \{ (s, t) \mid (X, s) \in \text{JOIN}(v), (Y, t) \in \text{JOIN}(v) \}$
 • $X = \text{nul} \ I$: $⟦v⟧ = \text{JOIN}(v) \downarrow X$

where $\Box X = \{ (s, t) \mid s \neq X \}$

$\text{JOIN}(v) = \bigcup_{w \in \text{pred}(v)} ⟦w⟧$

note: weak update!

• For all other CFG nodes:
 • $⟦v⟧ = \text{JOIN}(v)$
Example program

```plaintext
var x, y, n, p, q;
x = alloc null; y = alloc null;
*x = null; *y = y;
n = input;
while (n>0) {
    p = alloc null; q = alloc null;
    *p = x; *q = y;
    x = p; y = q;
    n = n-1;
}
```
Result of analysis

• After the loop we have this points-to graph:

• We conclude that X and Y will always be disjoint
Points-to maps from points-to graphs

- A points-to map for each program point v:
 \[pt(X) = \{ t \mid (X,t) \in \llbracket v \rrbracket \} \]

- More expensive, but more precise:
 - Andersen: \(pt(x) = \{ y, z \} \)
 - flow-sensitive: \(pt(x) = \{ z \} \)
Improving precision with abstract counting

• The points-to graph is missing information:
 – alloc-2 nodes always form a self-loop in the example

• We need a more detailed lattice:

\[P(\text{Cells} \times \text{Cells}) \times (\text{Cell} \rightarrow \text{Count}) \]

where we for each cell keep track of how many concrete cells that abstract cell describes

• This permits strong updates on those that describe precisely 1 concrete cell

\[\text{Count} = \begin{cases} 0 & \text{?} \\ 1 & \text{1} \\ \bot & \text{>1} \end{cases} \]
Better results

• After the loop we have this extended points-to graph:

• Thus, al l oc- 2 cells form a self-loop
• Both al l oc- 1 and al l oc- 2 permit strong updates
Escape analysis

• Perform a points-to analysis
• Look at return expression
• Check reachability in the points-to graph to arguments or variables defined in the function itself

• None of those
 ↓
 no escaping stack cells

```
baz() { 
  var x;
  return &x;
}
main() { 
  var p;
  p=baz();
  *p=1;
  return *p;
}
```